Darstellung höchstwertiger Übergangsmetall-Chloride und Versuche zur Darstellung von Iridium-Xenon Komplexen

Dissertation zur Erlangung des akademischen Grades des

Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie

der Freien Universität Berlin

vorgelegt von

Farhad Tamadon

aus Firouzabad/Iran

Jahr der Einreichung

2012

Die vorliegende Arbeit wurde in der Zeit vom 15. Dezember 2008 bis März 2012 in dem Arbeitskreis von Herrn Prof. Dr. K. Seppelt am Institut für Chemie und Biochemie der Freien Universität Berlin angefertigt.

1. Gutachter: Prof. Dr. Konrad Seppelt

2. Gutachter: Prof. Dr. Ulrich Abram

Disputation am: 18.06.2012

To my father

Danksagung

An dieser Stelle möchte ich mich bei Herrn Prof. Dr. K. Seppelt für die Überlassung des Themas dieser Doktorarbeit bedanken. Des Weiteren danke ich für die geduldige Erläuterung von praktischen und theoretischen Problemen, die mir über die Schwierigkeiten bei der Anfertigung dieser Arbeit hinweghalfen.

Herrn Prof. Dr. U. Abram danke ich für die Übernahme des Zweitgutachtens.

Ich bedanke mich bei Herrn André Bienfait für die Übernahme der Korrektur.

Ich bedanke mich auch bei allen anderen Mitarbeitern der Arbeitsgruppe besonderes Herrn Dr. Helmut Poleschner und Matthias Molski.

Frau Friese danke ich für Aufnahme von zahlreichen Raman-Spektroskopien.

Der Deutschen Forschungsgesellschaft (DFG) und dem Graduiertenkolleg Fluor als Schlüsselelement (GRK 1582/1) danke ich für die finanzielle Unterstützung

Abkürzungsverzeichnis

aHF	wasserfreier Fluorwasserstoff
Cp*	Pentamethylcyclopentadienid
DSC	Differential Scanning Calorimetry
EPR	Electron Paramagnetic Resonance
Me	Methyl
NMR	nuclear magnetic resonance
PFA	Poly-Perfluorethylen Perfluorvinylether Copolymer
R	organischer Rest
RT	Raumtemperatur
S	Singulett
ÜM	Übergangsmetall

Inhaltsverzeichnis:

A	bkürzı	ingsverzeichnis	4
1	Ein	leitung	7
2	All	gemeiner Teil	9
	2.1	Darstellung von MoCl ₆	9
	2.2	Darstellung von ReCl ₆	17
	2.3	Darstellung von VCl ₅	21
3	Faz	it	26
V	ersuch	e zur Darstellung von Iridium-Xenon-Komplexen	28
4	Ein	leitung	28
5	All	gemeiner Teil	29
	5.1	elementares Iridium	29
	5.2	Reduktion von IrF ₆ zu IrF ₅	30
	5.3	Tetrairidiumdodecacarbonyl (Ir ₄ (CO) ₁₂)	31
	5.4	Darstellung von [mer-Ir(CO) ₃ F(FSbF ₅) ₂]	36
	5.5	$Tetramethyl(\eta^{5}-pentamethylcyclopentadienyl) iridium(V)(V) = 0.0000000000000000000000000000000000$	39
	5.6	Reaktion von Cp*IrMe ₄ in Supersäuremedium (HF/SbF ₅)	39
	5.7	Darstellung von Bis(pentafluorophenyl)(η^5 -pentamethylcyclopentadienyl) iridium(III)	40
	5.8	Darstellung von Lithiumdiethylether-	
		$tris(pentafluorophynol)(\eta^5-pentamethylcyclopentadienyl)iridium(III)$	41
	5.9	Darstellung von[$(\eta^5 - C_5 Me_5)$ Ir $(\eta^6 - C_6 HF_5)$] ⁺ [Sb ₃ F ₁₄] ⁻ [SbF ₆] ⁻ .HF	43
6	Faz	it	46
7	Sun	nmery	47
8	Exp	erimenteller Teil	49
	8.1	Allgemeine experimentelle Bedingungen	49
			_

8	.2	Ausgangssubstanzen	49
8	.3	Darstellung von Molybdänhexachlorid (MoCl ₆)	50
8	8.4	Darstellung von Rheniumheptafluorid (ReF7)	51
8	5.5	Darstellung von Rheniumhexafluorid (ReF ₆)	51
8	6.6	Darstellung von Rheniumhexachlorid (ReCl ₆)	52
8	8.7	Darstellung von Vanadiumpentachlorid (VCl ₅)	53
8	8.8	Darstellung von Iridiumhexafluorid (IrF ₆)	54
8	.9	Darstellung von [XeF][IrF ₆]	54
8	5.10	Darstellung von Iridiumpentafluorid (IrF5)	55
8	.11	Reaktion von Iridiumpentafluorid mit Xenon	56
8	8.12	Reaktion von Ir ₄ (CO) ₁₂ in Supersäuremedium	57
8	8.13	Darstellung von (CO) ₃ IrF ₃	58
8	.14	Darstellung von $[Ir_2(CO)_6(\mu-SbF_6)_2(Sb_2F_{11})_2]$	58
8	5.15	Darstellung von Ir(CO) ₂ (SO ₃ F) ₃	60
8	8.16	Darstellung von [mer-Ir(CO) ₃ F(FSbF ₅) ₂]	61
8	8.17	Darstellung von [Ir ₂ (CO) ₆ (µ-F ₂)(SbF ₆) ₂].2 HF	62
8	.18	Darstellung von Di-μ-Chloro-dichlorobis(η ⁵ -	
		Pentamethylcyclopentadienyl)diiridium(III)	63
8	8.19	Darstellung von Tetramethyl(η^5 -Pentamethylcyclopentadienyl)iridium(V)	64
8	3.20	Darstellung von Bis(pentafluorobenzol)(η^5 -	
		pentamethylcyclopentadienyl)iridium(III)	65
8	.21	Darstellung von [Li(Et ₂ O)][Cp*Ir(C ₆ F ₅) ₃]	66
8	.22	Darstellung von $[Cp*Ir(\eta^6-C_6HF_5)][(Sb_3F_{14})(SbF_6)].HF$	68
9	Anh	ang	69
10	Lite	ratur	141

1 Einleitung

Die einzigen bislang bekannten Metallhexachloride sind Wolfram- und Uranhexachlorid. WCl₆ hat zwei verschiedene Modifikationen. Das α -WCl₆ ist 1943 von Ketelaar & van Oosterhout und die β -Struktur wurde von Taylor & Wilson bestimmt worden.^[1] α -WCl₆ ist rhomboedrisch und das thermodynamisch stabile Produkt, β -WCl₆ ist hexagonal und das kinetisch begünstigte Produkt. Für die Synthese von Wolframhexachlorid wird die Standardmethode bei hohen Temperaturen eingesetzt.

$$W + Cl_2 \xrightarrow{800^{\circ}} WCl_6$$

Schema 1: Darstellung von WCl₆

Das Uranhexachlorid ist isostrukturell mit β –WCl₆ und ist hexagonal. Uranhexachlorid wird nach zwei verschiedenen Methoden hergestellt. Durch die Reaktion von Urantrioxid mit Tetrachlorkohlenstoff entsteht eine Mischung aus Urantetrachlorid und Uranpentachlorid. Uranhexachlorid wird dann durch direkte Chlorierung des UCl₄/UCl₅-Gemischtes dargestellt.^[2]

Die zweite Methode ist der Halogenaustausch am Uranhexafluorid.^[3]

 $UF_6 + BCl_3 \longrightarrow UCl_6 + BF_3$

Schema 2: Darstellung von UCl₆

Die Synthese von UCl_6 mit BCl_3 eignet sich als neue Methode, um weitere Metallhexachloride zu synthetisieren. Durch diese Methode bleibt die Oxidationsstufe des Metalls erhalten.

Die entscheidende Frage bei dieser Methode ist, welche anderen Metallhexafluoride können diese Reaktion eingehen?

Wie schon lange bekannt ist, nimmt die Oxidationskraft von Metallhexafluoriden im Periodensystem von links nach rechts zu und nimmt innerhalb einer Gruppe von oben nach unten ab.

 $MoF_6 < TcF_6 < RuF_6 > RhF_6$ $WF_6 < ReF_6 < OsF_6 < IrF_6 < PtF_6$

Das heißt, dass Ruthenium-, Rhodium-, Iridium- und Platinhexafluorid sehr starke Oxidationsmittel sind. Wie schon bekannt ist, wird Xenon durch Ruthenium-, Rhodium-, und Platinhexafluorid oxidiert. Iridiumhexafluorid kann sowohl Chlor als auch Xenon oxidieren.^[4] Setzt man sehr starke Oxidationsmittel wie IrF_6 oder OsF_6 mit BCl₃ um, kann es zur Reduktion des Metallhexafluorids kommen (Darstellung von $OsCl_5^{[5]}$ durch den Halogenaustausch an OsF_6 mit BCl₃). Molybdän- und Rheniumhexafluorid sind im Vergleich zu den anderen schwächere Oxidationsmittel und könnten die Fluorsubstitution ohne Änderung der Oxidationsstufe eingehen.

Die Substitution an MoF₆ ohne Reduktion der Oxidationsstufe des Metalls ist durch folgende Reaktion bekannt. Bei der Darstellung von $Mo(CH_3)_6$ aus der Reaktion von MoF₆ mit Zn(CH₃)₂ konnten alle Fluoratome mit Methylgruppen ausgetauscht werden.^[6]

Um die Strukturänderungen vom Oktaeder bei MoF₆ zu anderen Symmetriegruppen zu beobachten, werden ein oder zwei Fluoratome durch folgenden Liganden ausgetauscht.^[7]

$$MoF_6 + R-O-Si(CH_3)_3 \longrightarrow R-O-MF_5 + (CH_3)_3SiF$$
$$R = CF_3CH_2, C_6F_5$$

All diese Reaktionen ermöglichten den Austausch des Fluoratoms durch andere Liganden. Im Gegensatz zu MoF₆ ist die Substitution an ReF₆ weniger bekannt. Die einzige bekannte Reaktion ist die Darstellung von ReF₅NCl aus ReF₆.^[8] Im Gegensatz zu Metallhexachloriden gibt es zahlreiche Metallpentachloride in der Oxidationsstufe (V), aber die Existenz von VCl₅ ist noch nicht bewiesen. Ebenfalls ist keine Substitution an VF₅ ohne Erniedrigung der Oxidationsstufe bekannt.

