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Abstract

Background
Parametric T1 mapping is a quantitative method for myocardial tissue differentiation in

cardiovascular magnetic resonance (CMR) that lacks comparability due to missing uni-
versal valid reference values. Confounding parameters (CP) impairing the myocardial T1
value quantification are described in literature. These CPs originates from subject, tech-
nologic and post-processing specific variations. The aim of this work was the evaluation
of a post-hoc standardization approach for native parametric T1 maps within the self-
developed Magnetic Resonance Imaging Software for Standardization (MARISSA). As
quantitative measurements require a segmentation of the region of interest (ROI), a novel
cascaded segmentation (CASEG) approach is additionally introduced as a necessary
pre-processing step for MARISSA.

Methods

The proposed CASEG consisted of a bounding box (BB) prediction followed by a seg-
mentation model. The BB was enlarged by a magnification factor of 1.5 to assure for full
left ventricular coverage. Three CASEG pipelines were tested against a reference U-Net
(refU): cropU, which used the enlarged BB image section, crinU, which used the enlarged
image section and the original BB mask and cropU_A, which used the BB image section
of a direct enlarged BB predictor. All models shared the same hyperparameters and were
tested with respect to geometric and quantitative outcomes. The dataset included 403
subjects with 1080 native and 358 post-contrast T1 maps that were split into 75% training,
10% validation and 15% test data.

In MARISSA 214 healthy subjects (814 T1 maps) were used for training standardization
models with respect to the CPs age, sex, scanner and sequence. Among the training
dataset both sex, eleven scanners, eight sequences and an age distribution of
38t15years were available. Five adjustable standardization pipeline settings were opti-
mized among 240 tested combinations by minimizing the coefficient of variation (COV) in
a cohort of 40 healthy subjects (HTE, 156 T1 maps). The evaluated best performing
standardization pipeline (BPSP) was then compared to 112 patients with a hypertrophic
cardiomyopathy (HCM, 121 T1 maps) and 24 patients with an amyloidosis (AMY, 24 T1

maps).



Results

The Dice Similarity Coefficient as a measure of the geometric domain improved signifi-
cantly for the test data in cropU, crinU and cropU_A (all around 80%) compared to refU
(around 70%) while the mean absolute error improved only slightly without significance.
The cropU represented the base segmentation in MARISSA. The BPSP halved the COV
in the HTE to 6% while reaching a diagnostic sensitivity and specificity of 96%/92% be-
tween HTE and AMY, 72%/72% between HTE and HCM, and 88%/98% between HCM
and AMY.

Conclusion

CASERG significantly improved the automatic segmentation in the geometric but not in the
quantitative domain. MARISSA harmonized parametric T1 mapping values while main-

taining the diagnostic accuracy for two dedicated patient groups.

Zusammenfassung

Hintergrund
Parametrische T1-Kartierung ist eine quantitative Methode zur myokardialen Gewebedif-

ferenzierung in der kardiovaskularen Magnetresonanztomographie (CMR), der es an ge-
nerischen Referenzwerten mangelt. In der Literatur werden Stérparameter (CP) beschrie-
ben, die den myokardialen T1-Wert beeinflussen. Diese CP entspringen Subjekt-, Tech-
nologie- und Nachverarbeitungs-spezifischen Variationen. Ziel dieser Arbeit war die Eva-
luierung eines nachgelagerten Standardisierungsansatzes fir native T1-Karten innerhalb
der selbstentwickelten Magnetic Resonance Software for Standardization (MARISSA).
Da quantitative Messungen eine Segmentierung erfordern, wird zusatzlich eine neuartige
kaskardierte Segmentierung (CASEG) als notwendige Vorverarbeitung fur MARISSA ein-
geflhrt.

Methode

Die CASEG bestand aus einer Begrenzungsdetektion (BB) gefolgt von einem Segmen-
tierungsmodell. Die BB wurde zur Abdeckung des gesamten linken Ventrikels um das
1.5-fache vergréRRert. Drei CASEG-Modelle wurden gegen ein Referenz-U-Net (refU) ge-
testet: cropU, das den vergroRerten BB-Bildausschnitt, crinU, das den vergré3erten Bild-
ausschnitt und die BB-Maske, und cropU_A, das den BB-Bildausschnitt einer direkt ver-

grolierten BB verwendete. Alle Modelle wurden gleich eingestellt und hinsichtlich der ge-



ometrischen und quantitativen Ergebnisse getestet. Der Datensatz umfasste 403 Proban-
den mit 1080 nativen und 358 kontrastverstarkten T1-Karten, die in 75% Trainings-, 10%
Validierungs- und 15% Testdaten aufgeteilt wurden.

In MARISSA wurden 214 gesunde Probanden (814 T1-Karten) fur das Training von Stan-
dardisierungsmodellen in Bezug auf die CP Alter, Geschlecht, Scanner und Sequenz ver-
wendet. Im Trainingsdatensatz waren beide Geschlechter, elf Scanner, acht Sequenzen
und eine Altersverteilung von 38115 Jahren vorhanden. Finf anpassbare Einstellungen
wurden unter 240 getesteten Kombinationen durch Minimierung des Variationskoeffizien-
ten (COV) in einer Kohorte von 40 gesunden Probanden (HTE, 156 T1-Karten) optimiert.
Das evaluierte beste Standardisierungsmodell (BPSP) wurde mit 112 Patienten mit hy-
pertropher Kardiomyopathie (HCM, 121 T1-Karten) und 24 Patienten mit Amyloidose
(AMY, 24 T1-Karten) verglichen.

Ergebnisse

Die Dice Metrik, als geometrisches Mal3, verbesserte sich signifikant fiir die Testdaten in
cropU, crinU und cropU_A (alle ca. 80%) im Vergleich zu refU (ca. 70%), wahrend sich
der mittlere absolute Fehler nur geringfugig verbesserte.

Die Basis-Segmentierung in MARISSA wurde durch cropU definiert. Das BPSP halbierte
den COV im HTE auf 6 % und erreichte eine diagnostische Sensitivitat und Spezifitat von
96%/92% zwischen HTE und AMY, 72%/72% zwischen HTE und HCM und 88%/98%
zwischen HCM und AMY.

Schlussfolgerung

CASEG verbesserte die automatische Segmentierung signifikant im geometrischen, aber
nicht im quantitativen Bereich. MARISSA harmonisierte die Werte von parametrischen
T1-Karten unter Beibehaltung der diagnostischen Genauigkeit fur zwei dedizierte Patien-

tengruppen.
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1 Introduction

According to the most recent World Heart Report of 2023 by the World Heart Federation,
cardiovascular diseases (CVDs) remain the leading cause for mortality affecting approx-
imately one third of all global deaths'. Contemporary evidence in the research on as-
sessing and treating CVDs open out into constantly updating guidelines®3. Those guide-
lines recommend non-invasive imaging methods for the evaluation of individual heart
characteristics®*. The choice of the respective imaging modality depends on the ques-
tioning and accessibility*°. Among those, cardiovascular magnetic resonance imaging

(CMR) becomes increasingly important®.

1.1 Cardiovascular Magnetic Resonance Imaging (CMR)

CMR is a specific use-case of magnetic resonance imaging (MRI), which reveals some
unique opportunities compared to other imaging modalities as it provides high spatial
resolution compared to echocardiography’ while being untainted by ionizing radiation®.
The physics of MRI is based on quantum mechanics of charged elements in a magnetic
field®'". The different acquisition techniques in MRI are commonly called sequences as
they are based on a train of radiofrequency pulse transmission and resonating signal
receipt®'!. By adapting the timing and other technical parameters the relaxation sensitiv-
ity and thus the contrast as well as the field of view are adjustable®"".

As CMR focuses on the heart, it suffers from two independent physiological motions dur-
ing acquisition: breathing movement and cardiac motion'. The prior is compensated by
either breath holding'?, respiratory gating'® or a posteriori motion correction' while car-
diac motion is handled by a cardiac gating signal that captures the same cardiac phase'®.
As the orientation of the heart in the human body is skewed'®, additional complexity for
the definition of the imaging plane exist.

Nonetheless, CMR evolved to the state-of-the-art imaging modality for myocardial func-
tion, scarring and tissue characterization'”-'8, While volumetric quantification of the heart
are accessible in any imaging modality'®, parametric mapping represents a unique quan-

tification technique in CMR only2°2",
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1.2 Parametric T1 Mapping

The parametric mapping in CMR can either represent the T1, T2, T2* or T1p relaxation
value of a tissue?? and is calculated by a voxel-wise fitting of source images with different
respective relaxation sensitivity?'. Parametric T1, T2 and T2* mapping is already com-
mercially available?>?4, increasingly used in clinical routine?® and considered in current
guidelines?5. The integration of parametric T1 and T2 mapping into clinical CMR routine
protocol revealed an improved diagnostic accuracy for CVD detection?®. This work fo-
cuses solely on parametric T1 mapping as it showed among the different parametric map-
ping techniques the highest potential to differentiate healthy from various CVDs?°%22,

Parametric T1 maps are acquired either without (native) or after application of contrast
agents (contrast enhanced). The combination of both, native and contrast enhanced, en-
ables the calculation of the extra-cellular volume (ECV) map and complements the late
gadolinium enhancement (LGE) quantification for myocardial fibrosis detection?”-%,

Across existing and ongoing developing T1 mapping sequences, the modified Lock-
Locker inversion recovery (MOLLI)?®, its shortened version (ShAMOLLI)* and the satura-
tion recovery single-shot acquisition (SASHA)3' emerged to the most common used T1
mapping sequences®?32, The MOLLI based T1 map shows high reproducibility in favour
of accuracy while SASHA acts vice versa®. Furthermore, different schemes exist for
MOLLI sequences which represent the number of acquired source images and in paren-
thesis the pause in-between, like in 5(3)3 b or 5(3)3 s, where b schemes clock by heart-
beats while s schemes clock after seconds®. The ShMOLLI sequence is a MOLLI se-
quence with a 5(1)1(1)1 b scheme and an adapted fitting algorithm3°34, SASHA, in turn,

is based on different saturation pulse times for the individual source image acquisitions®'.

1.3 Confounders

A CMR examination follows an imaging chain and with respect to parametric T1 mapping
includes the acquisition with a dedicated sequence, the reconstruction of individual
source images from the acquired signal including a motion correction that depends on
the sequence variant and acquisition strategy®®%¢, the generation of the parametric T1
map on the base of the motion corrected source images®’, a segmentation of the left
ventricular myocardium as region of interest (ROI), whose output is used for the quanti-
tative T1 statistics classification and finally its incorporation into the report® as abstractly

shown in Figure 1.
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Patient Recon- Source Map Segmen- Classifi-

" Acquisition . . . . Reportin,
Scheduling q struction Images Generation tation cation P 8

Figure 1: CMR imaging chain for parametric T1 mapping

Figure adapted from “Machine learning in cardiovascular magnetic resonance: basic concepts and applications” by
Leiner et al.?8, 2019, under CC BY 4.0.

At any stage of the imaging chain potential confounders may induce a bias??. The con-
founding parameters (CPs) originate from subject specific sources, like age and sex3%49,
technical sources, like field strength*, hardware*® and sequence type*'*#2 or assessment
specific sources, like segmentation strategy*® and experience of the operator**45. The
segmentation procedure represents a specialty among the CPs as it relies on manual
contouring although even experienced operators show not neglectable uncertainty due to
intra-observer variability*®. Fully automatic segmentation procedures that are based on
convolutional neural networks (CNNs) models and trained with expert’s annotated data
show in average a high geometrical concordance to expert segmentations while minimiz-
ing intra-observer variability*¢*8. However, individual outliers, high quantitative differ-
ences and a limited training dataset still require a manual inspection of those CNN model
outcomes*®*8, The impact of confounders undermines the accuracy and precision of
quantified T1 values such that the reproducibility is limited to intra-institutional reference
values only?*4°. Consequently, standardization strategies are necessary to minimize the

CPs induced biases.

1.4 Standardization

The aim of standardization in parametric T1 mapping is a harmonization of CPs in order
to increase the reproducibility and thus the comparability but does not necessarily account
for accuracy. Standardization strategies are either ad-hoc applied by suppressing the oc-
currence of a CP a priori or post-hoc deployed by subtracting out the impact of a CP a
posteriori to its occurrence.

Among the ad-hoc standardization strategies, the usage of standard operating proce-
dures following expert consensus as recommended by the Society for Cardiovascular
Magnetic Resonance (SCMR) ensures a common understanding on the general applica-

tion, handling and interpretation of parametric T1 maps'82°,
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A fixation of technical parameters, like field strength, MRI scanner vendor and sequence
type achieved comparable T1 values with non-significant differences in a healthy volun-
teer cohort>®. However, the strategy of constant CPs does not work out globally due to
different accessibility, technical development and local preferences. For that reason, local
reference values are recommended resulting in a limited comparability to other sites and
the necessity of a local healthy reference cohort examination®.

While ad-hoc strategies are preferred, their potential infeasibility makes post-hoc stand-
ardization methods necessary. The introduction of the z-score was the first attempt and
is already mentioned in the clinical recommendations of the SCMR?%%", The score trans-
forms parametric T1 mapping values into unitless values by offsetting against a local
healthy reference cohort. Although the z-score already demonstrated its abilities®’, its
drawback of a potential healthy reference cohort re-examination after a soft- or hardware
change as well as its intrinsic standardization capabilities on solely technical CPs while
subject specific CPs remain unaddressed may reasons for its restrained success.

At this point machine learning methods draw on by enabling the subtraction of individual
CP biases as already shown for age and sex by linear regression models®°. Those meth-
ods have a generalizability potential due to transfer capabilities onto other scanner-se-
quence combinations. However, the required constancy in the remaining CPs during the
regression model training represents an obstacle and may have been yet the reason for

the lack of such a comprehensive standardization approach for parametric T1 mapping.

1.5 Aims

In conclusion, native parametric T1 mapping shows a high potential to differentiate be-
tween healthy subjects and patients with CVDs while a stronger assertiveness in the clin-
ical routine and its comparability still suffers from the lack of universal valid reference
values?®?2, This work aims to introduce and evaluate in a proof-of-concept a holistic re-
gression model based post-hoc standardization pipeline for native parametric T1 mapping
in CMR that is embedded in the extensible, self-developed prototype Magnetic Reso-
nance Imaging Software for Standardization (MARISSA)*2%3, MARISSA queues within
the CMR imaging chain between segmentation and classification as a service providing
software module and is not solely limited to CMR or T1 mapping. Since the segmentation
plays an essential role and is an elusive CP, this work additionally includes a fully auto-

mated cascaded segmentation (CASEG) approach for parametric T1 maps®* .
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2 Methods

This retrospective work is approved by the local ethics committee of the
Charité — Universitatsmedizin Berlin (EA1/253/21) and was supported by the BMBF
(Bundesministerium fur Bildung und Forschung) / DZHK (Deutsches Zentrum flr
Herz-Kreislauf-Forschung) via project FKZ8120100208. The used parametric T1 maps
were inline generated at the scanner in the Digital Imaging and Communications in Med-
icine (DICOM)®® format. Following the CMR imaging chain, the CASEG approach is de-
scribed first, followed by an introduction of MARISSA. Both parts are structured with re-

spect to Quality Assurance, Workflow, Datasets, Training, Testing and Implementation.

2.1 Cascaded Segmentation (CASEG)

The CASEG approach is an automatic segmentation method that consists of two consec-
utive steps. Firstly, the ROI is approximated with a rectangular bounding box (BB) by an
object detection algorithm (ODA). Then, in a second step, the BB information is used to
focus on the relevant image section within the subsequent segmentation model to detect
the actual ROI. The following information on CASEG is retrieved from the publication by

Viezzer et al.>* and was exemplarily applied on CMR based parametric T1 maps.

2.1.1 Quality Assurance of CASEG

The aim of an automatic segmentation, like CASEG, is reaching common accord with
manual expert contours. Consequently, geometric metrics represent quality features to
measure the concordance between expected and achieved segmentation while quantita-
tive metrics embody additional quality features as parametric T1 mapping is a quantitative
method. The quality assurance metrics were applied in regard of the expert reference
segmentation. The performance gain by incorporating the BB information was evaluated

by testing against a standard automatic segmentation without the preliminary ODA.

2.1.1.1 Geometric Performance

The geometric performance of CASEGs were assessed by the Dice Similarity Coeffi-
cient®® (DSC, Equation 1) and the Hausdorff Distance®® (HD, Equation 2). The DSC, given
in %, measures the consensus of two segmented areas. Whereas the HD, in millimeter

(mm), represents a measure for the maximal local divergence.
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2-|ANB|
DSCA.B) = 1B

Equation 1: Calculation of the Dice Similarity Coefficient (DSC)

with A and B as the respective segmentation areas®®

HD(4, B) = max | 44 {minfd(a b))}
max {min{d(a, b)}}

becB \laecA
Equation 2: Calculation of the Hausdorff Distance

with A and B as the respective segmentation areas, cA and cB as the respective segmentation area contours and d
represents the Euclidean distance5®

2.1.1.2 Quantitative Performance

The quantitative performance of CASEGs were assessed by the mean error®” (ME, Equa-
tion 3), mean absolute error®” (MAE, Equation 4), root mean squared error®’ (RMSE,
Equation 5) and the confidence interval®” (Cl, Equation 6) of mean T1 values. The ME,
given in milliseconds (ms), represents the mean quantitative deviation and in combination
with the MAE and RMSE, both given in ms, quantify the value dispersion. The Cl, in turn,

represents the value range that most probably capture the global mean T1 value®®.

n

1
MEGY) == (0= %)
i=1
Equation 3: Calculation of the mean error

with n as the number of values, y representing the expected and x the achieved values®’

n

1
MAEGLY) =~ |yi—xi
i=1
Equation 4: Calculation of the mean absolute error

with n as the number of values, y representing the expected and x the achieved values®’

n

1
RMSEGLY) = |~ (i = x)?

i=1
Equation 5: Calculation of the root mean squared error

with n as the number of values, y representing the expected and x the achieved values®’

£ 7 (lower limit)
— — (lower limi
Ho
ca
u +—= (upper limit)
n

Jn

with x representing the values, | representing the mean and o representing the standard deviation of the values, n as
the number of values and c as the confidence factor that depends on n and the significance level®”

Cl(x) =

Equation 6: Calculation of the confidence interval
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2.1.1.3 Statistical Analysis

The HD, DSC, ME and MAE were tested by a paired t-test and ANOVA in case of normal
distribution according to a Shapiro-Wilk-test otherwise by a Friedman and Wilcoxon test
with a significance level of a < 0.05 in any case®®. A higher DSC and lower HD, ME, MAE
and RMSE were assumed with an improved performance. The equivalence margin de-
rived from an intra-observer variability of native T1 maps is defined as the clinically ac-
ceptable deviation*® and was used for testing the Cls. The Cls were Bonferoni corrected

as the same test data was used for the CASEG pipeline and reference models*3.

