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MULTILEVEL PARAREAL ALGORITHM WITH AVERAGING FOR
OSCILLATORY PROBLEMS\ast 
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Abstract. The present study is an extension of the work done by Peddle, Haut, and Wingate
[SIAM J. Sci. Comput., 41 (2019), pp. A3476--A3497] and Haut and Wingate [SIAM J. Sci. Com-
put., 36 (2014), pp. A693--A713], where a two-level Parareal method with mapping and averaging
is examined. The method proposed in this paper is a multilevel Parareal method with arbitrarily
many levels, which is not restricted to the two-level case. We give an asymptotic error estimate
which reduces to the two-level estimate for the case when only two levels are considered. Introducing
more than two levels has important consequences for the averaging procedure, as we choose sepa-
rate averaging windows for each of the different levels, which is an additional new feature of the
present study. The different averaging windows make the proposed method especially appropriate
for nonlinear multiscale problems, because we can introduce a level for each intrinsic scale of the
problem and adapt the averaging procedure such that we reproduce the behavior of the model on
the particular scale resolved by the level. The method is applied to nonlinear differential equations.
The nonlinearities can generate a range of frequencies in the problem. The computational cost of
the new method is investigated and studied on several examples.
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1. Introduction. The main motivation for this study is the application and
analysis of a multilevel Parareal method to oscillatory PDEs of type (1.1); see below.
These types of PDEs are important in geophysical and astrophysical fluid dynamics
and represent the underpinning equations used in climate and weather prediction.
Furthermore, numerical discretizations of these equations are posing significant chal-
lenges for contemporary computer architectures, so there is a strong motivation to
explore new ways of exploiting the increasing parallelism [15]. The multiscale equa-
tions of type (1.1) can have more than one oscillatory linear term and hence more than
one small parameter, and have a nonlinear term that can generate a wide range of
frequencies. In [12, 18] a two-level Parareal method was shown to have the potential
for significant parallel speedups. However, given the wide range of frequencies possible
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in PDEs of type (1.1), in this paper we ask the following question: Given a two-level
Parareal method with a fixed number of iterations, can we find a multilevel Parareal
method that achieves the same accuracy with a faster wall clock time, assuming we
have as many processors as we need? This central question is illustrated graphically
in Figure 1.

The focus of this paper is on the Parareal method, a time-parallel method first
proposed in [17]. Since its publication a lot of research has been done on the method
with the aim to exploit the advantages of parallelism in time. For instance, [18] and
[12] combine the Parareal method with averaging to solve fluid-dominated problems.
Several studies treat the well-known stability issues related to problems of this type;
see, for instance, [19] or [24]. Convergence of the Parareal method is also discussed in
[11], [9], or [1]. Moreover, the authors of [8] give several interpretations of the Parareal
algorithm and especially show its relation to the MGRIT algorithm [6]. Standard
Parareal has been shown to be a special case of MGRIT with particular projection and
prolongation operators. Further comparisons of MGRIT and Parareal were made in
[8, 10, 6, 23]. As such, MGRIT is a more general framework than multilevel Parareal.
Our combination of multilevel Parareal with hierarchical nonlinear averaging methods
can also be used with MGRIT and is a topic for future research. Investigations of
the error and convergence can be found, for example, in [23], [22], or [7]. There are
also attempts to improve the understanding of hyperbolic or advection-dominated
problems; see [2], [13], or [25], just to name a few. The study [16] introduces a micro-
macro Parareal algorithm. The coarse propagator computes a cheap approximation
to a slow, macroscopic model, whereas the fine propagator solves the full microscopic
problem. The idea to use simpler models for the coarse propagator is related to the
construction of the coarse propagators in the present study, which relies on a mapping
and averaging method.

The problems under consideration in the present study are oscillatory equations
of the following form:

du

dt
+

M\sum 
i=1

1

\varepsilon i
\scrL iu=\scrN (u).(1.1)

The linear operators \scrL i are skew Hermitian, i.e., they have purely imaginary eigen-
values and are responsible for temporal oscillations in the solution. The parameters
\varepsilon i with \varepsilon i+1 \leq \varepsilon i can be small and can make the system stiff. Furthermore, the non-
linear term \scrN is a quadratic nonlinearity and can produce a wide range of temporal
frequencies. In addition, a diffusive term \scrD can be added in (1.1). In this study we
are interested in developing a multilevel Parareal scheme, which we define below, that
has the potential to handle a range of different frequencies. Though many choices are
possible, for this work we consider the following cases:

1. a single linear oscillatory term \varepsilon 1 = \varepsilon and a range of frequencies from \scrN (see
Examples 5.3 and 5.2),

2. two different linear oscillatory terms and a range of frequencies from \scrN (see
Example 5.4 with \epsilon 1 = 1/10, \epsilon 2 = 1/100),

3. two different linear oscillatory terms with \epsilon 1 = \epsilon 2 and a range of frequencies
from \scrN (see Example 5.4, \epsilon 1 = \epsilon 2 = 1/10). Though this case can be written as
case 1, above, the comparison of this case with case 2 occurs in applications
and will be considered in the examples.

In the following sections we analyze case 1 in the list above, but will provide example
calculations for all three cases in section 5. We apply a transformation to (1.1); see
subsection 2.1.1. In this paper, we will use transformation and mapping interchange-
ably. The resulting system is solved with a method combining the Parareal method
and an averaging technique; see subsection 2.1.2.
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The Parareal method was first presented in [17]. It is a time-parallel method with
two levels. For the exposition in this study we enumerate the levels, i.e., for the two-
level method we have level 1 and level 0. On level 1 a coarse time grid is introduced
and on level 0 we have several fine time grids. On the coarse time grid of level 1
a coarse propagator, for instance, a Runge--Kutta method, is applied to compute a
numerical approximation to a differential equation. This numerical approximation is
then improved iteratively using solutions computed with the fine propagator on level
0 in parallel. We can define the multilevel Parareal algorithm recursively in the levels
until we reach the two-level case. The idea of the multilevel Parareal algorithm with
L levels is that the coarse propagator provides a solution on the coarsest level and
the fine propagator is a multilevel Parareal algorithm with L - 1 levels. More detailed
descriptions of the two-level and multilevel methods can be found in subsections 2.2
and 2.3. To mitigate the oscillatory stiffness caused by the skew Hermitian linear
operator \scrL , an averaging method is applied on coarse levels; see subsection 2.1.2.
This leads the multilevel Parareal method with averaging.

A major achievement of the present work is an asymptotic convergence proof.
The error estimate for a two-level Parareal method is extended to the case of multiple
levels with and without averaging. This is a generalization of the classical proof found
in [9] and the convergence proof for the APinT method found in [18]. The new proof
has two main steps. In the mentioned literature, error estimates for the two-level case
can be found; however, the fine propagator is assumed to be the exact propagator.
When we introduce multiple levels we cannot make this assumption, because we want
to know how the error contributions that emerge on the finer levels propagate through
the different coarser levels and we will find that they are amplified by an amplification
factor that depends on the details of the scheme. Consequently, the first step of the
new proof is to refine the two-level estimate to the case where the fine propagator
is not exact. The second main step is to apply an inductive argument to obtain an
estimate for the multilevel case. This might be beneficial for identifying on which
level the dominant error contribution emerges and therefore how the time-steps or
the number of iterations on the different levels should be chosen to reach a certain
error tolerance. For this idea error estimators would be needed. This is a possible
future extension of the presented work.

We want to answer the question if multilevel methods can have a faster runtime
than two-level methods while achieving the same accuracy. As a measure for the
runtime, we count the number of serial steps, which are explained in the next para-
graph and section 4. Let us suppose that we are given a two-level method with a
fixed number of iterations and consequently a fixed accuracy. The aim is to design a
multilevel method which is as accurate and faster. If we do not compute too many
iterations with the multilevel method, the number of serial steps done with the mul-
tilevel method is less than the number of serial steps done with the two-level method.
However, we expect that we have to do several iterations with the multilevel method
to reach the accuracy of the two-level method. This is illustrated in Figure 1. An
example will be discussed in subsection 5.4.

In the present study, a numerical time-stepping method is said to be efficient if
it computes a solution with good accuracy in a short amount of time; thus efficiency
relates accuracy and runtime. Accuracy is determined by the error of the numerical
time-stepping method. The number of right-hand-side evaluations is a measure for the
runtime if the code is not parallelized. In the special case of the Parareal method, some
right-hand-side evaluations can be computed at the same time when a parallelized
numerical code is run. Therefore, the notion of serial steps is introduced in section
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Error

Error of 2-level
method

Computational
cost

Computational cost
of 2-level method

Iterations

Fig. 1. The blue dots in the upper/lower
figure show that the error/computational
cost of a multilevel Parareal method de-
creases/increases with an increasing number
of iterations. For comparison, the dashed gray
line in the upper/lower figure illustrates the er-
ror/computational cost of a two-level Parareal
method with a fixed number of iterations. The
shaded blue area shows how many iterations
can be done when the multilevel method is both
more exact and less computationally expensive
than the two-level method.

Level 2

Level 1

Level 0

(I)

(II)

(III)

(IV)

(V)

Fig. 2. Parareal algorithm with three lev-
els, k2 = 1 iteration on level 2 and k1 = 1 it-
eration on level 1. (I) Compute initial guess
on coarsest level, level 2; (II) get initial values
from level 2, compute initial guess on level 1
in parallel; (III) apply fine propagator in paral-
lel, get initial values from level 1; (IV) compute
Parareal iteration with fine solution from level
0; (V) compute Parareal iteration with fine so-
lution from level 1.

4. If two right-hand-side evaluations can be computed at the same time, they belong
to the same serial step. Efficiency, as explained above, must be distinguished from
parallel efficiency of a parallel algorithm, which is defined as the speedup divided by
the number of processors used.

The paper is organized as follows. The algorithms are described in section 2.
Especially, subsection 2.1 shows the reformulation of (1.1) for the case M = 1. The
exposition in subsection 2.2 is about the two-level Parareal schemes, and subsection
2.3 contains a description of the new multilevel schemes. Asymptotic convergence
results with and without averaging can be found in section 3. In section 4 the issue
of computational cost of the multilevel Parareal schemes is discussed. Numerical
examples can be found in section 5. Finally, in section 6 a discussion of the results
and a conclusion are given.

