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Abstract
The optimization of periodic timetables is an indispensable planning task in public trans-
port. Although the periodic event scheduling problem (PESP) provides an elegant math-
ematical formulation of the periodic timetabling problem that led to many insights for 
primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the 
standard mixed-integer linear programming formulations, linear programming relaxations 
are weak, and the integer variables are of pure technical nature and in general do not cor-
relate with the objective value. While the first problem has been addressed by develop-
ing several families of cutting planes, we focus on the second aspect. We discuss integral 
forward cycle bases as a concept to compute improved dual bounds for PESP instances. 
To this end, we develop the theory of forward cycle bases on general digraphs. Specifi-
cally for the application of timetabling, we devise a generic procedure to construct line-
based event-activity networks and give a simple recipe for an integral forward cycle basis 
on such networks. Finally, we analyze the 16 railway instances of the benchmark library 
PESPlib, match them to the line-based structure, and use forward cycle bases to compute 
better dual bounds for 14 out of the 16 instances.

Keywords  Periodic event scheduling problem · Periodic timetabling · Cycle spaces · 
Cycle bases

1  Introduction

The optimization of timetables is a method to improve public transport in an 
inexpensive way: By improving transfer times, coordinating frequently used lines, 
selecting a timetable which is particularly stable with respect to delays, etc., 
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customer satisfaction can be increased significantly by simply re-planning trips 
without the need to invest in new infrastructure. In practice, particularly in the 
context of local transport systems, vehicle trips are oftentimes scheduled periodi-
cally, meaning that vehicles arrive and depart at regular intervals, e.g., every 20 
or 60 min. A mathematical foundation for such a timetabling problem was for-
mally introduced by Serafini and Ukovic as the periodic event scheduling prob-
lem (PESP) [1]. Several NP-hardness results have been derived in the context of 
PESP [2-4]. The problem is notoriously hard in practice as well, e.g., none of 
the 22 instances of the benchmark library PESPlib [5] could be solved to opti-
mality so far. Although PESP can be formulated efficiently as a mixed integer 
linear programming problem, a great drawback is that the natural LP relaxation 
provides no information, so that standard methods such as branch-and-cut do not 
work particularly well.

In the past, a myriad of customized methods have been developed for the peri-
odic event scheduling problem, many of which are based on cycles in the under-
lying so-called event-activity network: Nachtigall presents a cycle-based mixed-
integer programming formulation for PESP using a cycle matrix of a fundamental 
cycle basis, i.e., a matrix whose rows are incidence vectors of the fundamental 
circuits of a spanning tree [6]. Liebchen and Peeters extend this concept to inte-
gral cycle bases [7]. The cycle [4], change-cycle [6], multi-circuit [8], flip [9] cut-
ting planes are all supported on cycles. Lindner and Liebchen suggest a timetable 
merging strategy which among other features analyzes cycle offset variables [10]. 
Tropical neighbourhood search moves along columns of a cycle matrix [11]. In 
short, cycles play a prominent role in the context of periodic scheduling.

However, the number of potential cycle matrices that can be used for the cycle-
based mixed-integer programming formulation is typically huge, and the choice 
has a significant impact on the progression of the dual bound. In our context, 
cycles can have both forward and backward arcs. When a cycle is a forward cycle, 
i.e., it uses exclusively forward arcs, it turns out that increasing the value of the 
integer variable associated to this cycle leads to an increase of the objective 
value, which is not necessarily the case if a cycle contains arcs in both directions. 
In particular, branching along such variables should be advantageous, and it is 
therefore expected that integral cycle bases consisting of forward cycles only will 
make standard mixed-integer programming techniques more effective. This has 
been experimentally confirmed for a single PESPlib instance [12].

Our goal now is to shed some light on the theoretical aspects of forward cycle 
bases and examine whether their good performance can be replicated on more 
instances. Our approach is thus threefold: Firstly, we formally introduce the con-
cept of forward cycle bases and their properties and position it within the hierar-
chy of general cycle bases [13]. Secondly, we examine forward cycle bases spe-
cifically in the context of periodic timetabling. To that end, we propose a generic 
construction of an event-activity network based on line plans as are typically used 
in public transport planning. For such a line-based event activity network, we con-
struct a structured integral forward cycle basis as required for the mixed-integer 
programming formulation for PESP. Lastly, we want to examine whether forward 
cycles indeed perform better with respect to lower bounds in practice. We analyze 
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the structure of the 16 railway instances in PESPlib, allowing us to apply our 
findings about line-based event-activity networks in practice. We conclude our 
study by running computational experiments for all those railway instances and 
compare the performance of our structured forward cycle basis with other prom-
ising candidates. Forward cycle bases turn out to indeed be the preferred choice: 
In all of our tests, a forward cycle formulation resulted in the best lower bounds. 
Even more, this approach contributed to an improvement of the lower bounds on 
14 of the 16 considered instances in PESPlib.

This article is structured as follows: We shortly introduce PESP in Section 2. In 
Section 3, we cover the theory of cycle bases: Standard notions are recalled in Sec-
tion  3.1, and the relevance of cycles in the context of PESP is motivated in Sec-
tion  3.2. We discuss the concept of forward cycle bases and existence properties 
in Section 3.3, followed by the introduction of cycle bases of subspaces and their 
inherited properties in Section  3.4. In Section  4, we propose a generalized mod-
eling approach for timetabling: Section  4.1 describes the generic construction of 
line-based event-activity networks, followed by the construction of a structured for-
ward integral cycle basis in Section 4.2. Finally, we put the theory into practice in 
Section  5, by reverse-engineering a line plan from the PESPlib  instances (Sec-
tion 5.1), discussing how to algorithmically compute extremal forward cycle bases 
in Section 5.2, as well as performing computational experiments in Section 5.3. We 
conclude the paper in Section 6.

2 � Periodic Event Scheduling

The periodic timetabling problem in public transport is commonly modeled in the 
language of the periodic event scheduling problem (PESP) introduced by Serafini 
and Ukovich [1]. A PESP instance consists of a 5-tuple (D,T ,�, u,w) , where

•	 D is a directed graph, called event-activity network, with vertex set V(D) and  
arc set A(D),

•	 T ∈ ℕ≥3 is a period time,
•	 � ∈ ℝ

A(D)

≥0  is a vector of lower bounds with 0 ≤ � < T ,
•	 u ∈ ℝ

A(D)

≥0  is a vector of upper bounds such that 0 ≤ u − � < T ,
•	 w ∈ ℝ

A(D)

≥0  is a vector of weights.

Applying preprocessing techniques (see, e.g., [14]) if necessary, we will assume 
that D has no loops and is weakly connected. A periodic timetable is a vector 
� ∈ [0, T)V(D) such that there is a periodic tension x ∈ ℝA(D) satisfying

PESP may be defined in an abstract way with a general digraph D. In the set-
ting of periodic timetabling in public transport however, the vertices in V(D) model 
departure or arrival events of vehicles of a line at a station, and the arcs in A(D) 

(1)∀a = (i, j) ∈ A(D) ∶ �a ≤ xa ≤ ua and xa ≡ �j − �i (mod T).
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represent activities such as, e.g., driving between two adjacent stations, dwelling 
or turning at a station, or passenger transfers. The graph D is sometimes called an 
event-activity network, as it encodes all relations between events and activities, e.g., 
if i describes the arrival of some train at some station, and j its subsequent departure, 
then an arc a = (i, j) can be seen as a waiting activity. The bounds �a and ua would 
then be interpreted as the minimum and maximum dwell time at that station. We 
refer to Liebchen and Möhring’s in-depth discussion of the capabilities of the PESP 
model [15]. A periodic timetable � hence assigns timings in (0, T) to each event, and 
a periodic tension x sets activity durations that are compatible with the event tim-
ings modulo the period time T. The weights w can be seen as a score of importance 
on the activities. Typically, the weights w are penalty factors for turning or waiting 
activities or estimate the number of passengers using an activity. It is therefore desir-
able to minimize w⊤x , e.g., the total idle time of vehicles or the total travel time of 
all passengers, among all periodic tensions x. Equivalently, one may seek to mini-
mize the weighted periodic slack w⊤x − w⊤

�:

Definition 2.1 (Periodic Event Scheduling Problem [1])  Given (D,T ,�, u,w) , the 
periodic event scheduling problem (PESP) is to find a periodic timetable � with a 
periodic tension x such that the weighted periodic slack 

∑
a∈A(D) wa(xa − �a)  is min-

imum, or to decide that no periodic timetable exists.
The constraints (1) allow to formulate PESP as a mixed-integer linear program  

in a straightforward fashion. We are however interested in a different formulation 
based on cycles. To set up the stage for this formulation, we need to discuss some 
theory about cycle bases at first.

3 � Theory of Cycle Bases

We briefly review the theory of the cycle space and cycle bases of directed graphs  
in Section 3.1 following the treatment as described by Kavitha et al. [13]. How cycle 
bases are tied back to PESP is covered in Section  3.2. We proceed with discuss-
ing forward cycle bases in Section 3.3 and introducing cycle bases of subspaces in 
Section 3.4.

3.1 � Cycle Space and Cycle Bases

Let D be a weakly connected digraph with vertex set V(D) and arc set A(D).

Definition 3.1 (Cycle Space)  The cycle space of D is

C(D) ∶=

{
� ∈ ℤ

A(D) |||
∑

a∈�+(v)

�a =
∑

a∈�−(v)

�a

}
.
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An element � ∈ C(D) is called a cycle. For a ∈ A(D) , we write a ∈ � if �a ≠ 0 . 
An arc a ∈ � is called a forward arc of � if 𝛾a > 0 and backward if 𝛾a < 0 . A 
cycle � is a circuit if � ∈ C(D) ∩ {−1, 0, 1}A(D) . The subgraph of D induced by 
{a ∈ A(D) | a ∈ �} need not be weakly connected. A circuit � is simple if no vertex 
of D is incident with more than two arcs a ∈ �.

