
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Systems Biology
From regulation of cell fate decisions towards patient-
specific treatments, insights from mechanistic models
of signalling pathways
Mareike Simon1,a, Fabian Konrath1,a and Jana Wolf1,2
Cell fate decisions are tightly regulated by complex signalling
networks. Disturbed signalling through these networks is
prominent in disease development. To elucidate pathway
contributions and effects of alterations to the regulation of
proliferation, quiescence, senescence, and apoptosis,
computational modelling has been essential. Modelling het-
erogeneity on different scales was shown to be important for
cell fate prediction. In recent years, personalised models
capturing signalling and cell fate decisions have been devel-
oped. Of special interest is the application of these models to
predict the response to drugs. In this review, we highlight ex-
amples of mathematical models of signalling pathways that
regulate disease-relevant cell fate decisions on the path to
develop individualised patient models for optimal treatment
prediction.
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Introduction
Mammalian cells actively respond to different signals
and perturbations. These responses are crucial in
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various contexts: in developmental processes, the re-
action to environmental changes, ageing, shaping dis-
ease progression, and reaction to drug treatment. It is
well established that these cellular responses are
controlled by signalling pathways, which have been

studied in great detail to analyse their design, function,
and their contribution to different cellular tasks. The
analyses showed that important characteristics result
from regulations via feedbacks, feedforward loops, or
delays leading to overall often nonlinear behaviour such
as transient dynamics, oscillations, and switch-like re-
sponses due to bistable steady states, which cannot be
explained by correlations [1,2]. To capture and inves-
tigate this nonlinear behaviour, mechanistic mathe-
matical models of signalling pathways have been
developed and have proven to be a valuable tool.

Different approaches have been used to model signal-
ling pathways; an introduction is given in Ref. [3].
Important pathway examples include mitogen-acti-
vated protein kinase (MAPK) signalling, nuclear factor
kB (NF-kB), p53, as well as Wnt signalling [4e12].

The gained insights have been the prerequisite for a
more ambitious task: understanding how cell fate de-
cisions are regulated. For certain signals, cells respond
with a decision towards a specific cell fate. In the
context of not only development and ageing but also

diseases and corresponding treatment strategies, crit-
ical cell fates comprise proliferation, quiescence,
senescence, and apoptosis (Figure 1). Proliferation
describes the essential processes of cell growth and
division. It is tightly regulated, and dysregulations can
lead to neoplasia or imbalances in tissue composition.
Stimulation with growth factors or cytokines can lead
to signalling through complex networks that ultimately
lead to increased proliferation. Important pathways in
the regulation of proliferation include MAPK, phos-
phatidylinositol 3-kinase (PI3K)/AKT, and janus kinase/

signal transducer and activator of transcription (JAK/
STAT) [13e15]. Apoptosis is a cell death program that
is important in the formation and homoeostasis of
tissue. Importantly, it can also be induced upon severe
DNA damage that cannot be repaired and thereby
serves as a protecting mechanism for the organism. The
induction of apoptosis is tightly regulated by expres-
sion and interaction of proapoptotic and antiapoptotic
Current Opinion in Systems Biology 2024, 39:100533
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Figure 1

Cell fate decisions and underlying signalling pathways. Upon extraellular and intracellular signals, perturbations as well as drug treatment, cells can
obtain different cell fates. The signals can thereby originate from external stimuli interacting with cell surface receptors or internal events such as DNA
damage. The decision whether a cell proliferates, enters a transient or permanent cell cycle arrest, senescence, or induces apoptosis is controlled by
signalling pathways that are tightly regulated and interconnected. Central pathways that are involved in these decisions to various extents are MAPK,
PI3K/AKT, mTOR, JAK/STAT, NF-kB, and p53. Perturbations such as genetic alterations or drugs can interfere with those signalling pathways and
therefore modulate cell fate decisions.Abbreviations: MAPK = mitogen-activated protein kinase; PI3K = phosphatidylinositol 3-kinase;
mTOR = mammalian target of rapamycin; JAK/STAT = janus kinase/signal transducer and activator of transcription; NF-kB = nuclear factor kB.

