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Chapter 1 Introduction 

Vibrio (V.) spp. are bacteria, which cause, or are associated with, human infections worldwide 
(FAO/WHO, 2011). Over 80 Vibrio spp. are described (ALTER, 2012; OLIVER et al., 2013), 
with V. cholerae, V. parahaemolyticus and V. vulnificus as the most important species to 
human health. Moreover, V. parahaemolyticus is a crucial reason of bacterial gastroenteritis 
caused by seafood consumption in Asian countries (JOSEPH et al., 1982; SU and LIU, 2007; 
WONG et al., 2000a). On account of in vivo conditions in foods, e.g. low nutrients and pH 
value, it can be hypothesized that the majority of V. parahaemolyticus cells are in the 
stationary phase. 

Bacteria can enter the stationary phase when nutrients are insufficient to maintain a steady 
growth. Stationary phase is the common phase for bacteria survival in the environment 
because a low concentration of nutrients is usual in environments (KOLTER et al., 1993; 
NAVARRO LLORENS et al., 2010). In the stationary phase, cells are metabolically active and 
undergo cell division without further increase in the number of cells (KOLTER et al., 1993). In 
vivo, V. parahaemolyticus cells are also forced in the viable but non-culturable (VBNC) state 
for survival. The VBNC state is a special state which bacterial cells are alive but have lost the 
capability of growing in suitable media (OLIVER, 2000b). The VBNC state is referred to as a 
dormant state (COLWELL, 2000) enabling survival of especially non-sporulating bacteria in 
unfavorable or even hostile environments. Until now at least 85 bacteria species have been 
found to exist in the VBNC state (LI et al., 2014). Several alterations occur during the shift of 
bacterial cells into the VBNC state, such as cell shape changes from rod to coccoid but 
maintains apparent cell integrity, cross-linking in cell wall increases as well as metabolic 
activity reduces (FAKRUDDIN et al., 2013). In this study the alteration of gene expression in 
V. parahaemolyticus in the early stationary phase and the VBNC state was investigated. These 
data could help to investigate new detection methods to prevent the outbreak of gastroenteritis 
caused by V. parahaemolyticus. 

1.1 Taxonomy of Vibrio 
Vibrio belong to the Phylum of Proteobacteria, the Class of Gammaproteobacteria, the order 
of the Vibrionales and the family Vibrionaceae (THOMPSON et al., 2004; THOMPSON and 
SWINGS, 2006). Up to now over 80 Vibrio species have been reported (ALTER, 2012; OLIVER 
et al., 2013). At least 12 species infect humans as pathogenic agents (Table 1-1). Among 
them, eight species belonging to Vibrio Genus (V. cholerae, V. parahaemolyticus, V. vulnificus, 
V. mimicus, V. metschnikovii, V. hollisae, V. fluvialis, and V. furnissii) are occasionally or 
frequently isolated from gastroenteritis cases and associated with food, while 6 species 
(V. vulnificus, V. harveyi, V. alginolyticus, V. damselae, V. metschnikovii, and 
V. cincinnatiensis) are mainly isolated from extra-intestinal infections (DEPAOLA and 
NISHIBUCHI, 2005; FDA, 2005; SCVPH, 2001). Of these 12 Vibrio species, the most 
important human pathogens are V. cholerae, V. parahaemolyticus and V. vulnifucus. 
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Table 1-1: Pathogenic Vibrio spp. (modified from ALTER, 2012) 
Family  Genus Species 

Vibrionaceae Vibrio V. alginolyticus 

  V. cholerae 

  V. cincinnatiensis 

  V. damsela (Photobacterium damsela) 

  V. furnissii 

  V. fluvialis 

  V. harveyi (carchariae) 

  V. hollisae (Grimontia hollisae) 

  V. metschnikovii 

  V. mimicus 

  V. parahaemolyticus 

  V. vulnificus 

1.2 History of Vibrio 
Vibrio was first described in 1854 by an Italian physician (PACINI, 1854) and then was 
acknowledged with the name “Vibrio cholerae Pacini 1854” in 1965 (FRERICHS, 2001). 
V. parahaemolyticus was first reported in a major gastroenteritis outbreak in Japan in 1950 
(FUJINO et al., 1953). Since then, it is found to be a crucial agent of causing human diarrhea, 
especially in Asian countries (JOSEPH et al., 1982; SU and LIU, 2007; WONG et al., 2000a). 

In early 1996, there was a rapid increase in the incidence rate of V. parahaemolyticus in 
India associated with the O3:K6 serotype (OKUDA et al., 1997). From then on, strains 
belonging to the O3:K6 serotype have been found causing several outbreaks throughout the 
world (SERICHANTALERGS et al., 2007; SUZUKI et al., 1994; VELAZQUEZ-ROMAN et al., 2014). 
An analysis of 178 USA isolates from several seafood sources (e.g. oysters) has shown 27 
different serological types, and most clinical isolates from the Pacific Coast are also serotype 
O3:K6 (DEPAOLA et al., 2003a; DEPAOLA et al., 2003b). Moreover, V. parahaemolyticus 
serotype O3:K6 was detected and isolated from clinical patients in France, Spain and Italy in 
2005 (MARTINEZ-URTAZA et al., 2005; OTTAVIANI et al., 2010). Serotypes O4:K68, O1:K25, 
O1 KUT (untypeable), O1:K41, O1:K42 and O6:K18 have been also attracting more attention 
because of the pandemic potential (CHOWDHURY et al., 2000; HARA-KUDO et al., 2003; 
MATSUMOTO et al., 2000; YEUNG et al., 2002). All cases were determined to relate with 
contaminated seafood. 

1.3 Vibrio parahaemolyticus 

1.3.1 Morphology 
Vibrio species are gram-negative, aerobic or facultative anaerobic, curved rod-shaped and 
small (0.5-0.8 µm in width x 1.4-2.6 µm in length) bacteria. They own one or more polar 
flagella which facilitate their high motility in liquid media (ALTER, 2012; DRAKE et al., 2007; 
MCLAUGHLIN, 1995). Vibrio spp. mainly exist in seawater and seafood; however, the presence 
and distribution depend on a series of environmental factors (e.g. temperature, pH, salinity, 
pressure and nutrients). For example, Vibrio spp. are apt to grow in warm waters (around 
20°C) (THOMPSON et al., 2009), and tolerate a wide range of salinities (ALTER, 2012). 

V. parahaemolyticus grows at concentrations of NaCl between 1% and 8%, with best 
growth at 2%-4% (SAKAZAKI et al., 2006). Unlike V. cholerae and V. mimicus, the growth of 
V. parahaemolyticus is inhibited when the NaCl concentration falls below 0.5%, with no 
growth in distilled water or over 10.5% NaCl (LEE, 1972; NAUGHTON et al., 2009; ONGAGNA-
YHOMBI and BOYD, 2013). The optimal growth temperature of V. parahaemolyticus is 
between 5-43 ºC with an optimal range of 30-35 ºC. Temperatures below 5 ºC significantly 
decrease the amount of culturable cells (FERNANDEZ-PIQUER et al., 2011; ICMSF, 1996). In 
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addition, the pH for V. parahaemolyticus growth ranges from 4.8 to 11 with an optimal range 
of 7.8-8.6 (ICMSF, 1996), and pH lower than 4 is lethal to V. parahaemolyticus (WONG et al., 
2000b). 

Similar to other Vibrio pathogenic species, two chromosomes are present in 
V. parahaemolyticus. The sizes of them are 3.2Mb (chromosome 1) and 1.9Mb (chromosome 
2) (YAMAICHI et al., 1999). Moreover, both chromosomes are replicated once per cell cycle. 
Chromosome 1 contains most of the fundamental genes responding to growth and viability. 
More genes required for transcriptional regulation and transportation are encoded on 
chromosome 2 as well as more species-specific genes. Studies have suggested that 
chromosome 2 might play a crucial role in adaptation to environmental change (BOYD et al., 
2008; MAKINO et al., 2003; REEN et al., 2006). 

One of the characteristics of V. parahaemolyticus is that its growth is very rapid. It only 
took 9 minutes in culture medium and 12 minutes in a host for one generation under suitable 
conditions (AIYAR et al., 2002; OLIVER et al., 2013). This fast growth could be resulting from 
a higher number of ribosomal-RNA (rRNA) and transfer-RNA (tRNA) genes in aquatic 
bacteria. In V. parahaemolyticus RIMD 2210633, for example, 126 genes encode tRNAs and 
eleven different 16S rRNA genes (REEN et al., 2006). Because of the high growth rate, this 
species can be deemed to an important cause of gastroenteritis associated with consumption 
of raw or undercooked seafood. 

1.3.2 Classification 
V. parahaemolyticus strains can be serotyped according to somatic O-antigens, as well as the 
capsular polysaccharide K-antigens (TWEDT et al., 1972) presence. There are 13 O (LPS) 
serogroups and more than 71 K (acidic polysaccharide) antigens presented (ALAM et al., 
2009; KAYSNER and DEPAOLA, 2004), which results to a total of 75 different serovars that 
have been reported already. The first description of serotype O3:K6 uncovered the correlation 
between serotype and virulence. V. parahaemolyticus serotype O3:K6 is distributed 
worldwide and causes enterogastritis, while other serotypes, such as O4:K68, O1:K25, O1 
KUT (untypeable), are reported to have molecular characteristics identical to that of the 
serotype O3:K6. These suggested that other serotypes could evolve from the original O3:K6 
and can be defined as “serovariants” of the serotype O3:K6 isolate (CHOWDHURY et al., 2000; 
GONZALEZ-ESCALONA et al., 2008; NAIR et al., 2007). Up to now, at least 12 serotypes 
including serotype O3:K6 have been identified as pathogenic V. parahaemolyticus strains. 
Moreover, the serotype O3:K6 and all the serovariants are referred to as strains of the 
pandemic clone (CHEN et al., 2011; GONZALEZ-ESCALONA et al., 2008). The pandemic clone 
of V. parahaemolyticus has currently been identified in areas of Asia, Europe, Africa, and 
North and South America. 

Unlike other Vibrio species, V. parahaemolyticus is able to produce a hemolysin. Many 
V. parahaemolyticus strains produce the thermostable direct hemolysin (TDH), which is 
initiating the infection in humans. These “Kanagawa phenomenon positive” (KP+, tdh+) 
V. parahaemolyticus stains cause hemolysis on blood agars but only 1%-2% of environmental 
strains are reported to encode tdh (COOK et al., 2002; DEPAOLA et al., 2000; MIYAMOTO et 
al., 1969). In contrast, some V. parahaemolyticus strains that lead to diarrhea are “Kanagawa 
phenomenon negative” (KP-, tdh-) strains (HONDA et al., 1988), and these strains produce a 
TDH-related hemolysin (TRH) instead of TDH. Besides its role as primary virulence factors, 
the TDH and TRH encoded by tdh and trh genes are also considered in classification. 

1.3.3 Virulence mechanisms  
The main virulence factors of V. parahaemolyticus are TDH and TRH. The virulence results 
from TDH produced by V. parahaemolyticus isolates (SHIRAI et al., 1990). TDH is composed 
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of two immunologically identical subunits, which are encoded via two non-identical tdh genes 
on chromosome 2, VPA1314 (tdh2) and VPA1378 (tdh1), sharing 97% identity (MAKINO et 
al., 2003; TAKEDA et al., 1978). However, there is a difference of seven amino acid residues 
in the protein (OLIVER et al., 2013). Moreover, tdh2 has a stronger promoter than tdh1, which 
leads to a higher expression. The expression of tdh1 in tdh+ strains is lower than 5% of the 
tdh2 (NISHIBUCHI, 2003). Therefore, tdh2 has a stronger effect on TDH protein than tdh1 
(MAKINO et al., 2003; NISHIBUCHI and KAPER, 1995; OKUDA and NISHIBUCHI, 1998). TDH is 
named after its heat stability. Heating at 100 °C for 30 min only partly inactivates the 
hemolytic activity of TDH. TDH causes cytotoxic effects, such as lysing erythrocytes of 
various animals (LYNCH et al., 2005). TDH produces pores in erythrocytes and intestinal 
cells, which increases vascular permeability in rabbit skin and stimulate fluid accumulation in 
the rabbit ileal loop (HARDY et al., 2004; HONDA et al., 1992; HUNTLEY et al., 1993; 
NISHIBUCHI et al., 1989; TAKEDA, 1982). Ion flux in myocardial tissue intestinal tract, rat 
erythrocytes, and human erythrocytes is altered (HUNTLEY et al., 1993; SEYAMA et al., 1977; 
TAKASHI et al., 1982). TDH is also shown to induce chloride ion secretion in a rabbit model 
and further more using Ca2+ as an intracellular second messenger (RAIMONDI et al., 1995; 
TAKAHASHI et al., 2000). TDH is the first bacterial enterotoxin which has been confirmed to 
play an important role in the changes of intracellular calcium concentration and secretory 
activity. 

V. parahaemolyticus tdh- strains rarely cause enterogastric outbreaks. Another hemolysin, 
TRH, a TDH-related hemolysin, is produced rather than TDH. TRH is encoded by trh, which 
can be classified into two subtypes, trh1 and trh2. Both genes trh1 and tdh2 share 69% 
homology (KISHISHITA et al., 1992). Moreover, TRH shares similar biological, structural and 
immunological characteristics with TDH (HONDA et al., 1988; NISHIBUCHI et al., 1989). 
However, TRH is thermolabile, and is inactivated at 60 °C for 10 min (HONDA et al., 1988). 
Most clinical isolates encode either tdh or trh; both genes are encoded only in a small 
percentage (NISHIBUCHI and KAPER, 1995; SHIRAI et al., 1990). In intestinal epithelial cells 
chloride ions (Cl-) secretion is increased by TRH, followed by the raise of intracellular 
calcium (TAKAHASHI et al., 2000). Thus, TRH is another important virulence factor and may 
be the cause of diarrhea resulting from tdh- V. parahaemolyticus infections. Although 96.5% 
strains isolated from human patients are tdh+ (SAKAZAKI et al., 1968), only a small proportion 
of the total V. parahaemolyticus population in the environment are tdh+ strains (JOSEPH et al., 
1982). In general, tdh+ isolates are found to better adapt to the enteric canal, while tdh- strains 
own greater survival in natural environment (JOSEPH et al., 1982). 

Other factors in the genome sequence may play supplemental roles in pathogenic 
V. parahaemolyticus, although they are not directly related with clinical strains (Table 1-2). 
Many factors (e.g. chemotaxis, flagella, and iron acquisition systems) have been studied at the 
genomic level. Additionally, the type three secretion system (T3SS) of V. parahaemolyticus 
O3:K6 is of importance, which has two gene clusters (MAKINO et al., 2003). T3SS1 system is 
encoded on chromosome 1, which participates in cytotoxicity in Henrietta Lacks (HeLa) cells 
(ONO et al., 2006; PARK et al., 2004). T3SS1 is encoded in all V. parahaemolyticus strains, 
whereas T3SS2 is present only in tdh+ strains (MAKINO et al., 2003). T3SS2 is encoded on 
chromosome 2, which shares the same pathogenicity island as tdh. The deletion of the T3SS2-
related genes can lead to enterotoxigenicity lessening in rabbit ileal loops (PARK et al., 2004). 
Moreover, type six secretion systems (T6SS) is complex and widespread gram-negative 
protein secretion systems (SILVERMAN et al., 2012). At least 25% of all sequenced gram-
negative bacteria encode T6SS (JANI and COTTER, 2010). T6SS is not only involved in 
pathogenicity and bacteria-host interactions, but also in symbiosis, interbacterial interactions 
and antipathogenesis (JANI and COTTER, 2010; RECORDS, 2011). As T3SS, T6SS gene clusters 
have been identified on both chromosomes in V. parahaemolyticus (IZUTSU et al., 2008; 
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MAKINO et al., 2003). T6SS1 is encoded on chromosome 1 and found mainly in clinical 
isolates, while T6SS2 is encoded on chromosome 2 and found in all V. parahaemolyticus 
strains that have been investigated so far (BOYD et al., 2008; YU et al., 2012). T6SS1 shows 
highest expression under warm marine-like conditions (in high salt media at 30 °C) and is 
repressed by quorum sensing (QS) master regulator OpaR, whereas T6SS2 is strong induced 
under low salt conditions and is positively regulated by OpaR (GODE-POTRATZ and 
MCCARTER, 2011; MA et al., 2012). Both V. parahaemolyticus T6SSs contribute to adhesion 
to cultured cell monolayers (YU et al., 2012). However, both of the T6SSs are not active at 
37 °C, indicating that T6SSs maybe not directly relate with virulence but favor the survival of 
the pathogens via interbacterial competition in the marine environment (SALOMON et al., 
2013). 

 
Table 1-2: Virulence factors and regulators of V. parahaemolyticus (modified from DEPAOLA and NISHIBUCHI, 2005) 

 Virulence factor or regulator  Reference 

Major virulence factors Thermostable direct hemolysin (tdh) NISHIBUCHI et al. (1992) 
 TDH-related hemolysin (trh) XU et al. (1994) 
Other virulence factors  Type three secretion system (T3SS) MAKINO et al. (2003) 
 Type six secretion system (T6SS) Makino et al. (2003) 
 Chemotaxis and motility KIM and MCCARTER (2000); MCCARTER and WRIGHT (1993) 
 Iron acquisition systems (pvuA, psuA) FUNAHASHI et al. (2002) 
 Pilus NAKASONE and IWANAGA (1990) 
 Cell-associated hemagglutinin NAGAYAMA et al. (1995) 
 Thermostable hemolysin TANIGUCHI et al. (1990) 
 Thermolabile hemolysin (tlh) SHINODA et al. (1991); TANIGUCHI et al. (1986) 
 Metalloproteases (prtVp, vppC) KIM et al. (2002); LEE et al. (1995) 
Virulence regulators ToxR (toxR) LIN et al. (1993) 
 Regulator of iron acquisition system (fur) YAMAMOTO et al. (1997) 

1.3.4 V. parahaemolyticus in seafood 
Since V. parahaemolyticus is a bacterium in estuarine and coastal waters, it is frequently 
isolated from various samples throughout the world, especially from seafood (e.g. fish, 
oysters, clams, mussels, crabs, shrimp and lobsters) during summer (FAO/WHO, 2011; 
HLADY, 1997; KAYSNER and DEPAOLA, 2004). The prevalence of V. parahaemolyticus in 
examined seafood samples is found to be as high as 96.5% (195/202) (THU TRA et al., 2015). 
Consuming raw fish containing V. parahaemolyticus is reported to be the main cause of food 
poisoning in Asia, especially in Japan and Taiwan (OKABE, 1974; PAN et al., 1996; PAN et al., 
1997). In contrast, the cases of diarrhea in the USA and Europe are caused by consumption of 
raw oysters and other bivalves (MARTINEZ-URTAZA et al., 2005; NOLAN et al., 1984; RIPPEY, 
1994). Studies of Vibrio species prevalence in bivalve molluscs, crustaceans and seawater 
worldwide are listed in Table 1-3. A three-year study in the USA has shown that 46% of 716 
seafood samples are positive for V. parahaemolyticus which were mainly oysters, clams and 
crabs (HACKNEY et al., 1980). 

