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Societal Impact Statement

Management practices, for example, in an agricultural context, are often tested in

isolation or in pairwise interaction, but rarely using a higher number of jointly applied

practices. In a proof-of-concept study, we test the effects of combining up to five

management practices. Effects seen on soil and plant performance suggest that it

may be worth to systematically and broadly examine the effects of higher order

management combinations.
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1 | INTRODUCTION

With the growth of global population and climate change, both

challenges to food security, there is an urgent need to prioritize the

investigation of organic amendments options. Therefore, increasing

sustainability of agriculture is of great importance, with the goal of

producing high-quality food while minimizing resource consumption,

ensuring environmental safety and crop yield (Reganold et al., 1990).

Within the context of contributing to sustainable agriculture, numer-

ous studies have investigated the impact of different types of carbon

amendments in an attempt to increase soil carbon stock and soil fertil-

ity and potentially to boost crop yield. Prolonged use of conventional

agricultural practices that heavily relies on synthetic fertilizers and

intensive tillage can introduce soil acidification and nutrient imbal-

ance, disrupt the soil microbial community and eventually lead to soil

degradation. In contrast to many conventional agricultural practices,

organic amendments introduce organic matter into the soil that can

contribute to soil organic carbon (SOC), improving soil structure,

water retention and nutrient availability. Importantly, studies have

typically only focused on single amendment applications such as

biochar, compost, wheat straw, cow dung or wool (Abdallah

et al., 2019; Bonilla et al., 2012; Lu et al., 2020; Sun et al., 2017).

Among the amendments, compost and biochar have been widely

researched due to their positive impact on soil fertility, which refers

to the soil's ability to support plant growth by providing essential

nutrients, modifying soil structure and improving water retention and

their local availability (Blackwell et al., 2012). Biochar is the product of

pyrolysis of organic material, such as woody materials or crop resi-

dues, under oxygen limited environments. Biochar has large carbon

sequestration potential in the long-term, increasing soil fertility and

crop yield, and mitigating impacts from global change factors, such as

drought and salinity (Akhtar et al., 2014; Dugdug et al., 2018;

Lehmann & Joseph, 2015; Liang et al., 2014; Semida et al., 2019).

Compost is a rather general term that refers to processed organic

waste materials, such as wood chips, manure or a mixture. Straw

amendments can increase nitrogen retention capacity in agricultural

fields (Azam et al., 1991; Reichel et al., 2018). Cow dung and sheep

wool amendments can increase phosphate solubilization, improve soil

fertility and, consequently, increase crop yield (Gupta et al., 2016;

Swain et al., 2012). Wool residue addition not only provides benefits
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in terms of waste recycling but also enhances aggregate stability,

increases soil porosity and promotes plant growth (Abdallah

et al., 2019; Ordiales et al., 2016; Palla et al., 2022).

While studying the effects of individual amendments is important

for generating mechanistic understanding, it may also be beneficial to

consider the joint application of multiple amendments. The reason is

that the joint application of different amendments could lead to addi-

tive effects by combining individual effects and, potentially, by caus-

ing unexpected synergistic effects. Such mixed amendment effects

have been studied for some pairs of the above-mentioned amend-

ments. For example, combined application of biochar and compost

can result in an increase of plant-available nutrients and improve soil

water status in a short time (Liu et al., 2012). The joint application of

biochar and other organic or inorganic fertilizers has been demon-

strated to produce a synergistic effect, exceeding the performance of

individual fertilizers alone, thereby stimulating crop yield (Bai

et al., 2022). It has been hypothesized that carbon diversity may

increase carbon persistence in the soil (Lehmann et al., 2020). How-

ever, mixed application of multiple amendments that include three or

more amendments has not been studied yet.

