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Abstract
We show that a competitive equilibrium always exists in combinatorial auctions with
anonymous graphical valuations and pricing, using discrete geometry. This is an intu-
itive and easy-to-construct class of valuations that can model both complementarity
and substitutes, and to our knowledge, it is the first class besides gross substitutes
that have guaranteed competitive equilibrium. We prove through counter-examples
that our result is tight, and we give explicit algorithms for constructing competitive
pricing vectors. We also give extensions to multi-unit combinatorial auctions (also
known as product-mix auctions). Combined with theorems on graphical valuations
and pricing equilibrium of Candogan, Ozdagar and Parrilo, our results indicate that
quadratic pricing is a highly practical method to run combinatorial auctions.

Keywords Competitive equilibrium · Graphical pricing · Lattice polytopes ·
Combinatorial auctions · Regular subdivisions · Correlation polytope

Mathematics Subject Classification 91B26 · 14T90 · 52B20

B Marie-Charlotte Brandenburg
marie.brandenburg@mis.mpg.de

Christian Haase
haase@math.fu-berlin.de

Ngoc Mai Tran
ntran@math.utexas.edu

1 Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany

2 Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany

3 The University of Texas at Austin, Speedway 2515, Austin, TX 78712, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s44007-022-00038-7&domain=pdf
http://orcid.org/0000-0002-5721-2325


2 La Matematica (2023) 2:1–30

1 Introduction

In a multi-unit combinatorial auction, of which product-mix auction is a special case
[1, 2], multiple agents can make simultaneous bids on multiple subsets of indivisible
goods of distinct types. The running example in this paper is the Cutlery Auction
of three items, a fork, a knife and a spoon, among three agents, Fruit, Spaghetti and
Steak (cf. Examples 1, 2 and 5). Each agent is willing to pay at most 1 dollar for their
favourite combination and no other: for Fruit, it is (knife, spoon), for Spaghetti, it is
(fork, spoon) and for Steak, it is (fork, knife).

In the auctioneer’s disposal, there is the ability to design the auction. While this is a
vast topic [3, 4], for this paper, we follow the setup of algorithmic auction design [5, 6],
namely that the auctioneer can restrict the class of valuations that the agents can submit
as well as the class of price functions that can be announced. In mathematical terms,
an auction is a tuple of functions: there are valuations of the bidders, a pricing function
and an allocation function. The problem faced by the auctioneer is the following:Given
a bundle of items (i.e., a set of types of items and specified quantities for each type)
and an equilibrium concept E , find a valuation class V and a pricing class P such that
for any auction with valuations in V , E is guaranteed to exist for some allocation μ

and some pricing function p ∈ P .
An ideal market would allocate the resources efficiently (maximize welfare) and

set prices to achieve a competitive equilibrium where no participant wants to deviate.
Existence of such equilibria is a function of the class of valuations V , the pricing rules
P and the definition of equilibrium.

In this paper, we discuss two commonly studied notions of equilibrium: competitive
equilibrium (CE) and pricing equilibrium (PE). The formal definitions are given in
Sect. 2.1. The difference lies in the involvement of the seller. For CE, the seller simply
wants all other participants to be happy with their allocations at the announced price.
Such allocations are called competitive allocations. For PE, the seller plays the same
role as all the other agents, namely, they personally want to maximize their profit
without caring for others. In this case, PE exists if the allocation and prices satisfy
both the sellers’ and all the other agents’ agenda.

The simplest pricing scheme is linear pricing, where each type of item is assigned
a price pi , and the price of a set S of items is

∑
i∈S pi . For linear pricing, both notions

coincide and are known as the Walrasian equilibrium. This is a classical concept in
economics, see [7] for a recent survey. In many combinatorial auctions, however, a
Walrasian equilibrium may not exist. The Unimodularity Theorem [2, 8] gives a guar-
antee of Walrasian equilibrium for auctions whose valuation class V have unimodular
edges. We state the Unimodularity Theorem in the language of regular subdivisions
as pioneered by [2].

Theorem 1 (TheUnimodularity Theorem)Walrasian equilibrium (that is, competitive
equilibrium under anonymous linear pricing) is guaranteed at all eligible bundles for
all auctions with valuations in V if and only if the set of primitive edges in the regular
subdivision of each valuation v ∈ V is a unimodular set.

When demand edges are unimodular, the Unimodularity Theorem guarantees a
Walrasian equilibrium in the strongest possible sense. However, the unimodularity of
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the demand edges is a strong condition that exclude many intuitive valuation profiles.
For example, in combinatorial auctions with two items, the theorem would guarantee
Walrasian equilibrium if and only if agents’ valuations are either all submodular, or all
supermodular. The Cutlery auction does not have unimodular demand edges. Themost
well-studied large class of valuationswith unimodular edges are gross substitutes (GS).
Unfortunately, GS valuations have several well-documented undesirable properties
that hinder their applications [5, 6, 9]. First, the GS condition imposes exponentially
many linear inequalities on the valuation v. It takes O(2m − poly(m)) operations to
check if an arbitrary function v is gross substitutes. Second, the GS valuations cannot
be supermodular in any pair of items.

How can one go beyond the Unimodularity Theorem? One option is to allow for
anonymous (each agent is offered the same price for the same package of items),
but non-linear pricing. The hope is that by having a richer pricing profile P , one
can achieve equilibrium with a simpler, more practical valuation profile V . Our main
theorem (cf. Theorem 2) precisely establishes such a result for the class of graphi-
cal valuations with anonymous graphical pricing under the concept of competitive
equilibrium.

Definition 1 Let m be the number of distinct types of items. A valuation is an assign-
ment val : 2[m] → R. It is called graphical if there exists a simple, undirected graph
G with vertices V (G) = [m] and edges E(G), and a vector w ∈ R

V (G)�E(G) such
that

val(S) =
∑

i∈S
wi +

∑

i j∈E(G)
i, j∈S

wi j .

for every S ⊆ [m], where S represents a set of items of distinct types. Here, V (G) �
E(G) denotes the disjoint union of the sets V (G) and E(G). The graph G is called
the underlying value graph of the valuation. Similarly, a pricing function is called
graphical if there exists a pricing vector p such that the price of a set S of items of
distinct types is given by

∑
i∈S pi +∑i j∈E(G)

i, j∈S
pi j .

A graphical valuation val can be interpreted as follows. If wi j > 0 for some edge
i j ∈ E(G), then the agent views items of types i and j as complementary, that is,
they are rather interested in buying both items together than only a single one of them.
The higher the value of wi j , the higher is the agent’s preference of buying both i and
j at the same time. Similarly, if wi j < 0, then items of types i and j are viewed
as substitutable, that is, the agent asks for a discount when they have items i and j
together. An analogous interpretation holds for a graphical pricing function. In this
case, when the pair of items i and j is bought together, they require a premium of pi j
if pi j > 0. If pi j < 0, then this is a discount.

Theorem 2 If V is the set of graphical valuations with the complete graph Km as the
underlying graph, then a competitive equilibrium with anonymous graphical pricing
is guaranteed to exist for any quantities a∗ ∈ {0, 1}m for any auction with valuations
in V .
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Our theorem is tight, in that one cannot replace CE in the statement with PE, or
replace graphical pricing with linear pricing. In particular, we stress that because our
pricing function is non-linear, our result is not a statement about Walrasian equilibria
and is, thus, not related to the setup of [10–13]. The Cutlery Auction is an instance
of an auction with graphical valuations on the complete graph that does not have a
Walrasian equilibriumnor a pricing equilibriumwith graphical pricing, but it does have
a CE with graphical pricing (cf. Example 2). In other words, for graphical valuations
on the complete graph, graphical pricing is truly necessary to achieve competitive
equilibrium, while a pricing equilibrium might still be impossible.

We present two generalizations of this statement in Sect. 3. In Theorem 8, we allow
the agents’ graphs to be complete subgraphs KS where S � [m]. Theorem 7 allows
the auctioneer to sell more than one item per type.

Our proof is constructive, and not only so, we give two different constructions
of pricing functions that support the competitive equilibrium. This yields a practical
algorithm for computing a quadratic CE price (cf. Algorithm 1). Theorem 2 and
the algorithm, thus, make a strong case for implementing graphical valuations for
combinatorial auctions.

We stress that Theorem 2 is not obtained directly from the Unimodularity Theorem.
There are three different proofs of the Unimodularity Theorem, whose key ideas
are: the commutativity of Minkowski sum and convex hull operation for generalized
permutohedra [8], the unimodularity of demand edges [2] and the total unimodularity
of a certain integer program [1]. In contrast, our proof relies on the geometry of the
correlation polytope, which does not have a unimodular edge set and does not enjoy
the integer decomposition property of generalized permutohedra.

Paper Organization Our paper is organized as follows. In Sects. 2.1 and 2.2 we
collect necessary definitions from multi-unit combinatorial auctions and discrete con-
vex geometry. We formulate the problems in Sect. 2.3 using the language of regular
subdivisions and integer polytopes. The main results are presented and discussed in
Sect. 3 and proved in Sect. 4.