2. Formulation of the algorithm. The Parareal method was first formulated
in [17]. Versions with mapping and averaging incorporated can be found in [12] or
[18]. Further, subsection 2.2 summarizes the methods. Then, subsection 2.3 presents
multilevel versions.

2.1. Reformulation of the problem.

2.1.1. The transformation. We analyze the problem by taking M = 1 in (1.1)
and dropping the subscripts. The following transformation, also used in [21] and
related to the method of cancellation of oscillations, is applied to the above system
to eliminate the linear term
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w(t) = exp

\biggl( 
\scrL 
\varepsilon 
t

\biggr) 
u(t).(2.1)

The transformed system, denoted as the modulation equation, since its time evolution
is more regular than (1.1), admits the form

dw

dt
= exp

\biggl( 
\scrL 
\varepsilon 
t

\biggr) 
\scrN 
\biggl( 
exp

\biggl( 
 - \scrL 

\varepsilon 
t

\biggr) 
w

\biggr) 
.(2.2)

There exist numerous scientific applications which have the form of (1.1), includ-
ing examples that occur in atmospheric and oceanic simulations, like the swinging
spring [14], also called the elastic pendulum, or the rotating shallow water equations
(RSWEs); see [4].

As the operator \scrL is skew Hermitian, the norm of the right-hand side of (2.2) can
be bounded independent of \epsilon . Especially, applying the transformation (2.1) to the
problem (1.1) eliminated the linear term and made the problem smoother. However,
taking higher order derivatives of w we see that with each order we get an additional
power of 1/\epsilon in the derivative. To further mitigate the oscillatory stiffness we apply
averaging techniques. This is important when numerical time-stepping schemes are
applied, since the truncation error depends on higher order derivatives.

Here, the importance of applying the transformation and solving the modulation
equation instead of the system without transformation is explained. First, using the
modulation equation is the first step which makes the equations smoother. Second, for
an autonomous oscillatory problem, the information if the solution reaches a valley or
a peak of an oscillation at time t is in the initial conditions. That means if we average
the initial data of an autonomous, oscillatory differential equation, we cannot expect
to compute the phase correctly. In subsection 5.2 we will show for the nonautonomous
modulation equation that the phase is computed correctly with the proposed method,
although the averaging removes almost all the information about the phase on the
coarse levels.

2.1.2. Averaging. In order to explain how an averaging integral mitigates the
oscillatory stiffness due to fast oscillations, let us assume that a slow function is
superimposed by a fast periodic function with zero mean, that is, we consider a
function f(t) = fslow(t) + ffast(t). An example for a fast function would be ffast(t) =
e2\pi int, where | n| \gg 0. Integrating the fast function over an interval of length \eta where
\eta is as large as a few times the period of the fast periodic function, i.e., computing

1/\eta 
\int \eta /2

 - \eta /2
ffast(t + s)ds, the positive and negative contributions cancel each other.

However, for the averaging the integrand is weighted by a scaled kernel function \rho with
compact support, which decays fast close to the boundary of the compact support.
Moreover, the knowledge of the exact period is not assumed in the method. More

precisely, an integral of the form 1/\eta 
\int \eta /2

 - \eta /2
\rho (s/\eta )f(t+ s)ds is evaluated. Therefore,

in general we do not observe an exact cancellation of the oscillations but rather a
mitigation; see, for example, Figure 4. The technical details can be found in [5] in
Lemma 2.2.

Let us now formulate an averaged version of the modulation equation. In the
averaged equation the right-hand side of (2.2) is replaced. In particular, when the
coarse propagator is applied, an approximation to the following equation is computed:

d\=w(t)

dt
=

1

\eta 

\int \eta /2

 - \eta /2

\rho 

\biggl( 
s

\eta 

\biggr) 
exp

\biggl( 
L

\epsilon 
(s+ t)

\biggr) 
\scrN 
\biggl( 
exp

\biggl( 
 - L

\epsilon 
(s+ t)

\biggr) 
\=w(t)

\biggr) 
ds,(2.3)
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where \eta is the averaging window and \rho is the kernel function. We use

\rho (s) =
1

\rho 0
exp

\biggl( 
1

(s - 1/2)(s+ 1/2)

\biggr) 
,(2.4)

where \rho 0 normalizes the function. In the right-hand side of (2.3) we write \=w(t) to
emphasize that the equation depends on t only and not on s. The oscillations in the
equation with period \leq \eta are averaged. The exponential oscillates fast in s, whereas
the nonlinearity is slowly varying. The scaled filter function is slowly varying too. In
that case, we integrate the oscillations which come from the exponential over a few
periods. The length of the integration interval is not necessarily an integer multiple
of the period and damped oscillations remain after the integration. The ideas of
temporal averaging were also investigated in related contexts such as ODEs [20], in
the context of heterogeneous multiscale methods [3], [5], and in PDEs analysis [4].

The averaging process requires the formulation of analytical equations. In par-
ticular, for each level l, l \not = 0, we formulate an averaged, analytical equation which
depends on a level-dependent averaging window \eta l and shows the same behavior as
the original system, that is, the modulation equation, on the coarser scales up to
the smallest scale that can still be resolved when the averaging window \eta l is used,
but whose behavior on the finer scales is different. Especially, the features on the
finer scales are averaged in the averaged equation. The step of formulating analyti-
cal equations is skipped when other strategies to deal with the fast components, for
example, applying implicit methods, are used. However, the analytical equations pro-
vide descriptions of physical phenomena and are therefore a link to the theory and
modeling of the physical application considered.

2.2. Two-level Parareal and two-level Parareal with averaging. The two-
level Parareal method has two levels, denoted as level 1 and level 0. Level 1 is the
coarse level where we do \^N time-steps on a coarse grid, which has \^N +1 grid points.
Two neighboring grid points of the coarse grid form an interval. In total we have \^N
such small intervals and on each small interval we introduce a fine grid. These are
the fine grids of level 0.

The Parareal method is a parallel-in-time method which has two basic solvers, a
coarse propagator denoted as G1 and a fine propagator denoted as P 0. The upper
indices refer to the levels on which the propagators are applied. The coarse and the
fine propagators can be Runge--Kutta methods, but other choices are possible too.
First, the coarse propagator is applied on level 1 to compute initial guesses U0

n, where
the index n counts the time-steps on level 1. The initial guesses are computed in
serial and are improved iteratively. The values provided through the initial guess at
the end of a coarse step are passed to the fine grids on level 0 as initial values. Then
the fine propagator P0 is applied in parallel. The results of the fine propagator are
passed back to the coarse level 1. Applying the coarse propagator again, a Parareal
iteration step can be computed:

Uk+1
n+1 =G1(Uk+1

n ) + P 0(Uk
n) - G1(Uk

n).(2.5)

The upper index of the numerical solutions counts the iterations. Once the first
iteration is computed, it can be used as a new initial guess and the next iteration can
be done.

This procedure is modified in the APinT method where averaging is incorporated;
see [12] and [18]. Here, the coarse propagator, denoted as \=G1, provides a numerical
solution to an averaged problem (2.3) and not the original system (2.2). Solving
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an averaged problem has the advantage that the fast oscillations, which are still in
the modulation equation, are further mitigated, provided the averaging window \eta is
chosen appropriately. Thus, the oscillatory stiffness is mitigated and taking large
time-steps is possible when the numerical method of the coarse propagator is applied.
This can be beneficial for the efficiency of the algorithm. We can formulate a Parareal
iteration step with averaging incorporated as follows:

Uk+1
n+1 =

\=G1(Uk+1
n ) + P 0(Uk

n) - \=G1(Uk
n),(2.6)

where \=G1 denotes the coarse propagator, which provides a numerical solution to the
averaged problem (2.3) on the coarse level, level 1.

2.3. Multilevel Parareal and multilevel Parareal with averaging. Here
we state again the idea behind the multilevel Parareal algorithm: The multilevel
Parareal algorithm uses a recursion in the levels. Especially, the multilevel Parareal
algorithm with L levels is a two-level Parareal algorithm where we compute a coarse
solution with the coarse propagator on the coarsest level and the fine propagator is
a multilevel Parareal algorithm with L  - 1 levels applied on the finer levels. Then
applying the multilevel Parareal algorithm can be iterated until we reach the two-level
case, where the two-level Parareal algorithm, described in the previous subsection, is
applied.

To distinguish between the different levels, we introduce the subsequent notation:
When we consider a multilevel Parareal method with L levels, level L - 1 denotes the
coarsest level and level 0 is the finest level. If l1 > l2 for l1, l2 \in \{ 0, . . .L - 1\} , then
level l1 is the coarser and level l2 the finer level. The coarse propagator applied on
level l is denoted by Gl or in the case when an averaged equation is solved by \=Gl.
The fine propagator needed to compute the Parareal solution on level l is denoted as
P l - 1 or \=P l - 1 if the fine propagator solves an averaged problem.

Here, the multilevel Parareal method with and without averaging is explained.
Algorithms 2.1, 2.3, and 2.4 show the method without averaging. The case with
averaging can be found in Algorithms 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7. Moreover,
the multilevel algorithm with averaging included is illustrated in the supplemental
material in Figure SM1.

We assume that a method with L levels is applied. On the coarsest level, which is
denoted as level L - 1, a coarse propagator is applied. The biggest time-steps are used
on that level. For the method without averaging, the coarse propagator solves the
unaveraged modulation equation (2.2). When the method with averaging is applied,
the coarse propagator solves an averaged modulation equation of the form (2.3). For
the averaging, the averaging window \eta L - 1 is used. Note the index L - 1.

The coarse propagator provides the initial values for the fine propagator, which
can be applied in parallel. The following two cases must be distinguished for the
method with L levels:

\bullet L > 2: For that case, the fine propagator is a multilevel Parareal method
with L - 1 levels, which consists of a coarse propagator applied on level L - 2
and a fine propagator. If the method without averaging is used, the coarse
propagator on level L - 2 is applied to problem (2.2). For the method with
averaging, (2.3) is solved on level L - 2 with an averaging window \eta L - 2, which
satisfies \eta L - 2 \leq \eta L - 1.