Observation 3.2  The cycle space C(D) is a free abelian group. Its rank is given by 
the cyclomatic number

One may also extend the cycle space to coefficients in a field � , i.e., the �-vector 
space

which is of dimension �(D) (see, e.g., [13, Theorem 2.3])

Definition 3.3 (Cycle Basis)  A cycle basis B of D is a set of circuits that constitutes a 
basis of the ℚ-vector space C(D)⊗ℤ ℚ.

A cycle basis B hence consists of � ∶= �(D) circuits �1,… , �� ∈ C(D) ∩ {−1, 0, 1}A(D) 
such that every cycle 𝛾 ∈ C(D)⊗ℤ ℚ with rational coefficients can be written as a  
unique rational linear combination of �1,… , ��.

Let G(D) denote the underlying undirected graph of D. For each a ∈ A(D) , 
we write e(a) ∈ E(G) for the edge of G(D) corresponding to the arc a. By a span-
ning tree of D, we mean a subgraph T ⊆ D such that the corresponding subgraph 
G(T) ⊆ G(D) is a spanning tree. To each co-tree arc a ∈ A(D) ⧵A(T) , we can asso-
ciate the fundamental circuit of a w.r.t. T  , which is the unique circuit � in D that 
satisfies �a = 1 and projects to the unique cycle in the undirected graph that arises by 
adding e(a) to G(T).

Definition 3.4 (Classes of Cycle Bases [13, Definition 3.1])  Let B = {�1,… , ��} be a 
cycle basis of D. We call B

i)	 fundamental if there exists a spanning tree T  of D such that B is the set of funda-
mental circuits of the � co-tree arcs of T ;

ii)	 weakly fundamental if there exists a permutation � such that 

iii)	 integral if B is a basis of the free abelian group C(D) , i.e., every cycle � ∈ C(D) 
can be written as a unique integral linear combination of the elements of B;

iv)	 undirected if B is a basis of the �2-vector space C(D)⊗ℤ 𝔽2 , where �2 denotes the 
finite field with two elements.

�(D) = |A(D)| − |V(D)| + 1.

C(D)⊗ℤ 𝜅 =

{
𝛾 ∈ 𝜅A(D) |||

∑

a∈𝛿+(v)

𝛾a =
∑

a∈𝛿−(v)

𝛾a

}
,

(2)∀i ∈ {2,…�} ∶ ��(i) ⧵ (��(1) ∪⋯ ∪ ��(i−1)) ≠ �;
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Since any directed graph has a spanning tree, there are always fundamental cycle 
bases. While Definition 3.3 is about rational coefficients of cycles, iii) deals with 
integral coefficients, and iv) with coefficients in �2 . Any fundamental cycle basis 
is weakly fundamental, and by algebraic considerations, any integral cycle basis is 
undirected. It is also true that weakly fundamental cycle bases are integral [16, Cor-
ollary 30]. This implies the following hierarchy of cycle bases:

fundamental ⟹ weakly fundamental ⟹ integral ⟹ undirected.

Definition 3.5  (Cycle Matrix)  Let B be a cycle basis of D. The matrix 
Γ ∈ {−1, 0, 1}B×A(D) , whose rows are the elements of B , is called the cycle matrix of B.

3.2 � Cycles in the Context of PESP

The significance of cycle bases for periodic timetabling becomes evident from the 
following theorem:

Theorem 3.6 (Cycle Periodicity Property [14, 17])  For a PESP instance (D,T ,�, u,w) 
and an integral cycle basis B of D, the vector x ∈ ℚA(D) with � ≤ x ≤ u is a periodic 
tension if and only if there exists a vector z ∈ ℤB such that 𝛾⊤x = Tz𝛾 for each � ∈ B.

This allows us for the following MIP formulation of the periodic event scheduling 
problem using a cycle matrix:

Corollary 3.7  (Cycle‑Based MIP Formulation of PESP)  For a PESP instance 
(D,T ,�, u,w) , an integral cycle basis B of D with corresponding cycle matrix Γ , 
the vector x ∈ ℚA(D) is an (optimal) periodic tension of PESP if and only if x is an 
(optimal) solution to

It is easy to see that an optimal solution to the LP relaxation of (3) is trivially 
obtained, namely, with x = � and z = Γ�∕T  , which results in a weighted slack of 
0. Consequently, the LP relaxation does not provide additional information. To 
improve this lower bound, one could add valid inequalities to the LP relaxation. A 
useful inequality for PESP was introduced by Odijk [4]:

Lemma 3.8  Let (D,T ,�, u,w) be a PESP instance and x a periodic tension. Then for 
all cycles � ∈ C(D) , the cycle inequality

(3)

min w⊤(x − �)

s.t. � ≤ x ≤ u

Γx = Tz

z ∈ ℤ
B

x ∈ ℚ
A(D)
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holds, where �+ ∶= max(� , 0) and �− ∶= max(−� , 0) ∈ ℤ
A(D)

≥0
 are the positive and 

negative parts of � , respectively, so that � = �+ − �−.

The cycle inequalities belong to the larger family of flip inequalities [9]. In the 
case that �− = 0 , the cycle inequality for � is equivalent to the change-cycle inequal-
ity for � [6]. Odijk’s cycle inequalities can be interpreted as an information of how 
much aggregated tension 𝛾⊤x needs to be distributed along a cycle. Adding these 
inequalities to the LP relaxation essentially corresponds to increasing the tension 
among arcs of certain cycles away from the trivial solution.

An intuitive approach to quickly increase the dual bound is to pick cycles whose 
inequality contributes to a particularly high lower bound, thus leading to a signifi-
cant increase of aggregated tensions. In the dual sense, the objective is to maximize; 
one wants to select cycles that lead to high costs. Suppose the addition of a cycle 
inequality leads to an increase of tension along said cycle. This can be achieved by 
an increase of the tension on an arc a ∈ � if a is forward ( �a = 1 ) or by a decrease 
if a is backward ( �a = −1 ). Observe that the tension of each arc contributes to the 
objective function, independent of its orientation within cycles. Thus, an increase 
in the objective can be obtained if the additional tension is distributed along some 
forward arcs. If the cycle contains also backward arcs, the increased tension require-
ment may result in only marginal changes on the dual bounds, due to the opposite 
signs. Consequently, cycles with forward arcs only seem more promising for quickly 
raising the dual bounds.

Among the cycles using arcs in one direction only, which ones should be selected 
for a basis? Since we have 𝛾⊤x = Tz𝛾 for a cycle � of the cycle basis, it is preferable 
to use basis elements, where the upper and the lower bound of Odijk’s cycle inequal-
ities are particularly close together, since this restricts the number of possible inte-
gral values for z� , which is relevant for a branch-and-bound approach. A reasonable 
choice thus tends to be cycles with small aggregated span 𝛾⊤(u − �) [7]. An alterna-
tive choice could be high weight cycles, as they contribute to the objective signifi-
cantly, making them promising candidates for a quick increase of the dual bound.

Example 3.9  For a better understanding, consider the small PESP instance in Fig. 1. This graph 
contains (up to sign) 7 circuits, namely, �1, �2, �3, �1 + �2, �1 + �3,�2 + �3, �1 + �2 + �3 . 
The circuits �1, �2, �3 are the ones with smallest span and would be the traditional first  

(4)

⌈
𝛾⊤
+
� − 𝛾⊤

−
u

T

⌉
≤

𝛾⊤x

T
≤

⌊
𝛾⊤
+
u − 𝛾⊤

−
�

T

⌋

Fig. 1   Example instance by Lindner et al. [12] with period time T = 10 and labels 
[�

a
,u

a
],w

a

���������������������������������→

x
a



	 Operations Research Forum (2023) 4:53

1 3

53  Page 8 of 33

choice to increase the dual bound. Yet, their addition will not lift the dual bound, as the cor-
responding cycle inequalities do not cut off the trivial solution x = � to the LP relaxation. 
In contrast, the addition of the cycle inequality of �2 and �1 + �2 + �3 (marked in green) to 
the LP relaxation is enough to detect the optimal solution of this instance, as is indicated by 
the blue tension values. Observe that both are forward cycles, �2 is one of the cycles with 
the tightest bounds w.r.t. (4) and �1 + �2 + �3 is the cycle whose minimum arc weight is 
maximum. In fact, the latter is solely responsible for increasing the dual bound. For a more 
detailed discussion of this example, we refer to Lindner, Liebchen, and Masing [12].

We want to evaluate whether our intuition pays off in practical situations: Do 
cycle basis formulations perform significantly better if the cycles are all forward? 
Does the cycle selection play a role, i.e., are small span, or heavy weight cycles bet-
ter than generic forward cycles? To that end, we will first discuss the theory of for-
ward cycles in Section 3.3, then show how to strategically construct forward cycle 
bases on a line-based event-activity network in Section 4, and finally reach the com-
putational experiments in Section 5 where we compare the performance of different 
types of cycle bases.

3.3 � Forward Cycle Bases

Definition 3.10 (Forward Cycle Basis)  A cycle � ∈ C(D) is called a forward cycle if it 
uses only forward edges, i.e., if 𝛾a > 0 for all a ∈ � . A cycle basis consisting exclu-
sively of forward circuits is called a forward cycle basis.

Let D be digraph. By a block of D, we mean a subgraph of D that projects to a 
biconnected component of the underlying undirected graph G(D). Analogously, a 
weakly 2-edge-connected component is a subgraph of D that projects to a 2-edge-
connected component of G(D).

Theorem 3.11 (Existence Criteria of Forward Cycle Bases)  The following are equiva-
lent for a directed graph D: 

i)	 D has a forward cycle basis.
ii)	 Each block of D is either strongly connected or a single arc.
iii)	 Each weakly 2-edge-connected component of D is strongly connected.