2 Mathematical Modelling (2023)
factors [16]. The transcription factors p53 and NF-kB
induce expression of such factors and have therefore a
crucial impact on the cell fate decision between sur-
vival and apoptosis [17,18]. P53 is also known for its
effect on cell cycle progression. In particular, the
expression of one of its target genes, CDKN1A (p21) is
linked to DNA damage-induced senescence [19]. This

cell cycle arrest state can be induced by several signals
linking it to not only ageing and age-related diseases
but also tumour development and cancer treat-
ment [20].

An intensively studied disease is cancer, where several
cell fate decisions are affected: cells show elevated
proliferation rates, avoid apoptosis, enter a senescent
state, or follow a different differentiation trajectory
[21,22]. As DNA damage is also induced by cancer
treatment, the regulation of the decision between sur-

vival and apoptosis is of high clinical interest. More
recently, the impact of senescence on the efficacy of
treatment and therapy outcome came into focus [23]. In
context of treatment, the activation of senescence can
be beneficial as it counteracts sustained proliferation.

To elucidate the underlying molecular changes in dis-
eases and optimal treatment strategies, the ability of
Current Opinion in Systems Biology 2024, 39:100533
cells to change their cell fate was intensively studied.
Many investigations characterise the response of cells to
specific stimuli or perturbations in defined conditions.
Recently, the insights from these studies have been
combined, and disease-specific models have been
developed in order to investigate the response of cells to
different stimuli and perturbations. Here, we will

highlight important mechanistic models capturing pro-
cesses that regulate cell proliferation, complex decisions
between cell survival and cell death, as well as large-
scale models that capture these decisions in disease
cases. Our focus will be on ordinary differential equation
(ODE) models. Overall, we will consider how diverse
cell types in various conditions orchestrate their cell fate
and find what are the essential characteristics of math-
ematical models to describe these processes. Such in-
sights will be decisive for our ability to derive
personalised disease models, also called digital twins,

and to predict optimal treatment strategies.

Regulation of proliferation
In this section, we focus on recent models of signalling
pathways that regulate proliferation. These include the
MAPK (Ras/Raf/Mek/Erk), PI3K/AKT, mammalian
target of rapamycin (mTOR), and the JAK/STAT
pathway. Proliferation is strongly connected to cell cycle
www.sciencedirect.com
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Models of signalling pathways regulating cell fate Simon et al. 3
progression, which was extensively modelled and was
reviewed elsewhere [24e26].

Burbano de Lara et al. [27] investigated the regulation
of hepatocyte proliferation in the context of chronic liver
disease by an experimentaletheoretical approach. Pro-
liferation in hepatocytes is regulated by the MAPK,
PI3K/AKT, and mTOR pathways downstream of hepa-

tocyte growth factor. For these pathways, an ODEmodel
was developed and quantified based on time-resolved
immunoblotting of primary hepatocytes, first for a pre-
clinical mouse model, fed different diets, and subse-
quently for patients. The study showed that the only
kinetic parameter necessary to be altered between mice
fed with different diets is the basal phosphorylation rate
of the receptor tyrosine kinase MET. Moreover, this
parameter also significantly correlates with patient
outcome measures.