2.1.2 Workflow in CASEG

The two steps in CASEG were implemented as two in sequence arranged CNNs. The
primary acted as an ODA and predicted a binary BB for a rectangular ROI of the left
ventricle (LV). Due to prediction uncertainties, the BB might miss tightly capturing the
outer border of the LV and thus a BB enlarging magnification factor was used to assure
for a whole LV coverage. The cropped image section by the enlarged BB was then fed
into the secondary segmentation CNN to evaluate the actual LV ROI. Two different
CASEG pipelines (cropU and crinU) were evaluated against a segmentation without a
preliminary ODA (refU) as shown in Figure 2.

CNN refU

1.5x

LN cropU

________ %
13-+

NN | Somrattonsy | g | Qomeoeiion 12, | s bouning o P, — -t
-~ 4 0 size by a factor of 1.5 region of interest . B Region of interest
segmentation box prediction image ——p pc R b

CNN crinU

Figure 2: CASEG workflow

The reference segmentation by a convolutional neural network (CNN) without a preliminary object detection algorithm
(ODA) for the heart (refU) directly predicts the segmentation on the original image. In contrast to this, cropU focuses
solely on the image section that is defined by the enlarged predicted bounding box while crinU works equivalent but
has an additional second input channel reflecting the original predicted bounding box mask. Figure retrieved from
“Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular magnetic resonance to
improve segmentation performance” by Viezzer et al.5%, 2023, under CC BY 4.0.
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Both CASEG pipelines followed the same scheme, but crinU had a second input channel
in the segmentation CNN to include the original predicted BB mask. An alternative cropU
version (cropU_A) was evaluated with an ODA CNN that directly predicted an enlarged

BB instead of a tight one that needed an enlarging processing.

2.1.2.1 Bounding Box (BB) Detection

The CNN based BB detection outputs an array of the same size as the input image with
pixel values of floating point-numbers between zero and one. A threshold of 0.5 turned
the output into a binary image with relevant (one) and non-relevant (zero) parts. The larg-
est connected component (LCC) was identified and the BB edges were evaluated by the
minimum and maximum indices of the LCC along both image axes. This BB was then
enlarged by a magnification factor that was evaluated as the minimal factor for full cover-

age of the LV in the dedicated test dataset.

2.1.2.2 Automatic Segmentation

The automatic segmentation in the secondary part of the CASEG was also implemented

as a CNN. All CNNs were in turn implemented as U-Nets®® as shown in Figure 3.
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Figure 3: Convolutional Neural Network (CNN) structure of the U-Nets as implemented in CASEG

Figure adapted from “Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular
magnetic resonance to improve segmentation performance” by Viezzer et al.%*, 2023, under CC BY 4.0.
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For an unadulterated evaluation of the BB performance gain, all U-Nets shared the same
set of hyperparameters with the only exception of the segmentation CNN in crinU which
required two input channels. The U-Nets had 27 layers and accordingly six skip connec-
tions and an input size of 256x256x1 respectively 256x256x2 and an output size of
256x256x1. The input images were resized and interpolated accordingly while the output
was scaled back to fit the original image size. A conversion of binary pixel masks into
vectorized contour objects, application of geometric transformation in the vectorized do-
main and then back-transformation into binary pixel masks by rasterization assured for a
lossless propagation.

The chosen hyperparameters Adam optimizer®’ with a clipnorm of 0.001, log-cosh-dice
loss function®?, 0.001 learning rate and reduce-on-plateau learning rate adaption® were
pre-evaluated as the best combination among the refU training for the tested loss func-
tions: binary-cross-entropy and log-cosh-dice®?, learning rates: 0.01 and 0.001 and learn-
ing rate adaptions: constant, exponential, linear, reduce-on-plateau and triangle®*®*. The
training setup included a batch size of ten and 1000 epochs with an early stopping
scheme®38° after 50 epochs of no improvement with respect to the DSC in a separate
validation dataset as well as a halving of the initial learning rate of 0.001 after 25 epochs
of no improvement. A threshold of 0.5 was applied on the output in order to retrieve a

binary segmentation mask.

2.1.3 Datasets for CASEG

Data from eleven published®*¢6-68 and on-going®® studies was used with in total N=403
participants (97 healthy volunteers and 306 patients) and M=1438 parametric T1 maps
(1080 native and 358 contrast enhanced). All T1 maps had manual reference segmenta-
tions by experienced readers using the software cvi42 (Circle Cardiovascular Imaging,
Calgary, Canada) and were either generated on a 1.5T AvantoFit, a 3T SkyraFit or a 3T
PrismaFit clinical magnetic resonance imaging scanner (all Siemens Healthcare, Erlan-
gen, Germany). The native T1 maps were based on a 5(3)3 b MOLLI sequence while the
contrast enhanced T1 maps were based on a 4(1)3(1)2 b MOLLI sequence. The split into
75 % training, 10 % validation and 15 % test data were randomly performed for each
study set of the CASEG dataset as shown in Table 1. During training and validation, any
slice location was used while testing was performed on midventricular and basal slices

only as recommended by the SCMR?°.
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Table 1: CASEG dataset overview

Training Validation Testing Total
subjects (N) 313 35 55 (55) 403
native T1 maps 849 91 140 (106) 1080
contrast enhanced T1 maps 286 27 45 (33) 358
total T1 maps (M) 1135 118 185 (139) 1438

As the testing included midventricular and basal slices only, the numbers in (parenthesis) represent the actual amount
of used test data. Table retrieved from “Introduction of a cascaded segmentation pipeline for parametric T1 mapping in
cardiovascular magnetic resonance to improve segmentation performance” by Viezzer et al.%¢, 2023, under CC BY 4.0.

2.1.4 Training of CASEG

During training of the CNNs the training dataset was used while the validation dataset
acted as an unknown dataset to validate the performance with respect to the DSC. This
reduced the risk of overfitting and thus improved the generalization of the CNN. The train-
ing dataset was randomly augmented’® with adjustments in brightness and contrast,
noise by blurring, Gaussian random as well as salt and pepper noise and transformations
by rotation, mirroring, and axis down-sampling. A cropping of the input image was ran-
domly performed for the reflU CNN and ODA CNN, while in cropU, crinU and cropU_A,
the detected BB was randomly shifted and resized by up to five pixels. In respectively five
percent of the cases the optimal BB and no detected BB were assumed to include poten-
tial ODA uncertainties. In case of a missing BB cropU cannot focus on the ROl and con-
sequently acts like refU, while crinU uses a zero-valued secondary input array. The BB
enlargement was limited to the image boundaries. Each input image channel was nor-

malized by the brightest image value to floating-point values between zero and one.

2.1.5 Testing of CASEG

The information content of an image, calculated by the ratio of relevant pixels to the total
number of pixels, was statistically tested by a t-test in case of normal distribution accord-
ing to the Shapiro-Wilk-test otherwise by a Wilcoxon test with a significance level of
a < 0.05% between the image section of the enlarged BB and the original image. The
performance of the individual CASEG pipelines were evaluated against refU and against
each other according to the prior defined quality assurance of CASEG. A correlation and
a Bland-Altman plot were provided to visualize concordance and the limits of agree-
ment’. The correlation plot includes a linear regression, the Pearson Correlation (testing
for linearity) and Kendall’s Tau (testing for rank-order stability or monotony)®®. While the
correlation coefficient values were assumed as weak if smaller than 0.35, moderate if up

to 0.67, strong if up to 0.90 and very strong if above, the coefficient of determination
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(COD, squared Pearson correlation coefficient) was used to support the interpretation of
the findings by representing the shared variance across two measurements’2. As native
and contrast enhanced T1 times have different scales, the testing results of the CASEG

pipelines were separated for native and contrast enhanced datasets.

2.1.6 Implementation of CASEG

The U-Nets were implemented in Tensorflow’3, statistics were calculated with scipy™,
plots were generated with matplotlib”® and everything was cast into Python (Version 3.8,
Python Software Foundation, Beaverton, USA). Table 2 shows an overview of all neces-
sary Python site-packages for CASEG. The source code was made publicly available via

GitHub: https://github.com/DSV-CUB/CASEG
Table 2: List of Python site-packages for the CASEG implementation

Package Version
GDAL" 3.4.1
geopy’’ 2.2.0
h5py7® 2.10.0
keras®? 2.7.0
matplotlib™ 35.2
mock’® 4.0.2
numpy?® 1.21.5
opencv-python®’ 4.4.0.42
openpyxI®? 3.0.9
pandas® 1.3.4
Pillow? 7.2.0
pip® 20.1.1
polyling®® 1.4.0
pydicom?®’ 222
rasterio® 1.2.10
scikit-fuzzy® 04.2
scikit-image®® 0.18.1
scikit-learn®’ 1.0.2
scipy’™ 1.4.1
shapely®? 1.8.0
statsmodels® 0.13.0
tensorflow’ 2.7.0
tensorflow-gpu’ 2.7.0
XlsxWriter®* 3.0.1
xlwings®® 0.25.0

Table retrieved from “Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular
magnetic resonance to improve segmentation performance” by Viezzer et al.%*, 2023, under CC BY 4.0.
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2.2 Magnetic Resonance Imaging Software for Standardization (MARISSA)

The MARISSA provides regression model based post-hoc standardization of quantitative
measurements in medical imaging as a service. A standardization is setup as a pipeline
and transforms quantitative values of arbitrary CP settings into values of a pre-defined
and fixed reference CP environment. The prototyped software includes a graphical user
interface (GUI) for usability and a modularized structure for extensibility. The following
information on the MARISSA are based on the publication by Viezzer et al.®?> and were

evaluated as a proof-of-concept on CMR based native parametric T1 maps.

2.2.1 Quality Assurance of MARISSA

The aim of a standardization approach for quantitative measurements, as enabled with
the MARISSA, is reaching comparability in the quantified values. Therefore, the quality
assurance focuses on the quantitative domain of the segmented ROI with evaluations on
the intra-cohort scale to minimize variation within the same cohort and on the inter-cohort

scale to maximize the differentiability between cohorts.

2.2.1.1 Quantitative Intra-Cohort Performance

The quantitative intra-cohort performance was assessed by the coefficient of variation
(CQV, Equation 7) as it represents a normalized and thus unitless, measure of the dis-
persion within a group®®. A minimization of the COV was assumed with a successful

standardization performance.

o
CoV =—
u

Equation 7: Calculation of the coefficient of variation

with ¢ as standard deviation and u as mean®®

2.2.1.2 Quantitative Inter-Cohort Performance

The quantitative inter-cohort performance was evaluated by the receiver operator char-
acteristics (ROC) analysis for differentiation between healthy subjects and patients with
various CVDs%. The ROC includes the evaluation of an optimal limit with respective sen-
sitivity and specificity®®. The diagnostic accuracy after standardization was assumed as
evident if the sum of both, sensitivity and specificity, exceeded 150%°” and were in the

range of or above an intra-scanner-intra-sequence ROC analysis.
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2.2.1.3 Statistical Analysis

The T1 values of the considered cohorts in MARISSA were statistically tested by an in-
dependent t-test in combination with an ANOVA test in case of normal distribution ac-
cording to the Shapiro-Wilk-test otherwise with the Mann-Whitney-U and Kruskal-Wallis
test, all with a significance level of a < 0.05%°. Cls were plotted against the Cl of datasets
that captured the reference CP environment to check if healthy subjects stay within while

patients with CVDs clearly stand out.

2.2.2 Workflow in MARISSA

The core of the MARISSA is the SQLite®® database MARISSA DB that is automatically
created for each user defined project within the software. A detailed manual on the usage
of MARISSA was provided with the publication®?. The MARISSA DB contains relational
connected tables separated in an active and a passive site as shown in Figure 4. The
active site consists of all data and information the user actively manipulates by defining,
editing and setting. This includes the import of DICOM and segmentation data as well as
the definition of standardization pipelines and CPs from available DICOM tags. The pas-
sive site is automatically filled during training and contains information about the trained
regression models including a track of the training datasets. For standardization, the re-

spective trained models are read from the MARISSA DB and applied onto the dataset.

MARISSA DB
+ description B
O + oreator :

Standardization
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Figure 4: MARISSA database (DB) structure

The blue tables tbl_segmentation, tbl _data, tbl _setup, tbl_parameter, tbl_match_setup_data_segmentation and
tbl_match_setup_parameter denote the active site where the user interacts actively by importing, defining, editing and
manipulating data whereas the training information is copied into the separate green tables tbl_standardization _setup,
tbl_standardization_data, tbl_standardization_parameter, tbl_standardization_match_data_setup_parameter and
tbl_standardization. The green tables are automatically filled during training of a standardization pipeline and contain
all necessary information and data to trace back fitted regression models. Figure retrieved from “Post-hoc standardisa-
tion of parametric T1 maps in cardiovascular magnetic resonance imaging: a proof-of-concept” by Viezzer et al.%?, 2024,
under CC BY 4.0.
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2.2.2.1 Regression Model

The regression models were trained to estimate the induced biases of CPs and therefore
labelled as CP impact estimators (CPIEs). Due to the lack of either accuracy or precision
in T1 mapping sequences®, the true T1 value is unknown and thus the induced biases
are only relatively calculatable. For that reason, the reference CP environment defines
for each CP a zero-bias assumed reference value. The induced bias is the difference
between a measured T1 value and the average T1 value across all datasets that capture
the reference CP values (Equation 8 and Equation 9). The regression model only uses
CP values as input and outputs the estimated bias in either absolute or relative [%] unit

of measures.

|RD| |R01|
blaSabs Ymeasured — yreference with yreference = |RD| |R01| Z Z

Equation 8: Calculation of the absolute bias

Subtraction of the reference quantitative value from the measured quantitative value, where the reference quantitative
value equals the mean quantified values in the segmented region of interest (ROI) across all relevant datasets (RD)
whose confounding parameters (CPs) capture the reference CP environment

bi 100% - 2%5abs_yiep B R
laSoy, = 0+ — Wit y. = Z Z
& yreference reference |RD| |R01|

Equation 9: Calculation of the relative bias

Division of the reference quantitative value from the absolute bias where the reference quantitative value equals the
mean quantified values in the segmented region of interest (ROI) across all relevant datasets (RD) whose confounding
parameters (CPs) capture the reference CP environment

2.2.2.2 Standardization

The standardization subtracts the CPIE results from the quantified values and returns the
standardized values (Equation 10 and Equation 11). As a regression model only approx-
imates the bias, the output is labelled as estimated CP error (ecpe) to discriminate from
the true underlying bias. While numerical CPs are continuous and therefore also stand-
ardizable for unknown CP values during training, categorical CPs can be standardized

for CP values only that were included in the training of the respective regression models.

IcP|
YVstandardized = Ymeasured — § . ecpeabs,i with €CPeyps = blaSabs
i=1
Equation 10: Standardization calculation for absolute confounding parameter (CP) impact estimations

with ecpe representing the estimated confounding parameter error in absolute values

YVmeasured

(100% + lec 1' ecpey,;)

Equation 11: Standardization calculation for relative confounding parameter (CP) impact estimations

YVstandardized = with ecpey, = biasy,

with ecpe representing the estimated confounding parameter error in relative values (%)
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2.2.3 Datasets for MARISSA

Midventricular, native T1 mapping data from published®%"9%-12 and on-going studies
was used with in total N=254 healthy volunteers (Healthy), N=112 patients with left ven-
tricular hypertrophy (LVH) including hypertrophic cardiomyopathy (HCM) and N=24 pa-
tients with amyloidosis (AMY)) resulting in M=970, M=121 and M=24 midventricular native
T1 maps in the respective cohorts as shown in

Figure 5. The surplus of T1 maps compared to the number of subjects originates from
multiple measurements of some subjects under different scanner or sequence conditions.
The two patient cohorts were chosen because AMY are expected for having significantly
higher, barely overlapping T1 value distributions compared to Healthy while HCM have
significant higher but largely overlapping T1 value distributions’93-105,

As a proof-of-concept for the post-hoc standardization of parametric T1 maps, the CPs
age34 sex3%40 scanner model*® and sequence variant*!#? were chosen from literature
to standardize for. The respective overview on the dataset composition on each CP is
given in

Figure 5 as well. The CP reference environment was set to 18 years, male, 3.0T Siemens
Verio [syngo MR B17] and MOLLI 5(3)3 b respectively for age, sex, scanner and se-
quence.

All T1 maps received an automated cropU CASEG segmentation® as well as a research
deep learning segmentation that was provided by Siemens Healthcare (version 21 hotffix,
Siemens Healthcare GmbH, Erlangen, Germany). Both segmentations were supervised
by an expert who chose the segmentation for the individual map among either segmen-
tation model or the intersection of both. A manual segmentation was performed in cvi42
(Circle Cardiovascular Imaging, Calgary, Canada) in case of failed segmentations among
both segmentation models.

While patients suffering from the same CVD share similar myocardial degenerations, the
state and phase of that CVD may influence the myocardial T1 value'%1%7_ In order to omit
CVD specific influences, only the Healthy cohort was used during the regression model
trainings with a split into 85% training (HTR) and 15% testing (HTE) data on the base of
the number of subjects per study. Consequently, N=214 subjects (with 100 males and
114 females, an age of 38.46+15.20 years and M=814) were in the HTR and N=40 (with
18 males and 22 females, an age of 39.50+15.89 years and M=156) were in the HTE

group.
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Figure 5: MARISSA dataset overview

A detailed breakdown on the respective scanner-sequence combinations with S: number of studies, N: number of
subjects, M: number of T1 maps, m: male and f: female; age is given in mean * standard deviation; green denotes
healthy, orange denotes patients with hypertrophic cardiomyopathy and red denotes patients with amyloidosis. Figure
retrieved from “Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging: a proof-
of-concept” by Viezzer et al.®?, 2024, under CC BY 4.0.
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2.2.4 Training in MARISSA

A standardization pipeline in MARISSA is defined by the setting of the regression-type,
the unit of measure, the mode and, if applicable, the clustering-type including the number

of bins with current options shown in Table 3.