Notation Throughout this paper, except for examples, we fix an integer m and
denote [m] = {1, . . . ,m}. Let G be a graph on [m] vertices. For a subgraph H ⊆ G,
let V (H) ⊆ [m] denote its vertex set and E(H) ⊆ ([m]

2

)
its edge set. Let d := m +

|E(G)|. The characteristic vector of H is χH ∈ {0, 1}d , where the first m coordinates
((χH )i , i ∈ [m]) are indicators for the vertices of H , while the next |E(G)| coordinates
((χH )i j , i j ∈ E(G)) are indicators for the edges of H . In general, a vector a ∈ R

d

inherits the same indexing system, that is, the first m coordinates are indexed by
i ∈ [m], while the next |E(G)| coordinates are indexed by i j ∈ E(G).

2 Discrete Convex Geometry and Economic Equilibria

The product-mix auction with linear pricing forms a fundamental connection between
discrete convex geometry and economic equilibria. We recommend [2] as an intro-
duction for economists and [1] for geometers. In this section, we extend this bridge to
the case of combinatorial auctions with non-linear pricings.
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2.1 The Economic Setup

Consider an auction with m types of indivisible goods on sale to n agents, where
a∗
i ∈ N is the number of goods of type i ∈ [m]. Throughout this paper, we assume
that each agent wants to buy at most one item of each type, even though the auctioneer
might sell more than one item of a this type to the group of agents. The vector a∗ ∈ N

m

can be thought of as a vector which keeps track of the quantities which are for sale in
the auction. We note that, in contrast to notational conventions in optimization, where
a∗ would typically denote an optimal solution, in our context, it is merely the number
of goods of each type which are given as input of the auction.

A graphical pricing function p : 2[m] → R specifies the price to be paid for each
bundle. Each agent b ∈ [n] has a graphical valuation function valb : 2[m] → R, where
valb(S) ∈ R measures how much the agent values the bundle S.

Following [6], we model the relations between the goods via a graph G on m ver-
tices. Each vertex represents a type of goods, while edges between vertices model the
existence of a relationship between types, such as complementarity (supermodularity)
and substitutability (submodularity). Given a subset of items S ⊆ [m], we construct a
vector aS ∈ {0, 1}[m]�E(G), where the firstm coordinates are indexed by the vertices of
G and the following coordinates are indexed by the edges of G. Explicitly, we define
aS by

aS,i =
{
1 if i ∈ S

0 otherwise
, aS,i j =

{
1 if i, j ∈ S and i j ∈ E(G)

0 otherwise
.

Thus, any such vector aS can be seen as an extended incidence vector of the induced
subgraph of G with vertex set S.

We can then rewrite the graphical valuation from Definition 1 as val : {aS | S ⊆
[m]} → R, val(a) = 〈w, a 〉 and a graphical price function as 〈 p, a 〉.
Definition 2 The polytope of the graph G is

P(G) = conv
({

aS ∈ {0, 1}[m]�E(G)
∣
∣ S ⊆ [m]

})
,

i.e. the convexhull of characteristic vectors (or incidence vectors) of induced subgraphs
of G. Let π = πG denote the coordinate projection

π : nP(G) ∩ Z
[m]�E(G) → Z

[m]

that forgets the coordinates which correspond to edges in G. Here, n denotes the
number of agents in the auction.

Let a∗ ∈ N
m be the vector of quantities for sale, and aS1 , . . . , aSn ∈ {0, 1}[m]�E(G)

such that S1, . . . , Sn ⊆ [m] and aS1 + · · · + aSn = a ∈ π−1(a∗). The vector a can be
thought of as packaging of the items in a∗, consisting of packages aSb , which is offered
for sale to agent b ∈ [n] during the auction. The coordinate ai j indicates the number
of packages which contain the pair of items i, j ∈ [m] together. The set π−1(a∗) can,
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thus, be thought of as the set of possible packagings of the set of items in the auction,
whose quantities are indicated by a∗.

The auction works as follows. First, the agents submit their valuations to the auc-
tioneer, then the auctioneer announces the price p, and an allocation a1, . . . , an ∈
{0, 1}[m]�E(G), where agent b is assigned the package ab and a = ∑n

b=1 a
b ∈

π−1(a∗). If all of the agents and the seller agree, then agent b gets the package ab and
pays 〈 p, ab 〉 to the seller. If one of them does not agree, then in theory, ‘equilibrium
failed’ (and perhaps the auctioneer should be fired). Note that a choice of a ∈ π−1(a∗)
amounts to choosing values ai j for each pair i j of types of goods. Asmentioned above,
this specifies the number of times that an item of type i and an item of type j are sold
together as a pair to an agent.

The bare-minimum goal for the auctioneer is to compute an allocation-pricing pair
such that all of the market participants can agree to, that is, a non-trivial economic
equilibrium is reached. In other words, the auctioneer proposes an allocation of pack-
ages and a price under which the packages are offered to the individual bidders. It is
assumed that agent b is satisfied with the allocation-price pair ((a1, . . . , an), p) when
they are allocated a bundle that maximizes their own utility at this price. At a given
price p, the set of such bundles for agent b is their demand set

D(valb, p) = argmaxS⊆[m]
{
valb(aS) − 〈 p, aS 〉

}
,

where aS ∈ {0, 1}[m]�E(G) is the vector corresponding to the set S. Thus, agent b is
satisfied with the allocation-price pair when ab ∈ D(valb, p). When all agents are
satisfied, we have a competitive equilibrium.

Definition 3 (Competitive equilibrium) Let (valb : b ∈ [n]) be graphical valuations
with a fixed value graph G. We say that the corresponding auction has a com-
petitive equilibrium allocating packages (a1, . . . , an) with price p ∈ R

[m]�E(G) if
ab ∈ D(valb, p) for all b ∈ [n]. The auction has a competitive equilibrium allocating
the packaging a ∈ Z

[m]�E(G) with price p ∈ R
[m]�E(G) if there exists an allocation

(a1, . . . , an) of packages such that a =∑ ab and ab ∈ D(valb, p) for all b ∈ [n].
We say that the auction has a competitive equilibrium (CE) allocating quantities

a∗ ∈ N
m of goods if there exists some packaging a ∈ π−1(a∗) and some price

p ∈ R
[m]�E(G) at which the auction has a competitive equilibrium.

Example 1 (Cutlery Auction) We consider the Cutlery Auction due to [14, Exam-
ple 3.2]. Let G = K3 be the complete graph on three vertices V (K3) = {A, B,C},
let n = 3 be the number of agents, and a∗ = (1, 1, 1)t . With indexing
w = (wA, wB, wB, wAB, wAC , wBC )t , the agents’ valuations are given by the weight
vectors

w1 = (0, 0, 0, 1, 0, 0)t , w2 = (0, 0, 0, 0, 1, 0)t , w3 = (0, 0, 0, 0, 0, 1)t ,

i.e. the first agent has weight one for edge AB, the second agent has weight one for
edge AC , the third agent has weight one for edge BC and all remaining weights
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are zero. If we pick the graphical price vector p = (0, 0, 0, 1, 1, 1)t , then for each
b ∈ {1, 2, 3}, we have

D(valb, p) ⊇
⎧
⎨

⎩

⎛

⎝

0
0
0
0
0
0

⎞

⎠ ,

⎛

⎝

1
0
0
0
0
0

⎞

⎠ ,

⎛

⎝

0
1
0
0
0
0

⎞

⎠ ,

⎛

⎝

0
0
1
0
0
0

⎞

⎠

⎫
⎬

⎭
.

Thus, we can decompose a = (1, 1, 1, 0, 0, 0)t ∈ π−1(a∗) by assigning one item to
each agent, e.g.

a1 = (1, 0, 0, 0, 0, 0)t , a2 = (0, 1, 0, 0, 0, 0)t , a3 = (0, 0, 1, 0, 0, 0)t ,

(where each agent is charged the price 0) in order to achieve a competitive equilibrium
allocating the packages (a1, a2, a3) with price p in the sense of Definition 3. Hence,
the auction has a competitive equilibrium at a = a1 + a2 + a3 = (1, 1, 1, 0, 0, 0)t .
This implies that the auction has a competitive equilibrium allocating quantities a∗ =
(1, 1, 1)t of goods in the sense of Definition 3. Furthermore, for a fixed price the
allocation at which a competitive equilibrium is achieved is not unique. Considering
instead the price p = (0, 1, 1, 0, 1,−1), we note that the auction has a competitive
equilibrium allocating the packages

a12 = (1, 0, 0, 0, 0, 0)t , a22 = (0, 0, 0, 0, 0, 0)t , a32 = (0, 1, 1, 0, 0, 1)t ,

with price p. At the same time, allocating the packages

a13 = (1, 1, 1, 1, 1, 1)t , a23 = (0, 0, 0, 0, 0, 0)t , a33 = (0, 0, 0, 0, 0, 0)t ,

also constitutes a competitive equilibrium at the same price p. We continue with this
in Example 2.