The MAPK and PI3K pathways were also analysed and
modelled downstream of ErbB in four breast cancer cell
lines [28]. Here, a mechanistic model of these pathways
was combined with a linear regression model to explic-
itly model proliferation. This approach allowed to
identify differences between the four cell lines repre-
senting different breast cancer subtypes and to predict
the effect of drug combinations on cell proliferation.
The receptor levels and cell-line-specific mutations
were identified as main drivers of clinical differences.
Targeted, time-resolved proteomics data were the basis

for the model fitting, and L1 regularisation [29] was
used to derive cell-line-specific models. Imoto et al.
[30] developed a framework for the prediction and
analysis of cancer-signalling dynamics based on RNA-
sequencing data. Their model captures the MAPK
pathway, the PI3K/AKT pathway, and c-Fos induction
downstream of ErbB in breast cancer cell lines. The
kinetic parameters are derived based on time-series
phosphorylation data for three breast cancer cell lines
and initial protein levels from gene expression data.
Based on a large-scale pan-cancer signalling model [31],
Schmucker et al. [32] developed a method to define

optimal drug treatment strategies. The model includes
ErbB receptors, the RAS and AKT signalling pathways,
and the regulation of the MYC and AP1 transcription
factors. In this model, proliferation is described as a
function of active forms of multiple transcription factors
with different weights.

Yip et al. [33] focussed in a modellingeexperimental
approach on PI3K-inhibitor-sensitive and -resistant
breast cancer cells to understand resistance mechanism
towards inhibition. Their model includes PI3K/AKT,

mTOR, and MAPK signalling downstream of IGF/ErbB
and is based on time-course data of critical pathway
components. The model is used to predict drug syn-
ergies for the inhibitor-sensitive and -resistant cases.
The detailed signalling model was extended by a
www.sciencedirect.com
phenotypic module capturing DNA damage, repair, cell
cycle phases, and apoptosis. Differences between drug-
responders and nonresponders have also been investi-
gated by Raimúndez et al. [34]. They used a model of
the EGFR, ERK, and AKT pathways to investigate
resistance mechanisms in gastric cancer cell lines.

The JAK/STAT pathway is influencing many processes,

including proliferation, differentiation, and apoptosis
[35]. In pancreatic b cells, lactogenic hormones promote
proliferation and activate the JAK/STAT pathway. In
order to investigate heterogeneity in this system, Simoni
et al. [36] used a model of the JAK/STAT pathway [37]
and modelled a heterogeneous population of cells with
varying initial concentrations. Using this approach they
could identify proteins, mainly phosphatases, that are
strongly influencing the response and therefore might
be suitable drug targets. Adlung et al. [38] also studied
the cell-to-cell heterogeneity in the JAK/STAT signal-

ling pathway, focussing on the survivaledeath decision.
Here, a mathematical model of the Epo-induced JAK/
STAT signalling combined with population and single-
cell data was used to understand the sources of cell-to-
cell heterogeneity and its impact on survival cell fate.

Overall, these studies show that the elucidation of
heterogeneity between cells or cell lines on the level of
proteins, protein modifications, or in process rates is
critical for the understanding of proliferation and
drug responses.
Complex decisions: proliferation,
quiescence, senescence, or apoptosis
As exemplified in the study of Yip et al. [33], the regu-
lation of proliferation is embedded in a more complex
decision landscape of the cell. For example, in context of
DNA damage, cells are required to decide between a
transient cell cycle arrest while the damage is repaired,
entering senescence or inducing the terminal-fate
apoptosis. The transcription factor p53 is upregulated
upon DNA damage and induces the expression of
numerous target genes. For the decision between tran-
sient cell cycle arrest and senescence, the expression

levels of one of its target genes, CDKN1A (p21), play an
important role. P21 acts as a cyclin dependent kinase
inhibitor by binding cyclindcyclin-dependent kinase
complexes and thereby preventing cell cycle progression.
To mechanistically understand the regulation of those
cell fate decisions, mathematical modelling of p53/p21
signalling as well as NF-kB signalling was applied.