 
Table 1-3: Prevalence of V. parahaemolyticus and Vibrio species in seafood (modified from URMERSBACH, 2014) 

Sample type (Number) Country Year 
Vibrio spp. 
positive 
proportion 

Vp positive 
proportion 

Reference 

Bivalves (50) Germany 2007-2008 92 % 20 % JUDEK et al. (2008) 

Bivalves (82) Germany 2009-2010 50 % 15 % RANDT et al. (2011) 

Blue mussels (Mytilus 
edulis) (82) 

Germany 2004-2005 74,4 % 39,5 % LHAFI and KUHNE (2007) 

Blue mussels (Mytilus 
edulis) (885) 

Norway 2002-2004 n. t.1 10,3 % BAUER et al. (2006) 

Crustacean and shellfish (82) Germany 2001 19,5 % 6,3 % SIEFFERT and STOLLE (2002) 

Fish and crayfish (710) Germany Unknown 17,7 % 29,4 % LEHMACHER and HANSEN (2007) 
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Molluscan shellfish (173) Japan 2001 n. t.1 95,8 % HARA-KUDO et al. (2003) 

Molluscan shellfish (350) USA and Canada 1998-1999 n. t.1 72,9 % COOK et al. (2002) 

Mussels (Mytilus 
Galloprovincialis) (62) 

Italy 1997-1998 48,4 % 3,3 % RIPABELLI et al. (1999) 

Mussels and seawater (726) Italy 2 Years 46,9 % 10 % CROCI et al. (2001) 

Oysters (156) USA 1999-2000 100 % 100 % DEPAOLA et al. (2003a) 

Prawn and shellfish (338) Germany 2008-2009 12,1 % 82,9 % MESSELHAUSSER et al. (2010) 

Seafood and fish (123) Senegal 2007-2009 n. t.1 30,1 % COLY et al. (2013) 

Shellfish (60) Chile 2008-2009 n. t.1 88,1 % GARCIA et al. (2009) 

Shellfish (147) Italy 2011-2012 n. t.  40,8 % SUFFREDINI et al. (2014) 

Shrimp, crab and cockle 
(120) 

Egypt 2011 n. t.1 41,7 %3 ABD-ELGHANY and SALLAM (2013) 

Shrimp (170) Sri Lanka 2010-2011 95,1 %2 91,2 %2 KORALAGE et al. (2012) 

Shrimp in inland ponds (16) Thailand 2007-2009 100 % 37,5 % YANO et al. (2014) 

n. t., not tested; Vp, V. parahaemolyticus 
1 the samples were examined only for the presence of V. parahaemolyticus. 
2 based on the examined area. 
3 results via biochemical detection was 33.3% of the samples 

1.4 The bacterial life cycle 

1.4.1 Phases of bacterial growth cycle 
The stages of bacterial growth can be artificially divided into several phases: lag phase (phase 
1), exponential phase (phase 2), stationary phase (phase 3), death phase (phase 4) and 
extended or long-term stationary phase (phase 5) (Fig. 1-1). Finkel (2006) described that the 
bacterial life cycle comprised of five stages using CFU mL-1 measurement of Escherichia (E.) 
coli growing under optimal laboratory conditions (37 °C, rich medium with agitation). 
However, in the environment it is difficult to distinguish the timing of the five phases due to 
many conditions (e.g. the species and environmental specificities). Under laboratory 
conditions bacterial cells shift from exponential phase into the stationary phase as soon as 
medium nutrients are exhausted. Only few cell divisions occur in the stationary phase. Waste 
products as the results of bacterial metabolism are accumulated, leading the bacteria into 
death phase. The definition of death is the loss of viable counts with standard plating assays 
(FINKEL, 2006). Up to 99% of the E. coli population enters death phase after three days 
incubation in Luria-Bertani (LB) medium (FINKEL, 2006). Surviving bacteria can maintain 
viability for long periods because of the nutrients released by the dead cells. These bacteria 
survive many months even years without supplemental nutrients after entering the long-term 
stationary phase (FINKEL and KOLTER, 1999; FINKEL et al., 2000). In order to resist starvation, 
Gram-positive bacteria can produce dormant spores, whereas Gram-negative bacteria form 
resistant cells without dormancy (NAVARRO LLORENS et al., 2010). 
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Fig. 1-1: The five phases of E. coli cells growth. 

1, lag phase; 2, exponential phase; 3, stationary phase; 4, death phase; 5, extended or long-term stationary phase. (modified from FINKEL, 
2006 and NAVARRO LLORENS et al., 2010). 

1.4.2 Exponential growth phase 
The Lag phase is the first phase for bacterial cells to apperceive and adapt a new situation e.g. 
cells shifting into a new habitat. Once bacterial cells adapt the new habitat and start the cell 
division exponentially, they are in the exponential phase, also known as phase of logarithmic 
growth (log phase). The number of new bacteria appearing per unit time is proportional to the 
present population. The growth rate depends on bacterial species and the media used. During 
the exponential phase, many proteins involved in anabolic pathways showed twofold up-
regulation (COHEN et al., 2006). The majority of these induced proteins belong to functional 
categories of amino acid metabolism, (cellular) energy metabolism, protein biosynthesis, 
translation, as well as protein, lipid, and nucleotide biosynthesis. Some proteins involved in 
DNA replication and repair, as well as cells division are also up-regulated during the 
exponential phase. Glucokinase and phosphoglycerate mutase, enzymes crucial for energy 
generation, are induced more than twofold in the exponential phase. According to these up-
regulated genes, the most significant reactions occurring in the exponential phase are 
metabolic pathways induced producing sufficient energy metabolites. 

1.4.3 Stationary phase 
Because oligotrophic environments are prevalent in the biosphere, bacteria are commonly 
growing in the condition of near-starvation (MORITA, 1997). Bacteria can enter the stationary 
phase when nutrients are decreasingly hampering the steady growth. Since low nutrients are 
common in environments, bacteria are forced to stay in the stationary phase. Thus, the 
stationary phase is the common phase for bacteria in the environment (KOLTER et al., 1993; 
NAVARRO LLORENS et al., 2010). In the stationary phase, cells are metabolically active and 
undergo cell division without further increase in the total number of cells (KOLTER et al., 
1993). 

1.4.3.1 Characteristics of stationary phase 
When bacterial cells enter the stationary phase a number of alterations happen, including e.g. 
morphology of cells, composition of cell membrane, metabolic processes, and genes 
expression (NAVARRO LLORENS et al., 2010). 
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The dwarfing of bacterial cells is observed once they entered the stationary phase. 
Dwarfing occurs because of self-digestion, caused by starvation. It is referred to as a result of 
degradation of endogenous material, including cell envelope, especially the cytoplasmic 
membrane and cell wall (NAVARRO LLORENS et al., 2010; NYSTROM, 2004). The reduction of 
cell division processes upon cells entering the stationary phase as well. The reduction of cell 
division increases the surface/volume ratio of cells, but it is not a starvation-induced activity 
(NYSTROM, 2004; NYSTROM and KJELLEBERG, 1989). The result of reduced cell division is 
the coccoid appearance of cells (NYSTROM, 2004). Both, the dwarfing and the reduced cell 
division induce bacterial morphological changes (NYSTROM, 2004). This coccoid shape is 
partly regulated by morphogene bolA, which is controlled by RpoS in all phases of bacterial 
growth (LANGE and HENGGE-ARONIS, 1991; SANTOS et al., 2002). 

The cell envelope protects bacterial cells from external damages. The changes of structures 
in the cell envelope were found, including composition of the peptidoglycan layer, 
lipopolysaccharides, the outer as well as the inner membranes (HUISMAN et al., 1996). 
Although outer membrane protein synthesis is reduced (ALLEN and SCOTT, 1979), the cross-
linking of outer membrane lipoproteins with the peptidoglycan layer is increased (HUISMAN et 
al., 1996). Moreover, the thickness of peptidoglycan layer is increased as well (MENGIN-
LECREULX and VAN HEIJENOORT, 1985). The concentration of lipopolysaccharides in outer 
membrane increases in the stationary phase (NAVARRO LLORENS et al., 2010). A number of 
changes occur in the inner membrane as well. Unsaturated fatty acids are converted into 
cyclopropyl derivatives (CRONAN, 1968). Furthermore, a reduction of monounsaturated fatty 
acids occurs because polyunsaturated fatty acid concentrations increase (HUISMAN et al., 
1996). Bacterial cells shifting into the stationary phase, increase the relative concentrations of 
phosphatidylglycerol and phosphatidylethanolamine (CRONAN, 1968; HUISMAN et al., 1996). 
All changes of the inner membrane result in a highly ordered structure and reduced fluidity 
(NYSTROM, 2004). 

Cytoplasm alteration is accompanied with changes in the cell envelope. The nucleoid 
becomes condense in order to protect the DNA from the environmental stresses. A nonspecific 
DNA-binding protein, Dps, organizes the chromosome into a highly ordered, stable 
nucleoprotein complex within starvation. Dps is described in more than 130 bacterial species 
(NAIR and FINKEL, 2004). It is the most induced protein in E. coli during the induction of 
shifting into the stationary phase (ALMIRON et al., 1992). Dps induction occurred not only by 
RpoS when cells transfered from exponential phase to the stationary phase but also by σ70 and 
OxyR exposed to oxidative stress in the exponential phase (ALMIRON et al., 1992; ALTUVIA et 
al., 1994). During the stationary phase dps induction results in protection from a large range 
of stressors, including oxidative stress, UV-light and gamma irradiation, iron and copper 
toxicity, thermal stress, and acid and base shock. The effect of Dps on DNA protection can be 
achieved through a combination of functions, such as direct Dps-DNA interactions to 
sequestering the chromosome into the highly stable biocrystal complex, reducing the 
production of oxidative radicals, and regulating the expression of genes that are required for 
stress responses of stationary phase cells (ILARI et al., 2002; NAIR and FINKEL, 2004). The 
cell growth rate, protein synthesis, as well as rRNA and tRNA concentrations are reduced in 
stationary phase populations compared to cells in exponential phase (REEVE et al., 1984). 
Moreover, the metabolism of carbohydrates, amino acids and phospholipids and 
transportation systems activity are also diminished (CLARK et al., 2006). However, because of 
the synthesis of proteases and peptidases in the early stationary phase, the concentration of 
polypeptides was increased five times (GROAT et al., 1986). A raised synthesis of glycolysis 
enzymes, pyruvate formate lyase, phosphotransacetylase and acetate kinase in catabolic 
activities during the stationary phase is important, which could be a defense metabolism to 
protect bacteria damage in starvation (NYSTROM, 2004; NYSTROM et al., 1996). Tricarboxylic 
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acid (TCA) cycle enzymes are diminished in the stationary phase, indicating the repression of 
aerobic metabolism. The reduction of TCA cycle enzymes might block an uncontrolled 
utilization of endogenous reserves during autophagy, and moreover it might serve as a defense 
mechanism in starvation against the damage effects of reactive oxygen species which are 
produced by the respiratory chain (NYSTROM, 2004). Dimerization of the ribosomes, without 
a composition change, is induced because of the reduction of the rate of protein synthesis 
(YOSHIDA et al., 2002). It is regulated by a ribosome modulation factor (WADA et al., 2000). 
Dimerized ribosomes could be a way storing ribosomes during translational inactivity periods. 
Ribosome dimerization is shown to be reversed within 2 min with an addition of nutrients 
(YOSHIDA et al., 2004). 

In the stationary phase a wide production of secondary metabolites, antibiotics and toxins 
happens (NAVARRO LLORENS et al., 2010). Microcins, are mainly produced during the 
stationary phase, are low-molecular-mass bacteriocins with a strong antibacterial activity 
against closely related bacteria and contribute to the regulation of microbial competitions 
within the intestinal microbiota (DUQUESNE et al., 2007a; DUQUESNE et al., 2007b). 
Microcins might play a key role in this phase, although the mechanism is still unclear. 
Moreover, the implications of some growth-dependent bacteriocins, which are highly induced 
during the stationary phase, need to be clarified. 

To sum up, bacterial cells in the stationary phase show the following characteristics 
(NAVARRO LLORENS et al., 2010): 
(i) Dwarfing cell size and changing cell shape to coccoid; 
(ii) Highly ordered cell envelope structure; 
(iii) Condensation of the nucleoid; 
(iv) Increased synthesis of catabolic enzymes; 
(v) Decreased protein synthesis while peptidases and/or proteases synthesis increases; 
(vi) Dimerization of ribosomes; 
(vii) Reduction of aerobic metabolism; 
(viii) Production of fermentative secondary metabolites. 

1.4.3.2 Stationary phase regulators and effectors 
The altered production of sigma factors enables a stationary bacterial population to become 
more adaptable and resistant to harmful environments. RpoS, a global stress response 
regulator, plays an important role in governing both entering the stationary phase and stress 
resistance (HENGGE-ARONIS, 2002). However, not only RpoS but also the whole sigma factor 
family plays a role in the stationary phase. Based on structural and functional criteria, sigma 
factors can be divided into the σ70-family and the σ54-family (PAGET and HELMANN, 2003). 
Since σ70 recognizes the promoters of most housekeeping genes in E. coli (GRUBER and 
GROSS, 2003), it plays a key role in bacteria. The σ70-family can be further classified into four 
groups. Group 1 sigma factors, including σ70, are essential for cell growth, while group 2 
sigma factors are similar to σ70 but not fundamental for bacterial growth. Group 3 includes 
sigma factors that control heat shock response, flagellar biosynthesis and sporulation. Group 4 
sigma factors effect extracytoplasmic functions involved in protecting cells from extracellular 
stresses (PAGET and HELMANN, 2003). Moreover, there is a wide range of sigma factors in 
different species, e.g. one type sigma factor in Mycoplasma sp., seven in E. coli, and 63 in 
Streptomyces coelicolor. The more complex the lifestyle of the microorganism is, the more 
sigma factors can be found in its genome, indicating that the role of sigma factors is important 
in adaptive capacity (CASES et al., 2003; GRUBER and GROSS, 2003). 

RpoS, also known as σS in Gram-negative bacteria, belongs to group 2 sigma factors 
(GROSS et al., 1992). Although it is not essential for bacterial growth, RpoS influences the 
expression of 10% E. coli genes directly or indirectly (LACOUR and LANDINI, 2004; WEBER et 
al., 2005). The regulator rpoS was primarily described in E. coli in 1984 (LOEWEN and 
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TRIGGS, 1984) and then found in other bacterial species (MARTINEZ-GARCIA et al., 2001). In 
1991 it was described as a sigma factor-coding gene and named accordingly (LANGE and 
HENGGE-ARONIS, 1991). The RpoS concentration in cells is controlled by a combination of 
many signals, including rpoS transcription and translation as well as σS proteolysis under 
various stress conditions (HENGGE-ARONIS, 2002; LANGE and HENGGE-ARONIS, 1991; LANGE 
and HENGGE-ARONIS, 1994; TAKAYANAGI et al., 1994). The half-life of σS under non-stress 
conditions is only one to several minutes, thus RpoS is nearly absent in rapidly growing cells 
but rapidly and significantly induced when cells are in the early stationary phase (HENGGE-
ARONIS, 2002). Moreover, acidic pH, low temperature, and high osmolarity increase the rpoS 
transcription and stimulate the translation of already present rpoS messenger RNA (mRNA) 
(BEARSON et al., 1996; HENGGE-ARONIS, 2002; LANGE and HENGGE-ARONIS, 1994; MUFFLER 
et al., 1996; TAKAYANAGI et al., 1994). When rpoS is repressed in rpoS-down or rpoS-null 
mutations, other sigma factors would play an important role in elevating the ability of 
catabolizing amino acids, e.g. RpoD regulating glucose scavenging and RpoN controlling 
ammonia assimilation and amino acid uptake, as well as alkaline stress cell protection 
(FARRELL and FINKEL, 2003). 

Another principal sigma factor involved in the stationary phase survival and damage 
protection in Gram-negative bacteria is RpoH (FREDRIKSSON and NYSTROM, 2006). RpoH is 
an activator regulating the expression of the heat shock regulon which stimulates the 
production of chaperones and proteases to repair the oxidative damage caused by the presence 
of aberrant proteins (FREDRIKSSON et al., 2005). 

Shifting the gene expression of sigma factors fine-tunes the relative concentrations of the 
sigma factors in the cytoplasm, in which competition of different sigma subunits to bind the 
limited amount of available RNA polymerase core enzymes occurs (ISHIHAMA, 2000). 
Therefore, the stationary phase is induced by the relative abundance of specific sigma factors 
(NAVARRO LLORENS et al., 2010). The specific sigma factors involved in the stationary phase 
are shown in Table 1-4. 