\bullet L= 2: To compute solutions with the fine propagator, the unaveraged mod-
ulation equation (2.2) is solved for the method without averaging as well as
with averaging on the finest level, level 0.
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As the fine solution is computed, a correction iteration can be done. For this,
the coarse propagator must be evaluated again. To improve the accuracy of the
approximation, the process of computing corrections can be iterated.

Algorithm 2.1 Multilevel Parareal method without averaging.

multi level method(w0, t0,N,\Delta t, l):
w0,l\leftarrow propagator(w0, t0,N,\Delta t)
for k= 0, . . . ,Kmax  - 1:

parfor n= 0, . . . ,N  - 1:
if l > 1:

wl - 1
n \leftarrow multi level method(wk,l[n], t0 + n\Delta t,N,\Delta t/N, l - 1)

else:
wl - 1

n \leftarrow propagator(wk,l[n], t0 + n\Delta t,N,\Delta t/N)
end if

end parfor
for n= 0, . . . ,N  - 1:

wk+1,l[n+ 1]\leftarrow step(wk+1,l[n], tn,\Delta t) + wl - 1
n [N ] - wk,l[n+ 1]

end for
end for
return wK\mathrm{m}\mathrm{a}\mathrm{x},l

Algorithm 2.2 Multilevel Parareal method with averaging.

av multi level method(w0, t0,N,\Delta t, l, \eta l):
w0,l\leftarrow av propagator(w0, t0,N,\Delta t, \eta l)
for k= 0, . . . ,Kmax  - 1:

parfor n= 0, . . . ,N  - 1:
if l > 1:

wl - 1
n \leftarrow av multi level method(wk,l[n], t0 + n\Delta t,N,\Delta t/N, l - 1, \eta l - 1)

else:
wl - 1

n \leftarrow propagator(wk,l[n], t0 + n\Delta t,N,\Delta t/N)
end if

end parfor
for n= 0, . . . ,N  - 1:

wk+1,l[n+ 1]\leftarrow av step(wk+1,l[n], tn,\Delta t, \eta l) + wl - 1
n [N ] - wk,l[n+ 1]

end for
end for
return wK\mathrm{m}\mathrm{a}\mathrm{x},l

Algorithm 2.3 Basic propagator.

propagator(w0, t0,N,\Delta t):
w[0]\leftarrow w0

for n= 0, . . . ,N  - 1:
w[n+ 1]\leftarrow step(w[n], tn,\Delta t)

end for
return w
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Algorithm 2.4 One step with RK2 as a basic propagator.

step(x, t,\Delta t):
k1\leftarrow e\scrL /\epsilon t\scrN (e - \scrL /\epsilon tx); k2\leftarrow e\scrL /\epsilon (t+1/2\Delta t)\scrN (e - \scrL /\epsilon (t+1/2\Delta t)(x+\Delta t/2k1))
\~x\leftarrow x+\Delta t/2(k1 + k2)
return \~x

Algorithm 2.5 Averaged basic propagator.

av propagator(w0, t0,N,\Delta t, \eta ):
w[0]\leftarrow w0

for n= 0, . . . ,N  - 1:
w[n+ 1]\leftarrow av step(w[n], tn,\Delta t, \eta )

end for
return w

Algorithm 2.6 One step for an averaged equation with RK2 as a basic propagator.

av step(x, t,\Delta t, \eta ):
k1\leftarrow av RHS(x, t, \eta ), k2\leftarrow av RHS(x+\Delta t/2k1, t+\Delta t/2, \eta )
\~x\leftarrow x+\Delta t/2(k1 + k2)
return \~x

Algorithm 2.7 Evaluate averaged right-hand side with trapezium rule.

av RHS(w, t, \eta ,M = 100):
parfor i= 1, . . . ,M  - 1

si\leftarrow  - \eta /2 + i/M\eta 
end parfor
\=w= 1/(\eta M) sum(\rho (si/\eta )e

\scrL /\epsilon (t+si)\scrN (e - \scrL /\epsilon (t+si)w))
return \=w

A basic principle of the Parareal method is that an initial guess is iteratively
improved. These correction iterations are done on the levels L  - 1,L  - 2, . . . ,1 in
the multilevel case, and inspired by multigrid methods we can adopt the terminology
of cycles. The case when only one iteration is computed on the levels 1, . . . ,L  - 1
is denoted as a V-cycle. Illustrations of methods with three levels can be found in
Figure 2 and in the supplemental material in Figure SM2. Figure 2 shows the case
if one iteration is done on level 1 and level 2; in Figure SM2 we do two iterations on
levels 1 and 2.

The algorithm with averaging is particularly promising for multiscale problems.
The strategy for the application of the method to such problems can be formulated as
follows. Suppose we are given a problem with several time scales. For each intrinsic
scale of the problem we can introduce a level and resolve the properties of the system
which are the specific for that scale, i.e., every scale is assigned a level and the scale
specific properties are resolved on the level assigned. We average such that we keep
the features of the original system, for instance, a modulation equation, on that
scale, but the finer components of the equation vanish through the averaging process.
This step requires a convenient choice of the averaging windows \eta l. The averaging
windows define the lengths of the intervals over which filter integrals are computed;
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see subsection 2.1.2. In the multilevel case, they are level-dependent. As the averaging
procedure makes the system more well-behaved for numerical time-stepping methods,
the time-steps, which can be used for the averaged problems, are larger than the ones
required for the unaveraged problem. Note that only on the finest level, level 0, the
full, unaveraged system is solved.

3. Convergence results for the multilevel methods. The proof for the
multilevel method is an inductive proof for which we can apply similar arguments as
in the two-level case. The difference is that the fine propagator is not a basic ODE
solver, like a Runge--Kutta scheme, but it is the multilevel Parareal method on the
finer grids. Only on the finest level, level 0, the finest propagator is a basic ODE
solver.

Moreover, we introduce a coarsening factor N which relates the time-steps on the
different levels. Let \Delta T0 be the time-step on the finest grids on level 0. Then, the
grids on level 1 have a coarser time-step, given by \Delta T1 =N\Delta T0. For level 2, we have
a time-step \Delta T2 =N\Delta T1 =N2\Delta T0 and so on. See the relations (B.11) and (B.12).

Theorem 3.1. Let the coarse propagators Gl applied on the levels l= 1, . . . ,L - 1
satisfy the conditions

E(x) - Gl(x) = c l
p+1(x)\Delta T p+1

l + c l
p+2(x)\Delta T p+2

l + . . . , and(3.1)

\| Gl(x) - Gl(y)\| \leq (1 +Cl
2\Delta Tl)\| x - y\| ,(3.2)

where E(x) denotes the exact propagator, i.e., E(x) is the exact solution of the initial
valued problem with initial value x when the time span \Delta Tl has passed. Suppose that
the error of the fine propagator, on level 0, is bounded by c\Delta T p0+1

0 . Then we can
show the following error bound for the multilevel Parareal method without averaging:

ekl

n,l \leq 
l\sum 

\=l=1

E\=l

l\prod 
j=\=l+1

Aj + \delta 0

l\prod 
\=l=1

A\=l,(3.3)

where ekl

n,l denotes the bound of an error on level l after kl iterations. The index n
counts the grid points. In addition, the following notation is used:

E\=l =

\Biggl\{ \bigl( 
n

k\=l+1

\bigr) 
\gamma \=l\alpha 

k\=l
\=l
\beta 
N - k\=l - 1
\=l

, \=l= l,\bigl( 
N

k\=l+1

\bigr) 
\gamma \=l\alpha 

k\=l
\=l
\beta 
N - k\=l - 1
\=l

, \=l < l,
(3.4)

\delta 0 = c\Delta T1\Delta T p0

0 ,(3.5)

Al =N\beta N - 1
l (1 + \alpha 0N,l)

N - 1.(3.6)

We have \alpha l =C1,l\Delta T p+1
l , \beta l = (1+C2,l\Delta Tl), \gamma l =C3,l\Delta T p+1

l , and \alpha 0N,l \in [0, \alpha l] .

Especially, the derived error estimate is a sum. The different terms of the sum
are composed of the errors E\=l emerging on level \=l and amplification factors A\=l which
amplify the errors made on the finer levels as the fine solutions are passed to the
coarser levels. This result can be concluded from the more general result in Theorem
3.3 by setting \eta = 0.

Corollary 3.2. Assuming that a constant coarsening factor N relates the dif-
ferent levels and the number of iterations on the levels is constant, i.e., kl = k for all
l= 1, . . . ,L - 1, we get the following error bound:
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\| u(Tn) - Uk+1
n \| \leq cT\Delta T p0

0 exp

\biggl( 
C2T

1 - 1/NL

1 - 1/N
+C1T\Delta T p

1

1 - 1/NL(p+1)

1 - 1/Np+1

\biggr) 
+ exp

\biggl( 
C2T

1 - 1/N
+

C1T\Delta T1

1 - 1/Np+1

\biggr) 
\times C3C

k
1

\biggl( 
N

k+ 1

\biggr) 
1

1 - 1/Nkp+k+p
\Delta T kp+k+p+1

1 .

(3.7)

(The notational conventions from Appendix B are used. The coarse propagators are
assumed to have the accuracy order p.) Particularly, we recover the accuracy order of
the two-level scheme.

Proof. The corollary is an immediate consequence of the results given in Theorem
3.1, Lemma B.5, and Lemma B.6.

A convergence result for the multilevel Parareal algorithm with averaging is pre-
sented. Assuming we have L levels in total, the averaging is done on the levels
1, . . . ,L  - 1. Only on level 0, the level with the finest grids, the full, unaveraged
system is solved by the finest propagator.

Especially, the finest propagator solves the following exact equation:

dw

dt
(t) - e

\scrL 
\epsilon t\scrN (e - t/\epsilon \scrL w(t)) = 0.(3.8)

The coarse propagators do not solve the exact equation. Instead, they solve
averaged equations, given through

d \=wl(t)

dt
(t) - e

\scrL 
\epsilon t 1

\eta l

\int \eta l/2

 - \eta l/2

\rho 

\biggl( 
s

\eta 

\biggr) 
e

\scrL 
\epsilon s\scrN (e - 

\scrL 
\epsilon (t+s) \=wl(t)) ds= 0.(3.9)

This is the crucial difference between the Parareal algorithms with and without aver-
aging. We will use the following notation to denote the propagators relevant for this
section:

\bullet E---analytically exact solver for the unaveraged equation (3.8).
\bullet \=El---analytically exact solver for the averaged equation (3.9).
\bullet \=Gl---numerical solver of the averaged problem (3.9) on level l, l= 1, . . . ,L - 1,

also the coarse propagator of the multilevel method \=P l.
\bullet \=P l---multilevel Parareal method with l levels with averaging, the coarse prop-

agator is \=Gl, and the fine propagator is \=P l - 1 for l > 1 (or P 0 for l= 1).
\bullet P 0---numerical solver of the unaveraged problem (3.8) on level 0.