Table 3: Standardization pipeline settings

Setting Options

extra-trees (ETR)

linear

linear support vector (LSVR)
random-forest (RFR)

regression-type

. absolute
unit of measure .
relative
cascaded
mode ensemble
individual
number of clusters (bins) 1 to minimum number of segmented pixels

agglomerative average
agglomerative complete
agglomerative single
agglomerative ward
equal distant

equal size

gaussian mixture
k-means

Table adapted from “Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging:
a proof-of-concept” by Viezzer et al.%?, 2024, under CC BY 4.0.

cluster-type

While the linear regression is the most basic and commonly used regression type ', the
linear support vector regression'® (LSVR) is an alternative linear model. Additionally,
random forest''? regression (RFR) and extra-trees’" regression (ETR) were evaluated in
order to reflect potential non-linear CP bias relationships. The estimated bias was either
calculated in absolute [ms] or relative [%] values. In absolute mode the standardization
shifts the T1 values while maintaining the intrinsic spread whereas the relative mode
weights the estimated bias according to the measured T1 value. The mode represents
the standardization pipeline strategy. The individual and cascaded mode include distinct
regression models for each CP. While the individual mode trains each regression model
individually by constraining constancy in all CPs except the one of interest, the cascaded
mode iteratively standardizes the training dataset with respect to each trained CPIE. The
ensemble mode, in turn, trains a single regression model that includes all CPs at once
and is expected to account for cross-dependencies in the CPs that are not considerable

in the individual and cascaded mode. This mode converts categorical CPs into integer
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numbered classes. A bin larger one enabled the clustering of T1 values in order to ac-
count for potential, currently unknown, cross-dependencies between acquired T1 values
and CP values with individual CPIEs for each cluster and CP. The agglomeratives, gauss-
ian mixture and k-means clustering algorithms are common used ones®'. The equal dis-
tant and equal size clustering were self-implemented and both rely on sorting the T1 val-
ues from low to high. The equal distant clustering considers the minimum and maximum
occurring T1 value and creates clusters of equal value ranges, whereas the equal size
clustering allocates the same amount of T1 values into each cluster.

In this work, the best performing standardization pipeline (BPSP) was evaluated in two
steps. First, the 24 standardization pipeline combinations of regression-type, unit of
measure and mode without clustering were trained on HTR and evaluated for the COV
on HTE. The three best performing pipeline settings with the lowest COV were then
trained for two to ten bins among the eight different cluster-types. Although the exceeding
of ten bins is conceivable, it is not recommended due to potential cluster sized being too
small. Including these additional 216 standardization pipelines, the BPSP was identified

across all 240 trained pipelines with the lowest COV in the HTE.

2.2.5 Testing of MARISSA

The evaluation of the BPSP during training already covers the intra-cohort quality assur-
ance among the HTE. Therefore, the testing includes the intra-cohort analysis for the
patient groups and the subsequent inter-cohort quality assurance by evaluating the diag-
nostic performance of the BPSP. The ROCs of the standardized cohorts were compared
to intra-scanner-intra-sequence diagnostics. Additional boxplots and Cls were used to
visualize overlapping value ranges between the cohorts accompanied by statistical test-
ing. A progression plot was used to illustrate the individual CP impact. Finally, an addi-
tional sub-analysis of eight individuals of the HTE, who received multiple acquisitions un-
der different scanner-sequence-combinations, was performed in regard of the COV and

the absolute value spread among the mean T1 values of the individual measurements.

2.2.6 Implementation of MARISSA

The MARISSA was fully implemented in Python (Version 3.8, Python Software Founda-
tion, Beaverton, USA) with a SQLite database backend and a PyQt5''2"13 GUI. The nec-
essary Python site-packages are listed in Table 4. The software was made publicly avail-
able via GitHub: https://github.com/DSV-CUB/MARISSA%3.
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Table 4: List of Python site-packages for the MARISSA implementation

Package Version
fnv'™4 0.2.0
GDAL'® 3.4.3
matplotlib”™ 3.5.2
mock’® 4.0.2
numpy?® 1.23.5
opencv-python® 4.6.0.66
pandas® 1.5.2
Pillow?* 7.2.0
pydicom?®’ 222
PyQt5'12 5.15.4
PyQt5Designer'"? 5.14.1
rasterio®® 1.2.10
rpy2'"® 354
scipy’™ 1.10.1
seaborn''® 0.12.2
shapely®? 2.0.0
scikit-image® 0.18.1
scikit-learn®’ 0.23.2
sqlalchemy'” 1.4.41
tensorflow” 2.7.0
XlIsxWriter® 3.0.1

Table adapted from “Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging:
a proof-of-concept” by Viezzer et al.??, 2024, under CC BY 4.0.

The software architecture scheme of MARISSA is depicted in Figure 6 and consists of
the three main components: gui, modules and toolbox. The designs sub-component in
gui contains all PyQt5 design files and the Python files in the gui component connect the
controls, like buttons, with executable Python procedures. The images directory in the gui
component contains portable network graphic images that are displayed within the GUI.
The toolbox component contains a collection of basic functions in the tools sub-compo-
nent and basic classes in the creators sub-component. Finally, the modules component
is the core of MARISSA and contains all the logics. The clustering sub-component has a
dedicated Python file with the same class structure for each clustering algorithm. Follow-
ing this structure, MARISSA is easily extensible by novel clustering algorithms. The GUI
automatically detects available clustering algorithms from this component directory.
Equivalent to the clustering sub-component, the regression sub-component contains in-
dividual Python files for each regression-type with a standardized structure such that

MARISSA is also easily extensible for other regression methods. All current regression
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models were implemented in the default setting with scikit-learn®’. RFR and ETR were
solely adapted to an increased number of estimator trees of 1000 that enabled an im-
proved performance without an overfitting risk due to its intrinsic structure'°.

As standardization is applicable on accessible CPs only, CPs are defined by available
DICOM tags. Standard DICOM tags are included in MARISSA by default while custom
CPs are enabled by processing DICOM tags. The value representation according to the
DICOM standard defines a CP as either numerical or categorical parameter.

After application of a standardization pipeline on a dataset, the original DICOM data, an
Excel table that includes the CP values and the segmented T1 values with their respective
progression during standardization as well as a MARISSADATA file and a progression
plot are exported. The MARISSADATA file makes the information from the Excel file di-
rectly available for further processing in Python by a pickled dictionary. Further detailed

information about the usage of MARISSA was provided in the user manual®?.

gui modules toolbox

designs clustering creators

images database tools
regression

Figure 6: MARISSA architecture

MARISSA consists of the three main components: gui, modules and toolbox. The gui module contains everything for
the graphical user interface including the PyQt5 design files and Python files for the control procedures. The toolbox
contains general functions and re-usable classes. The modules component contains all the logic and calculations that
define the core of MARISSA. Figure adapted from “Post-hoc standardisation of parametric T1 maps in cardiovascular
magnetic resonance imaging: a proof-of-concept” by Viezzer et al.%2, 2024, under CC BY 4.0..
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3 Results

The automatic CASEG as well as the MARISSA and the included standardization pipe-
lines were successfully implemented and evaluated. After demonstrating the results of
the CASEG, its usage in MARISSA is shown and finally the MARISSA results are pro-
vided. Numeric values are usually shown as mean + standard deviation with their specific

unit of measure.

3.1 Cascaded Segmentation (CASEG)

The CASEG was evaluated for the three segmentation pipelines: cropU, crinU and
cropU_A against the reference segmentation model refU. The following results are re-

trieved from the publication by Viezzer et al.>*.

3.1.1 Training of CASEG

The training for the ODA and segmentation models were performed separately. The ODA
identified after training a BB for the LV in all CASEG test datasets with a DSC of
93.09+2.13% and 91.99+2.80% and a HD of 3.95+1.07mm and 4.42+2.40mm for native
and contrast enhanced T1 maps respectively. Figure 7 exemplarily shows the best and
worst predicted BBs with respect to the DSC and HD metrics among the test data.

A testing of cropU and crinU among BB magnification factors from 1.0 to 2.5 in 0.1 steps
revealed a magnification factor of at least 1.3 whereas a factor of 1.44 was necessary by
calculation. Hence, a rounded-up magnification factor of 1.5 was used in cropU and crinU,
while the ODA in cropU_A was trained to directly predict the 1.5 times enlarged BB. The
enlarged BB ROI in turn revealed a significant higher ratio of relevant pixels over total
pixels of 10.38+3.27% and 10.76+4.22% compared to the original image with 0.71£0.35%
and 0.62+0.21% for native and contrast enhanced test datasets respectively. Optimal
BBs would increase this ratio to a maximum of 20.12+6.67% and 19.78+6.00 % respec-
tively.

The early stopping scheme was triggered in all trained models. The number of trained
epochs were 191, 219, 168 and 155 resulting in a training data DSC of 81.04%, 83.62%,
81.58% and 81.57% as well as a validation DSC of 83.01%, 82.82%, 82.31% and 82.77%

for refU, cropU, crinU and cropU_A respectively.



Results 25

best DSC case worst DSC case

q>, DSC =98.15% | HD = 3.12 mm DSC =87.29 % | HD = 4.42 mm
=
g best HD case worst HD case
DSC =97.06 % | HD = 1.56 mm DSC =91.12 % | HD = 6.99 mm
best DSC case worst DSC case
he]
Iy
o
c
© -
'E DSC =96.55 % | HD = 3.21 mm DSC =82.27 % | HD = 14.69 mm
o
7 best HD case worst HD case
] F
E g =]
il |
e
[o]
o

DSC =94.12 % | HD = 2.21 mm DSC =82.27 % | HD = 14.69 mm

Figure 7: CASEG results of the object detection algorithm (ODA) as exemplary plots

The best and worst cases with respect to the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) metrics
are displayed. Green denotes consensus with expert segmentation, red denotes false positive and blue denotes false
negative segmentation. Figure adapted from “Introduction of a cascaded segmentation pipeline for parametric T1 map-
ping in cardiovascular magnetic resonance to improve segmentation performance” by Viezzer et al.%*, 2023, under CC
BY 4.0.
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3.1.2 Testing of CASEG

The complete geometric and quantitative results are provided in Table 5, separated for
native and contrast enhanced T1 maps. Segmentation results for refU, cropU, crinU and

cropU_A are exemplarily shown for a good, bad and with respect to refU improving case

in Figure 8.
Table 5: CASEG numeric results for refU, cropU, crinU and cropU_A in the geometric and quantitative domain
Metric refU cropU crinU cropU_A
s g DSC (%) 72.79£8.08 | 81.06x5.57* | 81.22+552* | 81.13+5.83*
& £ HD (mm) 3.74£1.37 2.95+1.06* 3.01£1.20* 2.98+1.16*
ME (ms) -7.22#17.19 | -6.00£14.67 | -5.24+16.40* | -3.88+16.10*
MAE (ms) 14.22412.06 | 11.94210.43 | 12.45+11.89 | 12.45+11.89
% o | RMSE (ms) 18.64 15.85 17.22 16.56
< 8 | Cl(ms) -11.38/-3.05 | -9.56/-2.44 | -922/-126 | -7.79/0.02
£ | cov (%) 2.38 2.45 3.13 415
3 r (Pearson) 0.97* 0.97* 0.97* 0.97*
COD (%) 94.09 94.09 94.09 94.09
T (Kendall) 0.80* 0.83* 0.82* 0.83*
s § DSC (%) 71.41£8.54 | 80.70+£10.31* | 79.18+£10.20* | 80.15£10.21*
& £ HD (mm) 3.83+1.44 3.08+1.72* 3.35+1.90* 3.27+2.05*
o ME (ms) 5.23+8.14 4.4518.39 5.17+7.27 4.57+7.85
§ MAE (ms) 5.89+7.67 5.32+7.87 6.07+6.54 5.07+7.53
:qgj o | RMSE (ms) 9.67 9.50 8.92 9.08
® 8 | Cl(ms) 1.70/8.77 0.81/8.10 2.01/8.34 1.15/7.98
§ § COV (%) 156 1.89 1.41 172
O | r(Pearson) 0.98* 0.98* 0.98* 0.98*
COD (%) 96.04 96.04 96.04 96.04
1 (Kendall) 0.91* 0.91* 0.92* 0.94*

The values are separated for native and contrast enhanced T1 maps. * denotes statistical significance with a signifi-
cance level of a < 0.05; DSC: Dice Similarity Coefficient; HD: Hausdorff Distance; ME: Mean Error; MAE: Mean Abso-
lute Error, RMSE: Root-Mean-Squared Error; Cl: confidence interval, COV: coefficient of variation; r: Pearson’s corre-
lation coefficient; COD: Coefficient of Determination; 1: Kendall’s Tau coefficient; values are given as meantstandard
deviation. Table retrieved from “Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardi-
ovascular magnetic resonance to improve segmentation performance” by Viezzer et al.>*, 2023, under CC BY 4.0
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contrast enhanced
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DSC =63.34 % | HD =3.44 mm | AT1 = 9.52 ms
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Figure 8: CASEG results for refU, cropU, crinU and cropU_A as exemplary plots

A good, a bad and an improving case for native and contrast enhanced T1 maps are respectively displayed. Green
denotes consensus with expert segmentation, red denotes false positive and blue denotes false negative segmentation.
Figure adapted from “Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular
magnetic resonance to improve segmentation performance” by Viezzer et al.5%, 2023, under CC BY 4.0
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The overall geometric quality improved significantly in the DSC from around 72% towards
80% and the HD reduced significantly from around 3.70mm to less than 3.35mm for all
CASERG pipelines compared to refU. The boxplots in Figure 9 show the value distribution
of achieved DSC and HD values. All CASEG pipelines reached in rare cases a DSC
beyond 90% and consequently exceeded the maximum DSC of 86.39% in native and
83.56% in contrast enhanced T1 maps by refU. On the contrary, a DSC of 70% or higher
is conventionally assumed as good 6, which is not reached in all cases across the
CASEG pipelines. Although the HD reduced significantly, it remained on average in a

local segmentation deviation of two to three voxels.
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Figure 9: CASEG results for refU, cropU, crinU and cropU_A in the geometric domain

Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) were separated for native and contrast enhanced T1
maps. Figure adapted from “Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovas-
cular magnetic resonance to improve segmentation performance” by Viezzer et al.%¢, 2023, under CC BY 4.0
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The quantitative metrics ME, MAE and RMSE were reduced in the CASEG pipelines
compared to refU except for the MAE on contrast enhanced test data in crinU. Apart from
the ME in the native test data on crinU and cropU_A, ME and MAE were not significantly
improved. The Cl remained in the accepted tolerance range of 24.5ms*3. As this equiva-
lence margin was defined for native data only, an adhered equivalence margin for con-
trast enhanced T1 maps was assumed due to a lowered COV compared to the native T1
maps. Nonetheless, the correlation and Bland-Altman plots in Figure 10 show among the
native cases 20 in refU, 11 in cropU, 12 in crinU and 11 in cropU_A and 1 contrast en-

hanced case among all pipelines that exceeded the 24.5ms limits of equivalence.
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Figure 10: CASEG results for refU, cropU, crinU and cropU_A in the quantitative domain

A correlation and a Bland-Altman plot separated for native and contrast enhanced T1 maps is displayed. Blue denotes
datasets within the accepted tolerance ranges and red denotes exceeding them. Figure adapted from “Introduction of
a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular magnetic resonance to improve seg-
mentation performance” by Viezzer et al.>*, 2023, under CC BY 4.0
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All segmentations showed with significance a very strong linear correlation, in native T1
maps a strong and in contrast enhanced T1 maps a very strong monotonic correlation. A
COD of at least 94.09% explains the majority of the predicted average T1 value variation
by the intrinsic LV myocardial T1 time. The limits of agreement in the Bland-Altman-plots
showed only slight differences between the different segmentation models. The equiva-
lence margin exceeding native cases were mostly underestimating the expected average

T1 value and aligns with the histogram of disjoint segmented pixels in Figure 11.
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Figure 11: CASEG results for refU, cropU, crinU and cropU_A as relationships

The histograms show the disjoint segmented pixels clipped at 2000ms while some rare individual pixels exceeded that
margin. The correlation plots reveal the relationship between the geometric and quantitative domain, represented by
the Dice Similarity Coefficient (DSC) and the mean absolute error (MAE). The blue dots represent cases within the
accepted tolerance ranges while the red dots exceeding them. Figure adapted from “Introduction of a cascaded seg-
mentation pipeline for parametric T1 mapping in cardiovascular magnetic resonance to improve segmentation perfor-
mance” by Viezzer et al.%*, 2023, under CC BY 4.0
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The additional coherence plots in Figure 11 depict the relationship between the geometric
and quantitative domain, represented by the DSC and MAE. The linear correlation be-
tween both metrics was weak and moderate in refU while moderate and strong in all
CASEG pipelines for native and contrast enhanced T1 maps respectively. The monotony
correlation was weak for all models except for a moderate correlation of contrast en-
hanced data in crinU and cropU_A. All correlation coefficients, except for the monotony
correlation of the contrast enhanced data in refU, were statistically significant. A maximum
Pearson correlation of 0.81 implied a COD of 65.61% revealing an inexplicability of more
than a third of the MAE variation by the DSC. Finally, the majority of the 24.5ms equiva-
lence margin exceeding cases had a DSC of more than 70%, which was assumed with a

good geometric concordance?®.

3.2 Cascaded Segmentation (CASEG) in the Magnetic Resonance Imaging Soft-
ware for Standardization (MARISSA)

The used datasets for MARISSA were segmented with a retrained cropU pipeline. The
retraining included the original training and testing data together and was validated on
the validation data resulting in a DSC of 83.01% and 82.20% for the novel training and
validation data after 156 epochs.

Among the M=970 Healthy T1 maps in MARISSA 180 segmentations from the retrained
cropU segmentation, 90 segmentations from the research segmentation model by Sie-
mens Healthcare, 665 segmentations of common intersected segmentation among the
retrained cropU and research segmentation and 35 manual segmentations by experts
were used. Regarding the M=145 T1 maps from patients with HCM and AMY 85 segmen-
tations from the retrained cropU, 4 segmentations from the research segmentation model
by Siemens Healthineers, 35 segmentations of common intersected segmentation among
the retrained cropU and research segmentation and 21 manual segmentations by expert
were used.

In conclusion, the retrained cropU CASEG segmentations were useful in 965 out of 1115
cases (86.54%) and in combination with a separate segmentation model only 5.02% of
the cases required a manual segmentation intervention. Nonetheless, a visual inspection

was still required.
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3.3 Magnetic Resonance Imaging Software for Standardization (MARISSA)

The implementation of MARISSA in Python with a PyQt5 based GUI and a SQLite data-
base backend was completed and tested for general functionality as well as its im- and
export features. The following results on post-hoc standardization of native parametric T1

maps are retrieved from the publication by Viezzer et al.5?.

3.3.1 Training in MARISSA

The 24 standardization pipelines without clustering were successfully trained. However,
the individual mode could not consider the T1 map MOLLI 3(3)5b and T1 map SASHA
GRE sequences due to mismatching variations in the other CPs among the HTR during
training. As a consequence, the individual mode pipelines were not able to standardize
for those two sequences. The top three performing standardization pipelines were LSVR
regression on relative values in cascaded mode, ETR on relative values in ensemble
mode and ETR on absolute values in ensemble mode with a COV reduction of the aver-
age T1 values in HTE from 12.47% towards 5.98%, 6.10% and 6.23% respectively.