Proof  The equivalence of i) and ii) was shown by Gleiss, Leydold, and Stadler 
[18,Theorem  7]. Since for all � ∈ C(D) holds �a = 0 when e(a) is a bridge of  
G(D), the cycle space of D is the direct sum of the cycle spaces of its weakly  
2-edge-connected components. Strongly connected digraphs admit a forward  
cycle basis [19, Proposition 2.1], thus iii) implies i).
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To see that i) implies iii), let a ∈ A(D) be an arc within one weakly 2-edge-connected 
component C, and let B constitute a forward cycle basis of D. Since e(a) is not a bridge 
of G(D), a is contained in some cycle � ∈ C(D) , but as � is a linear combination of the 
circuits in B , a is contained in at least one of the circuits in B . In particular, if a = (i, j) , 
then there is a j-i-path in C. This implies that C is strongly connected.

Example 3.12  Not every digraph with a forward cycle basis has a fundamental for-
ward cycle basis. Consider for example the graph in Fig. 2a. Its cyclomatic num-
ber is 4, and it has exactly five forward cycles, which are displayed in Fig.  2b– 
f. Observe that �2 + �5 = �3 + �4 : Any combination of �1 with three of the cycles 
�2,… , �5 forms a cycle basis of the graph. A spanning tree of the graph corresponds 
to four co-tree arcs. However, any combination of the forward cycles forming a basis  
has at most three arcs covered by one unique cycle only. Consequently, this graph 
cannot have a fundamental forward cycle basis. It has a weakly fundamental forward  
cycle basis however, e.g., the ordering �4, �2, �3, �1 fulfils the property (2).

Lemma 3.13  Every undirected graph G has an orientation such that the induced 
directed graph D with G(D) = G has a fundamental forward cycle basis.

Proof  Without loss of generality, we can assume that G is connected. Consider a 
depth-first search tree T  of G from some root r ∈ V(G) . Since G is connected, T  
is spanning. Any co-tree edge e ∈ E(G) ⧵ E(T) is a back edge and not a cross edge 
[20, Theorem  22.10]. By inducing an orientation along each edge e ∈ E(T) from 
r towards the leaves of T  , and backwards along the co-tree arcs, i.e., towards the 
ancestor, all fundamental circuits in the resulting digraph become forward cycles.

3.4 � Cycle Bases of Subspaces

Let D be a weakly connected digraph. For later use, we will generalize the concept 
of cycle bases to subspaces of the cycle space.

Definition 3.14 (Cycle Bases of Subspaces)  Let B� = {�1,… , ��� } be a set of circuits 
in C(D) and consider spanℚ(B

�) , the ℚ-linear subspace of C(D)⊗ℤ ℚ generated by 
B
′ . If B′ is linearly independent over ℚ , we call B′ a cycle basis of the subspace 

spanℚ(B
�) . Furthermore, in this case, the basis B′ is called 

(a) (b) (c) (d) (e) (f)

Fig. 2   Strongly connected graph without a fundamental forward cycle basis (cf. Lindner et al. [12])
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i)	 fundamental if for each � ∈ B
� there exists an arc a ∈ � which is uniquely in � , 

i.e., a ∉ � � for all � � ∈ B
� ⧵ {�};

ii)	 weakly fundamental if there is a permutation � of the cycles in B′ such that 

iii)	 integral if spanℚ(B
�) ∩ ℤA(D) = spanℤ(B

�) , i.e., every integer cycle in spanℚ(B
�) 

can be expressed as an integer linear combination of cycles in B′;
iv)	 undirected if B′ is linearly independent over �2.

Remark 3.15  Note that while the cycle space C(D�) of subgraph D′ ⊆ D gives rise 
to a subspace of C(D)⊗ℤ ℚ , not every subspace spanℚ(B

�) of C(D)⊗ℤ ℚ is also 
a cycle space of a subgraph. This becomes evident when considering the cycles in 
Example 3.12 again: The three cycles �3, �4, �5 span the cycle space of the subgraph 
D′ with the leftmost arc removed and �(D�) = 3 . In contrast, the 3-dimensional 
space spanℚ({�1, �2, �5}) covers every arc of D, but �(D) = 4.

The following proposition assures the compatibility with the previous classifi-
cation of cycle bases.

Proposition 3.16  Let B be a (fundamental/weakly fundamental/integral/undirected) 
cycle basis of D. Then, any subset B′ ⊆ B is a (fundamental/weakly fundamental/
integral/undirected) cycle basis of the subspace spanℚ(B

�).

Proof  Let B = {�i, i ∈ [�]} be a cycle basis of D, and let I ⊆ [𝜇] be the index set such 
that B� = {�i ∈ B ∣ i ∈ I} . It is clear that B′ is a cycle basis of the subspace spanℚ(B

�) . 
We will now go through the four classes of cycle bases of Definitions 3.4 and 3.14: 

i)	 Suppose that B is fundamental w.r.t. some spanning tree T  . Then each cycle of 
B contains a unique co-tree arc of T .

ii)	 Suppose that B is weakly fundamental. Reordering the cycles, we can assume that 
B satisfies (2) with � = id . But then B′ satisfies (5) with � = id.

iii)	 Suppose that B is integral. If � ∈ spanℚ(B
�) ∩ ℤA(D) , then � ∈ C(D) , thus � 

can be written as a unique integer linear combination of the cycles in B . Since 
� ∈ spanℚ(B

�) , the coefficients w.r.t. cycles not in B′ must vanish.
iv)	 Suppose that B is undirected. Since B is linearly independent over �2 , so is the 

subset B′.

The hierarchy of cycle bases extends as well to cycle bases of subspaces:

Proposition 3.17  Let B� = {�1,… , ��� } be a cycle basis of the subspace spanℚ(B
�) . 

Then, the following implications hold:

fundamental 
i)

⟹ weakly fundamental 
ii)

⟹ integral 
iii)

⟹ undirected

(5)∀i ∈ {2,… ,��} ∶ ��(i) ⧵ (��(1) ∪⋯ ∪ ��(i−1)) ≠ �;
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Proof 

i)	 If B′ is fundamental, then B′ satisfies (5) with � = id.
ii)	 Suppose that B′ is weakly fundamental. By (5), we can assume that there is 

a sequence a1,… , a�� of arcs such that for all i ∈ {2,… ,��} holds ai ∈ �i , but 
ai ∉ �j for j < i . Let � ∈ spanℚ(B

�) ∩ ℤA(D) . Since B′ is a ℚ-basis of spanℚ(B
�) , 

we can express � as a linear combination of �1,… , ��� by means of a coefficient 
vector � . In particular, � satisfies the system of linear equations 

 The coefficient matrix of (6) is upper triangular, and since all cycles in B′ are 
circuits, all diagonal entries are ±1 . We conclude that the coefficient matrix has 
an integer inverse, so that by Cramer’s rule, � is unique and integral.

iii)	 Suppose that B′ is integral. Let �1,… , ��� ∈ �2 such that 
∑��

j=1
�j�j = 0 over �2 . 

Choosing �j ∈ ℤ with �j ≡ �j mod 2 for j ∈ {1,… ,��} , this means that ∑��

j=1
�j�j = 2� for some � ∈ spanℚ(B

�) ∩ ℤA(D) . This implies that � =
∑��

j=1

�j

2
�j 

over ℚ , and since B′ is an integral cycle basis of spanℚ(B
�) , the coefficients of � 

w.r.t. B′ must be integral, so that all �j are divisible by 2. We conclude that 
�1 = ⋯ = ��� = 0 ∈ �2.

4 � Line‑Based Cycle Bases

While PESP can be applied to general periodic scheduling problems, e.g., for auto-
mated production systems [21] or coordinated traffic signals [22], the main applica-
tion case is timetabling in the context of public transport. We will present a way to 
construct a generic event-activity network based on a given line plan and an explicit 
line-based integral forward cycle basis.

To this end, we represent the infrastructure of a given city by a simple undirected 
graph I  . Its vertices S ∶= V(I) correspond to stations and its edges E(I) to possible 
connections. We consider a line plan L as a set of bidirectional lines represented 
by simple undirected paths on I  . The line network is then an undirected graph N  
whose vertices are the stations and whose edges are induced by the lines. If two 
lines share the same edge e ∈ E(I) , we create two distinct parallel edges in N  . More 
formally, we define the line network as follows:

Definition 4.1 (Line Network N )  The line network N  associated to (I,L) is the undi-
rected graph with V(N) ∶= S and E(N) ∶= {{u, v}(�) ∣ {u, v} ∈ E(�) for � ∈ L}. 
For s ∈ S , we will denote the degree of the node s in N  by ds.

We will tacitly assume that N  is connected.

(6)
��∑

j=1

�j,ai�j = �ai , i ∈ {1,… ,��}.
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4.1 � Line‑Based Event‑Activity Networks

Based on the line network, we now want to determine a timetable, i.e., departure and 
arrival times for each stop on each line in L. For transfers, we make the following 
assumptions:

•	 If two distinct lines meet in a station, transfers are allowed to and from both 
lines.

•	 Transfers within the same line are prohibited (both in the same and return direction).

We propose the following generic construction for an event-activity network 
based on a line network, which is also illustrated in Fig. 3.