 
Table 1-4: Sigma factors involved in the stationary phase (modified from NAVARRO LLORENS et al., 2010) 

Sigma factor Regulation of  Reference 
RpoD (σ70) Fundamental metabolism YUSTE et al. (2006) 
RpoF (σ28) Synthesis of flagella and chemotaxis YUSTE et al. (2006) 
RpoN (σ54) Nitrogen metabolism motility YUSTE et al. (2006) 
RpoH (σ32) Heat shock YUSTE et al. (2006) 
RpoE (σ24) Extra cytoplasmic stress COSTANZO and ADES (2006) 
RpoS (σ38) Stationary phase and stress resistance YUSTE et al. (2006) 
ECF sigma factor Extracellular functions MAEDA et al. (2000) 
  YUSTE et al. (2006) 

                                          ECF: extracytoplasmic function 

The small non-coding RNAs, known as microRNAs and short interfering RNAs (siRNA), 
have been described as crucial regulatory elements in the regulation of bacterial stress 
responses (GOTTESMAN, 2005). The length of small non-coding RNAs is usually between 80 
to 100 nucleotides (NAVARRO LLORENS et al., 2010). Approximately (approx.) 60 small non-
coding RNAs have been reported in E. coli, and at least 20 involve in stress responses 
(GOTTESMAN, 2005; ZHANG et al., 2003). Some small non-coding RNAs require interaction 
with the bacterial RNA chaperone Hfq at single-stranded AU-rich regions (GOTTESMAN, 
2005; VALENTIN-HANSEN et al., 2004). Small non-coding RNAs play a role in adjusting 
translation and stability of specific target mRNAs by base-pairing with mRNAs (ZHANG et 
al., 2003). Moreover, they stimulate RpoS translation though pairing an inhibitory stem of a 
hairpin (HENGGE-ARONIS, 2002). Small non-coding RNAs have also been found modulating 
the outer membrane proteins (GUILLIER et al., 2006; JOHANSEN et al., 2006). MicA and RybB, 
two Hfq-binding small RNAs, destabilized the outer membrane protein transcription under 
induction of RpoE, when cells shifted from rapid growth phase to the stationary phase 
(JOHANSEN et al., 2006). 
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Leucine-responsive regulatory protein (Lrp) is a global transcription regulator that can act 
as either an activator or a repressor depending on the promoter (CALVO and MATTHEWS, 1994; 
CUI et al., 1996; NEWMAN et al., 1992). Lrp activity, which can be neutral, potentiating, or 
antagonistic regulated by leucine, seems to harmonize the cellular metabolism with nutritional 
environment (CALVO and MATTHEWS, 1994; LANDGRAF et al., 1996). Lrp induces the 
expression of many genes which act in response to nutrient limitation, high concentrations of 
organic acids, and osmotic stress (TANI et al., 2002). In addition, the integration host factor 
(IHF), a member of histone-like protein (H-NS) family, promotes the organization of genome. 
IHF regulates a few of E. coli stationary phase genes, e.g. dps (ALTUVIA et al., 1994), osmY 
(COLLAND et al., 2000) and curli-producing genes (GERSTEL et al., 2003), and also 
contributes to the expression of virulence genes in Salmonella enterica subsp. enterica (S.) 
serovar Typhimurium stationary phase (MANGAN et al., 2006). 

Quorum sensing (QS) is a cooperative bacterial behavior that regulates gene expression in 
response to fluctuations in cell-population density (MILLER and BASSLER, 2001). QS is also 
used by bacteria for determining the bacterial population density to predict the carrying 
capacity to prevent population collapse (GOO et al., 2012). When the population density 
reaches a detection threshold, cells trigger a specific response to approach the stationary phase 
(KELLER and SURETTE, 2006). Since Goo et al. (2012) found that QS mutants lost the cell 
viability commencing shortly after the onset of the stationary phase, QS might induce 
important functions involving in the persistence of the stationary phase. QS is also involved in 
the entry of the stationary phase, as the QS pathways converge with starvation-sensing 
pathways to regulate the transition of the stationary phase (LAZAZZERA, 2000). QS enables 
bacteria to modify their physiology in preparation for survival of maximum population at 
compositive conditions. Moreover, QS gene expression is controlled by RpoS at the onset of 
the phase (SCHUSTER et al., 2004). 

1.4.3.3 The long-term stationary phase 
A long-term stationary phase is another strategy for bacteria to maintain long-term survival. 
The growth rate balances the dying cells in a long-term stationary phase. Long-term cultures 
can only maintain a certain amount of cells (FINKEL, 2006). A number of bacteria establish a 
growth advantage in the stationary-phase (GASP) phenotype when are grown in co-culture 
with the same or other younger bacterial species (HELMUS et al., 2012). The GASP phenotype 
is a global microorganism phenomenon under starvation conditions (FINKEL et al., 2000), and 
its purpose is mainly on maximizing long-term total productivity (KEYMER et al., 2008). The 
GASP phenotype exists in many bacteria, such as E. coli, S. serotypes, Shigella dysenteriae 
(MARTINEZ-GARCIA et al., 2003), V. cholerae (PAUL et al., 2004), Pseudomonas (P.) 
aureofaciens (SILBY et al., 2005) and Mycobacterium smegmatis (SMEULDERS et al., 1999). 

In summary, the stationary phase is important for bacterial survival against many stresses. 
Additionally, bacterial cells can survive in the long-term stationary phase without entering the 
VBNC state or sporulation under starvation periods. 

1.5 Viable but non-culturable state 
Cultivability is one of the fundamental conditions in microbiology, and the count of microbial 
colonies on a plate is one of the standard judgments in food hygiene. However, Xu et al. 
(1982) observed a new phenomenon in E. coli and V. cholerae cells, which was named the 
viable but non-culturable (VBNC) state. As the name indicated, bacterial cells in this state are 
alive but have lost the capability of forming colonies on suitable media, on which normal cells 
can grow (OLIVER, 2000b). In environmental water and soil samples, less than 1% of the 
microorganisms are cultured in viable count procedures (FAKRUDDIN et al., 2013). 
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1.5.1 VBNC state bacteria 
Since 1982, numerous studies have been conducted to detect the bacteria which enter the 
VBNC state for survival. The VBNC state existence in disparate environmental or under 
experimental conditions has been observed in as many as 85 bacterial species (LI et al., 2014). 
These 85 bacteria species have a wide range of living conditions, including ocean, estuarine, 
lake, tap, soil, plants and even processed food. The identification of VBNC bacteria has been 
reviewed and summarized (LI et al., 2014). Li et al. (2014) focussed on human bacterial 
pathogens, Pinto et al. (2013) classified pathogenic and non-pathogenic VBNC bacteria, and 
Oliver (2010) reviewed pathogenic bacteria in plants, animals and human, while Rowan 
(2004) distinguished foodborne VBNC bacteria from waterborne. There are 67 pathogenic 
species and 18 non-pathogenic species of in total 85 VBNC species known so far. Of these 67 
bacterial species, 51 human pathogenic bacteria are listed in Table 1-5, including species and 
their VBNC state inducing conditions. This list includes not only pathogens that cause disease 
or even death, but also opportunistic human pathogenic species that can additionally infect 
other organisms and immunocompromised patients. The remaining 16 pathogenic species 
(Table 1-6) have not been described to infect humans but other organisms, e.g. plants, fish, 
oysters, and corals. 

 
Table 1-5: Human pathogens VBNC state inducing conditions (modified from LI et al., 2014) 

Species VBNC state inducing conditions References 
Acinetobacter calcoaceticus  Low nutrition and cold (winter) LEMKE and LEFF (2006) 
Aeromonas hydrophila  Low salinity (0.35% NaCl) RAHMAN et al. (2001) 
Agrobacterium tumefaciens Low nutrition (filtered drinking water) BYRD et al. (1991) 

 Chemical salts form of copper ALEXANDER et al. (1999) 
Arcobacter butzleri  Low nutrition (sterilized seawater microcosms) FERA et al. (2008) 
Bacillus cereus Pulsed electric field (50 Hz, 60V) ROWAN (2004) 
Burkholderia cepacia Low nutrition and cold (winter) LEMKE and LEFF (2006) 
Burkholderia pseudomallei Acid pH (pH4) or high temperature (42 °C) or High osmotic pressure 

(above 2.5% (wt/vol)) 
INGLIS and SAGRIPANTI (2006) 

Campylobacter coli  Low temperature (10 °C) THOMAS et al. (2002) 
 Low pH (pH4) CHAVEERACH et al. (2003) 
Campylobacter jejuni Low temperature (4 °C or 10 °C) COOK and BOLSTER (2007); 

THOMAS et al. (2002) 
 Low pH (pH4) CHAVEERACH et al. (2003) 
 Low nutrition (sterile artificial seawater microcosm) BAFFONE et al. (2006b) 
Campylobacter lari Low temperature (10 °C) THOMAS et al. (2002) 
Citrobacter freundii  Low nutrition (sterile double-distilled water) or high temperature 

(48 °C or 53 °C) 
REISSBRODT et al. (2002) 

Cytophaga allerginae An aerosol with medical-grade air (20 lb/in2) HEIDELBERG et al. (1997) 
Edwardsiella tarda  In an oligotrophic microcosm and under low temperature (4 °C) DU et al. (2007) 
Enterobacter aerogenes Low nutrition (filtered drinking water) BYRD et al. (1991) 
Enterobacter agglomerans Low nutrition (sterile double-distilled water) REISSBRODT et al. (2002) 
Enterobacter cloacae  In sandy loam soil with water stress PEDERSEN and JACOBSEN 

(1993) 
Enterococcus faecalis 
(Streptococcus faecalis) 

Low nutrition (filtered drinking water) BYRD et al. (1991)  
Low temperature (4 °C or 7 °C) LLEO et al. (1998) 

Enterococcus faecium Low nutrition (filtered sterilized lake water) and low temperature 
(4±0.5 °C) 

LLEO et al. (2001) 

Enterococcus hirae  Low nutrition (filtered sterilized lake water) and low temperature 
(4±0.5 °C) 

LLEO et al. (2001) 

Escherichia coli Visible light at an intensity of about 40 klux GOURMELON et al. (1994) 
 Low nutrition (sterile double-distilled water) or high temperature 

(53 °C) 
REISSBRODT et al. (2002) 

 In deionized water at 4 °C COOK and BOLSTER (2007) 
Francisella tularensis CO2 (5%) FORSMAN et al. (2000) 
Haemophilus influenzae  Unknown EHRLICH et al. (2002) 
Helicobacter pylori Low nutrition (filtered environmental water) ADAMS et al. (2003) 
Klebsiella aerogenes  Unknown inducing condition OLIVER (2010) 
Klebsiella planticola An aerosol with medical-grade air (20 lb/in2) HEIDELBERG et al. (1997) 
Klebsiella pneumoniae Low nutrition (sterile and filtered drinking water) BYRD et al. (1991) 
Legionella pneumophila Low nutrition (sterile tap water) STEINERT et al. (1997) 
 Add 0.3 g Cl2/L NaOCl to disinfectants NH2Cl ALLERON et al. (2008) 
 Hartmannella vermiformis supernatant BUSE et al. (2013) 
Listeria monocytogenes With 0% or 7% NaCl at 20 °C BESNARD et al. (2002) 
 Low pH (pH4) ROWAN (2004) 
 Low nutrition (microcosm filtrated water) and low temperature (4 °C) LINDBACK et al. (2010) 
Micrococcus luteus In the filtered supernatant of late logarithmic phase M. luteus cultures MUKAMOLOVA et al. (1998b) 
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Micrococcus varians (Kocuria 
varians) 

Unknown inducing condition OLIVER (2005) 

Mycobacterium smegmatis In modified Hartman's de Bont medium KUZNETSOV et al. (2004) 
 In Hartman's de Bont medium medium but N-, C- or P-limitation SHLEEVA et al. (2004) 
Mycobacterium tuberculosis Without oxygen DOWNING et al. (2005) 
Pseudomonas aeruginosa In sterile deionized water at 4 °C LEUNG et al. (1995) 
 Add copper sulfate (CuSO4 × 5H2O) DWIDJOSISWOJO et al. (2011) 
Pseudomonas putida Low nutrition and cold (winter) LEMKE and LEFF (2006) 
Salmonella1 Enteritidis Low nutrition (sterile river water microcosm) ROSZAK et al. (1984) 
Salmonella1 Oranienburg In 7% NaCl solution  PANUTDAPORN et al. (2006) 
Salmonella1 Typhi In groundwater at 15 °C CHO and KIM (1999) 
Salmonella1 Typhimurium In sterilized artificial seawater penetrated by UV-C CARO et al. (1999) 
 Low nutrition (sterile double-distilled water) REISSBRODT et al. (2002) 
 Containing 0.0735 mM Butterfield phosphate solution at 5°C GUPTE et al. (2003)  
Serratia marcescens An aerosol with medical-grade air (20 lb/in2) HEIDELBERG et al. (1997) 
Shigella dysenteriae Low nutrition (sterilized environmental water) ISLAM et al. (1993)  
 High temperature (30 °C or 37 °C) RAHMAN et al. (1994) 
Shigella flexneri Low nutrition (filtered environmental water) COLWELL et al. (1985) 
Shigella sonnei Low nutrition (filtered enviromental water) COLWELL et al. (1985) 
Staphylococcus aureus Antibiotic (vancomycin or quinupristin/dalfopristin) PASQUAROLI et al. (2014) 
Staphylococcus epidermidis Unknown ZANDRI et al. (2012) 
Vibrio alginolyticus Low temperature (4 °C) DU et al. (2007) 
Vibrio cholerae Low nutrition (filtered river water) COLWELL et al. (1985) 
Vibrio fluvialis In sterile seawater plus sediment (1:4, V/V) AMEL et al. (2008) 
Vibrio mimicus Unknown inducing condition OLIVER (1995) 
Vibrio parahaemolyticus Low temperature (5 °C), low salinity  BATES and OLIVER (2004)  
 In a nutrient-free Morita mineral salt-0.5% NaCl medium (pH 7.8) at 

4 °C 
WONG and WANG (2004) 

Vibrio vulnificus (type 1 & 2) Low temperature (5 °C) BIOSCA et al. (1996a) 
 Low salinity (0.4% NaCl) WONG and LIU (2008) 
Yersinia pestis In water at 4 °C PAWLOWSKI et al. (2011) 
1 Salmonella: Salmonella enterica subsp. enterica 

If bacteria inhabit unfavourable environments entering the VBNC state might be forced. 
Numerous chemical and environmental factors, which may induce VBNC state entering, are 
described (Table 1-5) (OLIVER, 2010). Factors include loath temperature (BESNARD et al., 
2002; MAALEJ et al., 2004; WONG and WANG, 2004), nutrient starvation (COOK and 
BOLSTER, 2007), low pH (CUNNINGHAM et al., 2009), or low salinity (ASAKURA et al., 2008; 
WONG and LIU, 2008), high oxygen concentration (KANA et al., 2008), presence of food 
preservatives (CUNNINGHAM et al., 2009; QUIROS et al., 2009), heavy metals 
presence/absence (GHEZZI and STECK, 1999) and exposure to white and/or UV light 
(GOURMELON et al., 1994). However, more extreme conditions may lead to sterilization 
instead of inducing bacteria cells to enter the VBNC state, e.g. pasteurization. 

 
Table 1-6: Non-human pathogenic bacterial species with a proven VBNC state 

Species Host organisms References 
Aeromonas salmonicida Fish EFFENDI and AUSTIN (1995) 
Aquaspirillum sp. Fish WAI et al. (2000) 
Erwinia amylovora Plant ORDAX et al. (2009) 
Lactobacillus plantarum Plant OLIVER (1995) 
Pasteurella piscida Fish MAGARINOS et al. (1994) 
Pseudomonas syringae Plant WILSON and LINDOW (1992) 
Ralstonia solanacearum Plant GREY and STECK (2001) 
Rhizobium leguminosarum Plant ALEXANDER et al. (1999) 
Tenacibaculum sp. Sea urchins MASUDA et al. (2004) 
Vibrio anguillarum Fish EGUCHI et al. (2000) 
Vibrio campbellii Oysters WILLIAMS et al. (2009) 
Vibrio proteolytica Fish OLIVER (2005) 
Vibrio shiloi Corals VATTAKAVEN et al. (2006) 
Vibrio tasmaniensis Corals VATTAKAVEN et al. (2006) 
Xanthomonas axonopodis pv. citri Plant DEL CAMPO et al. (2009) 
Xanthomonas campestris pv. campestris Plant GHEZZI and STECK (1999) 

1.5.2 Characteristics of VBNC cells 
Viability of bacteria cells means metabolic or physiological activity. However, non-
cultivability is one of the very important characters of VBNC cells. Although VBNC cells 
share several similar viable characteristics, they have many differences from viable and 
culturable cells. These changes include cellular morphology, composition of cell membrane, 
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metabolism, expression of genes, resistances, capability of adhesion and virulence. Despite 
many differences between VBNC cells and culturable cells, VBNC cells are not dead cells. 
Damaged membranes in dead cells hamper conserve genetic information, whereas VBNC 
cells maintain intact membranes to protect chromosomes, mRNA and plasmids from damage. 
No metabolic activity occurs in dead cells, while VBNC cells still maintain metabolism and 
respiration. Kogure et al. (1979) distinguished live cells from dead cells with nalidixic acid 
(20-40 mg/L) according to metabolism. VBNC cells does not divide and appear elongated 
after exposure to nalidixic acid (Fig. 1-2), while the nonviable metabolically inactive cells 
have no change of original shape and size (KOGURE et al., 1979). The production of mRNA 
and transcription are continued in VBNC cells (LLEO et al., 2000). 
 

 
Fig. 1-2: VBNC V. parahaemolyticus RIMD 2210633 cells after exposure to nalidixic acid. 

