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Abstract

Systems biology is located at the intersection of biology, computer science, and

mathematics, and is based on the translation of biological systems into math-

ematical models. It aims to predict the behavior of these biological systems to

improve the efficiency of time- and cost-intensive research in laboratories.

In this thesis, we focus on the description and understanding of metabolic

networks at steady state. These networks are mathematical models of the

metabolic processes inside a cell.

The stoichiometric and thermodynamic constraints that must hold in a

metabolic network at steady-state define the steady-state flux cone. An im-

portant concept to analyze flux cones in a mathematically and biologically

meaningful way are elementary flux modes, which can be considered as mini-

mal functional units of metabolic networks. In the flux cone, elementary flux

modes correspond to vectors with inclusionwise minimal support.

We focus on geometric aspects of flux cones of metabolic networks and

elementary flux modes. The number of elementary flux modes may be very

large, even for medium-sized metabolic networks. We study the facial structure

and investigate the distribution of elementary flux modes among the faces

of the flux cone. We observe that they are primarily contained in faces of

relatively low dimension. Due to this observation, we develop a method to

enumerate subsets of elementary flux modes that are contained in a specific

face of the flux cone and apply this to decompositions of flux vectors.

Empirically, we observed that elementary flux modes can always be written

as a positive sum of exactly two others. Motivated by this, we investigate

decompositions of elementary flux modes into others and discuss a conjecture

that claims each EFM can always be decomposed into exactly 2 others or is

not decomposable at all.

Our mathematical results are illustrated on real examples and the presented

data can be reproduced with a Python package we developed.
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Chapter 1

Introduction

Systems biology is located at the intersection of biology, computer science,

and mathematics and is based on the translation of biological systems into

mathematical models. Until the turn of the last century, traditional molecular

biology focused on studying individual components such as specific genes or

proteins in isolation. Systems biology studies interactions of multiple com-

ponents within living organisms, leading to a deeper understanding of the

dynamic behavior of biological systems (Kitano, 2002).

The last decades have seen a rise in high-throughput methods that allow

quantifying molecular properties of biological systems with increasing accuracy.

These ever growing datasets consisting of omics data (e.g., transcriptomics,

genomics, proteomics, and metabolomics) escape conventional biological anal-

ysis methods, mostly due to their size and complexity. At the same time, they

promise a more comprehensive understanding of biological systems than ever

before (Mardis, 2008).

A metabolic network is a complex system of biochemical reactions within

a cell or an organism. Metabolites are transformed by enzyme-catalyzed bio-

chemical reactions. Chains of these reactions form metabolic pathways that

enable cellular functions such as energy production, metabolite production,

maintenance, and growth.

Genome-scale metabolic networks have a wide range of applications, in-

cluding the study of microorganisms, metabolic engineering, drug develop-

ment, prediction of enzyme functions, and understanding microbial commu-

nity interactions and human disease (Fang, Lloyd and Palsson (2020), and

the references therein). By studying these models, researchers can predict

the behavior of microorganisms in specific environments, determine metabolic

pathways for biotechnological applications, anticipate the effects of drugs on

cellular metabolism, and gain insights into interactions within microbial com-

7



8 CHAPTER 1. INTRODUCTION

munities and their impact on human health. Metabolic networks provide a

powerful tool to simulate complex metabolic processes in silico, thereby sup-

porting time- and cost- intensive research in laboratories.

Constraint-based analysis of metabolic networks applies mathematical con-

straints like mass balance, thermodynamics, and capacity limitations to predict

the flow of metabolites as well as functional states of metabolic networks. It

has become an important research field in systems biology (Bordbar et al.,

2014; Fang, Lloyd and Palsson, 2020).

In contrast to dynamic modeling approaches, where changes of metabolite

concentrations over time are described by differential equations, this thesis

focuses on metabolic networks at steady-state. The stoichiometric and ther-

modynamic constraints that must hold in a metabolic network at steady-state

define the (steady-state) flux cone, which comprises all (steady-state) flux dis-

tributions. A flux balance analysis (FBA) problem is a linear optimization

problem to determine an optimal flux distribution in a metabolic network at

steady-state to achieve a specific objective, typically maximizing biomass or

metabolite production (Orth, Thiele and Palsson, 2010).

One important concept to analyze flux cones of metabolic networks in a

mathematically and biologically meaningful way are elementary flux modes

(EFMs) (Schuster and Hilgetag, 1994; Schuster, Hilgetag, et al., 2002), which

can be viewed as minimal functional units of the network. Viewed as flux vec-

tors, they form a finite generating set of the flux cone. This means that every

steady-state flux distribution in a metabolic network is a positive combination

of EFMs (Gagneur and Klamt, 2004; Wagner and Urbanczik, 2005; Larhlimi

and Bockmayr, 2008; Jevremović and Boley, 2013). From a mathematical

point of view, we explore geometric properties of flux cones of metabolic net-

works with a particular focus on elementary flux modes. We apply concepts

from various areas of mathematics, including linear optimization, polyhedral

geometry, and matroid theory, to obtain new insights into the structure of the

set of EFMs.
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Structure of this thesis

In Chapter 2, we introduce the required mathematical background. First, we

define polyhedral cones in general and explore their basic properties. Next,

we extend the familiar definition of a graph step by step to the definition

of a generalized weighted hypergraph that is used to represent a metabolic

network. Metabolic networks are formally defined and the definition of the

steady-state flux cone is derived from the steady state-assumption. Next, we

formally introduce EFMs as vectors with inclusionwise minimal support in the

flux cone and present some well-known properties with their proofs. Finally,

we provide a brief overview of the most prominent methods to enumerate the

set of EFMs.

In Chapter 3, we study the geometry of the flux cone and EFMs. We be-

gin by expanding our knowledge of geometric and combinatorial properties of

polyhedral cones. Next, we discuss inequality descriptions of the flux cone and

the effects of adding and removing redundant constraints. Then, we investi-

gate the relationship between faces of the flux cone and metabolic behaviors.

We also generalize a result concerning the one-to-one correspondence between

minimal metabolic behaviors and minimal proper faces of the flux cone. To

structure the set of EFMs, we introduce the degree of a flux vector as the

dimension of the inclusionwise minimal face containing it and analyze the dis-

tribution of elementary flux modes in the face lattice of the flux cone. We

prove upper bounds on the degree of EFMs and show that EFMs occur in the

relative interior of the flux cone only in very specific cases. We conclude the

chapter with a result establishing a relationship of combinatorial properties of

the flux cone and the cardinality of its minimal metabolic behaviors.

In Chapter 4, we discuss decompositions of flux vectors into EFMs, i.e.,

how they can be written as a positive combination of them. We show that a

flux vector that is decomposed and the decomposing EFMs have to belong to

the same face of the flux cone. Motivated by this observation, we develop an

9



10 CHAPTER 1. INTRODUCTION

algorithm to determine the face of the flux cone that is defined by a given flux

vector and the subset of EFMs contained in that face. For lower-dimensional

faces, the cardinality of such a subset of EFMs turns out to be significantly

smaller than the total number of EFMs. We illustrate the scalability of our

method by determining EFMs in the faces defined by solutions of FBA prob-

lems in a large selection of genome-scale metabolic networks. Furthermore, we

introduce low-degree decompositions as an alternative to shortest decomposi-

tions. Although more EFMs are needed in a low-degree decomposition, these

EFMs cannot be further decomposed into other EFMs of lower degrees.

In Chapter 5, we further investigate decompositions of EFMs into other

EFMs. Empirically, we observed that EFMs can always be decomposed into

two other EFMs or they are not decomposable at all. This observation leads

to a conjecture claiming that this is always the case, i.e., that the length of a

shortest decomposition of an EFM into other EFMs is always 2. We formalize

this conjecture, define what a counterexample to this conjecture is, and prove

that a counterexample needs to have at least two reversible reactions. Next,

we study the relationship between matroids and metabolic networks where all

reactions are reversible. Applying concepts from matroid theory allows us to

prove a weaker version of our conjecture, namely that the support of every

EFM in a metabolic network with only reversible reactions is contained in the

support of a positive combination of two other EFMs. We derive an algorithm

to generate new EFMs from a starting set by positive combinations (similar

to the circuit enumeration method for matroids described by Khachiyan et al.

(2005)) and an algorithm to determine a length-2 decomposition of an EFM.

Finally, we present a computational approach to find counterexamples to the

conjecture by enumerating and testing all metabolic networks of small sizes.

In Chapter 6, we present a Python package that was developed in the

course of this thesis. The software is open source and available on GitHub.

The package can reproduce the data presented in this thesis. We give a short

overview of the structure of the software and available functions. Next, we de-

10



11

scribe different methods to enumerate the set of EFMs that are provided by the

package. Finally, we discuss applications of the software and implementations

of several algorithms described in Chapter 5.
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Chapter 2

Background

In this chapter, we summarize common results that form the mathematical

background needed for this thesis. More specific concepts will be introduced

in the chapters where they are first discussed.

2.1 Notation

Throughout this thesis we will be following the notation guidelines summarized

in this section. If we have k vectors in Rn, we will denote them by x1, . . . , xk

while we will write xi for the i-th entry of a vector x ∈ Rn. For scalars in

R, we will use Greek letters (λ, γ, α, β, . . . ) and if we have k scalars we will

denote them λ1, . . . , λk. We will sometimes write R≥0 := {λ ∈ R | λ ≥ 0}
or R>0 := {λ ∈ R | λ > 0} when we mean the subset of all non-negative

or positive real numbers, respectively. In definitions of sets, colons (”:”) and

vertical lines (”|”) will be used analogously. A vector in Rn should always be

viewed as a column vector (i.e., a (n × 1)-matrix) if not specified. For better

readability, when we present a set of vectors, we will often present a matrix

and specify that the vectors are the rows of that matrix.

2.2 Polyhedral cones

We begin by introducing polyhedral cones in general, before we define the flux

cone of a metabolic network as a specific type of polyhedral cone. For further

reading, we refer to (Lauritzen, 2013; Schneider, 2013; Schrijver, 1998; Ziegler,

1995). Most of our notation, definitions and basic results are from (Schrijver,

1998).

A vector x ∈ Rn is a linear combination of the vectors x1, . . . , xk ∈ Rn if

13



14 CHAPTER 2. BACKGROUND

x = λ1x
1 + · · ·+ λkx

k, for some λ1, . . . , λk ∈ R. If, in addition


λ1, . . . , λk ≥ 0,

λ1 + · · ·+ λk = 1,

λ1, . . . , λk ≥ 0, λ1 + · · ·+ λk = 1,

 we call x a


conic

affine

convex


combination of the vectors x1, . . . , xk.

For a nonempty subset X ⊆ Rn, we denote by lin(X) (resp. cone(X),

aff(X), conv(X)) the linear (resp. conic, affine, convex ) hull of X, i.e., the set

of all linear (resp. conic, affine, convex) combinations of finitely many vectors

of X.

A nonempty set C ⊆ Rn is a convex cone, if it is closed under conic com-

binations, i.e., λx + µy ∈ C, for all x, y ∈ C and λ, µ ≥ 0. By definition, the

conic hull of a subset of Rn is a convex cone. A convex cone C is polyhedral if it

is the solution set of a system of finitely many homogeneous linear inequalities,

i.e., if

C = {x ∈ Rn | Ax ≥ 0},

for some matrix A ∈ Rm×n. If a cone C is the conic hull of a finite set

X = {x1, ..., xk} ⊂ Rn, it is called finitely generated and the set X is called

a generating set of C. By the well-known theorem of Farkas-Minkowski-Weyl

(see e.g. (Schrijver, 1998)), a convex cone is polyhedral if and only if it is

finitely generated. For the rest of this thesis we will only consider polyhedral

cones and often simply write cone.

If C := {x ∈ Rn | Ax ≥ 0} is a polyhedral cone, an inequality ax ≥ 0,

where a denotes a row of A and ax the inner product of a and x, is called an

implicit equality in Ax ≥ 0, if ax = 0, for all x ∈ C. Following (Schrijver,

1998), we denote by A=x ≥ 0 the system of implicit equalities in Ax ≥ 0 and

by A+x ≥ 0 the remaining inequalities.

If removing an inequality ax ≥ 0 from Ax ≥ 0 does not change the asso-

ciated cone C, the inequality is called redundant. If there are no redundant

14



2.2. POLYHEDRAL CONES 15

inequalities, the description Ax ≥ 0 is called irredundant.

The dimension dim(C) of a cone C is the dimension of its affine hull

aff(C) = {x ∈ Rn | A=x = 0} and is equal to n − rank(A=). Note that

since 0 ∈ C, aff(C) coincides with the linear hull lin(C).

A vector x ∈ C is in the relative interior of C, if there exists ϵ > 0 such

that Bϵ(x) ∩ aff(C) ⊆ C, where Bϵ(x) is the n-dimensional ball of radius ϵ

centered at x. We will write x ∈ relint(C), if x is in the relative interior of C.

If x ∈ C is not in the relative interior of C, it is in the relative boundary of C.

The lineality space of a cone C = {x ∈ Rn | Ax ≥ 0} is given by

lin. space(C) := {x ∈ Rn | Ax = 0}, which is the inclusionwise maximal

linear subspace contained in C. A cone C is called pointed if its lineality space

is trivial, i.e., lin. space(C) = {0}. If a cone is pointed, it does not contain a

line.

An inequality ax ≥ 0 is called valid for C if C ⊆ {x ∈ Rn | ax ≥ 0}. A

nonempty set F ⊆ C is called a face of C if there exists an inequality ax ≥ 0

valid for C such that F = C ∩ {x ∈ Rn | ax = 0}. The hyperplane {x ∈ Rn |
ax = 0} is then called a supporting hyperplane of F . Alternatively, a face can

be characterized as a nonempty set F ⊆ C with F = {x ∈ C | AI,⋆x = 0},
where AI,⋆ is the submatrix of A whose rows belong to the set I ⊆ {1, . . . ,m}
(Schrijver, 1998).

A polyhedral cone C has only finitely many faces, each face F of C is itself

a polyhedral cone and F ′ ⊆ F is a face of F if and only if F ′ is a face of C.

A k-dimensional face will also be called a k-face. A cone C is pointed if and

only if it has a 0-face, namely the origin.

A face F ̸= C of C is called a facet if it is inclusionwise maximal, i.e.,

there is no other face F ′ ̸= C such that F ⊂ F ′. If the description Ax ≥ 0

of C is irredundant, there is a 1-1 correspondence between the facets of C

and the inequalities in A+x ≥ 0 (Schrijver, 1998, Theor. 8.1). In particular,

for every facet F there is an inequality ax ≥ 0 from A+x ≥ 0 such that

F = {x ∈ C | ax = 0}. We have dim(F ) = dim(C)− 1 for every facet F of C,

15



16 CHAPTER 2. BACKGROUND

and every face of C (except C itself) is the intersection of facets of C.

2.3 From graphs to hypergraphs

We refer to (Diestel, 2017) for detailed information on graphs. In this section,

we describe how the definition of a graph can be adapted step by step to obtain

directed hypergraphs, which we will generalize even further in the following

section to represent metabolic networks.

A finite graph is defined as a tuple G = (V,E), where V = {v1, . . . , vn} is a

set of nodes, and E is a set of edges where each edge e ∈ E is a subset of V . We

assume that each edge is a subset of V with cardinality 2, thereby excluding

graphs with loops. Such a graph is also called undirected graph because the

edges are not oriented.

If the edges are ordered pairs, i.e. E ⊆ (V ×V ), we obtain a directed graph,

where the direction from one node to another matters ((vi, vj) ̸= (vj, vi)). The

directed edges of a directed graph are often called arcs to distinguish them

from the edges of undirected graphs. Figure 2.1 shows an example of an

undirected graph G on five nodes and a directed graph D on the same set of

nodes obtained by giving the edges of G an orientation and replacing the lines

(edges) with arrows (arcs) to indicate the chosen orientation.

An undirected graph G on n nodes can be represented by a so-called ad-

jacency matrix A ∈ Rn×n, where the entry aij (i.e., the entry in the i-th row

and j-th column of A) is 1 if there exists an edge connecting the nodes vi and

vj and 0 otherwise. For an undirected graph, the adjacency matrix is always

symmetrical. To represent a directed graph D on n nodes, we only set aij = 1

if there exists an arc from vi to vj while the remaining entries are zeros. For

directed graphs, the adjacency matrix need not be symmetrical. The adja-

cency matrices for the undirected graph (AG) and the directed graph (AD) in

16
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v1

v2

v3

v4

v5

e1

e2

e3

e4

e5

e6 v1

v2

v3

v4

v5

d1

d2

d3

d4

d5

d6

Figure 2.1: On the left: Undirected graph G on nodes v1, . . . , v5 with edges

e1, . . . , e6. On the right: Directed graph D on the same nodes with arcs

d1, . . . , d6.

Figure 2.1 are given by

AG =


0 1 1 0 0

1 0 0 1 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 0

 , AD =


0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

 .

A directed hypergraph generalizes the concept of a directed graph. It is

defined as a tuple H = (V,H), where V = {v1, . . . , vn} is a set of nodes and

H is a set of hyperarcs. Each hyperarc can connect any number of nodes,

not just pairs. Hence, a hyperarc h = (V1 ⊆ V, V2 ⊆ V ) is an ordered pair

consisting of two subsets of V . Note that we did not exclude the empty set

for the definition of hyperarcs. Figure 2.2 shows a directed hypergraph on the

same five nodes as in Figure 2.1. Observe that h1 = (∅, {v1}) contains the

empty set and therefore does not start at any other node, but ends in v1. The

arcs h3, h5 and h6 only connect pairs of nodes and thus could also appear in

a directed graph (cf. Figure 2.1). Arcs h2 and h4 are proper hyperarcs since

17
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v1

v2

v3

v4

v5

h1 h2

h4

h3

h5

h6

Figure 2.2: Directed hypergraph on the same five nodes as in Figure 2.1 with

directed hyperarcs h1, . . . , h6.

they connect more than just two nodes.

To represent a hypergraph H with n hyperarcs on m nodes, we introduce

the incidence matrix AH ∈ Rm×n. Each row of AH represents a node and each

column represents a hyperarc. For each hyperarc hj = (V1 ⊆ V, V2 ⊆ V ) we

set aij = −1 for all i ∈ I1 and aij = 1 for all i ∈ I2 where I1 is the set of indices

of nodes in V1 and I2 the set of indices of nodes in V2. The incidence matrix

for the directed hypergraph H in Figure 2.2 is given by

AH =


1 −1 0 0 0 0

0 1 −1 −1 0 0

0 1 0 0 −1 0

0 0 1 −1 0 −1

0 0 0 1 1 1

 .

Of course an incidence matrix can also be used to represent graphs with-

out hyperarcs, but a proper hyperarc cannot be represented by an adjacency

matrix.

18



2.4. METABOLIC NETWORKS 19

2.4 Metabolic networks

A metabolic network N = (M,R, S, Irr) is given by a set M of (internal)

metabolites, a set R of reactions, a stoichiometric matrix S ∈ Rm×n, where

m = |M| and n = |R|, and a subset Irr ⊆ R of irreversible reactions. The

reactions in R \ Irr are called reversible reactions and are denoted by Rev.

Depending on the context, we will also equivalently define a metabolic network

N = (M,R, S,Rev) by its set of reversible reactions Rev instead of the set

of irreversible reactions Irr. The equivalence follows from Irr = R \ Rev and

Rev = R \ Irr.
For J ⊆ R, we denote by S⋆,J the submatrix of S whose columns belong to

J . Analogously for I ⊆ M, we denote by SI,⋆ the submatrix of S whose rows

belong to I.

A metabolic network can be seen as a generalized weighted hypergraph with

the generalized incidence matrix S, where the metabolites are represented by

nodes and the reactions by hyperarcs. To distinguish reversible and irreversible

reactions in visualizations of metabolic networks, we use arrows in both direc-

tions for reversible reactions (cf. Figure 2.4). So a metabolic network is a

hypergraph as in Figure 2.2 where in addition some arcs (namely the ones

representing reversible reactions) have arrow tips on both sides (e.g. 5 in

Figure 2.4). The weights come into play when considering that chemical reac-

tions typically transform more than single molecules. A positive entry Si,j > 0

in the stoichiometric matrix S indicates that reaction j produces Si,j units of

metabolite i. If Si,j < 0, Si,j units of metabolite i are consumed in reaction j.

An example of a chemical reaction r and its mathematical representation

as a metabolic network is the combustion of hydrogen:

2H2 +O2 → 2H2O

If we consider this reaction r to be irreversible, the corresponding metabolic

network is visualized in Figure 2.3.

19



20 CHAPTER 2. BACKGROUND

H2

O2

H2O
r

Figure 2.3: Combustion of hydrogen, visualized as a metabolic network.

The stoichiometric coefficients in this reaction are represented in the sto-

ichiometric matrix SHc, which has 3 rows and 1 column because we have 3

metabolites and 1 reaction:

SHc =

−2

−1

2

 .

The first entry is -2 because 2 H2 are consumed in this reaction, the second

entry is -1 because 1 O2 is consumed in this reaction, and the last entry is

2 because 2 H2O are produced. The full description of the combustion of

hydrogen as a metabolic network NHc is:

NHc = (M = {H2, O2, H2O},R = {r}, SHc, Irr = {r}).

The metabolic network in Figure 2.4 and variations of it will be used

throughout this thesis for visualizations. Sometimes, a system boundary is

added to clarify which reactions are exchange reactions that cross the system

boundary. The corresponding generalized hyperarcs have the empty set (∅) as
one of their subsets of nodes.

For this example metabolic network we assume that all stoichiometric co-

20
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A

B

C

D

E

F

G
1

2

3
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Figure 2.4: Example of a metabolic network.

efficients are -1,0 or 1. We get the stoichiometric matrix

S =



1 −1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 −1 0 0 0 0 0 0 0

0 1 0 −1 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 −1 0 −1 0

0 0 0 0 0 1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 0 1 −1 0 0


.

Together with Irr = {2, 6, 7, 8} our metabolic network is defined.

Throughout this thesis, we assume that the metabolic networks are at

steady-state, i.e., for each internal metabolite, the rate of production is equal

to the rate of consumption. Let N = (M,R, S,Rev) be a metabolic network.

In matrix notation, the steady-state constraints can be written as Sv = 0,

where v ∈ Rn denotes a flux vector. By adding the thermodynamic irreversibil-
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ity constraints vj ≥ 0, for all j ∈ Irr, and setting

A =

 S

−S

IIrr,⋆

 (2.1)

we obtain the polyhedral cone

C = {x ∈ Rn | Ax ≥ 0} = {v ∈ Rn | Sv = 0, vIrr ≥ 0}, (2.2)

which is called the (steady-state) flux cone of N . Here, vIrr is the subvector of

v, whose components belong to Irr, and IIrr,⋆ is the submatrix of the (n × n)

identity matrix In, whose rows correspond to the irreversible reactions.