The BPSP among the 240 trained pipelines were, finally, the LSVR regression on relative
values in the cascaded mode with two bins and the agglomerative single clustering re-
sulting in a further reduced COV by 0.17% towards 5.81% in the HTE. Figure 12 illustrates
all HTE based COVs of the 240 trained standardization pipelines and reveals that the
standardization pipeline setting is crucial for the outcome. Some standardization pipeline
settings even worsened the intra-cohort variation of HTE especially in combination with

clustering.
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Figure 12: MARISSA results on the 240 trained standardization pipelines

The coefficient of variation (COV) on the healthy test dataset is displayed for various standardization pipeline settings.
The light green area denotes an improvement and the light red area a worsening compared to the original data. Only
the top three performing settings were tested for different clustering results on up to 10 clusters. The original (purple)
and best (green) COV values are highlighted. Figure retrieved from “Post-hoc standardisation of parametric T1 maps
in cardiovascular magnetic resonance imaging: a proof-of-concept” by Viezzer et al.%2, 2024, under CC BY 4.0.

3.3.2 Testing of MARISSA

By application of the BPSP on the HCM and AMY cohorts, the COV were reduced from
9.56% and 6.06% towards 4.46% and 6.05% respectively. Consequently, the COV re-
duced in the HTE and HCM cohorts but remained almost equal in the AMY cohort.

While HTE and HCM as well as HCM and AMY but not HTE and AMY were already
statistically significant different before standardization, the standardization with the BPSP
resulted in a statistically significant difference among all cohort combinations. Further-
more, the 25% to 75% quantile ranges within HCM (999.57-1186.00ms) and AMY
(1087.84-1148.40ms) overlapped for the most part with HTE (1007.81-1213.34ms) be-
fore standardization; although, higher T1 values were expected in the patient groups'®.
This dichotomy origins in the variations of the CPs within the cohorts especially regarding
the sequence and system and explains why current guidelines recommend local refer-

ence values?°. After application of the BPSP, the 25% to 75% quantile ranges reached
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1112.02-1167.72ms in HTE, 1157.81-1226.76ms in HCM and 1308.96-1394.79ms in
AMY reflecting the expected distribution. The distributions including the Cls and the CP
impact for each case are shown in

Figure 13. Although all Cls exceeded the CI of the unstandardized HTR data whose CPs
matched the reference CP environment, the HTE CI after standardization was most likely
to fit while HCM and AMY data were clearly above. Nonetheless, the average T1 value
ranges after standardization of 1136.78+66.09ms, 1186.27+52.93ms and
1337.62+80.92ms for HTE, HCM and AMY respectively as well as the boxplots in

Figure 13 reveal overlapping value ranges.

Consequently, the ROC analysis, as shown in Figure 14, identified a threshold (sensitiv-
ity/specificity) of 1163.89ms (71.90%/72.44%) between HTE and HCM, 1204.46ms
(95.83%/91.67%) between HTE and AMY and 1287.89ms (87.50%/98.35%) between
HCM and AMY. The 150% margin for the sum of sensitivity and specificity to reach a
good diagnostic performance® was obtained for the diagnostics between HTE and AMY
as well as HCM and AMY but slightly missed by 5.66% between HTE and HCM. However,
in all cohorts, the sensitivity and specificity among all scanner and sequence variants
captured values in the range of those from unstandardized intra-scanner-intra-sequence
data. Additionally, among the intra-scanner-intra-sequence datasets, the sum of sensitiv-
ity and specificity almost remained or even improved while either value changed.

Eight subjects of the HTE group were examined under two or more different technical
conditions. Figure 15 shows for each of the eight subjects the original examined T1 values
and their respective standardized values as well as the T1 values spread and the intra-
subject COV. Except for one case, all T1 value spreads could be minimized, which is also
reflected in a COV minimization across all subjects. However, individual measurements
were outlying after standardization and mostly concern SASHA based T1 mapping se-

quences reflecting its known lack of precision in favour of the accuracy?3.
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Figure 13: MARISSA results for the best performing standardization pipeline (BPSP)

The boxplots and confidence intervals are given for before and after standardization with a central plot showing the
propagation of the T1 values with respect to each confounding parameter on the respective cohort healthy (HTE),
patients with hypertrophic cardiomyopathy (HCM) and patients with amyloidosis (AMY). * denotes statistically signifi-
cance, n.s.: non significant. Figure retrieved from “Post-hoc standardisation of parametric T1 maps in cardiovascular
magnetic resonance imaging: a proof-of-concept” by Viezzer et al.®?, 2024, under CC BY 4.0.
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Figure 14: MARISSA results for the best performing standardization pipeline (BPSP) as receiver operating character-
istic (ROC) analysis

The intra-scanner-intra-sequence plots for before and after standardization were complemented with the ROC analysis
among all data after standardization considering the healthy (HTE), patients with hypertrophic cardiomyopathy (HCM)
and patients with amyloidosis (AMY) cohorts. Image retrieved from “Post-hoc standardisation of parametric T1 maps
in cardiovascular magnetic resonance imaging: a proof-of-concept” by Viezzer et al.%?, 2024, under CC BY 4.0.
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Figure 15: MARISSA results for the best performing standardization pipeline (BPSP) among the healthy (HTE) subjects
with multiple, different acquisitions

The value spread and coefficient of variation (COV) are given for before and after standardization. Figure retrieved
from “Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging: a proof-of-con-
cept” by Viezzer et al.%?, 2024, under CC BY 4.0.
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4 Discussion

This work aimed to minimize the CPs induced biases in parametric T1 mapping by the
automatic segmentation approach CASEG and a regression model based post-hoc
standardization with the MARISSA.

An improved performance of automatic segmentation approaches is achieved by ever-
more complex network structures*®47:118 or increased input data quality’'®'?'. The
CASEG incorporated the latter by an upstream image section focusing ODA with a sig-
nificant improvement of the geometric performance compared to a reference segmenta-
tion model. The quantitative domain improved likewise, however, not statistically signifi-
cant and individual cases still exceeded accepted tolerance ranges. Consequently, a full
substitution of manual segmentation by CNNs requires further investigation, especially in
the light of atypical errors compared to human readers®®.

A retrained CASEG cropU model was used in combination with an independent, alterna-
tive fully automated segmentation model to generate the segmentations of the considered
MARISSA datasets. A visual inspection was necessary to approve the segmentation
quality and in rare cases manual corrections were performed by an expert.

As a proof-of-concept, MARISSA was used to harmonize myocardial native T1 values of
midventricular slices in CMR with respect to the CPs age, sex, scanner and sequence.
The evaluated post-hoc standardization pipelines in MARISSA identified the pipeline set-
tings as crucial for the outcome quality. The evaluated BPSP was set up as LSVR on
relative values in the cascaded mode with two bins by an agglomerative single clustering.
After application of the BPSP, the COV was halved in the HTE cohort while the
intra-scanner-intra-sequence diagnostics among HTE, HCM and AMY almost remained
or even increased. Consequently, the feasibility of a post-hoc standardization of paramet-
ric T1 maps in CMR was shown.

In the following, the results of the CASEG approach are discussed first, followed by an
illumination of the BPSP outcomes in MARISSA, the limitations of both and finally an

outlook on their potential future integration in the CMR imaging chain is shown.
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4.1 Cascaded Segmentation (CASEG)

The manual and time-consuming segmentation of parametric T1 maps suffers from
intra-reader variabilities*®*”. In recent years, CNNs were increasingly used to automate
this task and stirred up hope for accurate and reproducible segmentations®®'22. However,
uncertainties persists due to deviations from expert segmentation and differences across
CNN models'?®. The CASEG approach maintained the precision advantages of a CNN
while simultaneously increasing the accuracy by focusing on the relevant image section.
The novelty of the CASEG approach is the integration of a preliminary ODA for the para-
metric T1 map segmentation. The BB detection by an ODA have been widely used in
other disciplines considering a plethora of objects within an image resulting in highly com-
plex network structures'?*'2%. Due to the single detection of the LV as the only object
class, the simple, classical U-Net structure was sufficient. The geometric concordance is
in line with the DSC results of 92.4+3.6% for the LV BB detection in native CINE images
by Niu et al.’?®. The false-negative uncertainty was reduced by the magnification factor
enlargement, which is optimized for the used dataset and does not necessarily generalize
for other data. While too low and too high magnification factors impar the overall perfor-
mance, cropU and crinU showed a robust performance in a factor range of 1.3 to 2.5.
Although CASEG could be implemented as a fully complex end-to-end network structure
like the DoubleU-Net'?’, the separation of ODA and segmentation network enables an
easy replacement of either network but requires intermediate processing steps.

The classical U-Net, like the refU, is a common automatic segmentation CNN for medical
images and was used in literature as a benchmark for novel complex CNNs*8_ Although
a similar structure was used among all those studies, the hyperparameter settings were
different. The evaluation of optimal hyperparameters is a tedious task that was systemat-
ically approached in this work. Consideration of unaddressed hyperparameters requires
more effective approaches as described in literature'?®-13° to handle the exponential in-
creasing amount of hyperparameter combinations. Additionally, the training of the U-Nets
based on a pure geometric loss function which misappropriates the quantitative domain.
In the test dataset only midventricular and basal slices were used as those were recom-
mended by current guidelines as stable slice location?°. In literature, alternative automatic
segmentation models used either midventricular slices only*’ or the whole SAX stack*6:48,
but in any way different datasets that were based on a ShMOLLI acquisition scheme.
Although ShMOLLI is a MOLLI derivative, the shortened version produces different T1
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values than other MOLLI schemes®? and thus limits the quantitative comparison with
those alternative segmentation models.

In native parametric T1 maps the refU performed inferior compared to the U-Net DSC
results of 78%*’, 82.7%*® and 83.13%%8 according to literature. However, the incorpora-
tion of the BB information by cropU, crinU and cropU_A pipelines improved the geometric
results compared to refU and aligned with the performances of the standard U-Nets in
literature*®—8, The same applies to contrast enhanced T1 maps with refU being inferior
to the DSC of 74.1% by Farrag et al.*® while the CASEG pipelines including the BB infor-
mation were outperforming. Nonetheless, the DSC results of 84% by Puyol-Anton et al.*’
and 85% by Hann et al.*® with their respective complex network structures were out of
reach for the CASEG pipelines. Compared to a human reader, the CASEG pipelines
showed comparable results to the intra-observer performance of 72% DSC and 15.61mm
HD in native and 83% DSC and 9.03mm HD in contrast enhanced data'’.

Although the CASEG pipelines showed an improved geometric performance compared
to refU, the quantitative performance was not significantly improved. Hann et al.*®
reached an even higher DSC of 85%, but the MAE of 11.3ms were only slightly below the
cropU results. Considering the maximal reached COD of 62.41% between DSC and MAE,
a systematic minimization of quantitative outcomes is only achievable at higher geometric
concordance. The MEs in the CASEG pipelines as well as refU were in the published
range of 4.6ms?*®, 8ms*® and 12.4ms*’ for native T1 maps but exceeded the 2ms*® in
contrast enhanced data while the Cls remained in the intra-observer equivalence range*:.
The used equivalence margin was the strictest applicable rule as it reflected an expert
intra-observer variability*3. It was, however, solely evaluated for native T1 maps. The ap-
plication on contrast enhanced T1 maps in combination with a COV comparison is a si-
militude but not scientifically approved.

The annulus shaped segmentation ROI accounts for all LV segments at the expense of
increasing variation compared to a septal segmentation?’. False positive segmented
voxels at either epi- or endocardial border potentially further impair quantified T1 values
due to partial volume effects. Commercial software, like cvi42 (Circle Cardiovascular Im-
aging, Calgary, Canada), provides a safety margin functionality to shrink the segmented
contours towards intra-myocardium by a defined proportion to compensate this effect on
the potential cost of turning some true positives into false negatives. This post-processing

step has not been addressed in the CASEG pipelines so far.
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4.2 Magnetic Resonance Imaging Software for Standardization (MARISSA)

While the comparability of parametric T1 mapping data was published over the last dec-
ade, the validity was only limited to specific cohorts and technical environments?*?.132-134,
The z-score transformation into values without a unit of measure was a first generalizable
approach for a CP independent T1 value comparability®'. Although this transformation is
considered in current guidelineszo, its establishment is undermined in the clinical routine
due to additional efforts and costs. A local healthy cohort examination is necessary to
evaluate the reference values for the z-score transformation®' and potentially requires a
re-examination after a hard- or software change. Similar to the fixation of the technical
environment, the z-score does not account for subject specific CPs. Physiological CP
influences on parametric T1 mapping has been described in literature by regression
model analysis3®4°. At this point MARISSA comes into play and harnesses regression
models for a post-hoc standardization. This approach also relies on healthy volunteer
data but reveals a generalization potential. Technical as well as subject specific CPs were
considered and their assessed influences are transferable onto other sites. This poten-
tially reduces the amount and costs in a long-term perspective.

The post-hoc standardization in MARISSA was limited to the four considered CPs age,
sex, scanner and sequence. As processing and reconstruction performed on the scanner
are usually not described in DICOM tags, those potential CPs are currently neither includ-
able nor accessible. The segmentation procedure, in turn, is accessible but hard to define.
The segmentation was circumvented as a CP by an automatic segmentation with sparse
manual interventions. Nonetheless, other CPs, like heart rate (HR)**'%°, body-mass-index
(BMI)'38 or partial volume effects due to voxel sizes'®’, are known to influence parametric
T1 mapping values. Due to anonymization, BMI and HR were partly missed in the con-
sidered datasets. As these three CPs are numerical parameters, additional datasets
would be necessary to capture all categorical CP values in the individual and cascaded
mode. The amount of necessary training data in MARISSA depends in particular on the
number of considered CPs, the value variation in categorical CPs and the mode of the
standardization pipeline. The individual mode accounts best for isolated CP biases, but
requires the highest amount of training data with well sorted CPs variations in order to
capture all CP values. The two missed sequences revealed a lack of training data for the
evaluated individual mode pipelines. The cascaded mode is more robust than the individ-

ual mode and potentially depicts inter-CP dependencies in parts but may miss CP values
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due to its susceptibility to the order of considered CPs. The multi-CP regression model in
the ensemble mode requires the least number of training data and has the best potential
to depict inter-CP dependencies. However, the ensemble mode standardization fails for
data that includes categorical CPs of unknown value while cascaded and individual mode
are able to skip for those and standardize in regard of the remaining CPs. The conversion
of numerical CPs into categorical by clustering i.e. ages into decades or BMI into groups
proposed by the world health organization'*® may in turn decrease the necessary amount
of training data.

In addition to the mode, the choice of the regression-type and unit of measure were most
important for improving the COV by 6.49%, whereas the value clustering reached an ad-
ditional gain of only 0.17%. Even worse, clustering was shown to be detrimental on the
performance in many cases, which shows that this is a rather potential fine-tuning step
than a necessary option for the post-hoc standardization.

The used datasets included only Philips and Siemens scanners as other manufacturers
were not accessible. The patient cohorts, HCM and AMY, were skewed since examina-
tions were mainly performed on 1.5T Siemens scanners and thus had lower T1 values
than expected compared to healthy subjects’®.

After application of the BPSP, the expected statistically significant differentiation across
the considered cohorts HTE, HCM and AMY with respective increasing T1 values'% were
reached. The ROC analysis results were comparable to intra-scanner-intra-sequence cir-
cumstances, but the 150% margin for sufficient evident differentiation®” was narrowly
missed between HTE and HCM. As hypertrophic cardiomyopathy rarely affects the whole
LV, the focus on midventricular slices only does not reflect the plethora of phenotypes of
HCM'3°, Additionally, a variety of genotypes and risk factors affects the state of a hyper-
trophic cardiomyopathy and consequently, the affected myocardium changes over time
with manifold morphologies'®®%. For that reason, the partly overlapping but statistically
significant different T1 value ranges of HTE and HCM align after standardization with
intra-scanner literature values on 3T scanners (Healthy vs. HCM) by Liang et al.
(1228.4+42.7ms vs. 1290.0+64.3ms)'®, Qin et al. (1240.0+29.8ms vs.
1308.0+55.5ms)'%* and Lavall et al. (1225+21ms vs. 1266+44ms)'%,

The differentiation between HTE and AMY after BPSP standardization was in the range
of Baggiano et al.™°, with an intra-scanner sensitivity of 85% and specificity of 87%, and

Kranzusch et al.®", with a sensitivity of 96% and specificity of 100% after application of
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the z-score. However, Baggiano et al.™? included 436 patients with amyloidosis com-
pared to solely 38 in the work by Kranzusch et al.®' and 24 in this work.

The sensitivity of 76.1%, 86.54% and 100% as well as the specificity of 80.36%, 83.3%
and 97% by Lavall et al.’® Nam et al.’*' and Martines-Naharro et al.'? suits the respec-
tive obtained values between HCM and AMY in this work. Consequently, after standard-
ization of midventricular native parametric T1 maps with the BPSP patients with amyloi-
dosis are reliable diagnosable while hypertrophic cardiomyopathy detection depends on
the amount and location of fibrosis.

The persistence of outliers after standardization in an intra-subject perspective reveals
imprecision as a major limit. Therefore, optimal results are solely obtained with precise
data. This requires a respective sequence variant on a stable, high quality scanning sys-
tem. This susceptibility to imprecision is shared by any post-hoc transformation approach,

143

like the z-score'**, as long as no further CP information is available that correlates with

the source of imprecision.

4.3 Limitations

A selection procedure for the used datasets in regard of native and contrast enhanced T1
maps in CASEG and CP value distributions as well as cohort statistics in MARISSA was
omitted in favour of using as much available data as possible. Consequently, the datasets
were imbalanced with respect to cohort characteristics, scanner and sequence variants.
This limits the generalisability of the CASEG models as well as the BPSP results. Alt-
hough scanner-sequence combinations that have not been reflected in the training data
would pass through the BPSP with a standardized output, a dedicated investigation re-
mains unaddressed yet. The evaluated output was limited to midventricular slices only in
case of MARISSA and midventricular and basal slices in case of CASEG.

The BPSP transforms quantitative parametric T1 mapping values into values of a refer-
ence CP environment acquisition without consideration for accuracy. The systematic bias
between the reference CP environment and the intrinsic true T1 value of the underlying
tissue persists. The reference value for the sequence, for example, was set to MOLLI

5(3)3 b, which is commonly known as a precise but underestimating sequence®.
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4.4 Outlook

Parametric T1 mapping lacks universal valid reference values due to CP influences along
all steps in the imaging chain?®22. A harmonization of those minimizes the induced biases.
While assessment specific CPs were handled by the CASEG approach, the BPSP within
MARISSA accounted for subject-specific and technical CPs. If in a long-term future per-
spective both, the fully automated segmentation procedure and the post-hoc standardi-
zation approach, show reliable and validated results without the necessity of a manual
intervention, then the CMR imaging chain will be adapted. The manual segmentation task
will be substituted by an automatic approach while a standardization step will be inserted
between the segmentation and classification. Preferably, both will be implemented inline
the MRI scanner and provided together with the source images as well as the original T1
map. Heretofore, further optimizations are worth investigating.