Definition 4.2  (Line‑Based Event‑Activity Network EAN)  Let N  be a line network 
associated to (I,L) , and let ds denote the degree of station s ∈ S in N  . Fix a bijec-
tive labeling �s ∶ �(s) → [ds] of the edges of N  incident with s. We construct the 
event-activity network EAN based on N  and � as the following directed graph: 

(a) (b)

(c)

Fig. 3   Example of Definitions 4.2 and 4.4
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i)	 Start with an empty digraph.
ii)	 For each station s ∈ S and each i ∈ [ds] , add a departure node Ds

i
 and an arrival 

node As
i
.

iii)	 For each line � ∈ L , add

•	 two driving arcs (Ds
�s(e)

,At
�t(e)

) and (Dt
�t(e)

,As
�s(e)

) for each e = {s, t}(�) ∈ E(�),
•	 two dwell arcs (As

�s(e)
,Ds

�s(e
�)
) and (As

�s(e
�)
,Ds

�s(e)
) for each non-terminal station 

(i.e., internal node) s ∈ V(�) with the two incident edges e and e′,
•	 two turn arcs (As

�s(e)
,Ds

�s(e)
) and (At

�t(e
�)
,Dt

�t(e
�)
) , where s and t are the terminal 

stations (i.e., path endpoints) of � , and e and e′ are the first and last edge of � , 
respectively.

iv)	 For each station s ∈ S and i, j ∈ [ds] with i ≠ j , add a transfer arc (As
i
,Ds

j
) unless 

this arc has been added previously as a dwell arc.

The driving arcs (Ds
i
,At

j
) and (Dt

j
,As

i
) are called antiparallel partner arcs. For a 

departure node Ds
i
 resp. arrival node As

i
 , we define the line association �(Ds

i
) resp. 

�(As
i
) as the unique line in L to which the edge �−1

s
(i) belongs. Finally, we define the 

i-th end at s as the unique directed simple path �s
i
 from Ds

i
 to As

i
 using only nodes 

with the same line association, i.e., using no transfer arcs.
Observation 4.3  For an event-activity network EAN , we can identify arc types by 
their labels: 

i)	 If (Ds
i
,At

j
) ∈ A(EAN) , then it is a driving arc of line �(Ds

i
) = �(At

j
).

ii)	 If (As
i
,Ds

i
) ∈ A(EAN) , then it is a turn arc of line �(Ds

i
).

iii)	 Any (As
i
,Ds

j
) ∈ A(EAN) with i ≠ j is either a transfer or a dwell arc.

iv)	 If (As
i
,Ds

i
) ∈ A(EAN) is a turn arc, then any (As

i
,Ds

j
) with i ≠ j is a transfer arc.

v)	 If (As
i
,Ds

i
) ∉ A(EAN) , then there exists a unique j ∈ [ds], i ≠ j such that (As

i
,Ds

j
) 

is a dwell arc of line �(Ds
i
) , and all other arcs (As

i
,Ds

k
) with k ∈ [ds] ⧵ {i, j} are 

transfer arcs to other lines.
vi)	 The two arcs (As

i
,Ds

j
) and (As

j
,Ds

i
) are of the same type.

Note that every i-th end �s
i
 contains exactly one turn arc outside of station s. Such 

an �s
i
 can be interpreted as a sub-sequence of activities of an associated line: It 

consists of the entire sub-path of a line starting at station s all the way to its 
terminus station (in direction as indicated by e with �s(e) = i ), turning in t and 
returning back to s.

Please note that we do not add any headway arcs in the line-based event-activ-
ity network, which might seem like a unrealistic oversight. In practice, headways 
are an important tool to evade scheduling conflicts when vehicles use the same 
infrastructure. However, they are highly dependent on the specific infrastruc-
ture, e.g., a headway arc might be needed within a station when two lines are 
routed over the same platform, but not if they use different platforms. Observe 
that this level of detail is not reflected in a given line network N—there is no 
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information about station size, available switches, capacity restrictions, etc. As 
our construction is line-based, in the sense that it relies on the information which 
can be obtained from a given line network N  only, we do not want to make any 
assumptions about headway requirements. The line-based construction should 
thus be seen as an idealized case, which has to be adjusted slightly to fit practical 
purposes. In fact, we will see in Section 5.1 that practical instances have a similar 
structure, but do include headway arcs and not as many transfer arcs.

We will first consider a special case of a line-based event-activity network, 
namely, one which arises from a star-shaped line network. The star event-activity 
network EAN∗ is easy to analyze and—more importantly—any generic line-based 
event-activity network in the sense of Definition 4.2 may locally be considered 
as a special case of EAN∗ . This will allow us to extend local properties obtained 
from the star to the generic event-activity network.

Definition 4.4 (Star Event‑Activity Network EAN∗)  A star event-activity network of 
degree d is a line-based event-activity network EAN∗ of a line network associated 
to (I,L) , where I  is a star graph with central node s and d leaves v1,… , vd , and L 
consists of lines that connect s with either one or two leaves in a way that all leaves 
are covered by some line and two distinct lines intersect only in s.

Example 4.5  Figure 3 shows a line network N∗ based on a star graph I  with d = 6 
leaves and a line plan L of four lines (Fig. 3a), the corresponding line-based event-
activity network EAN∗ (Fig. 3b), and the labeling �s and i-th ends �s

i
 (Fig. 3c).

Lemma 4.6  (Cyclomatic Number of EAN)  The cyclomatic number of a line-based 
event-activity network EAN based on a line network N  associated to (I,L) is given 
by

where S denotes the set of stations (i.e., nodes) in N .

Proof  By Definition 4.2, �V(EAN)� =
∑

s∈S 2ds . The combined number of turn and 
transfer arcs within a station s is ds(ds − 1) , as we add an arc (As

i
,Ds

j
) for every 

i, j ∈ [ds] with i ≠ j . For each edge {s, t}(�) ∈ E(N) , exactly two driving arcs are 
added. Lastly, for each line � ∈ L , there are exactly two turn arcs at the terminal sta-
tions of � . In total, we have

arcs. Using that 
∑

s∈V(N) ds = 2�E(N)� by the handshaking lemma, the formula for 
the cyclomatic number (Observation 3.2), and observing that EAN is weakly con-
nected since N  is

�(EAN) =
∑

s∈S

(ds − 1)2 − |S| + 2|L| + 1,

|A(EAN)| =
∑

s∈S

ds(ds − 1) + 2|E(N)| + 2|L|
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Let As
turn

 denote the set of turn arcs (As
i
,Ds

i
) at a station s ∈ S.

Corollary 4.7 (Cyclomatic Number of EAN∗)  The cyclomatic number of a star line-
based event-activity network EAN∗ of degree d with central station s is

Proof  Since the underlying line network N∗ has d stations of degree 1 and one (cen-
tral) station s of degree d, by Lemma 4.6, it suffices to show that |As

turn
| = 2|L| − d . 

The number of lines in L is at most d, and it equals d if and only if all d lines turn at 
s, so that the formula holds in this case. Whenever two lines with one leaf are joined 
to a larger line connecting two leaves, |As

turn
| decreases by two, and |L| decreases by 

one, so that the formula remains valid.

4.2 � Construction of a Line‑Based Forward Cycle Basis

In the following, we will exploit the special structure of line-based event-activity 
networks, as they allow us to construct fairly intuitive forward cycles guarantee-
ing an integral forward cycle basis.

Definition 4.8 (q‑End Cycles)  For s ∈ S and q ∈ [ds] , a q-end cycle at s is a forward 
circuit in EAN∗ which uses exactly q distinct ends at s. In particular, using + to 
denote the concatenation of paths, we define the

•	 1-end cycles, denoted by �s
i
 for i ∈ [ds] such that (As

i
,Ds

i
) ∈ A

s
turn

 , 

•	 2-end cycles, denoted by �s
ij
 for i, j,∈ [ds], i ≠ j , 

•	 3-end cycles, denoted by �s
ijk

 for pairwise distinct i, j, k ∈ [ds] , 

�(EAN) = |A(EAN)| − |V(EAN)| + 1

=
∑

s∈S

ds(ds − 1) + 2|E(N)| + 2|L| − 4|E(N)| + 1

=
∑

s∈S

(ds − 1)2 +
∑

s∈S

(ds − 1) + 2|L| − 2|E(N)| + 1

=
∑

s∈S

(ds − 1)2 − |S| + 2|L| + 1.

�(EAN∗) = (d − 1)2 + |As
turn

|.

�s
i
∶= �s

i
+ (As

i
,Ds

i
),

�s
ij
∶= �s

i
+ (As

i
,Ds

j
) + �s

j
+ (Aj,Di),

�s
ijk

∶= �s
i
+ (As

i
,Ds

j
) + �s

j
+ (As

j
,Ds

k
) + �s

k
+ (Ak,Di).
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We denote by Cs
123

 the subspace of C(EAN)⊗ℤ ℚ spanned by the 1-, 2-, and 3-end 
cycles at station s.

Example 4.9  For an intuitive understanding of the 1, 2, 3-end cycles, consider the 
star line-based event-activity EAN∗ of degree d = ds = 3 in Fig. 4a. Only one line 
ends at the central node s, as the only turn arc is (As

1
,Ds

1
) . In this case, there is 

only one 1-end cycle, namely, �s
1
 . Furthermore, in this EAN , there are three 2-end 

cycles—�s
12
, �s

13
 , and �s

23
 . Lastly, in this small example, �s

123
 and �s

132
 are the only 

3-end cycles in EAN . All 1, 2, 3-end cycles in this graph can be found in Fig. 4b–
g. In fact, in this example, the six 1,  2,  3-end cycles are the only simple forward 
circuits that exist. The only simple forward circuit containing (As

1
,Ds

1
) is �s

1
 . As 

�(EAN∗) = 5 , any forward cycle basis must contain �s
1
 and a linearly independent 

subset of four of the five cycles Fig. 4c–g.

Example 4.10  The instance in Example 4.9 also serves as an example that a star net-
work does not necessarily have a fundamental forward cycle basis: Suppose there is 
a fundamental forward cycle basis on this network induced by some spanning tree 
T  . In this case, we have |A(T)| = 11 . Any subset of four cycles of 
{�s

12
, �s

13
, �s

23
, �s

123
, �s

132
} covers the end sections �s

1
, �s

2
 and �s

3
 at least three times. 