2.5 Elementary flux modes

Let C be the flux cone of a metabolic network N = (M,R, S,Rev). A vector

e ∈ C \ {0} is called an elementary flux mode (EFM) (Schuster and Hilgetag,

1994) if it has inclusionwise minimal support, i.e., if

∀v ∈ C \ {0} : supp(v) ⊆ supp(e) =⇒ supp(v) = supp(e), (2.3)

where the support of v ∈ Rn is defined by supp(v) = {i ∈ R | vi ̸= 0}. We say

that a reaction i ∈ R is active in v ∈ C, if i ∈ supp(v). By irr. supp(v) :=

supp(v) ∩ Irr we denote the irreversible support of v, i.e., the set of active

irreversible reactions in v. Analogously, rev. supp(v) := supp(v)∩Rev denotes

the reversible support of v. We call v ∈ C reversible, if supp(v) = rev. supp(v),

i.e., if all reactions that are active in v are reversible and v is called irreversible

if irr. supp(v) ̸= ∅.
The following basic properties of elementary flux modes were first described

by Schuster and Hilgetag (1994) and will be used throughout this thesis. The

presented proofs have been adapted to fit our notation.
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Proposition 2.5.1 (Schuster and Hilgetag, 1994). Let e ∈ C be an EFM in

the flux cone of a metabolic network N = (M,R, S,Rev). If a steady-state

flux vector v ∈ C has support equal to the support of e, i.e. supp(v) = supp(e),

then v = λe for some λ ̸= 0 ∈ R.

Proof. Let U := supp(e) = supp(v) ̸= ∅. If irr. supp(v) = irr. supp(e) =

∅, choose k ∈ U and define λ = vk
ek
. Otherwise, if irr. supp(v) ̸= ∅, define

λ = min{vi
ei

| i ∈ irr. supp(v)} and choose k ∈ U such that λ = vk
ek
. Define

v′ = v−λe. Then v′ ∈ C is a steady-state flux vector because Sv′ = S(v−λe) =

Sv − S(λe) = Sv − λSe = 0 and v′i = vi − λei ≥ vi − vi
ei
ei = 0, for all

i ∈ irr. supp(v). Since v′k = vk − vk
ek
ek = 0, we have supp(v′) ⊊ supp(v) =

supp(e) = U . Since e is an EFM, we get from equation (2.3) that supp(v′) = ∅
and thus v′ = 0. We conclude 0 = v′ = v − λe and thus v = λe.

Because of Prop. 2.5.1, we say that EFMs are uniquely determined by their

support (up to scaling). The support of every vector v ∈ C corresponds to

an element of the finite power set 2R, which has 2|R| elements. This is a

trivial upper bound on the number of EFMs with distinct support a metabolic

network can have.

Corollary 2.5.2. Let N = (M,R, S,Rev) be a metabolic network and let

U := supp(e) be the support of an EFM e of N . Then for every solution v ̸= 0

of the system of linear equations

Sv = 0,

vi = 0 for i ∈ R \ U,
(2.4)

there exists λ ∈ R \ {0} such that λv = e. More precisely, the set of solutions

to (2.4) has dimension 1.

Proof. By construction every solution v ∈ Rn of (2.4) has support supp(v) ⊆
U . Since v ̸= 0, we get supp(v) = U by equation (2.3) and by Prop. 2.5.1 there

exists λ ̸= 0 ∈ R such that λv = e.
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Specifically, given the support U of an EFM, it suffices to solve (2.4) to

find an EFM e with supp(e) = U .

Next we present a test that can be applied to check whether a given flux

vector v is an EFM of a metabolic network.

Corollary 2.5.3 (Jevremovic et al., 2010; Urbanczik and Wagner, 2005). A

flux vector v ̸= 0 in the flux cone C of a metabolic network N = (M,R, S,Rev)

is an EFM of N if and only if

rank(S⋆,supp(v)) = |supp(v)| − 1, (2.5)

where rank(S⋆,supp(v)) is the rank of the submatrix of S, whose columns corre-

spond to reactions that are active in v.

Proof. ”⇒” Let L be the set of solutions of (2.4) where U := supp(e) is the

support of an EFM e of N . Note that (2.4) is equivalent to S⋆,UvU = 0 and

therefore, 1 = dim(L) = |U | − rank(S⋆,U).

”⇐” To see that v is an EFM, suppose there exists v′ ∈ C with supp(v′) ⊊
supp(v). But then v′ is a solution of (2.4) and λv′ = v implies supp(v′) =

supp(v).

We will refer to equation (2.5) as rank test.

Proposition 2.5.4 (Schuster and Hilgetag, 1994). A flux vector v ∈ C \ {0}
is an EFM of the metabolic network N with flux cone C if and only if there

exist no v1, v2 ∈ C \ {0} such that

supp(v1), supp(v2) ⊊ supp(v) and v = v1 + v2.

Proof. ”⇒”: Suppose the opposite, i.e. v ∈ C \ {0} and v = v1 + v2 for some

v1, v2 ∈ C \ {0} with supp(v1), supp(v2) ⊊ supp(v). But then equation (2.3)

implies that v is not an EFM in C.

”⇐”: Suppose v ∈ C and there exist no v1, v2 ∈ C \ {0} with

supp(v1), supp(v2) ⊊ supp(v) and v = v1 + v2,
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but v is not an EFM in C. Because of equation (2.3) there exists v′ ∈ C \
{0} with inclusionwise smaller support than v, i.e., supp(v′) ⊊ supp(v). If

irr. supp(v′) = ∅, choose any k ∈ supp(v′) and define λ = vk
v′k
. Otherwise if

irr. supp(v′) ̸= ∅, define λ = min{vi
v′i
| i ∈ irr. supp(v′)} and choose k ∈ supp(v′)

such that λ = vk
v′k
. Define v1 = λv1 and v2 = v − v1. Then v1, v2 ∈ C \ {0},

supp(v1), supp(v2) ⊊ supp(v) and v = v1+ v2 contradicts our assumption.

In Chapter 5, we will discuss how EFMs can be written as positive combi-

nations of other EFMs that do not have inclusionwise smaller support.

Let N = (M,R, S,Rev) be a metabolic network with flux cone C. Since

EFMs of N are uniquely determined by their support, we can define U as the

set containing all subsets of R that are the support of an EFM of N (i.e. for

every EFM e of N , supp(e) ∈ U). We can split the set U into two disjoint

subsets U r,U i such that U r contains the supports of all reversible EFMs, while

U i contains the supports of all irreversible EFMs and we get U = U r ∪̇ U i.

For each element U ∈ U i, choose an EFM e ofN such that supp(e) = U and

for each element U ′ ∈ U r choose two EFMs e+, e− of N such that e+ = −e−.

We define E as the set containing all EFMs of N chosen this way and call it

a representative set of the EFMs of N . Note that every EFM in the flux cone

C of a metabolic network is a positive multiple of an EFM in E , i.e., if e is an

EFM of a metabolic network N with a representative set E of the EFMs of N ,

then there exists λ > 0 ∈ R such that λe ∈ E .

Proposition 2.5.5 (Schuster and Hilgetag, 1994). Let N be a metabolic net-

work where E is a representative set of the EFMs of N . Any v ∈ C can be

expressed as a conic combination of EFMs in E:

v =
∑
e∈E

λee, for some λe ≥ 0 ∈ R.

Proof. If v ∈ C \ {0} is not an EFM, by Prop. 2.5.4 it can be written as

v = v1 + v2, with supp(v1), supp(v2) ⊊ supp(v).
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This can be repeated for v1 and v2 and the resulting vectors until only EFMs

remain in the conic combination, since supports of the vectors are finite subsets

of R and become inclusionwise smaller in each repetition.

We defined a representative set E of the EFMs of a metabolic network to

contain both orientations of reversible EFMs. With this definition, Prop. 2.5.5

is equivalent to C = cone(E), where C is the flux cone of a metabolic network

with representative set of the EFMs E .
Note that E is not a minimal generating set of the flux cone (for more

details, we refer to Rezola et al. (2011)). A set W of EFMs is called a minimal

set of elementary modes (MEMo) of a metabolic network N , if it is an inclu-

sionwise minimal conic generating set of the flux cone C of N , i.e., removing

any element from W leads to a set that is not a conic generating set of the

flux cone (Röhl and Bockmayr, 2019). By our definition, a set of EFMs is a

MEMo of a metabolic network N with flux cone C if and only if

cone(W) = C and ∀e ∈ W : cone(W \ {e}) ̸= C.

The main advantage of MEMos is the fact that they can be computed faster

than a representative set of the EFMs. We refer to (Röhl and Bockmayr, 2019)

for an in-depth explanation of how a MEMo can be obtained without having

to enumerate a representative set of all EFMs. It should be noted that in

(Röhl and Bockmayr, 2019) MEMos are defined as an inclusionwise minimal

set U ⊆ EN such that every vector v ∈ C can be represented as a linear

combination

v =
∑

e∈U∩ERev
N

λee+
∑

f∈U∩EIrr
N

λff,

for some λe, λf ∈ R, with λf ≥ 0, for all irreversible f ∈ U ∩ E Irr
N . In their

notation EN is the finite set of EFMs (finite because EFMs with equal support

are considered to be the same), ERev
N is the subset of reversible EFMs, and E Irr

N

is the subset of irreversible EFMs. Our definition of a representative set of the
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EFMs of a metabolic network was chosen so that we only need to consider non-

negative (i.e conic) combinations. Doing so also allowed for a more compact

definition of MEMos. Our MEMos are not exactly the same as in (Röhl and

Bockmayr, 2019), since they contain two oppositely oriented representatives

for the support of each reversible EFM.

2.6 EFM enumeration

In this section, we briefly discuss some commonly used methods to enumerate

a representative set of the EFMs of a metabolic network. Most of these are

based on algorithms that enumerate extreme rays of a pointed cone. While

the flux cone of a metabolic network is not pointed in many cases (examples

are presented in Chapter 4), it has been shown that the extreme rays of an

augmented pointed cone correspond to EFMs of the original cone (Schuster

and Hilgetag, 1994). This augmented cone is obtained by replacing every

reversible reaction with two oppositely oriented copies that are irreversible.

This augmented cone is always pointed and methods like the double description

method (Fukuda and Prodon, 1996) can be used to enumerate the extreme rays

of this pointed cone.

The most prominent implementation of the double description method to

enumerate EFMs, efmtool, was introduced by Terzer (2009). Enumeration

methods based on double description have the disadvantage that they are

pass-or-fail methods, i.e., either a full representative set of EFMs is enumer-

ated or no EFMs at all. A more recent alternative to double description for

enumeration of EFMs by enumerating extreme rays of an augmented cone uses

lexicographic reverse search (Buchner and Zanghellini, 2021).

The number of EFMs in a representative set for genome-scale metabolic

networks is generally too high to be enumerated by these methods. To over-

come this issue, de Figueiredo et al. (2009) developed a method to determine

shortest EFMs (with the fewest number of active reactions) by repeatedly solv-
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ing mixed-integer linear programs (MILP). This approach has the advantage

that after each iteration one EFM is returned. Although it is outperformed

by the extreme ray enumeration methods if they terminate, it can be used

to enumerate subsets of EFMs in genome-scale metabolic networks where the

other methods fail.
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Chapter 3

Geometry of the flux cone and

elementary flux modes

The results in this chapter were obtained in a collaboration with Mar-

tin Henk and Alexander Bockmayr and were published in the Journal

of Mathematical Biology (Wieder, Henk and Bockmayr, 2023)(Repro-

duced with permission from Springer Nature).

3.1 Introduction

Constraint-based analysis of metabolic networks is an important area in com-

putational biology (Bordbar et al., 2014; Fang, Lloyd and Palsson, 2020). The

stoichiometric and thermodynamic constraints that must hold in a metabolic

network at steady-state define the steady-state flux cone, which comprises all

feasible flux distributions over the network at steady-state.

An important concept to analyze the flux cone in a mathematically and

biologically meaningful way are elementary flux modes (EFMs) (Schuster and

Hilgetag, 1994; Schuster, Hilgetag, et al., 2002). A representative the set of

the EFMs of a metabolic network provides an inner description of the flux

cone by a finite set of generating vectors (Gagneur and Klamt, 2004; Wagner

and Urbanczik, 2005; Larhlimi and Bockmayr, 2008; Jevremović and Boley,

2013). From a mathematical point of view, a representative set of the EFMs is

not necessarily a minimal generating set, except for special cases (for example,

when all reactions are irreversible). Even for small networks, the cardinality

of a representative set of elementary flux modes may be very large.

Larhlimi and Bockmayr (2009) introduced metabolic behaviors and stud-

ied outer descriptions of the flux cone based on minimal metabolic behaviors

29



30
CHAPTER 3. GEOMETRY OF THE FLUX CONE AND

ELEMENTARY FLUX MODES

(MMBs), which are in a one-to-one correspondence with the minimal proper

faces of the flux cone. Röhl and Bockmayr (2019) introduced the concept of

a minimal set of elementary flux modes (MEMos, cf. Chapter 2) and gave an

algorithm to compute such a set.

The goal of this chapter is to get a deeper understanding of the structure

of EFMs by further studying their geometric properties. In Section 3.2, we

take a closer look at geometric properties of polyhedral cones in general and

extend our knowledge beyond the basic properties introduced in Section 2.2.

In Section 3.3, we discuss the effects of redundancies in the description of a

flux cone of a metabolic network. In Sections 3.5 and 3.6, we study the faces

of flux cones and introduce the degree of a flux vector as the dimension of

the inclusionwise minimal face containing it. Intuitively, the degree of a flux

vector can be viewed as a measure of how close (combinatorially) it is to the

relative interior of the flux cone. If a flux cone is pointed, its extreme rays are

elementary flux modes and form a MEMo. EFMs that are not extreme rays

can still occur in pointed cones and can be identified by having a degree larger

than 1. EFMs in a MEMo of a non-pointed cone have degree equal to the

dimension of the lineality space or equal to the dimension of a minimal proper

face. Here we study the distribution of EFMs among all faces of the flux cone

and observe that EFMs tend to appear primarily in the lower-dimensional faces

of flux cones.

Finally, in Section 3.7, we generalize a result from (Larhlimi and Bock-

mayr, 2009) and show that higher-dimensional faces of the flux cone can be

characterized by metabolic behaviors.

3.2 Geometry of polyhedral cones

In this section, we further investigate polyhedral cones and extend the prop-

erties mentioned in Section 2.2. We explore geometric properties of flux cones

of metabolic networks that will be applied in the remaining sections of this
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chapter.

The face lattice of a polyhedral cone C is the partially ordered set L(C)

of all faces of C, partially ordered by set inclusion (Henk, Richter-Gebert and

Ziegler, 2017; Ziegler, 1995). Two polyhedral cones C,C ′ will be called combi-

natorially equivalent if there is a bijection from L(C) to L(C ′) that preserves

the inclusion relation. The combinatorial type of a polyhedral cone is the

equivalence class under combinatorial equivalence.

Proposition 3.2.1. Let C = {x ∈ Rn | Ax ≥ 0} be a polyhedral cone and

z ∈ C. Furthermore, let A=
z be the submatrix of A whose rows correspond to

the inequalities in Ax ≥ 0 that are fulfilled with equality by z. Finally, let F

be the face of C defined by F = {x ∈ C | A=
z x = 0}. Then

i) F is the inclusionwise minimal face of C containing z,

ii) dim(F ) = n− rank(A=
z ), and

iii) z ∈ relint(F ).

Proof. For x ∈ Rn, define I(x) = {i ∈ {1, . . . ,m} | Ai,⋆x = 0}, where Ai,⋆ is the

i-th row in A. Let F ′ = {x ∈ C | AI,⋆x = 0} be a face of C containing z. Then

AI,⋆z = 0 and thus I ⊆ I(z), which implies F = {x ∈ C | AI(z),⋆x = 0} ⊆ F ′

and statement i) follows.

For x ∈ F , we have I(z) ⊆ I(x). Therefore, I(z) has the minimal number

of elements among I(x), where x ∈ F . The statements ii) and iii) now follow

from Prop. 4.3 in (Lauritzen, 2013) and its proof.

If C is a cone with dim(lin. space(C)) = t ≥ 0, a face of dimension t+ 1 is

called a minimal proper face of C. For a pointed cone C, the minimal proper

faces are the 1-faces, which are called the extreme rays of C. Equivalently,

cone({r}) ⊆ C, r ̸= 0, is an extreme ray of C if and only if r = x + y implies

x, y ∈ cone({r}), for all x, y ∈ C.
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The Minkowski sum of two sets X and Y is defined as X+Y = {x+y | x ∈
X, y ∈ Y }. The next result states that any polyhedral cone can be decomposed

into a Minkowski sum of its lineality space and a pointed cone.

Proposition 3.2.2. Let C ⊆ Rn be a polyhedral cone, L = lin. space(C). Let

G1, . . . , Gs, s ≥ 0, be the distinct minimal proper faces of C and gi ∈ Gi \ L,
for i = 1, . . . , s. Let P = cone({g1, . . . , gs}). Then

i) P is a pointed cone and its extreme rays are cone({g1}), . . . , cone({gs}),

ii) C = L+P = L+cone({g1, . . . , gs}), L∩P = {0} and if L∩ lin(P ) = {0}
then dim(C) = dim(L) + dim(P ).

Proof. i) By definition P is a finitely generated cone. Assume that P is not

pointed. Then there exist λi ≥ 0, i = 1, . . . , s, not all equal to zero, such that

0 =
∑s

i=1 λi g
i. Hence, there exists j ∈ {1, . . . , s} such that −gj ∈ P ⊆ C and

so gj ∈ L, contradicting our choice.

To see that g1, . . . , gs define extreme rays of P , assume without loss of

generality that cone({g1}) is not an extreme ray of P . Then we can find µi ≥ 0,

2 ≤ i ≤ s, not all equal to zero, such that g1 =
∑s

i=2 µi g
i. As G1 is a face,

there exists a supporting hyperplane Ha := {x ∈ Rn | ax = 0}, a ∈ Rn \ {0},
such that G1 = Ha ∩ C and ax > 0 for all x ∈ C \ G1. Thus, from 0 =

ag1 =
∑s

i=2 µiag
i we conclude that agk = 0 for some k ∈ {2, . . . , s}. Therefore

gk ∈ G1 and Gk ⊆ G1, which leads to Gk = G1, because G1 is a minimal

proper face. But then G1, . . . , Gs are not distinct, which is a contradiction.

ii) By Theorem 8.5 in (Schrijver, 1998), we have C = L + P . Since L is a

face of C, there exists a ∈ Rn \ {0} such that ax = 0 for all x ∈ L and ax > 0

for all x ∈ C \L. From agi > 0, i = 1, . . . , s, we get ax > 0, for all x ∈ P \{0},
hence L ∩ P = {0}. If L ∩ lin(P ) = {0}, we have lin(C) = L ⊕ lin(P ),

where L⊕ lin(P ) is the direct sum of the vector spaces L and lin(P ) and thus,

dim(C) = dim(L) + dim(P ).
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The combinatorial type of the pointed cone P = cone({g1, . . . , gs}) in

Prop. 3.2.2 is (generally) not uniquely determined. However, if we choose

g1, . . . , gs such that L ∩ lin(P ) = {0}, i.e., all the gi are contained in some

linear subspace L′ complementary to L, then the combinatorial type of P is

independent of the choice of the gi from the minimal proper faces. Observe that

for any complementary space L′ of L, L′∩Gi is a ray, i.e., L′∩Gi = cone({gi})
for some gi ∈ L′ ∩Gi.

Proposition 3.2.3. Let C ⊆ Rn be a polyhedral cone, L = lin. space(C), and

let P1, P2 be pointed cones with L+P1 = C = L+P2 and L∩ lin(P1) = {0} =

L ∩ lin(P2). Then P1 and P2 are combinatorially equivalent.

Proof. Without loss of generality, let dim(C) = n and dim(L) = t. With

L′
j := lin(Pj), by Prop. 3.2.2, we have dim(L′

j) = n − t and C ∩ L′
j = Pj, for

j = 1, 2. Let u1, . . . , un−t be a basis of L′
1. As also L′

2 is a complement of L,

there exist uniquely determined v1, . . . , vn−t ∈ L′
2, w

1, . . . , wn−t ∈ L such that

ui = vi+wi, 1 ≤ i ≤ n− t. Now, let T : Rn → Rn be the invertible linear map

with

T (u) = u, ∀u ∈ L, T (ui) = vi, 1 ≤ i ≤ n− t.

We get T (C) = C. To see this, let y = u+w ∈ C with u ∈ L′
1 and w ∈ L. We

may write

y =
n−t∑
i=1

λiu
i + w, for some λ1, . . . , λn−t ∈ R.

Thus,

T (y) =
n−t∑
i=1

λiv
i + w =

n−t∑
i=1

λi(u
i − wi) + (y −

n−t∑
i=1

λiu
i)

= y −
n−t∑
i=1

λiw
i ∈ C + L = C,

and vice versa. We conclude

T (P1) = T (L′
1 ∩ C) = T (L′

1) ∩ T (C) = L′
2 ∩ C = P2.
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Hence, P1 and P2 are affinely and thereby combinatorially equivalent.

We point out that the relative interior of a polyhedral cone can easily be

described by looking at implicit equalities in Ax ≥ 0:

Proposition 3.2.4. Let C = {x ∈ Rn | Ax ≥ 0} = {x ∈ Rn | A=x =

0, A+x ≥ 0} be a polyhedral cone. Then

relint(C) = {x ∈ Rn | A=x = 0, A+x > 0}.

Proof. If x ∈ C with A+x > 0, then for any y ∈ lin(C) = {y ∈ Rn | A=y = 0}
there exists ϵ > 0 such that A+(x+ ϵy) > 0. Hence, x ∈ relint(C). Conversely,

let x ∈ relint(C) and let a be an arbitrary row of A+. By definition of A+

there exists z ∈ C with az > 0. As x ∈ relint(C), there exists ϵ > 0 such

x− ϵz ∈ C and so a(x− ϵz) ≥ 0. Thus, ax > 0.

3.3 Redundancy in flux cones

In this section we will discuss properties of flux cones in the context of

metabolic networks. Namely, we will establish the relationship between im-

plicit equalities and blocked irreversible reactions, as well as redundant irre-

versibility constraints.