With the goal of revealing joint effects of a large number of treat-

ments, Rillig et al. (2019) developed an experimental design that used

a random selection approach from a pool of factors, creating a gradi-

ent in the number of factors for which to examine effects. Based on

the observation that the joint effect of two carbon amendments had

beneficial effects on soil properties and plant growth, we conducted

an experiment using an analogous ‘random sampling’ approach with

the aim of examining effects of an increasing number of carbon

amendments, with up to five carbon amendments used. However,

increasing the number of amendments not only introduces a greater

complexity but also multi-nutrient supplementation (with the risk of

over-supplying nutrients beyond those recommended). We conducted

the experiment primarily as a case study to explore effects of amend-

ment interactions, not explicitly considering economic factors or regu-

latory frameworks. Our results suggest that farmers could supplement

one amendment with multiple others, decreasing their reliance on any

one carbon amendment.

Our hypothesis was that increasing carbon amendment diversity

will introduce nutrient synergy and, subsequently, increase the activ-

ity of soil microbes and promote plant growth well beyond the effects

of single amendments, and with the highest amendment number

(in our case, five), delivering the greatest benefits.

2 | MATERIALS AND METHODS

2.1 | Soil preparation and seed germination

The tested soil was sandy loamy soil, collected in May 2023 from a

conventional agricultural research field in the Brandenburg area

(53.36�N, 13.80�E, Leibniz-Zentrum für Agrarlandschaftsforschung,

Dedelow). Soil properties are reported in Notes S1. The soil was air-

dried after collection from the site, homogenized and sieved (2 mm).

We chose red clover (Trifolium pratense L.), a common plant in

seed mixes for grasslands in Germany, as the test plant. To prepare

the rhizobium coating, rhizobium inoculants (Legume fix, Legume

Technology) were mixed homogeneously with sterilized sand and

placed in three sterilized containers. The seeds were disinfected

and germinated in the sand-rhizobium inoculants mixture. Afterwards,

all containers were placed in the climate chamber at 20�C for the

seeds to germinate.

2.2 | Experimental design

Five carbon amendments were included as single factors (N = 5 each

factor) in this experiment: biochar, compost, wheat straw, cow dung

and sheep wool. The application dosage and product-related informa-

tion are listed in Table 1. We further clarified the rationale of the

selection of the five amendments in Notes S2.

All management practice treatments were added to plants with

rhizobia. The control group (N = 10) we used to compare the effect

sizes of different treatments was inoculated with rhizobia. To disen-

tangle the mediation effect of rhizobia, we included a blank control

(N = 10) for plants without rhizobium coating. However, this is

beyond our research scope and is not discussed in this study.

Single amendments were tested with five replicates each, while

treatments at the two factor level were randomly selected from the

pool of five factors (without replacement for each experimental unit)

with 10 replicates. For the five factor level, we tested eight replicates.

The experiment thus consisted of 63 experimental units in total

(Table S1). The factor combinations received the same level as the sin-

gled factors, that is, we did not adjust for the overall amount of car-

bon or material added. Among the 63 experimental units, one cow

dung treatment, one sheep wool treatment and one five-factor treat-

ment failed due to plant death during the incubation process.

TABLE 1 Tested organic amendments and concentrations.

Management practice Product Concentration (w/w) Reference

Compost Botanic garden Berlin- Dahlem 1.0% (Liu et al., 2012)

Biochar Carbovert, Eibenstock, Germany 0.5% (Rajkovich et al., 2012);

(Major, 2010)

Wheat straw MultiFit, item no.: 1,008,159, Krefeld, Germany 0.2% (Sun et al., 2017)

Cow dung Bionaturplus, Germany 0.5% (Tagele et al., 2023)

Wool Bionaturplus, Germany 0.5% (Palla et al., 2022)
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The experiment was set up in 2 days. On the first day, 155 g air-

dried soil was mixed manually with amendments in a sterilized box for

5 min and gently transferred to white cone-trainers (21 cm depth,

3.81 cm diameter at the top opening, 164 mL, SC10R, Ray Leach

Cone-tainers, Stuewe and Sons Inc.). Afterwards, pots were watered

from the top to achieve 60% water holding capacity. Two seedlings

were transplanted on the second day to each pot and incubated in a

climate chamber with a day/night temperature of 18/22�C, light/dark

cycle of 6 a.m./9 p.m. and 50% relative humidity. After 1 week, pots

were thinned to one seedling, and this day was counted as the first

day of the experiment. To maintain 60% water holding capacity, we

watered every 2 days during the first 2 weeks and on a daily basis

from the third week to avoid water stress due to increased water

demands of the test plants.