Then, all nine arcs of the three end sections must be part of the spanning tree. Con-
sequently, two more arcs (As

i
,Ds

j
) and (As

k
,Ds

l
) are needed as tree arcs. In particular, 

we need i ≠ j and k ≠ l as well as {1, 2, 3} = {i, j, k, l} for the tree to be connected. 
Up to symmetry, there are only three cases, all of which are displayed with one rep-
resentative in Fig. 5: If i = l and j ≠ k , then the tree is spanning, but the co-tree arc 

(a)

(b) (c) (d)

(e)

Fig. 4   Example network EAN∗ of degree d = 3 with all 1, 2, 3-end cycles
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(As
k
,Ds

j
) induces a non-forward cycle. If i = k and j ≠ l , then the co-tree arc (As

j
,Ds

l
) 

induces a non-forward cycle. Lastly, if i ≠ k and j = l , then the co-tree arc (As
i
,Ds

k
) 

also induces a non-forward cycle. Consequently, there cannot exist a fundamental 
forward cycle basis.

Lemma 4.11  For any star event-activity network EAN∗ , there exists a weakly funda-
mental forward cycle basis of C(EAN∗) using only 1, 2, 3-end cycles.

Proof  We give an explicit choice and order of cycles such that each new cycle con-
tains at least one arc not present in the previous cycles, cf. (2). We proceed in three 
blocks (see Fig. 6 for an example): 

Block 1:	� {�s
i
∣ i ∈ [d] and (As

i
,Ds

i
) ∈ A

s
turn

},
Block 2:	� {�s

1i
∣ i ∈ [d] ⧵ {1}},

Block 3:	� {�s
1ij

∣ i, j ∈ [d] ⧵ {1}, i ≠ j}.

 As the �s
i
 cycles are arc-disjoint, they fulfil the property (2) within Block 1. Further-

more, by definition of the 2-end cycles, each �s
1i

 contains the antiparallel partner arcs 
(As

1
,Ds

i
) and (As

i
,Ds

1
). Clearly, these arcs are uniquely in �s

1i
 in Block 2, so that Block 

Fig. 5   Explanation of the non-existence of a fundamental forward cycle basis. Blue arcs are necessary 
tree arcs, and red is the co-tree arc inducing a non-forward cycle

(a) (b) (c)

Fig. 6   Construction of the three blocks ( d = 6 ). Arcs in block cycles are bold, and new arcs certifying 
the weak fundamentality (2) are blue
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2 satisfies (2) within itself. Since none of the cycles in Block 1 contains any transfer 
or dwell arcs, neither (As

1
,Ds

i
) nor (As

i
,Ds

1
) are in Block 1 for any i ∈ [d] . Lastly, the 

arc (As
i
,Ds

j
) is uniquely contained in �s

1ij
 and in none of the other cycles of Blocks 1, 

2, or 3. As a consequence, Blocks 1, 2, and 3 in this ordering satisfy (2). In total, we 
have

cycles (Lemma 4.6), all of which are forward, and the given ordering certifies weak 
fundamentality.

While the star event-activity network EAN∗ is a very specific and easy case, it 
serves as an illustrative basis case to generalize 1, 2, 3-end cycles to arbitrary line-
based cycle bases.

Definition 4.12  We define the space of 1,  2,  3-end cycles of EAN as the ℚ- 
linear space spanned by all 1,  2,  3-end cycles at each station s ∈ S and denote  
it by C123(EAN).

Note that for the star event-activity network with central station s, we have 
C123(EAN

∗) = C
s
123

= C(EAN∗) . For an outer station t, Ct
123

 is generated by �t
1
 . Such 

an �t
1
 corresponds to a 1-end cycle at the central node s if the line terminates at s, or 

to a 2-end cycle at s if it passes through the central station. In any case, Ct
123

⊆ C
s
123

.
Let us emphasize that for any station s, the end section �s

i
 is the entire directed 

path from the departure event Ds
i
 to arrival As

i
 along the line �(Ds

i
). In particular, it is 

well possible that �s
i
 passes through multiple other stations before returning to s, but 

it never contains transfer arcs. Consequently, 1-end cycles exist only at terminal sta-
tions of lines and correspond exactly to the cycle composed of driving, dwell and 
turn activities of line � ∶= �(Ds

i
) . In particular, we have �s

i
= �t

j
 for some i ∈ [ds] 

and j ∈ [dt] for the two terminal stations s ≠ t of � . For ease of notation, we will 
denote this cycle by �(�).

Lemma 4.13  Consider the subspace C123(EAN) of the cycle space C(EAN)⊗ℤ ℚ 
spanned by the 1,  2,  3-end cycles of an arbitrary line-based event-activity  
network induced by line network N  . Then, the dimension of C123(EAN) is ∑

s∈S(ds − 1)2 − �E(N)� + 2�L� , and there is a weakly fundamental forward cycle 
basis of C123(EAN) consisting of 1, 2, 3-end cycles.

Proof  Similarly to the proof of Lemma 4.11, we give a specific ordering of a subset 
of 1, 2, 3-end cycles: 

Block 1:	� {�(�) ∣ � ∈ L},
Block 2:	� {𝛾s

1kl
∣ s ∈ S, 1 < k < l ≤ ds such that (As

k
,Ds

l
) is a dwell arc},

|Block 1| + |Block 2| + |Block 3| = |As

turn
| + (d − 1)

+ (d − 2)(d − 1) = (d − 1)2 + |As

turn
| = �(EAN∗)
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Block 3:	� {𝛽s
1i
∣ s ∈ S, 1 < i ≤ ds such that (As

1
,Ds

i
) is a transfer arc},

Block 4:	� {𝛾s
1kl

∣ s ∈ S, 1 < k ≤ d
s
, 1 < l ≤ d

s
, k ≠ l such that (As

k
,D

s

l
) is a transfer arc}.

We now show that this ordering satisfies the weak fundamentality property (5).
Block 1 is clear, as the cycles �(�) are pairwise disjoint.
Block 2 contains a 3-end cycle �s

1kl
 if (As

k
,Ds

l
) is a dwell arc. Due to Observation 

4.3v), the two arcs (As
1
,Ds

k
) ∈ �s

1kl
 and (As

l
,Ds

1
) ∈ �s

1kl
 must be transfer arcs. For k ≠ k′ 

and l ≠ l′ , neither (As
k
,Ds

l�
) nor (As

k�
,Ds

l
) can be a dwell arc, so that neither �s

1kl′
 nor 

�s
1k′l

 is contained in Block 2. Consequently, the only cycle in Block 2 covering the 
two transfer arcs (As

1
,Ds

k
) and (As

l
,Ds

1
) is �1kl . One can observe by the same argumen-

tation that no cycle in Block 2 contains one of their antiparallel partners (As
k
,Ds

1
) and 

(As
1
,Ds

l
) , since k < l , which is a property which will be needed for Block 3. As the 

cycles in Block 1 do not contain any transfer arcs, Blocks 1 and 2 are (even strictly) 
fundamental in the sense of Definition 3.14.

Block 3 is clearly fundamental with respect to itself. Each cycle �s
1i

 in Block 3 
contains exactly two transfer arcs, namely,  (As

1
,Ds

i
) and (As

i
,Ds

1
) . By the previ-

ous argument, at least one of these antiparallel partner arcs is not covered by any 
cycle in Block 2, and certainly not by Block 1. Blocks 1, 2, and 3 are hence weakly 
fundamental.

So far, no cycle contains a transfer arc (As
k
,Ds

l
) for k ≠ l with k, l > 1 . We con-

clude that Blocks 1, 2, 3, and 4 provide a weak fundamental ordering in the sense of 
(5). Note that arcs of the form (As

1
,Ds

i
) and (As

i
,Ds

1
) are part of Block 3 and Block 4 

cycles, so that the ordering cannot be assumed to be strictly fundamental.
Having established weak fundamentality and hence linear independence, we 

observe that for a station s and pairwise distinct i, j, k ∈ [ds] ⧵ {1} holds

Note that all cycles on the right-hand side are in the span of the cycles of Blocks 
1–4. If �s

1i
 was omitted in Block 3, then (As

1
,Ds

i
) is a dwell arc, so that �s

1i
 is in fact 

�(�(Ds
i
)) in Block 1. Similarly, it is possible that �s

1kl
 with k > l is neither in Block 2 

nor Block 4. Then, (As
k
,Ds

l
) is a dwell arc of line �(Ds

l
) , and �kl = �(�(Ds

l
)) , so that 

�s
1kl

 is in the span of Blocks 1–4 by relation (7).
In particular, the cycles of Blocks 1–4 generate C123(EAN).
It remains to compute the number of cycles in Blocks 1–4: Block 1 contains |L| 

cycles. For Blocks 2–4, we can simply count the number of all 2-end �s
1i

 and all 
3-end cycles �s

1kl
 at each station and then subtract the number of omitted cycles. At 

each of the non-terminal stations s, the cycle �(�) passes through dwelling arcs. If � 
connects the 1st end with the i-th end, then �s

1i
 in Block 3 is already given by �(�) . If 

(7)�s
ij
= �s

1ij
+ �s

1ji
− �s

1i
− �s

1j
,

(8)�s
ji
= �s

ij
,

(9)�s
ijk

= �s
1ij
+ �s

1jk
+ �s

1ki
− �s

1i
− �s

1j
− �s

1k
,

(10)�s
ijk

= �s
jki

= �s
kij
.
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it connects ends k and l, say k < l , then we need to count �1kl , but omit �s
1lk

 . We thus 
need to drop exactly one cycle for each of the |V(�)| − 2 = |E(�)| − 1 non-terminal 
stations of each line. The total number of cycles in Blocks 1–4 is therefore

Consider a line-based event activity network EAN of N  , and let D be an arbitrary 
orientation of N  so that G(D) = N  . We define a ℤ-linear map � ∶ C(EAN) → C(D)  
via

where a = (s, t)(�) ∈ A(D) corresponds with e(a) = {s, t}(�) ∈ E(N) , and 
((Ds

i
,At

j
), (Dt

j
,As

i
)) is the antiparallel pair of driving arcs of line � = �(Ds

i
).