For the propagators \=Gl, l = 1, . . . ,L - 1, we impose the following conditions on
the truncation error:

E(x) - \=Gl(x) = \=c l
p+1(x)\Delta T p+1

l + \=c l
p+2(x)\Delta T p+2

l + . . . , and(3.10)

\| \=Gl(x) - \=Gl(y)\| \leq (1 +Cl
2\Delta Tl)\| x - y\| .(3.11)

Theorem 3.3. Suppose that the coarse propagators \=Gl satisfy (3.10) and the
Lipschitz condition (3.11) for l = 1, . . . ,L  - 1. Let the truncation error of the fine
propagator, on level 0, be bounded by c\Delta T p0+1

0 . Then we can show that the following
error estimate for the multilevel Parareal method with averaging holds:

ekl

n,l \leq 
l\sum 

\=l=1

\=E\=l

l\prod 
j=\=l+1

Aj + \delta 0

l\prod 
\=l=1

A\=l,(3.12)
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where

\=E\=l =

\Biggl\{ \bigl( 
n

k\=l+1

\bigr) 
\=\gamma \=l \=\alpha 

k\=l
\=l
\beta 
N - k\=l - 1
\=l

, \=l= l,\bigl( 
N

k\=l+1

\bigr) 
\=\gamma \=l \=\alpha 

k\=l
\=l
\beta 
N - k\=l - 1
\=l

, \=l < l,
(3.13)

\delta 0 = c\Delta T1\Delta tp0 ,(3.14)

Al =N\beta N - 1
l (1 + \=\alpha 0N,l)

N - 1.(3.15)

We have

\=\alpha l = \~C1,l\eta l\epsilon +C1,l\Delta T p+1
l max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta l, \omega )\Bigr\} ,(3.16)

\beta l = (1+C2,l\Delta Tl),(3.17)

\=\gamma l = \~C3,l\eta l\epsilon \| \~\scrM 1\| +C3,l\Delta T p+1
l max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta l, \omega )\Bigr\} \| \~\scrM 0\| , and(3.18)

\alpha 0N,l \in [0, \=\alpha l].(3.19)

Remarks.
1. The error constants, which arise as numerical time-stepping schemes, are

applied to the differential equations specific to the different levels and should
be level-dependent. For stiff problems the constants are big; for nonstiff
problems they are smaller. Moreover, the error constants grow with the length
of the integration interval. Consequently, when the averaging windows are
chosen appropriately, the constants can be roughly the same for each level.

2. The structure of the amplification factor is the same as in the case without
averaging. However, the terms \=\alpha l and \=\gamma l, which cause the contraction in the
error, have an additional term that accounts for the error due to averaging.

The proof can be found in Appendix A.1 and is a generalization of the two-level
proofs given in [9, 18].

4. Computational cost. In this section, we distinguish between the total num-
ber of steps done on a level and the serial number of steps. Suppose on the coarsest
level we do X steps with the coarse propagator, for example, to compute the initial
guess. Then the total number of steps on that level is X and the serial number of
steps on that level is X, too. Now, we go to the next finer level and the coarsening
factor is N . We then have NX as the total number of steps and N as the number of
serial steps (done on X grids in parallel). Refining again leads to N2X as the total
number of steps and N serial steps (done on NX grids in parallel) and so on.

Figure 3 shows the example of a two-level method with X = 3 steps on the coarse
level and a coarsening factor N = 3. Consequently, on the coarse level, 3 steps must be
computed sequentially. On the fine level, we have 9 steps in total, but parallelization
leads to only 3 serial steps. (As an example for the parallelism on the fine level, all
steps, which belong to serial step d, can be computed at the same time.)

We define the cost of an algorithm as the number of serial steps. The computa-
tional cost of a two-level method is given by

C2 = k1 (N1 +N0) +N1.(4.1)

The cost of the three-level Parareal algorithm can be defined as

C3 = k2 (N2 + k1 (N1 +N0) +N1) +N2,(4.2)

where Ni is the number of serial steps on level i and ki is the number of iterations on
level i. For a V-cycle we have ki = 1.
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Level 0

Level 1

serial step a serial step b serial step c

serial
step d

serial
step d

serial
step d

serial
step e

serial
step e

serial
step e

serial
step f

serial
step f

serial
step f

Fig. 3. Illustration of serial steps. Same colors stand for steps which can be computed at the
same time and therefore belong to the same serial step. The figure shows the example of a two-level
method with N1 = 3 steps on the coarse level and a coarsening factor of N = 3. The steps on the
coarse level must be computed sequentially. On the fine level, 9 steps must be computed in total, but
3 steps can be computed at the same time. An example is the steps colored in bluish green, which
belong to serial step d. So we have 3 serial steps, that is, serial steps d, e, and f , that must be
computed sequentially.

We may hypothesize that increasing the number of levels pays off when we have
a broad range of scales or strong scale separation. We investigate the computational
cost of a V-cycle in more detail. Suppose \~X is the total number of fine steps on the
finest level that must be done and N is the coarsening factor which relates the time-
steps of the different levels, i.e., \~X would be the number of serial steps that must be
done when a nonparallelizable basic ODE solver is applied. (We might assume that
two neighboring levels are related by the different coarsening factors. To keep the
computation simple we will not do that here and leave it for future work.) We assume
that we do N serial steps on all levels except the coarsest level. The computational
cost for a V-cycle, which depends on the number of levels, can be computed as follows:

1 level: f1(N) = \~X serial steps,(4.3)

2 levels: f2(N) =N + 2 \~X/N serial steps,(4.4)

3 levels: f3(N) =N + 2N + 2 \~X/N2 = 3N + 2 \~X/N2 serial steps,(4.5)

L levels: fL(N) = 2(L - 2)N +N + 2 \~X/NL - 1 serial steps.(4.6)

Note that when a V-cycle is applied, only one correction iteration is computed on
the levels 1, . . . ,L - 1. It is possible to find the coarsening factor N which minimizes
the number of serial steps, depending on the number of levels. Solving f \prime 

L(N) = 0, we
find

Nopt = ( \~X + \~X/(2L - 3))1/L.(4.7)

However, when we choose a coarsening factor N which is computed in the described
way, we adapt the algorithm to the behavior of the model on the finest scale only. It
may be necessary to account for the behavior of the model on other scales too.

For a V-cycle, the total number of evaluations of the right-hand side for all the
levels is not that much bigger than that of a serial time-stepper. On the finest level
we do the same number of evaluations of the right-hand side that we would do with a
serial time-stepping scheme, provided we apply the multilevel Parareal algorithm with
averaging. When we do in total \~X evaluations of the right-hand side on the finest
level, level 0, the total number of right-hand-side evaluations on level 1 is 2 \~X/N , for
level 2 we get 2 \~X/N2, and so on. That means that the number of evaluations of the
right-hand side decreases exponentially with the levels. Considering the multilevel
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Parareal algorithm without averaging, we can possibly not coarsen in the same way
because the time-step might become too large on the coarser levels and as a result
the numerical solver might be unstable for the oscillatory problems.

The model for the computational cost does not distinguish between averaged
and unaveraged right-hand-side evaluations; especially, the time needed to compute
a serial step is the same for the different levels. The reason for this, as pointed out
by [12], is that the averaging can be done in parallel and is therefore not assumed
to have an impact on the wall clock speed. Furthermore, we make the assumption
that the right-hand-side evaluations cause the computational cost. The exponential
operator is both in the right-hand side of the averaged and unaveraged equations.
As the evaluation of the averaging integral can be parallelized, we assume that the
evaluation of the exponential of the linear operator causes the same cost for the
averaged and unaveraged right-hand sides. In the present study, a spectral method
was used and the \scrL operator can be applied very rapidly via FFTs.

5. Numerical examples. For the numerical examples the explicit midpoint rule
(RK2) is used as a basic integrator unless stated differently. The results presented in
subsections 5.2, 5.3, and 5.4 are computed solving the modulation equations of the
systems.

5.1. One-dimensional single scale example. Let us consider the problem

dx

dt
= - x, x(0) = 1, t\in [0,2],(5.1)

which does not admit form (1.1). This problem does not have a skew Hermitian linear
operator. The numerical tests will show results, which are not satisfactory. Equation
(5.1) is to be solved with the multilevel Parareal algorithm without averaging and
without transformation. We compute the error for one V-cycle and increase the
number of levels. The time-step on the coarsest level for all the computations in
Table 1 is constant \Delta T = 0.25. We choose a coarsening factor of N = 10. This means
that when we have a time-step \Delta t on level l, the time-step on level l - 1 is \Delta t/10.

We see in Table 1 that increasing the number of levels while keeping the time-
step on the coarsest level constant barely changes the error of the approximations of
problem (5.1). This example leads to the following observation. Adding levels while
keeping the time-step on the coarsest level constant does not increase the accuracy
but more computational work must be done. Therefore, using the multilevel method
with a V-cycle is an unfortunate choice for problems of type (5.1). From the error
bound in Theorem 3.1 it is known that every level contributes to the total error. The
results for example (5.1) indicate that the main part of the error arises on the coarsest
levels. For the next example in subsection 5.2 the error is not expected to come from
the coarsest level. In contrast to the example in this subsection, the next example

Table 1
Error of the multilevel Parareal algorithm without averaging for a varying number of levels

applied to problem (5.1) where the step size on the coarsest level is 0.25. We see the relative error
in the discrete l1 norm.

Number of levels Error Number of levels Error

2 1.2566212807763046e-05 6 1.9809615854133382e-05

3 1.9562958164422008e-05 7 1.9809616125891306e-05
4 1.9807099440426344e-05 8 1.980961620086837e-05

5 1.9809587023590493e-05
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exhibits oscillatory stiffness. Therefore, it is convenient to mitigate the stiffness with
an averaging method.