Schema 3: Fluorsubstitution an MoF₆

2 Allgemeiner Teil

2.1 Darstellung von MoCl₆

Es gibt verschiedene Mo-Cl Verbindungen mit unterschiedlichen Strukturen.

MoCl₂ (Mo₆Cl₁₂) kristallisiert orthorhombisch. Die Struktur enthält [MoCl]-Gruppen, die

2-dimensional unendlich miteinander verknüpft sind.^[9]

MoCl₃ hat zwei Modifikationen α - und β -MoCl₃, diese kristallisieren monoklin in Schichtengittern mit kubisch (α)– bzw. hexagonal (β)– dichter Cl-Packung.^[9]

MoC1₄ kristallisiert trigonal in einem Schichtengitter mit hexagonal dichter Cl-Packung.^[9]

MoCl₅ hat vier Modifikationen α (monoklin), β (triklin), γ (orthorhombisch) und δ (monoklin)^[10], die alle dimer in Form von Mo₂Cl₁₀ sind.

Im Jahr 1966 berichtete Mercer, dass durch die Reaktion von Molybdänsäure mit Thionylchorid eventuell eine Mischung von MoOCl₃, MoOCl₄, MoCl₅ und MoCl₆ entstehen konnte.^[11] Zusätzliche Beweise lieferte sie aber nicht.

O'Donnell führte zahlreiche Reaktionen mit MoF_6 durch, um $MoCl_6$ herzustellen. Als Chlorierungsmittel wurden PCl₃, AsCl₃, SbCl₃ und BCl₃ eingesetzt. Laut allgemeiner Reaktionsgleichung war MoCl₅ das Endprodukt.^[12]

$$MoF_6 + XCl_3 \longrightarrow MoCl_5 + XF_3 + 1/2 Cl_2$$

X= B, P, Sb

Schema 4: Versuch zur Darstellung von MoCl₆ nach T.A O'Donnell.

Alle diese Versuche zeigten, dass MoCl₆ instabil sein könnte und dass es sich schnell zu MoCl₅ und Cl₂ umwandeln könnte. Ziel dieser Arbeit ist, MoCl₆ darzustellen und kristallografisch nachzuweisen. Es wird die klassische Methode, Substitution an MoF₆ mit BCl₃, eingesetzt.

Reaktionsgleichung:

$$MoF_6 + 2BCl_3 \xrightarrow{-25^{\circ}} MoCl_6 + 2BF_3$$

Schema 5: Darstellung von MoCl₆

MoF₆ regiert mit BCl₃ zu MoCl₆. Der Reaktionsverlauf ist bei RT sehr schnell und MoCl₆ fällt innerhalb weniger Minuten als kristallines, schwarzes Pulver aus, das sich im Laufe der Zeit zu MoCl₅ umwandelt. Im Gegensatz dazu ist die Reaktion bei -78 °C sehr langsam und das Produkt entsteht erst nach 2 Tagen. Die optimale Temperatur zur Stabilisierung des Produktes ist -25 °C. Bei dieser Temperatur entstehen zuerst hexagonale schwarze Kristalle, die bei der Kristallmessung zum ersten Mal eindeutig die Existenz von MoCl₆ beweisen. Die hexagonalen schwarzen Kristalle verändern sich über Nacht zu nadelförmigen schwarzen Kristallen, die ebenfalls nach kristallografischer Untersuchungen als MoCl₆ bestimmt wurden. Überraschenderweise sind die beiden Kristalle exakt identisch, haben dieselben Kristallstruktur. MoCl₆ ist isostrukturell mit β -WCl₆, ist trigonal, Raumgruppe P $\overline{3}$ m1, mit a, b = 10.341 Å und c = 5.539 Å. Die Anordnung der Molybdän- und Chloratome im primitiven hexagonalen Kristallgitter von MoCl₆ wird in der Abbildung 1 dargestellt.

Abbildung. 1: Die Anordnung der Molybdän- und Chloratome im primitiven hexagonalen Kristallgitter von MoCl₆

Atom	x/a	y/b	z/c
Mo (1)	0	0	0
Mo (2)	1/3	2/3	0,49739
Cl (1)	0,10437	-0,10437	0,24328
Cl (2)	0,77061	-0,77061	0,26172
Cl (3)	0,43739	-0,43739	0,25078

 Tabelle 1: Atomparameter im MoCl₆ Kristallgitter.

Im Kristallgitter liegen zwei verschiedene MoCl₆ Moleküle vor. Die Mo-Cl-Abstände in Molekül **1** sind kristallographisch alle gleich und bilden ein fast perfektes Oktaeder. Im Gegensatz dazu sind die Mo-Cl- Abstände im Molekül **2** unterschiedlich. Die sechs Chloratome um Mo(**1**) mit Mo-Cl-Abständen von 2.34(8) Å und die Bindungswinkel Cl-Mo-Cl von 92.8(5)° und 87.1(4)° bilden einen fast perfektes Oktaeder. Die Cl-Cl-Kontakte in Mo(**1**) mit 3.40 Å sind kürzer als die Summe zweier Ionenradien des Chloridions (3.65 Å). Ebenfalls sind die Oktaeder am Mo(**2**) mit Mo-Cl- Abständen von 2.29(0) und 2.31(0) Å und einem Cl-Mo-Cl Winkel von fast 90° zugelassen. Es schein so, dass beide Oktaeder leicht verzerrt sind.

Im Vergleich zu β -WCl₆ sind die Mo-Cl Bindungen länger, aber die Mo-Mo Abstände deutlich kürzer. In Tabelle 2 und 3 werden die Mo-Cl-Abstände, die Cl-Cl Kontakte und die Winkel der Oktaeder dargestellt.

Mo-Cl		Mo-Mo	Cl-Mo-Cl	
$Mo(1)-Cl(1)(6\times)$	2.34(8)	Mo(1)-Mo(1) 5,53(9)	Cl(1)-Mo(1)-Cl(1) 87.1(4)	92.8(5),
$Mo(2)-Cl(2)(3\times)$ $Mo(2)-Cl(3)(3\times)$	2.29(0) 2.31(0)	$Mo(2)-Mo(2) \ 6.61(0), \ 6.55(3)$	Cl(2)-Mo(2)-Cl(2)	86.0(4)
			Cl(2)-Mo(2)-Cl(3)	92.9(1)
			Cl(3)-Mo(2)-Cl(3)	88.1(0)

Tabelle 2: Abstände (Å) und Winkel in MoCl₆(°)

Tabelle 3: Cl-Cl-Abstände (Å)

Intramolekular		Intermolekular		
	Cl(1)-Cl(1)	3.28(0)	Cl(1)-Cl(1) 3	.28(0)
	Cl(1)-Cl(2)	3.54(0)	Cl(1)-Cl(3) 3	5.55(7)
	Cl(1)-Cl(3)	3.55(7)	Cl(2)-Cl(2) 4	.88(3)
	Cl(2)-Cl(2)	3.22(5)	Cl(2)-Cl(3) 3	5.22(4)
	Cl(2)-Cl(3)	3.56(2)		
	Cl(3)-Cl(3)	3.22(8)		

MoCl₆ ist hydrolysesempfindlich und zersetzt sich beim langen Stehen bei -25°C zu MoCl₅. Die Aufnahme von Raman-Spektren stellt sich als schwierig dar, da durch die Nebenprodukte wie MoCl₅ oder MoOCl₄ eine Mischung vorliegt und das Produkt tief gefärbt ist. Das Raman-Spektrum zeigt drei Peaks, die den aktiven Schwingungen v₁(A_{1g}) 403 cm⁻¹, v₂(E_g) 374 cm⁻¹ und v₅(F_{2g}) 175 cm⁻¹ in *O_h* Symmetrie zugeordnet werden können. Der sehr schwache Peak bei 374 cm⁻¹ wird aus theoretischen Rechnungen auf v₂ zugeordnet und der Peak bei 119 cm⁻¹ könnte Verunreinigungen zugeordnet werden.

Abbildung 2: Raman-Spektrum von MoCl₆.(* = PFA-Peak).

Es wird versucht, mit Hilfe von Röntgenbeugungsexperiment bei unterschiedlichen Temperaturen den Schmelzpunk des Kristalles zu bestimmen. Auf der Abbildung 3 werden die Kristallreflexen bei -78 °C dargestellt.

Abbildung 3: Röntgenbeugungsreflexe von MoCl₆ bei -78 °C (links) und -30 °C (rechts)

Durch Erhöhung der Messtemperaturen bis zu -30 °C (Abbildung 3) werden einige Veränderungen in den Kristallreflexen beobachtet, was mit einer Modifikationsänderung im

Kristalls zu erklären ist. Der markierte Reflex bei -78 °C wird bei -30 °C nicht mehr beobachtet. Durch weitere Erwärmung auf -10 °C wird die Veränderung noch deutlicher.

Abbildung 4: Röntgenbeugungsreflexe von MoCl₆ bei -10 °C

Um die Phasenumwandlung kristallographisch zu verfolgen, wird an demselben Kristall wieder eine lange Messung bei den tiefen Temperaturen (-140 °C) durchgeführt. Es stellt sich heraus, dass die neue Modifikation (a=b=5,9642(7), c=5,5387(1) Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, V= 10.6 Å³, P $\overline{3}$ c1) eine vollständige Fehlordnung der Molybdänatome innerhalb einer hexagonal dichteste Kugelpackung zu Chloratomen aufweist.

MoCl₆ hat die d°-Elektronenkonfiguration und ist oktaedrisch koordiniert, obwohl Mo(CH₃)₆ eine trigonal- pyramidale Struktur aufweist.^[6]

Differential Scanning Calorimetry (DSC)

Bei der dynamischen Differenzkalorimetrie oder differential scanning calorimetry (DSC) wird die zum gleichförmigen Aufheizen oder Abkühlen der Probe benötigte Leistung bestimmt. Die DSC wird überwiegend zur Charakterisierung des Phasenverhaltens der Probe verwendet. In der Abbildung 5 wird das DSC-Diagramm vom MoCl₆ dargestellt.