Remark 1 In Theorem 6, we show that if there is at most one quantity per item for
sale in the auction (such as in Examples 1), then for any packaging a ∈ π−1(a∗) of
the quantities a∗ ∈ {0, 1}m , there exists a price p such that the auction achieves a
competitive equilibrium allocating this packaging with price p. Theorem 7 applies to
general quantities a∗ ∈ Z

m≥0, and we construct one explicit packaging a ∈ π−1(a∗)
for which a competitive equilibrium exists under some price p. The packaging a3 =
a13 + a23 + a33 in Examples 1 is the kind of packaging that we construct in the proof of
Theorem 7, while both the packaging a2 = a12 +a22 +a32 and a3 fit into the framework
of Theorem 6. A discussion about the possible packagings which fit into the respective
frameworks of these results can be found in Remark 2.

In this setup, we only consider allocations that are complete, that is, the seller must
sell all items in the bundle. Note that the seller’s revenue only depends on the sum of
the bundles in the allocation, as

∑n
b=1〈 p, ab 〉 = 〈 p,∑n

b=1 a
b 〉 = 〈 p, a 〉. In other

words, the seller’s revenue only depends on the entire packaging and is independent
of the allocation of the packages. Informally, a competitive equilibrium says that the
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agents are always satisfied. A stronger concept is pricing equilibrium, where the seller
is another market participant who also needs to be satisfied. A revenue-maximization
seller wants to maximize revenue at a given price p, that is,

D(seller, p) = argmaxa∈π−1(a∗) {〈 p, a 〉} .

This leads to the definition of a pricing equilibrium [6, Def. 2.3].

Definition 4 (Pricing equilibrium) Let (valb : b ∈ [n]) be graphical valuations. We
say that the corresponding auction has a pricing equilibrium (PE) allocating packages
(a1, . . . , an) with price p ∈ R

[m]�E(G) if ab ∈ D(valb, p) for all b ∈ [n] and in
addition a = ∑n

b=1 a
b ∈ D(seller, p).

In between, these two notions lies the optimal competitive equilibrium: an
allocation-price pair such that the seller’s revenue is maximized among all a ∈
π−1(a∗) at which a competitive equilibrium exists. The Cutlery Auction is a sim-
ple auction that illustrates the difference between these concepts.

Example 2 (An auction with CE but no PE for graphical pricing) Consider the auction
from Examples 1. Note that the seller’s revenue at the price p = (0, 0, 0, 1, 1, 1) is
〈p, a1 +a2 +a3〉 = 0. If we instead decide to sell items A and B to agent 1, item C to
agent 2, and nothing to agent 3, then this constitutes a competitive equilibrium inwhich
the sellers revenue is 〈p, (1, 1, 0, 1, 0, 0)t +(0, 0, 1, 0, 0, 0)t +(0, 0, 0, 0, 0, 0)t 〉 = 1.
In fact, this is the maximum revenue that the seller can achieve under all allocations
that constitute a competitive equilibrium and, thus, induces an optimal CE. This shows
that the competitive equilibrium given in Examples 1 is not an optimal competitive
equilibrium. On the other hand, the optimal competitive equilibrium from above also
constitutes a competitive equilibrium in the sense of Definition 3. However, this does
not constitute a pricing equilibrium, since assigning all items to one agent would
increase the seller’s profit to 3 (but none of the agents would be happy with this
outcome). It was shown in [6, Example 3.13], that neither a pricing equilibrium nor a
Walrasian equilibrium for this example exists. We will continue with this in Examples
5.

2.2 Convex Geometry Setup

We now describe a strong connection between CE and discrete convex geometry for
graphical valuations and pricing. For a more detailed description of regular subdi-
visions, mixed subdivisions and the Cayley trick, we refer the reader to [15, Sect.
9.2].

Recall that the polytope of the graph G is

P(G) = conv
({

aS ∈ R
[m]�E(G)

∣
∣ S ⊆ [m]

})
,

whereaS is the characteristic vector of the set S as described inSect. 2.1. Letd = |[m]�
E(G)| denote the dimension of P(G). By construction, P(G) is a 0/1–polytope, and
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Fig. 1 The black points p1, p2
and p3 are vertices of the regular
subdivision of the line segment,
induced by the lifting function v.
The white points are not lifted
points. The point p is a lifted
point, but not a vertex of the
regular subdivision: p lies in the
interior of the face with vertices
p2 and p3

p1
v(p1)

)

p1 p2 p3p

v

therefore,

P(G) ∩ Z
d = vert(P(G)) =

{
aS ∈ R

d
∣
∣ S ⊆ [m]

}
,

where vert(P(G)) denotes the set of vertices of P(G). It is worth noting that P(G) ⊆
R
d is indeed of dimension d = |[m] � E(G)|. This can be seen from the fact, that

the subset of vertices {aS | S ⊆ [m], |S| ≤ 2} form a set of size d + 1 of affinely
independent vectors.

Let val be a (not necessarily graphical) valuation on a polytope P , i.e. a function
val : P ∩Z

d → R. For a face F of P wedenote liftval(F) = {( a
val(a)

) | a ∈ F ∩ Z
d
}

⊆ R
d+1. We should think of val as giving a height function to each lattice point in

P ∩ Z
d . If we take the convex hull of these points in R

d+1, the collection of the facets
visible when we look down at the convex hull from above is called the upper convex
hull. This convex hull is a polyhedral complex in dimension R

d+1. Its projection onto
the first d coordinates is called the regular subdivision of P induced by val.

If val is a graphical valuation as defined in Definition 1, then the induced regular
subdivision on P(G) is trivial, since val can be seen as a linear functional on the
polytope. However, the regular subdivision of a single valuation val only captures
information about the valuation of a single agent. As soon as the number n of agents is
bigger than 1 and not all agents have identical valuations, then competitive equilibrium
concerns a regular subdivision of the dilated polytope nP(G), which is guaranteed to
be non-trivial. We now explain this in more details.

Let ṽal be the smallest concave function such that ṽal(a) ≥ val(a) for alla ∈ P∩Z
d .

We call a ∈ Z
d a lifted point if ṽal(a) = val(a), i.e. if

( a
val(a)

)
lies in the upper convex

hull of conv(liftval(P)), as depicted in Fig. 1. Note that, in particular, a vertex of a
face of the regular subdivision is always a lifted point. Further,

D(val, p) = argmaxa∈P(G)∩Zd {val(a) − 〈 a, p 〉}
= argmaxa∈P(G)∩Zd

{〈 ( a
val(a)

)
,
(−p

1

) 〉} .

The set D(val, p) thus consists of all lifted points of the face of the upper con-
vex hull of liftval(P(G)) with normal vector

(−p
1

)
. Since a vertex of such a face

is always a lifted point, the set of faces of the regular subdivision is given by{
conv(D(val, p))

∣
∣ p ∈ R

d
}
.
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0 1
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2
2

1 + 2/3

1 + 2/3

Fig. 2 The induced mixed regular subdivision on P1 + P2 from Examples 3

In the case of graphical valuations, this allows us to interpret the condition
ab ∈ D(valb, p), b ∈ [n] for competitive equilibrium in the following way: Let
val1, . . . , valn be graphical valuations and consider the aggregate valuation function
Val : nP(G) ∩ Z

d → R given by

Val(a) = max

{
n∑

b=1

valb(ab)
∣
∣

n∑

b=1

ab = a, ab ∈ P(G) ∩ Z
d

}

= max

{
n∑

b=1

〈wb, ab 〉 ∣∣
n∑

b=1

ab = a, ab ∈ P(G) ∩ Z
d

}

.

(1)

This is a valuation function that cannot be interpreted as a linear functional on nP(G),
and hence, the regular subdivision on nP(G) is non-trivial. Indeed, this subdivision
is the mixed regular subdivision induced by val1, . . . , valn and a face F of this mixed
regular subdivision is of the form F = ∑n

b=1 F
b, where Fb is a face of P(G). In

other words, for the demand sets of the aggregate valuation holds

D(Val, p) =
n∑

b=1

D(valb, p),

where D(Val, p) is the set of lifted points in the face of the mixed regular subdivision
of nP(G) which is maximized by the normal vector

(−p
1

)
and D(valb, p) the set of

vertices of the face of liftvalb (P(G)) that is maximized by
(−p

1

)
. In particular, given

a point a ∈ D(Val, p) we can always write the point as a sum a = ∑n
b=1 a

b, where
ab ∈ D(valb, p).

Example 3 (Non-trivial mixed subdivisions where not all points are lifted)
We give an example of two polytopes P1, P2 with trivial regular subdivisions, where

the induced mixed regular subdivision on P1 + P2 is non-trivial. Let P1 = [0, 1]2 be
the square with lifting function v1(a) = 〈 a,

(
1
1

) 〉 defined for a ∈ P1 ∩ Z
2 and
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(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(1, 1, 1)

Fig. 3 The polytope P(K2) (left) and three possible subdivisions of [0, 1]2 (right)

P2 = conv(
(
0
0

)
,
(
2
1

)
,
(
1
2

)
) with lifting function v2(a) = 1

3 〈 a,
(
1
1

) 〉 for a ∈ P2 ∩Z
2.

The induced mixed regular subdivision on P1 + P2 is given by the lifting function

V (a) = max
{
v1(a1) + v2(a2)

∣
∣ a1 + a2 = a, a1 ∈ P1 ∩ Z

2, a2 ∈ P2 ∩ Z
2
}

.