The experiment lasted 48 days. The harvest lasted 2 days, during

which the above ground plant biomass was collected in 1 day, dried at

60�C and weighed afterwards. On the second day of harvest, below-

ground biomass was collected, washed and dried at 60�C; 5 g fresh

soil was collected for enzyme activity measurement; and 20 g

fresh soil was collected for soil respiration measurement in 50 mL mini

bioreactors (Product Nr: 431720, Corning®, USA), which were stored

for 3–4 days at 4�C before measurements. The remaining soil was air-

dried for other measurements-water-stable aggregates and soil pH.

2.3 | Response variables

We tested 10 response variables to detect plant growth, soil functions

and soil structure changes: above ground biomass, belowground bio-

mass, rhizobium nodules counting, N-acetyl-glucosaminidase activity,

cellulase activity, β-glucosidase activity, phosphatase activity, soil res-

piration, water-stable aggregates and pH.

To investigate plant growth, we measured above ground biomass,

belowground biomass and rhizobium nodules. For the above ground

biomass, we cut the plants at the bottom of the stem during harvest

and dried them at 60�C. For the belowground biomass, we collected

the visible main roots and collected the fine roots from the soil by

hand (standardized time of 3 min). Roots were gently washed, and

then, we counted the number of nodules on the fresh roots, consider-

ing only red mature nodules. Then, the roots were dried at 60�C. We

weighed the dry mass using an analytical balance and recorded them

as the above ground and belowground biomass.

We measured four enzyme activities and soil respiration to repre-

sent soil functions: β-glucosidase (carbon cycling), β-D-cellobiosidase

(carbon cycling), β-N-acetylglucosaminidase (nitrogen cycling) and

phosphatase (phosphorus cycling). To indicate soil structure, we

measured water-stable aggregates for aggregates >250 μm and soil

pH. The water-stable aggregates were measured with a wet-sieving

machine (Eijkelkamp, Netherlands) following a well-established

protocol (Kemper & Rosenau, 1986). Soil pH was measured with a pH

metre (Hanna Instrument, Smithfield, USA) by mixing 5 g dry soil in

25 mL distilled water. We included the detailed measurements

method in Notes S3.

2.4 | Statistical analysis

The statistical analysis in our experiment was conducted in R 4.2.1

(R Core Team, 2022). ‘Tidyverse’ (Wickham et al., 2019), ‘dabestr’
(Ho et al., 2019), ‘Rmisc’ (Hope, 2022), ‘DImodels’ (Moral et al., 2023)

packages were used for data analysis and ‘pheatmap’ (Kolde, 2019)
and ‘ggplot2’ (Wickham, 2016) were used to plot the figures.

The calculated effect sizes between treatments and control were

bootstrapped with 100 permutations. We conducted significance tests

with ANOVA and adjusted p-values with Tukey post hoc method. We

listed all p-values for each response variable in Tables S2–S13.

We adapted the diversity interaction model using the ‘DImo-

dels’ package, from which two models—factor identity model and

pairwise interaction model—were included (Kirwan et al., 2009). In

our experiment, M1 refers to the identity model, and it assumes

amendments do not interact with each other. M2 is the pairwise

interaction model, which considers both factor identity and all pair-

wise interactions.

We used the two models to predict each response variable at

two-factor level and five-factor level and then bootstrapped 100 times

to calculate the effect size. We compared the bootstrapped predicted

effect size with the actual measured data to discover the model

predictability.

3 | RESULTS

3.1 | Plant biomass

We measured total above ground and belowground biomass to

capture plant growth responses to the treatments (Figure 1). For

single factors, only straw slightly positively promoted plant and root

growth. All other single factors had negative or neutral effect sizes

when applied alone. However, when increasing the amendment level

to five amendments, the effect size of above ground and belowground

biomass were increased to 211.59 mg (95%-CI: 108.52 to 314.66)

and 64.13 mg (95%-CI: 29.57 to 98.68). At the two-factor level, the

factor identity model provided better predictability compared with

the factor interaction model, while the factor interaction model per-

formed better at the five-factor level.