Abbildung 5: DSC-Diagramm von MoCl₆ (RT bis 200 °C)

Es werden zwei exotherme Prozesse beobachtet. Die reversible Umwandlung von einer Phase zu einer anderen Phase wird bei ~ 100 °C beobachtet. Der stark exotherme Peak bei ~ 190 °C könnte auf eine chemische Reaktion, wie z.B. Verlust des Chlors und Entstehen von MoCl₅, zurückgeführt werden. Durch die Abkühlung der Probe auf RT wird ein reversibler exothermer Prozess bei ~ 90 °C beobachtet, was unterschiedlichen Modifikationen und Phasenübergängen von MoCl₅ ($\alpha,\beta,\gamma,\sigma$) zugeordnet werden könnte. (Abbildung 6)

Abbildung 6: DSC-Diagramm von MoCl₆ (200 °C bis RT)

In der Abbildung 7 werden das DSC-Diagramm von $MoCl_6$ mit $MoCl_5$ verglichen. Ein deutlicher Unterschied wird bei ~ 100 °C beobachtet

Abbildung 7: Vergleich der DSC-Diagramme von MoCl₆ mit MoCl₅.

Der Mechanismus der Reaktion zur Darstellung von MoCl₆ ist noch nicht vollständig aufgeklärt. Es könnte über eine nukleophile Substitution (S_N2) verlaufen. Durch ¹⁹F-NMR-Messung bei tiefen Temperatur (-78 °C) ließen sich jedoch keine Zwischenprodukte nachweisen. Die zweite Möglichkeit wäre, wie bei der Synthese von MoF₇^{-,[13]} ein Molybdänkomplex mit dem Koordinationszahl 7 (CN=7). Wie z.B. ein *situ* entstehendes MoF₆Cl⁻BCl₂⁺ Salz, das durch Eliminierung eines Fluoridions zu MoF₅Cl und BCl₂F weiter reagiert. Diese schnelle Reaktion würde über MoF₅Cl₂⁻, MoF₄Cl₃⁻ bis zum Endprodukt, MoCl₆, weitergehen.

Schema 6: eventueller Mechanismus zur Darstellung von MoCl₆

MoCl₆ ist in Tetrachlorkohlenstoff und Chloroform schwer löslich, durch Erwärmung in CHCl₃ ändert sich die Farbe von unlöslichem schwarzen Pulver zu unbekannter rot-oranger Lösung!

2.2 Darstellung von ReCl₆

Rhenium liegt in Rhenium-Chlor-Verbindungen in Oxidationsstufen 3, 4 und 5 vor. ReCl₃ existiert in Form eines Re₃Cl₁₂-Cluster.

ReCl₄ ist eine Zick-Zack Kette von Re₂Cl₉ und kristallisiert in einer monoklinen Struktur.^[14] ReCl₅ ist wie MoCl₅ ein Dimer, aber nur in einer Modifikation.^[15]

1970 ist die Darstellung von ReCl₆ durch Canterford vorgeschlagen worden. Durch Elementaranalyse wurde eine Mischung von ReCl₆, ReCl₅ und ReOCl₄ nachgewiesen.^[16] Es wird hier versucht, diese Methode zu überprüfen und reines ReCl₆ durch weitere analytische Methoden zu charakterisieren. Insbesondere sollte untersucht werden, ob ReCl₆ ein perfektes Oktaeder bildet. Es wird wieder die klassische Methode, Substitution an ReF₆ mit BCl₃, eingesetzt.

Reaktionsgleichung:

$$\operatorname{ReF}_6 + 2\operatorname{BCl}_3 \xrightarrow{-25^\circ} \operatorname{ReCl}_6 + 2\operatorname{BF}_3$$

Schema 7: Darstellung von ReCl₆

ReCl₆ kann durch die Reaktion von ReF₆ und BCl₃ hergestellt werden. Die Reaktion lässt sich sogar bei RT durchführten, obwohl die optimale Temperatur -25 °C ist. Nachdem die Lösung sich zu Rot verfärbt hat, scheidet sich ReCl₆ in Form hexagonaler schwarzer Kristalle im Überschuss von BCl₃ aus. Der Verlauf der Reaktion bei -25 °C ist im Vergleich zur Darstellung des MoCl₆ langsamer, aber das Produkt ist wesentlich stabiler. Die Kristalluntersuchung wird erschwert durch eine ausgeprägte Neigung zur Zwillingsbildung (meist Revers/Obvers-Zwillinge der im rhomboedrischen Gitter). Nach Korrektur des Datensatzes (Auslöschungsbedingungen -h + k + l = 3n) kann die Struktur aufgeklärt werden. In der Abbildung 8 wird das Kristallgitter von ReCl₆ dargestellt.

Abbildung 8: Kristallgitter von ReCl₆

ReCl₆ ist isostrukturell mit α -WCl₆ und kristallisiert in dem rhomboedrisch Kristallsystem mit der Raumgruppe R $\overline{3}$ mit a = 5.9750 Å, b = 5.9750 Å, c = 16.4531 Å und β = 120°. Die Rheniumatome sind in den Positionen (000), (1/3,2/3,2/3) und (2/3,1/3,1/3). Im Gegensatz zu MoCl₆ sind alle ReCl₆ Moleküle identisch und dadurch die Re-Cl-Bindungen gleich lang. Die Re-Cl-Abstände betragen 2.26(2) Å, der Re-Re-Abstand in z-Richtung ist 16.45(3) Å bzw. in x-und y-Richtung 5.97(5) Å und die Cl-Re-Cl-Winkel sind 180° bzw. 90.311°. Insofern ist ReCl₆ als Molekül ein fast perfektes Oktaeder.

Aufgrund der Elektronenkonfiguration (d^{l}) wird erwartet, dass das Molekül Jahn-Teller verzerrt ist. Dies wird nicht beobachtet. Offenbar ist die Verzerrung wie auch im ReF₆, sehr schwach und womöglich dynamischer Art, so dass es als unverzerrt erscheint. Die zahlreichen Versuche zur Aufnahme von EPR-Spektren bei -77 K in festem Zustand und in eingefrorener Lösung (Chlor als Lösungsmittel) sind fehlgeschlagen. Die bekannte magnetische Moment von $\mu_{eff} = 2.07$ B.M (θ =30°) für ReCl₆ ist relativ hoch für ein d^{l} System.^[17] Es wurde so vermutet, dass ReCl₆ ein verzerrtes Oktaeder ist, was wiederum laut unsere Kristallmessungen nicht richtig sein könnte.^[17]

In Abbildung 9 ist das Raman-Spektrum von ReCl₆ dargestellt, in dem die Banden bei 404(s) cm⁻¹, 360(vw) cm⁻¹ und 169(w) cm⁻¹ zu $\nu_1(A_{1g})$, $\nu_2(E_g)$ und $\nu_5(F_{2g})$ zugeordnet werden können, dies ähnelt sehr dem Raman-Spektrum von WCl₆ im festen Zustand.^[18]

Abbildung 9: Raman-Spektrum von ReCl₆ (* = PFA-Peak).

In der Abbildung 10 wird das DSC-Diagramm von ReCl₆ dargestellt. Bei ca. 92 °C wird eine schwach exothermer Prozess beobachtet, der einer Phasenumwanderung in eine andere Modifikation zugeordnet werden kann. Bei weiterer Erwärmung wird eine deutlich exotherme Reaktion beobachtet, was dem Verlust eines Chloratoms und Entstehen von ReCl₅ und ReCl₄ zugeordnet werden kann.

Abbildung 10: DSC-Diagramm von ReCl₆

In der Abbildung 11 wird das DSC-Diagramm von ReCl₆ mit ReCl₅ verglichen.

Abbildung 11: Vergleich der DSC-Diagramme von ReCl₆ mit ReCl₅

Durch das DSC-Experiment wird ein Gewichtsverlust der Probe von 6% gemessen, was sehr nahe zum berechneten Gewichtverlust eines Chloridions (8%) ist.

2.3 Darstellung von VCl₅

Die bekanntesten Metallpentachloride in der 5. Gruppe des Periodensystems, die genau beschrieben sind, sind $NbCl_5^{[19]}$ und $TaCl_5^{[20]}$. Niob und Tantal erreichen dadurch ihre höchste Oxidationszahl. Im Übrigen können diese leichten Pentachloride zur Trennung von Nb und Ta dienen.

Im Gegensatz zu Nb und Ta, ist die höchste bekannte Oxidationsstufe beim Vanadium-Chlorid System im Vanadiumtetrachlorid zu finden.^[21] Auch VCl₅ ist schon beschrieben worden, was sich allerdings später als falsch herausgestellt hat (Es lag nachweislich eine Verwechslung mit PCl₅ und VCl₄ vor).^[22] Der erfolgversprechendste Versuch, die Bestrahlung von VCl₄ mit Cl₂, blieb bislang nicht eindeutig.^[23] Im Rahmen dieser Arbeit wird Vanadiumpentachlorid dargestellt und kristallografisch untersucht. Es wird die klassische Methode, Substitution an VF₅ mit BCl₃, eingesetzt

Reaktionsgleichung:

$$3VF_5 + 5BCl_3 \xrightarrow{-78^\circ} 3VCl_5 + 5BF_3$$

Schema 8: Darstellung von VCl₅

VF₅ reagiert sogar bei -196 °C sehr schnell mit BCl₃. Während der Kondensation von VF₅ auf eingefrorenes BCl₃ ändert sich die Farbe zu violett. Die vollständige Reaktion findet bei -78 C statt, es entsteht eine tief violette Lösung, aus der sind Kristalle ausscheiden. VCl₅ ist in Lösung bis zu -50 C stabil, bei weiterer Erwärmung zerfällt es zu Vanadiumtetrachlorid (gelbe Lösung). VCl₅ kristallisiert im Vergleich zu MoCl₆ und ReCl₆ als Hauptprodukt der Reaktion aus und die Nebenprodukte wie VCl₄ und VOCl₃ bleiben in Lösung. VCl₅ kristallisiert in einem triklinen Kristallsystem mit der Raumgruppe P1 mit a = 5.928(5) Å, b= 6.446(4) Å, c = 8.755(1) Å und $\alpha = 108.9(2)^{\circ}$, $\beta = 90.9(6)^{\circ}$, $\gamma = 116.1(5)^{\circ}$.