Implicit equalities. The implicit equalities (cf. Section 2.2) in the definition

of a flux cone C (cf. Section 2.4) include all steady-state constraints Sv = 0.

If any of the irreversibility constraints vj ≥ 0, j ∈ Irr, is an implicit equality,

the corresponding reaction j ∈ Irr is blocked, i.e., vj = 0, for all v ∈ C. For

some of the results in this chapter, we will assume that there are no implicit

equalities in vIrr ≥ 0, or equivalently that there are no blocked irreversible

reactions. In general, blocked reactions can be determined by solving two

linear optimization problems for each reaction:

M = max{vi | Sv = 0, vIrr ≥ 0} and

m = min{vi | Sv = 0, vIrr ≥ 0}.

34



3.3. REDUNDANCY IN FLUX CONES 35

A

B

C

D

E

F

G

H

1
2

3

4

5

6

7

8

9

10

11

12

13

System boundary

Figure 3.1: Modification of the metabolic network in Figure 2.4.

If M = m = 0 the flux through reaction i is always 0 and thus, the reaction

is blocked. Note that for irreversible reactions it suffices to solve one linear

optimization problem, namely the maximization.

Redundant inequalities. If in (2.2) one of the irreversibility constraints

vj ≥ 0, j ∈ Irr, is redundant, the corresponding reaction j can be shifted

from the set Irr of irreversible reactions to the set Rev of reversible reactions,

without changing the flux cone C. The constraint vj ≥ 0 is then implied by

the remaining constraints.

Example 3.3.1. Consider a slightly adjusted version of the example metabolic

network in Figure 2.4.

The metabolic network in Figure 3.1 has the set of metabolites M =

{A,B, . . . ,G,H}, the set of reversible reactions Rev = {1, 3, 4, 5, 9, 10, 11, 12},
and the set of irreversible reactions Irr = {2, 6, 7, 8, 13}. For simplicity, all

stoichiometric coefficients are assumed to be 0,1, or -1. The stoichiometric
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matrix is

S =



1 −1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 −1 0 0 0 0 0 0 0 0

0 1 0 −1 0 −1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 −1 0 −1 0 0

0 0 0 0 0 1 −1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 1 −1 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 1


,

where we assume that reversible reactions are oriented from left to right and

from top to bottom.

In the metabolic network in Figure 3.1, the irreversible reaction 13 is

blocked, i.e., v13 = 0, for all v ∈ C, because there is no reaction consuming

metabolite H.

The irreversibility constraint v6 ≥ 0 is redundant. There can be no flux

from metabolite E to metabolite C because there is no reaction producing E,

other than reaction 6.

The reversible reaction 1 cannot carry flux from right to left. Thus, reaction

1 could be added to the set Irr of irreversible reactions without changing the

associated flux cone C, but then the inequality v1 ≥ 0 would be redundant.

If redundant inequalities are removed from the description of a flux cone,

the resulting irredundant description is generally not unique, as it depends on

the order in which redundant constraints are removed.

Proposition 3.3.2. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be a flux cone such

that none of the inequalities vj ≥ 0, j ∈ Irr, is redundant or an implicit equality.

Then C has exactly |Irr| facets and each facet F has the representation

F = {v ∈ C | vj = 0}, for some j ∈ Irr . (3.1)
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Proof. If there are no implicit equalities in vIrr ≥ 0 and A is given by (2.1),

then A= =

(
S

−S

)
and A+ = IIrr,⋆. Since there are no redundant inequalities

in vIrr ≥ 0, the result follows from Theorem 8.1 in (Schrijver, 1998).

3.4 Illustrative examples

To illustrate the theoretical results in the following sections through con-

crete examples, we will use the metabolic networks Pyruvate and Pentose

Phosphate Pathway from the KEGG database (https://www.genome.jp/

kegg/pathway.html, (Kanehisa and Goto, 2000)) and Escherichia coli

str. K-12 substr. MG1655 (E.coli core) from the BiGG database (King

et al., 2016), where we removed the biomass reaction. The characteristics

of these networks are summarized in Table 3.1. EFMs were computed with

efmtool (https://csb.ethz.ch/tools/software/efmtool.html, (Terzer,

2009)).

3.5 Faces of the flux cone and metabolic be-

haviors

Given a metabolic network N with flux cone C, a metabolic behavior (Larhlimi

and Bockmayr, 2009) of C is a nonempty set of irreversible reactions D ⊆ Irr

with D = irr. supp(v), for some v ∈ C. A minimal metabolic behavior (MMB)

is a metabolic behavior D for which there is no other metabolic behavior

D′ ⊊ D. Larhlimi and Bockmayr (2009) have shown that minimal metabolic

behaviors are in a 1-1 correspondence with the minimal proper faces of the

flux cone C. In particular, if G is a minimal proper face and L the lineality

space of C, then all flux vectors v ∈ G \ L have the same irreversible support

DG = irr. supp(v), which is a minimal metabolic behavior.
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E. coli core Pentose Phosphate Pyruvate

(m,n) = (|M|, |R|) (72, 94) (34, 57) (28, 81)

|Irr| 48 19 40

|Rev| 46 38 41

rank(S) 67 34 28

n− rank(S) 27 23 53

dim(C) 23 23 53

t = dim(L) 0 8 16

dim(P ) 23 15 37

|Facets| 39 17 37

|blocked irr| 8 0 0

|blocked rev| 2 0 0

|EFMs| 16673 5180 47854

|MMBs| 1421 19 37

Table 3.1: Characteristics of the three example networks. |M| and |R| denote
the number of metabolites resp. reactions, which correspond to the number

of rows resp. columns of the stoichiometric matrix. |Irr| and |Rev| denote
the number of irreversible resp. reversible reactions of the network. rank(S)

is the rank of the stoichiometric matrix. The flux cone C = L + P is the

Minkowski sum of the lineality space L and a pointed cone P , with dim(C) =

dim(L) + dim(P ). |Facets| is the number of facets of the flux cone, which is

equal to the number of irreversibility constraints if none of these is redundant

or an implicit equality. |blocked irr| resp. |blocked rev| describe the number of

blocked irreversible resp. blocked reversible reactions. |EFMs| is the number

of EFMs and |MMBs| the number of minimal metabolic behaviors.
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Proposition 3.5.1. Let C be the flux cone of a metabolic network. Then each

metabolic behavior is the union of MMBs.

Proof. Let ∅ ≠ D ⊆ Irr be a metabolic behavior and let v ∈ C with D =

irr. supp(v). Let L be the lineality space and G1, . . . , Gs, s ≥ 0, be the minimal

proper faces of C. Since D ̸= ∅ and irr. supp(l) = ∅, for all l ∈ L, we have

C ̸= L. Thus C has at least one minimal proper face and s ≥ 1. By Prop. 3.2.2,

v = l +
∑s

i=1 λig
i, for some l ∈ L and λi ≥ 0, gi ∈ Gi \ L, for i = 1, . . . , s. It

follows irr. supp(v) =
⋃

λi>0 irr. supp(g
i) =

⋃
λi>0D

i, where Di = irr. supp(gi)

is the MMB of the minimal proper face Gi, for i = 1, . . . , s.

Next, we generalize the characterization of minimal proper faces by MMBs

(Larhlimi and Bockmayr, 2009) to higher-dimensional faces.

Proposition 3.5.2. Let C be the flux cone of a metabolic network and let F

be a face of C. Then all v ∈ relint(F ) have the same irreversible support or

equivalently share the same metabolic behavior.

Proof. Let v, w ∈ relint(F ). Assume w.l.o.g. that there exists j ∈ irr. supp(w)\
irr. supp(v). Then vj = 0, but wj > 0, and hence for any λ > 1, we have

λv+(1−λ)w /∈ C. However, since v, w ∈ relint(F ), we know λv+(1−λ)w ∈ F ,

for some λ > 1. This shows irr. supp(v) = irr. supp(w), which implies the

statement.

Example 3.5.3. Consider the network in Figure 2.4. If we remove the redun-

dant irreversibility constraint v6 ≥ 0 and assume 6 ∈ Rev, the MMBs of the

network are {2}, {7}, {8} (if 6 ∈ Irr, the MMBs are {2}, {6, 7}, {6, 8}). The

face lattice, together with the supports of the EFMs contained in each face, is

shown in Figure 3.2.

39



40
CHAPTER 3. GEOMETRY OF THE FLUX CONE AND

ELEMENTARY FLUX MODES

2-face ∅ = L:
{9, 10, 11, 12}, {3, 5, 11, 12}

{3, 5, 9, 10}

3-face {2}:
{1, 2, 3, 4}, {1, 2, 4, 5, 11, 12}

{1, 2, 4, 5, 9, 10}
3-face {7}:
{4, 6, 7}

3-face {8}:
{4, 6, 8, 9, 10}
{4, 6, 8, 11, 12}

4-face {2, 7}:
{1, 2, 5, 6, 7, 11, 12}
{1, 2, 5, 6, 7, 9, 10}

{1, 2, 3, 6, 7}

4-face {2, 8}:
{1, 2, 5, 6, 8, 9, 10}, {1, 2, 5, 6, 8, 11, 12}
{1, 2, 3, 6, 8, 9, 10}, {1, 2, 3, 5, 6, 8}

4-face {7, 8}:
no efms

5-face {2, 7, 8} = C:
no efms

Figure 3.2: Face lattice of the network in Figure 2.4. Each node represents

a face of the flux cone together with the corresponding metabolic behavior

and the supports of the EFMs contained in that face. The active irreversible

reactions are underlined. Edges connecting the nodes indicate the inclusion of

lower-dimensional in higher-dimensional faces. The only 2-face is the lineality

space L and the only 5-face is the entire flux cone C.
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3.6 The degree of flux vectors

Representative sets of EFMs in a metabolic network tend to be very large and

can be of exponential size in the number of reactions. Hence, there is a need

to elucidate the structure of this set. In this section, we define a property

of flux vectors, namely their degree and apply it to EFMs to establish such

a structure. For the remainder of this section, let C be the flux cone of a

metabolic network.

We define the degree deg(v) of a flux vector v ∈ C as the dimension of the

inclusionwise minimal face of C containing v, which for v ̸= 0 is the unique

face F of C with v ∈ relint(F ). By Prop. 3.2.1, we have

deg(v) = n− rank(A=
v ), where A=

v =

 S

−S

IIrr \ irr.supp(v),⋆

 . (3.2)

It follows that flux vectors in the lineality space L of C have degree dim(L)

and flux vectors in minimal proper faces have degree dim(L)+1. A flux vector

in the relative interior of C has degree dim(C).

A widely used technique in metabolic network analysis is to split reversible

reactions into two irreversible reactions (Clarke, 1980; Schilling, Letscher and

Palsson, 2000; Papin et al., 2004; Gagneur and Klamt, 2004; Röhl and Bock-

mayr, 2019). In particular, this is applied in algorithms for EFM enumeration

such as efmtool (Terzer, 2009) and EFMlrs (Buchner and Zanghellini, 2021).

In these algorithms, splitting all reversible reactions results in a pointed cone

C ′ in a higher-dimensional space. The EFMs of the original flux cone C cor-

respond to extreme rays in the reconfigured cone C ′ (Gagneur and Klamt,

2004), which all have degree 1 in C ′. Therefore, the degree of an EFM as

defined by (3.2) has to be determined in the original flux cone C and cannot

be determined in the reconfigured cone C ′.

The support of a vector is its set of active reactions. We can further
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characterize flux vectors in the relative interior of C by their sets of active

irreversible reactions, i.e. their irreversible support. The following proposition

shows that in a flux vector within the relative interior of C, all irreversible

reactions are active.

Proposition 3.6.1. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be a flux cone with

no implicit equalities in vIrr ≥ 0. For v ∈ C we have deg(v) = dim(C) if and

only if vi > 0 for all i ∈ Irr.

Proof. Direct consequence of Prop. 3.2.4.

For a flux vector in the relative interior of the flux cone, deg(v) = dim(C)

and by Prop. 3.6.1 all irreversible reactions are active in v. We can generalize

this observation to derive an upper bound to the degree of a flux vector v

which depends on the number of irreversible reactions that are active in v.

Proposition 3.6.2. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be the flux cone of a

metabolic network with lineality space L. Then for each flux vector v ∈ C

deg(v) ≤ dim(L) + |irr. supp(v)|.

Proof. By definition of the lineality space L, t := dim(L) = n− rank(A), with

A =

 S

−S

IIrr,⋆

 .

By (3.2), we have deg(v) = n− rank(A=
v ), with

A=
v =

 S

−S

IIrr \ irr.supp(v),⋆

 .

It follows rank(A) − rank(A=
v ) = (n − t) − (n − deg(v)) = deg(v) − t.

Thus, at least deg(v) − t rows from A must be missing in A=
v . Therefore

|irr. supp(v)| ≥ deg(v)− t, or equivalently deg(v) ≤ t+ |irr. supp(v)|.
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The following proposition establishes an upper bound on the number of

active irreversible reactions in elementary flux modes. The only computation

required to establish this upper bound for a given metabolic network is to

determine the rank of a submatrix of the stoichiometric matrix (namely the

submatrix consisting of the columns corresponding to irreversible reactions).

This makes the bound easily computable for any given metabolic network.

Proposition 3.6.3. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be the flux cone of a

metabolic network. Then

|irr. supp(e)| ≤ rank(S⋆,Irr) + 1,

for each EFM e ∈ C.

Proof. Suppose the opposite. Then

|supp(e)| = |irr. supp(e)|+ |rev. supp(e)|
≥ rank(S⋆,Irr) + 2 + |rev. supp(e)|
≥ rank(S⋆,irr.supp(e)) + 2 + rank(S⋆,rev.supp(e))

≥ rank(S⋆,supp(e)) + 2,

contradicting the rank test (2.5).

By combining Prop. 3.6.3 and Prop. 3.6.2, we get an upper bound on the

degree of EFMs.

Corollary 3.6.4. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be the flux cone of a

metabolic network with lineality space L. Then for each EFM e ∈ C

deg(e) ≤ dim(L) + (rank(S⋆,Irr) + 1).

The following example shows that the bound from Cor. 3.6.4 is sharp.
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A B
1 2

3

4

Figure 3.3: Example network showing that the bound from Cor.3.6.4 is sharp.

Example 3.6.5. The network in Figure 3.3 contains 2 metabolites and 4 re-

actions, with Rev = {1, 2} and Irr = {3, 4}. Given the stoichiometric matrix

S =

(
1 −1 0 0

0 1 1 −1

)
,

the network has the EFMs e1 = (1, 1, 0, 1), e2 = (−1,−1, 1, 0) and e3 =

(0, 0, 1, 1), with deg(e1) = deg(e2) = 1 and deg(e3) = 2. Note that C =

cone({e1, e2}) and e3 = e1 + e2 ∈ relint(C). Since there are no reversible flux

vectors, we have dim(lin. space(C)) = 0. Furthermore, rank(S⋆,Irr) = 1 and

thus deg(e3) = dim(lin. space(C)) + (rank(S⋆,Irr) + 1) = 2.

For the example networks E.coli core, Pentose Phosphate

Pathway(PPP), and Pyruvate from Section 3.4, the maximum degree of

EFMs and the upper bounds from Prop. 3.6.2 and Cor. 3.6.4 are given in

Table 3.2. We can see that l = max{|irr. supp(e)| : e EFM} is much smaller

than the upper bound rank(S⋆,Irr) + 1 from Prop. 3.6.3. The actual degrees of

the EFMs in these networks are summarized in Figure 3.4.

The next proposition further explains the scarcity of EFMs in the relative

interior of a flux cone C, in the facets of C and in the faces of dimension

dim(C)− 2.

Proposition 3.6.6. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be a flux cone

with no redundant inequalities or implicit equalities in vIrr ≥ 0. If |Irr| >
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E. coli core PPP Pyruvate

(|M|, |R|) (72, 94) (34, 57) (28, 81)

|Irr| 48 19 40

|Rev| 46 38 41

rank(S) 67 34 28

rank(S⋆,Irr) 41 16 24

t = dim(lin. space(C)) 0 8 16

q = max{|irr. supp(e)| : e EFM} 23 9 10

r = rank(S⋆,Irr) + 1 (cf. Prop. 3.6.3) 42 17 25

max{deg(e) : e EFM} 6 14 24

t+ q (cf. Prop. 3.6.2) 23 17 26

t+ r (cf. Cor. 3.6.4) 42 25 41

dim(C) 23 23 53

|EFMs| 16673 5180 47854

Table 3.2: Maximum number of active irreversible reactions and maximum

degree of EFMs together with the upper bounds from Prop. 3.6.3, 3.6.2 and

Cor. 3.6.4.
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Figure 3.4: Degree distribution of EFMs in metabolic networks.
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rank(S⋆,Irr) + q, for some q ∈ {1, 2, 3}, then deg(e) ≤ dim(C) − q, for each

EFM e of C.

Proof. By Prop. 3.6.3, |irr. supp(e)| ≤ rank(S⋆,Irr) + 1, for each EFM e of C.

Assume deg(e) = dim(C) − (q − 1), for some q ∈ {1, 2, 3}. Then,

by definition, the inclusionwise minimal face F containing e has dimension

dim(C) − (q − 1) ≥ dim(C) − 2. It follows that e resp. F is contained in

exactly q − 1 facets of C. Here we use for q = 3 that a (dim(C) − 2)-face is

contained in exactly two facets, cf. (Schrijver, 1998).

By our hypothesis on the description of the flux cone, it follows

|irr. supp(e)| = |Irr|− (q−1). We get |Irr|− (q−1) ≤ rank(S⋆,Irr)+1 or |Irr| ≤
rank(S⋆,Irr) + q, in contradiction to the hypothesis |Irr| > rank(S⋆,Irr) + q.

In the proof of Prop. 3.6.6, we used that (dim(C) − q)-faces of a cone C

are contained in exactly q facets of C, for q = 0, 1, 2. As the example of a

3-dimensional pointed cone with n facets shows, a (dim(C)− 3)-face (here the

origin) can be contained in an arbitrary number of facets, and thus a similar

argument does not hold for such faces. To limit the number of facets a face

can be contained in, we introduce the concept of l-simple cones and use this

for a generalization of Prop. 3.6.6.

A cone C ⊆ Rn is called l-simple for some l ≥ 1, if every k-face

of C is contained in at most l · (dim(C) − k) facets of C, for all k =

dim(lin. space(C)), . . . , dim(C). Assuming that a flux cone is l-simple leads

to another bound on the degree of EFMs.

Proposition 3.6.7. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be an l-simple cone

with no redundant inequalities or implicit equalities in vIrr ≥ 0. Then for each

EFM e ∈ C

deg(e) ≤ dim(C)− |Irr| − (rank(S⋆,Irr) + 1)

l
.
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Proof. By Prop. 3.6.3, |irr. supp(e)| ≤ rank(S⋆,Irr)+1 for each EFM e ∈ C and

thus at least |Irr|− (rank(S⋆,Irr)+1) entries of vIrr are equal to zero. Hence e is

contained in at least |Irr| − (rank(S⋆,Irr) + 1) facets of C. Suppose deg(e) = k

and let e ∈ F , where F is a k-face of C. Since C is l-simple, F is contained in

at most l · (dim(C)− k) facets. It follows

|Irr| − (rank(S⋆,Irr) + 1) ≤ l · (dim(C)− k)

or

deg(e) = k ≤ dim(C)− |Irr| − (rank(S⋆,Irr) + 1)

l
.

Note that this bound is mainly theoretical because for the computation of l

all faces of the flux cone have to be considered. Nevertheless |Irr| ≥ rank(S⋆,Irr)

and |Irr| is typically significantly larger than rank(S⋆,Irr) (cf. Table 3.2).

3.7 The cardinality of minimal metabolic be-

haviors

Minimal metabolic behaviors have been introduced and studied by Larhlimi

and Bockmayr (2009). With our observations in this chapter, we establish an

upper bound on the cardinality of MMBs and examine the effects of removing

redundant constraints from the flux cone’s description.

We begin by proving an upper bound on the cardinality of MMBs.

Proposition 3.7.1. Let C be the flux cone of a metabolic network N with

lineality space L. Then for each MMB D

|D| ≤ |Irr| − (dim(C)− dim(L)) + 1.

Proof. By definition of an MMB, there exist a minimal proper face G of C,

dim(G) = dim(L) + 1, and a flux vector g ∈ G \L such that D = irr. supp(g).
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It follows that g is contained in at least dim(C) − (dim(L) + 1) facets of C.

Therefore at least dim(C)− (dim(L) + 1) inequalities in vIrr ≥ 0 are satisfied

by g with equality, which implies |irr. supp(g)| = |D| ≤ |Irr| − (dim(C) −
(dim(L) + 1)).

In general, MMBs often contain irreversible reactions for which the corre-

sponding non-negativity constraint is redundant. Removing redundant non-

negativity constraints (i.e., shifting the corresponding reactions from Irr to

Rev) until the description contains no more redundant inequalities, can lead

to much smaller cardinalities of MMBs.

For our example networks E.coli core, Pentose Phosphate Pathway

and Pyruvate, the number of MMBs are 1421, 19, and 37 respectively. In

Figure 3.5 we compare the cardinalities of the MMBs in the original descrip-

tion of the flux cone and after removing redundant irreversibility constraints.

If we start from the original description, Prop. 3.7.1 provides the upper bounds

18, 5, and 4 respectively, while the actual maximal sizes of the MMBs are 17,

4, and 3. If we remove redundant non-negativity constraints in lexicograph-

ical order (i.e., the redundant non-negativity constraint corresponding to the

irreversible reaction with the smallest index is removed first), the bounds be-

come sharp, i.e., we get the bounds 9, 3, and 1 respectively, and these bounds

coincide with the actual maximal cardinalities of the MMBs.

Proposition 3.7.2. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be the flux cone

of a metabolic network with lineality space L and no redundant inequalities

or implicit equalities in vIrr ≥ 0. Then the number of facets of C is equal to

dim(C)− dim(L) if and only if each MMB has cardinality 1.

Proof. By Prop. 3.3.2, the number of facets is equal to |Irr|. Thus if |Irr| =
dim(C)−dim(L), then by Prop. 3.7.1, 1 ≤ |D| ≤ |Irr|−(dim(C)−dim(L))+1 =

1, for each MMB D in C.

Conversely, if each MMB has cardinality 1, then each minimal proper face

is the intersection of all facets of C but one. For all i ∈ Irr, Gi = {v ∈
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Figure 3.5: Cardinalities of MMBs with and without redundant irreversibility

constraints.
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Rn | Sv = 0, vIrr \{i} = 0, vi ≥ 0} is a face of C, with dim(Gi) ≤ dim(L) + 1.