The values of V (a) on the integer points of P1 + P2 and the induced mixed regular
subdivision can be seen in Fig. 2. Note that the points

(
2
1

)
and
(
1
2

)
are not lifted:

indeed, V (
(
2
1

)
) = 1 + 2

3 , while Ṽ (
(
2
1

)
) = 2.

Example 4 (Geometry of graphical pricing versus linear pricing) In an auction with
two types of items, any valuation v : {0, 1}2 → R is linearly equivalent to a graphical
valuation on K2. Indeed, by the linear transformation v −→ v − v((0, 0)), we can
assume that v((0, 0)) = 0. Then, we can set w1 = v((1, 0)), w2 = v((0, 1)) and
w12 = v((1, 1)) − (w1 + w2), so this valuation v is indeed a graphical valuation on
K2. In this case, the correlation polytope P(K2) is a simplex in R

3 (cf. Fig. 3).
Consider an auction with two types of items and two agents. When one works with

linear pricing, competitive equilibrium concerns the regular subdivision �v of the
square [0, 1]2. There are three possible subdivisions of [0, 1]2 induced by v (cf. Fig. 3).
In economics, valuations that induce these subdivisions are called linear, complements
and substitutes, respectively. Thus, if v1 is substitutes and v2 is complements, then the
set of edges of �v1 and �v2 together do not form a unimodular set: in particular, the
vectors (1,−1) and (1, 1) are not unimodular, as the determinant of the corresponding
2 × 2 matrix is bigger than 1. Therefore, by the Unimodularity Theorem [1, 2, 8],
competitive equilibrium can fail for this auction.

In contrast, whenweworkwith graphical pricing, competitive equilibrium concerns
the regular subdivision �v of the correlation polytope P(K2). In this case, Theorem
2 implies that competitive equilibrium always exists for graphical pricing, regardless
of whether the agents’ valuations are complements or substitutes.

Lemma 3 Let w ∈ R
d . The mixed subdivision induced by Val(a) is equal to the

subdivision induced by

Valw(a) = max

{
n∑

b=1

〈wb + w, ab 〉 ∣∣
n∑

b=1

ab = a, ab ∈ vert(P(G))

}

.
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That is, adding a constant vectorw to all weight vectorswb does not change the mixed
subdivision of nP(G).

The proof of this lemma can be found in Sect. 4. This lemma implies that, without
loss of generality, we can assume that the weights wb are nonnegative. Note that
despite the fact that this does not change the existence of a competitive equilibrium,
it does affect the prices at which a competitive equilibrium can be achieved.

Example 5 If we add the vector (1, 1, 1, 1, 1, 1)t to all weights in Example 2, then a
pricing equilibrium can be achieved at the price p = (3, 3, 1, 0, 0, 0)t by selling all
items to the first agent, in which case the seller’s revenue is 7. In accordance to [6,
Th. 3.7] this price vector even constitutes a Walrasian equilibrium, as the underlying
graph G = K3 is series-parallel.

2.3 Competitive Equilibrium and Convex Geometry

We now establish the connection between the existence of a competitive equilibrium
and properties of the polytope P(G). A key result is Corollary 5, which gives a neces-
sary and sufficient condition for a CE allocating given quantities a∗ to be guaranteed
to exist when the agents’ valuations and the pricing rules are both graphical. Com-
pared to the linear pricing case, each prescribed vector of quantities a∗ allows for a
set π−1(a∗) of packagings and a CE exists if and only if one of these a ∈ π−1(a∗) is
lifted in a certain regular mixed subdivision.

Proposition 4 (CE at an allocation for graphical valuations and pricings) Consider an
auction with n agents, anonymous graphical pricing and graphical valuations with a
fixed underlying value graphG onm vertices and d = m+|E(G|. Let a ∈ nP(G)∩ Z

d

be a fixed packaging. Then the following are equivalent:

(i) For each set of valuations {valb | b ∈ [n]} there exists an allocation of packages
(a1, . . . , an) forming the packaging a =∑n

b=1 a
b and there exists a price p ∈

R
d constituting a competitive equilibrium allocating packages (a1, . . . , an)with

price p.
(ii) For each set of valuations {valb | b ∈ [n]} there exists a price p ∈ R

d such that
a ∈∑n

b=1 D(valb, p).
(iii) For any faces F1, . . . , Fn of P(G) such that a ∈ ∑n

b=1 F
b holds: a ∈∑n

b=1 vert(F
b).

The proof of this proposition can be found in Sect. 4. Informally, if a competitive
equilibrium exists for any set of valuations, then this means that a CE is guaranteed
to exist: Regardless of the agents’ preferences, the auctioneer can always guarantee
to make everyone happy with the outcome. Applying the definition of a CE allocating
quantities a∗ of goods immediately implies the following:

Corollary 5 (CE at a bundle for graphical valuations and pricings)Consider an auction
with n agents, anonymous graphical pricing and graphical valuations with a fixed
underlying value graph G on m vertices and d = m + |E(G)|. Let a∗ ∈ N

m be fixed
quantities of goods. Then the following are equivalent:
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(i) There exists a packaging a ∈ π−1(a∗) such that for each set of valuations
{valb | b ∈ [n]} there exists an allocation of packages (a1, . . . , an) forming
the packaging a = ∑n

b=1 a
b and there exists a price p ∈ R

d constituting a
competitive equilibrium allocating packages (a1, . . . , an) with price p.

(ii) There exists an a ∈ π−1(a∗) such that for any set of valuations {valb | b ∈ [n]}
there exists a price p ∈ R

d such that a ∈∑n
b=1 D(valb, p).

(iii) There exists an a ∈ π−1(a∗) such that for any faces F1, . . . , Fn of P such that
a ∈∑n

b=1 F
b holds: a ∈∑n

b=1 vert(F
b).

In particular, if conditions (i)–(iii) hold, then for any set of valuations, a competitive
equilibrium allocating quantities a∗ of goods exists.

Example 6 (Some packagings cannot be allocated) We illustrate that condition (iii)
in Corollary 5 is not necessarily satisfied for all a ∈ π−1(a∗). Consider an auction
with 4 agents and quantities a∗ = (2, 2, 2, 2), i.e. an auction with 4 types of items
A, B,C, D, where each item has two identical copies. The packaging a with

(aA, aB, aC , aD, aAB , aAC , aAD, aBC , aBD, aCD) = (2, 2, 2, 2, 1, 1, 1, 1, 1, 1) (2)

is a lattice point in 4P(K4) and thus we have a ∈ π−1(a∗). This packaging indicates
that each pair of distinct types should be allocated together in the same package exactly
once.However, by a simple counting argument it can be checked that this is impossible.
This translates to a violation of Corollary 5 (iii) in the following way. We note that a
is the sum of the midpoints of the four edges

F1 = conv ((0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)) ,

F2 = conv ((0, 1, 1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 1, 0, 0, 1, 0, 0, 0, 0)) ,

F3 = conv ((0, 1, 1, 1, 0, 0, 0, 1, 1, 1), (1, 0, 1, 1, 0, 1, 1, 0, 0, 1)) ,

F4 = conv ((1, 1, 0, 0, 1, 0, 0, 0, 0, 0), (1, 1, 0, 1, 1, 0, 1, 0, 1, 0)) ,

of the polytope P(K4), i.e. these four edges are faces of P(K4) such that a ∈ F1+F2+
F3+F4. But one can check that (2) cannot bewritten as the sumof any 4 lattice points of
P(K4). By Proposition 4, this means that for any auction with graphical valuations on
the complete graph K4, it is impossible to allocate the fixed packaging a. However, we
will see in Theorem 7 that for each set of graphical valuations, there exists a different
packaging a′ of (2, 2, 2, 2) such that competitive equilibrium is achieved for a′ with
graphical pricing. More specifically, the construction in Theorem 7 guarantees for a
competitive equilibrium allocating the packaging a′ = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2), and
Theorem 6 guarantees for a CE allocating any packaging a′ ∈ {0, 2}10.

Moreover, this example can be seen in amore general framework, as it is known that
the poltytope P(Km)does not have the so-called integer decomposition property [16, p.
337] form ≥ 4. This implies that this example can be extended to a series of examples:
For any m ≥ 4 and n ≥ 4, there exists a choice of quantities a∗ and packaging
a ∈ π−1(a∗) such that a cannot be allocated under a competitive equilibrium.
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Fig. 4 A value graph at which
CE may fail at a∗ = (1, 1, 1, 1, 1)

v1

v2 v3

v4

v5

3 Main Results

In this section we present and discuss our main results. The proofs follow in the next
section.

3.1 Everyone Bids on Everything

Recall that m is the number of distinct items, n is the number of bidders and π the
projection of a vector with components indexed by [m] � E(G) onto its first [m]
components. In this section, we consider the complete graph G = Km , and vectors
are thus of length d = m + (m2

)
.