The map � is well-defined: Let � ∈ C(EAN) and s ∈ S = V(D) . For i ∈ [ds] , let a+
i
 

denote the unique driving arc from Ds
i
 , and let a−

i
 denote the unique driving arc to 

As
i
 . Then W ∶= {As

i
∣ i ∈ [ds]} ∪ {Ds

i
∣ i ∈ [ds] , the set of all events at s, defines a cut 

in EAN such that �+(W) = {a+
1
,… , a+

ds
} and �−(W) = {a−

1
,… , a−

ds
} . By definition of 

� and since � is a cycle,

Consequently, �(�) is indeed an element of C(D).
Now, let c ∈ C(D) be a forward circuit with arc sequence ((s1, s2)(�1),… , (sk, s1)

(�k)) . 
We can lift c to the forward circuit �(c) with node sequence

where for l ∈ [k] , il , and jl are chosen such that (Dsl
il
,A

sl+1
jl

) is the unique driving arc 
of line �l from station sl to sl+1 , with the convention that sk+1 ∶= s1 . In other words, 
�(c) is simply the forward cycle in EAN obtained by taking all driving arcs in the 
direction as indicated by c, and then connecting two consecutive driving arcs by the 
suitable transfer or dwell arc.

Lemma 4.14  Let EAN be a line-based event-activity network based on a line net-
work N  , and let B123 be an integral forward cycle basis of the subspace C123(EAN) . 
Let D be an orientation of N  such that there is an integral forward cycle basis BD 
of D. Then, B123 and the lifts via � of the cycles in BD constitute an integral forward 
cycle basis of EAN.

|L|
���
Block 1

+
∑

s∈S

(ds − 1)

���������
2-end cycles 𝛽1i, 1<i

+
∑

s∈S

(ds − 1)(ds − 2)

�����������������������
3-end cycles 𝛾1kl, 1<k<l

−
∑

�∈L

(|E(�)| − 1)

�����������������
omitted cycles

=
∑

s∈S

(ds − 1)2 −
∑

�∈L

|E(�)| + 2|L|

=
∑

s∈S

(ds − 1)2 − |E(N)| + 2|L|.

�(�) = (�(�)a)a=(s,t)(�)∈A(D), �(�)(s,t)(�) ∶= �(Ds
i
,At

j
) − �(Dt

j
,As

i
),

∑

a∈�+(s)

�(�)a −
∑

a∈�−(s)

�(�)a =

ds∑

i=1

�a+
i
−

ds∑

i=1

�a−
i
=

∑

a∈�+(W)

�a −
∑

a∈�−(W)

�a = 0.

(D
s1
i1
,A

s2
j1
,D

s2
i2
,… ,A

sk
jk−1

,D
sk
ik
,A

s1
jk
,D

s1
i1
),
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Proof  Every cycle c ∈ BD is a forward circuit and can hence be lifted to a for-
ward circuit �(c) ∈ C(EAN) . Since BD is an integral basis of C(D) , � extends to a 
ℤ-linear map � ∶ C(D) → C(EAN) . Observe that for any forward circuit, c ∈ C(D) 
holds �(�(c)) = c . We deduce that �◦� is the identity map, so that C(EAN) decom-
poses as the direct sum of two free abelian groups: The image of � and the ker-
nel of � . To construct an integral forward cycle basis of C(EAN) , it hence suffices 
to construct integral forward cycle bases of each summand. Since � is injective, 
{�(c) ∣ c ∈ BD} is a basis for the image of � as an abelian group. We will now show 
that ker(𝜌)⊗ℤ ℚ = C123(EAN) . Since B123 is integral, this implies that B123 is a basis 
of ker(�) as an abelian group.

By construction of the 1,  2, 3-end cycles, if any � ∈ B123 uses a driving arc 
(Ds

i
,At

j
) , also its antiparallel counterpart (Dt

j
,As

i
) must be used. In particu-

lar,  C123(EAN) ⊆ ker(𝜌)⊗ℤ ℚ . Using the dimension formulas of Lemmas  4.6 
and 4.13,

and we conclude C123(EAN) = ker(𝜌)⊗ℤ ℚ.

The previous considerations give a constructive proof of the following result:

Theorem 4.15  Every line-based event-activity network has an integral forward cycle 
basis.

Proof  The proof of Lemma 4.13 describes an explicit construction of a weakly fun-
damental and hence integral forward cycle basis of C123(EAN) . By Lemma 3.13, N  
can always be oriented in a way that a fundamental and hence integral forward cycle 
basis exists. It remains to apply Lemma 4.14.

5 � Application to Periodic Timetabling

Lindner et  al. performed preliminary tests which indicate that forward bases pro-
vide good dual bounds—on a single base instance [12]. We now want to exam-
ine whether this is the case for more instances. We therefore choose a two-stage 
approach: First of all, in the spirit of Lindner et  al. [12], we extend our network 
analysis to all 16 railway instances of PESPlib  and detect structural patterns, 
which allow us to identify lines. Adding turn arcs at the terminal stations of the 

dim(ker(𝜌)⊗ℤ ℚ) = 𝜇(EAN) − 𝜇(D)

=
∑

s∈S

(ds − 1)2 − |V(N)| + 2|L| + 1 − |E(N)| + |V(N)| − 1

=
∑

s∈S

(ds − 1)2 − |E(N)| + 2|L|

= dim(C123(EAN)),
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lines, the networks become strongly connected, so that forward cycle bases exist by 
Theorem 3.11. Secondly, we want to investigate whether forward cycle bases have 
an advantage in comparison to arbitrary integral cycle bases: For each of those 16 
instances, we compare the performance of the dual bounds of three different forward 
bases, namely, minimum forward span, forward bottleneck, and a modification of 
the 1, 2, 3-end cycles, to a non-forward cycle basis. Since Borndörfer et al. “empiri-
cally observed stronger dual bounds” [23, p. 13] for the minimum span cycle basis, 
this is also our choice for the non-forward case.

5.1 � Structural Analysis of PESPlib Instances

The railway instances of PESPlib  [5] have been analyzed in the past. Goerigk and 
Liebchen do so for the purpose of preprocessing and reducing the model size [24]. As 
a side product, they also interpret some of the arcs, e.g., they assume that free arcs are 
“waiting times (e.g., of passengers at transfers, of trains during turnarounds, of both dur-
ing stops)” [24, p. 5]. Our aim now is to better understand these instances and to interpret 
them from a practical perspective. Lindner et al. performed such a structural analysis  
for the smallest instance already [12], and we want to extend this approach to all railway 
instances of PESPlib, with the goal of identifying activity types and line-structures.

Each of the instances is a standard PESP instance I = (EAN, T ,�, u,w) with 
period time T = 60 . It turns out that the 16 instances have a similar structure. As 
Lindner et  al. do for the smallest instance  [12, Section  4], we can partition the 
set A(EAN) of arcs of any of the instances into four categories:

•	 Ahead ∶= {a ∈ A(EAN) ∣ �a = ua = 0}

•	 Atrans ∶= {a ∈ A(EAN) ∣ �a = 3, ua = 62}

•	 Adwell ∶= {a ∈ A(EAN) ∣ �a = 1, ua = 5}

•	 Adrive ∶= {a ∈ A(EAN)} ⧵
(
Ahead ∪Atrans ∪Adwell

)

When removing all a ∈ Ahead and all a ∈ Atrans from A(I) , the remaining graph 
still contains all vertices and decomposes into 2k components for some k ∈ ℕ , 
each of which is a simple directed path. Moreover, each of the paths p consists of 
a sequence of nodes (v0,… , vm) for some odd m such that (vi−1, vi) ∈ Adwell for 
even i and (vi−1, vi) ∈ Adrive for odd i and i ∈ [m] . Lastly, it is possible to match 
each path with another path of the same length, which has the same arc bounds in 
reverse order, i.e., for p, there exists another path p′ with p� = (v�

0
,… , v�

m
) such 

that �vi−1vi
= �v�

m−i
v�
m−i+1

 and uvi−1vi = uv�
m−i

v�
m−i+1

 . Let PP denote the set of matched 
pairs of paths.

This allows us to reinterpret each instance. The set Adrive correspond to driving 
arcs and Adwell to dwell arcs. Each pair of matched simple paths (p, p�) ∈ PP can 
then be interpreted as the alternating sequence of drive and dwell arcs per direction 
of a bidirectional line. Furthermore, for p = (v0,… , vm) as above, we call the nodes 
with even index the departure nodes and those with odd index arrival nodes. From 
a modeling perspective, this identification is reasonable: Assuming that the period 
time T = 60 is measured in minutes, vehicle dwell times in stations of 1 to 5 min 
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seem realistic. Furthermore, the headway arcs Ahead are only between arrival nodes, 
and since their lower and upper bounds are both set to zero, they ensure a simulta-
neous arrival of vehicles. Please note PESPlib should be regarded as a collection 
practical instances. Contrary to our somewhat idealized construction of line-based 
event-activity networks, they do include (what we identify as) headway arcs.

In this view, we consider the set Atrans as the transfer arcs from one line to 
another, as each of the arcs link an arrival node of one line with a departure 
node of a different line with a minimum transfer time of 3 minutes. Observe that 
ua = 62 = �a + T − 1 for a ∈ Atrans , which means that any integer periodic tension 
on the subset Ahead ∪Adwell ∪Adrive can be extended to Atrans as well.