Since vi ≥ 0 is not an implicit equality, there exists gi ∈ C with gii > 0.

Let D̄i = {j ∈ Irr | gij > 0} be the metabolic behavior defined by gi. By

Prop. 3.5.1, D̄i, i ∈ D̄i, is the union of MMBs, which by hypothesis all have

cardinality 1. Thus, for all i ∈ Irr, Di = {i} is an MMB with the corresponding

minimal proper face Gi, where Gi \ L = {v ∈ Rn | Sv = 0, vIrr \{i} = 0, vi > 0}
and dim(Gi) = dim(L) + 1. We conclude that the number of minimal proper

faces of C is equal to the number of facets, which by Prop. 3.3.2 is equal to

|Irr|.
It remains to prove that |Irr| = dim(C)−dim(L). Let U = {u ∈ Rn | Su =

0} and W = {w ∈ Rn | wIrr = 0}. Then U ∩W = L and since by hypothesis

there are no implicit equalities, dim(C) = dim(aff(C)) = dim(U). From the

dimension formula, we get dim(U +W ) = dim(U)+ dim(W )− dim(U ∩W ) =

dim(C)+ (n−|Irr|)−dim(L) or dim(C)−dim(L) = |Irr|− (n−dim(U +W )).

We claim dim(U + W ) = n, i.e., U + W = Rn. For each minimal proper

face Gi, i ∈ Irr, choose ei ∈ Gi \ L with eii = 1. Then eiIrr is a unit vector, for

all i ∈ Irr. Given v ∈ Rn, let u =
∑

i∈Irr vi · ei and

w =

(
vRev − uRev

0

)
.

Since Sei = 0, i ∈ Irr, we get Su =
∑

i∈Irr vi · Sei = 0 and thus u ∈ U . By

definition, w ∈ W . For all j ∈ Irr, we have uj =
∑

i∈Irr vi · eij = vje
j
j = vj, and

thus uIrr = vIrr. Altogether, we get

u+ w =

(
uRev

uIrr

)
+

(
vRev − uRev

0

)
=

(
vRev

vIrr

)
= v,

which shows U +W = Rn.
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3.8 Conclusion

In this chapter, we studied geometric properties of flux cones of metabolic

networks with a focus on elementary flux modes. To structure the set of

EFMs, we introduced the degree of flux vectors and studied the degrees of

EFM. EFMs of a smaller degree, can be seen as more elementary than those of

a higher degree, since the EFMs of higher degree can be decomposed into EFMs

of smaller degree. We will further investigate decompositions of flux vectors

into EFMs in Chapter 4 and decompositions of EFMs into other EFMs in

Chapter 5.

In previous work, see e.g. (Wagner and Urbanczik, 2005), EFMs that are

not extreme rays of a pointed flux cone were simply considered to be rays in

the (relative) interior of the flux cone. We showed that EFMs belonging to the

(relative) interior of the cone (in the sense of Prop. 3.6.1) occur only rarely.

Our bounds on the degree of EFMs, as well as our computational results,

indicate that EFMs are primarily contained in lower-dimensional faces of the

flux cone.

Regarding future research, our new insights into the distribution of EFMs

in the face lattice of the flux cone raise the question of how they can be algo-

rithmically exploited. For example, one could focus on enumerating EFMs of

lower degrees and omit the enumeration of EFMs with higher degrees in or-

der to make EFM analysis for genome-scale metabolic network reconstructions

more tractable.

In Section 3.7, we analyzed the cardinality of minimal metabolic behav-

iors and studied the effect of removing redundant irreversibility constraints.

Although irredundant descriptions of flux cones are not uniquely determined,

further research is needed to determine the optimal handling of redundant

constraints. Some problems may benefit from the removal of redundant con-

straints, while others might benefit from adding them. For example, exploring

the faces of the flux cone is easier when there are no redundant irreversibil-
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ity constraints, as every irreversible reaction then corresponds to a facet of

the flux cone. Conversely, the reconfiguration method to determine EFMs by

splitting reversible reactions may benefit from adding redundant irreversibility

constraints. In that case, fewer reversible reactions have to be split, which

decreases the dimension of the reconfigured cone.
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Chapter 4

Low-degree decompositions of

flux vectors

Most of the results presented in this chapter are derived from a joint

work with Alexander Bockmayr. A preprint currently under review can

be found at (Wieder and Bockmayr, 2024). The remaining results were

published in the Journal of Mathematical Biology (Wieder, Henk and

Bockmayr, 2023)(Reproduced with permission from Springer Nature).

4.1 Introduction

EFMs can be viewed as minimal functional units of a metabolic network.

Therefore, decomposing a flux vector into a positive combination of EFMs

is an important task in metabolic network analysis (Poolman et al., 2004;

Schwartz and Kanehisa, 2005; Chan and Ji, 2011; Jungers et al., 2011; Rügen

et al., 2012; Kelk et al., 2012; Chan, Solem, et al., 2014; Maarleveld et al.,

2015; Oddsdóttir et al., 2015; Gerstl et al., 2016; Chen, Huang and Zhong,

2023). Flux distributions that optimize the flux through some given reaction,

typically biomass production, have been studied extensively as target vectors

for decomposition into EFMs. These optimizing vectors can be obtained by

performing a flux balance analysis (FBA), i.e., solving a linear optimization

problem maximizing or minimizing an objective function under a given set of

linear constraints (Orth, Thiele and Palsson, 2010).

In Chapter 3, we studied the facial structure of the steady-state flux cone of

a metabolic network and introduced the degree of a flux vector as the dimension

of the inclusionwise minimal face of the flux cone containing it. We suggested

that EFMs of lower degrees should be viewed as more elementary than those
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of higher degrees.

Here, we use the mathematical results from Chapter 3 to develop a novel

method for decomposing flux vectors in genome-scale metabolic networks. We

illustrate this method by decomposing optimal solutions v∗ of flux balance

analysis (FBA) problems. However, this method can also be applied to arbi-

trary flux vectors. After computing v∗, we first determine the minimal face F ∗

of the flux cone C to which v∗ belongs. Next, we enumerate the EFMs in the

face F ∗, which typically has a much lower dimension than the full flux cone.

With this approach, we are able to determine all EFMs that may participate

in a decomposition of v∗. We solve a mixed-integer linear program (MILP)

to compute different decompositions of v∗ into these EFMs. Taking into ac-

count their degree allows us to explore the interplay of the different EFMs that

can participate in the decomposition of a given flux vector, highlighting the

particular importance of low-degree decompositions.

We illustrate our method on various genome-scale metabolic networks from

the BiGG database (Norsigian et al., 2020). For all these networks (with the

exception of e coli core), we are not able to compute a full representative set

of the EFMs, while the EFMs in the face F ∗ containing the solution to the

FBA problem can be obtained easily. Their number is typically rather small,

allowing us to explore the different possible EFM decompositions by solving

MILPs. While there often exist many different shortest EFM decompositions

of a given target vector v∗, it turns out that low-degree decompositions, using

only EFMs of degree at most t + 1, where t is the dimension of the lineality

space of the flux cone, are unique in many cases and serve as the building

blocks for the other decompositions.
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4.2 Decomposition of flux vectors

By Prop. 2.5.5, any vector v∗ ∈ C in the flux cone C of a metabolic network

is a positive combination

v∗ =
k∑

i=1

λie
i, with λi > 0, (4.1)

of elementary flux modes e1, . . . , ek ∈ C (Schuster, Hilgetag, et al., 2002).

Sometimes, we will call such a positive combination a (conic) decomposition

of v∗ into e1, . . . , ek. By requiring λi > 0, we can define the length of a

decomposition as k and a shortest decomposition as a decomposition of minimal

length. Note that shortest decompositions are not unique is many cases (cf.

Figure 4.4).

We will show that the length of a decomposition of v∗ crucially depends on

the degree of v∗. More precisely, we prove in Prop. 4.2.2 that any flux vector

of degree k is a positive combination of at most k EFMs, each of which has

degree at most k.

First, we show that a decomposition of a flux vector v, contained in some

face F ⊆ C, only uses vectors that also contained in the face F .

Proposition 4.2.1. Let C = {v ∈ Rn | Sv = 0, vIrr ≥ 0} be the flux cone of a

metabolic network and let F = {v ∈ C | vI = 0}, for some I ⊆ Irr, be a face

of C.

If v =
∑m

i=1 λiv
i, λi > 0, is a decomposition of a flux vector v ∈ F into flux

vectors v1, . . . , vm ∈ C, then v1, . . . , vm ∈ F .

Proof. Suppose vl ̸∈ F, for some l ∈ {1, . . . ,m}. Then, vlj > 0, for some j ∈ I.

It follows vj =
∑m

i=1 λiv
i
j ≥ λlv

l
j > 0, and therefore v ̸∈ F .

Next we show that any flux vector v ∈ C of degree k can be decomposed

into a positive combination of at most k EFMs of degree at most t+1, where t

57



58
CHAPTER 4. LOW-DEGREE DECOMPOSITIONS OF

FLUX VECTORS

is the dimension of the lineality space L of C. In other words, this means that

any flux vector of degree k can be written as a positive combination of at most

k EFMs, all belonging to the lineality space or to some minimal proper face of

the flux cone. From each minimal proper face, at most one EFM is needed for

the decomposition and all EFMs belonging to the same minimal proper face

share the same minimal metabolic behavior (cf. Prop. 3.5.1). In the special

case k = t, the EFMs in the decomposition all have degree t and belong to the

lineality space of the flux cone (cf. Prop. 4.2.1).

Proposition 4.2.2. Let C ⊆ Rn be the flux cone of a metabolic network and

let v ∈ C be a flux vector with deg(v) = k. Let F ⊆ C, dim(F ) = k, be the

inclusionwise minimal face containing v. Then

i) v can be decomposed into a positive combination v =
∑m

i=1 λie
i, λi > 0,

of at most m ≤ k EFMs ei ∈ F , with deg(ei) ≤ t + 1, for i = 1, . . . ,m,

where t is the dimension of the lineality space L of C.

In the special case k = t and F = L, we have ei ∈ L and deg(ei) = t, for

i = 1, . . . ,m.

ii) with probability 1, v does not allow for a conic decomposition into m < k

EFMs.

Proof. i): By Prop. 2.5.5, there exists a conic combination such that v =∑m
i=1 λie

i, λi > 0, for some EFMs e1, . . . , em ∈ C. By Prop. 3.2.2 we can

assume that e1, . . . , em belong to the lineality space or to the minimal proper

faces of C, i.e., deg(ei) ≤ t+1, for i = 1, . . . ,m. Using Carathéodory’s theorem,

see e.g. (Lauritzen, 2013), we can also assume that the EFMs e1, . . . , em in the

conic decomposition (4.1) are linearly independent. By Prop. 4.2.1, it follows

that e1, . . . , em ∈ F . Since dim(F ) = k, there can be at most k linearly

independent vectors in F , thus m ≤ k and the result follows.

ii): Using k − 1 EFMs one can generate at most a (k − 1)-dimensional

subset of the k-dimensional face F . Since there are only finitely many ways
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of choosing k − 1 EFMs in the set of all EFMs, the set of flux vectors v ∈ F

that can be decomposed into a combination of k − 1 EFMs is the finite union

of sets of k-dimensional volume 0 and therefore itself a set of k-dimensional

volume 0 in F . This implies the result.

Note that Prop. 4.2.2 also applies to EFMs in higher-dimensional faces, for

which we get the following result:

Corollary 4.2.3. Let e ∈ C be an EFM with deg(e) = k ≥ t + 2, where t is

the dimension of the lineality space L of C. Then e can be decomposed into a

conic combination e =
∑m

i=1 λie
i, λi > 0, 2 ≤ m ≤ k, of at least 2 and at most

k EFMs of degree strictly lower than k.

Since every k-face F ⊆ C is the conic hull of the EFMs contained in F , we

get the following lower bound on the number of EFMs in F .

Proposition 4.2.4. Let F ⊆ C be a face of the flux cone C with dim(F ) = k.

Then F contains at least k EFMs. In particular, the cone C itself contains at

least dim(C) EFMs.

By Prop. 4.2.2 any flux vector v∗ ∈ C of degree d = deg(v∗) > 0 has a

decomposition v∗ =
∑k

i=1 λie
i, λi > 0, into at most k ≤ d EFMs e1, . . . , ek of

degree at most t+ 1, where t = dim(L) is the dimension of the lineality space

L of C. For the rest of this chapter we will call such a decomposition a low-

degree decomposition. Note that the EFMs of degree t or t+1 participating in

a low-degree decomposition are elements of a MEMo as defined in Chapter 2.

Therefore, EFMs of degree t and t+ 1 will also be called MEMo-EFMs.

The following small example as well as the results in Table 4.2 show that

shortest decompositions of flux vectors typically contain EFMs of degrees

higher than t + 1. In general shortest decompositions are not low-degree de-

compositions.
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Figure 4.1: Vector v∗ to decompose (red), EFMs e1, e2 of degree 4 (blue) and

EFMs e3, e4, e5 of degree 3 (green) for a small example network.

Example 4.2.5. Consider again the metabolic network in Figure 2.4. In Fig-

ure 4.1 the vector v∗ (in red) is the one to be decomposed and has degree 4. It

could be either a given steady-state flux vector or the optimal solution of some

FBA problem (e.g. maximizing flux rates of reactions 3 and 12).

In a first step, a shortest decomposition of v∗ into EFMs is computed. The

resulting EFMs e1 and e2 (in blue) have degree 4 and v∗ = e1 + e2. In the

next steps, e1 and e2 are decomposed into EFMs of lower degree. The resulting

EFMs e3, e4, e5 (in green) have degree 3 and cannot be further decomposed into

EFMs of lower degrees. One can verify e1 = e3 + e4 and e2 = e4 + e5, and

thus v∗ = e3 + 2e4 + e5. The corresponding vectors are (the symbol ·T denotes
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v∗

e1 e2

e3 e4 e5

Figure 4.2: Decomposition of v∗ into two EFMs of degree 4 (blue), which can

be further decomposed into 3 MEMo-EFMs of degree 3 (green).

transposition)

v∗ = (2, 2, 3, 0,−1, 2, 0, 2, 0, 0, 1, 1)T ,

e1 = (1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1)T ,

e2 = (1, 1, 2, 0,−1, 1, 0, 1, 0, 0, 0, 0)T ,

e3 = (1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1)T ,

e4 = (0, 0, 1,−1,−1, 1, 0, 1, 0, 0, 0, 0)T ,

e5 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T .

In this simple example, the weights λi in the above decompositions are all

small integers. In general, this need not be the case. In particular, the weights

depend on the normalization of the EFMs, which are determined only up to

multiplication by a positive scalar.

We conclude this section by discussing an example that demonstrates how

the degree of an FBA solution changes when reactions are added or removed

from the network.

Example 4.2.6. Consider again the e coli core model from the BiGG-database

(Norsigian et al., 2020). Using cobrapy (Ebrahim et al., 2013), a Python

wrapper for the CoBra toolbox (Heirendt et al., 2019), we perform a flux bal-

ance analysis (FBA) to determine the optimal growth rate while glucose uptake
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Ex glc D e is limited by a lower bound of −10 (the number is negative because

exchange reactions in this model are oriented outwards). The remaining re-

actions have an upper bound of 1000 and lower bounds of −1000 resp. 0 for

the reversible resp. irreversible reactions. The optimal growth rate of 0.917 is

attained by a flux vector of degree 1, which is an extreme ray of the pointed

flux cone and thus, it is an EFM.

Adding the lower bound of 8.39 for the ATP-maintenance reaction ATPM

leads to the standard version of the model, i.e., the version of the model that

can be downloaded from the BiGG database. Now, the optimal growth rate is

0.874 and the flux vector achieving this growth rate has degree 2. Figure 4.5

shows that there is a unique decomposition into the two MEMo-EFMs of degree

1 that span the 2-face containing this optimal solution.

If we perform a single knock-out of the gene b1761 (gdhA), which blocks the

reaction GLUDy, the new optimal growth rate is 0.851. The degree of the flux

vector achieving this optimal growth rate changes to 3 and the 3-face containing

this optimal solution is spanned by 3 EFMs of degree 1. Therefore, there is

only one decomposition of this optimal solution into three MEMo-EFMs.

After knocking out a second gene, b3236 (mdh), which blocks the reaction

MDH, the new optimal growth rate is 0.801. The degree of the flux vector

achieving this optimal growth rate now is 4 and the 4-face containing this

optimal solution is spanned by six EFMs of degree 1. In this case, there are

four different decompositions of the optimal solution into four MEMo-EFMs.

It should be noted that the optimal solutions to FBA problems are generally

not uniquely determined. In this example, we chose the solution that was

returned by cobrapy. Different solutions with the same optimal value can lie

in different faces of the flux cone. Therefore, they can have a different degree

and thus also a different number of EFMs needed in their decomposition into

MEMo-EFMs.
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4.3 Algorithm for decomposition of flux vec-

tors

In Chapter 3, we showed that for any J ⊆ Irr, the set FJ = {v ∈ C | vj =

0 for all j ∈ J} is a face of the polyhedral cone C. Given v∗ ∈ C, the inclusion-

wise minimal face of C containing v is FJ(v∗) with J(v∗) = {j ∈ Irr | v∗j = 0}.
We call F ∗ = FJ(v∗) ⊆ C the face defined by v∗. Note that by definition

dim(FJ(v∗)) = deg(v∗).

It follows from Prop. 4.2.1 that for decomposing a flux vector v∗ ∈ C

into EFMs, it suffices to consider those EFMs that are contained in the face

F ∗ = FJ(v∗) ⊆ C defined by v∗. The face F ∗ is again a polyhedral cone,

which informally is the flux cone of the metabolic network N ′ = (M,R \
J(v∗), S ′, Irr′), obtained from N = (M,R, S, Irr) by deleting the reactions in

J(v∗).

By computing the EFMs of N ′ using standard tools like efmtool (Terzer,

2009),EFMlrs (Buchner and Zanghellini, 2021) or a MILP-based approach

(de Figueiredo et al., 2009) (we used efmtool), and adding zero components

vj = 0 for the deleted reactions j ∈ J(v∗), we obtain exactly the EFMs of N
contained in F ∗. For a formal proof, we refer to Lemma 4 in (Marashi and

Bockmayr, 2011).

Our workflow for decomposing the optimal solution of an FBA problem

into EFMs is shown in Figure 4.3. The main steps are as follows:

Choose model. After downloading an SBML (Hucka et al., 2003) file from

the BiGG database, the software package cobrapy (Ebrahim et al., 2013)

offers the function cobra.read sbml model() to create a model from the file

containing all metabolites, reactions, bounds and further information from the

chosen metabolic network.

Standardize model. In their standard (downloadable) form, some models

in the BiGG database are not suitable for EFM computation with efmtool.
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Choose model

Standardize model

Determine FBA solution v∗

Determine face F ∗ of the cone defined by v∗

Compute EFMs of the face F ∗

Solve MILP for shortest decomposition

Figure 4.3: Workflow for determining decompositions of an FBA solution into

EFMs.

This is due to the fact that for some models irreversible uptake reactions

are oriented as negative output reactions (i.e., an irreversible reaction has a

negative flux, which is not in line with the requirements of efmtool). This

can be addressed by changing the orientation of these reactions. We did this

by replacing these reactions with oppositely oriented copies. Furthermore, we

removed all reactions for which the lower and upper bound are both equal to

zero.

Determine FBA solution v∗. Typically, the standard objective is to maxi-

mize biomass production. By calling the function cobra.optimize(), a flux

vector v∗ achieving the optimal growth rate is computed. We did not change

any objective function and just worked with the model exactly the way it can

be downloaded (up to changing the orientation of some irreversible exchange

reactions and removing reactions with lower and upper bound equal to 0, as

mentioned above). If one is interested in decomposing a flux vector that is not

64



4.3. ALGORITHM FOR DECOMPOSITION OF FLUX
VECTORS 65

obtained by solving an FBA problem, this step can be skipped and the given

vector can be used as v∗ instead of the FBA solution.

Determine the face F ∗ defined by v∗. By calling the function

cobra.util.create stoichiometric matrix(), the stoichiometric matrix

defining the flux cone C can be constructed. Adding unit row vectors to

the stoichiometric matrix corresponding to the constraints vj = 0, j ∈ J(v∗),

together with a binary vector containing information about the reversibility of

reactions, leads to a description of the face F ∗ containing all candidate EFMs

for decomposing the target vector v∗.

Compute EFMs of the face F ∗. The modified stoichiometric matrix and

the reversibility vector are used as input for EFM computation with efmtool

(Terzer, 2009). The EFMs computed in this step represent all EFMs in the

face F ∗ of the flux cone that contains the optimal FBA solution v∗. They form

a subset of a representative set of all EFMs in the flux cone.

Solve MILP for shortest decomposition. A shortest decomposition of a

vector v∗, given a set of candidate vectors (in our case EFMs in F ∗ or MEMo-

EFMs in F ∗), can be found by solving the following mixed-integer linear pro-

gram (MILP):

min a1 + ...+ ak

subject to

Eλ = v∗,

0 ≤ λ ≤ Ma,

λ ∈ Rk,

a ∈ {0, 1}k.

(4.2)

Here, E = (e1, . . . , ek) ∈ Rn×k is the matrix containing the k candidate EFMs

e1, . . . , ek in the face F ∗ as columns. The vector λ ∈ Rk contains the coefficients

of the EFMs in the decomposition Eλ = λ1e
1 + · · · + λke

k = v∗. The binary

variables aj indicate whether or not EFM ej takes part in the decomposition,

i.e., whether λj > 0 or λj = 0. By minimizing the sum a1 + · · ·+ ak, we find a

shortest decomposition using as few EFMs as possible. The bigM constant M
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is an integer number that has to be chosen sufficiently large (we used 106 for

the calculations in Table 4.2). The constraint 0 ≤ λ ≤ Ma implies that λj = 0

if aj = 0 and that λj is unbounded (from above) if aj = 1 (more precisely, λj

is bounded by M, that is why choosing M large enough is crucial). 1

In general, different decompositions can be computed with the set of EFMs

contained in the face F ∗, depending on their degree. We illustrate this in

Section 4.4 and Section 4.5 by presenting and discussing not only shortest

decompositions considering all EFMs in F ∗, but also shortest decompositions

into MEMo-EFMs. For shortest decompositions into MEMo-EFMs, the set

of candidates in the decomposition is further restricted to EFMs of degree

t := dim(L) or t+ 1.

4.4 Computational results

In this section, we present computational results for decompositions of opti-

mizing vectors of FBA problems using metabolic networks from the BiGG

database (Norsigian et al., 2020). All computations were performed on a

Thinkpad T14s with an AMD Ryzen 7 PRO 4750U processor and 32GB of

RAM.