Regarding the CASEG, performance gains are reachable by replacing the secondary
segmentation CNN with more complex architectures*®4’ or recent U-Net model adap-
tions''®. The crucial border pixel segmentation may be improved by splitting the second-
ary segmentation into two subtasks in order to segment the endocardial contour, repre-
sented by the blood pool area, and the epicardial contour, represented by the blood pool
and myocardial area, independently. Finally, an essential step for the automatic segmen-
tation of parametric T1 maps is the definition of a loss function that includes the geometric
and quantitative domain at the same time. As the absolute values differ due to the differ-
ent unit of measures, the definition of such a loss function is not straight forward.

In MARISSA automatic segmentation strategies must be considered as a potential CP in

the future since artificial intelligence based segmentations become more popular'#*

, €8-
pecially in the view of increasingly used datasets. The results of the BPSP were only a
first step to prove the concept and feasibility of a post-hoc standardization. In the future,
more training data must be included in order to access more CPs and other CP values.
A validation on datasets of similar scanners and sequences from other sites are neces-
sary to prove the generalizability among scanners of the same vendor. MARISSA has the
potential to strengthen the use of parametric T1 mapping in the clinical routine by making
T1 mapping values transferable. Finally, as the name Magnetic Resonance Imaging Soft-
ware for Standardization (MARISSA) implies, the post-hoc standardization approach is
implemented for the usage on other quantitative methods like parametric T2, T2* or T1p

mapping, but requires further investigation.
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5 Conclusions

Segmentation is a necessary step for the evaluation of parametric T1 maps. While fully
automated segmentation procedures play an increasing role to accelerating and simpli-
fying the workflow, the usage of a bounding box information in a segmentation model, like
the cascaded segmentation (CASEG), improves the segmentation quality. The quantita-
tive domain is underrepresented during training and requires further development of suit-
able loss functions. A visual inspection is currently inevitable to assure quality as done
for the used datasets in the regression model based post-hoc standardization approach.
The standardization pipeline performance highly depended on an appropriate setting. The
evaluation of the best performing standardization revealed the comparability of datasets
of different origin while maintaining the diagnostic power as in intra-scanner-intra-se-
quence circumstances among healthy subjects and patients. Further improvements are
expected in the future by including more datasets and confounding parameters in the
standardization pipeline training of the Magnetic Resonance Imaging Software for Stand-
ardization (MARISSA).
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Introduction of a cascaded
segmentation pipeline

for parametric T1 mapping
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The manual and often time-consuming segmentation of the myocardium in cardiovascular magnetic
resonance is increasingly automated using convolutional neural networks (CNNs). This study proposes
a cascaded segmentation (CASEG) approach to improve automatic image segmentation quality.
First, an object detection algorithm predicts a bounding box (BB) for the left ventricular myocardium
whose 1.5 times enlargement defines the region of interest (ROI). Then, the ROl image section is fed
into a U-Net based segmentation. Two CASEG variants were evaluated: one using the ROI cropped
image solely (cropU) and the other using a 2-channel-image additionally containing the original BB
image section (crinU). Both were compared to a classical U-Net segmentation (refU). All networks
share the same hyperparameters and were tested on basal and midventricular slices of native and
contrast enhanced (CE) MOLLIT1 maps. Dice Similarity Coefficient improved significantly (p<0.05) in
cropU and crinU compared to refU (81.06%, 81.22%, 72.79% for native and 80.70%, 79.18%, 71.41%
for CE data), while no significant improvement (p < 0.05) was achieved in the mean absolute error of
the T1time (11.94 ms, 12.45 ms, 14.22 ms for native and 5.32 ms, 6.07 ms, 5.89 ms for CE data). In
conclusion, CASEG provides an improved geometric concordance but needs further improvementin
the quantitative outcome.

Cardiovascular magnetic resonance (CMR) is one of the most important non-invasive imaging modalities for
risk stratification in cardiovascular diseases It enables the characterization of focal and diffuse changes in the
myocardial tissue by quantitative techniques such as parametric mapping?, which is considered as one of the most
meaningful innovations in recent CMR developments*®, While T2 mapping is used for the detection of myocar-
dial edemas, T1 mapping is applied across multiple pathophysiological mechanisms and tissue characteristics*, A
T1 map can be acquired before, referred as native, or after application of a contrast agent, referred to as contrast
enhanced (CE)°®. The latter is usually integrated in the calculation of an extracellular volume (ECV) map.

For diagnostics, the post-processing involves the segmentation of the myocardium as tissue of interest in order
to obtain quantitative values’. This is usually performed in a manual and often time consuming manner’-'°.
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Furthermore, even experienced readers show intra-observer variability that results in considerable quantifica-
tion uncertainty'!. Current developments attempt to overcome both, the time consumption and the repro-
ducibility uncertainty by using convolutional neural networks (CNNs) to automatically segment the tissue of
interest. One of the most prominent CNN models in medical segmentation tasks is the U-Net! introduced by
Ronneberger et al.'. While a standard U-Net already shows an average geometrical overlap above 70% with an
expert segmentation®!®1%, which is conventionally assumed as a good result®, current development focuses on
technical improvements for even better segmentation quality. At present, many strategies intend to advance the
CNN models towards more complex framework structures® or integrating alternative architecture structures'.

Parametric maps are images with pixel values representing the amplitude of a physical quantity. However, the
vast majority of pixels contain superfluous background information. Object detection algorithms (ODAs) are
used to find object regions of interest (ROI) in images by localizing a bounding box (BB) around those objects
with the help of CNNs'*'¢. Consequently, ODAs can help to focus on a ROI in parametric mapping and thus, to
reduce the amount of background information that is fed into an automatic segmentation network.

Although the detection of left ventricular myocardium by ODAs already exist for CINE images in CMR'®,
its application on parametric T1 mapping and combination with automatically segmenting CNN procedures
remains to the best of our knowledge unaddressed. Consequently, the aim of this study is to analyze the impact
of input data enhancement on the segmentation quality in parametric T1 mapping by introducing an ODA as a
preliminary processing step before the actual segmentation task. This coarse to fine segmentation procedure is
named in the following as cascaded segmentation (CASEG).

Materials and methods
Dataset. A heterogeneous dataset of parametric T1 maps with corresponding manual reference segmen-
tation from published'”""* and on-going studies® was used. The inline T1 maps were either generated on a
1.5 T AvantoFit, a 3 T SkyraFit or a 3 T PrismaFit clinical magnetic resonance imaging scanner (all Siemens
Healthcare, Erlangen, Germany) and were based on the MOLLI sequence using a 5(3)3 scheme for native and a
4(1)3(1)2 scheme for CE acquisitions.

Data from N =403 participants (97 healthy volunteers and 306 patients) were used resulting in a total of
M = 1438 parametric T1 maps, of which 1080 were native and 358 CE T1 maps. The difference in the quantity of
native compared to CE T1 maps is due to the absence of CE measurements in some of the original studies. The
dataset was randomly split per study set into 75% training, 10% validation and 15% test data. Table 1 shows an
overview of the dataset and the amount for training, validation and testing. While some source studies in the
dataset contained a full short axis T1 map stack, others only had three (basal, midventricular and apical), two
(mostly basal and midventricular) or solely one (mostly midventricular) slice. The training and validation were
done on all assigned T1 maps to assure for an advanced generalization of the segmentation network, whereas,
the test dataset was restricted to midventricular and basal slices only as recommended by the society for car-
diovascular magnetic resonance®. The reference segmentation was performed manually by experienced readers
using the software cvi42 (Circle Cardiovascular Imaging, Calgary, Canada). The data acquisition and manual
segmentation processing were performed in accordance with relevant guidelines and regulations. This study
was approved by the local ethics committee of the Charité Universitatsmedizin Berlin (study ID: EA 1 253 21).

ODA. A CNN based ODA was used to detect a BB' that tightly fits the left ventricular myocardium in the
parametric T1 map. During training, the ODA CNN behaved like a conventional segmentation CNN by provid-
ing the target BB data as binary mask. The predicted raw output of the ODA CNN model, in turn, needed a post-
processing in order to represent a binary mask of a BB. First, the output was thresholded at a value of 0.5, then
the largest connected component (LCC) was identified as the BB ROI. The minimum and maximum indeces of
the LCC along both image axis defined the BB edges. These edges were finally converted into a BB binary mask.

A magnification factor to enlarge the BB was evaluated in order to securely cover the whole left ventricle
within the ROL The maximum occurring factor across the test data is assumed as suitable to guarantee for this.
This factor was used to compensate uncertainties from the CNN based prediction while keeping the ROI small
compared to the original image size.

CASEG. The basic idea of CASEG was the subsequent arrangement of two independent CNN models. The
ODA served as a first coarse prediction of a potential ROI while the second CNN was applied on the focused
image section in the ROI for the actual segmentation task and returned the final segmentation mask.

Training Validation Testing Total
Subjects (N) 313 35 55 (55) 403
Native T1 maps 849 91 140 (106) 1080
Contrast enhanced T1 maps 286 27 45(33) 358
Total T1 maps (M) 1135 118 185 (139) 1438

Table 1. Overview of the complete dataset, the (numbers) in brackets denotes the number for midventricular
and basal slices only that are used as test dataset in this study.
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Figure 1. Processing pipelines for refU, cropU and crinU, Convolutional neural networks (CNNs) are used
for the segmentation of the myocardium as tissue of interest. While refU directly uses the input image, cropU
and crinU use the region of interest image section that belongs to the 1.5 times enlarged bounding box from
an object detection algorithm (ODA). In contrast to cropU, crinU uses a two channel image with the second
channel having the original predicted bounding box mask.
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Due to the BB enlargement for the ROI definition, two potential CASEG pipelines (cropU and crinU) were
evaluated as visualized in Fig. 1. In cropU, the input image for the secondary segmentation CNN was the original
image cropped to the ROI image section. In contrast to that, the crinU worked in a similar manner and also
considered the cropped image section. However, in crinU, the input image for the secondary segmentation
CNN was extended by a second channel that comprises the unenlarged BB (shown as green overlay in Fig. 1).
Considering cropU, an alternative implementation exists as visualized in Supplemental Material S1 by having
an ODA that directly predicts an enlarged BB without the magnification factor processing step between ODA
and segmentation network (cropU_A).

All three CASEG pipelines were compared to a reference pipeline (refU) that was equivalent to the secondary
segmentation model without any preliminary ODA such that the original image was directly fed into the CNN.

Quality assurance. All CNN models including the ODA were implemented as U-Nets. As this study aimed
to analyze the impact of input data enhancement by using a preliminary ODA, the same hyperparameters were
used for all CNNs except for the number of input channels. The selected hyperparameters showed the best results
in the reference refU. The models had 27 layers with 6 skip connections and the input size was 256 x 256 x 2 for
the secondary segmentation model in crinU and 256x 256 x 1 for all other U-Net models. A detailed U-Net
structure overview is shown in the Supplemental Material S2. Consequently, the input images were resized and
interpolated to the model specific size. The log-cosh-dice loss function®! with an Adam optimizer?? having a clip-
norm of 0.001 was used. The batch size was set to 10 and the number of epochs was 1000 but an early stopping
scheme? that ended the training after 50 epochs of no improvement with respect to the dice similarity coefficient
metric in the validation data was used. The learning rate, which reflected the maximum learning rate value the
Adam optimizer could capture, of initially 0.001 was halved every 25 epochs of no improvement.

During the training of the individual models, the training dataset was randomly augmented“ with brightness
adjustments, contrast adjustments, blurring, Gaussian random noise, salt and pepper noise, rotation, mirroring,
axis downsampling and, for the refU and ODA only, a cropping of the image. Additionally, during training of the
secondary segmentation CNN models in cropU and crinU, the detected BB was randomly shifted and resized
by up to 5 pixels, whereas in 5% the optimal BB was used instead of the predicted one and in another 5% a failed
BB detection was assumed in order to reflect potential detection uncertainties.

In case of a BB prediction failure, the ODA returned a binary image with only zero values reflecting no found
BB. In such a case, cropU behaved similar to refU and used the original image as input. Further, crinU used the
original image as first channel as well and kept the second channel zero valued. If the BB enlargement exceeded
the image boundaries, the ROI was cropped at that boundary such that it never exceeded the original image.

For normalization of the input images, each input image channel was scaled to floating point values between
zero and one. Further, while the input images were internally resized to the model specific size, the output was
back transformed to the original input image size. To losslessly apply this and other geometric transformations,
the segmentation masks were converted from binary pixel masks to vectorized contour objects allowing for
geometrically precise transformation. The transformed structures were then rasterized back into pixel masks.
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The primary domain of the output quality measure is of geometric nature. The geometric domain reflects
the spatial similarity of two individual segmentations. For that reason, the Dice Similarity Coefficient (DSC)
and the Hausdorff Distance (HD) were used as geometrical quality metrics. Both were supported visually with
boxplots. As the DSC and HD were not normally distributed, non-parametric Friedman (across all models) and
Wilcoxon (across refU and either CASEG pipeline) tests were used with a significance level of p <0.05. Signifi-
cance was assumed if both statistical tests were significant. Additionally, the enlarged BB detection was tested for
the increment in the ratio of relevant pixels reflecting the foreground information to the total number of pixels
in the image section compared to the original image. The ratio increment was tested with a Wilcoxon test for
significance with a significance level of p <0.05.

As parametric T1 maps provide clinically interpretable quantitative measurements, the quantitative domain
was tested for the effect of the four segmentation approaches on the estimated average T1 time. The mean error
(ME), mean absolute error (MAE) and root mean squared error (RMSE) were used in combination with the
confidence interval (CI) to evaluate the quality in the quantitative domain. The CI were tested for remaining
within the published equivalence margin derived from an intra-observer variability of native T1 maps, which is
defined as the clinically acceptable deviation''. As the four models were evaluated on the same test dataset, the
Cls were Bonferoni corrected'". The coefficient of variation (CV) with respect to the quantitative T1 error were
additionally provided in order to analyze if the CE segmentations would remain in an adequate equivalence
margin for CE data.

As the ME and MAE are not normally distributed, non-parametric Friedman and Wilcoxon tests were used
for the comparison of these metrics with a significance level of p<0.05. A lower RMSE was assumed to indicate
an improvement.

Additionally, a correlation plot including linear regression, the Pearson Correlation (testing for linearity) and
Kendall's Tau (testing for rank-order stability) were provided. While conventionally correlation coefficient values
are assumed as weak if smaller than 0.35, moderate if up to 0.67, strong if up to 0.90 and very strong if above,
the coefficient of determination (CoD, squared Pearson correlation coefficient), represents the amount of shared
variance between two measures and thus may support the interpretation of the findings*. The correlation plot
was complemented with a Bland-Altman plot in order to visualize the limits of agreement®.

As T1 times of native and CE maps are on different scales, all analysis were separately performed on native
and CE data.

Source code. All programming tasks were implemented in Python (version 3.8, Python Software Founda-
tion, Beaverton, USA). The necessary Python libraries with their specific used version are listed in the Supple-
mental Material $3. The U-Nets were implemented using the Tensorflow?’ library (version 2.7.0) while statistics
were calculated with the scipy®® package (version 1.4.1) and plots were created with the matplotlib® library (ver-
sion 3.5.2). The software includes a README file with a description for using the software. The user does not
need to take care about processing between the ODA and the segmentation network as this is done automatically
in the provided scripts.

Ethical approval. This study was approved by the local ethics committee of the Charité Universititsmedi-
zin Berlin as retrospective study (study ID: EA 1 253 21). The requirement for written informed consent was
acquired during the original clinical studies and was therefore waived in this study due to its retrospective design
as approved by the local ethics committee of the Charité Universitatsmedizin Berlin (study ID: EA 1253 21).

Results
Numbers in the results are shown as mean + standard deviation with their specific unit of measure.

ODA. The U-Net based ODA identified a BB of the left ventricle in all cases of the test dataset. Figure 2 shows
respectively the best and worst cases for the BB prediction in regard of DSC and HD across native and CE test
data. Throughout the whole test dataset, the predicted BBs resulted in a DSC of 93.09 +2.13% and 91.99 +2.80%
and a HD of 3.95+1.07 mm and 4.42 +2.40 mm for native and CE T1 maps respectively.

In order to securely cover the whole left ventricle with the BB across the test dataset, a magnification factor
of at least 1.44 was necessary. Hence, cropU and crinU were set up with a rounded-up magnification factor of
1.50. In the Supplemental Material S4 the impact of the magnification factor on the average DSC results in the
test dataset for cropU and crinU is shown. For magnification factors between 1.3 and 2.5, the results reached a
performance plateau with minor fluctuations due to model training uncertainties.

Comparing the ratio of relevant foreground pixels to the total number of pixels, the ratio increased signifi-
cantly (p<0.05) t010.38+3.27% and 10.76 + 4.22% in the test dataset for native and CE maps as compared to
0.71+0.35% and 0.62 +0.21% when using the ROI image section instead of the original image. Assuming an
unenlarged perfectly fitting BB, the maximum reachable ratio would be 20.12+6.67% and 19.78 + 6.00% for
native and CE test data respectively. In the training and validation dataset, the increment was similar. Detailed
boxplots of the ratio of relevant pixels are provided in the Supplemental Material S5 separately for native and
CE data in the training, validation and test datasets.