 
The decrease of cell size has been observed in a number of VBNC bacterial species 

(CHAIYANAN et al., 2001; DU et al., 2007; INGLIS and SAGRIPANTI, 2006; SENOH et al., 2010; 
THOMAS et al., 2002; WHITESIDES and OLIVER, 1997). The reduction of cell size and an 
increase in surface area to volume ratio might be a strategy to lessen energy requirements 
(BIOSCA et al., 1996b; LI et al., 2014). V. parahaemolyticus cells change from the rod-shaped 
in the exponential phase to coccoid in the VBNC state (SU et al., 2013). Studies of 
morphological changes of V. cholerae O1 and O139 cells have found slight differences in 
detailed changes of shape (CHAIYANAN et al., 2001). V. cholerae O1 cells became shorter and 
fatter, while V. cholerae O139 cells came shorter and thinner than actively growing cells at 
about two months. At six months, both V. cholerae O1 and O139 cells were coccoid in 
morphology when all completely entered the VBNC state. These alterations of cellular 
morphology could serve as a crucial trait in order to identify the state of VBNC cells. 
However, it should not be the only factor to judge cells whether they entered the VBNC state 
because other conditions (e.g. starvation) can lead to similar changes (CHEN et al., 2009). 

The change of the cell membrane is another factor which is used to identify the difference 
between VBNC and normal cells. The outer membrane of Gram-negative bacteria, which is a 
physical and functional barrier, plays an important role in separating cell from surrounding. 
V. cholerae O1 and O139 VBNC cells were observed under transmission electron microscope 
by Chaiyanan et al. (2001). VBNC cells lost the distinct three-layered integrity of the outer 
membrane and cell membrane, while the structures residued presented. The nuclear region 
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was compressed into the cell center surrounded by of a denser cytoplasm. The cell wall 
formed an extended or convoluted structure pulling away from the cell membrane. 
Compositions of cell wall and membrane, including fatty acid, peptidoglycan and protein, are 
investigated. Significant changes in fatty acids composition of V. vulnificus cell membranes 
occurs at the beginning of shifting into the VBNC state (DAY and OLIVER, 2004). The 
percentage of unsaturated fatty acid and less than 16 carbons fatty acid was found increased in 
V. vulnificus cell membranes during entering the VBNC state. Moreover, hexadecanoic acid 
(16:0) was found greatly changed in the VBNC state. The peptidoglycan chemical 
composition of Enterococcus faecalis cell wall showed a 9% increase in cross-linked 
muropeptides values from growing cells to the VBNC cells (SIGNORETTO et al., 2000). 
However, all these composition changes in VBNC state Enterococcus faecalis cells might be 
specific to this particular physiological state. The outer membrane subproteome of E. coli is 
widely investigated. Using proteomic analysis, changes in protein composition of E. coli cells 
outer membrane subproteome were found when they entered the VBNC state (MUELA et al., 
2008). Muela et al. (2008) generated VBNC state E. coli cells through starvation, incubation 
in seawater and/or exposure to visible light, and found rearrangements of the outer membrane 
depending on incubation conditions. 

VBNC cells are referred to as dormant cells (COLWELL, 2000), because they show a lower 
metabolic rate and altered gene expression compared with cells in exponential and stationary 
phases. The RNA, DNA and protein are decreased under the VBNC state (TREVORS et al., 
2012). DNA degradation has been described during cold incubation (WEICHART et al., 1997), 
and degradation of RNA is reported occurring in populations of starved or stressed bacteria 
(DAVIS et al., 1986; MANDELSTAM and HALVORSON, 1960; POSTGATE and HUNTER, 1962; 
WEICHART et al., 1997). Gene expression has been investigated in vivo and in vitro in 
V. vulnificus VBNC state (FISCHER-LE SAUX et al., 2002; SMITH and OLIVER, 2006a). 
Previous studies demonstrate that the synthesis of RNA, DNA and protein decreased rapidly 
in the VBNC state (OLIVER, 2000a). Moreover, expression of oxyR and katG was not 
detectable, while rpoS was expressed stably after cold shock in V. vulnificus 
(LIMTHAMMAHISORN et al., 2009). Cold shock genes csp3 and csp4 underwent an ephemeral 
induction in VBNC state V. vulnificus cells (LIMTHAMMAHISORN et al., 2009). The differences 
of proteome analysis have been studied between starved and the VBNC state (incubated at 4 ± 
0.5 °C for 20 days) Enterococcus faecalis cells (HEIM et al., 2002). Considerable changes in 
protein profiles among exponential phase, starved and VBNC cells were found. GroEL and 
DnaK, two general stress proteins, showed slight reduction in the VBNC state compared to 
the exponential phase. Interestingly, three proteins involved in catabolic pathways, the 
putative protein enolase, ATP synthase and enoyl-ACP reductase, displayed a significant 
reduction in the VBNC state. Thus, metabolic activity is decreased in the VBNC state. While 
Lai et al. (2009) found that in VBNC cells several proteins associated with e.g. transcription 
and translation were induced compared with normal cells, which play a role after stimulation 
and/or maintenance of VBNC state in V. parahaemolyticus ST550. However, the elongation 
factor Tu (EF-Tu) retained the expression level in E. coli (ASAKURA et al., 2007b). 
Furthermore, more than 600 genes with changed expression profiles by more than twofold 
were found when V. parahaemolyticus cells were in cold shock (YANG et al., 2009). WOOD 
and ARIAS (2011) reported that only a small portion of genes (165 out of 4488) altered their 
expression considerably (twofold) during the extreme temperature conversion from 35 °C to 
4 °C when analyzing the V. vulnificus cold shock incitement. However, ASAKURA et al. 
(2007a) has shown that 30 genes in total were expressed stably in the VBNC state, while 21 
genes connected to six metabolism-related functional categories (amino acid synthesis; energy 
metabolism; purines, pyrimidines, nucleosides and nucleotides; central intermediary 
metabolism; DNA metabolism; as well as protein synthesis) have been induced by at least 
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fivefold in VBNC cells of V. cholerea. GONZALEZ-ESCALONA et al. (2006) reported the 
transcription of key enzymes, such as tuf and relA or rpoS, which are involved in cellular 
metabolism, is higher in VBNC state V. cholerea. These findings suggest that the VBNC state 
is a physiologically distinct state within the bacterial life cycle, thus its metabolism is changed 
in terms of expression. The discrepancies of metabolism and gene expression in the VBNC 
state of different species might be due to the condition inducting the VBNC state. 

The VBNC state enables bacteria, especially non-sporulating ones, to survive in hostile 
environments. Since cell walls might be strengthened by the increase of the cross-linking of 
peptidoglycans (SIGNORETTO et al., 2000). VBNC cells display higher resistances than normal 
cells. VBNC state V. parahaemolyticus cells were resistant to thermal (42-47 °C), low salinity 
(0% NaCl), or acidic (pH 4) based inactivation (WONG and WANG, 2004). For Campylobacter 
(C.) jejuni populations, the survival percentages of original rod cells to chlorine (5ppm v/v) 
for 30s, 2min and 5min were around 15%, 14% and 0%, while the survival percentages of 
VBNC cells were around 65%, 20% and 8%, respectively (ROWE et al., 1998). Enterococcus 
faecalis VBNC cells were capable of maintaining and expressing antibiotic resistance (LLEO 
et al., 2003). Furthermore, VBNC state V. vulnificus was found to exhibit resistance to high 
temperatures (42 °C), low and high pHs (3 and 10), and exposure to ethanol (13%), antibiotic 
(chloramphenicol and ampicillin) and heavy metal (zinc) (NOWAKOWSKA and OLIVER, 2013). 
Weichart and Kjelleberg (1996) found that resistance towards sonication of six-week cold 
induced VBNC cells were similar to growing cells. Moreover, after sonication for 40 s, the 
survival percentage of nine-week cold induced VBNC cells (10.2%) was higher than the six-
week cold induced VBNC cells (0.15%). The resistance of starved cells to ethanol exposure at 
the concentration of 10% (v/v) was 100 times higher than growing cells, which might suggest 
that most cells entered VBNC state (WEICHART and KJELLEBERG, 1996). 

Invasion of hosts starts with adherence, which represents a crucial step for extracellular 
bacteria (RIBET and COSSART, 2015). The capability of adhesion in the VBNC state is altered 
as well. For instance, Pruzzo et al. (2002) found that VBNC state Enterococcus faecalis cells 
maintained the adherence capability but its efficiency to attach to cardiac cells was reduced by 
40% to 70%. Moreover, VBNC state Enterococcus faecalis lost the ability to adhere to plastic 
surfaces (LLEO et al., 2007), though the ability of attachment was retained in VBNC state 
C. jejuni cells (DUFFY and DYKES, 2009). 

The ability of bacterial infection under the VBNC state is disputed. A coral pathogen, 
V. shiloi, causes coral death in the VBNC state (BANIN et al., 2000; ROSENBERG and BEN-
HAIM, 2002). However, VBNC state Listeria monocytogenes cells did not cause infection in 
immunodeficient mice (CAPPELIER et al., 2005; LINDBACK et al., 2010). Moreover, a 
gradually time-depending decrease of virulence was shown in VBNC state V. vulnificus 
(OLIVER and BOCKIAN, 1995). The presence of virulence responses of V. cholerae in cell 
cultures suggests that it cholera might be caused under the VBNC state (COLWELL et al., 
1996). Moreover toxin genes are expressed in V. parahaemolyticus VBNC state (VORA et al., 
2005). Furthermore, VBNC state V. vulnificus cells express virulence factors (vvhA) 
(FISCHER-LE SAUX et al., 2002). Many studies suggest that the virulence remains in human 
pathogenic VBNC state bacterial cells but the capability of infection in the VBNC state has 
been rarely shown. However, under suitable conditions its rapid resuscitation into culturable 
cells may lead to infection (BAFFONE et al., 2003; DU et al., 2007; OLIVER, 2005; OLIVER and 
BOCKIAN, 1995). 

The characteristics of VBNC state bacterial cells (FAKRUDDIN et al., 2013) inculde: 
(i) Changing cell shape from rod to coccoid and maintaining apparent cell integrity; 
(ii) Changes in the number and structure of outer membrane proteins; 
(iii) Increased cross-linking of muropeptides in cell wall; 
(iv) Lower metabolic activity; 
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(v) Reduced nutrient transport; 
(vi) Continuous gene expression; 
(vii) Possessing cellular activity; 
(viii) Containing a high ATP level and exhibit high membrane potential; 
(ix) Higher resistance to extremely conditions; 
(x) Capability of resuscitation. 

1.5.3 VBNC state regulators and effectors  
Although many aspects of the VBNC state have been investigated, little is known about the 
genetic regulation in this state. A wide range of bacterial species exist in the VBNC state. It is 
suggested that the regulatory mechanisms are very complex. Identifying key regulators of the 
VBNC state might help to develop detection and control methods for VBNC state pathogenic 
bacteria in the field of food hygiene. 

The involvement of RpoS, a global stress response regulator, in the induction of the VBNC 
state has been investigated (BOARETTI et al., 2003; KUSUMOTO et al., 2012). A continuous 
expression of rpoS in VBNC state V. vulnificus (LIMTHAMMAHISORN et al., 2009; SMITH and 
OLIVER, 2006a) as well as V. cholerae (GONZALEZ-ESCALONA et al., 2006) was reported. A 
lack of RpoS in E. coli and Salmonella spp. was shown to result in a faster shift in the VBNC 
state (KUSUMOTO et al., 2012). The intracellular concentration of RpoS decreased during 
VBNC state induction in S. Dublin, S. Oranienburg and S. Typhimurium LT2. This suggests 
that disruption and/or lower concentrations of RpoS could lead a rapid VBNC state induction 
(KUSUMOTO et al., 2012). E. coli parental strains lost their cultivability in 33 days on an 
artificial oligotrophic medium at 4 °C, while the rpoS mutant cells reached the non-culturable 
state in 21 days (BOARETTI et al., 2003). Furthermore, rpoS inactivated in E. coli cells 
resulted in an early death of bacteria cells (BOARETTI et al., 2003). 

Stress factors inducing RpoS-mediated stress response have been described, including low 
temperature (WHITE-ZIEGLER et al., 2008), decreased nutrient availability (MANDEL and 
SILHAVY, 2005), pH change (CHEVILLE et al., 1996), osmotic stress (HENGGE-ARONIS et al., 
1993), and oxidative stress (SAMMARTANO et al., 1986). Depending on the type of stress, 
RpoS regulated stress response induction includes the expression of guanosine 3',5'-
bis(diphosphate) (ppGpp) and guanosine 3'-diphosphate, 5'-triphosphate (p)ppGpp (GENTRY 
et al., 1993). Deficient (p)ppGpp production leads to a faster VBNC state induction, which is 
comparable to RpoS mutants; (p)ppGpp is therefore recognized as a positive regulator during 
the RpoS production (BOARETTI et al., 2003). The intracellular concentration of (p)ppGpp is 
regulated by RelA and SpoT proteins (MAGNUSSON et al., 2005; POTRYKUS and CASHEL, 
2008). In the VBNC state, the expression of relA was repressed in V. cholerae, followed by 
(p)ppGpp concentration was modulated down (ASAKURA et al., 2007a). Lower (p)ppGpp 
concentration might result in a faster induction of the VBNC state. 

Presence of reactive oxygen species (ROS) induces the shift into the VBNC state (CUNY et 
al., 2005). Many studies suggested that ROS are involved in low temperature induced the 
VBNC state in several bacterial species (BOGOSIAN et al., 2000; KONG et al., 2004; MIZUNOE 
et al., 1999; WAI et al., 2000). The oxidative stress response regulator OxyR, was first 
described in S. Typhimurium (CHRISTMAN et al., 1985). Kong et al. (2004) generated an oxyR 
mutant that lacks catalase activity. This mutant lost its cultivability on solid media at low 
temperatures as well as at room temperature. The catalase encoded via katG in E. coli was 
induced by H2O2 and regulated by oxyR (MONGKOLSUK and HELMANN, 2002; STORZ and 
ZHENG, 2000). Moreover, Italiani et al. (2011) also constructed an oxyR mutant strain, and 
found that katG expression of this mutant strain was decreased. The KatG or catalase activity 
was not detected in the stationary phase. They conclude that oxyR is the main positive 
regulator of katG. In VBNC state V. vulnificus cells katG was repressed in vitro and in vivo 
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(SMITH and OLIVER, 2006a). Thus oxyR mutant strain inhibits katG expression at any 
temperature and in any growth phase. Moreover, the indirect lack of catalase results in non-
cultivability on routine media, which usually contains hydrogen peroxides (KONG et al., 
2004). Therefore, cells might enter into the VBNC state because oxyR-mediated catalase 
activity is inhibited due to low temperature. Recently, an antioxidative enzyme, the alkyl 
hydroperoxide reductase subunit C (AhpC, AhpC1 and AhpC2), protects cells via its 
peroxidase activity, by inactivation hydrogen peroxide, peroxynitrite and organic 
hydroperoxides (CHAROENLAP et al., 2005; WANG et al., 2013a). Wang et al. (2013a) found 
that both genes, ahpC1 and ahpC2, were protective against ROS, tert-butyl hydroperoxide (t-
BOOH), while at 4 °C the protective function of ahpC2 was higher than that of ahpC1. Both 
ahpC1 and ahpC2 genes declined and remained at low concentrations under VBNC state 
inducing conditions, but only ahpC2 effected the induction and maintains the VBNC state of 
V. parahaemolyticus. Furthermore, ahpC1 was protective against H2O2 (WANG et al., 2013a). 
Reduced OxyR functions as a repressor of ahpC in cells, whereas oxidized OxyR by H2O2 

activates ahpC expression (CHAROENLAP et al., 2005; LOPRASERT et al., 2000). Thus AhpC 
might play a key role in regulating the induction of the VBNC state. 

As mentioned above, phospholipids, lipopolysaccharides and outer membrane proteins 
(OMPs) are the main components of the outer membrane (KOEBNIK et al., 2000). In order to 
survive in stressful conditions, e.g. starvation, or changed osmolarity, the amount of OmpC 
and OmpF was increased in VBNC state E. coli (DARCAN et al., 2009; NIKAIDO and VAARA, 
1985; OZKANCA and FLINT, 2002). OmpF and OmpC are the major outer membrane proteins 
in E. coli (MISRA and REEVES, 1987). An ompCompF double mutant lost its cultivability and 
entered the VBNC state because this mutant lost the ability to ingest and transport small 
molecular weight nutrients (DARCAN et al., 2009; OZKANCA and FLINT, 2002). The 
expression of OmpF and OmpC is regulated by the EnvZ/OmpR system (RUSSO and SILHAVY, 
1991). Darcan et al. (2009) showed that an envZ mutant lost the ability to enter the VBNC 
state and maintained culturable for a longer time. The inhibition of EnvZ has no significant 
influence on survival; however, a lack of EnvZ would stop bacteria cells perceiving the 
changes in surrounding and therefore affects shifting in the VBNC state. Since OMPs play an 
important role in the induction of the shift into the VBNC state, they are important effectors 
of the VBNC state. 

1.5.4 Detection of VBNC cells 
Viability and non-cultivability are the two main characteristics of VBNC cells, thus VBNC 
cells can be identified via microscope. When cells lose cultivability but the number of viable 
cells remains high in a sample, these cells are generally considered as VBNC cells. However, 
some injured cells are unable to grow on the selective media agar with antibiotics or other 
stressors. Therefore, the first step for detection of VBNC cells should be conducted with non-
selective media. Since the injured cells can turn into culturable state on rich medium, they are 
not considered as VBNC cells even if they own a raised sensitivity to normal growth medium 
components (PINTO et al., 2013). Hence, establishing the most suitable growth conditions 
could enable to distinguish injured cells from VBNC cells. 

Appropriate detection approaches enable the detection of VBNC cells, which can be then 
dealt with the suitable methods, thereby the bacterial contamination in samples can be 
reduced in water and/or food samples. Therefore, it is important to confirm the viability of a 
VBNC population and detect VBNC cells with suitable techniques. Several aspects, which 
include cell membrane, metabolism, and gene expression, confirm whether cells enter the 
VBNC state or are dead. In Table 1-7, common methods for detecting VBNC cells have been 
listed. These methods can be divided into three groups of types. 