5.2. One-dimensional example with fast oscillations. Let us now suppose
the following situation. We have to solve a multiscale problem with very fast oscilla-
tions on the finest scale, which is resolved by the finest level. Therefore, the time-step
on the finest level must be chosen small enough to resolve the very fast oscillations.
In particular, the fastest scale dictates the time-step on level 0.

An example for such a problem is given by

dw

dt
= - exp(irt)w2(5.2)

for large values of r. This equation can be interpreted as the one-dimensional modu-
lation equation of the problem

du

dt
= iru - u2.(5.3)

In contrast to the previous example, the tests for this example show benefits of
the increased parallelism if the method with averaging and transformation is applied.
Moreover, the effect of the transformation is explained in this subsection. In the
following we will consider r= 100, r= 1000, and r= 10000. The exact solution of the
problem (5.2) is given by

w(t) =
rw0

 - iw0 exp(irt) + iw0 + r
.(5.4)

The averaged problem obeys the following relation:

d \=wl

dt
= ( - 1) 1

\eta l

\int \eta l/2

 - \eta l/2

\rho 

\biggl( 
s

\eta l

\biggr) 
exp(irs) ds\underbrace{}  \underbrace{} 

damping factor

exp(irt) \=wl(t)
2.(5.5)

The problem (5.2) will be solved on the interval [0,1] with multilevel Parareal
methods including averaging. Numerical studies show that for r = 100 the fastest
period in the solution is of order 0.1. Therefore we choose averaging windows \eta 1 =
0.2 and \eta 2 = 2. This case is solved with a two- and a three-level method. In addition,
for r = 1000 the fastest period in the solution is of order 0.01. Thus the averaging
windows \eta 1 = 0.02, \eta 2 = 0.2, and \eta 3 = 2 are a reasonable choice and methods with
two, three, and four levels are applied. For the case r= 10000 the fastest period in the
solution is of order 0.001. Therefore, the computations are done with the averaging
windows \eta 1 = 0.002, \eta 2 = 0.02, \eta 3 = 0.2, and \eta 4 = 2 and multilevel methods with two,
three, four, and five levels are used to solve the problem. The length of the solution
interval is always 1 and the coarsening factor is always 10. To solve problem (5.2) a
V-cycle is applied. Depending on the value for r we choose different step sizes on the
finest level:

\bullet r= 100: The step size on the finest level is \Delta T0 = 10 - 3.
\bullet r= 1000: The step size on the finest level is \Delta T0 = 10 - 4.
\bullet r= 10000: The step size on the finest level is \Delta T0 = 2.5 \cdot 10 - 5.

Now consider the case r= 1000. A time-step of \Delta T0 = 10 - 4 means that the total
number of steps which must be done on the finest level is \~X = 104. The number of
serial steps for a V-cycle with a coarsening factor of N = 10 and two levels is given
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Table 2
Errors at time t= 1 for a V-cycle including averaging with a varying number of levels applied

to problem (5.2) with r = 100,1000, and 10000. The time-step on the finest level is \Delta t= 1 \cdot 103,1 \cdot 
10 - 4, and 2.5 \cdot 10 - 5 depending on r. The coarsening factor to relate the levels is N = 10.

Number of levels r= 100 r= 1000 r= 10000

2 0.0002169750591733674 2.1847140061040485e-06 3.0668862104273734e-07
3 0.00019811199764541986 2.106413305540747e-06 3.0480547757705495e-07

4 2.251750942815333e-06 3.0357016877934065e-07

5 2.7011063136189545e-07

by f2(10) = 2010 according to (4.4). For three levels we get f3(10) = 230 serial steps;
applying (4.5) and with four levels f4(10) = 70 serial steps must be done according to
(4.6). However, we note that for the tests we did not choose the optimal coarsening
factors, which can be computed with (4.7). In section 4 it was mentioned that for
complex models possibly the time-step on the levels and thus the coarsening factor
must be adapted to the problem behavior on different scales which might prevent
an optimal choice of the coarsening factor according to (4.7). But also for optimal
coarsening factors the number of serial steps is the smallest for the four-level method
and the most steps must be done for the two-level method.

In Table 2, we find the errors at time t = 1. The time-step on the finest level
was adapted to the fast oscillations in the problem which depend on the parameter r.
Fixing one value for r, we see that the errors hardly change in the number of levels.
We can draw the following conclusions. First, for the parameters chosen for the model
runs the increased parallelism of the methods with 3, 4, or 5 levels should lead to a
better efficiency due to a smaller number of serial steps and thus a shorter runtime.
Second, having a third, fourth, or fifth level does not change the error significantly.
The bound in Theorem 3.3 shows that the errors from all the levels contribute to the
total error. A possible explanation for the findings in this subsection is that the main
part of the error arises on the finest level, where the fast oscillations are resolved and
computed numerically.

The results indicate that increasing the number of levels and thus the parallelism
can lead to more efficient algorithms. A gain in efficiency, when a V-cycle is applied,
should come from a combination of increased parallelism and larger time-steps on
the coarser levels. For oscillatory problems larger time-steps can lead to unstable
behavior of the algorithm. For example, when the case with r = 1000 is solved with
RK2, which is an explicit Runge--Kutta method, using a time-step larger than the
period of the oscillations leads to instabilities. This can be circumvented when the
averaging is applied to mitigate the oscillations on the coarser levels.

In section 1, we mentioned the importance of the transformation, especially for
the correct computation of the phase. This is now illustrated in Figure 4. The figure
shows a solution of the averaged system (5.5) and unaveraged system (5.2), as well
as the initial guess and the first two correction iterations of a three-level Parareal
method with transformation and averaging. The initial guess, which was computed
with the coarsest propagator of the three-level method, has a strongly attenuated
amplitude. We can make the following observations for the method which solves
the modulation equation (5.2): (1) The coarse propagator gives (almost) the same
initial values for each fine time interval on which the fine propagator is applied. (2)
Applying only the coarse propagator, we cannot compute solutions to (5.2) with the
correct amplitude, as the solutions from the coarse propagator have strongly damped
amplitudes. As Figure 4 shows, the Parareal method with averaging computes the
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Fig. 4. The figure shows the initial guess and the first two iterations of the multilevel Parareal
method with averaging. The initial guess has strongly damped oscillations. Therefore, the fine propa-
gator gets almost the same initial values for each interval. However, the Parareal iterations compute
the phase correctly, that is, the departures from the mean behavior due to the fast oscillations are
computed correctly.

phase and amplitude correctly. Therefore, we can draw the following conclusions:
(1) The correct amplitude comes from the corrections of the fine propagator, which
computes a solution to the unaveraged system and (2) the information about the
phase is in the right-hand side of the modulation equation, which is nonautonomous
and depends on e\scrL /\varepsilon t. Thus, the corrections with the fine propagator compute the
correct phase, i.e., the departures from the mean behavior are computed correctly.
In contrast, for the method with averaging applied to an autonomous problem, we
cannot expect to compute the correct phase when the fine propagator starts with
(almost) the same initial values on each fine grid.

5.3. Swinging spring (elastic pendulum). In this subsection we do a first
test on a fluid-related, more complicated problem, the swinging spring, also denoted
as the elastic pendulum. In the tests a two-level method is compared to three-level
methods with different averaging windows to study the effect of the averaging. The
swinging spring can be rewritten as a first order system and is given by

du

dt
=

\left(        
\.x1

\.x2

\.y1
\.y2
\.z1
\.z2

\right)        =

\left( 
0 1 0 0 0 0
 - \omega 2

R 0 0 0 0 0
0 0 0 1 0 0
0 0  - \omega 2

R 0 0 0
0 0 0 0 0 1
0 0 0 0  - \omega 2

Z 0

\right) \left(        
x1

x2

y1
y2
z1
z2

\right)        +

\left( 
0

\lambda x1z1
0

\lambda y1z1
0

1
2\lambda (x

2
1 + y21)

\right) 
.(5.6)

For the numerical computation, we use the following parameters: \omega R = \pi ,\omega Z =
2\omega R, and \lambda = 1.2\omega 2

Z . The initial value of the modulation equation is given by w0 =
(0.006,0.,0.,0.00489,0.012,0). Multilevel Parareal algorithms with transformation
and averaging are applied to solve the system. We compare a three-level method
with a two-level method and investigate the errors at time Tmax = 50 for the first
component of the system. For the two-level method we choose time-steps \Delta T1 = 5
and \Delta T0 = 0.05. The time-step \Delta T0 is small enough to resolve the fast oscillations in
the problem. With the time-step \Delta T1 the coarse dynamics is resolved. Additionally,
the averaging window \eta = 2 guarantees that the fast oscillations are averaged on the
coarse level, level 1.

When applying the three-level method, two iterations are done on the interme-
diate level, level 1. The number of iterations on the coarse level, level 2, is varied in
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the test. Moreover, the coarse and fine time-steps are the same as in the two-level
case. Especially, we have \Delta T2 = 5 and \Delta T0 = 0.05. But we introduce an intermediate
level and increase the parallelism. The time-step of the intermediate level, level 1,
is \Delta T1 = 0.5. In particular, the coarsening factor is N = 10. For the coarsest level
the averaging window is chosen as \eta 2 = 2. We test different averaging windows on
the intermediate level, that is, \eta 1 = 0.2,0.75, and 2. When we choose \eta 1 = 0.2 we
relate the averaging windows on the levels by the same coarsening factor that relates
the time-steps. The choice \eta 1 = 2 is inspired by the dynamics of the system, be-
cause this window ensures that we average the fast oscillations also on level 1. The
value \eta 1 = 0.75 is an intermediate choice to see how the error develops for changing
averaging windows.