Table 4.1 shows, for a large selection of genome-scale metabolic networks

from the BiGG database, the number of EFMs that have to be considered

for decomposing the optimal FBA solution of the given model and the time

needed to compute these EFMs. The running times range between a few

seconds and a couple of minutes. This is remarkable because for all but one of

these networks, we are unable to compute a full representative set of the EFMs

on our computer due to memory limitations. The only exception is e coli core,

1We used the ”max” normalization option offered by efmtool, which scales the computed

EFMs to have a largest absolute value of 1. Using the default ”min” normalization option

that scales the smallest absolute value to 1 leads to numerical issues when solving the MILP

for some models.
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which has a total number of 100274 EFMs.

The first column in Table 4.1 contains the identifier of the model in the

BiGG database. The second column represents the size of the metabolic net-

work (after our standardization) by stating the number of metabolites and

reactions in the network. Column 3 gives the dimension t of the lineality

space, which is relatively small for all the networks, ranging between 0 and 6

(if t = 0, the corresponding flux cone is pointed). The degree of the optimal

FBA solution v∗ provided by cobrapy (Ebrahim et al., 2013) is given in col-

umn 4. Again these degrees are relatively low and range between 2 and 12.

Note that the dimension of the full flux cone is typically much higher. Due to

the low degree of v∗, which equals the dimension of the face F ∗ defined by v∗,

it becomes possible to compute a representative set of the EFMs contained in

this face. These numbers are given in column 5. As explained in the beginning

of this chapter, there are no other EFMs needed to decompose v∗. Finally,

column 6 contains the running time (in seconds) to compute all these EFMs,

which is less than 10 minutes for all but 1 network (iECIAI1 1343 with 25095

EFMs in the face F ∗).

Network ID (|M|,|R|) dim(L) deg(v∗) |EFMs| Time
STM v1 0 (1802, 2528) 1 6 77 44
e coli core (72, 95) 0 2 5 8
iAB RBC 283 (342, 469) 2 10 120 11
iAF692 (628, 690) 5 7 135 13
iAF1260b (1668, 2384) 1 6 168 33
iBWG 1329 (1949, 2727) 4 9 371 45
ic 1306 (1936, 2712) 4 12 3902 418
iE2348C 1286 (1919, 2689) 6 14 5782 480
iEC042 1314 (1926, 2700) 3 9 972 67
iEC1344 C (1934, 2716) 3 9 1412 108
iEC1349 Crooks (1946, 2745) 3 11 2576 102
iEC1364 W (1927, 2754) 3 11 5774 327
iEC1368 DH5a (1951, 2769) 3 8 322 44
iEC1372 W3110 (1918, 2748) 3 10 3756 121
iEC55989 1330 (1953, 2742) 4 10 947 65
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Network ID (|M|,|R|) dim(L) deg(v∗) |EFMs| Time
iECABU c1320 (1942, 2717) 4 10 733 55
iECB 1328 (1951, 2734) 4 10 733 70
iECBD 1354 (1952, 2734) 4 10 373 55
iECD 1391 (1943, 2727) 4 12 2894 101
iEcDH1 1363 (1949, 2736) 4 10 975 75
iECDH1ME8569 1439 (1950, 2741) 4 12 3759 117
iECDH10B 1368 (1947, 2728) 4 9 479 56
iEcE24377 1341 (1972, 2750) 6 11 378 46
iECED1 1282 (1929, 2692) 4 10 493 54
iECH74115 1262 (1918, 2681) 4 12 3857 127
iEcHS 1320 (1963, 2740) 3 8 548 79
iECIAI1 1343 (1968, 2751) 3 13 25095 1299
iECIAI39 1322 (1953, 2707) 4 11 3252 194
iECNA114 1301 (1927, 2704) 4 10 947 65
iECO26 1355 (1965, 2766) 4 11 1937 142
iECO103 1326 (1958, 2744) 4 9 552 51
iECO111 1330 (1959, 2746) 3 11 1934 102
iECOK1 1307 (1941, 2715) 4 11 1454 82
iEcolC 1368 (1969, 2754) 4 12 2895 97
iECP 1309 (1941, 2725) 4 10 734 64
iECS88 1305 (1942, 2715) 4 12 3757 169
iECSE 1348 (1957, 2754) 4 10 975 69
iECSF 1327 (1951, 2728) 4 9 372 47
iEcSMS35 1347 (1947, 2732) 4 11 3133 132
iECSP 1301 (1920, 2698) 4 10 732 74
iECUMN 1333 (1935, 2726) 5 12 3763 131
iECW 1372 (1973, 2768) 4 9 371 47
iEK1008 (998, 1224) 0 9 1965 337
iEKO11 1354 (1972, 2764) 4 12 5776 260
iETEC 1333 (1962, 2742) 4 8 190 43
iG2583 1286 (1919, 2691) 4 10 733 55
iHN637 (698, 773) 2 5 22 13
iNRG857 1313 (1943, 2721) 6 10 196 36
iPC815 (1552, 1960) 3 9 404 34
iS 1188 (1914, 2606) 5 9 281 36
iSB619 (655, 729) 0 3 11 12
iSbBS512 1146 (1910, 2580) 3 11 6491 370
iSBO 1134 (1908, 2579) 3 11 2319 69
iSDY 1059 (1888, 2529) 3 7 241 50

68



4.4. COMPUTATIONAL RESULTS 69

Network ID (|M|,|R|) dim(L) deg(v∗) |EFMs| Time
iSF 1195 (1917, 2617) 5 10 373 44
iSFV 1184 (1917, 2608) 5 10 374 43
iSFxv 1172 (1918, 2626) 4 9 131 37
iSSON 1240 (1936, 2680) 5 9 74 37
iUMN146 1321 (1942, 2721) 4 12 5630 303
iUMNK88 1353 (1969, 2763) 4 11 2820 140
iUTI89 1310 (1940, 2711) 4 11 2173 109
iY75 1357 (1953, 2745) 4 11 1886 110
iYL1228 (1658, 2262) 1 6 58 30
iYO844 (990, 1250) 2 4 17 18
iYS1720 (2436, 3339) 3 7 22 53
iZ 1308 (1923, 2707) 4 8 191 43

Table 4.1: EFMs in the face F ∗ defined by the optimal solution v∗ of FBA prob-

lems in the BiGG database. Network Id: Identifier of the network; (|M|,|R|):
Number of metabolites and reactions; dim(L): Dimension of the lineality space;

deg(v∗): Degree of the optimal FBA solution v∗. |EFMs|: Number of EFMs

in the face F ∗ defined by v∗. Time: Running time in seconds to compute the

EFMs in F ∗.

Table 4.2 provides more detailed information about the EFMs and the

shortest decompositions for a subset of the models in Table 4.1. The first four

columns are the same as before. Column 5 lists the degrees of the EFMs in the

shortest decomposition computed by solving the MILP (4.2), while column 6

lists the degrees of EFMs in the shortest decomposition into MEMo-EFMs.

For example, in the first row of Table 4.2, the optimal solution to the FBA

problem for STM v1 0 has degree 6 and it can be decomposed into two EFMs

of degree 5 or five EFMs of degree 2. Finally, the last column contains a list

summarizing information about the degrees of all EFMs in the face F ∗ defined

by v∗. Looking again at the first row, the list [0,2,5,12,26,24,8] should be read

in the following way: The face containing the optimal solution contains no

EFMs of degree 0 (this immediately follows from the fact t := dim(L) = 1).

There are two EFMs of degree 1, five EFMs of degree 2, 12 of degree 3, 26 of
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Network ID (|M|,|R|) t deg(v∗) deg([EFMs]) deg([MEMo-EFMs]) EFM distribution in F ∗

STM v1 0 (1802, 2528) 1 6 [5,5] [2,2,2,2,2] [0, 2, 5, 12, 26, 24, 8]

e coli core (72, 95) 0 2 [1,2] [1,1] [0, 2, 3]

iAB RBC 283 (342, 469) 2 10 [5,4,4,4,4,4,4] [3,3,3,3,3,3,3,3] [0, 0, 4, 18, 44, 54, 0, 0, 0, 0, 0]

iAF1260b (1668, 2384) 1 6 [6,5] [2,2,2,2,2] [0, 2, 11, 32, 59, 49, 15]

iLJ478 (570, 652) 2 5 [5] [3,3,3] [0, 0, 6, 15, 21, 7]

iSB619 (655, 729) 0 3 [2,2] [1,1,1] [0, 3, 6, 2]

iSSON 1240 (1936, 2680) 5 9 [9,8] [6,6,6,6] [0, 0, 0, 0, 0, 12, 8, 21, 24, 9]

Table 4.2: Decompositions of FBA solutions v∗ for a selection of networks

from the BiGG database. (|M|,|R|): Number of metabolites and reactions, t:

Dimension of the lineality space, deg([EFMs]): Degrees of EFMs in shortest

decomposition, deg([MEMo-EFMs]): Degrees of EFMs in shortest MEMo-

EFM decomposition, EFM distribution in F ∗: Number of EFMs with degree

equal to their index in the list.

degree 4, 24 of degree 5 and 8 of degree 6.

4.5 Discussion of computational results

In this section, we discuss the computational results from Section 4.4. Consider

again the first row of Table 4.2. In total, there are only 7 MEMo-EFMs

and the shortest decomposition into MEMo-EFMs we computed uses all five

EFMs of degree 2. Figure 4.4 visualizes how the two EFMs of degree 5 in

the shortest decomposition can be further decomposed into the five EFMs

of degree 2 in the shortest MEMo-decomposition. In Figure 4.4, the arrows

pointing to an EFM start at the EFMs that are used in a decomposition of it.

So the two arrows pointing from the two EFMs of degree 5 to the FBA solution

of degree 6 indicate that the optimal solution of degree 6 can be decomposed

into two EFMs of degree 5. Furthermore, each of the EFMs of degree 5 can

be decomposed into one EFM of degree 4 and one of degree 2 and so on.

In Table 4.1 and Table 4.2, we can immediately see that by determining

the face F ∗ defined by the optimal solution v∗, we are able to find all candidate
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FBA solution of degree 6

deg-5 efm deg-5 efm

deg-4 efm deg-2 efm deg-4 efm

deg-3 efm deg-2 efm deg-3 efm

deg-2 efm deg-2 efm deg-2 efm

Figure 4.4: Decomposition of the optimal FBA solution v∗ of STM v1 0 into

MEMo-EFMs.

EFMs for a decomposition in metabolic networks where the enumeration of all

EFMs is not possible in practice.

The advantage of determining shortest decompositions into MEMo-EFMs

lies in the fact that these EFMs cannot be further decomposed into EFMs

of lower degrees. Thus, MEMo-EFMs in low-degree decompositions are the

building blocks for decompositions into higher degree EFMs.

Furthermore, the number of different possible shortest decompositions be-

comes much smaller when using MEMo-EFMs, as Table 4.3 shows. For all the

networks in Table 4.3, the shortest decomposition into MEMo-EFMs turns out

to be unique, while there exist multiple shortest decompositions into EFMs of

higher degree (with the exception of iLJ478).

To determine all different shortest decompositions we can solve iteratively
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Network ID # shortest decompositions # shortest decompositions

into MEMo-EFMs

STM v1 0 5 1

e coli core 4 1

iAB RBC 283 12 1

iAF1260b 4 1

iLJ478 1 1

iSB619 2 1

iSSON 1240 4 1

Table 4.3: Number of different shortest decompositions into EFMs and MEMo-

EFMs.

the MILP (4.2), adding after each step a so-called no-good cut of the form∑
i∈I

ai < k, (4.3)

where I = {i | a∗i = 1} is the set of indices and k the length of the shortest

decomposition (λ∗, a∗) found in the previous step (cf. EFM enumeration with

MILP (de Figueiredo et al., 2009)). This allows us to enumerate all shortest

decompositions, as we use a different set of EFMs in each step. When there

are no more shortest decompositions of length k, the solution of the MILP is

a decomposition of length greater than k.

A visual representation of why there can be multiple shortest decomposi-

tions is given in Figure 4.5. Consider the model e coli core, where the degree

of the optimal FBA solution v∗ is 2 and only 5 EFMs are contained in the

face F ∗ defined by v∗. The figure shows a projection (not to scale) onto the

face F ∗. The optimal solution v∗ can be decomposed into the EFM e2 and

any one of the other four EFMs. A decomposition of v∗ without e2 is not

possible. Furthermore, the EFMs e3, e4 and e5 of degree 2 can be decomposed

into the extreme rays of the cone, which are the EFMs e1 and e2 of degree 1.
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e2

e1

e3

e5

e4

v∗

Figure 4.5: Visualization of the 2-dimensional face F ∗ defined by the optimal

FBA solution v∗ of e coli core and the 5 EFMs contained in it.

In summary, any vector in Figure 4.5 that is positioned between two others

can be decomposed into those vectors.

Although in Table 4.3 all shortest decompositions into MEMo-EFMs are

unique, this need not always be the case.

To see this, consider a slightly different version of iAF 1260b, namely

iAF 1260, also from the BiGG database. After performing an FBA, the result-

ing flux vector v∗ has degree 7 and can be decomposed into two EFMs with

degrees 6 and 7. The 7-dimensional face defined by v∗ contains 546 EFMs. Of

those, only 2 are in the lineality space (have degree 1), and 16 have degree 2,

resulting in a total number of 18 MEMo-EFMs. Using these 18 MEMo-EFMs
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as candidates, there exist two different shortest decompositions of the FBA

solution v∗, which both have length 6.

4.6 Conclusion

Based on geometric insights into the facial structure of the flux cone of a

metabolic network established in Chapter 3, we developed a novel method for

decomposing flux vectors into elementary flux modes (EFMs). While our ap-

proach is applicable to any given flux vector in the cone, we focused on common

decomposition targets, namely solutions of FBA problems. By reducing the

search space for EFM computation to the face of the flux cone defined by the

target vector, the number of EFMs that have to be computed becomes much

smaller. Therefore, our method can also be applied to genome-scale metabolic

networks where computing all EFMs is not feasible in practice.

Taking into account the degree of the EFMs, we obtained additional in-

sights into the structure of different decompositions and highlighted the special

role of low-degree decompositions, consisting of MEMo-EFMs. These EFMs

cannot be further decomposed into EFMs of lower degree and thus, they are

the building blocks for decompositions of higher degree.

We illustrated our approach on various genome-scale metabolic networks

from the BiGG database. For all these networks, the EFMs in the face defined

by the optimal FBA solution can be obtained easily, allowing for the enumer-

ation of different shortest decompositions into either MEMo-EFMs or shortest

decompositions into EFMs of higher degrees. In many cases, a low-degree de-

composition in MEMo-EFMs turns out to be unique, although this need not be

the case in general. Future research should address the biological implications

of low-degree decompositions and the MEMo-EFMs they are based on.
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Chapter 5

Decompositions of elementary

flux modes

5.1 Introduction

In this chapter, we will discuss a conjecture about decompositions of EFMs

into other EFMs. In real examples, we observed that every EFM either had

a shortest decomposition of length 2 or was not decomposable at all. Our

conjecture claims that every decomposable EFM has a shortest decomposition

of length 2.

We formalize the conjecture and make some observation related to it in

Section 5.2. In Section 5.3, we discuss an example that initially appears to

be a counterexample and explain why it is not. In Section 5.4, we discuss

the relationship between matroids and metabolic networks where all reactions

are reversible. Next, we use these observations to prove a weaker version

of our conjecture. In Section 5.5, we present two new algorithms. One to

determine a decomposition of length 2 for a given EFM if it exists and one

to generate new EFMs when a starting set of EFMs is given. In the final

section of this chapter, we examine approaches to find a counterexample to

our conjecture. We present a method to generate all metabolic networks of a

given size with limitations to the stoichiometric coefficients. These networks

are used to computationally verify our conjecture and demonstrate that there

does not exist a counterexample of small size with a predefined set of possible

stoichiometric coefficients.
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5.2 Conjecture about decompositions of

EFMs

In Chapter 4, we explored decompositions of flux vectors into EFMs. In this

section, we will formalize our conjecture about decompositions of EFMs (into

other EFMs) and discuss some facts related to this conjecture. For the re-

mainder of this section, let N = (M,R, S,Rev) be a metabolic network, C

the flux cone of N , and E ⊆ C a representative set of the EFMs of N . We

will abbreviate a ̸= b, b ̸= c and a ̸= c and just write a ̸= b ̸= c for better

readability. For a set of vectors v1, . . . , vk ∈ RN , we call

k∑
i=1

λiv
i

a positive combination of v1, . . . , vk if λi > 0 for i = 1, . . . , k. For an EFM

e ∈ E , we call a positive combination

e =
k∑

i=1

λie
i, λi > 0, ei ∈ E , i = 1, . . . , k (5.1)

a non-trivial decomposition of e into k other EFMs if supp(ej) ̸= supp(ei) ̸=
supp(e) for i, j ∈ {1, . . . , k}. Specifically a non-trivial decomposition cannot

be the scaling of a vector and no reversible EFMs with equal support combined

to 0 appear, so

e = λie
i and

e = (
k∑

i=1

λie
i) + e′ + λ′e′′,

where e′ = −λ′e′′ are oppositely oriented reversible EFMs, are not non-trivial

decompositions of e. For better readability, we will sometimes just write e is

decomposable into k EFMs or e can be decomposed into k EFMs if there exists
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a non-trivial decomposition of e into k other EFMs. Finally, we will often just

say e is decomposable if there exists some k, such that e is decomposable into

k EFMs and since we only consider decompositions into EFMs in this chapter

we will sometimes just write ”there exists a decomposition” when we mean

”there exists a decomposition into EFMs”. This notation allows for a compact

formulation of our conjecture about decompositions of EFMs.

Conjecture 5.2.1. If e ∈ E is decomposable, then e can be decomposed into

two EFMs from E.

In particular, this conjecture states that there cannot be an EFM of a

metabolic network that can be decomposed into k ≥ 3 EFMs but not into two.

Note that every EFM e with deg(e) > t + 2, where t := dim(lin. space(C))

is the dimension of the lineality space of C, is decomposable (cf. Chapter 4).

This means that Conj. 5.2.1 claims that every EFM that is not a MEMo-EFM

(as well as every decomposable MEMo-EFM) is decomposable into two EFMs.

An important observation about decompositions of EFMs, in contrast to

decompositions of arbitrary flux vectors, is the cancellation of reversible reac-

tions.

Definition 5.2.2. Let v1, . . . , vk ∈ C be flux vectors in the flux cone C of a

metabolic network N and r ∈ Rev a reversible reaction. A positive combination

v =
∑k

i=1 λ
ivi is called a cancellation of the reversible reaction r ∈ Rev if and

only if

vr = 0, and vir ̸= 0 for at least two i ∈ {1, . . . , k}.

(i.e., the coefficients λi > 0 are chosen in such a way that the flux through

reaction r is equal to zero in the positive combination of v1, . . . , vk but it is not

equal to zero for at least two of the vectors v1, . . . , vk.)

Specifically, if a positive combination v =
∑k

i=1 λiv
i is a cancellation of a

reversible reaction r ∈ Rev, then r /∈ rev. supp(v) and r ∈ rev. supp(vi) for at
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A B

1

2

3 4

Figure 5.1: Example of a metabolic network for which there exists a cancella-

tion of 2 reversible reactions at once.

least two i ∈ {1, . . . , k}. Clearly, a positive combination can be the cancellation

of multiple reversible reactions at the once, as the following example shows.

Example 5.2.3. Consider the metabolic network N = (M,R, S,Rev), visu-

alized in Figure 5.1. Assuming all stoichiometric coefficients are in {1, 0,−1}
and all reactions are oriented from left to right, the stoichiometric matrix S

and the set Rev ⊆ R of reversible reactions, are

S =

(
−1 1 −1 0

0 0 1 −1

)
, and Rev = {3, 4}.

A representative set E of the EFMs of N is given by

e1 = (1, 0,−1,−1)T ,

e2 = (0, 1, 1, 1)T ,

e3 = (1, 1, 0, 0)T .

Clearly e3 = e1 + e2 is a cancellation of the two reversible reactions 3 and 4.

The next lemma shows that only reversible reactions can be canceled in a

positive combination of flux vectors.

Lemma 5.2.4. If a flux vector v ∈ C is a positive combination

v =
k∑

i=1

λiv
i, λi > 0, i = 1, . . . , k,
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of flux vectors v1, . . . , vk ∈ C, then irr. supp(v) =
k⋃

i=1

irr. supp(vi) and

rev. supp(v) ⊆
k⋃

i=1

rev. supp(vi).

Proof. Direct consequence of vi ≥ 0 for all i ∈ Irr.

Note that Lemma 5.2.4 is also true for positive combinations of EFMs.

Next, we demonstrate that cancellations of reversible reactions are crucial

for decompositions of EFMs.

Lemma 5.2.5. If

e =
k∑

i=1

λie
i, λi > 0

is a non-trivial decomposition of an EFM e ∈ E into EFMs e1, . . . , ek ∈ E,
then it is a cancellation of at least one reversible reaction.

Proof. Let e =
∑k

i=1 λie
i be a non-trivial decomposition that is not a cancel-

lation of a reversible reaction. We have

(i) rev. supp(e) =
k⋃

i=1

rev. supp(ei) (because e =
∑k

i=1 λie
i is not a cancella-

tion of a reversible reaction, cf. Def. 5.2.2),

(ii) irr. supp(e) =
k⋃

i=1

irr. supp(ei) (Lemma 5.2.4).

(iii) supp(ei) ̸= supp(e), i = 1, . . . , k. (definition of non-trivial decomposi-

tions)

In total, we have supp(e) =
k⋃

i=1

supp(ei) which implies supp(ei) ⊆ supp(e) for

i = 1, . . . , k. Because of (iii), supp(ei) ⊊ supp(e) for i = 1, . . . , k and e does

not have inclusionwise minimal support and thereby cannot be an EFM of

N .
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5.3 Definition of a counterexample

Often, the easiest way to disprove a conjecture is to find a counterexample.

Before we discuss a candidate for a counterexample to Conj. 5.2.1, we want to

formalize what exactly makes a metabolic network a counterexample to our

conjecture. By doing so, we can say for certain that the conjecture does not

hold as soon as a metabolic network with the following properties is found.

Definition 5.3.1. A counterexample to Conj. 5.2.1 is a metabolic network

N = (M,R, S,Rev) with a representative set E of the EFMs of N , if there

exists e ∈ E, such that:

(i) e is decomposable and

(ii) e cannot decomposed into 2 EFMs.