We begin with auctions in which the seller’s bundle contains either 0 or r items of
each type for a fixed r ∈ N. Recall that we assume that each agent is only interested
in buying at most one item per type. An important special case is the combinatorial
auction where r = 1. We show that a competitive equilibrium in this scenario can
always be achieved:

Theorem 6 Let a∗ ∈ {0, r}m and n ≥ r . If the underlying value graph of all agents
is the complete graph, then π−1(a∗) �= ∅ and for any set of valuations and every
a ∈ π−1(a∗) there exists a price p ∈ R

d at which a competitive equilibrium exists.

The proof of this theorem gives an explicit construction of how to split the bundle
in question. If r = 1, then a ∈ π−1(a∗) is the characteristic vector of a disjoint
union of cliques and the procedure in the proof assigns cliques to agents. A choice
of a ∈ π−1(a∗) corresponds to a choice of connected components. This construction
gives a lot of freedom to the auctioneer: The auctioneer can decide which items are
being sold together and is still guaranteed to achieve a competitive equilibrium. The
next example shows that even for r = 1, the existence of a competitive equilibrium
can fail when we do not consider the complete graph as value graph.

Example 7 Let G be the graph consisting of the cycle v1, v2, v3, v4 together with an
additional vertex v5 and edges v1v5, v4v5, as shown in Fig. 4. Consider the following
4 edges of the polytope P(G)

F1 = conv
((
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
,
(
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

))

F2 = conv
((
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

)
,
(
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0

))

F3 = conv
((
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

)
,
(
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

))
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F4 = conv
((
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

)
,
(
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0

))

For a∗ = (1, 1, 1, 1, 1), we have π−1(a∗) ∩∑4
b=1 F

b = {(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)}
butπ−1(a∗)∩∑4

b=1 vert(F
b) = ∅. Thus, byCorollary 5, there exists a set of graphical

valuations such that the packaging a cannot be allocated under a competitive equilib-
rium for any graphical price p. Hence, the assumption of G = Km in Theorem 6 is
truly necessary.

Next, we loosen the assumption on a∗ and allow arbitrary a∗ ∈ Z
m ∩ [0, n]m . We

show that again a CE allocating quantities a∗ always exists, however we only construct
one explicit packaging a ∈ π−1(a∗) at which a competitive equilibrium is guaranteed
to exist.

Theorem 7 Let a∗ ∈ {0, 1, . . . , n}m. If the underlying graph of all valuations is the
complete graph, then there exists an a ∈ π−1(a∗) such that for any set of valuations
there exists a price p ∈ R

d at which a competitive equilibrium exists.

The procedure in which the bundle can be split up to achieve a competitive equi-
librium is as follows:

If a∗ ∈ {0, 1}m , then auctioneer sells the entire bundle to one agent, i.e. there is one
agent who gets an item of each type i ∈ [m] such that a∗

i = 1. If a∗ ∈ {0, 1, 2}m , then
the auctioneer sells the items in two bundles: There is one agent who will be offered
one item of each type where a∗

i > 0. A second agent will be made an offer for all
remaining items, i.e. all items such that a∗

i = 2. And so on.

Remark 2 The above described procedure may seem odd for applications in practice.
In particular, if a∗ = (1, . . . , 1), then this procedure proposes to sell the entire set
of items to a single agent, and nothing to the remaining agents. We thus emphasize,
that Theorem 7 does not give any implications about the number or shape of possible
packagings at which a competitive equilibrium exists. The main contribution of this
article is to show that the set of packagings at which a competitive equilibrium is
guaranteed to exist is non-empty. That is, the auctioneer can always choose at least
one packaging under which CE is guaranteed to exist. In practice, the auctioneer might
have additional criteria, and may optimize over this set of packagings with respect to
their additional criteria (for example the optimal competitive equilibrium from Sect.
2.1). Furthermore, the auctioneer might consider certain packagings as impractical,
i.e. would like to only consider certain subsets of the packagings for which a CE is
guaranteed to exist. The existence of “practical competitive equilibria” depends on the
definition of practical and will be the subject of further studies.

On the other hand, Theorem 6 does imply a lower bound on the number of packag-
ings for which a CE is guaranteed to exist. Here, the result implies that any packaging
a ∈ π−1(a∗) of a∗ can be allocated under a competitive equilibrium, and so the auc-
tioneer has at least |π−1(a∗)| many packagings to choose from. A special case of
Theorem 6 is a∗ ∈ {0, 1}m , i.e. for each type there is at most one item to sell in the
auction, which is a setup that appears naturally in practice.
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3.2 Everything Is Bid on by Someone

We can relax the condition on the valuations by allowing weight vectors w ∈ R ∪
{−∞}. We assume that for every agent b ∈ [n] the valuation function valb : (R ∪
{−∞})d → R∪{−∞} is of the form valb(a) = 〈wb, a 〉 such thatwb has finite value
on the vertices and edges of some clique of Km and has weight −∞ on all vertices
outside the clique. The weights on edges outside the clique are allowed to take any
values in R ∪ {−∞}. If the vertex set of this clique is the subset Sb ⊆ [m], we say
that agent b bids on the subgraph KSb . The support of a valuation valb is the set of
vertices and edges where wb has finite value. A set of valuations

{
valb | b ∈ [n]} is

covering if every agent b ∈ [n] bids on a clique KSb such that
⋃

b∈[n] Sb = [m]. A
vector a ∈ R

d is compatiblewith this covering if for every i j ∈ ([m]
2

)
such that ai j > 0

there is a set Sb such that i, j ∈ Sb. We are now ready to state the generalization of
Theorem 2 for a∗ ∈ {0, 1}m .
Theorem 8 If V is the collection of sets of covering graphical valuations, then a
competitive equilibrium with anonymous graphical pricing is guaranteed to exist at
any bundle a∗ ∈ {0, 1}m for any auction with valuations in V .

The above theorem immediately follows from this more technical theorem:

Theorem 9 Let a∗ ∈ {0, 1}m and suppose that every agent b ∈ [n] bids
on a clique KSb such that

⋃
b∈[n] Sb = [m]. Then for any set of valuations

{valb | valb is supported on KSb } and any a ∈ π−1(a∗) that is compatible with
the covering there exists a price p ∈ R

d at which a competitive equilibrium exists.

The proof of Theorem 9 implies an algorithm to compute an optimal competitive
equilibrium.

Algorithm 1
Input: The agents’ quadratic bids w1, . . . , wn .
Output: An allocation-price pair ((a1, . . . , an), p) which achieves an optimal competitive equilibrium.
1: Check that w1, . . . , wn give a covering of [m].
2: Choose a partition (V 1, . . . , Vn) of [m] such that wb is supported on Vb (this defines a ∈ π−1(a∗)).
3: Let w̃b be the vector where every weight of −∞ in wb is replaced by −M for some large M > 0. Go

through all decompositions a = ∑n
b=1 a

b, ab ∈ vert(P(Km )), check for feasibility and compute the
value of

max〈 p, a 〉
s.t.〈 p − w̃b, ab 〉 ≥ 〈 p − w̃b, a′ 〉 ∀a′ ∈ vert(P(Km )), b ∈ [n]

4: return ((a1, . . . , an), p) at which the linear program above has the maximal value.

4 Proofs

We now proof the results that are stated in the previous sections. First, we give the
proofs of the results stated in Sect. 2. Next we prove auxiliary results that are needed
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for the proofs of the main results, which are stated in Sect. 3. Finally, we give an index
that refers the reader to the necessary auxiliary results for the respective main result.

4.1 Convex Results

Proof of Lemma 3: The lifting function on theCayley polytopeC(P(G), . . . , P(G)) ⊆
R
d × R

n corresponding to the mixed subdivision on nP induced by Val is

Val : (a, eb) −→ valb(a) = 〈wb, a 〉

(cf. [17, Cor. 4.10]). Adding the constant vector w to all weight vectors wb yields
another lifting function of the Cayley polytope

Valw : (a, eb) −→ 〈wb + w, a 〉 = valb(a) +
〈(

w

0

)

,

(
a
eb

)〉

.

Thus, Valw = Val + 〈
(

w

0

)

, · 〉, i.e. adding w to all weights wb amounts to adding

a linear functional to the lifting function Val. This operation does not change the
regular subdivision on C(P(G), . . . , P(G)) and hence leaves the correspondingmixed
subdivision of nP(G) unchanged. ��

Proof of Proposition 4: First note, that (i) and (ii) are equivalent by the definition of CE
in Definition 3. It thus remains to show the equivalence of (ii) and (iii). Before that,
recall from Sect. 2.2 that each face Fb of the regular subdivision of P(G) induced
by a valuation valb is given by Fb = conv(D(valb, pb)) for some price pb ∈ R

d .
The valuations valb are linear functions on R

d . Therefore, the regular subdivision
induced by valb on P(G) is trivial. The set of lifted points of P(G) by valb is thus
the set of vertices vert(P(G)). Further, each face F of the regular subdivision of
nP(G) induced by the aggregate valuation Val (as defined in (1)) corresponds to a set
D(Val, p) for some p ∈ R

d , where D(Val, p) is the set of all lifted points in F . Since
D(Val, p) =∑n

j=1 D(valb, p), the set of lifted points of nP(G) is

⋃

p∈Rd

D(Val, p) =
⋃

p∈Rd

⎛

⎝
n∑

j=1

D(valb, p)

⎞

⎠ ⊆
n∑

b=1

vert(P(G)).