  Chapter 1 Introduction 

   19

First type group is field microscopy methods. Kong et al. (1979) described the direct count 
of viable bacterial cells (DVC). Primary studies on bacterial VBNC state detection relies on 
the antibiotic sensitivity of bacterial cells. The presence of nalidixic acid, a DNA-gyrase 
inhibitor, stops cell division. Viable cells are elongated, while dead cells are oval and large 
(KOGURE et al., 1979). However, this approach is not suitable for Gram-positive and some 
Gram-negative bacteria (BYRD et al., 1991). 

Second type group is fluorescent microscopy methods. V. cholerae O1 isolates that tolerate 
high-level concentrations of nalidixic acid have been found in cholera endemic areas (DAS et 
al., 2011), and thus with ciprofloxacin is preferable to nalidixic acid. This is because with 
ciprofloxacin VBNC cells elongate from a coccoid shape to rod-like cells in the absence of 
cell division. Accordingly, modified fluorescent antibody-direct viable count (DFA-DVC) 
technique with ciprofloxacin has been performed to detect VBNC state V. cholerae (MISHRA 
et al., 2011).The VBNC state can also be determined by modified fluorescent cell staining 
procedures. Acridine orange, 4,6-diamino-2-phenyl indole (DAPI), fluorescein isothiocyanate 
(FITC), indophenyl-nitrophenyl-phenyltetrazolium chloride (INT), and 5-cyano-2,3-ditolyl 
tetrazolium chloride (CTC) are used as dyes (VILLARINO et al., 2000). The mechanism of 
acridine orange depends on the ratio of DNA to protein in bacterial cells. Actively 
reproducing cells at the time of staining will appear green but slow-growing or non-
reproducing cells appear orange under microscopy (HOLMBERG et al., 1989). DAPI can be 
used to display changes in cellular morphology (BESNARD et al., 2000b; DU et al., 2007). 
FITC is a fluorophore that is extensively used in cell biological studies. It retains the complex 
pH-dependent fluorescence spectra of fluorescein (MARTIN and LINDQVIST, 1975) and can be 
covalently linked to the membranes of specific organelles and macromolecules. Living cells 
appear blue or violet with FITC stains. The activity of electron transport systems is the 
basement of INT assay (RAHMAN et al., 1994). INT reacts with a dehydrogenase enzyme 
producing formazone and red color (ZIMMERMANN et al., 1978). Similarly, the Live/Dead 
BacLight assay, a new differential staining assay, has been recently developed. Two nucleic 
acid stains, green-fluorescent SYTO 9 stain and red-fluorescent propidium iodide stain. 
SYTO 9 acts on both live and dead bacteria, whereas propidium iodide only passes through 
the damaged membranes of dead cells. The propidium iodide stain reduces the activity of 
SYTO 9 in dead bacteria resulting in a red fluorescent, whereas the live bacteria will stay 
green fluorescent (STIEFEL et al., 2015). Thus, it enables the counting of total and viable 
(metabolically active) cells at the same time. 

 
Table 1-7: Methods for the detection of bacterial VBNC cells (modified from RAMAMURTHY et al., 2014) 

Method Indicator Bacteria Reference 
Antibiotics 
 

Elongation of cells in the presence of 
nalidixic acid or ciprofloxacin 

Gram-negative bacteria KOGURE et al. (1979); 
MISHRA et al. (2011) 

Acridine orange staining, 
fluorencent antibody-direct 
viable count (DFA-DVC) 

Active cells appear green Vibrio cholerae O1  KOGURE et al. (1979); 
MISHRA et al. (2011) 

p-Iodonitrotetrazolium violet 
assay 

Activity based on electron transport 
system 

Shigella dysenteriae type1. RAHMAN et al. (1994) 

CTC and DAPI double staining Respiratory activity Campylobacter jejuni, 
Vibrio parahaemolyticus, and 
Listeria monocytogenes 

BAFFONE et al. (2006a); 
BAFFONE et al. (2003); 
CAPPELIER et al. (2005) 

Metabolic activity Accumulation of rhodomine Francisella tularensis FORSMAN et al. (2000) 
Growth on matrices Absence of 5-hydroxymethylfuran-2-

carboxylic and furan-2-carboxylic acids 
Pseudomonas collierea HARA et al. (2012) 

Quantitative PCR  Global expression genes Vibrios, Escherichia coli, etc. EILER and BERTILSSON 
(2006); FRANCO et al. 
(2012); INOUE et al. 
(2008); MACHADO and 
BORDALO (2014); 
YANEZ et al. (2011) 

Quantitative PCR with 
propidium monoazide 

Binding of propidium monoazide with 
extracellular DNA in dead or 
membrane- compromised cells inhibits 
quantitative PCR amplification 

Legionella pneumophila YANEZ et al. (2011) 
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RT-PCR Quantification of 16S rRNA Bifidobacterium spp. LAHTINEN et al. (2008) 
DVC-FISH Measure of RNA, DNA and mRNA 

changes 
Helicobacter pylori MORENO et al. (2007) 

MALDI-TOF/MS Identification of differentially expressed 
proteins 

Vibrio harveyi, Enterococcus 
faecalis 

JIA et al. (2013) 

Solid phase cytometry and 
fluorescent viability staining 

Identification based on intracellular 
esterases 

Campylobacter jejuni COOLS et al. (2005) 

RING-FISH Detection of individual genes Vibrio parahaemolyticus GRIFFITT et al. (2011) 
Biosensor Detection of beta-d-glucuronidase Escherichia coli TOGO et al. (2007) 
SELEX technique DNA aptamer-based viability detection Salmonella1 Typhimurium LABIB et al. (2012) 
Bacteriophages Lytic activity of live cells Escherichia coli, Salmonella 

spp. 
BEN et al. (2010); 
FERNANDES et al. 
(2014) 

Eukaryotic cell extracts Supplementation with thiosulfate citrate 
bile salts sucrose agar culture medium 
(TCBS) 

Vibrio cholerae O1 SENOH et al. (2014) 

1 Salmonella: Salmonella enterica subsp. enterica 

Third type group is molecular techniques. Ethidium monoazide (EMA) combined with 
real-time quantitative PCR (qPCR) is able to distinguish dead cells from live cells, including 
VBNC cells (INOUE et al., 2008). EMA is a DNA intercalating dye that enters bacteria via 
damaged membranes (NOGVA et al., 2003), thus quantifies DNA selectively from viable cells 
with intact cell membrane but not dead cells using qPCR (INOUE et al., 2008). RNA is also 
used for discriminating between culturable and nonculturable cells (FAKRUDDIN et al., 2013). 
High concentrations of rRNA are maintained in VBNC cells and reductase activity is retained, 
which are factors essential for all living cells. Thus, quantification of 16S rRNA has been used 
in several reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays 
(RAMAMURTHY et al., 2014). Moreover, mRNA is a short-live, half-life less than 1 minute, 
RNA and only present in metabolically active cells. An mRNA-based RT-qPCR detects non-
culturable but alive populations (PAI et al., 2000). 

Hybridization probes of nucleic acids and oligonucleotide probes of l8–20 nucleotides are 
able to discriminate live and dead cells (FAKRUDDIN et al., 2013). Oligonucleotide probes of 
l8–20 nucleotides rapidly hybridize to specific DNA sequences of target organisms. These 
probes can detect closely related organisms or organisms with similar functional capabilities 
(FAKRUDDIN et al., 2013). Hybridization probes of nucleic acids (DNA/RNA) are first labeled 
with chemically or radioactively markers which detect complementary targets DNA/RNA 
(JOSEPHSON et al., 1993). Fluorescence in situ hybridization (FISH) is an alternative for 
hybridization probes. Fluorescently labeled DNA or RNA probes are hybridized to target 
nucleic acids of intact and permeabilized cells (AMANN et al., 1995; BISHOP, 2010). Single 
microbial cells have been detected by using rRNA-targeted probes in combination with 
epifluorescent microscopy. With appropriate rRNA probe sequences, FISH can be applied for 
detecting all bacterial cells present (a universal probe) or a single population of cells (a strain-
specific probe) of e.g. VBNC cells (VILLARINO et al., 2000). Another advanced method, 
which combined the modified direct viable count method using the DNA-gyrase inhibitor 
novobiocin with FISH, succeeds in detection of VBNC cells (PIQUERES et al., 2006). 
Furthermore, matrix-assisted laser desorption ionization time-of-flight mass spectrometry 
(MALDI-ToF/MS) with multivariate data analysis is also able to distinguish between 
resuscitated and non-culturable cells (KUEHL et al., 2011). Different types of blotting, such as 
colony blot, slot blot, dot blot, and southern blot, can detect VBNC cells directly from the 
environmental samples (FAKRUDDIN et al., 2013). 

1.5.5 Biofilm 
Biofilms are defined as structured communities of bacterial cells attached to a surface and 
enclosed in an exopolysaccharide matrix (MAH and O'TOOLE, 2001; O'TOOLE et al., 2000a). It 
is produced by single or multiple bacterial species (MAH and O'TOOLE, 2001). Approx. 99% 
of all existing bacteria produce biofilms (GARRETT et al., 2008). Moreover, it has been 
estimated that 65% human microbial infections are associated with biofilms (ABDEL-AZIZ and 
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AERON, 2014). Biofilms are formed under any suitable condition, thus the existence of a 
surface is perhaps the most important precondition. The first step of biofilm formation 
includes surface detection (WONG and O'TOOLE, 2011). 

At least a part of the biofilm population persists in the VBNC state. For example, the 
VBNC state of P. aeruginosa and Legionella pneumophila can be induced by low copper 
concentrations, indicating that the two species may exist the VBNC state in biofilm in 
drinking water systems (DWIDJOSISWOJO et al., 2011; WINGENDER and FLEMMING, 2011). 
Staphylococcus aureus lost the cultivability in the biofilm after exposing to antibiotic and/or 
to nutrient depletion (PASQUAROLI et al., 2013). C. jejuni cells shifted into the VBNC state 
under low nutrient conditions at 4 °C in biofilm (MAGAJNA and SCHRAFT, 2015). Alam et al. 
(2007) reported that biofilm was formed when V. cholerae O1 entered the VBNC state. The 
results indicate that biofilm formation depends on temperature and cultivability hampering 
conditions. Biofilm protects organisms from nutrient deprivation, pH changes, oxygen 
radicals, disinfectants, and antibiotics (JEFFERSON, 2004). So far little is known about VBNC 
cells in biofilm, and the biofilm-associated non-culturable state has not yet been 
characterized. However, biofilms can still serve as an environmental protector for pathogenic 
microorganisms and represent an infectious potential to humans. 

1.5.6 Resuscitation 
Resuscitation was first described by Roszak et al. (1984) to explain the recultivability of 
viable but non-recoverable stage S. Enteritidis on solid media with additional nutrients. 
Resuscitation is defined as the conversion of VBNC cells into culturable cells without any 
change in cell numbers due to regrowth (BAFFONE et al., 2006a). Until now, 26 of 51 species 
of human pathogenic organisms, entering the VBNC state, have been reported to resuscitate. 

A number of factors influence the success of resuscitation. Many stimuli have been found 
to play an important role in resuscitating VBNC cells (Table 1-8). Low temperature (4 °C) 
induced V. parahaemolyticus VBNC cells, for example, were successfully resuscitated at 
25 °C rather than at 37 °C, indicating that the conditions of resuscitation are crucial (WONG et 
al., 2004b). 

 
Table 1-8: Stimuli in resuscitating VBNC cells 

Stimuli Bacteria Reference 
Amino acid mixture Escherichia coli PINTO et al. (2011) 
Gas mixtures Campylobacter jejuni BOVILL and MACKEY (1997) 
Chicken eggs Campylobacter jejuni, Campylobacter coli CHAVEERACH et al. (2003) 
ROS Legionella pneumophila DUCRET et al. (2014) 
Rich media Campylobacter jejuni, Salmonella1 Enteritidis Cools et al. (2003); ROSZAK et al. (1984) 
Rising temperature Aeromonas hydrophila MAALEJ et al. (2004) 
Supernatants of growing cultures Escherichia coli, Micrococcus luteus ARANA et al. (2007); MUKAMOLOVA et al. (1998b) 
Tween 20 (3%), catalase (1%) Salmonella1 Typhi ZENG et al. (2013) 
1 Salmonella: Salmonella enterica subsp. enterica 

Incorporation of VBNC cells in natural host animals or chicken eggs have been found to 
enable resuscitation, such as human volunteers (COLWELL et al., 1996), rabbits (GRIMES and 
COLWELL, 1986), embryonated eggs of chicken (CHAVEERACH et al. 2003), mice (BAFFONE et 
al., 2006a), clams (BIRBARI et al., 2000), amoebae (GARCIA et al., 2007), and eukaryotic cell 
lines (SENOH et al., 2010). These successes may be due to the high nutrient concentration in 
host and the complicated bacteria-host interactions. 

Elimination of stress is another influential factor for resuscitating from the VBNC state. 
Cold temperature and lower nutrition are commonly used for shifting bacterial cells into 
VBNC state, thus optimal temperature and/or rich medium can help VBNC cells to resuscitate 
(MUKAMOLOVA et al., 1998b; PINTO et al., 2011; WONG et al., 2004b). Despite the 
elimination of stressors, a number of specific compounds could also affect the resuscitation of 
VBNC cells (PINTO et al., 2011). Moreover, autoinducers such as AI-2, RpoS, YeaZ and the 
resuscitation-promoting factors (Rpfs) also play a role in resuscitation bacterial cells from the 
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VBNC state (AYDIN et al., 2011; BOARETTI et al., 2003; JOELSSON et al., 2007; LIU et al., 
2009; MUKAMOLOVA et al., 1998a). Although resuscitation have been investigated in many 
bacteria, much more work needs to be done to understand the detailed mechanisms. 

1.5.7 VBNC state: a need for further investigation 
The VBNC state plays a key role in the survival of a number of non-spore forming bacteria. 
In case that VBNC cells are present, the total CFU count of bacteria in a sample will be 
underestimated. Even worse, if all bacteria in the sample are in the VBNC state, the sample 
may be regarded as a bacteria-free sample due to no detection. As VBNC cells maintain 
virulence gene expression and can regain virulence after resuscitation, consumption is risky to 
the hosts including human. Thus, it is important to understand human pathogens that can shift 
into the VBNC state and then apply reliable detection methods to quantify the precise amount 
of both culturable and VBNC cells. Apart from this, the identification of the VBNC state 
inducing conditions as well as the resuscitation conditions are important to effectively prevent 
bacterial infections and cure infected patients. However, the mechanisms entering and 
resuscitation of the VBNC state and the methodologies to confirm VBNC bacteria cells need 
further investigation. 

1.6 The aim of thesis 
The aim of this thesis was the investigation of the global gene regulation of 
V. parahaemolyticus RIMD 2210633 in three phases of the bacterial life cycle: the phase of 
exponential growth, the early stationary phase and in the VBNC state. Gene expression 
profiles were used to analyze differential regulation of genes sharing functional similarities. 
Moreover, gene enrichment was utilized in order to analyze gene regulation of genes in the 
same pathways. Up-regulated genes might help to explain how bacterial cells induce entry 
into the stationary phase and protect them from death and a range of stressors. Genes with 
stable expression might plot the bottom line of genetic expression important to maintenance 
of the phase investigated. Accordingly, up-regulated genes were investigated acquiring a 
better understanding of gene regulation in the both the exponential and stationary phases.  

Investigation of V. parahaemolyticus VBNC state gene expression might help to 
understand basic regulation mechanisms in a so called dormant state. Moreover, the 
development of new detection methods might be supported in order to e.g. avoid foodborne 
illnesses caused by consumption of seafood containing VBNC state V. parahaemolyticus cells. 

 



  Chapter 2 Research Paper 

  23-48

Chapter 2 Gene expression profiles of Vibrio 

parahaemolyticus in viable but non-culturable 

(VBNC) state 

 
 
 

This chapter has been published in: FEMS Microbiology Ecology (2015) 
 
 
 
 
 

Manuscript received at FEMS Microbiology Ecology: February 16, 2015 
Initial review completed: March 04, 2015 

Revision accepted: March 25, 2015 
Available online: April 03, 2015 

Published: May 01, 2015 
 
 
 
 
 
 
 
 

Authous: Lu Meng, Thomas Alter, Tommi Aho, Stephan Huehn 
 
 
 
 
 

http://dx.doi.org/10.1093/femsec/fiv035 

 

 

Please purchase this part online.



  Chapter 3 Research Paper 

 

Chapter 3 Gene expression profiles of Vibrio 

parahaemolyticus in the early stationary phase 

 
 
 
 
 

This chapter has been published in: Letters in Applied Microbiology (2015) 
 
 
 
 
 

Manuscript received at Letters in Applied Microbiology: March 31, 2015 
Initial review completed: May 15, 2015 

Revision accepted: June 1, 2015 
Available online: Aug 02, 2015 

Published: Sep, 2015 
 
 
 
 
 
 
 
 

Authous: Lu Meng, Thomas Alter, Tommi Aho, Stephan Huehn 
 
 
 
 
 

http://dx.doi.org/10.1111/lam.12452 

 

 

49-60

Please purchase this part online.



  Chapter 4 Discussions 

 61

Chapter 4 Discussions 

The viable but non-culturable state is a special state which differs in morphology, physiology 
and metabolism from the states of culturable cells. Since morphological alteration alone 
cannot be used as the only factor to judge the VBNC state (PINTO et al., 2013) and there is no 
prescriptive rule to prove the VBNC state, in this study three different methods have been 
used to identify the VBNC state.  