CASEG. Exemplary segmentation results for refU, cropU, crinU and cropU_A are shown in Fig. 3 with a
good case across all four pipelines, a case improving in CASEG compared to refU and a rather poor case across
all four pipelines respectively for native and CE T1 maps. In Table 2 detailed results of geometric and quantita-
tive metrics are provided.
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Figure 2. Example results of the object detection algorithm showing bounding boxes for the left ventricular
myocardium. The upper block corresponds to native and the lower block to contrast enhanced data; respectively
in each block the first row corresponds with respect to the Dice Similarity Coefficient (DSC) and the second
row corresponds with respect to the Hausdorff Distance (HD) while the first column shows the best and the
second column the worst case. Green denotes true positive, blue false negative and red false positive segmented
bounding box pixels.
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Figure 3. Example results of the automated segmentation in refU, cropU, crinU and cropU_A. The first column
shows the original image, the second column the refU segmentation, the third column the cropU segmentation,
the fourth column the crinU and the fifth column the cropU_A segmentation. The upper block corresponds

to native and the lower block to contrast enhanced data; respectively in each block the first row shows a fairly
good case across all four pipelines, the second row shows a case that is improved in cropU and crinU compared
to refU and the third row shows a poor case across all four pipelines. Green denotes true positive, blue false
negative and red false positive segmented pixels.
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Metric [ reru [ cropu [ erinu [ cropu_a
Native
Geometric
DSC (%) ‘72.7%8.08 ‘smsts.sv ‘Bl.ZZiS.SZ’ ‘81.13i5.83"
HD (mm)  [374x137  [295:106° [301x120°  |298x 116"
Quantitative
ME (ms) ~722%17.19 | -6.00%1467 |-524+1640* |- 3.88+16.10%
MAE (ms) | 1422£12.06 | 11.94£1043 | 1245411.89 | 12.45%11.89
RMSE (ms) | 1864 15.85 17.22 16.56
CI (ms) ~1138/-3.05 | -9.56/-2.44 | -9.22/-126 |-779/0.02
CV (%) 2.38 245 3.13 415
1 (Pearson) 0.97* 0.97* 0.97* 0.97*
CoD (%) 94.09 94.09 94.09 94.09
T (Kendall) | 0.80% 0.83% 0.82* 0.83*
Contrast enhanced
Geometric
DSC(%)  [7141£854  [8070£1031% [79.18%1020° [s0.1521021°
HD (mm)  [383%144 308172 |3355190°  |3.27#205°
Quantitative
ME (ms) 52348.14 445839 5.1747.27 457+7.85
MAE (ms) | 589+7.67 532£7.87 6.07+6.54 5.07+7.53
RMSE (ms) | 9.67 9.50 8.92 9.08
CI (ms) 170/8.77 081/8.10 2.01/8.34 1.15/7.98
CV (%) 156 189 1.41 172
1 (Pearson) 0.98% 0.98% 0.98*% 0.98*
CoD (%) 96.04 96.04 96.04 96.04
T (Kendall) | 091 0.91% 0.92* 0.94%

Table 2, Overview of the geometric and quantitative results for refU, cropU, crinU and cropU_A in the T1
map test dataset separated for native and contrast enhanced T1 maps. DSC dice similarity coefficient, HD
Hausdorff distance, ME mean error, MAE mean absolute error, RMSE root-mean-squared error, CI confidence
interval, CV coefficient of variation, r Pearson’s correlation coefficient, CoD coeflicient of determination, T
Kendall’s Tau coefficient; values are given as mean + standard deviation. *Denotes statistical significance with a
significance level of p<0.05.

The geometric quality improved significantly for all CASEG pipelines in comparison to the refU across the
native and CE test datasets. The DSC improved significantly (p <0.05) from around 72% towards 80% while the
HDs were minimized significantly (p <0.05) from above 3.70 mm to around 3.00 mm in all CASEG pipelines
with the exception of a significant (p <0.05) reduction to only 3.35 mm and 3.27 mm for CE data in crinU and
cropU_A respectively. The corresponding boxplots in Fig. 4 illustrate these results and show that in some cases
even a DSC of more than 90% was achieved in all three CASEG and across native and CE data, while refU reached
a maximum DSC of 86.38% in native and 83.56% in CE data only. On the other hand, given 70% as threshold
conventionally assumed as a good DSC?, there were still cases left in cropU, crinU and cropU_A below that
margin. The HD showed a minimization in the CASEG but remained with an average distance of 2.95 mm to
3.35 mm within the range of two to three pixels deviation.

Numerically ME, MAE and RMSE were consistently reduced in cropU, crinU and cropU_A compared to refU
in the native as well as CE test data except for MAE in crinU for CE test data as shown in Table 2. Neither ME
nor MAE showed a significant (p < 0.05) improvement compared to refU except for ME in crinU and cropU_A
for native data. The CI of all pipelines stayed within the equivalence margin of 24.5 ms''. A visual support of
this result is shown in the Supplemental Material S6. The CV of the CE test data stayed below the CV of the
corresponding native test data in all pipelines. As a consequence, the CE results were assumed to remain in an
adequate equivalence range based on CE data only.

Furthermore, all four pipelines showed a very strong linear correlation in native and CE test data, a strong
monotonic correlation in the native test data and a very strong monotonic correlation in the CE data as shown
in Table 2. The CoD was at least 94.09% such that the majority of the variation in the predicted average T1 time
was explained by the variation of the targeted average left ventricular myocardial T1 time. Figure 5 shows the
quantitative results as correlation- and Bland-Altman-plots in refU, cropU, crinU and cropU_A separately for
native and CE test data. The plots indicate 20 native cases in refU, 11 native cases in cropU, 12 native cases in
crinU, 11 native cases in cropU_A and 1 CE case in all pipelines that exceeded the limits of equivalence.

The Bland-Altman plots show that the limits of agreement differ only slightly between refU, cropU, crinU
and cropU_A across the native as well as the CE test data. Further, the majority of those cases that exceeded the
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Figure 4. Geometric results of the automated segmentation. The first column shows the geometric results for
refU, the second column for cropU, the third column for crinU and the fourth column for cropU_A. The upper
block corresponds to native and the lower block to contrast enhanced data; respectively in each block the first
row shows the boxplots of the Dice Similarity Coefficient (DSC) and the second row shows the boxplots of the
Hausdorff Distance (HD).

equivalence margin were underestimating the expected average T1 time. This was confirmed in the histograms
of disjoint pixel values as shown in Fig. 6. The histograms show that false negative segmented pixels in the native
test dataset tend towards higher T1 values whereas in the CE test dataset towards lower T1 values independent
of any of the three pipelines. Individual outliers in the native histograms are outside of the plotted range, but
occur rarely on values above 2000 ms.

Finally, the coherence analysis in Fig. 6 shows the relationship between the DSC and the absolute T1 error.
While in the native test data refU showed a weak and all CASEG showed a moderate linear correlation, the lin-
ear correlation in the CE test data was moderate in refU and strong in all CASEG. In contrast to that, the rank
order stability was only weak across all test data and pipelines except for a moderate stability in the CE test data
for crinU and cropU_A. Facing the maximum Pearson correlation coefficient of 0.81, the maximum CoD only
reached a value of 65.61% implicating that more than a third of the variation is not explained. Nonetheless, except
for the rank order stability correlation in CE data for refU, both correlation indices are significant (p <0.05) in
any pipeline. Further, it shows that most cases in CASEG and almost half of the cases in refU that exceeded the
24.5 ms equivalence margin had a DSC above 70% which is assumed with a good geometric result®.
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Figure 5. Quantitative results of the automated segmentation. The first column shows the quantitative results
for refU, the second column for cropU, the third column for crinU and the fourth column for cropU_A. The
upper block corresponds to native and the lower block to contrast enhanced data; respectively in each block
the first row shows the correlation plot including the linear regression and the equivalence margin whereas the
second row shows Bland-Altman-plots including the limits of agreement. Blue dots represent cases within the
equivalence margin while red dots represent cases exceeding the equivalence margin.

Discussion

In CMR, the development of automated segmentation methods based on CNNs aims to substitute the neces-
sity of an expert segmentation®’. More complex network structures showed an improvement in segmentation
quality®>!* while it is also known that the segmentation quality highly depends on the input data quality*-*.
Hence, this study explored the impact of an upstream object detection as a quality enhancement of input data on
the segmentation quality of parametric T1 maps. Our main findings show a significantly improved segmentation
in the geometric domain when using an ODA as a pre-processing step in a CASEG pipeline with a U-Net based
segmentation CNN while in the quantitative domain a consistent but statistically not significant improvement
in the estimation of the average T1 times was observed.

Dataset. The test dataset consisted of midventricular and basal slices only as those are recommended as
stable slice location for a T1 map acquisition®. This differs from datasets described in the literature on automated
segmentation methods for parametric T1 maps because either mid-ventricular slices only’ or the whole short
axis stack were used®!. Apart from this, a comparison of our models with those of the literature is restricted
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Figure 6. Coherence analysis of the automated segmentation. The first column shows the coherence analysis for
refU, the second column for cropU, the third column for crinU and the fourth column for cropU_A. The upper
block corresponds to native and the lower block to contrast enhanced data; respectively in each block the first
row shows histograms of disjoint segmented pixel values of the expert ground truth and the pipeline model and
the second row shows the correlation plot between Dice Similarity Coefficient (DSC) and the absolute T1 error
including the linear regression. Blue dots represent cases within the equivalence margin while red dots represent
cases exceeding the equivalence margin.
due to the lack of a common data basis in general. Furthermore, the SAMOLLI sequence as used in the literature
gives different T1 mapping results than the used MOLLI sequence®. Therefore, a plausible comparison in the
quantitative domain is limited.
ODA. Object detection is used for the semantic understanding and localisation of objects in images'®. While
the classical use-cases of ODAs are the detection of multiple objects from numerous possible categories in a
single image leading to highly complex network structures'®, the ODA in the proposed CASEG pipelines had to
find exactly one object from only one possible object class in an image. Hence, the use of a simple U-Net as ODA
showed sufficiently good results for native and CE T1 maps in line with the results of Niu et al. who showed a
DSC 0f 92.4 + 3.6% in native CINE images for the left ventricular myocardial detection'®. Our DSC results for the
ODA were considerably above the 70% margin conventionally assumed as a good result®.
The ODA was used as the first step in a CASEG pipeline to increase the ratio of relevant pixels by cropping
the image to a ROI representing an enlarged BB section. The applied magnification factor of 1.50 corresponds
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specifically to the used MOLLI T1 map short axis test dataset with our U-Net based ODA. As this factor is a
freely adjustable hyperparameter in CASEG, an adaption is potentially necessary in other scenarios like dif-
ferent datasets or ODA networks. While the ODA network has a direct impact on the necessary magnification
factor according to its prediction performance, two-dimensional quantitative data can be acquired in different
orientations to meet the specific anatomy. Therefore, the optimal magnification factor is expected to be differ-
ent in long axis views. Nonetheless, the stable DSC results across the magnification factor range of 1.30 to 2.50
for cropU and crinU showed similar performances even in out-of-optimum values for the magnification factor.

Although the ratio of relevant pixels was significantly (p<0.05) increased in the ROI section compared to
the original image, the result shows, that the majority of the pixels still belonged to background information.
However, assuming a perfectly matched BB, this ratio could only be maximized to about twice the value gained,
so that four out of five pixels would still belong to background information. The major reasons for this were
the rather circular shape of the myocardium compared to the rectangular BB and the classification of the blood
pool inside the myocardium as background information. The substantial variance in the ratio of relevant pixels
within the 1.5 times enlarged BB as shown in the Supplemental Material $5 depended on the BB quality on the
one hand and on the wall thickness of the myocardium on the other hand.

CASEG. Although a complex network structure, analogous to the DoubleU-Net by Jha et al.**, could be used
to integrate a whole CASEG pipeline into one network, the main idea of this work was to have a separated pre-
processing step. Consequently, the ODA and the segmentation CNN in a CASEG pipeline are potentially inter-
changeable with other network structures. An alternative cropU structure with direct prediction of an enlarged
BB omits the necessity of a magnification factor enlargement step at an equivalent outcome. Considering uncer-
tainties during model training, cropU and cropU_A can be regarded as equivalent.

Our results emphasize that the upstream object detection improves the geometric segmentation quality in
U-Net based automatic segmentation. Although the U-Net'? is a common CNN for medical image segmenta-
tion, one could expect that novel CNN architectures enable potential further performance gains®*!%. The clas-
sical U-Net, as our refU pipeline, has been used in prior studies as a benchmark CNN as well. While the basic
structure of those U-Nets is similar, implementation details such as hyperparameter settings potentially differs
from the original and definitely from our refU network®' such that the performance comparability is limited.
While Farrag et al. reached a DSC of 82.7% in native and 74.1% in CE T1 maps'’, Puyol-Antén et al. showed
a DSC of 78%° and Hann et al. a DSC of 83.13%* in U-Net based segmentation of native T1 maps. While the
refU is inferior to the classical U-Nets in those studies for the native dataset, both CASEG pipelines, cropU and
crinU, were able to align with those results. For the CE dataset, refU performance was inferior to the results of
Farrag et al. while cropU and crinU were outperforming it. However, none of the pipelines could reach geometric
results of 84% as in the probabilistic hierarchical segmentation network® by Puyol-Antdn et al. or 85% as in the
quality control driven framework® by Hann et al. potentially due to their more complex segmentation network
structure. With respect to an intra-observer performance of 72% DSC and 15.61 mm HD in native data and
83% DSC and 9.03 mm HD in CE data the CASEG pipelines showed a robust geometric outcome compared to a
human reader’. However, errors made by the automated segmentation are prone to be atypical as compared to a
human reader® such that the human segmentation is not necessarily substitutable by a completely unsupervised
CASEG pipeline at the current stage.

Facing the quantitative domain of actual T1 values, no significant improvement in cropU and crinU compared
to refU could be observed. This is at first glance counter-intuitive as a higher geometric accordance is assumed to
coincide with a lower quantitative deviation. This was also shown in the coherence plot of Fig. 6 with a maximum
CoD of 62.41% between DSC and the absolute T1 error underlining that an improved geometric result does not
necessarily yield an improved quantitative result.

Taking into account, that the majority of the cases exceeding the equivalence margin in native T1 maps were
underestimating the expert segmentation, the false negative segmented pixels belong to tissue that is assumed
to contain blood. This agrees with the histograms in Fig. 6 and holds for the CE test data as well, as in CE blood
has lower T1 values. Consequently, the border pixels are crucial as the impact of these disjoint pixels may be
sufficient to impair improvements in the quantitative domain comparable to the significantly improved segmen-
tation from a geometric point of view.

Comparing the quantitative results with literature values, the ME for the native dataset in refU, cropU and
crinU lie in the published range of 4.6 ms®, 8 ms!® and 12.4 ms® while the ME for the CE test data were worse than
the 2 ms in the proposed segmentation method by Farrag et al. but much better than the ME in their compara-
tive U-Net model with 37 ms'’. However, the MAEs in the native dataset were slightly exceeding in all pipelines
the result of 11.3 ms by Hann et al.®. Nonetheless, the CI of the quantitative results stayed in all cases within the
intra-observer equivalence margin'’.

As the segmentation quality depends on the input data quality®'~*, we were able to show that the ODA in a
CASEG enhancing the input data quality results in geometric improvements. However, partial volume effects
along the endocardial contour may have an important negative impact on the quantitative outcome. In contrast
to this study, the software cvi42 internally provides the possibility to use a kind of safety margin by moving the
contours towards the middle of the myocardium by a predefined amount in order to compensate to a certain
degree false positive segmented pixels at both borders. However, this procedure is not a standard option in all
commercially available postprocessing solutions.

Finally, the CASEG as well as all other automated segmentation models found in the literature work with
loss functions solely based on geometric agreement®-' and neglect the quantitative domain. Therefore, the pun-
ishment for false positive segmented pixel during training of the models are equally independent of the actual
T1 value. In conclusion it was shown in our study that an improved geometric congruence does not result in
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a significant minimization of T1 value deviation. Nonetheless, a significant (p <0.05) but mainly only weak to
moderate correlation between geometric congruence and quantitative deviation were shown. Additionally, the
proposed network by Hann et al. shows the highest geometric congruence at lowest T1 deviation which sug-
gests a DSC cutoff margin somewhere between 80 and 85% where the influence of the disjoint segmented pixels
attenuate due to the high geometric overlap.

Conclusion

The upstream object detection enables a significantly improved performance in the automated segmentation of
parametric T1 maps from a geometric point of view compared to a standalone CNN. However, the quantitative
measure could not be improved accordingly. Most likely the border pixels comprising partial volume effects
between myocardium and blood play a key role in the discrepancy between geometric and quantitative results.
As the quantitative domain is not represented in the training of the CNNs, segmentation of quantitative data like
parametric T1 mapping may suffer from its absence. All in all, CASEG is well applicable for the improvement of
segmentation tasks and this general approach may provide a viable extension to novel segmentation frameworks.

Outlook. While this study showed the potential of an ODA in an automated segmentation pipeline, a future
step could be the exchange of the U-Net based segmentation CNN in the CASEG with a higher performing
architecture®” or more recent model adaptions'*. This may provide an additional performance gain by the com-
plex network structure in conjunction with the enhanced input data. Furthermore, it is worth investigating the
combination of two CASEG pipelines for the segmentation of the myocardium by having one CASEG pipeline
segmenting the blood pool area, which belongs to the endocardial contour, while the other CASEG pipeline seg-
ments the joined area of blood pool and myocardium, which represents the epicardial contour. The difference
of both would return the myocardial segmentation and due to the hole-free segmentation masks, the ratio of
relevant pixels may vastly increase. The latter enables the possibility of a better border definition.

Finally, one of the most crucial aspects in our study as well as in others is the definition of a loss function
purely depending on the geometric concordance. A loss function taking both, the geometric as well as the
quantitative deviation, into account would be preferable. As the domains are based on different physical units,
the definition of such a loss function requires further investigation.

Limitation. The used dataset is composed of available segmented parametric T1 maps coming from differ-
ent studies and scanners. A prior selection in order to have equipartition in specific characteristics of the used
dataset was omitted. Consequently, the dataset consisted of fewer CE images than native images. Furthermore,
the results are limited to midventricular and basal slices only in the test dataset.

The hyperparameter setup of the U-Nets was chosen as the best performing one across multiple tested
scenarios. However, this setup might be optimized for our specific dataset and not generalize well to others.
Additionally, not all possible hyperparameter setups were tested due to its endless combination possibilities.

The magnification factor of the ODA predicted BB was based on and optimized for our test dataset. An
adapted evaluation of the factor is potentially necessary when using different datasets or CNN structures. This
work used U-Net based CNN models as case study of CASEG. However, reachable performance gains might be
different in other network structures such as TransUNet'*. The applied equivalence margin is the strictest one as
it is based on an intra-observer variability. As the equivalence margin was defined on native T1 map data only,
its application on CE T1 maps is questionable. Consequently, an adequate equivalence margin for CE T1 maps
or in its usage in a ECV map is currently missing and were substituted in this study by the analysis of the CV.

Data availability

The trained models and used dataset are available on request in an anonymized manner by contacting the first
(DV: darian-steven.viezzer@charite.de) or last (JSM: jeanette.schulz-menger@charite.de) author. The source
code can be accessed via GitHub under the URL: https://github.com/DSV-CUB/CASEG or in the Supplemental
Material S7.
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Post-hoc standardisation of parametric T1 maps in
cardiovascular magnetic resonance imaging: a
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Summary

Background In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference
values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-
developed Magnetic Resonance Imaging Software for Standardization (MARISSA) as a post-hoc standardisation
approach.

Methods Our standardisation approach minimises the bias of confounding parameters (CPs) on the base of
regression models. 214 healthy subjects with 814 parametric T1 maps were used for training those models on the
CPs: age, gender, scanner and sequence. The training dataset included both sex, eleven different scanners and eight
different sequences. The regression model type and four other adjustable standardisation parameters were optimised
among 240 tested settings to achieve the lowest coefficient of variation, as measure for the inter-subject variability, in
the mean T1 value across the healthy test datasets (HTE, N = 40, 156 T1 maps). The HTE were then compared to 135
patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM, N =112, 121 T1 maps) and
amyloidosis (AMY, N = 24, 24 T1 maps) after applying the best performing standardisation pipeline (BPSP) to
evaluate the diagnostic accuracy.