We now show ¬(i i) ⇐⇒ ¬(i i i). Explicitly, we show the equivalence of the follow-
ing statements.

¬(i i) : There exists a set of valuations {valb | b ∈ [n]} such that for all p ∈ R
d

holds: a /∈∑n
b=1 D(valb, p).

¬(i i i) : There exist faces F1, . . . , Fn of P(G) such that a ∈ ∑n
b=1 F

b and
a /∈ ∑n

b=1 vert(F
b).
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Webeginwith¬(i i) �⇒ ¬(i i i). Suppose there is a set of valuations {valb | b ∈ [n]}
such that for all p ∈ R

d holds a /∈ ∑n
b=1 D(valb, p) = D(Val, p). Since

a ∈ π−1(a∗) ⊆ nP(G), a lies in some face of the regular subdivision of nP(G)

induced by Val. These faces are in bijection with the distinct sets D(Val, p), so there
exists some p ∈ R

d such that a ∈ conv(D(Val, p)). The assumption a /∈ D(Val, p)
implies that a is not a lifted point. Note that, since Minkowski summation and the
operator of forming convex hulls commute,

a ∈ conv(D(Val, p)) = conv

(
n∑

b=1

D(valb, p)

)

=
n∑

b=1

conv(D(valb, p))

=
n∑

b=1

Fb

for some faces F1, . . . , Fn of P(G). Since P(G) is a 0/1-polytope, for each b ∈ [n]
the vertices vert(Fb) are precisely the lifted points of Fb in the trivial subdivision
induced by valb, i.e. vert(Fb) = D(valb, p). Therefore

n∑

b=1

vert(Fb) =
n∑

b=1

D(valb, p) = D(Val, p),

so
∑n

b=1 vert(F
b) is a set of lifted points in the subdivision induced by Val. By

assumption, a is not a lifted point, and thus, a /∈∑n
b=1 vert(F

b).
Next, we show ¬(i i i) �⇒ ¬(i i). Suppose a ∈ ∑n

b=1 F
b but a /∈∑n

b=1(vert(F
b)). Letwb denote the outer normal vector of Fb, i.e. the vector such that

there exists a constant αb ∈ R with 〈wb, x 〉 = αb for all x ∈ Fb and 〈wb, x 〉 ≤ αb

for all x ∈ P(G). Set valb(a) = 〈wb, a 〉. We now show that for any p ∈ R
d holds

a /∈ ∑n
b=1 D(valb, p) = D(Val, p) by showing that a is not lifted by Val, i.e. we

show that Val(a) < Ṽal(a).
Wefirst note, that there exist somepoints xb ∈ Fb such that Ṽal(a) = ∑n

b=1〈wb, xb 〉.
To see this, consider the face F̃ =∑n

b=1 F
b of the mixed regular subdivision of nP

induced byVal, and let ã ∈ vert(F̃). Since vertices are lifted points and the linear func-
tionalwb is maximized by points in Fb, it follows that there are vertices x̃b ∈ vert(Fb)

such that

Ṽal(ã) = Val(ã) =
n∑

b=1

〈wb, x̃b 〉.

Let I be the index set of vertices of F̃ , i.e. vert(F̃) = {ãi | i ∈ I }. We write the point
a = ∑i∈I λi ãi as the convex combination of vertices of F̃ . By construction, every
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such vertex can be written as the sum of vertices ãi = ∑n
b=1 x̃

b
i , x̃i

b ∈ vert(Fb).
Thus, for the points in R

d+1 holds

( a
Ṽal(a)

) =
∑

i∈I
λi

(
ãi

Ṽal(ãi )

)
=
∑

i∈I
λi

(
ãi∑n

b=1〈 wb,x̃bi 〉
)

=
(

a∑n
b=1〈 wb,

∑
i∈I λi x̃bi 〉

)
=
(

a∑n
b=1〈 wb,xb 〉

)
,

where xb =∑i∈I λi x̃bi ∈ Fb, and so indeed Ṽal(a) = ∑n
b=1〈wb, xb 〉.

Finally, if Val(a) > −∞, then by definition there exist some y1, . . . , yn ∈ vert(P)

such that a =∑n
b=1 y

b and Val(a) =∑n
b=1〈wb, yb 〉. But since a /∈∑n

b=1 vert(F
b),

there exists no such choice of y1, . . . , yn such that yb ∈ Fb and hence

Val(a) =
n∑

b=1

〈wb, yb 〉 <

n∑

b=1

〈wb, xb 〉 = Ṽal(a).

��

4.2 Auxiliary Results

For the complete graph G = Km , the polytope P(Km) is generally known as the
correlation polytope or boolean quadric polytope. It is also affinely equivalent to
the well-known cut-polytope [18]. It has been widely studied, yet, the hyperplane
description of this polytope remains unknown.We thus make use of a linear relaxation
given in [19] describing a superset of the polytope nP(Km):

(i) xi j ≥ 0
(ii) xi − xi j ≥ 0
(iii) xi + x j − xi j ≤ n
(iv) xi + x jk − xi j − xik ≥ 0
(v) xi + x j + xk − xi j − xik − x jk ≤ n

for all i, j, k ∈ [m]. Note that the inequalities (i) – (v) define a bounded polyhedron,
containing the polytope nP(Km). In fact, for n = 1 the inequalities (i)–(iii) together
with the constraint x ∈ Z

d yield the vertices of the correlation polytope, and form ≤ 3
the inequalities (i)–(v) suffice to describe the polytope completely ([19, Sect. 2]).

Lemma 10 Let a ∈ {0, r}d satisfy inequalities (i), (ii) and (iv) for some r ∈ N. Then a
is the sum of characteristic vectors of pairwise disjoint complete graphs G1, . . . ,Gs.
More precisely,

a =
s∑

t=1

rχ t ,

where χ t denotes the characteristic vector of Gt and s ≤ m.
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Fig. 5 The vector a is the sum of
r copies of characteristic vectors
of pairwise disjoint complete
graphs G1, . . . ,Gs

m

0
r

r

r

r

K

Proof Since a satisfies inequalities (i) and (ii), 1r a ∈ {0, 1}d satisfies these inequalities
as well. We can therefore interpret 1

r a as the characteristic vector of a (non-complete)

graph Ĝ, i.e 1
r a = χĜ and thus a = rχĜ where V (Ĝ) ⊆ [m], as shown in Fig. 5.

Inequality (iv) forbids an induced subgraph consisting of a path of length two (and
not a triangle), since otherwise this would imply a set {i, j, k} of indices such that

ai = a j = ak = ai j = aik = r , a jk = 0,

and thus

ai + a jk − ai j − aik = −r .

Whenever two vertices are connected via a path of length two, they must hence be
adjacent. Inductively follows, that whenever two vertices are connected via a path of
arbitrary length, they must be adjacent as well. Therefore, Ĝ is the disjoint union of
non-empty complete graphs G1, . . . ,Gs and

a =
s∑

t=1

rχ t ,

where χ t denotes the characteristic vector of Gt . Further,

m ≥ |V (Ĝ)| =
s∑

t=1

|V (Gt )| ≥
s∑

t=1

1 = s.

��
Proposition 11 Let a ∈ {0, r}d . Then for all faces F1, . . . , Fn of P(Km) containing
a ∈ ∑n

b=1 F
b in their Minkowski sum, there exist vertices χb of Fb such that a =∑n

b=1 χb.

Proof If there exist faces F1, . . . , Fn of P(Km) such that a ∈ ∑n
b=1 F

b, then in
particular a ∈ nP(Km). Thus, the inequalities (i) – (v) hold for a and by Lemma 10
we have

a =
s∑

t=1

rχ t ,
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where χ t is the characteristic vector of a complete graph Gt for each t ∈ [s], the
graphs G1, . . . ,Gs are pairwise disjoint, and s ≤ m. Choose

{
ki
∣
∣ i ∈ [s]} such that

ki ∈ V (Gi ) for each i ∈ [s] and consider the following inequalities

(vi’)
∑

i∈[s]
xki −

∑

i j∈([s]
2 )

xki k j ≤ 1 (vi)
∑

i∈[s]
xki −

∑

i j∈([s]
2 )

xki k j ≤ n.

Each vertex of P(Km) satisfies the inequality (vi’) and so a ∈ nP(Km) satisfies (vi).
Since aki = r and aki k j = 0 for all i, j ∈ [s], we have

∑

i∈[s]
aki −

∑

i j∈([s]
2 )

aki k j = s · r − 0 ≤ n.

We can thus write a =∑n
b=1 χ̂b, where in this representation we have r copies of χ t

for each t ∈ [s], and n − s · r copies of the characteristic vector χ0 = 0 of the empty
graph G0. Our task is now to distribute the vertices χ̂b such that χ̂b ∈ Fb, b ∈ [n].

By assumption, a ∈ (F1 + · · · + Fn), i.e. we can find a subset Sb ⊆ vert(Fb) of
vertices of the face Fb such that λq > 0 for all q ∈ Sb and

a =
n∑

b=1

∑

q∈Sb
λqq,

∑

q∈Sb
λq = 1.