Abbildung 12: Kristallstruktur von VCl₅ als Dimer (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

VCl₅ liegt im Kristall als doppelt chlorverbrücktes Dimer mit einer kantenverknüpften doppeloktaedrischen Struktur (VCl₅)₂ vor. Jedes Vanadiumatom koordiniert mit sechs Chloratomen in Form von Oktaedern, die über zwei Chloratome verbrückt sind. Dadurch sind die beiden Vanadiumatome um 0.16 Å vom idealen Oktaeder entfernt. In dem Kristall liegen verschiedene Chloratome mit unterschiedlicher Bindungslänge zu Vanadium vor. Die verbrückenden Cl1 und Cl1*i* mit 2.46 Å sind am längsten, während die terminalen 2.14 bis 2.19 Å lang sind. Der V-V-Abstand im Dimer beträgt 3.82(4) Å, was kürzer als der M-M-Abstand bei NbCl₅ und TaCl₅ ist. Dieser Abstand weist jedoch darauf hin, dass keine Bindung zwischen beiden Vanadiumatomen existiert. Das Molekül V₂Cl₁₀ ist dadurch mit β -MoCl₅ und β -UCl₅ isostrukturell.

V-Cl		Cl-V-Cl		
V-Cl(1)	2.46(7)	Cl(2)-V-Cl(3)	167.9(3)	
V-Cl(2)	2.17(8)	Cl(4)-V-Cl(5)	103.1(5)	
V-Cl(3)	2.19(9)	Cl(4)-V-Cl(1 <i>i</i>)	168.2(6)	
V-Cl(4)	2.14(7)	Cl(5)-V- $Cl(1)$	167.0(1)	
V-Cl(5)	2.14(6)	Cl(1)-V-Cl(1 <i>i</i>)	78.4(5)	
V-Cl(1 <i>i</i>)	2.46(9)	V -Cl(1)-V(<i>i</i>)	101.5(4)	
V(i)- $Cl(1)$	2.46(9)			
V(<i>i</i>)-Cl(1 <i>i</i>)	2.46(7)			

Tabelle 4: V-Cl Abstände (Å) und Cl-V-Cl Winkel (°) in VCl₅

Vergleich mit VF₅:

VF₅ hat eine *cis*- fluorverbrückte polymere Struktur.^[24]

Wie erwartet sind die V-Cl-Bindungen (in VCl₅) länger als die V-F-Bindungen (in VF₅); um durchschnittlich bei terminalen Bindungen um 0.45 Å bis 0.48 Å, und bei den Verbrückten um 0.49 Å. Vanadium-, Niob- und Tantalpentafluorid haben unterschiedliche Strukturen. Der Unterschied liegt in der Anordnung der Fluoratome am zentralen Metall. Vanadium-, Niob- und Tantalpentachlorid treten in Form eines Dimers (M_2Cl_{10}) auf, haben aber unterschiedliche Raumgruppen.

Theoretische Rechnungen für ⁵¹V-NMR, die auf Kristallstrukturen von VCl₅ und VOCl₃ basieren, sagen eine große chemische Verschiebung im Vergleich zu VF₅ voraus. Im Vergleich zum Singulett von VF₅ in aHF bei -802 ppm verschiebt sich die ⁵¹V-NMR Resonanz für VCl₅ in BCl₃ um 1786.6 ppm in den positive Bereich nach 984.6 ppm.

Abbildung 13: NMR-Spektrum der Reaktionslösung von VCl₅ in BCl₃ bei -78 °C

Mit Hilfe eines CCD-Röntgendetektors wird der Schmelzpunkt des Kristalls gemessen. Die Messung wird zuerst bei -100 °C gestartet und die Temperatur wird um 2 °C/min erhöht. Da VCl₅ in der Lösung bis -50 °C stabil ist, wird erwartet, dass VCl₅ in festem Zustand bzw. kristallin noch stabiler sein sollte.

Abbildung 14: Röntgenreflexe von VCl₅ bei -100 °C (links) und -40 °C (rechts).

In Abbildung 14 werden die Kristallreflexe bei -100 °C dargestellt und wie sie sich durch die Erwärmung bis -40 °C langsam ändern.

Abbildung 15: Röntgenreflexe von VCl₅ bei -10 °C.

Durch weitere Erwärmung bis zu -10 °C schmilzt der Kristall vollständig. Wie erwartet ist VCl₅ in festem Zustand stabiler als in Lösung.

Die Aufnahme von Raman-Spektren ist nicht möglich, da VCl₅ in festem und in gelöstem Zustand (Chlor als Lösungsmittel) eine sehr starke Fluoreszenz zeigt.

3 Fazit

Es wird zum ersten Mal die Existenz von MoCl₆ kristallographisch bewiesen. MoCl₆ ist als Molekül ein perfekter Oktaeder und als Kristall ist es isostrukturell mit β–WCl₆. Ebenso wird auch ReCl₆ kristallographisch bestimmt, und es ist festzustellen, dass es mit α -WCl₆ isostrukturell ist. Da ReCl₆ als Molekül ein fast perfektes Oktaeder ist, ist kein Jahn-Teller Effekt zu sehen. MoCl₆ ist das kinetisch begünstigte Produkt, ReCl₆ jedoch ist das thermodynamisch stabilste Produkt. Es ist auch erstmals gelungen, die Existenz von VCl₅ kristallographisch zu belegen und durch NMR-Messungen zu bestätigen. Wie viele Pentachloride von Übergansmetall- und Hauptgruppenelementen, mit Ausnahme von AsCl₅ und PCl_{5.}^[25] kristallisiert Vanadiumpentachlorid in dimerer Form. Ob die Struktur in Lösung oder bei noch tieferen Temperaturen dieselbe Form hat, ist fraglich. Durch die erfolgreiche Darstellung VCl₅ die Suche nach dem einzigen unbekannten von ist Übergangsmetallpentachlorid (mit höchster Oxidationsstufe) abgeschlossen.

Abbildung 16: $MoCl_6$ und $ReCl_6$ als Molekül (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit). Es ist nicht möglich die Produkte (MoCl_6, ReCl_6, VCl_5) in 100% iger Reinheit darzustellen, weil immer die Nebenprodukte wie MCl_5 oder MOCl_4 (M= Mo, Re) und im Fall von

Vanadium VOCl₃ gebildet werden. Es könnte daran liegen, dass BCl₃ nicht 100% wasserfrei ist, weil H₂O-Moleküle am Boratom koordiniert sind und auch durch mehrfache Destillation nicht trennbar sind. Solche Nebenprodukte werden bei der Aufnahme von Raman- und EPR-Spektren (ReOCl₄) beobachtet.

Bei den Übergangsmetallhexachloriden ist die Darstellung von $TcCl_6$ noch denkbar, wobei jedoch die Darstellung von TcF_6 (für den Austausch mit BCl₃) eine große Herausforderung ist.

 $TeCl_6$ ist das einzige Hexachlorid, das man sich unter den Hauptgruppenelementen vorstellen könnte. Die klassische Methode, durch Substitution an TeF_6 und TeF_5Cl mit BCl_3 , ist nicht erfolgreich. Es wird keine Reaktion beobachtet.

Versuche zur Darstellung von Iridium-Xenon-Komplexen

4 Einleitung

Nach der Darstellung der Gold- und Quecksilber-Xenon Komplexe ^[26] ist die Frage immer noch offen, ob es weitere Metall-Xenon-Komplexe geben kann. Die Au-Xe Bindung bildet sich im Supersäuremedium (HF/SbF₅) unter Reduktion von AuF₃ durch Xenon, da das nackte Au²⁺ Kation eine höhere Affinität zu Xenon im Vergleich zum Fluoridion hat. In Gegensatz zu Gold können Hg-Xe-Bindungen unter sehr hohem Druck (~ 60 bar) von Xenon (flüssiges Xenon) durch Unterbrechung der Bindung des Hg²⁺-Kations zu dem schwach koordinierenden Anionen (Sb₂F₁₁⁻, SbF₆⁻) dargestellt werden. Interessanterweise ist der Au-Xe-Komplex nur bei tiefen Temperaturen stabil, der Hg-Xe-Komplex hingegen ist sogar bei RT stabil. Die zum Gold benachbarten Elemente, Platin und Iridium, haben eine ähnliche Elektronegativität wie Gold und sollten auch solche Reaktionen eingehen. Als Startmaterialien zur Darstellung von Ir-Xe-Komplexen nach oben genannten Methoden, wird elementares Iridium, Ir₄(CO)₁₂ und IrCl₃.3H₂O benutzt. Im Laufe dieser Arbeit werden daraus geeignete Ausgangsstoffe dargestellt und deren Verhalten in Anwesenheit von Xenon untersucht. Im Prinzip werden zwei Methoden eingesetzt.

Die erste Methode

Die synthetisierten Iridium-Fluor Verbindungen werden in Anwesenheit von Antimonpentafluorid in Xenon als Lösungsmittel gelöst. Die Ir-F-Bindung sollte durch SbF₅ geschwächt und durch Xenondruck gebrochen werden.

Die zweite Methode

Die synthetisierten Organo-Iridium Verbindungen werden in Supersäuremedium (HF/SbF₅) zur Reaktion gebracht. Da Ir-C-Bindungen in Supersäure nicht stabil sind, könnte dadurch ein nacktes Kation entstehen. Als Gegenion entsteht schwach koordinierendes Anion (in diesem Fall SbF₆⁻ oder Sb₂F₁₁⁻), so dass wiederum Xenon an das Kation gebunden werden kann.