It is important to note that a counterexample consists of a metabolic net-

work together with a representative set of its EFMs. We will discuss an exam-

ple of a set of vectors that would be a counterexample, if it was a representative

set of the EFMs of a metabolic network. Since we cannot find a network with

exactly those EFMs, it is not a counterexample after all.

Before we discuss this example, we make an important observation about

cancellations of reversible reactions in decompositions of EFMs.

Lemma 5.3.2. Let N = {M,R, S,Rev} be a metabolic network and E a

representative set of the EFMs of N . If e ∈ E is decomposable into k ≥ 3 EFMs

but cannot be decomposed into 2 EFMs, then at least 2 reversible reactions are

canceled in every decomposition of e into k other EFMs.

Proof. Assume the opposite, i.e., only one reversible reaction r is canceled

in a decomposition of e into 3 other EFMs (the proof is analog if e can be

decomposed into k > 3 EFMs):

e =
3∑

i=1

λie
i, λi > 0, supp(ei) ̸= supp(ej) ̸= supp(e), i, j ∈ {1, 2, 3}. (5.2)
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Then er = 0 and e1r, e
2
r, e

3
r ̸= 0. Otherwise if eir = 0 for some i ∈ {1, 2, 3},

then supp(ei) ⊆ supp(e) (because only one reversible reaction r is canceled)

and we get supp(ei) ̸= supp(e) by our definition of non-trivial decompositions.

But then ei has inclusionwise smaller support than e and e is not an EFM of

N . Note that e1, e2, e3 cannot all have flux in the same direction on reaction

r. Otherwise r cannot be canceled in (5.2), i.e., we would get er ̸= 0. We

can assume, without loss of generality, e1r, e
2
r > 0,e3r < 0, and define a positive

combination

e′ := λ1e
1 + λ3e

3, λ1, λ3 > 0,

such that it is a cancellation of the reversible reaction r, i.e., e′r = 0. We get

supp(e′) ⊆ (supp(e1) ∪ supp(e3)) \ {r}
⊆ (supp(e1) ∪ supp(e2) ∪ supp(e3)) \ {r} = supp(e).

Thus either e was not an EFM to begin with (if supp(e′) ⊊ supp(e), e does not

have inclusionwise minimal support) or e is a positive combination of e1 and e3

(if supp(e′) = supp(e)) which implies that e is decomposable into 2 EFMs.

Now we discuss the example mentioned at the beginning of this chapter,

which at first glance seems to be a counterexample to Conj. 5.2.1.

Example 5.3.3. Assume there is a metabolic network N and that

E =

{
e1 =


1

0

0

1

1

 , e2 =


−1

1

1

0

1

 , e3 =


0

−1

1

1

0

 , e4 =


0

0

2

2

2


}

is a representative set E of the EFMs of N . Let us also assume that only

the first two reactions are reversible (since they appear with negative flux rates

in e2 and e3). Thus, these four EFMs are not reversible and the flux cone

81



82
CHAPTER 5. DECOMPOSITIONS OF ELEMENTARY

FLUX MODES

containing them is pointed. Considering the inclusionwise minimal support

property 2.3, these vectors could all be EFMs of the same metabolic network

since supp(ei) ̸⊂ supp(ej), i ̸= j ∈ {1, 2, 3, 4}. Moreover, it is easy to see

that e4 = e1 + e2 + e3 is a positive combination and the cancellation of the 2

reversible reactions 1 and 2. Also note that e4 is not a positive combination of

any two of e1, e2 and e3 and that no other positive combination of these vectors

has inclusionwise smaller support than all of the four. For

e1 + e2 =


0

1

1

1

2

 and e2 + e3 =


−1

0

2

1

1

 ,

we get supp(e3) ⊂ supp(e1 + e2) and supp(e1) ⊂ supp(e2 + e3).

For this to be a counterexample to Conj. 5.2.1, we still have to find the

metabolic network N that has exactly these four EFMs. The most intuitive way

to do this is to determine an outer description of C := cone({e1, e2, e3, e4}).
This can be done using the double description method. We compute the fol-

lowing outer description of C:

2x1 + x2 + x3 ≥ 0

−x2 + x3 ≥ 0

x2 + x3 ≥ 0

x1 + x3 − x4 = 0

x1 + 3x2 + x3 + 2x4 − 3x5 = 0

x3, x4, x5 ≥ 0.

Our definition of the flux cone of a metabolic network only allows for ho-

mogeneous linear equations and non-negativity constraints for a subset of the

variables. To transform this outer description of C into a flux cone, we in-
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troduce three slack variables s1, s2, s3. This allows us to transform the non-

homogeneous inequalities to homogeneous equations:

2x1 + x2 + x2 − s1 = 0

−x2 + x3 − s2 = 0

x2 + x3 − s3 = 0

x1 + x3 − x4 = 0

x1 + 3x2 + x3 + 2x4 − 3x5 = 0

s1, s2, s3, x3, x4, x5 ≥ 0.

Note that the introduced slack variables correspond to additional irreversible

reactions in a modified network N ′. This network is described by the stoichio-

metric matrix S and the set of reversible reactions Rev defined as follows:

S =


2 1 1 0 0 −1 0 0

0 −1 1 0 0 0 −1 0

0 1 1 0 0 0 0 −1

1 0 1 −1 0 0 0 0

1 3 1 2 −3 0 0 0

 ,Rev = {1, 2},

where reactions 6, 7 and 8 correspond to the introduced slack variables and

are represented in the last three columns of S. A visualization of the corre-

sponding metabolic network is given in Fig 5.2. Using efmtool, we determine

a matrix E that contains the EFMs of N as rows:

E =



1 0 0 1 1 2 0 0

0 1 1 1 2 2 0 2

−1 1 1 0 1 0 0 2

0 0 1 1 1 1 1 1

−1 0 2 1 1 0 2 2

0 −1 1 1 0 0 2 0


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Figure 5.2: Visualization of the metabolic network of the counterexample can-

didate.

The dimension of the lineality space of this cone is zero. If we denote Ei,⋆

the i-th row of E, E1,⋆ corresponds to e1, E3,⋆ to e2 and E6,⋆ to e3, before

adding the slack variables, while E4,⋆ corresponds to e4 (they have equal sup-

port when only considering the first 5 reactions and disregarding the additional

irreversible reactions 6, 7, 8 resulting from the introduction of the slack vari-

ables s1, s2, s3). The degree of E1,⋆, E3,⋆ and E6,⋆ is 1. Thus E1,⋆, E3,⋆ and E6,⋆

are the extreme rays of C ′ and are not decomposable. The remaining EFMs

are all decomposable into 2 EFMs:

E2,⋆ = E1,⋆ + E3,⋆

E4,⋆ =
1

2
(E2,⋆ + E6,⋆)

E5,⋆ = E3,⋆ + E6,⋆.

Example 5.3.3 illustrates the main difficulty in the search for a counterex-

ample to Conj. 5.2.1. While it is possible (at least without time or memory

limitations) to compute a representative set of the EFMs for each metabolic
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network defined by a stoichiometric matrix and a set of reversible reactions,

it is hard (and potentially impossible) to determine a metabolic network that

has a given set of EFMs. It should be noted that we did not prove that there

is no metabolic network that has exactly the EFMs e1, e2, e3 and e4 from Ex-

ample 5.3.3. Another metabolic network with exactly these EFMs could very

well exist, but to the best of our knowledge, there is no way (other than our

approach in Example 5.3.3) to find it or to prove that it does not exist.

5.4 Connections to matroid theory

In this section, we will explore the relationship between matroids and metabolic

networks where all reactions are reversible. There are several different ways to

define matroids in general, as well as different types of matroids. For more de-

tails and applications of matroids we refer to (Oxley, 2006) and (Welsh, 2010).

We begin with a common definition of matroids via independent sets and an

equivalent definition via circuits. Next, we show that the circuits of a matroid

correspond to EFMs of metabolic networks where all reaction are reversible.

Khachiyan et al. (2005) introduced an algorithm to enumerate the circuits of

a matroid in incremental polynomial time (cf. Capelli and Strozecki, 2021, for

more information about incremental polynomial time). We will discuss their

proof and consequently show that EFMs in metabolic networks, where all re-

actions are reversible, can also be enumerated in incremental polynomial time.

Finally, we will apply these insights to prove a weaker version of Conj. 5.2.1 for

the special case that all reactions are reversible. Our notation and definitions

are derived from (Oxley, 2006).

Definition 5.4.1. Let E be a finite set of n elements, i.e. |E| = n, and let

I ⊆ 2E be a collection of subsets of E. M = (E, I) is a matroid if and only if:

(i) ∅ ∈ I,

(ii) if X ∈ I and Y ⊆ X then Y ∈ I,
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(iii) if X, Y ∈ I and |Y | > |X|, then there exists y ∈ Y \ X such that

X ∪ {y} ∈ I.

The elements of I are called independent sets of M . Subsets of E that are

not in I are then called dependent sets. We denote C(M) or just C the set of

all minimal dependent sets of M and call it the set of circuits of M . A set

X ∈ 2E is minimal dependent if removing any element from X leads to an

independent set (i.e. ∀X ∈ C(M) and all x ∈ X : X \ {x} ∈ I) (Oxley, 2006).

Analogously, maximal independent sets in I are called bases of M and the set

of all bases is denoted by B(M) or just B.
The following definition of a matroid using circuits is equivalent to

Def. 5.4.1 (Oxley, 2006).

Definition 5.4.2. Let M := (E, C), where E is a finite set and C ⊆ 2E a set

of subsets of E, which we will call the circuits of M . M = (E, C) is a matroid

if and only if:

(C1) ∅ /∈ C,

(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2,

(C3) If C1, C2 ∈ C and e ∈ C1 ∩ C2, there exists C3 ∈ C such that C3 ⊆
(C1 ∪ C2) \ {e}.

Note the similarities to our definition of elementary flux modes. In the

definition of EFMs we also excluded 0 similar to (C1) and the inclusionwise

minimal support property (2.3) is similar to (C2). Before we take a closer look

at the similarity of the circuit axiom(C3) and our definition of cancellations of

reversible reactions (Def. 5.2.2) we show that every metabolic network where

all reactions are reversible defines a matroid where the supports of the EFMs

are the circuits of that matroid. Note that if all reactions of a metabolic

network N are reversible, then for all e ∈ E there exists λ > 0 such that

e′ = −λe ∈ E and supp(e) = supp(e′), i.e., the cardinality of E is twice the

cardinality U := {supp(e) | e ∈ E}.
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Proposition 5.4.3 (cf. Reimers, 2014). Let N = (M,R, S,Rev = R) be a

metabolic network where all reactions are reversible and define U := {supp(e) |
e ∈ E} where E is a representative set of the EFMs of N . Then, M := (R,U)
is a matroid and U is the set of circuits of M .

Proof.

(C1): By definition v = 0 is not an EFM of N and thus, supp(v) = ∅ /∈ U .
(C2): Let U1, U2 ∈ U be the supports of two EFMs in E and let U1 ⊆ U2. Then

U1 = U2 directly follows from equation (2.3).

(C3): Let U1, U2 ∈ U and r ∈ U1 ∩ U2. Since all reactions in R are reversible

there exist e1, e2 ∈ E such that e1r < 0, e2r > 0 and supp(e1) = U1, supp(e
2) =

U2. Define e := λ1e
1 + λ2e

2 as the cancellation of the reversible reaction

r (r /∈ U := supp(e)). Now if e is an EFM of N , we are done because

U ⊆ (U1 ∪ U2) \ {r}. Otherwise, if e /∈ E , then U /∈ U . But then some subset

U ′ ⊊ U is an element of U and we get U ′ ⊆ (U1 ∪ U2) \ {r}.

For the proof of (C3) we used the fact that the support of every steady-

state flux vector that is not a EFM contains the support of an EFM which is a

direct consequence of the inclusionwise minimal support property (2.3). If all

reactions of a metabolic network N are reversible, the matroid M = (R,U)
defined in Lemma 5.4.3 is called the flux matroid of N (Reimers, 2014).

The following two lemmas explain how one can check for a given set X,

whether it is a circuit of a matroid (Lemma 5.4.4) and how a circuit C3 fulfilling

the circuit axiom (C3) can be found (Lemma 5.4.5).

Lemma 5.4.4. Let f be an independence oracle of a matroid M(E, C), i.e.,
f : 2E 7→ {True, False} such that f(X) = True if X ∈ I and f(X) = False

if X /∈ I. For X ∈ 2E it takes |X|+ 1 calls to f to verify X ∈ C.
Proof. Let f : 2E 7→ {True, False} be an independence oracle for M = (E, C).
By definition X ∈ C is a circuit of M , if X is a minimal dependent set in 2E.

We need to verify that f(X) = False and for each x ∈ X we need to verify

that f(X \ {x}) = True. We call f a total of |X|+ 1 times.
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Lemma 5.4.5. Let M = (E, C) be a matroid and f : 2E 7→ {True, False} an

independence oracle as defined in Lemma 5.4.4. Given two circuits C1, C2 ∈ C
and an element e ∈ C1 ∩ C2, a circuit C3 ∈ (C1 ∪ C2) \ {e} can be found by

calling f fewer than (n+1)(n+2)
2

times, where n = |(C1 ∪ C2) \ {e}|.

Proof. Define C ′ := (C1 ∪ C2) \ {e} and n := |C ′| = |(C1 ∪ C2) \ {e}|. By the

circuit axiom (C3) there exists a circuit C3 ⊆ (C1∪C2)\{e} = C ′ and thus, C ′

cannot be independent. By Lemma 5.4.4, we can check whether C ′ is a circuit

with n+ 1 calls to f . If it is not, C ′ is not minimal dependent and we choose

x ∈ C ′ such that f(C ′ \ {x}) = False (i.e., C ′ \ {x} is dependent). Again by

Lemma 5.4.4, it now takes |C ′ \ {x}|+ 1 = |C ′| = n calls to f to test whether

C ′ \ {x} ∈ C. Repeating this process and successively removing elements for

which the resulting set is still dependent, we find a circuit C3 ⊆ (C1∪C2)\{e}
after fewer than (n+ 1) + n+ (n− 1) + · · ·+ 1 =

∑n+1
k=1 k = (n+1)(n+2)

2
calls to

f .

Note that the bound (n+1)(n+2)
2

in Lemma 5.4.5 is not optimal. We would

not have to check whether C ′ \ {x} is dependent again after the first iteration

(and subsequent sets).

Theorem 5.4.6 (Khachiyan et al., 2005). The circuits C of a matroid M =

(E, C) can be enumerated in incremental polynomial time.

In their proof, Khachiyan et al. (2005) start with a fundamental system of

circuits F(B) := {C(B, x) | x ∈ E \B} for some basis B of M . A fundamental

circuit C(B, x) of x for the basis B is defined as the unique circuit C such that

x ∈ C ⊆ B ∪ {x} for x ∈ E \B (Oxley, 2006).

To enumerate all circuits of M they begin by initializing C ′ = F(B) and

repeatedly check whether C ′ is closed with respect to the circuit axiom. For

each violation of the circuit axiom, a new circuit is produced and added to C ′

(cf. Lemma 5.4.5). They finalize their proof by showing that C ′ is the set of

all circuits of M as soon as it is closed with respect to the circuit axiom.
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We will refer to this method of generating new circuits as circuit enumer-

ation method for the remainder of this chapter.

As a direct consequence we get:

Corollary 5.4.7. (cf. Theorem 10 in (Acuña et al., 2009)) The supports

of the EFMs of a metabolic network where all reactions are reversible can be

enumerated in incremental polynomial time.

The following example is an application of the circuit enumeration method

to a concrete example.

Example 5.4.8. It is a well-known fact (cf. (Oxley, 2006)) that given a

matrix A ∈ Rm×n, the set of column labels E is the ground set of a matroid

M = (E, I), where I is the set of subsets X of E for which the multiset of

columns labeled by X is linearly independent. This matroid is called a vector

matroid. Consider the matrix

A =

1 2 3 4 5( )
1 2 1 0 1

1 2 0 1 −1
∈ R2×5,

with column labels E := {1, 2, 3, 4, 5}. One can easily verify that

I = {∅, {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5},
{2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.

The dependent sets are the elements of 2E \ I. Furthermore the set of bases of

M is given by

B = {{1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}},

and the set of circuits of M by

C = {{1, 2}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.
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If the circuit enumeration method described in (Khachiyan et al., 2005)

chooses the basis B0 = {1, 3} in the first step, the system F(B0) of fundamental

circuits for B0 is given by

F(B0) = {{1, 2}, {1, 3, 4}, {1, 3, 5}},

because {1, 2} ⊆ B0 ∪ {2}, {1, 3, 4} ⊆ B0 ∪ {4} and {1, 3, 5} ⊆ B0 ∪ {5}. To

check whether F(B0) is closed with respect to the circuit axiom, we compare

each pair of circuits that share an element. We easily find 1 ∈ C1 := {1, 2}
and 1 ∈ C2 := {1, 3, 4} but no circuit C3 ⊆ (C1 ∪ C2) \ {1} = {2, 3, 4}. This

produced the new circuit {2, 3, 4}. Analogously, we find

{2, 3, 5} ⊆ ({1, 2} ∪ {1, 3, 5}) \ {1},
{3, 4, 5} ⊆ ({1, 3, 4} ∪ {1, 3, 5}) \ {1},
{1, 4, 5} ⊆ ({1, 3, 4} ∪ {1, 3, 5}) \ {3}.

The newly produced circuits lead to another violation of the circuit axiom

({2, 3, 4} and {2, 3, 5}) producing the circuit {2, 4, 5}. Note that we have now

enumerated all circuits in C and that there are no more violations of the circuit

axiom.

Let us take a look at the metabolic network that has Example 5.4.8 as flux

matroid. To do this we define a metabolic network where the matrix A from

Example 5.4.8 is the stoichiometric matrix S and assume that all reactions are

reversible.

Example 5.4.9. Consider the metabolic network N = (M,R, S Rev), defined

by

A = S =

(
1 2 1 0 1

1 2 0 1 −1

)
and Rev = {1, 2, 3, 4, 5}.

We compute a matrix E that contains a representative set of EFMs of N
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Figure 5.3: Metabolic network defined in Example 5.4.9.

as rows:

E =





0 −1 0 4 2

0 0 −1 1 1

−1 0 0 2 1

0 0 1 −1 −1

0 −1 4 0 −2

0 1 −4 0 2

−1 0 2 0 −1

0 1 0 −4 −2

0 −1 2 2 0

−1 0 1 1 0

0 1 −2 −2 0

−2 1 0 0 0

2 −1 0 0 0

1 0 −2 0 1

1 0 0 −2 −1

1 0 −1 −1 0
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Note that reversible EFMs appear in both orientations and have equal support.

The set U of supports of EFMs of N is given by

U = {{2, 4, 5}, {3, 4, 5}, {1, 4, 5}, {2, 3, 5}, {1, 3, 5}, {2, 3, 4}, {1, 3, 4}, {1, 2}}

and coincides with the set of circuits C from Example 5.4.8. Furthermore, we

mention that all EFMs of N have degree 3 and can be non-trivially decomposed

into two other EFMs, confirming Conj. 5.2.1:(
2 −1 0 0 0

)
=
(
0 −1 2 2 0

)
+ 2 ·

(
1 0 −1 −1 0

)
(
1 0 0 −2 −1

)
=
(
−1 0 2 0 −1

)
+ 2 ·

(
1 0 −1 −1 0

)
(
1 0 −1 −1 0

)
=
(
1 0 −2 0 1

)
+ 1 ·

(
0 0 1 −1 −1

)
(
1 0 −2 0 1

)
=
(
0 0 −1 1 1

)
+ 1 ·

(
1 0 −1 −1 0

)
(
−1 0 1 1 0

)
=
(
0 0 −1 1 1

)
+ 1 ·

(
−1 0 2 0 −1

)
(
0 −1 2 2 0

)
=
(
2 −1 0 0 0

)
+ 2 ·

(
−1 0 1 1 0

)
(
−1 0 2 0 −1

)
=
(
−1 0 1 1 0

)
+ 1 ·

(
0 0 1 −1 −1

)
(
0 −1 4 0 −2

)
=
(
2 −1 0 0 0

)
+ 2 ·

(
−1 0 2 0 −1

)
(
0 0 1 −1 −1

)
=
(
1 0 0 −2 −1

)
+ 1 ·

(
−1 0 1 1 0

)
(
0 0− 1 1 1

)
=
(
1 0 −1 −1 0

)
+ 1 ·

(
−1 0 0 2 1

)
(
−1 0 0 2 1

)
=
(
−1 0 1 1 0

)
+ 1 ·

(
0 0 −1 1 1

)
(
0 −1 0 4 2

)
=
(
2 −1 0 0 0

)
+ 2 ·

(
−1 0 0 2 1

)
(
0 1 −4 0 2

)
=
(
0 −1 0 4 2

)
+ 2 ·

(
0 1 −2 −2 0

)
(
0 1 −2 −2 0

)
=
(
0 1 −4 0 2

)
+ 2 ·

(
0 0 1 −1 −1

)
(
0 1 0 −4 −2

)
=
(
0 −1 4 0 −2

)
+ 2 ·

(
0 1 −2 −2 0

)
(
−2 1 0 0 0

)
=
(
0 1 −4 0 2

)
+ 2 ·

(
−1 0 2 0 −1

)
.
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Next, we further analyze metabolic networks in the context of matroid

theory to prove a weaker version of Conj. 5.2.1. First we establish a relation-

ship between decomposability of EFMs and fundamental circuits of the flux

matroid. Then we prove a result about the uniqueness of circuits fulfilling

the circuit axiom. Combining these results lets us prove Theorem 5.4.13, as

a weaker version of Conj. 5.2.1, that applies to metabolic networks where all

reactions are reversible.

Proposition 5.4.10. Let M = (R,U) be the flux matroid of a metabolic

network N where all reactions are reversible and B the set of bases of M . If

U ∈ U is the support of a decomposable EFM e of N , then there exists a basis

B ∈ B such that U is not in the system of fundamental circuits F(B) for B.

Proof. We will show that an EFM e, for which supp(e) is in the system of fun-

damental circuits for every basis of the flux matroid, cannot be decomposable.

First, recall the definition of the system of fundamental circuits for a basis

B ∈ B:
F(B) := {C(B, x) | x ∈ R \B},

where C(B, x) is the unique fundamental circuit of x for B such that C(B, x) ⊆
B ∪ {x} (Oxley, 2006). Let N be a metabolic network where all reactions are

reversible and M the flux matroid of N . Furthermore let B be the set of all

bases of M and let e be an EFM of N such that for every B ∈ B we have

supp(e) =: U ∈ F(B). Secondly, recall that every circuit is a fundamental

circuit for some basis B (cf. (Oxley, 2006)). Specifically, for all C ∈ U and for

every x ∈ C, there exists B ∈ B such that C = C(B, x) (cf. (Oxley, 2006)).