The reference solution is computed with the RK2 method with a time-step of
\Delta t = 0.001. This choice makes sure that the reference solution is more accurate
than the fine solver of the two-level method. The errors for the two- and three-level
methods can be found in Table 3. We may observe that with an increasing number of
iterations on the coarse level the accuracy of both the two- and three-level methods
increases until the methods converge to the fine solver. The approximation error
and thus also the efficiency of the three-level methods strongly depend on the choice
of the averaging window on the intermediate level, \eta 1. For \eta 1 = 2 the convergence
for the three-level method is almost the same as for the two-level method, whereas
the accuracy deteriorates for smaller intermediate averaging windows. Consequently
for the case \eta 1 = 2 we can benefit from more parallelism of the three-level method.
Choosing \eta 1 = \eta 2 = 2 means that the same frequencies are averaged on the coarsest
and second coarsest levels. Thus, for that case the solutions computed on level 1
do not represent the model behavior of an intermediate scale. Table 4 shows the
number of serial steps done for the two- and three-level methods depending on the
iterations. Especially, we see that we do fewer serial steps when the three-level method
is applied.

Table 3
Errors of the first component at time Tmax = 50.

Iteration \eta 1 = 0.2 \eta 1 = 0.75 \eta 1 = 2 Two-level method

1 5.96698264213838e-04 7.08281803419343e-04 7.175950573062584e-04 7.175766438230063e-04

2 1.4503391511486857e-04 4.627682726392884e-06 7.244961778282016e-06 7.2234487876014775e-06

3 1.6846111177755765e-04 3.6002717718981725e-05 2.4794370887603473e-05 2.4824342166950703e-05

4 1.5175374381607917e-04 1.977436923063236e-05 8.614816726031094e-06 8.641258080730602e-06

5 1.5190431144367772e-04 1.980929225765815e-05 8.639280904016583e-06 8.665761458456767e-06

Table 4
Computational cost. Number of serial steps for a two- and a three-level method, computed with

(4.1) and (4.2). For the three-level method the number of iterations on level 1 is k1 = 2. Varying
number of iterations on the coarsest level for both the two- and three-level methods.

Iteration Two-level method Three-level method

1 120 70
2 230 130

3 340 190
4 450 250

5 560 310
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5.4. One-dimensional rotating shallow water equations. Here solutions
to the RSWE

\partial v1
\partial t

+ - 1

\epsilon 1
v2 +

1

\epsilon 2

\partial h

\partial x
+ v1

\partial v1
\partial x

= \mu \partial 4
xv1,(5.7)

\partial v2
\partial t

+
1

\epsilon 1
v1 + v1

\partial v2
\partial x

= \mu \partial 4
xv2,(5.8)

\partial h

\partial t
+

1

\epsilon 2

\partial v1
\partial x

+
\partial 

\partial x
(hv1) = \mu \partial 4

xh(5.9)

are computed. This is the same example investigated in [12] where convergence of
the two-level method with averaging is shown. A similar notation is used here. With
h(x, t) we denote the surface height and v1(x, t), v2(x, t) are the horizontal velocity.
Moreover, a hyperviscosity term with diffusion coefficient \mu = 10 - 4 is used. Addition-
ally, we impose periodic boundary conditions and use the initial data

v1 = 0, v2 = 0,

h= c1

\Bigl( 
e( - 4(x - \pi /4)2) sin(3(x - \pi /2)) + e( - 2(x - \pi )2) sin(8(x - \pi ))

\Bigr) 
+ c2,

(5.10)

where the constants c1 and c2 are chosen such that\int 2\pi 

0

h(x,0)dx= 0, max
x
| h(x,0)| = 1.(5.11)

To solve the RSWE numerically a pseudospectral method with 128 spatial Fourier
modes is applied. For the time-stepping we use a three-level Parareal scheme with
averaging and a second order Strang splitting method as a basic integrator. The
numerical time-stepping method is tested for two different parameter regimes. The
Rossby number, \epsilon 1, is chosen as 0.1 in both cases. The Froude number, \epsilon 2, is given
by the relation F 1/2\epsilon 1, where F is the Burger number. In the first test, an important
limiting case in geophysical fluid dynamics, the Burger number F is chosen to be 1,
thus \epsilon 1 = \epsilon 2 = 1/10. This test is done with coarsening factors N = 10,20,40 and an
interval length 48. In the second test the Burger number F is chosen to be 1/100,
thus there are two linear intrinsic frequencies with \epsilon 1 = 1/10 and \epsilon 2 = 1/100. The
coarsening factors are N = 10,20,30 and the interval length is 45. For both tests, the
time-step on the finest level is 1/2000. The time-steps on levels 1 and 2 are determined
by the fine time-step and the coarsening factor. The averaging windows on levels 1
and 2 are chosen to be equal to the time-steps used on levels 1 and 2. The initial guess
is computed on the entire length of the solution interval before the first correction
iteration. In Figures 5 and 6 the errors in the relative L\infty norm, the same norm used
for the errors in [12], are shown. We can see that the numerical method converges
with an increasing number of iterations. For the case F = 1/100 fewer iterations are
needed for convergence compared to the case F = 1.

Suppose we are given a two-level method to solve the case with F = 1. The
two-level method uses a coarsening factor N = 40 and two correction iterations are
done. The solution interval in time is [0,48]. Then we want to answer the question if
it is possible to design a three-level method which is more efficient than the two-level
method. The two-level method gives an error of 1.80e - 05. The computational cost of
the two-level method is computed by applying (4.1) and is given by C2 =7280 serial
steps. We compare it to a three-level method with a coarsening factor of N = 20.
With k2 we denote the number of iterations on the coarse level and we do k1 =3
iterations on the intermediate level. Then the three-level method converges to a
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Fig. 5. Error and computational cost of
the numerical solution to the RSWE with a
three-level Parareal method with averaging, pa-
rameter choice: \epsilon = 0.1, F = 1. The dashed gray
lines show the error and computational cost of
a two-level method with a fixed number of iter-
ations.
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Fig. 6. Error and computational cost of
the numerical solution to the RSWE with a
three-level Parareal method with averaging, pa-
rameter choice: \epsilon = 0.1, F = 1/100. The dashed
gray lines show the error and computational
cost of a two-level method with a fixed number
of iterations.

two-level method with three iterations, which guarantees that the three-level method
converges to a two-level method, which is more exact than the two-level method with
two iterations. The computational cost can be computed with (4.2) and is given
by C3 = 240(k2 + 1) + 140k2, where k2 denotes the number of iterations on level 2.
When k < 28, we do fewer serial steps with the three-level method than with two-level
method with two iterations. With the three-level method we reach the accuracy of
the two-level method with two iterations after 13 iterations already. Therefore, we
can find a three-level method which is more efficient than the two-level method with
two iterations; for a comparison see Figure 5.

Now we consider the case F = 1/100. We choose a two-level method with a
coarsening factor of N = 60 and do two correction iterations. Thus, according to (4.1)
C2 = 4620 serial steps must be done. We compare this method to the three-level
method with a coarsening factor of N = 30 and k1 = 3 iterations on level 1. Thus,
depending on the number of iterations k2 we do C3 = 310k2 + 100 serial steps with
the three-level method. The computational cost C3 is computed with (4.2). If we do
no more that 14 iterations with the three-level method, the computational cost of the
three-level method is less than the computational cost of the two-level method. The
three-level method is more accurate than the two-level method after eight iterations
already, as the two-level method gives an error of 1.90e - 4; see Figure 6.

6. Discussion and conclusion. In the present study, a multilevel Parareal
method with and without averaging is proposed and investigated, with a special focus
on oscillatory problems. The averaging technique and transformation play a cen-
tral role when oscillatory problems are solved because they mitigate the oscillatory
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stiffness. Therefore, big time-steps can be used on the coarse levels, which is demon-
strated in the numerical examples.

One important result is the derivation of error bounds for the methods building on
results in the literature and underpinning theoretically the convergence of the method.
In particular, the basic time-stepping methods applied on the levels cause an error,
denoted as E\=l and \delta 0. The errors are amplified as a solution from one level is passed
to coarser grids. In the error bound the amplification is given by the amplification
factors Aj . Increasing the number of iterations on a level \=l changes E\=l. Additionally,
the computational cost of the multilevel Parareal method is discussed.

Finally, several numerical examples are studied. The investigation of the numer-
ical examples includes a discussion when multiple levels can be more efficient than
the Parareal method with only two levels. If the algorithms without averaging and
mapping are used, the multilevel approach can lead to algorithms which are not ben-
eficial in terms of efficiency; see the example in subsection 5.1. However, combined
with averaging and the transformation, methods with multiple levels are promising
for oscillatory problems, as they allow us to take big time-steps on the coarse levels
and we do not have to satisfy severe stability constraints imposed by fast oscillations;
see the other examples. The example in subsection 5.3 also shows that a good choice
of the averaging windows is crucial for the accuracy. Moreover, the computations
in subsection 5.4 show that multilevel methods can be more efficient than a given
two-level method with a fixed number of iterations.

For the subsections 5.3 and 5.4 different strategies for increasing the number of
levels and thus the parallelism were examined. In subsection 5.3 a three-level method
was compared to a two-level method. The coarsest and finest time-steps are the same
for the two- and three-level methods, but for the three-level method an intermediate
level was introduced. In subsection 5.4 the time-steps on the finest level and the
second finest level are comparable for the two- and three-level methods, but for the
three-level method an even coarser level was introduced as the coarsest level. The
investigations concerning the choice of the time-steps on the levels are not exhaustive
and can be a topic for future studies.

The examinations on the example in subsection 5.3 also inspire an interesting
variant of the multilevel Parareal method. When introducing an intermediate level,
which bridges the scales for the numerical computations and does not represent the
model behavior on an intermediate scale, we might use a constant function as an initial
guess on the grids of level 1. In particular, the constant functions on level 1 would
admit the initial values provided by level 2. Possibly, this would not increase the error
significantly, because the level 1 solutions only have to capture the coarse dynamics
which is already resolved by the solution from level 2. Additionally, we would save
the serial steps needed to compute the initial guess on level 1. The investigations
concerning computational cost and efficiency shall be continued in the future on more
complex examples including many scales or a continuous range of scales.

Appendix A. Proof of the theorem.

A.1. Theorem 3.3.

Proof. The proof has two building blocks. First, we build upon the two-level
proof in [18], but additionally assume that the fine propagator is not exact. Second,
an inductive argument is applied to obtain a multilevel result.
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One Parareal correction at time Tn is given by

u(Tn) - Uk+1
n =E(u(Tn - 1)) - \=G1(u(Tn - 1)) + \=G1(U

k
n - 1) - E(Uk

n - 1)

+ \=G1(u(Tn - 1)) - \=G1(U
k+1
n - 1) +E(Uk

n - 1) - P 0(Uk
n - 1).