5 Allgemeiner Teil

5.1 elementares Iridium

Elementares Iridium reagiert bei hohem Druck mit elementarem Fluor zu Iridiumhexafluorid. IrF₆ ist ein starkes Oxidationsmittel und kann Chlor zu Cl_4^+ oxidieren.^[4a] Im Vergleich zu PtF₆ konnte IrF₆ nur im Supersäuremedium (HF/SbF₅) elementares Xenon zu Xe-F⁺ oxidieren.^[27] Durch SbF₅ wird die Oxidationskraft von IrF₆ bis auf die Oxidationskraft von RuF₆, RhF₆ und PtF₆ (die schon ohne Supersäuremedium Xenon oxidieren können) verstärkt. Es wird versucht, das Verhalten von IrF₆ in Xenon als Lösungsmittel zu untersuchen. Wenn IrF₆ bei hohem Druck in flüssigem Xenon (~60 bar) gelöst wird, ändert sich die Farbe der Lösung bei RT von hell gelb nach schwarz, aus der bei tiefen Temperaturen ein gelbes Pulver ausfällt. Das Pulver wird in aHF umkristallisiert und überraschenderweise kann zum ersten Mal gezeigt werden, dass IrF₆ auch ohne Supersäuremedium (HF/SbF₅) elementares Xenon unter Bildung von [XeF]⁺[IrF₆]⁻ oxidieren kann.

Abbildung 17: Kristallstruktur von [XeF][IrF₆] Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit). Das Salz $[XeF]^+[IrF_6]^-$ ist bei RT stabil. In der Elementarzelle liegen drei $[XeF]^+[IrF_6]^-$ Moleküle vor und die Bindungslänge im IrF₆ Anion ist deutlich länger als beim neutralem IrF₆.^[28] Die Ir-F6-Bindung im IrF₆⁻-Ion ist mit 1.956 Å am längsten. Die Xe-F7-Bindung im Xe-F Kation ist 1.898 Å und ist kürze als die Xe-F Bindung in XeF₂! Die Wechselwirkung zwischen Anion und Kation beträgt 2.272 Å. Da die Oxidationskraft von IrF₆ hoch genug ist, wird Xenon zu Xe-F⁺ oxidiert. Aus diesem Grund wird vorher versucht, IrF₆ zu IrF₅ zu reduzieren und dann sein Verhalten in Anwesenheit von Xenon zu beobachten.

5.2 Reduktion von IrF₆ zu IrF₅

IrF₆ kann durch H₂ in aHF zu IrF₅ reduziert werden.^[29] IrF₅ ist ein grüner Feststoff, dessen Oxidationskraft niedriger ist als IrF₆. Dadurch kann Xenon nicht oxidiert werden, aber es könnte eventuell einen Fluor-Xenon-Austausch geben. Wenn IrF₅ in flüssigem Xenon gelöst wird, wird keine Veränderung beobachtet. Durch langsame Kühlung kann jedoch IrF₅ kristallisiert werden, was bis jetzt nur durch Pulverdiffraktometrie strukturell nachgewiesen wurde.^[30]

Abbildung 18: Kristallstruktur von tetramerem IrF₅ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

 IrF_5 kann weiter durch H_2 zu braunem IrF_4 reduziert werden.^[29] Auf Grund seiner polymereh Struktur ist IrF_4 nicht in Xenon und Supersäure (HF/SbF₅) löslich, und es kann keine Reaktion mit elementarem Xenon beobachtet werden.

5.3 Tetrairidiumdodecacarbonyl (Ir₄(CO)₁₂)

Tetrairidium dodecacarbonyl besteht aus einem Tetraeder von Iridiumatomen und Carbonylliganden, die ausschließlich terminal gebunden sind. $Ir_4(CO)_{12}$ kann in Supersäuremedium (HF/SbF₅) zu [Ir₄(CO)₁₂(H₃)][(Sb₂F₁₁)(F)]₂. 2HF protoniert werden.

Abbildung 19: Kristallstruktur von $[Ir_4(CO)_{12}(H_3)][(Sb_2F_{11})(F)]_2$ ohne HF und F⁻ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

In dem protonierten Tetraeder sind drei längere Ir-Ir-Bindungen vorhanden, auf denen drei Wasserstoffatome liegen könnten. Im Kristall ist auch zusätzlich ein F⁻ Ion vorhanden.

Ir-Ir		Winkel	Winkel		
Ir(1)-Ir(2)	2.845	Ir(1)-Ir(3)-Ir(2)	64.17(3)		
Ir(1)-Ir(3)	2.845	Ir(3)-Ir(1)-Ir(4)	64.28(3)		
Ir(1)-Ir(4)	2.681	Ir(3)-Ir(1)-Ir(2)	58.12(3)		
Ir(2)-Ir(3)	2.684	Ir(4)-Ir(2)-Ir(1)	57.94(3)		
Ir(2)-Ir(4)	2.682	Ir(3)-Ir(2)-Ir(1)	57.70(3)		
Ir(3)-Ir(4)	2.848	Ir(4)-Ir(1)-Ir(2)	57.98(3)		
		Ir(4)-Ir(2)-Ir(3)	64.10(3)		

Tabelle 5: Die Bindungslänge (Å) und Winkel (°) in protoniertem $Ir_4(CO)_{12}$

Die direkte Fluorierung von $Ir_4(CO)_{12}$ in aHF mit elementarem Fluor oder mit einem Überschuss an XeF₂ führte zur Darstellung von $Ir(CO)_3F_3$, was bis jetzt nur durch ¹⁹F-und ¹³C-NMR nachgewiesen ist.^[31] Das (CO)₃IrF₃ könnte ein gutes Ausgangsprodukt sein, um eine Ir-F-Bindung in eine Ir-Xe-Bindung überzuführen. Um das Ziel zu erreichen, muss die Ir-F Bindung in Ir(CO)₃F₃ so weit wie möglich geschwächt werden. Die geschwächte Bindung könnte anschießend durch Aufbau extremen Xenondrucks gebrochen werden. Das dadurch entstehende nackte Kation sollte sich, wie schon bekannt ist, für den besseren Liganden (Xenon) entscheiden.

X-Ir-F
$$\underline{SbF_5}$$
 X-Ir....FSb₂F₁₀ \underline{Xe} X-Ir-Xe....FSb₂F₁₀

Antimonpentafluorid besitzt eine sehr hohe Fluoridaffinität und ist in der Lage, solche schwach koordinierenden Anione wie Sb₂F₁₁⁻Anionen (wie im Fall der Hg-Xe-Komplexe) zu bilden. Das Problem ist die Löslichkeit des Ir(CO)₃F₃-Kopmlexes in SbF₅, da es nur bei hohen Temperaturen stattfindet. Durch die hohe Temperatur findet eine Polymerisierung des Ir(CO)₃F₃-Komlexes in SbF₅ statt und bildete mit flüssigem Xenon ein Zweiphasensystem. Um die Polymerisation zu vermeiden, wird Ir(CO)₃F₃ in Anwesenheit von SbF₅ in flüssigem Xenon erhitzt. Dafür wird zuerst SbF₅ in Xenon (~ 60 bar) gelöst und dann durch die langsame Erwärmung auf bis auf 80 °C Ir(CO)₃F₃ teilweise in Xenon gelöst. Durch langsame

Schema 9: Eventueller F-Xe-Austasch mit Hilfe von SbF₅

Abkühlung in flüssigem Xenon wird $[Ir_2(CO)_6(\mu-SbF_6)_2(Sb_2F_{11})_2]$ kristallisiert und kann kristallographisch untersucht werden.

Abbildung 20: Kristallstruktur von $[Ir_2(CO)_6(\mu-SbF_6)_2(Sb_2F_{11})_2]$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Die Reaktion von (CO)₃IrF₃ mit SbF₅ führt zu Sb₂F₁₁ bzw. zu SbF₆ an Iridium (F1, F12 und F17). Zwei Iridiumatomen werden über zwei SbF₆ dimerisiert. Trotz der stark elektronziehenden Gruppen wie Sb₂F₁₁ sind die Ir-F-Wechselwirkungen doch so stark, dass sie nicht durch Xenon ausgetauscht werden können. Die längste Ir-F17-Bindung ist 2.124(8) Å lang und damit deutlich länger als die Ir-F-Bindung in IrF₆ mit 1.83 Å.^[28] Die F1 und F12 sind näher an Sb1 und Sb2 positioniert als an Ir. Die drei Carbonyl-Gruppen bilden ein *fac*-Isomer, wodurch auch schwierig zu entscheiden ist, ob das Ausgangprodukt (Ir(CO)₃F₃) auch

ein *fac*-Isomer ist oder während der Reaktion eine Umwandelung der Isomere stattgefunden hat. Die C4-O3-Bindung ist mit 1.119 Å am kürzesten, da es einen Winkel von 176.9(°) zum stark koordinierenden F1 bzw. Sb_2F_{11} hat.

Abstände		Winkel		
Ir-C(1)	1.9112(3)	F(12)-Sb(2)-F(17)	83.510(6)	
Ir-C(2)	1.9112(3)	Ir-F(12)-Sb(2)	142.142(8)	
Ir-C(3)	1.9030(4)	F(12)-Ir-C(3)	171.189(8)	
Ir-F(1)	2.1029(3)	F(1)-Ir-C(1)	176.979(8)	
Ir-F(12)	2.1124(4)	F(17)-Ir-C(2)	171.390(8)	
Ir-F(17)	2.1248(3)	Ir-C(3)-O(2)	178.045(11)	
C(2)-O(1)	1.1201(2)	Ir-C(1)-O(3)	178.461(11)	
C(3)-O(2)	1.1202(2)	Ir-C(2)-O(1)	178.921(11)	
C(4)-O(3)	1.119(1)			
Sb(2)-F(1)	1.945(0)			
Sb-F(17)	1.9850(3)			
Sb-F(12)	1.9597(4)			

Tabelle 6: Die wichtigsten Bindungen (Å) und Winkel (°) in $[Ir_2(CO)_6(\mu-SbF_6)_2(Sb_2F_{11})_2]$.