We now show that
⋃n

b=1 S
b = {χ̂b

∣
∣ b ∈ [n]} and deduce from this that

rχ t =
n∑

b=1

∑

q∈Sb
q=χ t

λqq.

Then the following Lemma 12 implies that there is a labelling of the faces such that
χ̂b ∈ Fb for all b ∈ [n].

We begin with showing
⋃n

b=1 S
b ⊆ {χ̂b

∣
∣ b ∈ [n]}. Let q̂ ∈ Sb for some b ∈ [n]

such that q̂ �= 0. Then there is some i ∈ [m] such that q̂i = 1 and since λq̂ > 0 we
have ai = r . Hence, there is some t ∈ [s] such that i ∈ V (Gt ). We now show that
q̂ = χ t .

If q̂ j = 1, then q̂i j = 1 and therefore ai j = r . This implies that i and j are contained
in the same connected component in Ĝ, i.e. j ∈ V (Gt ). Note that if i is an isolated
vertex in Ĝ, then the assumption q̂ j = 1 immediately leads to a contradiction, so in
this case we have indeed q̂ = ei .

If q̂ j = 0, then 0 = q̂i j < q̂i . This implies ai j = 0, since otherwise (by (ii))

r = ai j =
n∑

b=1

∑

q∈Sb
λqqi j <

n∑

b=1

∑

p∈Sb
λqqi = ai = r .
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Hence, j /∈ V (Gt ) and so q̂ = χ t ∈ {χ̂b
∣
∣ b ∈ [n]} .

Next, we show that
⋃n

b=1 S
b ⊇ {χ̂b

∣
∣ b ∈ [n]}. Let t ∈ [s] and i ∈ V (Gt ). Then

ai = r , so there exists some q̂ ∈⋃n
b=1 S

b such that q̂i = 1. By the above, this implies
q̂ = χ t , and hence,

{
χ1, . . . , χ s

} ⊆ ⋃n
b=1 S

b. It remains to show that 0 ∈ ⋃n
b=1 S

b

if and only if s · r ≤ n. For t = 0, . . . , s, we define

μt =
n∑

b=1

∑

q∈Sb
q=χ t

λq .

We show that μ0 = n − s · r . This implies that 0 ∈ ⋃n
b=1 S

b if and only if s · r < n,

which is equivalent to 0 ∈ {χ̂b
∣
∣ j ∈ [n]} . We can write

a =
n∑

b=1

∑

q∈Sb
λqq =

s∑

t=0

μtχ
t .

For i ∈ V (Gt ) we have

r = ai =
s∑

t=0

μtχ
t
i = μt

and so

s · r + μ0 =
s∑

t=0

μt =
s∑

t=0

n∑

b=1

∑

q∈Sb
q=χ t

λq =
n∑

b=1

∑

q∈Sb
λq =

n∑

b=1

1 = n.

Thus,
⋃n

b=1 S
b = {χ̂b

∣
∣ j ∈ [n]}.

We finish the proof by showing that

rχ t =
n∑

b=1

∑

q∈Sb
q=χ t

λqq

for all t ∈ [s]. Let i ∈ V (Gt ) for some t ∈ [s]. Since⋃n
b=1 S

b = {χ̂b
∣
∣ j ∈ [n]} and

the graphs G1, . . . ,Gs are pairwise disjoint, we have that

rχ t
i = r = ai =

n∑

b=1

∑

q∈Sb
λqqi =

n∑

b=1

∑

q∈Sb
q=χ t

λqqi .
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A similar statement holds for the edge i j for i, j ∈ V (Gt ). If i /∈ V (Gt ) then

rχ t
i = 0 =

n∑

b=1

∑

q∈Sb
q=χ t

λqqi .

and similarly for any i, j ∈ [m] such that i j is not an edge inGt . Hence, all assumptions
of Lemma 12 are fulfilled and Lemma 12 implies that there is a labelling of the faces
such that χ̂b ∈ Fb for all j ∈ [n]. ��
Lemma 12 Suppose a =∑s

t=1 μtχ
t =∑n

b=1 χ̂b, such that

• {χ t | t ∈ [s]} = {χ̂b | b ∈ [n]},
• χ t is the characteristic vector of a complete subgraph Gt of Km,
• μt ∈ N such that

∑s
t=1 μt = n.

Further, let a be contained in the Minkowski sum of faces Fb, b ∈ [n], i.e.

a =
n∑

b=1

∑

q∈Sb
λqq,
∑

q∈Sb
λq = 1

where Sb ⊆ vert(Fb) is a subset of vertices of the face Fb and λq > 0. If for every
t ∈ [s] holds

μtχ
t =

n∑

b=1

∑

q∈Sb
q=χ t

λqq,

then there is a labelling of the faces such that χb ∈ Fb.

Proof First note, that we can write

μtχ
t =

n∑

b=1

∑

q∈Sb
q=χ t

λqq =
n∑

b=1

λbt χ
t ,

where

λbt =
∑

q∈Sb
q=χ t

λq

and thus, 0 ≤ λbt ≤ 1, and λbt > 0 if and only if χ t ∈ Sb. Further, note that this
implies

μt =
n∑

b=1

λbt and
s∑

t=1

λbt =
∑

q∈Sb
λq = 1 for a fixed b ∈ [n].
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We now show that this constitutes a flow in a network. TheMax-flow-min-cut theorem
(e.g. [16, Th. 7.2]) then implies that an integer flowexists,whichwill give us the desired
assignment of vertices χ t and faces Fb.

Let D = (V , E) be a directed graph with vertices

V =
{
Fb | b ∈ [n]

}
∪ {χ t | t ∈ [s]} ∪ {v̂, ŵ

}
,

where v̂ is the vertex of D representing the source of the network, and ŵ represents
the sink. The directed edges of D are

E =
{
(v̂, Fb) | b ∈ [n]

}
∪
{
(Fb, χ t ) | b ∈ [n], t ∈ [s], χ t ∈ Sb

}

∪ {(χ t , ŵ) | t ∈ [s]} ,

and we consider the capacity function c : E → R>0 such that

c(e) =

⎧
⎪⎨

⎪⎩

1 e = (v̂, Fb) for some b ∈ [n],
1 e = (Fb, χ t ) for some b ∈ [n], t ∈ [s],
μt e = (χ t , ŵ) for some t ∈ [s].

We claim that the following function f : E → R>0 constitutes a maximal flow on D

f (e) =

⎧
⎪⎨

⎪⎩

1 e = (v̂, Fb) for some b ∈ [n],
λbt e = (Fb, χ t ) for some b ∈ [n], t ∈ [s],
μt e = (χ t , ŵ) for some t ∈ [s],

i.e. that for all vertices v ∈ V \ {v̂, ŵ
}
holds

∑

w∈V
e=(v,w)

f (e) =
∑

w∈V
e=(w,v)

f (e).

To see this, let first v = Fb for some b ∈ [n]. Then

∑

w∈V
e=(w,v)

f (e) = f (v̂, Fb) = 1 and
∑

w∈V
e=(v,w)

f (e) =
s∑

t=1

λbt = 1.

If v = χ t for some t ∈ [s], then

∑

w∈V
e=(w,v)

f (e) =
n∑

b=1

λbt = μt and
∑

w∈V
e=(v,w)

f (e) = f (χ t , ŵ) = μt .
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This is indeed a flow of maximal size n, since

n =
s∑

t=1

μt =
s∑

t=1

f (χ t , ŵ) =
s∑

t=1

c(χ t , ŵ),

and the flow cannot exceed the capacity. Hence, there exists an integral flow f ′ of
size n. This is a flow such that for each b ∈ [n] there exists exactly one t ∈ [s] such
that f ′(Fb, χ t ) = 1 and has value 0 otherwise. On the other hand, for each t ∈ [s]
there are exactly μt facets Fb, b ∈ [n] such that f ′(Fb, χ t ) = 1. Since for each
t ∈ [s] there are exactly μt copies of χ t in the representation a =∑n

b=1 χ̂b, there is

a labelling of χ̂1, . . . , χ̂n such that f ′(Fb, χ̂b) = 1 for all b ∈ [n]. This induces the
desired assignment

{
(Fb, χ̂ t ) | f ′(Fb, χ t ) = 1

}
. ��

Proposition 13 Let a∗ ∈ {0, 1, . . . , n}m. Then there exists a point a ∈ π−1(a∗) such
that the following holds: For all faces F1, . . . , Fn of P(Km) containing a ∈∑n

b=1 F
b

in their Minkowski sum, there exist vertices χb of Fb such that a =∑n
b=1 χb.

Proof We define a as follows:

ai = a∗
i ai j = min

{
a∗
i , a

∗
j

}
.

Weshow that a is the sumof characteristic vectors of complete graphsGn ⊆ · · · ⊆ G1.
Let t0 = 0 and t1 < t2 < · · · < ts be the distinct non-zero values of a∗, i.e.{
a∗
i

∣
∣ i ∈ [m]} \ {0} = {tl

∣
∣ l ∈ [s]}. Let χ tl be given by

χ
tl
i =
{
1, if ai ≥ tl
0, otherwise

for i ∈ [m], χ
tl
i j = χ

tl
i χ

tl
j for i j ∈

([m]
2

)

.