Hsu et al. [39] studied the decision between prolifera-
tion and senescence upon DNA damage via chemother-
apeutic treatment of cells based on single-cell time-lapse
microscopy. They showed how the heterogeneity of

cellular dynamics determines cell fate and developed a
conceptional model of p21 dynamics after DNA damage.
Current Opinion in Systems Biology 2024, 39:100533
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The model reveals a bistability in p21 states, corre-
sponding to senescence and proliferation. Heldt et al.
[40] focussed on the decision between proliferation and
quiescence in human cells after mild DNA damage.
Based on single-cell data, they created a model for early
cell cycle progression containing many cell cycle com-
ponents as well as p53 and p21. The model shows that
two bistable switches integrate DNA damage levels and

proliferation signals andmediate the cellular decision. In
the case of nonterminal cell fates such as quiescence, the
question arises how cell fates are preserved over longer
time scales. This was addressed by Reyes et al. [41] in
individual human cells using fluorescent reporters for
p53 and p21 to characterise their dynamics over several
days after irradiation. They reported that not all cells
maintain a cell cycle arrest, but some re-enter the cell
cycle. Fluctuations in p53 levels led to heterogeneity in
the ability to maintain cell cycle arrest. A core model of
p53 and a double-negative loop between CDK2 and p21

were used to simulate the effect computationally.

The variability of p53 dynamics among individual cells
has been investigated experimentally and theoretically
in great detail [42]. Stewart-Ornstein and Lahav
analysed on the single-cell level the heterogeneous
response of p53 upon DNA damage among 12 different
cell lines [43]. Using a mathematical model describing
regulation of p53 activity, they could identify the pro-
cesses causing variability in the p53 dynamics. Yang et al.
[44] used a combination of single-cell imaging and a core

model of double-strand break-induced activation of the
p53 pathway for cell-line-specific modelling in three cell
lines. The study characterised the cell type variation in
p53 dynamics and cellular response. By creating cell-
line-specific models, they identified differences in the
protein levels of one of the network components as a
critical factor for the p53 response to a DNA-damaging
drug. This way, they elucidated a new resistance
mechanism to a chemotherapeutic agent. A detailed
model of the p53 and PI3K/AKT pathway activation was
developed by Hat et al. [45] to describe the regulation
of apoptosis and cell cycle processes after DNA damage.

The model was subsequently used to predict drug re-
sponses of cancer cells for combination treatments [46].

The regulation of cellular survivaledeath decisions is
not only mediated by the p53 and PI3K/AKT
pathways but also strongly influenced by NF-kB. NF-kB
family members acting as antiapoptotic factors and are
regulated via several pathway branches [12]. Based on a
comprehensive NF-kB pathway model [47], Roy et al.
[48] modelled single-cell fate decisions of proliferation,
differentiation, and apoptosis in B-cells. Comparing

simulations of different model variants to experimental
data revealed the importance of an inhibitory
proteineprotein interaction regulating a certain NF-kB
family member and its necessity for proper B-cell
Current Opinion in Systems Biology 2024, 39:100533
differentiation. NF-kB is also critically involved in the
response to DNA damage. The molecular mechanism of
NF-kB activation after double strand breaks including
poly(ADP-ribose) polymerase 1 (PARP-1) modification
has been revealed experimentally [49e51] but has only
recently been described by a mechanistic model [52].

In the study of Burt et al. [53], the balance between

apoptosis and survival of plasma cells was analysed with
a model comprising antiapoptotic and proapoptotic
factors that are regulated by the transcription factors
FoxO and NF-kB. Quantitatively evaluating the capa-
bility of different model variants to reproduce the given
data sets allowed to reveal the importance of individual
caspase regulation for controlling survival signalling.