Da bis heute die Kristallstruktur von $(CO)_3IrF_3$ nicht bekannt ist, wird auch versucht, diese zu ermitteln. $(CO)_3IrF_3$ ist ein extrem luftempfindliches Produkt, welches sehr gut in aHF und teilweise in HSO₃F löslich ist. Zahlreiche Versuche, das Produkt in oben genannten Lösungsmitteln zu kristallisieren, blieben erfolglos. $(CO)_3IrF_3$ ist auch bei hoher Temperatur in einer Mischung von HF/HSO₃F im Verhältnis 1:3 löslich. Durch die langsame Abkühlung von 80 °C auf RT werden Kristalle folgender Struktur erhalten.

Abbildung 21: Kristallstruktur von Ir(CO)₂(SO₃F)₃ als Dimer. (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

Ir(CO)₂(SO₃F)₃ kristallisiert im triklinen Kristallsystem mit a = 7.3627(17) Å, b = 7.5661(17) Å und c = 11.586(3) Å und den Winkeln α = $107.357(5)^{\circ}$, β = $104.457(4)^{\circ}$ und γ = $95.960(4)^{\circ}$. Die Carbonyl-Gruppen stehen *cis* zueinander und die SO₃F-Gruppen stehen *trans* zueinander. Zwei Iridiumatome werden über eine SO₃F-Gruppe in einer sesselförmigen Struktur dimerisiert. Die Oxidationsstufe des Iridiums ist dieselbe wie beim (CO)₃IrF₃.Die Ir-O11-Bindung beträgt 2.085 Å.
Absta	ände	Winkel
Ir-C(1)	1.905(4)	O(11)-Ir-C(1) 177.8(6)
Ir-C(2)	1.912(5)	C(2)-Ir-O(9) 173.8(0)
Ir-O(8)	2.029(5)	Ir-O(9)-S(3) 131.5(8)
Ir-O(7)	2.031(2)	Ir-O(8)-S(2) 125.1(8)
Ir-O(9)	2.069(6)	Ir-O(7)-S(1) 124.7(8)
Ir-O(11)	2.085(7)	
S(3)-O(9)	1.470(8)	

Tabelle 7: Die wichtigsten Bindungen (Å) und Winkeln (°) in Ir(CO)₂(SO₃F)₃

Es wäre also möglich die Fluoratome und Carbonylgruppen im (CO)₃IrF₃ durch die Supersäure (HSO₃F) auszutauschen. Es ist aber nicht möglich, die Reaktion in Anwesenheit von Xenon und magischer Säure durchzuführen, da sich wegen sehr starker Wasserstoffbrücken ein Zweiphasensystem bildet.

5.4 Darstellung von [mer-Ir(CO)₃F(FSbF₅)₂]

Die Fluorierung von $Ir_4(CO)_{12}$ in Supersäuremedium (HF/SbF₅) mit elementarem Fluor führte zur Darstellung von *mer*-Ir(CO)₃F(FSbF₅)_{2.}^[32] Durch die Verbesserung der Reaktionsbedinungen ist es gelungen, das Produkt im Gramm-Maßstab herzustellen. Reaktionsgleichung:

$$Ir_4(CO)_{12} + 8 SbF_5 + 6 F_2 \xrightarrow{aHF} 4[mer-Ir(CO)_3F(FSbF_5)_2]$$

Schema 10: Darstellung von mer-Ir(CO)₃F(FSbF₅)₂

Abbildung 22: Kristallstruktur von *mer*-Ir(CO)₃F(FSbF₅)₂ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

Wie auch bei der Darstellung von $Ir(CO)_3F_3$, wird auch hier versucht, das Produkt in SbF₅ zu lösen, um durch Xenondruck die Ir-F-Bindungen zu brechen. Überraschenderweise ist das Produkt nur bei den hohen Temperaturen in SbF₅ löslich, was zu Polymerisation des Produktes führte.

mer-Ir(CO)₃F(FSbF₅)₂ ist sehr gut in Supersäure (HF/SbF₅) löslich, aber die Kristallisation zeigt, dass sich die SbF₆-Ionen nicht zu Sb₂F₁₁-Ionen umwandeln.

Durch Bestrahlung von [*mer*-Ir(CO)₃F(FSbF₅)₂] mit UV-Licht in Anwesenheit von Xenon und Fluor in aHF wird [Ir₂(CO)₆(μ -F₂)(SbF₆)₂] hergestellt. Da Iridium sehr Carbophil ist, ist der Austausch der Carbonyl-Gruppen in Supersäuremedium (HF/SbF₅) nicht möglich.

Abbildung 23: Kristallstruktur von $[(Ir(CO)_3(\mu-F_2))_2][(SbF_6)_2]$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

Das *in situ* entstehende XeF₂ agiert als Base und SbF₆⁻ stellt das Gegenion dar. Der über zwei Fluoratome verbrückte Komplex ist zweifach positiv geladen. Das Salz [(Ir(CO)₃(μ -F₂))₂][(SbF₆)₂] ist bei RT stabil und ist ein Beweis dafür, dass Iridium auch in Anwesenheit von Xenon solche über Fluor verbrückte Komplexe bevorzugt, was beim Fluor im Vergleich zu Chlor ungewöhnlich ist. Im dimeren Molekül ist jedes Iridiumatom von drei Carbonylgruppen und drei Fluoratomen in Form von Oktaedern koordiniert, die über zwei Fluoratome verbrückt sind. Dadurch liegen die beiden Iridiumatome um 0.16 Å von der idealen Oktaederposition entfernt. Der Ir-Ir-Abstand beträgt 3.1944(4) Å.

Im Vergleich zum in Abbildung 22 dargestellten Kristall ist das Kation $[Ir(CO)_3F_2)]_2$ das *fac*-Isomer. Es scheint, dass eine Umwandelung vom *mer*- zum *fac* -Isomer stattgefunden hat. Für die Umwandlung sind sowohl inter- als auch intramolekulare Mechanismen vorstellbar. Nach der Abspaltung der sich beeinflussenden SbF₆⁻-Ionen, könnte in der Lösung ein dynamisches Gleichgewicht zwischen *fac*- und *mer*-Isomeren von (CO)₃IrF₃ vorliegen. Durch die Dimerisierung wird die Bildung des *fac*-Isomers bevorzugt.

Abstä	nde	Wir	ıkel
Ir-C(1)	1.950(6)	F(1)-Ir-C(1)	172.285(1)
Ir-C(2)	1.921(0)	F(2i)-Ir-F(2)	76.476(6)
Ir-C(3)	1.913(5)	Ir-F(2)-Ir	103.524(7)
Ir-F(1)	1.954(3)	Ir-C(1)-O(1)	178.602(1)
Ir-F(2i)	2.030(8)	Ir-C(2)-O(2)	177.951(8)
Ir-F(2)	2.036(1)	Ir-C(3)-O(3)	177.602(1)
C(1)-O(1)	1.118(2)		
C(2)-O(2)	1.108(9)		
C(3)-O(3)	1.118(3)		

Tabelle 8: Die Abstände (Å) und Winkel (°) in $[(CO)_3 IrF_4]^{2+}$.

5.5 Tetramethyl(η^5 -pentamethylcyclopentadienyl)iridium(V)

 $(Cp*Cl_2Ir)_2$ wurde durch die Reaktion von IrCl_3.3H₂O mit Cp*H hergestellt.^[33] Das über zwei Chloratome verbrückte Dimer konnte durch starke Methylierungsmittel wie Al₂Me₆ in einer noch nicht vollständig aufgeklärten Reaktion zu Tetramethyl(η^5 -pentamethylcyclopentadienyl)iridium(V) (Cp*IrMe₄) methyliert werden.^[34]

5.6 Reaktion von Cp*IrMe₄ in Supersäuremedium (HF/SbF₅)

Es wird versucht durch die Abspaltung der Methylgruppen mit starken Säuren ein nacktes Iridium-Kation mit schwach koordiniertenden Anion herzustellen. Die Reaktion wird bei verschiedenen Temperaturen durchgeführt, um ein entstehendes Kation zu stabilisieren. Es ist erstmals der Nachweis durch einen schlechten Kristall gelungen, dass im Supersauren Cp*IrMe₄ durch Abgabe von Methan zu Cp*Ir(SbF₆)₂ reduziert wird.

$$Cp*IrMe_4 + 4H^+ + 2e \xrightarrow{HF/SbF_5} Cp*Ir(SbF_6)_2 + 4 CH_4$$

Schema 10: Reaktion von Cp*IrMe₄ in Supersäure.

Es ist jedoch nicht gelungen, die Herstellung des Produkts zu reproduzieren und kristallographisch zu untersuchen. Es wird ebenso versucht, das *in situ* entstehende Salz in Xenon zu lösen. Es wird jedoch keine Reaktion mit Xenon beobachtet.

5.7 Darstellung von Bis(pentafluorophenyl)(η⁵-pentamethylcyclopentadienyl) iridium(III)

Es wird versucht, Cp*IrMe₄ in flüssigem Xenon zu lösen, um Methylgruppen durch Xenon zu substituieren. Durch Zugabe von $B(C_6F_5)_3$ wird Cp*IrMe₄ in Xenon gelöst. Die kristallographische Untersuchung zeigt, dass die Me-Gruppen durch $B(C_6F_5)_3$ abgespalten werden und der Ir(V)-Komplexes unter Reduktion in die Ir(III)-Verbindungen Cp*Ir(C₆F₅)₂ übergeht.

Abbildung 25: Kristallstruktur von $Cp*Ir(C_6F_5)_2$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

Der Transfer perfluorierter Arylgruppen durch $B(C_6F_5)_3$ zu Metallkationen wie Ti und Zr ist bereits bekannt.^[35]

Schema 11: perfluoriete Aryl Transfer

Die vollständige Substitution von Methylgruppen durch C_6F_5 -Gruppen an Cp*IrMe₄ ohne Erniedrigung der Oxidationstufe ist möglicherweise wegen sterischer Gründe untersagt. Bis(pentafluorophenol)(η^5 -pentamethylcyclopentadienyl)iridium(III) kristallisiert im orthorombischen Kristallsystem mit a = 11.962(3) Å, b = 18.733(5) Å und c = 9.107(2) Å. Die Ir-C(C₆F₅) Bindung beträgt 2.062 Å, was deutlich kürzer als die Ir-Me Bindung in Cp*IrMe₄ ist, und der (C₆F₅)C-Ir-C(C₆F₅) Winkel beträgt 95.026°. Im Vergleich zu Cp*IrMe₄ ist der Abstand zwischen Iridium und der Cp* Ebene kürzer (1.790 Å). Bei diesem Komplex(Cp*Ir(C₆F₅)₂) handelt sich um einen 16-Elektronen-Komplex, der unter hohem Druck stabil ist! Trotz Mangel an Elektronen und dem Vorhandensein von freien Koordinationsstellen, geht der Iridiumkomplex keine Reaktion mit Xenon ein. Da es sich um einen neue Iridiumkomplex handelt, wird versucht, den Komplex Cp*Ir(C₆F₅)₂ durch die Reaktion von (Cp*Cl₂Ir)₂ mit LiC₆F₅ in größeren Mengen darzustellen.