3.2 | Soil functions and structure

In our experiment, we tested soil respiration, four types of soil enzyme

activities to indicate soil functions (Figure 2a (1) to a (4)). β-glucosidase

activity and cellulase activity did not show any significant impact, and

the variation in-between treatments was limited. In contrast to con-

trol, phosphatase activity and N-acetyl-glucosaminidase activity had

positive effect sizes for most of the treatments, where the effect sizes

were significantly increased at the five factor level (p < 0.001 and

p = 0.0134, respectively). At the single amendment level, wool had

the highest effect size for phosphatase activity. From the perspective
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of model prediction, in contrast to the identity model, the interaction

model provided closer predictions to actual data for cellulase activity

and N-acetyl-glucosaminidase activity for both two and five amend-

ment levels. On the other hand, the effect size of soil respiration at

the two-factor level was close to the effect size of wool and straw,

which were the highest effect sizes among the single amendments.

Soil respiration at the five factor level tended to be highest but did not

significantly differ from other treatments. For the rhizobium nodule

count, treatments at five-factor level caused a negative effect size, in

which no model can provide close predictability.

Water-stable soil aggregates, and pH were tested in this experi-

ment (Figure 3). No significant results were found for any of the

water-stable aggregate measurements, but the mean effect size

tended to be lower for five amendments than in the other treatments.

Among all treatments across various factor levels, wool showed the

highest tendency towards enhancement of aggregate stability, while

F IGURE 1 Above ground biomass and belowground biomass of single amendments and amendments at two- and five-factor level. Vertical
lines refer to the 95% confidence intervals, and the dots in the middle indicate the mean values. In (a) and (c), the dots are individual replicates
within each treatment, the dashed line is the mean of the control group. In (b) and (d), the lines indicate the bootstrapped effect size. The black
colour is the raw data effect size, red colour refers to the effect size using the factor identity model to predict, and the orange colour refers to the
effect size using the pairwise interaction model to predict.

F IGURE 2 Soil functions response variables of single amendments and amendments at two- and five-factor level. Vertical lines refer to the
95% confidence intervals, and the dots in the middle indicate the mean values. In (a) (1) to (a) (6), the dots are individual replicates within each
treatment, the dashed line is the mean of the control group. In (b) (1) to b (6), the lines indicate the bootstrapped effect size (permutation = 100).
The black colour is the raw data effect size, red colour refers to the effect size using the factor identity model to predict, and the orange colour
refers to the effect size using the pairwise interaction model to predict.
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biochar tended to decrease aggregate stability the most. In contrast

with control, all treatments that contain multiple amendments led to a

more alkaline soil pH. Among single amendment treatments, only

straw and wool led to a more acidic soil. On the other hand, the iden-

tity model provided good predictability for aggregate stability for the

two-factor level but not for the five-factor level. However, the model

predictability is not in alignment with the pH—the identity model

offered good predictability for the five-factor, but the pairwise inter-

action model gave a closer prediction for the two-factor level.

4 | DISCUSSION

We conducted a climate chamber experiment to test for amendment

diversity effects. Our experiment revealed a substantial plant growth

promotion in the five-amendment combination, while soil parameters

were not responding in a similar manner.