Ethidium monoazide (EMA) and quantitative PCR (qPCR) were used. EMA is a DNA 
intercalating dye entering bacteria via damaged membranes (NOGVA et al., 2003). Thus, EMA 
selectively intercalates in DNA of dead cells. EMA-qPCR is one of the common detecting 
methods for the VBNC state (JOSEFSEN et al., 2010; QIN et al., 2012). A dynamic range of 4 
log10 was obtained for the EMA-qPCR viable/dead detection (RUDI et al., 2005). Another 
wider detection range for EMA-qPCR (4 log10 with 10 µgmL-1 EMA and 12 log10 with 100 
µgmL-1 EMA) was found in Campylobacter viable/non-viable cells (SEINIGE et al., 2014). 
The results in this thesis showed that ∆Ct increased from 0.5 to 2.1 while more and more cells 
entered the VBNC state, which meant that there were more dead cells at day nine than the 
days before. Finally a minimum of 90% bacterial cells was alive, however, which suggested 
that in our research the VBNC cells were live cells. Investigations using antibiotics can be 
used to identify VBNC cells. Nalidixic acid is only effective in Gram-negative bacteria 
(KOGURE et al., 1979). Enrofloxacin or ciprofloxacin can be used for the same identification 
VBNC state Gram-positive bacteria as well (BESNARD et al., 2000a). With the suitable 
amount (100 µgL-1) of nalidixic acid VBNC cells in this study appeared elongated (Fig. 1-1), 
but the non-metabolic active cells showed no change of original shape and size. Thus, 
nalidixic acid demonstrated that the cells were metabolically active in our study. Additionally, 
a Live/Dead BacLight staining was performed (data not shown), which is commonly used in 
recent years (CHAIYANAN et al., 2001; WONG and WANG, 2004). This kit is another method to 
certify cellular membrane integrity, and it can easily distinguish cells with intact cell 
membranes from dead cells by color (ROWAN, 2011). Chaiyanan et al. (2001) found that 75 to 
90% VBNC V. cholerae cells were metabolically active. In our study, alive VBNC cells were 
dominant and retained intact cell membranes, which has the similar to the study of Chaiyanan 
et al. (2001). To sum up, the induction of the VBNC state was successfully applied and the 
VBNC cells used for RNA extraction were alive and metabolic active cells. 

RNA quality plays a crucial role in obtaining reliable results from a microarray gene 
expression experiment (FASOLD and BINDER, 2014). The RNA Integrity Number (RIN) is 
referred to as a measure for RNA quality which is determined for most microarray samples 
before hybridization (SCHROEDER et al., 2006). Moreover, the RIN indexes the degradation of 
the RNA sample (FASOLD and BINDER, 2014). RIN ranges between 1 and 10, while 7 or 
greater is recommended for a sample hybridized to a microarray (UPTON et al., 2009). The 
average RIN of the exponential and the early stationary phases were 9.0 and 7.4, respectively, 
which were sufficient for a microarray analysis. However, samples with low RNA quality 
were still valuable for gene expression analysis (OPITZ et al., 2010). Accordingly, although the 
average RIN value of the VBNC state was 3.3, the samples were still useful. Weichart et al. 
(1997) found a gradual degradation of DNA and RNA in V. vulnificus VBNC cells. Similarly, 
a majority of VBNC cells of Legionella pneumophila contained degraded nucleic acid 
(YAMAMOTO et al., 1996). Therefore, the low RIN value was because the degradation of DNA 
and RNA, which is a general phenomenon in populations of starved or stressed bacteria and 
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leads towards the loss of viability (LAHTINEN et al., 2008; LAI et al., 2009; POSTGATE and 
HUNTER, 1962; WEICHART et al., 1997). Moreover, nine genes, which are crucial for bacterial 
growth or stress response, were used for confirmed microarray results by RT-qPCR. Similar 
validations of microarray were performed by Yang et al. (2009) and Geurnec et al. (2013), 
with 15 and 18 genes, respectively. The amount of regulation measure by RT-qPCR as well as 
microarray was comparable in the VBNC state compared with exponential phase or early 
stationary phase, thus the ratios obtained from microarray were highly correlating (R²) with 
expression rates obtained from RT-qPCR (Supplementary material 11-1 and 11-2), indicating 
that the results of the microarray analyses were reliable. 

Comparison of gene expression in the early stationary phase with the exponential phase 
resulted in 172 up-regulated genes, whereas 61 genes were repressed. In the early stationary 
phase, up-regulated genes were dominant in five metabolism-related functional categories 
(central intermediary metabolism; energy metabolism; fatty acid and phospholipid 
metabolism; biosynthesis of cofactors, prosthetic groups, and carriers as well as protein fate) 
and five non-metabolic functional categories (cell envelope; transport and binding proteins; 
regulatory functions; unknown and general functions). In three metabolic functional groups 
(amino acid biosynthesis; purines, pyrimidines, nucleosides, and nucleotides; and DNA 
metabolism) no significant up-regulated genes were present (adjusted P-value < 0.05). In total 
509 induced genes and 309 repressed genes were found in the VBNC state compared with 
exponential and early stationary phases. Up-regulated VBNC state genes were dominant over 
down-regulated genes in two metabolism-related functional categories (fatty acid and 
phospholipid metabolism; DNA metabolism), while down-regulated genes were dominantly 
present in five metabolism-related functional categories (amino acid synthesis; central 
intermediary metabolism; energy metabolism; purines, pyrimidines, nucleosides and 
nucleotides as well as protein synthesis). Up-regulated genes were regnant in the VBNC state 
non-metabolism functional categories (transcription; transport and binding). The results 
confirmed the study of Yang et al. (2009), who concluded that genes of non-metabolic 
functional categories (cell envelope; transport and binding proteins; cellular processes; 
regulatory functions; mobile and extra chromosomal element functions) as well as unknown 
function were up-regulated after cold shock. 

Regulators and effectors are described in inducing bacterial cells entering the stationary 
phase and the VBNC state under harmful conditions (BOARETTI et al., 2003; HIRSCH and 
ELLIOTT, 2005; KUSUMOTO et al., 2012). They are involved in stress response, and they 
control other genes which might also take part in this response (HENGGE-ARONIS, 2000; 
WEBER et al., 2005). The following paragraphs discuss the main regulators and effectors. 

Sigma factors, a family of transcription factors, play a central role in the transcription of 
specific subsets of genes/operons and promoter recognition (ISHIHAMA, 2000; TRIPATHI et al., 
2014). The number of sigma factors depends on the bacterial species. Until now at least five 
sigma factors, VP0404 (rpoD); VP2358 (rpoD); VP2553 (rpoS); VP2670 (rpoN); and 
VP2953 (rpoH), and six putative sigma factors, VP0055 (the extracytoplasmic function 
factors, ECF); VP2210 (rpoD); VP2232 (rpoF); VP2578 (rpoE); VPA1555 (rpoF); and 
VPA1690 (rpoD), have been found in V. parahaemolyticus (WHITAKER et al., 2010). Of these, 
the RpoS is the most crucial sigma factor in survival under various stressful conditions 
including starvation, extreme temperature, low pH, oxidative stress, osmotic shock, and 
exposure to UV light (DNA damage) (BADGER and MILLER, 1995; FANG et al., 1992; LANGE 
and HENGGE-ARONIS, 1991; LIN et al., 2002; RAMOS-GONZALEZ and MOLIN, 1998; ROSCHE 
et al., 2005; SUH et al., 1999; TIAN et al., 2008; YILDIZ and SCHOOLNIK, 1998). Therefore it is 
important for stationary phase and the VBNC state. rpoS is reported to induce in the 
stationary phase (HENGGE-ARONIS et al., 1993). However, VP2553 (rpoS) was induced 
approx. 3 times in the early stationary phase compared with the exponential phase. Since our 
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definition was that the significant changed gene expression should be over 4 times or below 4 
times, VP2553 was considered as stable expression in our research. However, an upward 
tendency was shown. Because the time point of RNA extraction for our research was the 
beginning of the early stationary phase, the expression of rpoS was not significantly induced. 
Moreover, our results confirmed the findings of Coutard et al. (2005) and Smith and Oliver 
(2006a), which reported a continued rpoS expression in the VBNC state of V. vulnificus and 
V. parahaemolyticus Vp4 cells. RpoD, also known as σ70, regulates fundamental metabolic 
genes which are necessary for cellular growth and survival (WATSON et al., 1998; YUSTE et 
al., 2006). Klancnik et al. (2006) reported that no induction of rpoD expression was noticed 
when cells were starving. Our results suggested that VP2210 (rpoD) was significantly down-
regulated more than 7 times in the VBNC state compared with that in exponential and early 
stationary phases (adjusted P-value = 8×10-5 and 2×10-4), and the VP2358 (rpoD) and 
VPA1690 (rpoD) showed no expression change in the early stationary phase and the VBNC 
state. 

In E. coli RpoE has been reported playing a role in sensing extra extracytoplasmic stresses 
including heat shock, ethanol stress, and misfolded periplasmic or outer membrane proteins 
(DE LAS PENAS et al., 1997; MECSAS et al., 1993; MISSIAKAS et al., 1996; ROUVIERE and 
GROSS, 1996; WALSH et al., 2003). Compared to the wild type a lower survival rate of an 
rpoE deletion mutant were found after bacterial cells in polymyxin B, ethanol, and high 
temperature stresses (HAINES-MENGES et al., 2014). The rpoH gene positively regulates the 
transcription of heat shock genes in E. coli (ERICKSON and GROSS, 1989; NAGAI et al., 1990; 
WANG and KAGUNI, 1989). The rpoH gene positively regulates the transcription of heat shock 
genes in E. coli (VERSTEEG et al., 2003). Both, rpoE and rpoH constitutively expressed in 
cold stress induced VBNC V. cholerae cells (ASAKURA et al., 2007a). In our study, VP2578 
(rpoE) did not show any expressional changes in the early stationary phase compared with the 
exponential phase, but expression induces approx. 3 times in the VBNC state. Since our 
definition was that the significant induced gene expression should be above 4 times s, VP2578 
was considered as stable expression. However, the tendency was shown toward up-regulated. 
Moreover, no expression changes of VP2953 (rpoH) in the early stationary phase and the 
VBNC state were observed. RpoF governs transcription of the genes for flagella and 
chemotaxis (ARNOSTI and CHAMBERLIN, 1989; OHNISHI et al., 1990). The concentration of 
RpoF was found staying constant from the middle exponential phase to the stationary phase 
(JISHAGE et al., 1996). Our results confirmed the stable RpoF concentration, since genetic 
expression was measured and found the expression of VP2232 (rpoF) and VPA1555 (rpoF) 
was stable in the early stationary and in the VBNC state. 

RpoN, a global regulator, controls flagella synthesis as well as playing a crucial role in 
nitrogen utilization regulation. rpoN was found induced in the stationary phase (SUN et al., 
2013), however, VP2670 (rpoN) was induced approx. 3 times in our study in early stationary 
phase compared with exponential phase. Since the definition in our research was that the 
significant induced gene expression should be over 4 times, VP2670 was considered as stable 
expression. However, the tender was on the rise. The time point of RNA extraction for our 
research was the beginning of the early stationary phase; therefore the expression of rpoN was 
not significantly induced. The significant down-regulated (approx. 4 and 12 times) in the 
VBNC state compared with exponential and early stationary phases (adjusted P-value = 1×10-

4 and 4×10-8) were found. Significant reduction of rpoN expression demonstrated that there 
was no requirement of motility for VBNC cells and no need for glutamine syntheses in 
starvation induced VBNC cells. Moreover, an rpoN deletion mutant was found non-motile, 
and this deletion caused a reduction of biofilm formation and a reduced glutamine synthetase 
production (WHITAKER et al., 2014). In the early stationary phase and the VBNC state, some 
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sigma factors with altered expression adjust the related genes, and accordingly, help the 
bacterial cells to survive in stress conditions. 

RpoS is positively regulated by the intracellular accumulation of two small molecules 
guanosine 3′, 5′-bis (diphosphate) (ppGpp) and guanosine 3′-diphosphate 5′-triphosphate 
(pppGpp), collectively termed (p)ppGpp (BOARETTI et al., 2003; GENTRY et al., 1993). It has 
been found that the concentration of (p) ppGpp is elevated during stressful conditions and 
results in an increase in the amount of RpoS (GENTRY et al., 1993). In stressed cells elevated 
intracellular (p)ppGpp concentration induces gene transcription for stationary phase survival 
(CHOY, 2000; STEPHENS et al., 1975), and inhibits the transcription of rRNA, tRNA, protein 
synthesis, and DNA replication (CASHEL et al., 1996; MILON et al., 2006; SVITIL et al., 1993; 
WANG et al., 2007). 

Accumulation of (p)ppGpp depends on the activity of RelA and SpoT (MAGNUSSON et al., 
2005; POTRYKUS and CASHEL, 2008). RelA is able to synthesize (p)ppGpp only in case of 
amino acid starvation (DAS et al., 2009), while SpoT actives (p)ppGpp synthesis under 
glucose starvation (XIAO et al., 1991) or fatty acid starvation (BATTESTI and BOUVERET, 2006; 
SEYFZADEH et al., 1993) or iron depletion (VINELLA et al., 2005). In this study, the expression 
of VP2564 (relA) and VP0159 (spoT) in early stationary phase remained stable compared to 
the exponential phase, suggesting that no induction of the (p)ppGpp synthesis occurred in the 
early stationary phase. Therefore, we hypothesized that in our research no starvation of amino 
acid, glucose, fatty acid and iron in the early stationary phase. While the rpoS was induced 
approx. 3 times, suggesting that (p)ppGpp is referred to as a positive regulator for RpoS but 
not the only one. In the VBNC state, however, the expression of VP2564 and VP0159 are 
different. In V. cholera VBNC cells the expression of relA was repressed, followed by the 
down-regulated (p)ppGpp concentration (ASAKURA et al., 2007a). However, Nowakowska 
and Oliver (2013) reported that there was no alteration in the expression of relA and spoT 
between VBNC and logarithmic cells of clinical V. vulnificus C7184/k2. In our study, the 
expression of relA was repressed approx. 3 times in VBNC state V. parahaemolyticus cells, 
but spoT was significantly induced approx. 5 times in the VBNC state compared with 
exponential and early stationary phases (adjusted P-value = 3×10-5 and 5×10-7). 

VP3003 (gppA), a guanosine pentaphosphate phosphohydrolase which converses pppGpp 
to ppGpp, showed no difference between VBNC cells and exponential and stationary cells in 
this study. In our study VP2564 was down-regulated in the VBNC state, which indicated that 
no amino acid starvation occurred. The up-regulation of spoT suggested that (p)ppGpp might 
be synthesized in these VBNC cells under the condition of glucose and/or fatty acid 
starvation, or iron depletion, while (p)ppGpp is hydrolysed. Because fatty acid and 
phospholipid metabolism up-regulated genes were dominant in the VBNC state and the 
VBNC state induced condition mainly depended upon cold temperature, we speculated that 
(p)ppGpp was hydrolysed in the VBNC state. Therefore, (p)ppGpp might effect RpoS 
regulation and also plays an important role in cell survival under cold stress conditions. 

Reactive oxygen species (ROS), which production is one of the early responses of host 
instinctive immunity, are yielded to deal with microbial invaders. ROS is a collective term 
that broadly describes free oxygen radicals which are highly toxic to pathogens and affect the 
growth of microorganisms (CIRCU and AW, 2010). ROS inactivate bacteria through reacting 
with vital molecular components of cells, such as DNA, membrane lipids and other cellular 
components, resulting in the delay of bacterial growth and subsequent death (CADET et al., 
2005; KAWANISHI and HIRAKU, 2001; PIZARRO and ORCE, 1988). The concentration of ROS is 
kept at a tolerable steady state which is balanced by not only the interactions of superoxide 
dismutases and reductases but also the interactions of peroxidases and catalases (IMLAY, 
2008). Moreover, ROS induces the VBNC state via causing oxidative damages on the 
intracellular macromolecules (CUNY et al., 2005). Many studies have shown that ROS is 
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involved in the induction of the VBNC state due to low temperature in V. vulnificus and other 
bacterial species (BOGOSIAN et al., 2000; KONG et al., 2004; MIZUNOE et al., 1999; WAI et al., 
2000). 

OxyR, an oxidative stress response regulator (CHRISTMAN et al., 1985) is activated by 
intracellular H2O2 stress, and directly stimulates synthesis of related proteins such as yaiA, 
yljA, and ybjM (ZHENG et al., 2001). OxyR-mediated catalase activity digests H2O2 present in 
the media (KONG et al., 2004). Kong et al. (2004) also concluded that V. vulnificus cells 
entered the VBNC state because OxyR-mediated catalase activity was blocked by low 
temperature, which resulted in a raised sensitivity to H2O2. Limthammahisorn et al. (2009) 
extracted V. vulnificus RNA from oysters which were incubated at 35 °C and 15 °C followed 
by a 4 °C incubation, at various time intervals from 0 h to 168 h. However, oxyR expression 
was not detected at any time point. However, in our study VP2752 (oxyR) was significantly 
induced in V. parahaemolyticus VBNC cells compared with exponential and early stationary 
cells (adjusted P-value = 6×10-7 and 2×10-9). Two phenomenons might explain this. First, 
ROS might be naturally present in the media and the up-regulation of oxyR induces the 
OxyR-mediated catalase activity to keep bacterial VBNC cells alive. Second, the up-
regulation of oxyR was not caused by ROS but by other signals, e.g. indole (VEGA et al., 
2012). Since enriched cultured media have been described to produce the ROS upon expose 
of the media to daylight and atmospheric oxygen (GRZELAK et al., 2001; VARGHESE et al., 
2012), it can be speculated that the up-regulation of oxyR in our research was because of 
present ROS. 