Then χ tl is the characteristic vector of a complete graphGtl and for a non-zero ai = tk
we have

ai = tk =
k∑

l=1

(tl − tl−1) =
k∑

l=1

(tl − tl−1)χ
tl
i =

s∑

l=1

(tl − tl−1)χ
tl
i .

An analogous statement holds for ai j = min{ai , a j } and thus

a =
s∑

l=1

(tl − tl−1)χ
tl

for complete graphs Gts � · · · � Gt1 , as illustrated in Fig. 6. Taking tl − tl−1 copies
of Gtl and n − ts copies of the empty graph, we can write

a =
n∑

b=1

χ̂b
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Fig. 6 The vector a is the sum of
characteristic vectors of nested
complete graphs
Gts � · · · � Gt1

t1 t2 t3 t4

for graphsGn ⊆ · · · ⊆ G1, whereGb = Gtl for any b ∈ [n] such that tl−1+1 ≤ b ≤ tl
and χ̂b denotes the characteristic vector of Gb. Thus, a is the sum of m vertices of
P(Km) and is therefore contained in π−1(a∗) ∩ nP(Km).

Suppose a ∈ (F1 + · · · + Fn), i.e.

a =
n∑

b=1

∑

q∈Sb
λqq,

∑

q∈Sb
λq = 1,

where Sb ⊆ vert(Fb) is a subset of vertices of the face Fb and λq > 0 for all q ∈ Sb.
Note that all vertices of the polytope P(Km) satisfy inequalities (i)–(v) for n = 1.
Similar to the proof of Proposition 11, we now show that

⋃n
b=1 S

b = {χb
∣
∣ b ∈ [n]}

and deduce from this that

(tl − tl−1)χ
tl =

n∑

b=1

∑

q∈Sb
q=χ tl

λqq.

Then Lemma 12 implies that there is a labelling of the faces such that χ̂b ∈ Fb for all
b ∈ [n].

We begin with
⋃n

b=1 S
b ⊆ {χ̂b

∣
∣ b ∈ [n]}. Let q̂ ∈ Sb be a non-zero vector and

i ∈ [m] such that ai = min j∈[m]
{
a j
∣
∣ q̂ j = 1

}
. Note that since λq̂ > 0 and q̂i = 1, we

have ai > 0, so ai = tk for some non-zero value. We show that q̂ = χ tk . Let j ∈ [m].
If a j < tk , then q̂ j = 0 by the choice of i and thus q̂i j = 0 by (ii). If a j ≥ tk , then
ai j = ai = tk by the definition of a and so q̂i j = q̂i = 1, since otherwise (by (ii))

tk = ai j =
n∑

b=1

∑

q∈Sb
λqqi j <

n∑

b=1

∑

q∈Sb
λqqi = ai = tk . (3)

Hence, we have q̂ j = 1 and so q̂ = χ tk . Let q̂ = 0 be the zero vector and i ∈ [m]
such that ai = ts attains the maximum value. Since q̂i = 0, λq̂ > 0 and qi ∈ {0, 1}d
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for all q ∈⋃n
b=1 S

b, we have

ts = ai =
n∑

b=1

∑

q∈Sb
λqqi <

n∑

b=1

∑

q∈Sb
λq =

n∑

b=1

1 = n (4)

and therefore the number of characteristic vectors of the empty graph is n − ts > 0,
i.e. q̂ = 0 ∈ {χ̂b

∣
∣ b ∈ [n]}.

We now show
⋃n

b=1 S
b ⊇ {χ̂b

∣
∣ b ∈ [n]}. Let tk be a non-zero value of a. We

show that there exists some q ∈ ⋃n
b=1 S

b such that q = χ tk . Let i, j ∈ [m] such that
ai = tk, a j = tk−1. Since ai > a j and

⋃n
b=1 S

b ⊆ {χ̂b
∣
∣ b ∈ [n]}, this implies

{
χ tl
∣
∣ tl > tk−1, i ∈ V (Gtl )

} ∩
n⋃

b=1

Sb �= ∅.

Note that i ∈ V (Gtl ) implies that ai ≥ tl . Thus, since otherwise ai > tk ,

{
χ tl
∣
∣ tl = tk, i ∈ V (Gtl )

} ∩
n⋃

b=1

Sb �= ∅.

Suppose 0 ∈ {χb
∣
∣ b ∈ [n]}, i.e. there exists a characteristic vector of the empty graph

and so ts < n. Let i ∈ [m] such that ai = ts . Inequality (4) implies that there exists
a q̂ ∈ ⋃n

b=1 S
b such that q̂i = 0. By the above, we know that q̂ ∈ {χ̂b

∣
∣ b ∈ [n]},

which are characteristic vectors of nested graphs. In particular, all non-empty graphs
contain the graph Gts and hence the vertex i . Since q̂ is a characteristic vector of one
of the nested graphs graphs, it must be the empty graph, i.e. q̂ = 0. This shows that⋃n

b=1 S
b = {χ̂b

∣
∣ b ∈ [n]}.

Finally, we now show

(tl − tl−1)χ
tl =

n∑

b=1

∑

q∈Sb
q=χ tl

λqq

for all l ∈ [s]. Let i ∈ [m] such that ai = tl for some l ∈ [s]. Then i ∈ V (Gtk ) for
all k ≤ l and i /∈ V (Gtk ) for all k > l. As

⋃n
b=1 S

b = {χ̂b
∣
∣ b ∈ [n]} and the graphs

Gt1 , . . . ,Gts are nested, we have that

tlχ
tk
i = tl = ai =

n∑

b=1

∑

q∈Sb
λqqi =

n∑

b=1

∑

q∈Sb
q∈{χ t1 ,...,χ tl }

λqqi .
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for all k ≤ l. Hence,

(tl − tl−1)χ
tl
i = (tlχ

tl
i ) − (tl−1χ

tl−1
i ) =

n∑

b=1

∑

q∈Sb
q=χ tl

λqqi .

A similar statement holds for the edge i j for i, j ∈ V (Gtl ). If i /∈ V (Gtl ) then

(tl − tl−1)χ
tl
i = 0 =

n∑

b=1

∑

q∈Sb
q=χ tl

λqqi .

and similarly for any i, j ∈ [m] such that i j is not an edge in Gtl . Hence, all assump-
tions of Lemma 12 are fulfilled and it implies that there is a labelling of the faces such
that χ̂b ∈ Fb for all b ∈ [n]. ��

4.3 Proofs of Main Results

Proof of Theorem 2: This is a reformulation of Theorem 6 for r = 1. ��
Proof of Theorem 6: Let a∗ ∈ {0, r}m, n ≥ r , a ∈ π−1(a∗). By Proposition 11, for any
faces F1, . . . , Fn of P(Km) such that a ∈∑n

b=1 F
b holds that a ∈∑n

b=1 vert(F
b).

Proposition 4 implies that this holds if and only if for any set of valuations there exists
an allocation and price p ∈ R

d at which a competitive equilibrium exists. ��
Proof of Theorem 7: Let a∗ ∈ {0, 1, . . . , n}m . Then by Proposition 13, there exists
a point a ∈ π−1(a∗), such that for any faces F1, . . . Fn of P(Km) containing
a ∈ ∑n

b=1 F
b holds that a ∈ ∑n

b=1 vert(F
b). Hence, by Corollary 5, for any set

of valuations there exists an allocation and price at which a competitive equilibrium
exists. ��
Proof of Theorems 8 and 9: Let valb(a) = 〈wb, a 〉, where wb ∈ R

d is the vector
in which we replace every entry of wb that has value −∞ by the value −M for a
sufficiently large M ∈ R. By assumption, the cliques KSb , b ∈ [n] form a covering of
the graph Km . Thus, we can find a partition of the vertices [m] = V 1 � · · · � V n such
that V b ⊆ Sb.

We consider the graph consisting of unions of cliques, where the vertex sets of the
cliques are the sets V 1, . . . , V n . Let a ∈ {0, 1}d be the characteristic vector of this

graph. According to Theorem 6, given the valuations val
b
, b ∈ [n], we can find a price

p ∈ R
d and an allocation a =∑n

b=1 a
b such that ab ∈ D(val

b
, p).

More precisely, each ab is the characteristic vector of the union of a subset of the

cliques V 1, . . . , V b. Furthermore, if M is big enough then ab ∈ D(val
b
, p) implies

that the graph corresponding to ab is contained the graph Sb that agent b has bid on
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(that is because if ab contains a vertex where wb has value −M , then 〈wb − p, ab 〉 <

0 = 〈wb − p, 0 〉). Thus, also the value 〈wb − p, ab 〉 is finite and we have

〈wb − p, ab 〉 = 〈wb − p, ab 〉.

Since in general we always have

〈wb − p, a 〉 ≤ 〈wb − p, a 〉

for any a ∈ P(Km), it follows that ab ∈ D(valb, p) for the original valuations, for all
b ∈ [n], so competitive equilibrium at a always exists. ��
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