The crosstalk of signalling pathways, i.e. the modulating
effect of a component from one pathway on the response
of another pathway can affect cell fate decisions and has

been a subject of modelling approaches disentangling
the impact of individual components on the cellular
response. In the study of Konrath et al. [54], the impact
of NF-kB signalling on the p53 response was investi-
gated, and the processes affected by the crosstalk could
be identified based on mathematical modelling and
single-cell dynamics. Anderson et al. [55] analysed the
impact of AKT/PTEN in TRAIL-induced apoptosis and
could demonstrate that AKT is influencing early phases
of apoptosis regulation in colorectal carcinoma cells.
This demonstrates that the regulation and crosstalk of a

range of signalling pathways and processes contribute to
the intriguing balance of proapoptic and antiapoptotic
factors underlying lifeedeath decisions. Also apoptotic
processes downstream of these signalling pathways have
been modelled in detail [56,57]. This way, the impact of
apoptotic processes on inflammation could be demon-
strated [56], and synergies between drug targets pro-
moting effective apoptosis induction in tumour cells
could be identified [57].
Large-scale models for cell fate decisions in
disease contexts
In order to specify cellular networks for disease cases, to

predict the response to various perturbations and
allow capturing high-dimensional perturbation data,
large-scale models have been developed. These models
allow for an integrative view on multiple pathways with
their crosstalk and are therefore a step closer to the
reality in a cell. Through this integrative view, it be-
comes possible to understand interactions between
perturbations in different pathways. To generate these
large-scale models, models for individual pathways and
cell fate decision processes are frequently combined and
trained using additional data. Often, the aim of these
large-scale mechanistic models is the prediction of drugs

and drug combinations for optimal targeting of diseases.
www.sciencedirect.com
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Du et al. [58] developed a model of the B-cell-
receptor signalling network, including PI3K/AKT, RAS,
and NF-kB signalling to model B-cell lymphoma. They
combined the detailed signalling model with a tumour
growth model to investigate the response to individual
and pairs of drugs.

A more comprehensive mechanistic model describing

proliferation and cell death by mutated cancer-related
signalling pathways was developed by Bouhaddou et al.
[59]. This model captures a range of pathways and pro-
cesses including MAPK and PI3K/AKT pathways,
mTOR signalling, DNA damage response via p53
signalling, gene activation by transcription and trans-
lation as well as cell cycle and apoptosis. While the focus
on this paper is the development and validation of the
large-scale model, they also gain detailed mechanistic
insights into cell-line-specific responses to mitogen and
inhibitor treatment. This model approach was recently

developed into a pipeline to allow easy reuse and repar-
ameterisation of the model for different cell types [60].
In addition, the approach enables model extension,
demonstrated for expansion via an IFNg pathway
module after analysis of putative crosstalk mechanism
[60]. Another large-scale model capturing multiple
signalling pathways, cell cycle, DNA damage response
and apoptosis was introduced by Miao et al. [61]. The
model focusses on pancreatic cancer cells, was fitted to
data, and used to analyse the effects of individual and
combined drug treatment.

Large-scale signalling networks have been also captured
by Boolean and logical modelling approaches that
allow reduction of process-related details with respect to
the kinetics and parameters [62]. Recently, the
approach has been applied to develop patient-specific
models [63]. Eduati et al. [64] developed a Boolean
model for the extrinsic apoptosis pathway and predicted
drug response, first for two cell lines, then for cancer
patients, based on biopsy data. Thobe et al. [65]
developed personalised models of the signalling network
in diffuse large B-cell lymphoma including PI3K,

MAPK, JAK/STAT, and NF-kB signalling and investi-
gated the effect of different inhibitors on characteristic
marker gene expression. A comprehensive model
including many pathways, e.g. MAPK, NF-kB, and PI3K/
AKT, as well as proliferation and apoptosis as explicit
output nodes allowed Montagud et al. [66] to develop
prostate cancer models for individual patients by using
the cancer genome atlas (TCGA) data. These person-
alised models were used for the prediction of treat-
ment responses.
Conclusions and outlook
We here highlight studies that successfully modelled
processes regulating cell fate decisions and that have
been used for the prediction of drug responses. The
www.sciencedirect.com
models often combine and expand individual pathway
models that have been studied in great detail before.
While several central signalling pathways and processes
reoccur in models of different cell fate decisions, their
relevance and regulation can vary in different cell types
and conditions. Themajority of studies used intertwined
mechanistic modelling and detailed experimental ana-
lyses. Capturing cellular heterogeneity was shown to be

an important step of the model-informed identification
of critical processes and dynamic patterns. As predicted
very early [67], it is critical to distinguish cellular dif-
ferences that are essential for the function or response of
a cell from those that are not. The factors and processes
relevant for cellular heterogeneity and fate decisions
have been shown to vary greatly in specific systems, e.g.
from rates of kinetic processes to receptor levels or
dynamical behaviour of key players.