KatG, one of the genes encoding the periplasmic catalase of E. coli and V. vulnificus, is 
induced by H2O2 and positively regulated by oxyR (MONGKOLSUK and HELMANN, 2002; 
SMITH and OLIVER, 2006b; STORZ and ZHENG, 2000). The expression of katG was down-
regulated in vitro and in vivo of V. vulnificus VBNC state (SMITH and OLIVER, 2006a) as well 
as in V. vulnificus VBNC cells (day 70) compared to day zero cells in artificial sea water (RAO 
et al., 2014). Both VPA0453 and VPA0768 encode katG in V. parahaemolyticus. VPA0453 
was significantly induced (approx. 8 and 4 times) in the VBNC state (adjusted P-value = 
2×10-8 and 4×10-6), whereas VPA0768 was not altered in the VBNC state compared with in 
exponential phase but significantly down-regulated (approx. 12 times) in the VBNC state 
compared with the early stationary (adjusted P-value = 9×10-9). Because the positive regulator 
oxyR was up-regulated in the VBNC state in our study, induced expression of katG was 
expected and confirmed by our results. 

The alkyl hydroperoxide reductase subunit C (AhpC), which is also regulated by OxyR, is 
responsible for the detoxification of ROS (CHAROENLAP et al., 2005; WANG et al., 2013a). 
AhpC is encoded by two aphC gene loci on both chromosomes of V. parahaemolyticus 
RIMD2210633, the VP0580 on chromosome 1 (ahpC2) and VPA1683 (ahpC1) on 
chromosome 2 (LAI et al., 2009; WANG et al., 2013a). Wang et al. (2013a) reported a rapid 
reduction of expression of both ahpC genes during the beginning of the induction of the 
VBNC state and a remaining low expression in the VBNC state. However, in our research 
VP0580 (ahpC2) was significantly repressed (approx. 12 and 9 times) in V. parahaemolyticus 
VBNC cells, while VPA1683 (ahpC1) showed no difference. This result is consistent with the 
study of Lai et al. (2009), who reported that one AhpC homologue quantity was not 
significantly different in the VBNC induction from that in the VBNC cells and another 
homologue was markedly down-regulated. Although many studies have suggested that ROS 
and OxyR play an important role in the induction and maintenance of the VBNC state, the 
mechanism is not clear yet, therefore further investigation is needed to better understand the 
regulation. 

Unlike RpoS, (p)ppGpp, ROS and OxyR, the following three regulators have been reported 
to affect mainly the stationary phase gene expression. The first one is Hfq, a global regulator 
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present in a wide range of bacteria (CHAO and VOGEL, 2010). Hfq interacts with numerous 
regulatory small non-coding RNAs (sRNAs), e.g. 15-46 known sRNAs in E. coli (ZHANG et 
al., 2003). sRNAs are referred to as important regulatory elements in various biological 
processes (MASSE et al., 2003; STORZ, 2002). Hfq might directly or indirectly impact the 
expression of at least 20% of all genes in S. serotypes (ANSONG et al., 2009; SITTKA et al., 
2008). Thus, this protein affects cellular functions, e.g. stress response, gene expression 
regulation, and bacterial pathogenicity as well as anti-oxidative functions (BROWN and 
ELLIOTT, 1996; DING et al., 2004; SU et al., 2010; VYTVYTSKA et al., 1998). Hfq regulates 
gene expression for survival under various harmful conditions, such as acid, high temperature, 
osmotic and oxidative stress conditions (MUFFLER et al., 1997; TSUI et al., 1994). 
Christiansen et al. (2004) found Hfq was necessary for the resistance to ethanol and salt but 
not the oxidative and acid stress in Listeria monocytogenes. The transcription of hfq was 
induced at the entry into the stationary phase. In our study, stable expression was found for 
VP2817 (hfq) in the early stationary phase. As hfq is regulated by RpoS and the expression of 
rpoS was not induced in the early stationary phase, hfq expression might have not been 
induced yet. 

The second regulator is a global transcription regulator the leucine-responsive regulatory 
protein (Lrp) (CALVO and MATTHEWS, 1994; CUI et al., 1996; NEWMAN et al., 1992). Lrp 
regulates the expression of genes induced in the stationary phase, which act in response to 
nutrient limitation, high concentrations of organic acids, and osmotic stresses (TANI et al., 
2002). The expression of the lrp promoter is repressed in rich medium (CALVO and 
MATTHEWS, 1994). Moreover, lrp expression levels are also decreased during the lag phase in 
a rich medium, remained steady during exponential phase, and then went back to the starting 
levels upon entering the stationary phase (LANDGRAF et al., 1996). The results in our research 
confirmed the previous study since the expression of VP1104 (lrp) was stable in the early 
stationary phase compared with exponential phase. 

The third one is a global gene regulator the histone-like protein (H-NS). The H-NS is a 
major component of the bacterial nucleoid and takes part in promoting the structure and 
function of chromosomal DNA (ATLUNG and INGMER, 1997; WILLIAMS and RIMSKY, 1997). 
Moreover, H-NS inhibits the expression of rpoS and regulates stationary phase genes (e.g. 
osmY) in E. coli (ALTUVIA et al., 1994; BARTH et al., 1995; COLLAND et al., 2000; GERSTEL 
et al., 2003). Expression of hns is necessary for survival during early stationary phase (CHIB 
and MAHADEVAN, 2012), thus hns was induced in the stationary phase in E. coli (DERSCH et 
al., 1993). In our study, however, VP1133 (hns) showed no altered expression during the early 
stationary phase. We speculated that because the point for RNA extraction was the beginning 
of the early stationary phase, no induction of VP1133 was observed. All these regulators 
showed different changes of expression in the VBNC state and early stationary phase, 
indicating that they play different roles in induction and maintenance of the survival. 

Since the synthesis of proteins, RNA and DNA decreases in the VBNC state, metabolic 
activities are reduced (OLIVER, 2000a). During the nutrient starvation, carbohydrates are 
catabolized first, and then followed by proteins and some RNAs, while DNA is generally but 
not always protected (TREVORS, 2011). Hence, to investigate the changes of metabolic activity 
can have a better understand of the bacterial survival mechanism in the early stationary phase 
and the VBNC state. 

In order to adapt to stress conditions, bacteria developed mechanisms which support 
survival in these changes. The induction of specific carbohydrate transporters is involved in 
the survival mechanisms. In V. parahaemolyticus glucose ingestion is realized via two 
systems: a carbohydrate phosphotransferase system (PTS) and a sodium-coupled permease 
(KUBOTA et al., 1979; SARKER et al., 1997; SARKER et al., 1994). Genes involved in the PTS 
system, including VP0710, VP2046, VPA0298, VPA1421 and VPA1422, were down-
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regulated more than 4 times in the early stationary phase. However, VP2636 and VPA0811 
were induced more than 4 times in the VBNC state, while VPA0229 was down-regulated 
more than 13 times. VP0710 and VP2046 were repressed in the VBNC state compared with 
exponential phase, whereas VPA0298 and VPA1422 were up-regulated in the VBNC state 
compared with the early stationary phase. Almost all genes involved in the PTS system were 
down-regulated in the early stationary phase, suggesting that the glucose concentration in the 
media was absent and cells did not utilize the glucose as carbon. The alteration of gene 
expression in the PTS system indicated that VBNC cells were using other carbon sources but 
glucose. 

The sodium-coupled permease system depends on Na+ which plays a role in transporting 
various nutrients. Na+ as well as H+ are coupling cations in the energy transduction in 
V. parahaemolyticus (OKABE et al., 1991; SAKAI et al., 1989). The Na+/H+ antiporter activity 
results in an electrochemical potential establishment of Na+ and acts as the driving force for 
nutrient transport (KURODA et al., 1994). VP0618, VP1134, VP1229 and VP2119, which are 
Na+/H+ antiporter genes, showed stable expression in the early stationary phase compared 
with the exponential phase. In our study, however, significant inductions of VP0618 (approx. 
5 and 14 times), VP1134 (approx. 4 and 10 times) and VP2119 (approx. 8 and 14 times) in the 
VBNC state were found, while only VP1229 was repressed (approx. 4 and 7 times) 
significantly. These findings suggested that the expression of genes supporting glucose intake 
had been changed in V. parahaemolyticus VBNC cells. 

The response to carbon source availability in general seems also to be of special 
importance, since a replacement of severed carbohydrates was found in bacteria (BOUR, 
2012). Bour (2012) studied the altered metabolic profiles in E. coli and S. Typhimurium, 
including the loss of the production of carbohydrates, such as glucose, mannose, melibiose, 
rhamnase, sorbitol and sucrose. Trevors (2011) found the total carbohydrate concentration is 
lower in the cytoplasm during starvation survival. In our study, the change in carbohydrate 
composition from using glucose to glutamate has been found. Since V. parahaemolyticus is 
able to use glutamate as single carbon source (ONGAGNA-YHOMBI and BOYD, 2013), the 
expression increase of glutamine synthesis suggests the alteration of carbohydrate 
composition. VP0481 (gltD) and VP0482 (gltB), were significantly induced (approx. 13 and 9 
times; 9 and 10 times) in the VBNC state. Meanwhile, VPA0031 (gltS) was up-regulated in 
the VBNC state. However, glutamine synthetase genes, VP0121 (glnA), VP0423 (glnE), 
VP0617 (guaA), VP1779 and VP1781 were not induced. Since some glutamine synthetase 
genes were induced, we speculated that glutamate is synthesized in the VBNC state and then 
consumed as carbon source. Glutamate synthesis is a specific carbohydrate utilization system, 
which depends on the existence of the corresponding carbon source. This system would be 
repressed when a more efficiently utilizable carbohydrate is present. 

Another enzyme the fructose-bisphosphate aldolase plays an important role in the central 
metabolic pathway of carbohydrate, e.g. carbon fixation, fructose metabolism, 
gluconeogenesis, glycolysis, mannose metabolism and the pentose phosphate pathway (HEIM 
et al., 2002). Fructose-bisphosphate aldolase is activated when bacteria are grown under 
nitrogen-limiting conditions (SCHMI et al., 2000). The fructose-bisphosphate aldolase was 
found overexpressed in Streptococcus pneumonia VBNC cells compared with exponential 
growth phase cells but down-regulated in starved cells (HEIM et al., 2002). In our study, 
VP2599 (fba) was significantly repressed approx. 6 times in the V. parahaemolyticus VBNC 
cells compared with exponential growth cells, whereas the expression of VP2599 was approx. 
2 times repressed in the VBNC state compared with early stationary phase. The down-
regulation of VP2599 might suggest that the carbohydrate metabolic pathway via fructose-
bisphosphate aldolase is repressed in the VBNC state. To sum up, some of the genes involved 
in the carbohydrate transport system and the specific carbohydrate utilization system altered 
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the expression, suggesting a change in carbohydrate metabolism, such as utilizing glutamine 
instead of glucose as carbon source. 

The nitrogen metabolism is as important as the carbohydrate metabolism. RpoN is a widely 
distributed sigma factor which regulates nitrogen metabolism (WOLFE et al., 2004). A 
V. parahaemolyticus rpoN mutant was found lose the ability to synthesize glutamine 
synthetase (WHITAKER et al., 2014). RpoN-independent transcription of glutamine synthetase 
is common in Vibrio spp. (KAWAGISHI et al., 1997; KLOSE and MEKALANOS, 1998; WHITAKER 
et al., 2014; WOLFE et al., 2004). In the early stationary phase, VP0118 (ntrC) and VP0119 
(glnL) showed stable expression. The ratio of VP2670 (rpoN) was induced approx. 3 times, 
suggesting that the nitrogen metabolism might be up-regulated in expression. However, rpoN 
expression was significantly reduced (approx. 4 and 12 times) in the V. parahaemolyticus 
VBNC cells, indicating that the nitrogen metabolism might be reduced. However, there was 
no difference of the expression of the two nitrogen regulation protein genes, ntrC and glnL, in 
the VBNC state. VBNC cells consume nitrogen sources (e.g. NH4

+) when available. Zeng et 
al. (2013) found that the content of (NH4)2SO4, which is used as nitrogen source, declined in 
the medium with S. Typhi VBNC cells, but this decline is slower than incubating normal cells. 
The reduced nitrogen metabolism in the VBNC state confirmed the study of Zeng et al. 
(2013), suggesting that the VBNC cells remained viable. 

Moreover, glutamine synthetase regulates the expression of the genes that are involved in 
nitrogen metabolism (PAHEL et al., 1978). Pahel et al. (1978) reported an E. coli mutant (gltB) 
lacking glutamate synthase was unable to utilize many compounds as exclusive nitrogen 
source (e.g. arginine, proline, γ-amino butyrate and glycine). The molarity of two amino 
acids, glutamate and glutamine, increased in the presence of osmotic shock (NICOLÒ and 
GUGLIELMINO, 2012). In the early stationary phase, glutamine synthetase genes, VP0617 
(guaA) and VP1779 were significantly reduced approx. 9 and 5 times, respectively (adjusted 
P-value < 0.05). However, other glutamine synthetase genes, VP0121 (glnA), VP0423 (glnE), 
VP0481 (gltD), VP0482 (gltB), VP1781 and VPA0031 (gltS) showed no significant 
differences in expression. Moreover, VP0481, VP0482 and VPA0031 were significantly up-
regulated approx. 13 and 9 times; 9 and 10 times; 7 and 5 times in VBNC cells. However, 
glutamine synthetase genes, VP0121, VP0423, VP0617, VP1779 and VP1781 were not 
induced. 

Nitrite reductase is an enzyme which reduces nitrite to nitric oxide (NO). The expression 
of nitrite reductase only happens under the low oxygen conditions, which have been found to 
reduce culturablity in bacterial cells, suggesting that it is referred to as a strategy to induce the 
VBNC state (CASELLA et al., 2006). Moreover, NirB, NirD, NrfA and NrfC constitute the 
nitrite reductase. In this study, VP1927 (nrfC) and VP1929 (nrfA) were significantly repressed 
around 9 times in the VBNC state compared with exponential phase but displayed expression 
only 3 times down-regulation in the VBNC state compared with the early stationary phase. 
VPA0986 (nirD) and VPA0987 (nirB) were down-regulated as well 3 times in the VBNC 
state. VPA1054 (nirD) showed no difference in the VBNC state, but VPA1055 was significant 
up-regulated approx. 9 times in the VBNC state compared with stationary phase. The change 
in the expression of all these nitrite reductase related genes indicates that in both the early 
stationary phase and the VBNC state microtoxic conditions were absent. Although nitrogen 
metabolism might be repressed in the VBNC state, an increase of glutamate synthase would 
enable bacterial cells to utilize a wide variety of nitrogen sources and therefore supports 
bacterial survival. 

The alteration of expression of genes of the fatty acid metabolism occurs when 
environmental temperature decreases. The fatty acid composition changes of membranes were 
observed in V. parahaemolyticus cells, which demonstrated an increase in the ratio of 
saturated/unsaturated as well as the concentration of C15:0 fatty acids but a decrease in C16:1 



  Chapter 4 Discussions 

   69

(WONG et al., 2004a). In contrast, the composition changes of membrane fatty acids were also 
observed in V. vulnificus cells, which showed an increased concentration C16:1 during entry 
into the VBNC state (DAY and OLIVER, 2004). Fatty acids maintain an optimum membrane 
fluidity to enter and survive in the VBNC state. The inhibition of fatty acid synthesis in 
bacterial cells can cause cellular death which suggests fatty acid metabolism is essential for 
bacteria entering the cold induced VBNC state. Saturated fatty acids are conversed into 
unsaturated fatty acids by the enzymes desaturases, while the synthesis of short-chain fatty 
acids to long-chain fatty acids, branched-chain fatty acids to straight-chain fatty acids, and 
anteiso-fatty acids to iso-fatty acids are preferential at low temperature (SUUTARI and 
LAAKSO, 1994). A number of genes, which encode enzymes involved in the degradation of the 
branched-chain amino acids, were transcriptionally up-regulated via a temperature downshift 
from 37 °C to 18 °C (KAAN et al., 2002). 

Cells synthesize branched-chain fatty acids by utilizing the intermediates of isoleucine and 
valine degradation (α-methylbutyryl-CoA and isobutyryl-CoA) as substrates. This degradation 
of isoleucine and valine is mediated by the mmsA encoded enzyme methylmalonate 
semialdehyde dehydrogenase (SABIROVA et al., 2008). Koburger et al. (2005) found that the 
propionyl-CoA corresponding gene mmsA was induced about twofold in the stationary phase. 
They also concluded that the propionyl-CoA was involved in the methyl citrate pathway and 
was produced by degradation of the branched-chain fatty acids in glucose starved Bacillus 
subtilis cells. mmsB, which encodes 3-hydroxyisobutyrate dehydrogenase, also takes part in 
isoleucine and valine degradation (STEELE et al., 1992). In this study, in the early stationary 
phase VPA1118 (mmsB) and VPA1122 (mmsA) were both significantly induced by more than 
11 times (adjusted P-value < 0.005). In the VBNC cells compared with exponential growth 
cells VPA1118 and VPA1122 were significantly induced more than 6 times, whereas 
compared with early stationary phase, VPA1118 showed no difference but VPA1122 
demonstrated down-regulated expression in the VBNC state. Moreover, VP2517 (lpdA), 
VP3060 (ilvE) and VP3061 (ilvD) also play a role in the degradation of isoleucine and valine. 
VP2517 retained stable in both the VBNC state and the early stationary phase. No expression 
changes of VP3060 and VP3061 were observed in the early stationary phase. However, 
VP3060 and VP3061 were significantly down-regulated more than 6 times in the VBNC state. 
These findings indicate that only some intermediates of isoleucine and valine degradation are 
generated in V. parahaemolyticus VBNC cells. Thus, no increased synthesis of branched-
chain fatty acids was detected. In the early stationary phase the degradation of isoleucine and 
valine was induced, and branched-chain fatty acids can be generated accordingly (O'LEARY, 
1989). 