5.8 Darstellung von Lithiumdiethylethertris(pentafluorophynol)(η⁵-pentamethylcyclopentadienyl)iridium(III)

Zur Darstellung von Cp*Ir(C₆F₅)₂ wird (Cp*Cl₂Ir)₂ mit 4 Äquivalenten LiC₆F₅ (hergestellt *in situ* nach der Methode von Klapötke)^[36] in Diethylether umgesetzt. Nach der Trennung der Reaktionslösung von dem Niederschlag (hauptsächlich LiCl) wird das Lösemittel entfernt und der Rückstand mit Hexan gewaschen, um Nebenprodukte zu entfernen. Schließlich wird das resultierende schwarze Pulver in abs. Hexan für mehrere Stunden unter Rückfluss erhitzt, wobei ein Teil der Substanz in Lösung ging. Bei langsamer Abkühlung dieser Lösung auf - 40 °C können schwarz Kristalle erhalten werden. Überraschenderweise wird das Produkt Lithiumdiethylether-tris(pentafluorobenzol)(η^5 -pentamethylcyclopentadienyl)iridium(III) [Li⁺(Et₂O)][Ir(η^5 -C₅Me₅)(C₆F₅)₃]⁻ erhalten.

Abbildung 26: Kristallstruktur von Anion $[Ir(\eta^5-C_5Me_5)(C_6F_5)_3]^-$. (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

[Li(Et₂O)][Ir(η^5 -C₅Me₅)(C₆F₅)₃] kristallisiert im monoklinen Kristallsystem mit a = 8.7079 Å, b = 20.2962 Å und c = 17.7647 Å und β = 101.422°. Es liegen drei verschiedene Ir-C(C₆F₅)-Bindungen von Ir-C17 mit 2.104 Å, Ir-C23 mit 2.134 Å und Ir-C11 mit 2.144 Å vor, die darauf deutlich länger als im Cp*Ir(C₆F₅)₂ sind. Die Winkel zwischen benachbarten C₆F₅-Liganden sind 83.278° und 83.410°. Der Abstand zwischen Iridium und der Cp*-Ebene beträgt 1.884 Å, was länger als in Cp*Ir(C₆F₅)₂ mit 1.790 Å ist.

Bei diesem Komplex handelt es sich um einen sehr stabilen 18-Elektronen-Komplex.

Die Reaktion wird alternativ mit 2 Äquivalenten von C_6F_5Li in abs. Ether durchgeführt, um $Cp*Ir(C_6F_5)_2$ aus $(Cp*IrCl_2)_2$ herzustellen. Nach Trennung des Salzes (LiCl) und Waschen mit Hexan wird ein hellbrauner Feststoff erhalten, dessen ESI-MS Spektrum mehrere Peaks aufzeigte, die nicht identifiziert werden konnten. Um ein reineres Produkt zu erhalten, wurde die Substanz in abs. Hexan gekocht. Jedoch zeigt ESI-MS starke Zersetzung des Produktes.

5.9 Darstellung von $[(\eta^5-C_5Me_5)Ir(\eta^6-C_6HF_5)]^+[Sb_3F_{14}]^-[SbF_6]^-.HF$

 $[Li(Et_2O)]$ [Ir(η^5 -C₅Me₅)(C₆F₅)₃] wird in aHF mit SbF₅ bei unterschiedlichen Temperaturen(-50 °C, -30 °C, -20 °C, 20 °C) umgesetzt. Nur bei 20 °C Fall findet eine Reaktion statt. Es wird vermutet, dass einer oder alle C₆F₅-Liganden protoniert werden und anschließend dissoziieren. Jedoch werden, nach langsamem Abkühlen auf -50 °C, gelb erscheinende Kristalle (bei sorgfältiger Betrachtung erwiesen sich die Kristalle als farblos) erhalten, die röntgendiffraktometrisch untersucht werden können. Diese Verbindung erwies sich als ein Sandwichkomplex mit der Struktur $[Cp*Ir(\eta^6-C_6HF_5)]^{2+}[Sb_3F_{14}]^{-1}[SbF_6]^{-1}$.HF. Die Ausbeute konnte wegen der schlechten Trennbarkeit von der nichtkristallinen schwarzen Substanz nicht bestimmt werden. Dieser Komplex hat einige interessante Merkmale. Zuerst, formal geschrieben, fand eine Redoxreaktion statt (das zentrale Sb-Atom in Sb₃F₁₄- hat eine formale Oxidationszahl von +3), aber das oxidierte Produkt ist unbekannt. Daher kann keine Reaktionsgleichung aufgestellt werden. Zweitens, η^6 -Komplexe mit perfluorierten Arylliganden kommen ziemlich selten vor. Diese Verbindung ist eine der wenigen n⁶-C₆HF₅-Komplexe, und die erste, dessen Kristallstruktur bestimmt wurde. Drittens, die Reaktion ist eine der wenigen, wobei eine Haptizitätsveränderung η^1/η^6 beobachtet wird: Veränderung dieser Art waren nur bei wenigen Ruthenium- bzw. Chromkomplexen bekannt. $[Cp*Ir(n^6 C_6HF_5$]²⁺[Sb₃F₁₄]⁻[SbF₆]⁻.HF kristallisiert im monoklinen Kristallsystem mit a = 11.681(3) Å, b = 20.791(5) Å und c = 12.812(3) (Å) und dem Winkel von $\beta = 90.363(5)^{\circ}$. Der Abstand des Ir-Atoms von der Ebene des C₅Me₅- bzw. C₆HF₅-Ringes beträgt 1.813 bzw. 1.779 Å und die beiden Ebenen sind nahezu parallel.

Abbildung 27: Kristallstruktur von $[Cp*Ir(\eta^6-C_6HF_5)]^{2+}[Sb_3F_{14}]^{-}[SbF_6]^{-}$ ohne HF Molekül (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit).

Der Reaktionsmechanismus könnte man sich über Zwischenstufen wie Cp*Ir(C₆F₅)₂, [Cp*Ir(C₆F₅)]⁺ und einer anschließenden Haptizitätsänderung η^{1}/η^{6} zu [Cp*Ir(η^{6} -C₆HF₅)]²⁺ vorstellen. In Tabelle 9 werden die C – C-Bindungen des C₆HF₅-Ringes im Kation [Cp*Ir(η^{6} -C₆HF₅)]²⁺ mit neutralem C₆HF₅ verglichen. Es ist eine deutliche Verlängerung der C-C- bzw C-F-Bindungen zu beobachten.

C-C Abstand in C [Cp*Ir(η ⁶ -C ₆ HI	$_{6}^{6}$ HF ₅ in F_{5})] ²⁺	C-C Abstand in C ₆ HF ₅ [[]	neutralem ^{37]}
C(11) - C(12)	1.401	C(1) - C(2)	1.367
C(12) - C(13)	1.419	C(2) - C(3)	1.371
C(13) - C(14)	1.405	C(3) - C(4)	1.377
C(14) - C(15)	1.405	C(4) - C(5)	1.362
C(15) - C(16)	1.428	C(5) - C(6)	1.371
C(16) - C(11)	1.415	C(6) - C(1)	1.373

Tabelle 9: Vergleich der C-C-Bindungen (Å)

In der Tabelle 10 werden die C-F-Bindungen des C₆F₅H-Ringes im Kation [Cp*Ir(η^{6} -C₆HF₅)]²⁺ mit neutralem C₆HF₅ verglichen. Die Verkürzung der Bindungen im Sandwichkomplex ist besonderes bei C(16) - F(21) sehr interessant.

Tabelle 10: Vergleich der C-F-Bindungen (Å).

_

C-F Abstand in C ₆ HF $[Cp*Ir(\eta^6-C_6HF_5)]^{2+}$	F ₅ in	C-F Abstand in C ₆ HF ₅ ^{[3}	neutralem
C(11)- F(20)	1.318	C(1) - F(1)	1.340
C(13) - F(23)	1.327	C(2) - F(2)	1.341
C(14) - F(22)	1.312	C(3 - F(3))	1.337
C(16) - F(21)	1.298	C(4) - F(4)	1.342
C(15) - F(24)	1.311	C(5) - F(5)	1.342
C(12)- H(1)	0.96(6)		

6 Fazit

Es ist nicht gelungen, einen Iridium-Xenon-Komplex darzustellen. Die Iridium-Fluor-Bindung ist eine sehr starke Bindung und kann nicht in Anwesenheit einer starken Lewis-Säure (wie SbF₅) und unter Xenon-Druck ausgetauscht werden. Iridium-Fluor-Komlexe dimerisieren gerne über zwei Fluoratome, und die zweikernigen Iridiumverbindungen haben keine freien Koordinationsstellen, um mit Xenon zu reagieren, oder bilden in aHF sehr starke Fluorwasserstoffbrücken, die wiederum nicht in der flüssigem Xenonphase löslich sind. Es ist gelungen zu beweisen, dass IrF₆ in der Lage ist, Xenon zu oxidieren. Die Reduktion der Organoiridiumkomplexe führte zur Darstellung neuer Iridiumkomplexer wie [Cp*Ir(η^6 -C₆HF₅)]²⁺[Sb₃F₁₄]⁻[SbF₆]⁻. Bei der Reduktion entstehen nur Iridiumkomplexe in der Oxidationszahl +3. Es scheint, dass niedrige Oxidationstufen des Iridiums wie +1 und +2 in Supersäuremedium nicht stabil genug sind, um mit Xenon zu reagieren.