Findings The BPSP reduced the COV of the HTE from 12.47% to 5.81%. Sensitivity and specificity reached 95.83% /

91.67% between HTE and AMY, 71.90% [ 72.44% between HTE and HCM, and 87.50% [ 98.35% between HCM and
AMY.

Interpretation Regarding the BPSP, MARISSA enabled the comparability of T1 maps independently of CPs while
keeping the discrimination of healthy and patient groups as found in literature.
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Evidence before this study

Although parametric T1 mapping is considered as an
important method in cardiovascular magnetic resonance
(CMR), the lack of universal valid reference values has been
mentioned in many studies as an obstacle to fully utilise T1
mapping in different cohorts, multi-side studies or current
guidelines. Hence, literature research covering the time frame
from September 2016 until October 2023 in PubMed and
Google Scholar for articles on T1 mapping in CMR revealed
only the z-Score approach as a way to define comparable
values. However, the necessity of a healthy cohort
examination whenever a technical change is performed, high
volatility in the standard deviation of healthy volunteer
examination and lack of accessibility seems to be obstacles of
this approach.

Added value of this study

Qur work introduces the Magnetic Resonance Imaging
Software for Standardization (MARISSA) as an approach for
the post-hoc standardisation of parametric T1 maps in CMR.
As this standardisation pipeline can capture different settings,
we analysed 240 different settings in a two-step approach
and evaluated the best performing one. We were able to show
that the choice of the pipeline setting is crucial for the success
of the standardisation and that this proof-of-concept

Introduction

Cardiovascular magnetic resonance (CMR) is recom-
mended as the non-invasive imaging modality of choice
for myocardial tissue characterisation in cardiovascular
diseases (CVD)."” This characterisation is enabled by
quantitative methods such as parametric T1 mapping.**
Its integration into clinical CMR routine protocol
recently showed improved diagnostic accuracy for the
detection of CVDs.® Although parametric T1 mapping is
already increasingly used in clinical routine and turned
from a research to a product sequence, reproducibility
is limited to intra-institutional reference values.*” This
lack of universally applicable reference values is a major
obstacle for a stronger assertiveness of parametric T1
mapping in the clinical routine and is caused by subject
specific, technological and post-processing procedure
variations.”” These variations act as confounding pa-
rameters (CPs) on parametric T1 maps and thereby on
the quantitative outcome, which in turn potentially in-
fluence the treatment of CVDs. Hence, every change in
hard- or software may require new local reference
values and thus a re-examination of a healthy reference
cohort.

Recently, the reproducibility of parametric T1 map-
ping was validated across different scanners if CPs such
as manufacturer, field strength, acquisition schemes
and post-processing were kept constant."” However, the
technical setups across institutions are manifold and

including the parameters age, sex, scanner and sequence is

already good enough to differentiate healthy volunteers from
patients with hypertrophic cardiomyopathy and amyloidosis
as in a highly controlled intra-scanner-intra-sequence setting.

Implications of all the available evidence

Our results demonstrate that a post-hoc standardisation of
parametric T1 maps is feasible. The implementation as a
python software with a graphical user interface makes the
standardisation procedure directly available and shareable on
any common operating system. Although the described
approach with four considered confounding parameters
already allowed a comparable discrimination of two
cardiovascular diseases from a healthy cohort, this work is a
proof-of-concept that needs further investigations on more
scanners, sequences and diseases but also other confounding
parameters. Compared to the z-score, our standardisation
pipeline does not require a re-examination of a healthy
reference cohort on each site whenever a technical change
occurs. This reduces the effort and costs to increasingly enable
parametric T1 mapping. Consequently, this work is a further
step forward to strengthen the establishment of parametric
T1 mapping in the clinical routine, which in turn helps to
improve the detection of cardiovascular diseases.

cannot be globally aligned by force. As the influence of
CPs such as age and sex,""" sequence variants'*'* or
scanner models” on parametric T1 mapping were
described in the literature, universal valid reference
values are required to consider and consequently to
minimise the induced CP’s bias.

All in all, there is a gap of defining universal valid
reference values in parametric T1 mapping based on a
generalised approach. For that reason, the aim of this
work is to introduce a generic post-hoc standardisation
pipeline that enables comparability while maintaining
diagnostic accuracy and reducing the amount of neces-
sary healthy volunteer examinations. We propose that
standardisation is enabled by estimating the impact of a
CP relatively to a reference CP value. Consequently,
parametric T1 mapping values are post-hoc transform-
able into values of a reference CP environment. This
proposed transformation is embedded in the self-
developed open-source Magnetic Resonance Imaging
Software for Standardization (MARISSA) that is made
available with this work.

Methods

In this work the four CPs: age,''” sex,'"'” scanner'
and sequence variant'*'"* were chosen from literature
to show a proof-of-concept for the proposed post-hoc
standardisation of parametric T1 maps. This includes
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the introduction of MARISSA as a software tool to
setup those post-hoc standardisation pipelines and to
demonstrate the diagnostic quality after stand-
ardisation. Therefore, the used data collection included
three cohorts: healthy volunteers (Healthy), patients
with left ventricular hypertrophy (LVH) including hy-
pertrophic cardiomyopathy (HCM) and patients with
amyloidosis (AMY). Both patient cohorts were
included on account of a statistical significant differ-
entiation from healthy volunteers in native T1 map-
ping with considerably higher T1 values in AMY and
on average higher but partly overlapping ranges in
HCM.” The following first sub-section Dataset de-
scribes the used data collection of the three included
cohorts. A part of Healthy (Healthy train datasets/
HTR) was used in a first step to estimate the individual
CP impact. As different strategies exist to estimate the
CP induced bias, the Confounding Parameters Impact
Estimation (CPIE) sub-section covers detailed infor-
mation about the different estimation strategies. The
following sub-section on the Best Performing Stand-
ardisation Pipeline (BPSP), describes the evaluation of
the best performing CPIE among all tested strategies
with respect to the remaining healthy volunteers
(Healthy test datasets/HTE). The before last sub-
section on Diagnostic Implication (DI) covers the
evaluation of the diagnostic accuracy and intra-subject
differences after applying the BPSP on the said HTE as
well as the HCM and AMY cohorts and includes the
Statistics. Finally, the Implementation sub-section de-
scribes briefly the MARISSA structure followed by the
Ethical approval and Role of the funding source.

Dataset
The included retrospective data collection of the three
cohort groups: Healthy, HCM and AMY consisted of
midventricular slices only and originated from previous
and ongoing studies of our working group or in which
our working group participated until June 2023
considering scanners that are part of the Berlin CMR
research network.”” Age was the only numerical CP; all
other considered CPs were categorical. The various or-
igins in the data collection enabled variability in the
concerned CPs while some individuals received multi-
ple measurements, i.e. different sequences and/or
scanners. Fig. 1 shows an overview of the total numbers
in each cohort as well as the variation in the four con-
cerned CPs. A detailed breakdown of the underlying
data for each scanner-sequence combination for both
sexes is provided in the Supplemental Material S1.
The segmentation of all parametric T1 maps was
performed automatically with a subsequent visual in-
spection by two experts (JG and EB). First, all T1 maps
were segmented using the cropU cascaded model'® and
a research deep learning segmentation model provided
by Siemens Healthcare (version 21 hotfix, Siemens
Healthcare GmbH, Erlangen, Germany). The expert
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chose the best segmentation out of either model or the
intersection of both. If none was considered accurate
enough by the experts, the segmentation was performed
manually in cvi42 (version 5.13.7, Circle Cardiovascular
Imaging, Calgary, Canada) as previously reported.'

Confounding Parameters Impact Estimation (CPIE)
The CPIE is a regression model training based on the
HTR and represents the central part of the proposed
standardisation pipeline. For that reason, the Healthy
data collection were split into 85% training and 15%
testing with respect to the number of subjects per study.
Thus the HTR consisted of 214 subjects (814 T1 maps,
100 males / 114 females and 38.46 + 15.20 years) while
the HTE consisted of 40 subjects (156 T1 maps, 18
males / 22 females, 39.50 + 15.89 years).

The CP impact can be solely estimated relatively to a
reference as the absolute true T1 mapping value is un-
known due to an intrinsic lack of accuracy or precision
in T1 acquisition methods.” Therefore, we propose to
define for each CP a reference value that is assumed
with no bias. In this work, the reference CP values were
set to 18 years, male, 3.0T Siemens Verio [syngo MR
B17] and T1 Map MOLLI 5(3)3 b for the concerned CPs
age, sex, scanner and sequence variant respectively.

Consequently, the regression estimates the differ-
ence between the examined apparent T1 mapping
value in the according CP environment and the target
T1 mapping value in the reference CP environment.
The target T1 mapping value is defined as the mean T1
value of HTR subjects whose concerned CP value
matches the reference CP value. During the fitting of
the regression the difference between apparent and
target T1 mapping value represents the dependent and
the CP value(s) represent the independent variable(s).
Whether one or multiple CPs are taken into account
depends on the strategy setting. Table 1 lists an over-
view of possible settings for the standardisation pipe-
line that are explained in the following.

Each CPIE model is described by the regression-type,
y-type, mode, bins and cluster-type. The linear regression
is the most basic regression model used in a variety of
disciplines”” while the linear support vector regression'®
(LSVR) was implemented as an alternative linear model.
Additionally, the random-forest” regression (RFR) and
extra-trees” regression (ETR) were implemented as those
are assumed to handle non-linear relationships better
than linear models. All regression models were based on
the scikit-learn package” and setup in the default setting,
except for RFR and ETR, where the number of estimator
trees were increased to 1000. While an increased number
of trees enables an improved performance, an overfitting
is excluded by its intrinsic structure.”

The chosen regression-type can either estimate the
difference between apparent and target T1 value in ab-
solute (ms) or relative (%) values according to the y-type
setting. While the absolute case shifts all values equally
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Fig. 1: Dataset Overview - The general overview of the Healthy (green), patients with left ventricular hypertrophy including hypertrophic
cardiomyopathy (HCM, orange) and patients with amyloidosis (AMY, red) cohorts are given with S: number of studies, N: number of subjects,
M: number of midventricular native parametric T1 maps, m: males and f: females. The age is given as mean + standard deviation. The grey bars
represent respective parametric T1 mapping sequences and the turquoise and blue boxes represent a scanner. For each scanner-sequence
combination the number of subjects and respective T1 maps is itemised.

such that the intrinsic value spread maintains, the = mode fits a regression for each CP individually and in-
relative case weights the shift according to the absolute  dependent. Any other CPs are kept constant to mini-
T1 value. mise their impact on the regression. Consequently, only

The mode, finally, defines whether a regression is  a small portion of the HTR can be used for each CP
performed for each CP individually (individual and  regression fit. The cascaded mode works the same for
cascaded) or all at once (ensemble). The individual  the first CP regression but iteratively standardise the
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Setting Options
ion-type ‘xtra-trees (ETR)
linear

linear support vector (LSVR)
random-forest (RFR)

y-type absolute
relative
mode cascaded
ensemble
individual
bins 1 to minimum number of segmented pixels
cluster-type agglomerative average

agglomerative complete
agglomerative single
agglomerative ward
equal distant

equal size

gaussian mixture
k-means

Table 1: Standardisation pipeline setting - Each pipeline setting can
capture exact one of the given possible values.

HTR data, such that subsequent CPs must not consider
previously fitted CPs. Therefore, the amount of useable
data increases for later CPs. It is important to note that
the outcome depends on the order of the considered
CPs. Finally, the ensemble mode takes all CPs at once,
The ensemble mode is expected to handle cross-
dependent CPs best. Categorical variables are con-
verted into category numbers in the ensemble mode,
whereas in individual and cascaded mode each category
receives its own regression model.

While regression-type, y-type and mode directly af-
fects the regression model, the setting of a bin larger
than one accounts for cross-dependencies between the
CP value and the apparent T1 value. It is currently un-
known, if higher T1 values are differently affected by a
CP than lower ones. The setting of a bin larger than one
requires the choice of a clustering algorithm that clus-
ters the T1 values into bins. The different agglomerative
clustering algorithms, the Gaussian mixture and k-
means clustering were taken from the scikitlearn
package’' while equal distant and equal size clustering
were self-implemented. For equal distant clustering all
bins have the same width while for equal size clustering
the T1 values are sorted and the same number of T1
values are used for each bin. Although the number of
bins is mainly limited by the smallest possible number
of segmented pixels, which would represent each pixel
as its own cluster, we recommend ten bins or fewer as
otherwise the number of T1 values in each bin is too
small to be representative.

In the light of the standardisation pipeline, CPIE
outputs the estimated bias and is therefore an integra-
tive part of the pipeline. First, a T1 mapping dataset in
Digital Imaging and Communications in Medicine
(DICOM) format with a corresponding segmentation
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mask is expected as input. After extracting the
segmented apparent T1 values, the CPIE is applied to
estimate the CP induced bias. This bias is then sub-
tracted from the apparent T1 values and the resulting
standardised T1 values are returned as output.

Best performing standardisation pipeline (BPSP)
As the optimal standardisation pipeline setting is un-
known, CPIE were evaluated for 240 different settings
in two steps. First, bins were set to one, hence, cluster-
type had no impact and all 24 combinations of
regression-type, y-type and mode were fitted. The
resulting standardisation pipelines were evaluated with
respect to the coefficient of variation (COV, Equation
(1)) of the mean T1 time in the HTE.
o
cov =; (Equation 1)
The lower the COV, the less variability across the
subjects of the HTE exist and, consequently, a better
pipeline performance can be assumed. Considering the
top three performing pipelines of this first step, fitting
was performed for all combinations of two to ten bins
and clustering algorithms resulting in additional 216
pipelines. The BPSP was evaluated as the one out of the
240 fitted standardisation pipelines with the lowest COV
in the HTE group.

Diagnostic Implication (DI)

While the evaluation of the BPSP accounted for a
minimisation of the inter-healthy-subject variability, the
DI step assessed the discriminability between the
healthy test cohort and patients. Therefore, the HTE,
HCM and AMY cohort were standardised with the
BPSP. A progression plot was used to show the value
progression from before to after standardisation.

Statistics

All available retrospective datasets were included that
were diagnosed as either Healthy, HCM or AMY. Age
and sex were self-reported and all subjects were 18 years
or older. Non-midventricular and contrast enhanced
parametric T1 maps were excluded. The data were
randomized, blinded and checked for artifacts by two
experts (JG and EB).

The outcome statistics of the post-hoc stand-
ardisation is integrated in the DI. This includes the
boxplots for each cohort before and after standardisation
indicating the respective value spread. Further, confi-
dence intervals (CIs) were calculated and statistics be-
tween the cohorts after standardisation were tested with
an independent t-test and ANOVA test if all cohorts
were normal distributed according to the Shapiro-Wilk-
test, otherwise with the Mann-Whitney-U and Kruskal—
Wallis test. Significance was assumed if both tests had a
significance level of a < 0.05. Furthermore, a receiver
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operating characteristics (ROC) analysis was performed
to evaluate the optimal threshold between the cohorts.
The post-hoc standardisation ROC were compared to
the intra-scanner-intra-sequence ROC before stand-
ardisation to evaluate the maintenance of the diagnostic
accuracy. Further, evidence was assumed if the sum of
sensitivity and specificity reached 150% or above as
recommended in literature.”” Finally, intra-subject pro-
gression plots were performed with HTE subjects that
were measured in different CP environments.

Implementation

The core of MARISSA is a SQLite database in the
backend, referred in the following as MARISSA DB, and
an overlaying graphical user interface (GUI). Fig. 2
shows abstractly the structure and user interaction in
MARISSA. The software was fully implemented in Py-
thon (Version 3.8, Python Software Foundation, Bea-
verton, USA) and is available in the Supplemental
Material $2.* All necessary site packages, installation
instructions and further detailed information are listed
in the MARISSA User Manual in the Supplemental
Material S3.

As MARISSA is not only implemented for para-
metric T1 mapping in CMR, the software works in
separate projects with individual MARISSA DBs, that
are exportable with or without data. Within MARISSA
DB, the related tables are separated: On the one hand
the active site, where the user manipulates data, settings
and parameters and a passive site that contains all
trained standardisation pipelines including a copy of all

Segmentation: Import

| thl_standardization_sotup

necessary information to reconstruct the training. This
separation assures for a retraceable standardisation
pipeline training whereas an export of the project
without data loses the traceability while still maintaining
the standardisation functionality.

The definition of CPs is based on DICOM tags.
Standard DICOM tags are already available in MAR-
ISSA, while specific CPs like the sequence variant are
extracted by string processing of the series description.
The choice of the value representation defines the CP as
either a numerical or categorical parameter. MARISSA
supports also multi-value DICOM tags as long as the
multiplicity remains stable. In this case, each value
dimension is considered individually as an own CP. The
DICOM standard gives more information about the
DICOM tag composition.”

The import of DICOM data and segmentations in-
cludes a customisable description in order to enable
cohort differentiation within the MARISSA DB. While
training data must be imported, the standardisation
pipeline is applicable on imported as well as external
data. Applying the standardisation on a dataset exports
the original DICOM data, an Excel table, a MAR-
ISSADATA file and a progression plot. The Excel table
contains information about the CP values and the
transformation of the segmented T1 values while the
MARISSADATA file contains the same information as a
pickled Python dictionary such that it can be imported
and further processed in other Python applications.
More detailed information about the usage of MARISSA
is provided in the Supplemental Material S3.
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Fig. 2: MARISSA structure - The central element is the MARISSA DB based on a SQLite database with relational connected tables: The blue tables
thl_segmentation, tbl_data, tbl_setup, thl_parameter, thl_match_setup_data_segmentation and tbl_match_setup_parameter are those, where
user interaction takes place by adding, editing or deleting information and data. When starting the training of a standardisation pipeline, the
confounding parameter impact estimation is fitted. In order to track back the training, the necessary information is copied into the separate
green tables tbl_standardization_setup, tbl_standardization_data, tbl_standardization_parameter and tbl_standardization_match_data_se-
tup_parameter while the tbl_standardization stores the fitted regression models for the confounding parameter impact estimation. Applying
the standardisation on a dataset will transform the T1 values into a range that represents the reference confounding parameter environment as

depicted on the right site.
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Ethical approval

This study was approved by the local ethics committee
of the Charité Universititsmedizin Berlin as retrospec-
tive study (study ID: EA 1253 21) and complies with the
declaration of Helsinki. The requirement for written
informed consent was acquired during the original
clinical studies and was therefore waived in this study
due to its retrospective design as approved by the local
ethics committee of the Charité Universititsmedizin
Berlin (study ID: EA 1253 21). Due to institutional law,
datasets cannot be shared.