FadR has a dual role in fatty acid metabolism and acts as a repressor in long-chain fatty 
acid transport, activation, and β-oxidation (NAVARRO LLORENS et al., 2010; NYSTROM, 2004). 
The fadR operon is crucial for bacterial survival under starvation. The fadR operon activates 
the long-chain fatty acids catabolism but also involves in providing carbon and energy during 
the digestion of membrane constituents (FAREWELL et al., 1996). The fadE encodes acyl-CoA 
dehydrogenase of the long-chain fatty acid β-oxidation pathway (CLARK and CRONAN, 1996). 
The β-oxidation pathway catabolises acyl-CoA, and generates acetyl-CoA as a source of 
carbon and energy (NYSTROM, 2004). In our study, VP2071 (fadR) showed no alteration in 
expression in the VBNC state and the early stationary phase. The genes (VP2289, VPA0616, 
VPA0622, VPA0623, VPA0624, VPA1119, VPA1120, VPA1121, VPA1127, VPA1152) 
encoding β-oxidation enzymes were significantly induced more than 5 times, while VP0029 
and VP0030 showed no expression change in the early stationary phase compared with the 
exponential phase. However, the expression of β-oxidation enzymes encoding genes was 
diverse in the VBNC state compared with exponential and/or early stationary phases. Thus, 
data gathered in our study suggested that the β-oxidation pathway mediates acetyl-CoA 
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generation in the early stationary phase of V. parahaemolyticus in order to maintain bacterial 
survival. The β-oxidation pathway was not inhibited in V. parahaemolyticus VBNC cells, 
however, not all the genes showed up-regulated. Thus the fatty acid metabolism of 
V. parahaemolyticus VBNC cells might be reduced. Since fatty acids play an important role in 
cells at low temperatures, maintaining the membrane fluidity and the survival, the change of 
fatty acid metabolism allows maintenance of viability in the VBNC state (DAY and OLIVER, 
2004). 

When microorganisms are in unfavorable conditions, a stress response can be developed to 
adapt and survive in this environment. A number of specific stress response pathways, e.g. the 
general stress response and the heat-shock response, have been described in numerous 
bacteria species (AERTSEN and MICHIELS, 2005; POOLE, 2012). However, the stress response 
might be insufficient to protect bacterial cells against the stress. Hence, genetic diversity can 
be evolved by a number of mechanisms to enhance bacterial survival under stress (AERTSEN 
and MICHIELS, 2005). There are two major strategies that could manage the creation of 
genetic diversity. First, genetic diversity is generated during DNA replication and repair 
because of the small local changes in the genomic nucleotide sequence. Second, genetic 
diversity is mediated by recombinases and transposable elements because of the intra-
genomic reshuffling of DNA fragments (ARBER, 2000). Many mechanisms, inducing genetic 
diversity, are important; however, two major mechanisms of concern methyl-directed 
mismatch repair (MMR) and SOS response in V. parahaemolyticus cells were found. 

The MMR system is one of DNA repair pathways present in almost all life forms from 
bacteria to men (SCHOFIELD and HSIEH, 2003). MMR targets base-base mismatches and 
removes miss-incorporated bases in newly replicated DNA. Moreover, MMR plays an 
important role in guarding the genome. Inactivation of MMR function has been demonstrated 
to be associated with high frequencies of spontaneous mutation and recombination in diverse 
pathogenic bacteria (DENAMUR and MATIC, 2006; KIVISAAR, 2003; MATIC et al., 1995). 
MutS, MutH and MutL are essential in detecting the mismatch and directing repair 
mechanism. MutS first recognizes the mismatches in double-stranded DNA followed by 
binding to it. Then MutL controls the excision of mismatches after cleavage by the MutH 
endonuclease. The strand which is cleaved and excised depends on the methylation state of 
the DNA. This system presumes that the unmethylated strand of a nascent and 
hemimethylated duplex DNA is the new strand, therefore the strand contains the mutation 
(FINKEL, 2006; SCHOFIELD and HSIEH, 2003). In our study, the expression of VP0518 (mutH), 
VP2552 (mutS) and VP2819 (mutL) was not changed in the early stationary phase compared 
with the exponential phase, indicating MMR expression was stable in the early stationary 
phase. Moreover, VP2552 showed no difference, while VP0518 and VP2819 were 
significantly up-regulated more than 6 times in V. parahaemolyticus VBNC cells, suggesting 
the MMR was induced (adjusted P-value < 7×10-7). 

SOS response, addressing damaged DNA in several bacteria, is activated when DNA 
lesions are encountered during DNA replication (DA ROCHA et al., 2008; SANCHEZ-ALBEROLA 
et al., 2012). The SOS response is induced after cellular DNA damage, but it can also be 
induced whenever the concentration of active LexA is reduced. Thus, the global repressor 
LexA controls the induction of SOS genes. Direct regulation of SOS response is performed 
via recA-lexA (DA ROCHA et al., 2008; SANCHEZ-ALBEROLA et al., 2012). LexA recognizes a 
palindromic binding motif (SOS box), thereby inhibits the expression of enzymes correlated 
with DNA cleavage, recombination, and duplication (LITTLE and MOUNT, 1982; WERTMAN 
and MOUNT, 1985). The inactivation of LexA is a proteolytic reaction that is promoted by 
RecA protein. RecA induces the autocatalytic cleavage of the LexA dimer to prevent binding 
of LexA to SOS box, and hence activating the expression of SOS genes (LITTLE, 1991). ). In 
addition, the imuA-imuB-dnaE2 mutagenesis cassette is also considered relating to SOS 
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response. The activity of this cassette is to induce mutagenesis and tolerate damage (ABELLA 
et al., 2004; CAMPOY et al., 2005; ERILL et al., 2006; MAZON et al., 2006; SANCHEZ-
ALBEROLA et al., 2012; WARNER et al., 2010). As DNA arrangement and DNA damage 
happens in the VBNC state (FAKRUDDIN et al., 2013; OLIVER, 2000a), an induction of the 
imuA-imuB-dnaE2 mutagenesis cassette can be expected. In our study, the expression of 
VP2034 (imuA), VP2035 (imuB), VP2036 (dnaE2), VP2550 (recA) and VP2945 (lexA) was 
stably in the early stationary phase compared with the exponential phase, suggesting the SOS 
response was inactivated. However, VP2034, VP2035, VP2036 as well as VP2945 were 
significantly induced more than 5 times in the VBNC state along with genes encoding repair 
proteins (VP0518, VP0648, VP2570 and VP2819), while the VBNC state gene VP2550 was 
not considerably altered in expression. These findings indicate that SOS response might be 
activated via another pathway but recA-lexA. Additionally mutagenesis might be induced in 
the VBNC state. To sum up, genetic diversity has been created in the VBNC state via MMR 
and SOS response but not in the early stationary phase. 

Biofilm is referred to as a polymer containing a community of microorganisms, which can 
be single microbial species or numerous microbial species, attaching to a range of biotic and 
abiotic surfaces (O'TOOLE et al., 2000a). Biofilm formation depends on various environmental 
conditions, such as temperature, nutrient, pH, oxygen, iron and osmolality (O'TOOLE et al., 
2000b; PALMER and WHITE, 1997; PRATT and KOLTER, 1998; PRINGLE and FLETCHER, 1986; 
STOODLEY et al., 1998; WANG et al., 1996; WATNICK et al., 1999; WATNICK and KOLTER, 
1999; WIMPENNY and COLASANTI, 1997). Biofilms increase the resistance of bacteria to 
stresses e.g. UV light (O'TOOLE et al., 2000a), altering the capability of biodegradation 
(KARAMANEV et al., 1998), and increase the production of secondary metabolites (SARRA et 
al., 1999). 

In addition, many studies have reported biofilm raise the induction of the VBNC state 
(CERCA et al., 2011; PASQUAROLI et al., 2014; PASQUAROLI et al., 2013; TREVORS, 2011). 
C. jejuni biofilm cells were found to enter the VBNC state faster than planktonic cells 
(MAGAJNA and SCHRAFT, 2015). AphA, a small PadR-family DNA-binding regulator, has 
been reported to be necessary for biofilm formation, virulence as well as swimming and 
swarming motility in V. parahaemolyticus (WANG et al., 2013b). The tryptophanase encoded 
by tnaA degrades tryptophan into pyruvate, ammonia and indole in a reversible reaction (HU 
et al., 2010; LEE et al., 2012). Indole was found to be synthesized only when bacteria encode 
tnaA and to diminish the biofilm formation of E. coli (BANSAL et al., 2007; HU et al., 2010; 
LEE et al., 2007; LEE et al., 2012; LEE and LEE, 2010). Thus tnaA has been described to be of 
importance in biofilm formation. Likewise, a gene set encoding the mannose-sensitive 
haemagglutinin (MSHA) pilus is one of two known sets of type IV pilus genes. Because the 
MSHA pili contribute to the bacterial attachment to the surface, they seem to be important in 
biofilm formation of V. parahaemolyticus (SHIME-HATTORI et al., 2006). The MSHA pilus 
genes, in combination with the gene cluster pil, affect biofilm formation in Vibrio spp. 
(MEIBOM et al., 2004; PARANJPYE and STROM, 2005). In our study a significant up-regulation 
of VP2762 (aphA) and biofilm formation-related genes (VP2693 (mshP), VP2694 (mshO), 
VP2695 (mshD), VP2696 (mshC), VP2697 (mshA), VP2699 (mshF), VP2700 (mshG), 
VP2701 (mshE), VP2747 (pilP), VP2748 (pilO), VP2749 (pilN) and VP2750 (pilM)) was 
shown, indicating that the formation of biofilm was maintained under the VBNC state. 
VPA0192 (tnaA), however, was down-regulated in V. parahaemolyticus VBNC cells, 
indicating that no indole caused biofilm destruction happened. In contrast in the early 
stationary phase, VP2762 (aphA) and the biofilm formation-related genes mentioned above 
showed no expression changes, but VPA0192 (tnaA) was significantly induced approx. 6 
times compared with exponential phase, suggesting that biofilm has not been formed in this 
phase. 
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Expression of various virulence factors has been reported in the VBNC state of 
V. cholerae, V. parahaemolyticus and V. vulnificus, respectively (COLWELL et al., 1996; 
FISCHER-LE SAUX et al., 2002; VORA et al., 2005). The findings of our study confirmed this. 
The expression of important Vibrio spp. virulence-associated genes: VP0819 (toxS), VP0820 
(toxR), VPA1378 (tdh1) and VPA1314 (tdh2), was not reduced in the VBNC state. Except 
VP1401 and VPA1321 showed a reduction of expression in the VBNC state, other genes 
belonging to the T3SS family and T6SS family were not down-regulated. Since the global 
regulator (rpoN), which controls flagella synthesis, was significantly down-regulated by 
approx. 4 and 12 times, respectively, in the VBNC state compared with the exponential and 
the early stationary phases (adjusted P-value = 1×10-4 and 4×10-8). The repression of rpoN 
results in a reduced synthesis of flagella. To sum up, V. parahaemolyticus VBNC cells 
maintain virulence since the virulence related genes are expressed stably. Although VBNC 
cells retain the capacity to cause disease, it remains unclear whether VBNC cells are sufficient 
to cause disease or if they must first resuscitate. Up to date the commen theory is that 
pathogenic bacteria can infect humans after they resuscitate from the VBNC state under the 
suitable conditions (DU et al., 2007; OLIVER, 2010; SUN et al., 2008). Sun et al. (2008), for 
example, found that VBNC V. harveyi cells did not cause death but resuscitated cells were 
lethal when inoculated into zebra fish. Until now, resuscitation has been reported only in 26 
species of human VBNC state pathogens, but it does not mean that other human pathogens 
could not resuscitate from VBNC state because of lacking suitable conditions of resuscitation. 
Only little is known of the mechanism of resuscitation and further research is needed. 

In conclusion, this study has investigated the gene expression patterns of 
V. parahaemolyticus in exponential, early stationary phases as well as the VBNC state and 
showed that many genes elevate expression in the early stationary phase and the VBNC state. 
These distinct up-regulated expression patterns may have important roles for bacteria survival 
in the stationary phase and the VBNC state. The results presented in this thesis add new data 
towards an understanding of the mechanisms involved in the VBNC state. 
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Chapter 5 Summary 

Vibrio spp. are isolated continuously from the estuarine, marine and sediment environments 
and seafood. The consumption of and/or contact to contaminated seawater or food can lead to 
infections in humans. V. parahaemolyticus can cause human gastroenteritis via consumption 
of contaminated raw or not thoroughly heated seafood. 

In its natural habitat V. parahaemolyticus cell is forced to remain in the stationary phase or 
the viable but non-culturable (VBNC) state for survival. 

The stationary phase is the common phase for bacterial survival in the environment. The 
metabolism of bacterial cells in the stationary phase is active but altered. Moreover, the 
resistance of stationary phase cells is greater to variety of stresses. 

The viable but non-culturable (VBNC) state is referred to as enabling survival of especially 
non-sporulating bacteria, including Vibrio spp., in unfavourable or even hostile environments. 
The VBNC state can be induced by numerous factors, such as low temperature, depleted 
nutrient and adverse pH. Although bacterial VBNC cells are non-culturable on any routine 
laboratory medium, they maintain the ability of infection as the virulence genes are still 
expressed. 

In this thesis, whole transcriptomic profiling of V. parahaemolyticus in the three phases 
(exponential and early stationary phase, the VBNC state) was performed. Studies on the 
global gene expression of V. parahaemolyticus demonstrated a broad adaptation of expression 
induced via the early stationary phase and the VBNC state. Among the 4820 investigated 
genes, 172 genes were induced while 61 genes were repressed totally. The altered processes 
were shown to be important for bacterial survival in the stationary phase against many 
stresses. 

In the VBNC state compared with exponential and early stationary phase, up-regulated 
gene expression was also dominant. Totally 509 induced genes and 309 repressed genes 
among 4820 investigated genes were altered by more than fourfold. All these processes were 
shown to be of importance for the VBNC state maintenance. Massive regulations have been 
found, indicating that VBNC cells are active. 

Until now it remains unclear what the incidence of food associated outbreaks caused by the 
food pathogenic VBNC state bacteria is. As the common detection methods depend on the 
CFU count and therefore growing cells, VBNC state bacteria avoid detection. Our research 
adds new data which might support the development of new methods for detection of not only 
V. parahaemolyticus VBNC cells but also other food pathogenic VBNC state bacterial cells. 
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Genexpressionsprofile von Vibrio parahaemolyticus 

Vibrionen können kontinuierlich aus dem Meeres, dem Ästuar, dem Sediment und aus 
Meeresfrüchten isoliert werden. Der Kontakt mit Vibrionen enthaltendem Meerwasser 
und/oder der Verzehr von Lebensmitteln, die Vibrionen enthalten, sind die häufigsten 
Auslöser einer Vibriose beim Menschen. Die Spezies Vibrio (V.) parahaemolyticus ist 
humanpathogen und kann durch den Verzehr von kontaminierten, rohen oder nicht 
ausreichend erhitzten Meeresfrüchten zu Gastroenteritis führen. 

Um das Überleben, in seinem natürlichen Lebensraum auch bei schlechten 
Umgebungsbedingungen zu sichern, ist V. parahaemolyticus in der Lage, in der stationären 
Phase zu verharren oder in einen Zustand überzugehen, indem das Bakterium lebensfähig, 
aber nicht kultivierbar ist (VBNC). 

Die stationäre Phase gewährleistet ein Überleben von Bakterien in der Umwelt. Der 
Metabolismus von bakteriellen Zellen ist in dieser Phase aktiv aber im Vergleich zu anderen 
Phasen verändert. Die Zellen in der stationären Phase sind um einiges widerstandsfähiger und 
somit in der Lage verschiedenen Stressfaktoren besser Stand zu halten. 

Vibrio spp. verfügen über die Möglichkeit, unter ungünstigen oder gar feindlichen 
Umgebungsbedingungen in diese Art von lebenserhaltendem Zustand überzugehen. Das 
VBNC Stadium kann durch unterschiedlichste Faktoren, wie niedrige Temperatur, 
absinkender Nährstoffgehalt, nicht optimaler pH-Wert, etc. induziert werden. Obwohl 
bakterielle VBNC Zellen auf keinem Routinemedium kultivierbar sind, besteht die 
Möglichkeit einer Humaninfektion, da Virulenzgene noch immer exprimiert werden. 

In dieser Arbeit wurde das globale Transkriptom von V. parahaemolyticus in exponentieller 
und früher stationärer Phase, sowie im VBNC Stadium untersucht. Diese Studien, zur 
globalen Genexpression von V. parahaemolyticus zeigten, dass massive Anpassungen der 
Expression um mehr als das Vierfache während der frühen stationären Phase und dem VBNC 
Stadium stattfinden. Von den 4820 untersuchten Genen wurden 172 Gene induziert, während 
61 Gene in ihrer Expression gehemmt wurden. Die hochregulierten Gene konnten 
hauptsächlich der Adaption des Bakteriums an die stationäre Phase zugeordnet werden. Die in 
der stationären Phase detektierten Veränderungen der Genexpression waren für das Bakterium 
essentiell, um ihr Überleben in der Umwelt zu sichern. 

Beim Vergleich der Genexpression im VBNC Stadium mit der exponentiellen und frühen 
stationären Phase wurden 509 induzierte Gene und 309 unterdrückte Gene detektiert. Die 
induzierten Gene konnten mit dem Übergang in den VBNC Zustand assoziiert werden. Die 
Expression übergeordneter Regulatoren wurde induziert oder zumindestens stabil exprimiert. 
Alle diese Veränderungen spielen für die Aufrechterhaltung des VBNC Stadiums eine große 
Rolle. Aufgrund der drastischen Veränderungen die innerhalb der bakteriellen Regulatoren 
stattfanden, konnte nachgewiesen werden, dass VBNC Zellen aktiv sind. 

Die Inzidenz der Lebensmittel-assoziierten Ausbrüche, die durch Bakterien im VBNC 
Stadium verursacht werden, bleibt unklar. Da herkömmliche Methoden auf dem Wachstum 
von Zellen beruhen, werden Bakterien im VBNC Stadium nicht detektiert. Unsere Arbeiten 
stellen neue Daten zur Verfügung, die die Entwicklung neuer Methoden nicht nur zur 
Detektion von V. parahaemolyticus im VBNC Stadium, sondern auch anderen pathogenen 
Lebensmittel-assoziierten Bakterien unterstützen könnten. 
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