(A.1)

The estimate for the last line is given through the accuracy estimate of the fine
propagator

\| E(Uk
n - 1) - P 0(Uk

n - 1)\| \leq c\Delta T1\Delta T p0

0 .(A.2)

The first two lines can be rewritten as

E(u(Tn - 1)) - \=G1(u(Tn - 1)) + \=G1(U
k
n - 1) - E(Uk

n - 1)

=E(u(Tn - 1)) - \=E1(u(Tn - 1)) + \=E1(u(Tn - 1)) - \=G1(u(Tn - 1)) + \cdot \cdot \cdot 
+ \=G1(U

k
n - 1) - \=E1(Uk

n - 1) + \=E1(Uk
n - 1) - E(Uk

n - 1)

=\scrM 1,1(u(Tn - 1), \epsilon , \eta 1) +\scrM 0,1(u(Tn - 1), \epsilon , \eta 1,\Delta T ) . . .

 - \scrM 0,1(U
k
n - 1, \epsilon , \eta 1,\Delta T ) - \scrM 1,1(U

k
n - 1, \epsilon , \eta 1).

(A.3)

The function\scrM 0,l(v, \epsilon , \eta l,\Delta T ), where the index l refers to the level, has a represen-
tation of the form

\scrM 0,l(v, \epsilon , \eta l,\Delta Tl)\leq C\Delta T p+1 max
\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta l, \omega )\Bigr\} \~\scrM 0(v).(A.4)

Moreover,\scrM 0,l(v, \epsilon , \eta l,\Delta T ) is Lipschitz continuous in the first component.
In addition, for the function\scrM 1,l(v, \epsilon , \eta ) a relation of the form

\scrM 1,l(v, \epsilon , \eta l)\leq C\eta l\epsilon \~\scrM 1(v)(A.5)

can be found where \scrM 1(v, \epsilon , \eta ) is Lipschitz continuous in v. The aforementioned
results about \scrM 0,l and \scrM 1,l can be found in [18]. We take \~\scrM 1 and \~\scrM 0 as the
maximum of \~\scrM 1,l and \~\scrM 0,l over all levels l.

We use the subsequent relations which are given in [18],

\| \=Gl(u(Tn - 1)) - \=Gl(U
k+1
n - 1)\| \leq (1 +C\Delta Tl)\| u(Tn - 1) - Uk+1

n - 1\| ,(A.6)

\| \scrM 1,l(u(Tn - 1), \epsilon , \eta l) - \scrM 1,l(U
k
n - 1, \epsilon , \eta l)\| \leq C\eta l\epsilon \| u(Tn - 1) - Uk

n - 1\| ,(A.7)

\| \scrM 0,l(u(Tn - 1), \epsilon , \eta l,\Delta T ) - \scrM 0,l(U
k
n - 1, \epsilon , \eta l,\Delta Tl)\| 

\leq C\Delta T p+1
l max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta l, \omega )\Bigr\} \| u(Tn - 1) - Uk
n - 1\| ,

(A.8)

where Uk
n denote Parareal solutions of level l.

Thus, the following estimate can be obtained for the two-level case:

\| u(Tn) - Uk+1
n \| \leq C\eta 1\epsilon \| u(Tn - 1) - Uk

n - 1\| 

+C\Delta T p+1
1 max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta 1, \omega )\Bigr\} \| u(Tn - 1) - Uk
n - 1\| 

+ (1+C\Delta T1)\| u(Tn - 1) - Uk+1
n - 1\| + c\Delta T1\Delta T p0

0

=

\biggl( 
C\eta 1\epsilon +C\Delta T p+1

1 max
\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta 1, \omega )\Bigr\} \biggr) \| u(Tn - 1) - Uk
n - 1\| 

+ (1+C\Delta T1)\| u(Tn - 1) - Uk+1
n - 1\| + c\Delta T1\Delta T p0

0

= \=\alpha 1e
k
n - 1 + \beta 1e

k+1
n - 1 + \delta 0;

(A.9)
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this gives us a recurrence relation, where k counts the Parareal iterations and n counts
the steps through the time grid.

For k= 0 we have

\| u(Tn) - U0
n\| \leq e0n = \| E(u(Tn - 1)) - G1(U0

n - 1)\| 
\leq \| E(u(Tn - 1)) - G1(u(Tn - 1))\| + \| G1(u(Tn - 1)) - G1(U0

n - 1)\| 
\leq \| E(u(Tn - 1)) - \=E1(u(Tn - 1))\| + \| \=E1(u(Tn - 1)) - G1(u(Tn - 1))\| 

+ \| G1(u(Tn - 1)) - G1(U0
n - 1)\| 

\leq C\eta 1\epsilon \| \~\scrM 1\| +C\Delta T p+1
1 max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta 1, \omega )\Bigr\} \| \~\scrM 0\| 

+ (1+C\Delta T1)\| u(Tn - 1) - U0
n - 1\| = \=\gamma 1 + \beta 1e

0
n - 1 .

(A.10)

We have used the following notation further above:

\=\alpha l =C\eta l\epsilon +C\Delta T p+1
l max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta l, \omega )\Bigr\} ,(A.11)

\beta l = 1+C\Delta Tl, \delta 0 = c\Delta T1\Delta tp0 ,(A.12)

\=\gamma l =C\eta l\epsilon \| \~\scrM 1\| +C\Delta T p+1
l max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \epsilon 
\omega 

\bigm| \bigm| \bigm| \kappa (\epsilon , \eta l, \omega )\Bigr\} \| \~\scrM 0\| .(A.13)

Thus, we find the recurrence relation from Lemma B.1. For a two-level result
with nonexact fine propagator Lemma B.1 can be applied. The inductive step for the
multilevel result can be found in Lemma B.4.

Appendix B. Useful results for the convergence proofs.

Lemma B.1. Suppose we are given the following recurrence relation:

ek+1
n = \alpha ekn - 1 + \beta ek+1

n - 1 + \delta n, e0n = \gamma + \beta e0n - 1,(B.1)

with \delta 0 = 0 and \delta n = \delta for n\geq 1. Then the ekn can be written in nonrecursive form as

ekn \leq 
\biggl( 

n

k+ 1

\biggr) 
\gamma \alpha k\beta n - k - 1 + n\delta \beta n - 1(1 + \alpha 0n)

n - 1 for n> k.(B.2)

Proof. The proof uses generating functions \rho k =
\sum 

n\geq 1 e
k
n\zeta 

n and arguments very
similar to the ones given in [9]. In particular, we find

\rho 0 =
1

1 - \beta \zeta 

\gamma \zeta 

1 - \zeta 
and \rho k+1 = \alpha \zeta \rho k + \beta \zeta \rho k+1 + \delta 

\zeta 

1 - \zeta 
.(B.3)

The rest follows by induction and the results in Lemmas B.2 and B.3.

Lemma B.2. Suppose \beta \geq 1 and 0< \zeta < 1/\beta . Then the following inequality holds:

\gamma \alpha k \zeta 
k+1

1 - \zeta 

1

(1 - \beta \zeta )k+1
\leq 
\sum 

j\geq k+1

\biggl( 
j

k+ 1

\biggr) 
\gamma \alpha k\beta j - k - 1\zeta j .(B.4)

Proof. Assuming that 0 < \zeta < 1/\beta and \beta \geq 1, we have 1/(1  - \zeta ) < 1/(1  - \beta \zeta ).
Applying the binomial theorem, we can derive the following relation:

\gamma \alpha k \zeta k+1

(1 - \beta \zeta )k+2
=
\sum 
j\geq 0

\biggl( 
k+ 1+ j

j

\biggr) 
\gamma \alpha k\beta j\zeta k+1+j =

\sum 
j\geq k+1

\biggl( 
j

k+ 1

\biggr) 
\gamma \alpha k\beta j - k - 1\zeta j .

(B.5)
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Lemma B.3. Suppose we are given \beta > 1. Choose \zeta such that \beta \zeta < 1 and
\alpha \zeta 

1 - \beta \zeta < 1. Then, we can find the following estimate:

\delta \zeta 

1 - \zeta 

k - 1\sum 
r=0

(\alpha \zeta )r

(1 - \beta \zeta )r+1
\leq 

\infty \sum 
n=1

n\delta \beta n - 1(1 + \alpha 0n)
n - 1\zeta n,where \alpha 0n \in [0, \alpha ].(B.6)

Proof. Newton's generalized binomial theorem is applied and we find

\delta \zeta 

1 - \zeta 

k - 1\sum 
r=0

(\alpha \zeta )r

(1 - \beta \zeta )r+1
\leq 

k - 1\sum 
r=0

\delta \alpha r\zeta r+1

(1 - \beta \zeta )r+2
=

k - 1\sum 
r=0

\delta \alpha r\zeta r+1
\sum 
j\geq 0

\biggl( 
r+ 1+ j

j

\biggr) 
\beta j\zeta j(B.7)

=
k - 1\sum 
r=0

\sum 
j\geq r+1

\biggl( 
j

r+ 1

\biggr) 
\delta \alpha r\beta j - r - 1\zeta j .(B.8)

For the summands we define

Sr = \alpha r\delta 
\sum 

j\geq r+1

\biggl( 
j

r+ 1

\biggr) 
\beta j - r - 1\zeta j .(B.9)

Ordering relation (B.8) with respect to orders of \zeta we find

O(\zeta n) : \delta 

min(n,k)\sum 
m=1

\biggl( 
n

m

\biggr) 
\beta n - m\alpha m - 1 \leq \delta \beta n - 1\alpha  - 1

min(n,k)\sum 
m=1

\biggl( 
n

m

\biggr) 
\alpha m

\leq \delta \beta n - 1\alpha  - 1 ((1 + \alpha )n  - 1)\leq \delta \beta n - 1\alpha  - 1\alpha n(1 + \alpha 0n)
n - 1 = n\delta \beta n - 1(1 + \alpha 0n)

n - 1,

where 1+\alpha 0n \in [1,1+\alpha ]. The value of \alpha 0n can be different for different n. The third
inequality follows from the intermediate value theorem. Thus, we have

\delta \zeta 

1 - \zeta 

k - 1\sum 
r=0

\Biggl( 
(\alpha \zeta )r

(1 - \beta \zeta )r+1
\leq 

k - 1\sum 
r=0

Sr \leq 
\infty \sum 

n=1

n\delta \beta n - 1(1 + \alpha 0n)
n - 1\zeta n

\Biggr) 
.(B.10)

Remark. In order to reorder the terms in the last inequality we need uncondi-
tional convergence of the sum over the Sr. Unconditional convergence is equivalent
to absolute convergence in \BbbR n. As a finite sum over absolutely convergent series, the
sum over the Sr is absolutely convergent too.