Role of the funding source

This study was supported by the BMBF (Bundesmi-
nisterium fiir Bildung und Forschung)/DZHK
(German Centre for Cardiovascular Research) via
project FKZ81Z0100208. The BMBF/DZHK had no
influence on the design, execution or evaluation of
this study.

Results

The results are given for the three steps Confounding
Parameters Impact Estimation (CPIE), Best Performing
Standardisation Pipeline (BPSP) and Diagnostic Impli-
cation (DI) separately as well as the Implementation of
MARISSA.

Confounding Parameters Impact Estimation (CPIE)
The CPIE could be successfully trained without abortion
on all 24 settings without and 216 settings with clus-
tering. However, as the individual mode requires con-
stant CP values for all CPs except the estimating one,
the training with the used HTR could not include the
sequences T1 map MOLLI 3(3)5 b and T1 map SASHA
GRE due to variations in the other CPs. Consequently,
these two sequences could not be standardised and
acted like no bias.

Best performing standardisation pipeline (BPSP)
The top three settings across the 24 settings without
clustering were LSVR regression on relative values in
cascaded mode, ETR on relative values in ensemble
mode and ETR on absolute values in ensemble mode
with a COV of 5.98%, 6.10% and 6.23% respectively for
the mean T1 value of the respective standardised HTE.
Among all 240 trained pipelines, the BPSP was obtained
with the LSVR regression on relative values in the
cascaded mode with two bins and the agglomerative
single clustering resulting in a COV of 5.81%.

Fig. 3 plots the COV for each trained standardisation
pipeline including the best obtained COV and the COV
of the unstandardised HTE of 12.47% revealing that
some standardisation pipeline settings even worsen the
uncertainty in the HTE.
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Fig. 3: Coefficient of variation (COV) in the 240 trained standardisation pipelines - The COV is plotted against the standardisation pipeline
setting denoted as the number of bins on the x-axis, the regression-type by the scatter point marker style, the y-type and mode according to
the scatter point colour and the clustering algorithm according to the dotted line for bins greater than one. The purple solid line represents the
COV threshold of the unstandardised data with everything above in the red area means a worsening while everything below in the green area
means an improvement of the intra-healthy-subjects variation. The green line with the inline circle shows the optimal COV reached among the
240 pipelines representing the best performing standardisation pipeline (BPSP).
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Diagnostic Implication (DI)
Applying the BPSB on the three test cohorts HTE, HCM
and AMY results in a COV of 5.81%, 4.46% and 6.05%
respectively compared to an unstandardised COV of
12.47%, 9.56% and 6.06%. Hence, COVs for HTE and
HCM showed an improvement after standardisation
while the COV for AMY remained almost equal. Fig. 4
gives an overview of the respective cohort data before
and after standardisation with the BPSP and the indi-
vidual impact of each CP on every single test dataset.
Already before standardisation the HTE and HCM as
well as HCM and AMY but not HTE and AMY were
statistically significant different. However, the 25%-75%
quantile ranges of HCM (999.57-1186.00 ms) and AMY
(1087.84-1148.40 ms) were almost completely within the
range of HTE (1007.81-1213.34) and the mean value of
both patient cohorts (HCM: 1076.69 ms [ AMY:
1118.39 ms) were lower than in HTE (1140.20 ms) while
both patient groups are expected with significant higher
T1 values.” This contradiction to literature were due to the
mixture among CPs in the data collection, especially in
regard of the occurring scanner and sequence combina-
tions according to the detailed cohort dataset breakdown
in the Supplemental Material S1. After standardisation, all
cohorts revealed statistically significant difference from
each other and no overlapping Cls. None of the cohorts,
neither before nor after standardisation, could remain in
the margin of the CI of the unstandardised HTR data,
which captured the reference CP environment. However,

after standardisation the HTE was closest to fit in whereas
HCM and AMY were clearly above. The resulting T1 value
ranges (mean + standard deviation) after standardisation
were 1136.78 + 66.09 ms, 1186.27 + 5293 ms and
1337.62 + 8092 ms for HTE, HCM and AMY
respectively.

The ROC analysis, as shown in Fig. 5, revealed
an optimal threshold (sensitivity / specificity) of
1163.89 ms (71.90% / 72.44%) between HTE and HCM,
1204.46 ms (95.83% | 91.67%) between HTE and AMY
and 1287.89 ms (87.50% / 98.35%) between HCM and
AMY after standardisation. The differentiation between
HTE and HCM were slightly below the 150% threshold
for the sum of sensitivity and specificity while HTE and
AMY as well as HCM and AMY were above it.** In all
three post-hoc standardised ROC analysis sensitivity and
specificity were in the range of unstandardised intra-
scanner-intra-sequence differentiability. The sum of
sensitivity and specificity increased or at least remained
after standardisation within the intra-scanner-intra-
sequence datasets although individual sensitivity and
specificity values changed.

Finally, eight subjects of the HTE group received at
least two different acquisitions. The intra-subject pro-
gression plot for each of these subjects is shown in
Fig. 6. The plot shows a minimisation of the value
spread after standardisation in all subjects but one.
Nonetheless, all subjects showed a minimisation of the
COV, which reflects a concentration of the acquisitions
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Fig. 4: Inter-cohort progression plot - On the left and right are respectively before and after standardisation with the best performing
standardisation pipeline (BPSP) the boxplot of the mean T1 value for each cohort: Healthy test datasets (HTE), patients with left ventricular
hypertrophy including hypertrophic cardiomyopathy (HCM) and patients with amyloidosis (AMY). The * denotes statistically significant dif-
ferences and n. s. means not significant. Further, the confidence intervals are plotted against the purple area that represents the confidence
interval of the unstandardised healthy data which captures the reference confounding parameter environment. In the middle the progression
from original towards standardised values with the BPSP are plotted with detailed impact for each confounding parameter.
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Fig. 5: ROC analysis — The left site represents before and the right site after standardisation. Each curve represents intra-scanner-intra-sequence
data. After standardisation shows additionally the ROC analysis in a bold green curve that reflects the differentiability among all healthy test
datasets (HTE), patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM) and patients with amyloidosis (AMY).

after standardisation. However, individual measure-
ments, especially SASHA based parametric T1 maps,
revealed high imprecision after standardisation.

Implementation

The MARISSA was successfully implemented as a Py-
thon software tool with a SQLite database backend. The
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overlaying GUI allows usability for programmers and
clinicians alike. The definition of custom CPs, however,
requires at least experience in the DICOM tag standard
as well as Python string processing. Furthermore, data
filtering in the GUI works by SQL commands via
respective input fields. The software enables to work in
projects that can be exported with and without data.
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Fig. 6: Intra-subject progression plot - Eight healthy volunteers underwent at least two different acquisitions. The respective standardisation with the
best performing standardisation pipeline (BPSP) is shown for each scanner and sequence combination. The violet bar on the left of each plot shows
the value spread before and the green bar on the right the value spread after standardisation as well as the coefficient of variation (COV).
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Discussion

In this work, we were able to show that a posthoc
standardisation of parametric T1 maps in CMR is
feasible while maintaining disease differentiability ac-
cording to sensitivity and specificity as in intra-scanner-
intra-sequence scenarios. We could further show that
the choice of the standardisation pipeline settings was
crucial for the overall performance. The considered CPs
of age, sex, scanner and sequence revealed the LSVR
regression on relative values in the cascaded mode with
two bins and the agglomerative single clustering as the
BPSP among 240 tested standardisation pipelines with
respect to the HTE of native, mid-ventricular parametric
Tl maps in CMR. The implemented MARISSA
including a GUI is made available with this work for
further development and evaluation. In the following, a
detailed discussion about the Dataset, the results of
Confounding Parameters Impact Estimation (CPIE), Best
Performing Standardisation Pipeline (BPSP), Diagnostic
Implication (DI) and Implementation is presented and
ends up with the Limitations and a short Conclusion.

Dataset

The included datasets were retrospectively collected
from available data with a diagnosis of either Healthy,
HCM or AMY. The data were not filtered except for
native, artifact-free, midventricular slices. Consequently,
the data were not balanced according to scanner-
sequence combinations. The examination of both pa-
tient cohorts was mainly performed on 1.5T Siemens
scanners with less sequence variations resulting in,
contrary to literature,”” lower average T1 values than
HTE before standardisation. Other established manu-
facturers were not included due to missing access
within the Berlin CMR research network.” The
considered patient cohorts HCM and AMY reflect only
two CVDs with expected significant higher T1 values.
The diagnostic performance on other, more subtle,
CVDs requires future investigation.

Regarding the segmentation, different strategies
exist.'""* While the segmentation of the septum is more
precise,” it lacks the majority of the myocardial voxels.
Therefore, this work used a full circular segmentation of
the myocardium at the cost of an increasing standard
deviation in the T1 values compared to septal segmen-
tation only."

Confounding Parameters Impact Estimation (CPIE)
In this work, the CPIE trained regression models to
estimate the bias between apparent and target T1 values
based on a healthy volunteer cohort. Subjects with CVDs
were excluded in this step, as those would have an un-
intentional influence towards either higher or lower T1
values.” The CPIE, as central part of the post-hoc
standardisation pipeline, enables the comparability of
parametric T1 mapping. Although multiple studies were
published on reference values for parametric T1
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mapping over the last decade, those were only valid in a
specific cohort and technical setting,'*%*

The z-Score transformation into a unitless value
domain enabled as the solely established approach the
comparability across different CP environments.” How-
ever, the z-Score calculation is based on a local healthy
reference cohort. Consequently, a healthy cohort exami-
nation is not only performed after initial operation but
always necessary after a hard- or software change of the
MR scanner that perturbs the T1 value distribution of the
healthy cohort Although considered in the current
guidelines," this obstacle of additional effort and costs
circumvent the establishment of the z-Score in the clin-
ical routine. The inclusion of novel CP values or even
CPs themselves requires, likewise the z-Score trans-
formation, additional healthy volunteer examinations.
However, thanks to the transfer learning capability of
MARISSA, single site scans are sufficient to apply CP
value standardisation on other sites. Consequently, the
amount of healthy volunteer examinations and thereby
the cost may be reduced with our standardisation
approach compared to the z-Score. Nonetheless, an
increasing amount of training data is necessary over
time, which is limited by the accessibility and potential
restrictions due to institutional or governmental law.

The number of necessary training data highly de-
pends on the standardisation pipeline setting, especially
the mode. The individual mode already revealed in this
work, that two sequences could not be captured during
training as all other CPs were expected to be constant.
Hence, the individual mode is prone to the training data
and most likely misses certain CP values. However, it
allows for the best isolation of CP’s influence.
Compared to that, the cascaded mode depends on the
order of the CPs as the first one works the same way as
the individual mode while the last one can consider the
whole training dataset as all other CPs are already
standardised. As a consequence, inter-parameter corre-
lations are partly considered, but some CP values might
be missed as well if the training dataset or the order of
the considered CPs is not well chosen. Finally, the
ensemble mode considers all in one and catches all CP
values that were given in the training data. The
ensemble mode accounts for inter-parameter correlation
best, but fails completely if a test dataset includes a
categorical value that was not in the training dataset.
The individual and cascaded mode on the contrary still
standardise for all other CPs and can skip those that are
unknown. As a rule of thumb, the number of necessary
training data increases from ensemble to cascaded to
individual mode in order to capture all CP values.

As this study is a proof-of-concept for a stand-
ardisation approach of parametric T1 maps in CMR,
only a limited number of parameters were included.
There are other parameters such as heart rate (HR),**
the body-mass-index (BMI)** or the voxel size’ that
have a known relevant impact. However, BMI and HR
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could not be included as the necessary information were
not available in all datasets of this study due to data
anonymisation and its retrospective character. Further,
all three CPs are numerical variables, resulting in a
much higher necessary amount of training data for the
individual and cascaded mode. On the contrary, each
numerical variable can be turned into a categorical one
by clustering, for example the age can be divided into
decades or the BMI into the groups proposed by the
world health organization.”

The patient specific parameters age and sex were
included as potential CPs, but showed an ambivalent
impact in the literature. Roy et al."" revealed a significant
whereas Dabir et al.”” showed only a slight but not sig-
nificant impact due to age and sex. Our results, in turn,
emphasised a non-zero induced bias, however, much
less than the scanner or sequence originated biases. If
age and sex turn into neglectable CPs compared to other
potential CPs, those may be excluded easily from the
standardisation pipeline within MARISSA in the future.

The considered CPs in this work treated subject
specific and technological variations only. However,
post-processing procedure variations represent CPs in
parametric T1 mapping as well.* The post processing
comprises everything from image reconstruction® to
segmentation procedures.” While reconstruction algo-
rithms are not available from DICOM tags, the seg-
mentation method of the myocardium is still based on
expert agreement or in accordance to guidelines.*
Although fully automated segmentation procedures
exist,’® manual adaptions are still necessary. Conse-
quently, the segmentation method is currently a local
specific, hard to definable CP. In this work, the seg-
mentation was performed according to a pre-defined
standard operating procedure. However, in future
perspective, when including more training data, this
must be considered, especially since artificial intelli-
gence assisted segmentation procedures become ever
more popular.'**

Best performing standardisation pipeline (BPSP)
As the posthoc standardisation pipeline can be
computed in different settings, the results showed that
the setting choice is crucial for the performance of the
pipeline with respect to the COV as quality index. Some
pipeline settings even showed a worsening of the COV
compared to the unstandardised values assuming a non-
suitable standardisation pipeline setting. Although the
BPSP among 240 evaluated standardisation pipeline set-
tings included a clustering into two bins, the perfor-
mance gain of 0.17% due to the clustering was rather
small compared to a COV reduction of up to 6.49% by a
standardisation pipeline without clustering. In most
cases the clustering even worsened the outcome. There-
fore, the determination of the suitable regression-type,
y-type and mode is most important whereas clustering
into bins reflects a rather potential fine-tuning step.

Diagnostic Implication (DI)

The BPSP allowed for a statistically significant differ-
entiation of the three cohorts: HTE, HCM and AMY.
However, the sum of sensitivity and specificity across
HTE and HCM was below 150% due to a high overlap
and thus not sufficient for evidence according to litera-
ture.” This aligns with literature values on 3T scanners
for Healthy and HCM that show also a significant
difference but high overlap as in Liang et al
(1228.4 + 42.7 ms vs. 1290.0 + 64.3 ms),” Qin et al.
(1240.0 +29.8 ms vs. 1308.0 + 55.5 ms)*”” and Lavall et al.
(1225 + 21 ms vs. 1266 + 44 ms)."” However, as HCM
has manifold morphologies due to a large variety of
genotypes and risk factors, the disease state changes
over time, which in turn affects the amount of diseased
myocardial tissue.**

Baggiano et al.** showed a sensitivity of 85% and
specificity of 87% when comparing Healthy with AMY
that could be outperformed with our BPSP with a
sensitivity of 95.83% and specificity of 91.67%. How-
ever, they were able to include 436 patients with
amyloidosis, which naturally assumes a higher value
spread in that patient cohort compared to our 24
included ones. The z-Score approach reached in the
study by Kranzusch et al. an equivalent sensitivity of
96% but an improved specificity of 100%.7*

In the discrimination of both patient groups, HCM
and AMY, the sensitivity (87.5%) and specificity
(98.35%) were in range of published literature values by
Lavall et al. (100% / 97%),"* Nam et al. (76.1% / 83.3%)"
and Martinez-Naharro (86.54% [ 80.36%)."” Conse-
quently, amyloidosis is reliably detectable after stand-
ardisation while HCM only in an advanced state.

When going from the global cohort perspective into
the intra-subject view, the BPSP managed to decrease
the COV within the same subject across different ac-
quisitions. Although most acquisitions could be
harmonised towards equal values, individual outliers
remained after standardisation. Those outliers origi-
nated mainly either from a SASHA based sequence,
which are assumed to have a higher accuracy but lower
precision than MOLLI based sequences,’ or already had
unusual values for the specific field strength and
sequence scheme setup. This, however, shows the limits
of MARISSA pipelines. On the one hand, outlying or
unusual values will remain outlying or unusual after
standardisation and, on the other hand, imprecision
cannot be improved. Consequently, the used data for
training and testing need a high degree of precision.
This does not only affect the used sequence variant but
also demands highly controlled production process of
the magnetic resonance imaging scanner. High toler-
ances undermine the generalisability of the proposed
post-hoc standardisation pipeline approach. This sus-
ceptibility to imprecision is also shared by the z-Score
approach whose usability is undermined by high fluc-
tuations in the standard deviation.” The standard
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deviation of measured T1 values can be minimised by
solely segmenting the septal region'” instead of the full
midventricular myocardium as performed in this work.
However, this segmentation strategy would miss the
majority of the myocardial tissue.

Finally, it is important to mention, that the stand-
ardisation approach calculates the impact of a CP
compared to a reference CP value. Consequently, the
standardised T1 maps become comparable, but do not
necessarily represent the true T1 relaxation value of the
myocardial tissue. The reference sequence MOLLI 5(3)3 b
for example is known to underestimate the true T1 value.”

Implementation

As MARISSA was fully implemented in Python, it can
be installed and run on all major operating systems.
Export functionality enables the sharing of trained
standardisation pipelines either with or without data.
Although tested for parametric T1 maps of the heart
only, MARISSA is intended for usability among other
quantitative methods, like parametric T2 maps,* or
tissues, such as the liver.s

Furthermore, MARISSA is extensible in the future.
Additional conceivable CPs can be entered into MAR-
ISSA via the GUI while novel clustering algorithms and
regression models are easily implementable due to a
standardised structure.

A subsequent development of MARISSA may
include further adjustment options within the GUI.
This comprises for example the hyperparameter setup
of regression models and clustering algorithms beyond
the standard setting or individual settings for each CP
within a standardisation pipeline.

Limitations

The major limitation of this work is the unbalanced
underlying dataset due to its retrospective design. The
lack of further scanner-sequence combinations limits
the generalisability of the proposed standardisation
pipeline. The transfer learning capability of scanner-
sequence combinations that are not reflected in the
training data but captured by the BPSP requires further
investigation. This work only contained two cases in the
AMY cohort whose scanner-sequence combination were
not reflected in the training data. Additionally, a more
convincing DI requires more scanner-sequence vari-
ability in the considered patient groups. As this work is
a proof-of-concept and includes anonymised data,
further known relevant CPs were not included and
should be considered in a future state. The inclusion of
mid-ventricular slices only does not meet all manifold
phenotypes of an HCM which may affect only various
local regions rather than the whole ventricle.*

Conclusion

All in all, we were able to introduce the MARISSA to
enable post-hoc standardisation pipelines for parametric
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T1 mapping in CMR. The diagnostic power after
standardisation with the BPSP in our proof-of-concept
were equivalent to those found in literature. The per-
formance of the standardisation pipeline highly depends
on the pipeline setting and the precision of the provided
data. The current results give hope to improve compa-
rability when adding more training data and considered
CPs in the future.
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