The identification and inclusion of cell-type-specific

differences will be relevant for additional aspects: the
consideration of the role of the cellular environment and
cellecell interactions in tissues and organs. Here,
spatially resolved investigation of signalling can be an
instrumental tool [68]. In addition, a consideration of
various cell types will highlight differences in their
response to drugs and thereby support the prediction of
possible drug side-effects.

Based on established models for cell lines, the gained
insights are now used to develop personalised disease

models for the prediction of optimal therapies. A
patient-specific implementation of alteration patterns
has been achieved in a number of recent approaches.
The aim to implement all relevant patient-specific al-
terations and possible drug target points simultaneously
led to the development of large network models. To that
end, models have been frequently expanded in a step-
wise manner. For such model expansions, approaches to
formulate models in a standardised way for eased reuse
and extension are highly useful. Repositories of estab-
lished models such as Biomodels [69] and JWS online
[70] as well as standards for parameter estimation

problems such as PEtab [71] greatly support this pro-
cess. Moreover, a number of tools for the expansion and
linkage of existing networks has been recently devel-
oped [72e74]. Still, merging-established models often
required a detailed investigation of crosstalks and reg-
ulations, and while multiple pathways are already
included in large-scale mechanistic models, important
processes and links are still missing, with processes of
the immune response being a prominent example.

Additional challenges for the generation of personalised

disease models are as follows: i) the requirement of huge
amount of data sets for the training of the large-scale
models [31,59] and ii) the mapping of the output of
signalling models to phenotypic readouts to capture
disease-relevant cell fate decisions. The latter can be
Current Opinion in Systems Biology 2024, 39:100533
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Figure 2

Different layers of cellular heterogeneity. Cellular components such as transcripts and proteins can vary strongly between cells. This cell-to-cell
heterogeneity can affect the regulatory network and is therefore important for cell fate decisions. Heterogeneity can originate from different sources.
Within a population of cells of the same cell type with an identical genetic background, heterogeneity can arise from the stochastic nature of gene
expression (represented by the colour gradient). For cells of different cell types, additional layers of heterogeneity arise based on gene expression
changes (represented by the shape). In tissues and organs, the cell-to-cell variability is further increased by differences in the amount and type of stimuli
that interact with cells. On the level of patients, the genetic variance and disease-related alterations, e.g. mutations among individuals introduce het-
erogeneity that can have a strong impact on the outcome of therapies.

6 Mathematical Modelling (2023)
realised on different levels of complexity, using indi-
vidual markers or combinations of markers as a proxy for
the phenotype, or by developing phenomenological de-
scriptions, for which a sophisticated approach has
recently been developed [75]. Generally, the integration
of available omics data by combining machine-learning
approaches and mechanistic modelling is a promising
approach towards comprehensive personalised disease
models [76,77]. An upcoming challenge for such
personalised large-scale models is the validation of

patient-specific treatment predictions, which require
systematic strategies to test and improve
such predictions.

So far, it is an open question how much detail is required
to capture all relevant patient-specific disease alter-
ations at the same time as cell-type-related heteroge-
neity (Figure 2). Not all the available details might be
necessary to derive effective drug predictions. Once cell
type and patient-specific models with sufficient detail
Current Opinion in Systems Biology 2024, 39:100533
are established they will not only guide treatment pre-
diction of developed diseases but also guide our un-
derstanding of more subtle changes, e.g. in early disease
stages or ageing.
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