For the remaining results we use the subsequent notational conventions:
1. To avoid cumbersome notation the constants are not indexed with the level

l. Instead we assume that Ci =maxl\{ Ci,l\} , where l counts the levels.
2. The propagators on the levels 1, . . . ,L - 1 have at least an accuracy order of

p, i.e., p=minl=1,...,L - 1\{ pl\} .
In Lemmas B.5, B.6, B.7, and B.8, we assume that we have a coarsening factor N

which relates the levels. Then the time-steps on the different levels obey the following
relations:

\Delta Tl =N l\Delta T0,(B.11)

\Delta Tl =N l - (L - 1)\Delta TL - 1,(B.12)

where \Delta T0 is the time-step on the finest level, level 0, and \Delta TL - 1 is the time-step on
the coarsest level, level L - 1.

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



MULTILEVEL PARAREAL ALGORITHM WITH AVERAGING A2733

Lemma B.4. We consider the recursively formulated inequality

ekl

n,l \leq El +Al\delta l - 1

with \delta l - 1 = e
kl - 1

N,l - 1 and ekl

n,l \leq ekl

N,l for all l, n\leq N . Then we can show the inequality

ekl

n,l \leq 
l\sum 

\=l=1

E\=l

l\prod 
j=\=l+1

Aj + \delta 0

l\prod 
\=l=1

A\=l,(B.13)

which depends on \delta 0 and is independent of \delta l - 1 (if l - 1\geq 1).

Proof. For the proof induction can be applied.

Lemma B.5. Suppose \delta 0 and Al satisfy the following relations:

\delta 0 = c
\Delta T p0+1

L - 1

N (L - 1)(p0+1) - 1
, Al \leq N exp

\biggl( 
C2

T

NL - 1 - l
+C1T

\Delta T p
L - 1

N (L - 1 - l)(p+1)

\biggr) 
(B.14)

(see Lemma B.8 for Al). Then, we can find the following bound:

\delta 0

L - 1\prod 
\=l=1

A\=l \leq cT\Delta T p0

0 exp

\biggl( 
C2T

1 - 1/NL

1 - 1/N
+C1T\Delta T p

L - 1

1 - 1/NL(p+1)

1 - 1/Np+1

\biggr) 
.(B.15)

Proof. We use the estimate for Al from Lemma B.8. In addition, we apply the
finite geometric series and the relation N\Delta TL - 1 = T .

\delta 0

L - 1\prod 
\=l=1

A\=l \leq c
\Delta T p0+1

L - 1

N (L - 1)(p0+1) - 1

L - 1\prod 
l=1

N exp

\biggl( 
C2T

NL - 1 - l
+

C1T\Delta T p
L - 1

N (p+1)(L - 1 - l)

\biggr) 

= cT

\biggl( 
\Delta TL - 1

NL - 1

\biggr) p0

exp

\biggl( 
C2T

1 - 1/NL

1 - 1/N
+C1T\Delta T p

L - 1

1 - 1/NL(p+1)

1 - 1/Np+1

\biggr) 
.

Lemma B.6. Suppose El and Al can be bounded by the relations (B.26) and
(B.27). Then the following estimate can be shown:

L - 1\sum 
l=1

El

L - 1\prod 
j=l+1

Aj \leq exp

\biggl( 
C2T

1 - 1/N
+

C1T\Delta TL - 1

1 - 1/Np+1

\biggr) 
(B.16)

\times max
l

\biggl( \biggl( 
N

kl + 1

\biggr) 
C3C

kl
1

\biggr) 
\Delta T kp+k+p

L - 1

1 - (1/N)kp+k+p
.

Proof. We use the result from Lemma B.7.

L - 1\sum 
l=1

El

L - 1\prod 
j=l+1

Aj \leq 
L - 1\sum 
l=1

\biggl( 
N

kl + 1

\biggr) 
C3C

kl
1 \Delta T klp+kl+p

l \Delta TL - 1(B.17)

exp

\biggl( 
C2T

1 - 1/N
+C1

T\Delta T p
L - 1

1 - 1/Np+1

\biggr) 
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\leq exp

\biggl( 
C2T

1 - 1/N
+C1

T\Delta T p
L - 1

1 - 1/Np+1

\biggr) 
\Delta TL - 1(B.18)

\times max
l

\biggl( \biggl( 
N

kl + 1

\biggr) 
C3C

kl
1

\biggr) L - 1\sum 
l=1

\Delta T klp+kl+p
l

\leq exp

\biggl( 
C2T

1 - 1/N
+C1

T\Delta T p
L - 1

1 - 1/Np+1

\biggr) 
(B.19)

\times max
l

\biggl( \biggl( 
N

kl + 1

\biggr) 
C3C

kl
1

\biggr) 
\Delta T kp+k+p

L - 1

1 - (1/N)kp+k+p
,

where we used k=minl=1,...,L - 1\{ kl\} and the geometric series in the last inequality.

Lemma B.7. Let El and Al be bounded by the relations (B.26) and (B.27). For
the expression El

\prod L - 1
j=l+1Aj we find the following estimate:

El

L - 1\prod 
j=l+1

Aj \leq 
\biggl( 

N

kl + 1

\biggr) 
Ckl

1 C3(\Delta Tl)
(klp+kl+p)

\times \Delta TL - 1 exp

\biggl( 
C2T

1 - 1/N (L - 1 - l)

1 - 1/N
+C1T\Delta T p

L - 1

1 - 1/N (p+1)(L - 1 - l)

1 - 1/N (p+1)

\biggr) 
.

(B.20)

Proof. The bounds (B.26) and (B.27) from Lemma B.8 are used:

El

L - 1\prod 
j=l+1

Aj =

\biggl( 
N

kl + 1

\biggr) 
Ckl

1 C3(\Delta Tl)
(kl+1)(p+1) exp

\biggl( 
C2

T

NL - 1 - l

\biggr) (B.21)

\times NL - 1 - l exp
\Bigl( 
C2T (1 + 1/N + . . .1/NL - 1 - l - 1)(B.22)

+C1T\Delta T p
L - 1(1 + 1/Np+1 + . . .1/N (p+1)(L - 1 - l - 1))

\Bigr) 
(B.23)

\leq 
\biggl( 

N

kl + 1

\biggr) 
Ckl

1 C3(\Delta Tl)
(klp+kl+p) \Delta TL - 1

NL - 1 - l
NL - 1 - l(B.24)

\times exp

\biggl( 
C2T

1 - 1/N (L - 1 - l)

1 - 1/N
+C1T\Delta T p

L - 1

1 - 1/N (p+1)(L - 1 - l)

1 - 1/N (p+1)

\biggr) 
.(B.25)

Lemma B.8. Using the relations (3.4) and (3.6) to define El and Al we can show
the following bounds:

El \leq 
\biggl( 

N

kl + 1

\biggr) 
Ckl

1 C3(\Delta Tl)
(k+1)(p+1) exp

\biggl( 
C2

T

NL - 1 - l

\biggr) 
,(B.26)

Al \leq N exp

\biggl( 
C2

T

NL - 1 - l
+C1T

\Delta T p
L - 1

N (L - 1 - l)(p+1)

\biggr) 
,(B.27)

where the propagator on level l for l\geq 1 has an accuracy order of at least p.

Proof. According to (3.4) and (3.6) we have

El =

\biggl( 
n

kl + 1

\biggr) 
\gamma l\alpha 

kl

l \beta N - kl - 1
l , Al =N\beta N - 1

l (1 + \alpha 0N,l)
N - 1.(B.28)

© 2024 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



MULTILEVEL PARAREAL ALGORITHM WITH AVERAGING A2735

Then the following relations hold:

\alpha l =C1\Delta T p+1
l =C1

\biggl( 
\Delta T

NL - 1 - l

\biggr) p+1

, \beta l = 1+C2\Delta Tl =

\biggl( 
1 +C2

\Delta TL - 1

NL - 1 - l

\biggr) 
,

\gamma l =C3\Delta T p+1
l =C3

\biggl( 
\Delta TL - 1

NL - 1 - l

\biggr) p+1

, \delta 0 = c\Delta T1\Delta T p0

0 = c
\Delta T p0+1

L - 1

N (L - 1)(p0+1) - 1
.

Thus we get for El

El =

\biggl( 
N

kl + 1

\biggr) 
C3

\biggl( 
\Delta TL - 1

NL - 1 - l

\biggr) p+1
\Biggl( 
C1

\biggl( 
\Delta TL - 1

NL - 1 - l

\biggr) p+1
\Biggr) kl \biggl( 

1 +C2
\Delta TL - 1

NL - 1 - l

\biggr) N - kl - 1

\leq 
\biggl( 

N

kl + 1

\biggr) 
Ckl

1 C3(\Delta Tl)
(k+1)(p+1) exp

\biggl( 
C2

T

NL - 1 - l

\biggr) 
,

where T0, T1, . . . , TN denote the grid points on the coarsest level.
In addition, for Al we find

Al =N\beta N - 1
l (1 + \alpha 0N,l)

N - 1 \leq N\beta N - 1
l (1 + \alpha l)

N - 1(B.29)

=N

\biggl( 
1 +C2

\Delta TL - 1

NL - 1 - l

\biggr) N - 1
\Biggl( 
1 +C1

\biggl( 
\Delta TL - 1

NL - 1 - l

\biggr) p+1
\Biggr) N - 1

(B.30)

\leq N exp

\biggl( 
C2

T

NL - 1 - l
+C1T

\biggl( 
\Delta T p

L - 1

N (L - 1 - l)(p+1)

\biggr) \biggr) 
.(B.31)

In the last inequality we exploit that N\Delta TL - 1 = T , where T is the length of the
integration interval (on the coarsest level).
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