With this, we can show that U is uniquely determined by any of its elements,

i.e.,

∀U ′ ∈ U : U ′ ∩ U ̸= ∅ ⇒ U ′ = U. (5.3)

To see this, suppose there exists a circuit U ′ ̸= U with U ′ ∩ U ̸= ∅ and

choose r ∈ U ′ ∩ U . Then r ∈ U ′ implies that there there exists a basis B
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Figure 5.4: Example of an EFM (in red) that is not decomposable in a network

where all reactions are reversible.

such that U ′ = C(B, r) is the fundamental circuit of r for B and r /∈ B

follows immediately. By our assumption U ∈ F(B) is also in the system of

fundamental circuits for B. Since r ∈ U, r /∈ B we can conclude U = C(B, r)

is the unique fundamental circuit of r for B and thus, U = U ′. But then

e =
k∑

i=1

λie
i (5.4)

cannot be a non-trivial decomposition of e into other EFMs. Define Ui :=

supp(ei), i = 1, . . . , k. By construction we get

U = supp(e) ⊆
⋃

i=1,...,k

supp(ei) =
⋃

i=1,...,k

Ui.

For every r ∈ U there exists i ∈ {1, . . . , k} such that r ∈ Ui and because

of (5.3) we get supp(e) = U = Ui = supp(ei) and therefore, (5.4) is not a

non-trivial decomposition of e into other EFMs.

Note that EFMs that are not decomposable can occur in metabolic net-

works where all reactions are reversible. The following example illustrates

this.

Example 5.4.11. Assuming all stoichiometric coefficients in the metabolic

network visualized in Figure 5.4 are in {−1, 0, 1} and reactions are oriented
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from left to right and top to bottom, the stoichiometric matrix S is given by

S =

1 2 3 4 5( )
1 1 −1 0 0

0 0 0 −1 1
,

the vector matroid defined by S has 6 bases

B = {{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}}

and 4 circuits

C = {{1, 2}, {1, 3}, {2, 3}, {4, 5}}.

One can easily verify that {4, 5} is a fundamental circuit for every basis

B ∈ B:

F({1, 4}) = {{1, 2}, {1, 3}, {4, 5}},
F({1, 5}) = {{1, 2}, {1, 3}, {4, 5}},
F({2, 4}) = {{1, 2}, {2, 3}, {4, 5}},
F({2, 5}) = {{1, 2}, {2, 3}, {4, 5}},
F({3, 4}) = {{1, 3}, {2, 3}, {4, 5}},
F({3, 5}) = {{1, 3}, {2, 3}, {4, 5}}.

Proposition 5.4.12. Let M = (E, C) be a matroid with set of circuits C and

set of bases B. If a circuit C ∈ C is not contained in the system of fundamental

circuits F(B) for some B ∈ B, then there exist distinct circuits C1, C2 ∈ C
and e ∈ C1 ∩ C2 such that C is the unique circuit with C ⊆ (C1 ∪ C2) \ {e}.

Proof. Let C ∈ C be a circuit and B be a basis of M such that C /∈ F(B).

By Khachiyan et al. (2005), if some system C ′ ⊆ C of circuits is closed with

respect to the circuit axiom (i.e., for all distinct C1, C2 ∈ C ′ and e ∈ C1 ∩ C2

there exists C3 ∈ C ′ such that C3 ⊆ (C1 ∪ C2) \ {e}) and F(B) ⊆ C ′, then

C ′ = C.
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Suppose there do not exist distinct circuits C1, C2 and e ∈ C1∩C2 such that

C is the unique circuit contained in (C1 ∪C2) \ {e}, i.e., for all C1, C2 ∈ C and

e ∈ C1 ∩ C2 with C ⊆ (C1 ∪ C2) \ {e} there exists another circuit C ′ ̸= C ∈ C
such that C ′ ⊆ (C1 ∪ C2) \ {e}. But then C ′ := C \ {C} is closed with respect

to the circuit axiom and F(B) ⊆ C ′ because C /∈ F(B), but C ′ ̸= C, which is

a contradiction.

With Prop. 5.4.12 and Prop. 5.4.10 we can prove our weaker version of

Conj. 5.2.1 for networks where all reactions are reversible.

Theorem 5.4.13. Let N = (M,R, S,Rev) be a metabolic network where all

reactions are reversible and E a representative set of the EFMs of N .

If e ∈ E is decomposable, then there exist EFMs e1, e2 ∈ E with supp(e1) ̸=
supp(e2) ̸= supp(e), λ1, λ2 > 0 and r ∈ supp(e1) ∩ supp(e2), such that v :=

λ1e
1 + λ2e

2 yields vr = 0, e1r ̸= 0, e2r ̸= 0 and

supp(e) ⊆ supp(v) ⊆ (supp(e1) ∪ supp(e2)) \ {r}. (5.5)

Proof. Let M = (R,U) be the flux matroid of N with set of bases B, set of

circuits U and let e ∈ E be decomposable. By Prop. 5.4.10 there exists a basis

B ∈ B such that U := supp(e) is not in the system of fundamental circuits

F(B).

By Prop 5.4.12 there exist distinct circuits U1, U2 ∈ U and r ∈ U1∩U2 such

that U ⊆ (U1 ∪ U2) \ {r} is the unique circuit contained in (U1 ∪ U2) \ {r}.
Since all reactions are reversible we can choose e1, e2 ∈ E such that e1r >

0, e2r < 0 and supp(e1) = U1, supp(e
2) = U2. Define λ1, λ2 > 0 such that

v := λ1e
1 + λ2e

2 yields vr = 0 and thus V := supp(v) ⊆ (U1 ∪ U2) \ {r}.
By construction v ̸= 0 is a feasible flux vector and by (2.3) there exists

e′ ∈ E with supp(e′) ⊆ V which implies U ′ := supp(e′) ∈ U . Since U is the

unique circuit contained in (U1 ∪ U2) \ {r} we get U = U ′ and (5.5) follows.
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Note that v was constructed as a cancellation of the reversible reaction r.

This result is weaker than Conj. 5.2.1 because we proved that the support of

every decomposable EFM is contained in the support of a vector that results

from a cancellation of a reversible reaction by two other EFMs. If we had

equality instead of set inclusions in (5.5), this would prove Conj. 5.2.1 for

metabolic networks where all reactions are reversible.

We refer to Arne Reimers’ PhD thesis (Reimers, 2014) for a more detailed

discussion of metabolic networks that include irreversible reactions and their

representation via oriented matroids.

As of now, we only know that Conj. 5.2.1 holds for metabolic networks with

fewer than two reversible reactions (cf. Lemma 5.3.2) as well as for EFMs of

degree at most 2 by Prop. 4.2.2.

5.5 Algorithms for composition and decompo-

sition

In this section, we discuss two algorithms based on our observations from the

previous sections. In Section 5.4, we discussed the circuit enumeration method,

which begins with the system of fundamental circuits for a basis and repeatedly

checks whether the set is closed with respect to the circuit axiom. Whenever

a violation of the circuit axiom is found, a new circuit is produced.

We begin with Algorithm 1, which generates EFMs from a starting set by

repeatedly checking if new EFMs can be generated by positive combinations of

two EFMs that are cancellations of reversible reactions. For better readability

we will call a positive combination of two EFMs e1, e2 that results in a new

EFM e, i.e.

e = λ1e
1 + λ2e

2, λ1, λ2 > 0, supp(e1) ̸= supp(e2) ̸= supp(e),

a composition of e by the EFMs e1 and e2. We can then say that a set of
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EFMs E ′ of a metabolic network N is closed with respect to compositions by

two EFMs, if for all e1, e2 ∈ E ′ for which there exist λ1, λ2 > 0 such that

e := λ1e
1 + λ2e

2 is an EFM of N , we have λe ∈ E ′ for some λ > 0 ∈ R. This
means that no two EFMs in E ′ can be positively combined to an EFM that is

not represented by an EFM in E ′. Note that trivially, a representative set E
of the EFMs of a metabolic network N is closed with respect to compositions

by two EFMs.

Algorithm 1 EFM composition

1: Input: A subset E ′ of EFMs of a metabolic network N = (M,R, S,Rev).

2: OUTPUT: Set of EFMs E ′ that is closed with respect to compositions by

2 EFMs.

3: while E ′ is not closed with respect to compositions by 2 EFMs do

4: for each reversible reaction r ∈ Rev do

5: Determine P := {e ∈ E ′ | er > 0} and N := {e ∈ E ′ | er < 0}.
6: for each pair of EFMs e+ ∈ P and e− ∈ N do

7: Define new vector e′ = λ1e
+ + λ2e

− such that e′r = 0.

8: if λe′ /∈ E ′ for all λ ∈ R and e′ is an EFM of N then

9: Add e′ to E ′.

10: end if

11: end for

12: end for

13: end while

Algorithm 1 is initialized with a starting set E ′ of EFMs of a metabolic

network N and generates new EFMs that are added to E ′ until the set is closed

with respect to compositions by 2 EFMs. The algorithm can be viewed as a

variant of the circuit enumeration method for matroids discussed in Section 5.4.

The main difference is that instead of working with circuits of a matroid (i.e.

the supports of EFMs) we are working with EFMs in the flux cone C of the

metabolic network. We determine new EFMs by performing cancellations of
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reversible reactions instead of finding a new circuit for each violation of the

circuit axiom (cf. Lemma 5.4.5).

In line 4, we iterate over each reversible reaction r ∈ Rev. In line 5, we

determine two subsets P,N of the set of EFMs E ′ that we currently have. We

sort EFMs with positive flux on r to P and EFMs with negative flux on r to

N . EFMs with no flux on reaction r (every EFM e ∈ E ′ with er = 0) are

omitted in this step. In lines 6 and 7 we positively combine every pair of one

EFM from P and one EFM from N such that this positive combination is a

cancellation of the reversible reaction r. Finally, in lines 8 and 9 we check

whether this cancellation leads to a new EFM of N and if so, we add it to E ′.

We verify λe′ /∈ E ′ so that we don’t have multiple EFMs with equal support.

By Prop. 2.5.1, it suffices to compare the support of e′ and every EFM e ∈ E ′.

To verify whether e′ is an EFM of N , the rank test (cf. (2.5)) can be applied.

First, we mention that Algorithm 1 is a rather theoretical approach. It is

not supposed to compete with the state-of-the-art tools in terms of running

time. The main disadvantage is the large amount of pairs of EFMs that are

combined in each iteration. Furthermore, the algorithm requires a subset of

the EFMs as a starting set. A viable candidate would be a MEMo, which can

be computed for networks where the enumeration of all EFMs is not possible

(Röhl and Bockmayr, 2019). If Conj. 5.2.1 holds, the algorithm could be

optimized to enumerate representative sets of EFMs and tested against the

other methods mentioned in Section 2.6. Clearly, if the conjecture does not

hold and a metabolic network N is a counterexample, EFMs that can only be

decomposed into 3 or more EFMs will not be found by Algorithm 1. If this is

the case, Algorithm 1 can still be used to find additional EFMs, when some

starting subset of EFMs is given.

Independently of whether the conjecture holds or not, we also mention a

couple of advantages of the algorithm. First of all, in contrast to approaches

based on the double description method it is not a pass or fail algorithm. This

means, the algorithm can be interrupted at any point and E ′ represents a subset
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of EFMs. Secondly, the parallelization possibilities exceed those of the MILP

approach (de Figueiredo et al., 2009). For example, in line 4 every reversible

reaction could be handled simultaneously. Additionally each pair of one EFM

from P and one from N in line 6 could be combined to a new candidate

simultaneously. In the MILP approach, finding the k-th shortest EFM requires

finding the (k−1)-th shortest EFM first. Apart from the parallelization aspect,

it should be noted that the algorithm does not have to be initialized with a

MEMo. It can also be used to determine targeted subsets of EFMs. To name

just one example, the algorithm could be initialized with a generating set of

some specific face F of the flux cone (cf. Chapter 4).

Several steps of the computation can and should be optimized when im-

plementing the algorithm for real application. For example in lines 4 and 5

every combination is reproduced in every iteration. This means that every

new EFM that is found in some iteration, will be found again in each iteration

afterwards. This can be optimized by only combining pairs of EFMs from P

and N that have not been considered before. The rank test (cf. Chapter 2)

that is performed in line 8 is computationally expensive and repeated for each

newly generated vector. One possible improvement here could be a support

comparison of the newly found vector e′ with the current set of EFMs E ′. If

there already is an EFM with inclusionwise smaller support in E ′, e′ cannot

be an EFM of N and the rank test does not need to be executed. Another

possible optimization is to check whether an EFM is reversible before it is

added to E ′ and if it is, one could directly add both orientations.

Finally, by Theorem. 5.4.13, the algorithm can be modified such that a

representative set of the EFMs of a metabolic network N , where all reactions

are reversible, is enumerated when initialized with a MEMo. We need to adjust

lines 8 and 9 with finding an EFM with inclusionwise smaller support than e′.

Corollary 5.5.1. If Algorithm 1 is initialized with a MEMo W of a metabolic

network N where all reactions are reversible and lines 8,9 are replaced with
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8: Find EFM e such that supp(e) ⊆ supp(e′).

9: Add e to E ′.

the algorithm terminates with a representative set E of the EFMs of N .

The support U of such an EFM e in line 8 can be found as described

in Lemma 5.4.5. The rank test (cf. Prop 2.5.3) can be applied instead of

the calls to an independence oracle. Finally by solving a system of linear

equations (cf. Cor. 2.5.2) an EFM with support U can be found and added to

E ′. Alternatively, a shortest EFM e with supp(e) ⊆ supp(e′) can be found by

solving a mixed integer linear program (de Figueiredo et al., 2009).

Proof. Every EFM that is not decomposable is already in Estart = W by the

definition of a MEMo.

Define U ′ := {supp(e) | e ∈ E ′} as the set of supports of the EFMs in

E ′ after the modified algorithm terminated. It suffices to show that U ′ is

closed with respect to the circuit axiom. Suppose it is not. Then there exist

U1, U2 ∈ U and r ∈ U1 ∩ U2 such that (U1 ∪ U2) \ {r} does not contain a

circuit. Since every reaction is reversible there exist EFMs e1, e2 ∈ E ′ such

that supp(e1) = U1, supp(e
2) = U2 and e1r > 0,e2r < 0. Now λ1, λ2 > 0

can be chosen such that v := λ1e
1 + λ2e

2 yields vr = 0 and thus supp(v) ⊆
(U1 ∪ U2) \ {r}. In the modified lines 8 and 9 an EFM e with inclusionwise

smaller support than v was added to E ′ in an iteration over reaction r and

thus U := supp(e) ⊆ supp(v) ⊆ (U1 ∪ U2) \ {r} and U ∈ U contradicts our

assumption.

The next example illustrates Algorithm 1 on our network from Figure 2.4.

Example 5.5.2. Consider the metabolic network in Figure 2.4 again. A
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MEMo W of this network is given by the rows of the matrix

W =

W1

W2

W3

W4

W5

W6

W7



0 0 −1 0 −1 0 0 0 0 0 −1 −1

0 0 0 0 0 0 0 0 1 1 −1 −1

0 0 1 0 1 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 −1 −1 1 1

0 0 0 −1 0 1 0 1 1 1 0 0

0 0 0 −1 0 1 1 0 0 0 0 0

1 1 −1 1 0 0 0 0 0 0 0 0

,


where Wi denotes the i-th row of W . When we iterate over the reversible reac-

tions Rev = {1, 3, 4, 5, 9, 10, 11, 12} we find that reaction 1 cannot be canceled

by any combinations of rows of W . Leaving out cancellations of reactions that

do not lead to new EFMs, we find that reaction 3 can be canceled by

W3 +W7 =
(

1 1 0 1 1 0 0 0 0 0 1 1
)
=: W8,

which is another EFM of the metabolic network. For reaction 4 we find

W5 +W7 =
(

1 1 −1 0 0 1 0 1 1 1 0 0
)
=: W9,

W6 +W7 =
(

1 1 −1 0 0 1 1 0 0 0 0 0
)
=: W10.

We find for reactions 9 and 10

W4 +W5 =
(

0 0 0 −1 0 1 0 1 0 0 1 1
)
=: W11,

and for reactions 11 and 12

W1 +W4 =
(

0 0 −1 0 −1 0 0 0 −1 −1 0 0
)
=: W12,

W2 +W3 =
(

0 0 1 0 1 0 0 0 1 1 0 0
)
=: W13.
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We now append to W the new EFMs W8, . . . ,W12 and repeat the process. Again

reaction 1 cannot be canceled but we find new cancellations for reactions 3,4,11

and 12:

W2 +W8 =
(

1 1 0 1 1 0 0 0 1 1 0 0
)
=: W14,

W3 +W10 =
(

1 1 0 0 1 1 1 0 0 0 1 1
)
=: W15

W6 +W8 =
(

1 1 0 0 1 1 1 0 0 0 1 1
)
=: W16

W7 +W11 =
(

1 1 −1 0 0 1 0 1 0 0 1 1
)
=: W17

W1 +W11 =
(

0 0 −1 −1 −1 0 1 0 0 0 0 0
)
=: W18

Again after appending these to our current set of EFMs we find in the next

iterations

W1 +W17 =
(

1 1 −2 0 −1 1 0 1 0 0 0 0
)
=: W19,

W2 +W15 =
(

1 1 0 0 1 1 1 0 1 1 0 0
)
=: W20,

W3 +W17 =
(

1 1 0 0 1 1 0 1 0 0 2 2
)
=: W21,

and obtain a representative set of the EFMs of the metabolic network (cf. Röhl

and Bockmayr, 2019 or Larhlimi and Bockmayr, 2008).

In Chapter 4, we discussed decompositions of flux vectors into EFMs. We

presented an approach to determine the minimal face F a given flux vector v∗

is contained in. We also discussed how a representative set EF of the EFMs of

F can be determined and showed that non-trivial decompositions of v∗ only use

EFMs from EF . Due to our observations in this chapter, we derive an algorithm

based on the cancellation of reversible reactions to decompose EFMs into two

other EFMs. Algorithm 2 can be seen as the inverse algorithm to Algorithm 1.

While in Algorithm 1 we generate new EFMs by combining pairs from a set

of given EFMs, Algorithm 2 searches for decompositions of a given EFM by

identifying the cancellation of a reversible reversible that leads to it. This
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means that, other than in Chapter 4, no mixed-integer linear programs have

to be solved in the decomposition of an EFM by Algorithm 2. To the best of

our knowledge it is a novel method to decompose a given EFM into two other

EFMs.

Algorithm 2 Decomposition of one EFM into two EFMs

1: INPUT: Representative set E of a metabolic network N , set of reversible

reactions Rev of N , and target EFM e that is to be decomposed.

2: OUTPUT: Pair (e+, e−) of EFMs that can be positively combined to e if

such a pair exists.

3: for every reversible reaction r ∈ rev. supp(e) do

4: Separate E into P and N depending on their flux on reaction r (cf.

Algorithm 1)

5: for each pair of one EFM e+ ∈ P and one EFM e− ∈ N do

6: Determine λ+, λ− > 0 such that e′ := λ+e
+ + λ−e

− yields e′r = 0.

7: if supp(e′) = supp(e) then return (e+, e−).

8: end if

9: end for

10: end for

In lines 4 and 5, we iterate over every reversible reaction r ∈ rev. supp(e)

and separate E into P and N depending on their flux on reaction r like in

Algorithm 1. We then perform each possible cancellation of the reversible

reaction r in lines 5 and 6 and finally, we check if any resulting vector e′

has support equal to the support of e in line 7. Since EFMs are uniquely

determined by their support (cf. Prop. 2.5.1), this implies that e′ can be

decomposed into e+ and e−.

Since every decomposition of an EFM e is a cancellation of at least one

reversible reaction (cf. Lemma 5.2.5) and we test every cancellation of each

reversible reaction by two other EFMs, Algorithm 2 finds one of these decom-

positions, if there exists one. The algorithm can be adjusted to not terminate
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in line 7, when the first decomposition of length 2 is found and collect all de-

compositions of length 2 instead. Independently of whether Conj. 5.2.1 holds

or not, Algorithm 2 finds all decompositions of length 2 for a given EFM e. If

the algorithm does not find one, we know there is none, giving us a candidate

for a counterexample for Conj. 5.2.1. We still have to verify that the EFM

for which we did not find a decomposition of length 2 is decomposable into

3 or more EFMs. In that case one can determine a shortest decomposition

of e with the MILP approach (cf. Chapter 4). If a decomposition of length

larger than 2 is found this way, we would have found a counterexample that

disproves Conj. 5.2.1.

Note that Algorithm 2 can be significantly improved by only checking can-

cellations of reversible reactions by 2 EFMs that are in the same face of the

flux cone that e is contained in. This can be done by finding a subset Ee ⊆ E
defined as Ee := {e′ ∈ E | irr. supp(e′) ⊆ irr. supp(e)}.

With this improvement, we were able to find decompositions of length 2 for

all decomposable EFMs of the e coli core network from the BiGG (Norsigian

et al., 2020) database as well as for all networks from the KEGG (Kanehisa and

Goto, 2000) database that are discussed in (Larhlimi and Bockmayr, 2009).

It should be noted that Algorithm 2 is not suitable to find decompositions of

flux vectors that are not EFMs, since there does not have to be a cancellation

of a reversible reaction. Furthermore, the relatively small numbers of EFMs

in specific faces (cf. Table 4.1) indicate how much of an improvement the

reduction of the set of all EFMs to EFMs from the same face can be.

5.6 Searching for counterexamples

Since we have not been able to prove Conj. 5.2.1 we have to consider the

possibility that it is not true and that there exists a counterexample as de-

fined in Def. 5.3.1. In this section, we briefly discuss our approaches to find

a counterexample to Conj. 5.2.1. We begin by presenting an Algorithm to
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test whether the conjecture holds for a given metabolic network N . Next,

we discuss a method to generate all networks of a predefined size (number

of metabolites and reactions) with restrictions to the possible stoichiometric

coefficients. Clearly, if we do not impose restrictions on the coefficients that

can appear in the stoichiometric matrix, i.e., if we allow the entries to be any

number in R, then the number of metabolic networks of any size is infinite.

Algorithm 3 Check conjecture

1: INPUT: Metabolic network N = (M,R, S,Rev).

2: OUTPUT: True if Conj. 5.2.1 holds for N , False otherwise.

3: Compute representative set E of the EFMs of N .