In the spirit of the line-based event activity network (Section  4.1) and since 
vehicle routes should be forward cycles in a periodic setting, we propose the 
following extension of the instances: For each pair of matched simple paths 
(p, p�) = ((v0,… , vm), (v

�
0
,… , v�

m
)) associated to the forward and backward journey of 

a line, we add two turn arcs (vm, v�0), (v
�
m
, v0) to model direction change of vehicles. 

The turn arcs in combination with the arcs of p and p′ form a simple circuit, which we 
interpret as an �(l)-cycle as in Section 4.2, i.e., the activity sequence of a single line l.

The arc categorization and the set of �(l)-cycles lets us deduce the underlying 
line network N  as well, such that we now go beyond the identification similar to 
Lindner et  al. [12]. We assume that transferring and waiting is possible within a 
station only and that each line travels bidirectionally, i.e., it visits the same sta-
tions in both directions. Correspondingly, we assign each event u to a station 
s(u) ∈ S = V(N) and associate multiple events with the same station, s(u) = s(v) 
if (u, v) ∈ Atrans or if (u, v) ∈ Adwell or if there exists a (p, p�) ∈ PP with vi ∈ p and 
v�
m−i

∈ p for i ∈ {0,… ,m} . It turns out that with this station assignment, all driv-
ing activities (u, v) ∈ Adrive are between distinct stations, i.e., s(u) ≠ s(v) . This  
allows for an explicit line identification as the undirected path along visited stations 
in the spirit of Section 4.1:

i.e., the sequence of stations of all departure events along p in addition to the station 
of the last arrival event vm for each matched pair of paths.

As mentioned, we extend the PESPlib instances by some artificial edges Aart , 
to better fit with our concept of the line-based event-activity network. The overall 
goal remains to solve the original instances, so any additional free arc should not 
inhibit a feasible solution on the original. For all a ∈ Aart we therefore set

The additional artificial edges consist mostly of the turning arcs Aturn as induced 
by the matched simple path pairs (p, p�) ∈ PP . Two instances, namely R2L4 and 
R3L4 had to be extended by two and a single artificial transfer arc, respectively, in 
order to make the instances strongly connected.

Note that we do not extend the original instances to include all possible transfer arcs. 
The resulting event-activity networks (excluding the headways) are thus only sub-graphs 
of a full line-based event activity network as defined in Definition 4.2. An extension to the 

L ∶= {(s(v0), s(v2),… , s(vm−1), s(vm)) ∣ (p, p�) = ((v0,… , vm), (v
�
0
,… , v�

m
)) ∈ PP},

�a ∶= 0, ua ∶= 59, wa ∶= 0.
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full line-based event activity network seems unreasonable in this case, as this would mean 
adding more artificial transfer arcs than the total number of arcs in the original instance 
and would increase the cyclomatic number by a factor of 4.4-11.4. As a consequence, not 
all 1,2 and 3-end cycles exist, so that a one-to-one application from the construction of 
strategic forward cycles is not entirely possible. We will address this issue in Section 5.2.

As a side note we should mention that this analysis and identification does not 
work in the same manner for the other four PESPlib instances, which are consid-
ered bus timetabling instances [5]: The partition into categories is not as clear-cut as 
for the railway instances, nor can one easily identify forward and backward direc-
tions of the vehicles’ activity sequences. As busses are not restricted to tracks and 
empty rides to starting or from end points are less of an issue from a practical point 
of view, we suspect that such activities are not included in the data set, which makes 
reverse-engineering to obtain the underlying network significantly harder.

For the railway instances, Table  1 gives an overview of the key values of our 
identified line plan L , the corresponding line network N  and the event-activity net-
work EAN as obtained by extending the PESPlib instances as described.

5.2 � Cycle Basis Selection

As discussed in Example 3.9, forward cycles seem particularly promising for an 
increased lower bound, and the structure of Odijk’s cycle inequalities (4) suggests that 
cycles with low span or heavy minimum weight lead to better dual bounds. To evaluate 
if this holds true in practice, let us first formally define the extremal cycle basis problem.

Table 1   Overview of the (extended) PESPlib  instances and the underlying network as a result of the 
structural analysis

Instance |L| |V(N)| |E(N)| �(N) |V(EAN)| |A(EAN)| �(EAN) |A
art
|

R1L1 55 522 916 397 3664 6495 2832 110
R1L2 54 520 917 398 3668 6651 2984 108
R1L3 65 605 1046 444 4184 7161 2978 130
R1L4 71 646 1190 545 4760 8670 3911 142
R2L1 66 596 1039 446 4156 7493 3338 132
R2L2 66 592 1051 461 4204 7695 3492 132
R2L3 80 750 1262 513 5048 8446 3399 160
R2L4 116 1112 1915 806 7660 13407 5748 234
R3L1 73 614 1129 518 4516 9291 4776 146
R3L2 70 598 1113 517 4452 9391 4940 140
R3L3 95 755 1431 679 5724 11359 5636 190
R3L4 120 1122 2045 925 8180 15898 7719 241
R4L1 86 602 1233 632 4932 10434 5503 172
R4L2 89 609 1262 655 5048 10913 5866 178
R4L3 115 734 1592 860 6368 13468 7101 230
R4L4 133 1019 2096 1078 8384 18020 9637 266
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Definition 5.1  (Extremal Cycle Basis Problem)  Let B be a set of cycle bases of a 
digraph D with a weight function c ∶ C(D) → ℝ≥0 . The minimum weight cycle basis 
problem is to find a cycle basis B ∈ B such that

Analogously, the maximum weight cycle basis problem is to find a basis with 
maximum weight.

In our computations, we thus compare three different extremal cycle bases to  
one based on the 1,  2,  3-end cycles to assess the impact of the concrete basis  
choice. More precisely, we want to compute a

•	 ��) minimum span, where B is the set of all (not necessarily forward) inte-
gral cycle bases on EAN , and the weight is given by c(�) ∶=

∑
a∈� (ua − �a) for 

� ∈ C(EAN),
•	 ��) minimum forward span, where B is the set of all integral forward 

cycle bases on EAN , and c(�) ∶=
∑

a∈� (ua − �a),
•	 ��) maximum forward bottleneck, where B is the set of all integral  

forward cycle bases on EAN , and c(�) ∶= mina∈� wa,

cycle basis.
As no practical algorithm to compute extremal integral cycle bases is avail-

able, we relax B to the potentially larger the set of (forward) undirected cycle 
bases. Then, (E, I) forms a vector matroid, with E as the ground set of circuits in 
D and I ⊆ P(E) as the set of ( �2-)linearly independent sets of circuits in D, as was 
shown by Horton [25]. Also when restricting both the ground set and the inde-
pendent set to forward cycles, (E, I) remains a vector matroid, as the independ-
ence properties are inherited from the underlying vector space.

A greedy approach will thus result in an optimal solution to the extremal cycle 
basis problem when applied to all circuits. Clearly, an enumeration of all cir-
cuits for graphs of the size of the PESPlib  instances is not feasible in prac-
tice. Instead, we use (variations) of Horton’s algorithm [25] to obtain high quality 
cycle bases.

Definition 5.2 ((Forward) Horton Set)  Let D be a digraph, and let c be a non-negative 
weight function on paths in D. For each node z ∈ V(D) , fix a shortest path tree T+

z
 

with source z w.r.t. c and a shortest path tree T−
z

 with target z w.r.t. c. A Horton cir-
cuit is a circuit of the form pzu + (u, v) + qvz such that

•	 (u, v) ∈ A(D),
•	 pzu is the unique z-u path in T+

z
,

•	 qvz is the unique v-z path in T−
z

,
•	 pzu and qvz are arc-disjoint.

∑

�∈B

c(�) = min
B
�∈B

∑

�∈B�

c(�).
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The Horton Set H consists of all Horton cycles.
In our setting,

•	 ��) T+
z
= T−

z
 is a subgraph of D projecting to a shortest path tree rooted at z 

w.r.t. edge weights ua − �a on the undirected graph G(D),
•	 ��) T+

z
 is a shortest path tree with z as source w.r.t arc weights ua − �a , and 

similarly, T−
z

 is a shortest path tree with z as target,
•	 ��) T+

z
 is a widest path tree with z as the source, i.e., any z-u path pzu on T+

z
 is 

forward and maximum with respect to the bottleneck costs c(p) = mina∈A(p) wa 
among all z-u-paths p. Analogously, T−

z
 is a widest path tree with z as target.

For �� , a Horton cycle can then have both forward and backward arcs, whereas 
the Horton cycles for �� and �� are forward.

The Horton algorithm can be summarized as computing the Horton set H and 
subsequently extracting a set of linearly independent cycles from it by a greedy 
procedure. For a general weight function and optimization sense, this approach is 
clearly just a heuristic. In the case of �� and �� , however, the Horton algorithm 
guarantees an optimal solution: The �� case follows from the classical result as 
described by Horton [25]. The case of �� is described with different terminology 
by Gleiss et al. and follows from Corollary 16, Lemma 18, and Theorem 19 [18].

There are minimum weight cycle basis algorithms that asymptotically perform 
better than that of Horton, such as de Pina’s [26], which was improved upon, e.g., 
by Hariharan et al. [27] or Amaldi et al. [28]. However, it is not as straightforward to  
adapt the algorithms to work for forward cycle bases only, and the performance of 
Horton’s algorithm turned out to be sufficient in our case.