4.1 | Carbon amendments effect

For above- and belowground biomass, all single factors had negative

or slightly positive effects, while both above- and belowground bio-

mass significantly increased at both the two- and five-factor levels. A

disproportionate increase of plant biomass was detected at five-factor

level, which clearly indicated that the amendment mixture had a

strong beneficial effect on plant growth. To explore the mechanism

driving this trend, we examined differences in both soil function and

soil structure between treatments. All treatments modified soil pH

with the exception of wool, while the increasing factor number did

not have an effect. It thus appears that pH is likely not a factor

explaining the plant growth response with a large number of factors

applied. An exception is wool as a single amendment, a fibrous mate-

rial primarily made of keratin, and it increased the phosphatase activ-

ity and N-cycling microbial activity but introduced a negative effect to

plant biomass. A potential reason may be due to the nitrogen immobi-

lization. Microbes use available nitrogen from the soil to balance the

high carbon content in the wool decomposition process, causing nutri-

ent competition between soil microbes and plants. The pH response

cannot produce a direct explanation on the driving mechanisms of the

plant biomass increase, but the overall modification of pH potentially

contributed to the explanation of our hypothesis—carbon diversity

promotes plant growth by boosting the microbial activities

(Robson, 2012). A meta-analysis showed that organic amendment

alone could accelerate the mineralization process of phosphorus pri-

marily through optimizing soil physicochemical properties and stimu-

lating microbial activity (Luo et al., 2019). The supplementation of

organic amendments served as an energy source for soil microbes,

such as for microbes harbouring phosphatase-encoding genes

(e.g., phoD and phoC), and led to an increase of extracellular phospha-

tase activity. Moreover, the organic amendments modify soil pH

towards neutrality, which is optimal for phosphatase activity. In our

study, five amendments introduced both nutrient accumulation and

amendments interaction. We considered the interactions in-between

amendments that may have produced a synergistic effect, meaning,

the diversity of the amendments may have contributed to the increase

of phosphatase enzyme activity and N-cycling enzyme activity that

was introduced by factor accumulation (Lehmann et al., 2011, 2020).

However, in regards to the carbon-related enzyme-ß-glucosidase

activity and cellulase activity, most of the effects were negative and

not significant. This might be explained by sufficient available carbon

in the soil, that is, microbes were not carbon-limited. Therefore, the

increase of phosphatase and N-cycling enzymatic activity under suffi-

cient available carbon, with the increase of soil pH towards neutrality,

F IGURE 3 Soil structure response variables of single amendments and amendments at two- and five-factor level. Vertical lines refer to the
95% confidence intervals, and the dots in the middle indicate the mean values. In (a) and (c), the dots are individual replicates within each
treatment, and the dashed line is the mean of the control group. In (b) and (d), the lines indicate the bootstrapped effect size (permutation = 100).
The black colour is the raw data effect size, red colour refers to the effect size using the factor identity model to predict, and the orange colour
refers to the effect size using the pairwise interaction model to predict.
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may have promoted phosphorus and nitrogen mineralization, which

resulted in an increase of plant-available phosphorus and nitrogen and

thus substantially promoted plant growth (Coleman et al., 2018).

4.2 | Diversity interaction model performance

In both above- and belowground biomass, the prediction of M1 indi-

cated that the carbon amendment identity effect was strong at the

two-factor level. In comparison to the actual data, the higher predic-

tion values of M2 at the two-factor level implied that the pairwise

joint effect overestimated the effects. In contrast, the factor identity

model provided a closer prediction to the actual data. However, at the

five-factor level, the identity model M1 cannot provide any prediction,

and the interactive model M2 brings the prediction closer to the

actual data. M2 considered both factor identity and factor interac-

tions, but the mean value of the prediction at five-factor level is still

below the mean value of the actual data; this implied that a more

complex synergistic effect on plant biomass was introduced when all

five amendments were added.

In regards to soil functions, we noted that M2 provided better

predictions than M1 for both two-factor and five-factor levels in soil

respiration. This implies that the soil microbial community may

strongly be influenced by the pairwise factor interactions, which

may contribute to the explanation of the synergistic effects of plant

biomass under multiple amendments (Kirwan et al., 2009).

5 | CONCLUSIONS

We conclude that more diverse carbon amendments may benefit

plant growth and potentially, in the long-term, improve soil health.

Based on the observations from this exploratory study, we suggest a

shift in carbon amendment research towards also exploring effects of

more complex soil amendments, such as the combination of multiple

amendments, in addition to the single-treatment or pairwise interac-

tion effects (Rillig et al., 2024). As a next step, it will be crucial to

investigate the potential mechanisms driving such complex interac-

tions and to understand under what conditions such effects can occur.

Additionally, the potential of such a mixture to mitigate the negative

effects of multiple global change factors on different crops should be

tested further (Peláez-Vico et al., 2024; Sinha et al., 2024).
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