4: for each EFM e ∈ E do

5: Find shortest decomposition of e into other k EFMs.

6: if k ≥ 3 then return False

7: end if

8: end for

9: return True

Algorithm 3 returns False as soon as the length of a shortest decomposition

of an EFM e into other EFMs is 3 or larger. We then found an EFM that is

decomposable but that cannot be decomposed into 2 EFMs. If the algorithm

returns True in line 9, the length of each shortest decomposition of an EFM

into other EFMs was 2, or it was not decomposable. In this case Conj. 5.2.1

holds for the metabolic network N that the algorithm was initialized with. We

found it to be advantageous to replace line 5 of Algorithm 3 with Algorithm 2

with the discussed improvement: only if no decomposition of length 2 was

found by Algorithm 2 a shortest decomposition is determined by solving a

MILP.

To define a metabolic network, a stoichiometric matrix S ∈ Rm×n and a set

Rev ⊆ {1, . . . , n} suffice. The next algorithm generates all possible (m × n)-

matrices with entries from a given subset L ⊆ R and combines them with every
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possible subset of reversible reactions. For each of these networks, Algorithm 3

checks whether Conj. 5.2.1 holds.

Algorithm 4 Generate all networks

1: INPUT: m,n ∈ N, L ⊆ R.
2: OUTPUT: False when a counterexample to Conj. 5.2.1 is found.

3: Generate the set S := Lm×n that contains all (m×n)- matrices with entries

in L and the power set R := 2{1,...,n} containing every subset of {1, . . . , n}
4: for each matrix S ∈ S do

5: for each set Rev ∈ R do

6: Apply Algorithm 3 to check whether Conj. 5.2.1 holds for the

metabolic network N defined by S and Rev.

7: end for

8: end for

At this point it should be noted that Algorithm 4 generates a lot of

metabolic networks even for small input parameters. Assume we choose

m = n = 3, L = {0, 1,−1}, i.e., we are checking the conjecture for all metabolic

networks with 3 metabolites, 3 reactions and stoichiometric coefficients in

{0, 1,−1}. We would already have 39 = 19683 matrices in S and 23 = 8 subsets

of reversible reactions. In total, we have to check 39 · 23 = 19683 · 8 = 157464

metabolic networks. In general the number of possible metabolic networks can

be derived by the input parameters and is given by

(m · n)|L| · 2n.

A few improvements can be made. For example, we know that the conjec-

ture holds for metabolic networks with at most 1 reversible reaction. Thus,

we do not have to check networks where |Rev | ≤ 1. Furthermore S contains
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every ordering of the columns of any matrix S ∈ S, i.e., the matrices1 0 0

0 1 0

0 0 1

 ,

1 0 0

0 0 1

0 1 0

 ,

0 1 0

1 0 0

0 0 1

 ,

0 0 1

1 0 0

0 1 0

 ,

0 1 0

0 0 1

1 0 0

 ,

0 0 1

0 1 0

1 0 0


are all in S, but describe the same metabolic network (up to relabeling the

reactions). We can drastically reduce the number of metabolic networks that

have to be checked if we account for these observations.

Algorithm 5 Generate all networks without parallel reactions

1: INPUT: m,n ∈ N, L ⊆ Rn.

2: OUTPUT: True if Conj. 5.2.1 holds, False otherwise.

3: Generate a set cols := Lm×1 that contains all length m vectors with entries

in L and the set R := {Rev ∈ 2{1,...,n} : |Rev | ≥ 2} containing all subsets

of {1, . . . , n} with cardinality larger than 1.

4: for each cardinality n subset of cols do

5: Define a matrix S with the n vectors in this subset as columns.

6: for each set Rev ∈ R do

7: Apply Algorithm 3 to check whether Conj. 5.2.1 holds for the

metabolic network N defined by S and Rev.

8: end for

9: end for

We choose combinations without repetition, i.e., we also do not allow par-

allel reactions. The number of metabolic networks with 3 metabolites, 3 re-

actions and stoichiometric coefficients in {0, 1,−1} is significantly smaller if

we disregard models with parallel reactions and consider networks with rela-

beled reactions to be the same. We now have 33 = 27 vectors in cols leading

to
(
27
3

)
= 2925 matrices and 4 subsets of {1, 2, 3} of cardinality larger than

1. Now, the total number of metabolic networks we have to check is only

2925 · 4 = 11700. In general, with our improvements the number of metabolic
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networks we check reduces to(|L|m
n

)
· (2n − n− 1).

This number can still quickly become very large. If we wanted to generate

all networks such that one of them is our illustrative example in Figure 2.4, we

would have to choose m = 7 and n = 12. Even with our reductions we would

be generating
(
37

12

)
· (212−12−1) ≈ 9.9 ·1034 metabolic networks. Clearly, only

small stoichiometric matrices with very limited coefficients can be ruled out as

counterexamples by Algorithm 5 in reasonable amounts of time. Nonetheless,

if there exists a counterexample to Conj. 5.2.1, it is not unthinkable that there

also exists a small counterexample. The implications of a counterexample

having to be at least of some size would open interesting research questions.

We have tested Algorithm 5 with the input parameters listed in Table 5.1

without finding a counterexample.

For some of the input parameters no EFMs were decomposed. This is due

to the fact that no models with those input parameters have decomposable

EFMs. We conclude this section by mentioning that we also increased the input

parameters m and n as well as the list of possible stoichiometric coefficients

and randomly chose combinations of matrices and reversible reactions without

finding a counterexample.

5.7 Conclusion

In this chapter, we discussed a conjecture about decompositions of EFMs. We

observed that all decomposable EFMs we tested had a shortest decomposition

of length 2 leading to the conjecture that this is always the case. We pre-

sented an example that appears to be a counterexample to this conjecture and

showed that it is, in fact, none. Using matroid theory, we were able to prove a

weaker version of this conjecture, namely Theorem 5.4.13 which states that the
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(m,n) L |Models| |EFMS| max(|EFMS|)
(2, 4) {0, 1,−1} 1386 0 8

(2, 5) {0, 1,−1} 3276 3800 16

(2, 6) {0, 1,−1} 4788 19942 28

(2, 7) {0, 1,−1} 4320 36574 46

(2, 8) {0, 1,−1} 2223 39066 50

(2, 9) {0, 1,−1} 502 13116 74

(2, 4) {0, 1,−1, 2,−2} 139150 594 12

(2, 5) {0, 1,−1, 2,−2} 1381380 2266868 20

(3, 3) {0, 1,−1} 3828 0 6

(3, 3) {0, 1,−1, 2,−2} 172504 0 6

(3, 4) {0, 1,−1} 168692 428 12

(3, 5) {0, 1,−1} 2022341 107920 20

(3, 6) {0, 1,−1} 16667274 17991018 30

(4, 4) {0, 1,−1} 4912260 0 8

Table 5.1: Parameters tested with Algorithm 5. (m,n): Number of metabolites

and reactions, L: Set of possible stoichiometric coefficients, |Models|: Number

of models that have EFMs, |EFMs|: Total number of EFMs that are decom-

posable, max(EFMs|): Largest number of EFMs in a single model.
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support of every EFM in a network where all reactions are reversible is con-

tained in the support of a vector resulting from the cancellation of a reversible

reaction. In Section 5.5 we presented algorithms based on our observations

to generate new EFMs from a starting subset of EFMs and to decompose an

EFM into 2 EFMs if such a decomposition exists. While we were not able to

prove Conj. 5.2.1 for all EFMs of all metabolic networks (except for those of

degree 2 or smaller), Algorithm 1 can still be used to enumerate EFMs and

modified to be a novel algorithm that enumerates all EFMs of a metabolic

network where all reactions are reversible. Algorithm 2 is a novel method to

determine a length 2 decomposition of an EFM. In the final section of this

chapter, we briefly discussed attempts to find a counterexample to Conj. 5.2.1.

As of now, we have not found one.
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Chapter 6

Toolbox for flux cone analysis

In this chapter, we present the fluxcones Python package that we devel-

oped to calculate geometric properties of flux cones of metabolic networks.

The package aims to provide an easy-to-use toolbox for calculating geomet-

ric properties of flux cones and is capable of reproducing the data presented

in this thesis. The software is open source and available on GitHub at

https://github.com/fwieder/fluxcones. In Section 6.1, we describe the

general structure and basic usage of the fluxcones package and the functional-

ity it provides. In Section 6.2, we briefly describe three options to enumerate a

representative set of EFMs that come with the package. Finally, in Section 6.3,

we discuss examples of algorithms from Section 5.5 and their implementation.

6.1 Overview

Figure 6.1 gives an overview of the main functionality of the fluxcones

package and should be viewed from top to bottom. An instance of the

FluxCone class can be created in two different ways. One way is to call

FluxCone(stoich,rev) where stoich is a 2-dimensional numpy.ndarray that

is a stoichiometric matrix and rev is a 1-dimensional numpy.ndarray that is

a binary vector with ones at indices of reversible reactions and zeros at in-

dices of irreversible reactions. Alternatively, given an SBML file (e.g. from the

BiGG-database), an instance of the FluxCone class can be created by calling

FluxCone.from_sbml(<path>), where <path> is the path to the SBML file.

fluxcones then extracts the stoichiometric matrix and the binary vector rev

from the SBML file and creates the FluxCone object.

If needed, the description of the flux cone can be transformed to an irredun-

dant description (cf. Section 3.3) by calling FluxCone.make_irredundant().
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S, rev sbml-file

FluxCone object FLuxCone.make irredundantFluxCone calculations

efmtoolcdd milp

EFMs

two gens check conjecture

Figure 6.1: Structural overview of the fluxcones package.

The function identifies redundant non-negativity constraints by solving linear

optimization problems and moves the corresponding reactions from the set

of irreversible reactions to the set of reversible reactions by changing corre-

sponding entries in the binary vector FluxCone.rev. Note that this does not

change the flux cone and that an irredundant description of the flux cone is

not uniquely determined.

The FluxCone class offers several functions for polyhedral computations,

listed in Table 6.1. Three different options to enumerate a representative set

of the EFMs are provided, using the Python packages pycddlib, efmtool

and Python-MIP. We will provide more details on the implementations with

these different methods in the next section. For now we mention that each

of these methods, if it terminates, returns a matrix containing the EFMs as

rows. Computing EFMs of the same flux cone with different methods can

lead to different orders and different scaling of the EFMs. The computed
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representative set of EFMs can be further analyzed with functions from the

fluxcones package.

For example, the method FluxCone.degree(vector) returns the degrees of

vector as defined in Chapter 3. The method assumes that the numpy.ndarray

it is called with is a steady-state flux vector in the flux cone (i.e. it fulfills the

steady-state constraints and thermodynamic irreversibility constraints). For

EFMs computed by one of the provided methods this is guaranteed.

Some of the algorithms presented in Section 5.5 are implemented by the

package and can be applied to the representative set of EFMs. The func-

tions two_gens and check_conjecture are implementations of Algorithms 2

and 3 respectively. They are implemented in the algorithms module of the

fluxcones package.

It has to be noted that many of the calculations done by the fluxcones

package require floating point comparisons. This is not only the case

whenever the support of a vector is determined, but also when a face

F defined by a vector v is created as a new FluxCone object by calling

FluxCone.face_defined_by(v). This is due to the fact that a face is defined

by homogeneous linear inequalities that are fulfilled with equality. Numerical

inaccuracies can lead to false results if not handled with care and the tolerances

must be adjusted to match the respective problem.

6.2 EFM enumeration methods

In this section, we describe the implementation of three different methods

of the FluxCone class to enumerate a representative set E of the EFMs of a

metabolic networkN = (M,R, S,Rev). The methods are all written to return

a 2-dimensional numpy.ndarray (i.e., a matrix) such that each row of this

matrix is one of the EFMs in E (as opposed to efmtool, which returns a matrix

where the columns are the EFMs). Furthermore, each of the methods can be

called with an optional parameter only_reversible = True to enumerate a
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Method name Return

get_lin_dim() dimension of lin. space(C)

get_cone_dim() dimension of flux cone C

is_in(vector) True if vector ∈ C

is_efm(vector) True if vector is EFM in C

get_efms_efmtool() EFMs computed with efmtool

get_efms_cdd() EFMs computed with cdd

get_efms_milp() EFMs computed with MILP approach

degree(vector) degree of vector

irr_supp(vector) irreversible support of vector

irr_zeros(vector) irreversible zero entries of vector

rev_supp(vector) reversible support of vector

rev_zeros(vector) reversible zero entries of vector

make_rev(index) move reaction at index to Rev

make_irr(index) move reaction at index to Irr

get_redundants() list of redundant irreversibility constraints

make_irredundant() irredundant description of FluxCone object

blocked_irr_reactions() list of blocked irreversible reactions

blocked_rev_reactions() list of blocked reversible reactions

face_defined_by(vector) face of C defined by vector

Table 6.1: Methods of the FluxCone class and their output. C is the flux cone

defined by a stoichiometric matrix stoich and the binary vector rev that are

used as input for a FluxCone class object.
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representative set of reversible EFMs of N . The EFMs returned in this case

are all reversible and can often be computed for metabolic networks where a

representative set of all EFMs cannot.

6.2.1 efmtool

The method get_efms_efmtool() is using a Python wrapper for efmtool

that can be found at https://gitlab.com/csb.ethz/efmtool. This wrapper

allows us to call efmtool, which was originally implemented by Terzer (2009)

in Java, directly from Python. The options that efmtool is called with by the

fluxcones package were adjusted to suppress console output and normalize

the returned vectors to have a maximal absolute value of 1, for the entries of

the returned EFMs.

6.2.2 Direct cdd approach

get_efms_cdd() uses a Python wrapper for Komei Fukuda’s cddlib, which

is available at https://github.com/mcmtroffaes/pycddlib. When the

method is called, the fluxcones package splits each reversible reaction into

two irreversible reactions of opposite orientation and determines the extreme

rays of the resulting augmented cone with the double description method. The

extreme rays are then processed to return a representative set of the EFMs of

the original cone by removing cycles that are 2-cycles of the two oppositely

oriented irreversible reactions that replaced one reversible reaction. Although

efmtool is optimized for EFM calculation and uses the same algorithm, for

very small examples get_efms_cdd() outperforms get_efms_efmtool() due

to smaller initial overhead.
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6.2.3 MILP approach

The fluxcones package is also able to enumerate EFMs using the mixed-

integer linear programming approach described in (de Figueiredo et al., 2009)

by calling the method get_efms_milp(). The Python package Python-Mip

(https://www.python-mip.com/) is used to solve the MILPs.

Although the approach is outperformed by efmtool and cdd for medium-

sized networks, the function can be adjusted to consecutively enumerate short-

est EFMs for metabolic networks of any size and especially for genome-scale

networks that are too large for efmtool and the direct cdd approach.

6.3 Applications

The fluxcones package comes with the functions MILP_shortest_decomp,

check_conjecture and two_gens which implement algorithms applicable to

FluxCone objects.

MILP_shortest_decomp takes a target vector and a set of candidates as

input and returns the coefficients of a shortest decomposition of the target

vector into the candidate vectors, computed by solving a mixed-integer linear

program (cf. equation (4.2)).

In Chapter 4 we developed an approach to determine a face defined by a

given flux vector and the EFMs contained in it (cf. Figure 4.3). This approach

can be reproduced with the fluxcones package as follows.

Given a vector v as numpy.ndarray, F = FluxCone.face_defined_by(v)

instantiates a new FluxCone instance F which is the face of the original flux

cone defined by v. F.get_efms_efmtool() (or one of the other two provided

EFM enumeration methods) returns a matrix containing the EFMs in F as

rows and MILP_shortest_decomp(v,EFMs) can be called to determine the

coefficients of a shortest decomposition of v into the EFMs of F. This approach

was used to find faces defined by FBA solutions and shortest decompositions
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in Chapter 4.

check_conjecture is an implementation of Algorithm 3. It uses two_gens,

an implementation of Algorithm 2, because it is faster for very small (in the

sense of number of reactions and metabolites) models.

all_networks, an implementation of Algorithm 5 (cf. Chapter 5) that uses

two_gens and check_conjecture is also included in the fluxcones package.

The data in Table 5.1 was obtained using this function.
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Chapter 7

Conclusion

This thesis studies the geometric properties of flux cones of metabolic net-

works and elementary flux modes. The main contribution of Chapter 3 is the

introduction of the degree of a flux vector as the dimension of the face it is

contained in. The degree gives structure to the set of EFMs and allows us to

explore their distribution among the face lattice of the flux cone. We illus-

trate this structure by determining the degree distribution of EFMs in the flux

cone of three well-known, medium-sized metabolic networks and observe that

EFMs tend to be contained in lower-dimensional faces. We formally prove up-

per bounds for the degree of EFMs and thereby show that EFMs occur in the

relative interior of the flux cone only in very specific cases. The distribution

of EFMs among lower-dimensional faces of the flux cone raises the question

of how these observations can be exploited computationally in EFM enumer-

ation algorithms. Furthermore, in Chapter 3, we generalize the result of the

1-1 correspondence between minimal metabolic behaviors and minimal proper

faces to metabolic behaviors and higher-dimensional faces of the flux cone.

This generalization allows us to define faces of the flux cone by sets of active

irreversible reactions in a flux vector. The chapter concludes by establishing

a relationship between combinatorial properties of the flux cone and the car-

dinality of minimal metabolic behaviors. Further research should address the

biological implications of the degree of an EFM or flux vectors in general.

In Chapter 4, we study decompositions of flux vectors into EFMs. Based

on the relationship between faces of the flux cone and metabolic behaviors

established in Chapter 3, we develop a method to determine EFMs in the face

of the flux cone defined by a given flux vector and show that a decomposition

of this flux vector only uses EFMs in this face. Enumerating only EFMs in

a given face of the flux cone significantly reduces the search space and the

number of EFMs. We illustrate the scalability of our approach by determining
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EFMs in faces defined by solutions of FBA problems in a large selection of

genome-scale metabolic networks. By determining shortest decompositions of

these optimizing flux vectors, we observe that the participating EFMs have

relatively high degrees. Thus, they can be further decomposed into EFMs

of lower degrees. This observation leads us to the definition of low-degree

decompositions, where only EFMs that cannot be further decomposed into

EFMs of lower degrees are considered. We expect interesting results from

further research into the biological relevance of low-degree decompositions,

especially with respect to additional thermodynamic constraints (cf. Gerstl

et al., 2016).

The decomposability of higher-degree EFMs observed in Chapter 4 is the

main topic of Chapter 5. An empirical observation that the length of a short-

est decomposition of an EFM into other EFMs never exceeds 2 leads to the

conjecture that this is always the case. We discuss several approaches to prove

or disprove the conjecture. After we formally state the conjecture and define

what a counterexample to the conjecture is, we prove that a counterexample, if

it exists, has to be a metabolic network with at least two reversible reactions.

Next, we explore the relationship between matroids and metabolic networks,

where all reactions are reversible. In this context, we prove a weaker version

of the conjecture, namely that the support of every EFM in a metabolic net-

work where all reactions are reversible is contained in the support of a positive

combination of two other EFMs. From these observations we derive novel

algorithms to generate new EFMs from a starting set by positively combin-

ing them pairwise. This algorithm can be viewed as a modification of the

circuit enumeration method (cf. Khachiyan et al., 2005). We also describe

an inverse algorithm to find length-2 decompositions of EFMs without solv-

ing mixed-integer linear programs. The chapter concludes with a description

of algorithms to generate all metabolic networks of a given size and to test

whether the conjecture holds for them. These allow us to verify the conjecture

for specific sets of small networks (computationally). More research is required
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to determine whether the conjecture holds for all metabolic networks. We also

suggest a study comparing the efficiency of our EFM generation algorithm and

state-of-the-art EFM enumeration methods.

In Chapter 6, we briefly introduce a Python package that was developed

over the course of this thesis. The software is open source and available on

GitHub. We describe the structure of the software, available functions, pro-

vided EFM enumeration methods, and explain how the software can be applied

to implement algorithms described in Chapters 4 and 5.

From a computer science perspective, improving our algorithms’ efficiency

is an interesting task. For future work, extensions and more efficient imple-

mentations are planned for the fluxcones package.

Finally, we plan to investigate our conjecture from Chapter 5 further in the

context of oriented matroids and metabolic networks containing irreversible

reactions.
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Deutsche Zusammenfassung

Systembiologie befindet sich an der Schnittstelle von Biologie, Informatik und

Mathematik und basiert auf der mathematischen Modellierung biologischer

Systeme. Ziel ist es, das Verhalten biologischer Systeme vorherzusagen, um

zeit- und kostenintensive Forschungsarbeiten im Labor effizienter zu gestalten.

In dieser Arbeit konzentrieren wir uns auf die Beschreibung und das

Verständnis von metabolischen Netzwerken, welche die metabolischen Prozesse

in einer Zelle modellieren.

Die stöchiometrischen und thermodynamischen Bedingungen, die in einem

metabolischen Netzwerk im stationären Zustand gelten, definieren den sta-

tionären Flusskegel. Ein wichtiges Konzept zur Analyse dieser Flusskegel

auf mathematisch und biologisch sinnvolle Weise sind elementare Flussmodi,

die als minimale funktionelle Einheiten von metabolischen Netzwerken betra-

chtet werden können. Sie entsprechen Vektoren mit inklusionsweise minimaler

Trägermenge im Flusskegel.

Wir konzentrieren uns auf die geometrischen Aspekte von Flusskegeln

metabolischer Netzwerke und elementarer Flussmodi. Die Anzahl der ele-

mentaren Flussmodi kann schon für mittelgroße metabolische Netzwerke sehr

groß sein. Wir untersuchen die Struktur der Seiten und die Verteilung der

elementaren Flussmodi auf die Seiten des Flusskegels und beobachten, dass

diese hauptsächlich in Seiten relativ niedriger Dimensionen enthalten sind. Mit

dieser Beobachtung entwickeln wir eine Methode zur Aufzählung von Teilmen-

gen elementarer Flussmodi, nämlich denen, die in einer bestimmten Seite des

Flusskegels enthalten sind und wenden dies auf Zerlegungen von Flussvektoren

an.

Dabei haben wir beobachtet, dass zerlegbare elementare Flussmodi immer

eine positive Summe von genau 2 anderen waren. Darauf basierend kommen

wir zu der Vermutung, dass dies immer der Fall ist. Wir disktutieren Ansätze

diese Vermutung zu beweisen und sie zu widerlegen.

Darüber hinaus stellen wir ein Python software Paket vor, dass die

Daten, die wir verwendet haben um unsere theoretischen Ergebnisse zu ve-

ranschaulichen, reproduzieren kann.
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