Finally, we want to compare the performance of the 1, 2, 3-end forward cycles 
to the introduced extremal cycle bases. As mentioned in the previous section, the 
instances are not complete, in the sense that not all possible transfer arcs per sta-
tion exist. We therefore propose the following approach: At each station, we com-
pute all possible 1,  2,  3-end cycles. Due to the sparse amount of transfer arcs, 
we generate few more q-end cycles to cover all forward cycles between two lines 
meeting at a station. We then construct our basis by iterating over the cycles and 
add a cycle whenever linear independence persists. Our ordering of the cycles is 
dependent on the number of used transfer arcs, such that cycles with fewer trans-
fers are prioritized. However, there is still a large degree of freedom—it could 
be worth exploring whether short spans or heavy weight q-ended cycles should 
be preferred. If this procedure stops before the full cycle space is generated, we  
complete the basis with cycles from a minimum forward span basis (��) . In the 
following, this extended 1, 2, 3-end cycle basis will be abbreviated by ��.

We will briefly discuss our decision to restrict our experiments to these four 
bases. Our primary goal is to evaluate whether forward bases are advantageous in 
comparison to non-forward ones, but also secondarily, whether a formulation tai-
lored specifically for Odijk’s cycle inequalities (4) has a significant impact. Con-
sequently, we make the choice of comparing one structural ( �� ) and two optimized 
( �� and �� ) forward cycle bases to a reasonable choice of non-forward cycle basis 
( �� ). Liebchen et  al. observed a better performance for strictly fundamental cycle 
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bases in comparison to minimum span [29]. Our decision to refrain from using a 
fundamental cycle basis as reference is due to three factors: The key point is that it 
allows a cleaner comparison: A minimum span cycle basis as obtained by a Horton 
set should have a similar structure as its forward counterpart, such that their key dif-
ference is w.r.t. orientation. If we compared a minimum span forward cycle basis to 
a fundamental non-forward one, it would be hard to extrapolate whether the forward 
or the structural properties were the influencing factors. Secondly, the existence of 
fundamental forward cycle basis is not guaranteed even if the event-activity network 
is strongly connected (see Example 3.12). Thirdly, tests by Borndörfer et al. suggest  
that a minimum span performs better in practice than a fundamental cycle basis [23].

5.3 � Computational Results

In our computational experiments, we computed each of the four bases (�� − ��) for 
each of the 16 instances described in Section 5.1.1 Note that for timetabling, integral 
cycle basis is required, which is not guaranteed by our approach for computing �� − �� . 
We can, however, check whether a cycle basis is integral simply by computing the deter-
minant of the cycle basis [13]. It turns out that the computed matrices have determinant 
±1 , which ensures that the choices of bases are indeed integral (cf. Kavitha et al. [13]).

In the framework of the PESP-specialized solver ConcurrentPESP [23] 
invoking CPLEX 12.10 [30], we optimize the dual bounds for each instance-basis 
pair on an Intel i7-9700K CPU machine with 64 GB RAM with a wall time limit 
of 6 h each. ConcurrentPESP makes use of Odijk’s cycle inequalities and more 
sophisticated cutting planes, e.g., flip inequalities [9].

Note that similar tests for the R1L1 instance already suggested that forward bases 
provide good dual bounds [12]. Our current results underline this claim:

First, let us consider the final results at the end of the runs. In Fig. 7, one can observe 
the relative improvement at the end of the 6 h run for each of the bases in comparison 
to the previously best dual bound. What becomes obvious is that generally, the forward 
cycles ( ��–�� ) are significantly better than the non-forward ones ( �� ). With the excep-
tion of R3L4, where �� provides the worst dual bound, �� always comes in last. We 
observe a trend in the rankings: The minimum forward span basis (��) is the clear best 
choice, as it provides the best dual bound in 11 out of the 16 instances. In contrast, 
the 1, 2, 3-end cycle basis (��) is only 3 times in the first place, closely followed by 
the maximum bottleneck (��) with 2 best dual bounds. When comparing the quality of 
the improvement, this ranking is still evident, but not as prominent. When looking at 
Fig. 7, the the red line of (��) is often quite close to �� ’s red line. On average,2 within 
the 6 h runs, �� could improve the dual bound by 4.56% and �� by 4.04%. In con-
trast, the average improvement of �� is only by 2.3%, the non-forward basis �� reached 

1  The only exception here is the instance R4L4—here, we were unable to compute a large bottleneck 
cycle basis, as its Horton set alone surpassed a memory usage of 120 GB. The relatively poor perfor-
mance of �� on the other instances did not justify further time and resource consuming computations for 
this single instance.
2  We exclude the results of R4L4 here, as we want a comparison of all four basis choices.
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solutions which are 2.78% worse than the previous best solution. Note that these results 
need to be taken with a grain of salt, as we compare the new dual bounds to previously 
computed ones, meaning that it highly depends on how much the instances have been 
treated in the past. This is evident when looking at the instances R1L1 and R4L4: These 
are the only two instances without improvement. We cannot hope to contend with the 
previous dual bounds of R1L1, which have been treated with forward cycle bases for 
24 instead of 6 h of wall time [12]. An overview over the new bounds obtained by our 

Fig. 7   Relative improvement of dual bounds in comparison to the previous best bound for each of the 16 
railway PESPlib instances

Table 2   New dual bounds Instance Dual bound Provided 
by basis

R1L2 19886799  B2

R1L3 19323821  B2

R1L4 17283850  B2

R2L1 25929643  B3

R2L2 25642692  B3

R2L3 23941492  B4

R2L4 19793447  B2

R3L1 26825864  B2

R3L2 27178406  B4

R3L3 23007043  B2

R3L4 17432725  B2

R4L1 29174444  B2

R4L2 28664399  B2

R4L3 24293621  B2
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computations can be found in Table 2. On average, we were able to reduce the relative 
gap from 42.35 to 39.84%.

We also compare the progression of the bounds over time (see Fig. 8). The mini-
mum forward span basis �� tends to have the higher quality bound earlier than the 
other bases, followed by the �� basis. What is surprising is that the �� basis, which 
we expected to perform particularly well, does not provide the best bounds as fast. 
Particularly in light of our motivating example, the superiority of the minimum 
span ( �� ) over maximum bottleneck ( �� ) is noteworthy: Even though the basis �� 
was chosen regardless of its arc weights, it seems to outperform �� . One explana-
tion could be that Odjik’s cycle inequalities should be “stricter” and thus provide 
stronger cuts for low-span in comparison to heavy weight cycles. It is possible that 
the cuts from the heavy weight cycles increase the tension along a cycle only mar-
ginally, which then—despite the large weight—does not contribute significantly to 
the objective. Here, the quality of the cuts seems to outweigh the heavy weight of 

Fig. 8   Progression of dual bounds over time
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the cycles in �� . In any case, the monotonicity property of adding cuts arising from 
forward cycles seems to have a significant impact on the quality of the dual bounds.

The slope of the progression of the forward bases is significantly steeper than that of 
�� . In contrast, the slope of the forward bases seems to be comparable to each other. Fur-
thermore, we can observe that after a certain time, when the dual bounds begin to stagnate, 
there is not a clear winner anymore. This can be observed in the smaller instances, where 
the lines of the forward bases begin to be entangled. This is particularly surprising, since 
one could expect �� to perform poorly in comparison to any other optimized forward cycle 
basis. Recall that 1, 2, 3-end cycles are constructed only by arc type without considering 
arc weights or spans. In contrast, both �� - and ��-bases are optimized from the beginning. 
However, in the bound behavior, this does not seem to play such a prominent role.

We conclude that in practice, forward cycle bases are indeed a better choice than 
non-forward bases when optimizing dual bounds. Which explicit forward basis 
should be chosen is not as clear, as each of them provided an improvement of some 
dual bounds. For short runs, the minimum forward span basis �� seems like the best 
choice, as it quickly finds high quality bounds. In the long run, however, the other 
two basis choices can compete with �� . Since the computation of �� and �� can be 
quite resource consuming, it might be sufficient to use a strategic construction of a 
forward cycle basis if structural properties of the graph are available.

Nevertheless, while the improvements due to forward cycle bases are significant, 
it cannot be concealed that the dual gap still remains very large. It is clear that fur-
ther research is needed for the dual, but also the primal side.

6 � Conclusion and Outlook

Our main contributions are on one side on the extension of the theory of cycle bases: 
We apply standard notions, such as (weak) fundamentality, and integrality, to for-
ward cycle bases and discuss existence properties. Furthermore, we consider bases 
of cycle subspaces and extend the hierarchy of classes of cycle basis to this setting

On the other hand, we highlight the importance of forward cycle bases in the con-
text of periodic timetabling for transportation networks: Firstly, our computational 
experiments provide better lower bounds for almost all railway instances of the 
benchmark library PESPlib. Secondly, the results suggest that forward cycle bases 
are clearly preferable to arbitrary cycle bases. However, in general networks, an inte-
gral forward cycle basis, as is needed in the context of PESP, might not always be 
available. We therefore introduced a construction of a line-based event-activity net-
work, which may be used for practical modeling applications. For such a generic 
network, not only can we guarantee the existence of an integral forward cycle basis, 
but also describe an explicit construction procedure.

This directly opens the door for future work: Is there some characteristic property of 
a graph which ensures the existence of a forward cycle basis which is also (weakly) fun-
damental, integral, and undirected? What is the complexity of deciding whether a certain 
type of forward cycle basis exists? How hard is it to find an extremal cycle basis? Another 
question is whether the concept of cycle bases of subspaces can be utilized for a primal 
heuristic for PESP, e.g., with a divide and conquer approach of solving PESP on subspaces.
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As we highly recommend to use forward cycle basis formulations for PESP, one 
could ask the question of how to deal with networks that do not contain a forward 
cycle basis. For such a case, one could either add artificial free arcs of zero weight 
(cf. Section 5.1) to make the graph strongly connected and thus increase the problem 
size. An alternative could be to use as many forward cycles in the basis as possi-
ble. This could lead to a new, interesting extremal cycle basis problem: Find a cycle 
basis such that the number of forward cycles is maximal. This would again relate 
back to the concept of cycle bases of subspaces.
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