7 Summery

This work has been divided into two parts. The first part is dedicated to transition metal chlorides with a high oxidation state metal center. In this context MoCl₆, ReCl₆ and VCl₅ were synthesized. The complexes were prepared starting from the corresponding metal fluoride by treatment with BCl₃ and characterized by single-crystal X-ray diffraction.

It is worth mentioning that the MoCl₆ is being synthesized and crystallographically characterized for the first time in the literature. MoCl₆ is isostructural to β -WCl₆ and has a trigonal crystallographic. The d⁰ compound MoCl₆ has always been assumed to be strictly octahedrally coordinated. ReCl₆ studied by X-ray crystallography is isostructural to α -WCl₆. The d¹-complex, ReCl₆, has an almost perfect octahedral coordination and the problem of Jahn-Teller distortion is expected to be small. This could be a reason why no EPR signal at low temperature (-77 K) is observed.

It was successfully proven by X-ray crystallography and 51 V-NMR spectroscopy that VCl₅ does exists. Like many pentachlorides of transition-metal or main group elements VCl₅ crystallizes as dimer (V₂Cl₁₀). Whether the structure in solution or at even lower temperatures has the same form is still questionable. It is worth mentioning that by the successful preparation of VCl₅ the search for the unknown transition metal pentachloride (with the highest oxidation states) is now completed.

The second part is dedicated to the efforts of synthesizing an iridium-xenon complex. The preparation of such compound was not successful, mainly because the iridium-fluorine bond in the used precursor is a very strong bond and cannot be exchanged in the presence of a strong Lewis acid (such as SbF_5) even under strong pressure of xenon. In the presence of strong Lewis acid with high temperatures the Iridium-fluoro-complexes favor to dimerize through two fluorine atoms and the resulting binuclear iridium compounds do not have free coordination sites to react with xenon.

In the present of anhydrous HF the Iridium-fluoro-complexes make very strong fluorine hydrogen bonds. This extremely polar phase isn't miscible with the unpolar liquid xenon phase. But under these conditions it was demonstrated that IrF_6 is able to oxidize xenon to the complex [XeF][IrF₆].

It was effectual to synthesis some new iridiumcomplexe like $[Li(Et_2O][Cp^*(C_6F_5)_3]]$, The reduction of $[Li(Et_2O)][Cp^*(C_6F_5)_3]$ in super acid (HF/SbF₅) gave a new sandwich complex of iridium such as $[Cp^*Ir(\eta^6-C_6HF_5)]_2[Sb_3F_{14}][SbF_6]$.

The reduction of iridium complexes in super acid (HF/SbF₅) was formed in the oxidation state (III). It seems that the low oxidation states of iridium such as +1 and +2 in super acid was not stable enough to react with xenon.

8 Experimenteller Teil

8.1 Allgemeine experimentelle Bedingungen

Die Reaktionen werden unter vollständigem Luft- und Feuchtigkeitsausschluss durchgeführt. Als Schutzgas dient Argon, das über Phosphorpentoxid getrocknet wird. Alle Arbeiten werden mittels Schlenktechnik oder im Vakuum (Glasbzw. Metall-Hochvakuumapparaturder Firma HOOKE) durchgeführt. Die verwendeten Chemikalien, sofern sie bei Raumtemperaturstabil sind, werden in einem Handschuhkasten der Firma Braun, Typ MB 150 B/G mit automatischer Trocknungseinrichtung, mit H₂O- und O₂-Gehalt unterhalb 1 ppm gehandhabt. Die verwendeten Lösungsmittel werden nach Standardmethoden Die Arbeit mit F₂ und fluorhaltigen Reagenzien getrocknet. wird in PFA (PolyperfluorethenperfluorvinyletherCopolymerisat)-Schläuchen, mit einem Innendurchmesser von 8 und12 mm (Wandstärke 1.5 mm) durchgeführt. Für NMR-Spektren werden PFA-Schläuche von 4 mm Durchmesser verwendet. Die Arbeit mit verflüssigten Gasen erfolgt unter den erforderlichen Schutzmaßnahmen. Besondere Sicherheitsmaßnahmen werden für die Synthesen mit aHF und BCl₃ getroffen.

8.2 Ausgangssubstanzen

BCl ₃	Fa. Sigma-Aldrich
Cp*	Nach der Methode von Kuhl und Jutzi ^[38] dargestellt
F_2	Fa. Solvay
HSO ₃ F	Fa. Bayer
Ir	Fa. Chempur
$Ir_4(CO)_{12}$	ABCR
IrCl ₃ .3H ₂ O	Fa. Strem
MoF ₆	Stand zur Verfügung
Re	Fa. Chempur
SbF ₅	Fa. Aldrich, gereinigt durch mehrfache Destillation
VF ₅	Stand zur Verfügung
Xe	Fa. Linde

8.3 Darstellung von Molybdänhexachlorid (MoCl₆)

In ein auf -196 °C gekühltes 12 mm PFA-Rohr werden an einem Stahl-Hochvakuum-Apparatur 3 g (25.6 mmol) Bortrichlorid kondensiert und bei -78 °C von Spuren des Chlorwasserstoffs und elementarem Chlor befreit. Es werden 300 mg (1.43 mmol) Molybdänhexafluorid in das Rohr kondensiert, das anschließend abgeschmolzen wird. Das PFA-Rohr wird nun wieder auf -78 °C erwärmt und sehr gut gemischt. Das PFA-Rohr wird direkt auf -20 °C erwärmt. Die Farbe der Lösung ändert sich sehr schnell von hellgelb zu tiefrot. Nach 2-3 h scheiden sich hexagonale schwarze Kristalle ab, die sich nach wenigen Stunden zu nadelförmigem Molybdänpentachlorid umwandeln.

Raman	$v [cm^{-1}] = 403(s) 374(sw) 175(m)$
Naman	v [cm] = 403(s), 574(sw), 173(m)

Tabelle II.Kristalldaten und Strukturverfe	inerung für MoCl ₆ .
Empirical formula	Cl6 Mo
Formula weight	308.64
Temperature	133(2) K
Wavelength	0.71073 Å
Crystal system	trigonal
Space group	P3m1
Unit cell dimensions a, b, c (Å)	10.341(3), 10.341(3), 5.540(2)
Angle γ (°)	120°
Volume	513.0(3) Å ³
Z	3
Density (calculated)	2.997 Mg/m ³
Absorption coefficient	4.133 mm ⁻¹
F(000)	432
Crystal size	0.01 x 0.2 x 0.2 mm ³
Theta range for data collection	2.27 to 30.44°.
Index ranges	-14<=h<=11, -14<=k<=11, -7<=l<=7
Reflections collected	6113
Independent reflections	602 [R(int) = 0.0533]
Completeness to theta = 30.44°	99.7 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	602 / 0 / 31
Goodness-of-fit on F ²	1.226
Final R indices [I>2sigma(I)]	R1 = 0.0383, WR2 = 0.0876
R indices (all data)	R1 = 0.0749, WR2 = 0.1209
Largest diff. peak and hole	4.057 and -1.637 e.Å ⁻³

4 4 TT · 11.1 <u>،</u> ،

8.4 Darstellung von Rheniumheptafluorid (ReF₇)

Elementares Rhenium (10 g, 53.7 mmol) wird in einem Monel-Autoklaven mit 6 L (270 mmol) F_2 durch Erwärmen mit der Bunsenbrennerflamme vorfluoriert. Anschließend werden 3,6 L (120mmol) elementares Fluor in den Autoklaven kondensiert. Nach 24 h Reaktionsdauer der Hochdruckreaktion (200 bar) bei 400 °C wird das überschüssige Fluor bei -78 °C im Hochvakuum entfernt und das flüchtige, gelbe Produkt in einen Stahlzylinder kondensiert. Die Ausbeute ist quantitativ in Bezug zum eingesetzten metallischen Rhenium.

8.5 Darstellung von Rheniumhexafluorid (ReF₆)

Zu 0,5 g (2,7 mmol) in einem Monel-Autoklav vorgelegten trockenen Re-Metall werden 7 g (16,7 mmol) ReF₇ kondensiert. Die vollständige Synproportionierung erfolgt nach 12 h bei 250 °C. Das leichtflüchtige, gelbe ReF₆ wird an einer Metall-Vakuumapparatur in einen auf - 196 °C gekühlten Stahlzylinder überführt. Unter absolutem Feuchtigkeitssausschluss kann die Verbindung bei Raumtemperatur aufbewahrt werden.

Raman $\mathbf{v} [\mathbf{cm}^{-1}] = 754 (st), 732 (w), 587(m), 384 (w), 245(m)$

8.6 Darstellung von Rheniumhexachlorid (ReCl₆)

In ein auf -196 °C gekühltes 12 mm PFA-Rohr werden an einem Stahl-Hochvakuum-Apparatur 3 g (25.6 mmol) Bortrichlorid kondensiert und bei -78 °C von Spuren des Chlorwasserstoffs und elementaren Chlors befreit. Es werden 300 mg (1 mmol) Rheniumhexafluorid in das Rohr kondensiert, das anschließend abgeschmolzen wird. Das PFA-Rohr wird nun auf -78 °C erwärmt und sehr gut gemischt. Das PFA-Rohr wird direkt auf -20 °C erwärmt und über Nacht stehengelassen. Die Farbe der Lösung ändert sich von hellgelb zu tiefrot. In dieser Zeit scheiden sich hexagonale schwarze Kristalle ab.

Raman

 $\mathbf{v} [\mathbf{cm}^{-1}] = 404(s), 360(vw), 169(w)$

Empirical formula	C_{16} P $_{2}$
Empirical formula Formula weight	308.00
Temperature	203(2) K
Wavelength	0 71073 Å
Crystal system	trigonal
Space group	$P\overline{3}m1$
Unit call dimensions a $h \circ (h)$	5 075(2) 5 075(2) 16 452(0)
Angle v ^o	120°
	120 500 7(4) ⁸ 3
Volume	508.7(4) A ⁵
L	3
Density (calculated)	3.906 Mg/m ³
Absorption coefficient	20.151 mm ⁻¹
F(000)	531
Crystal size	0.01 x 0.2 x 0.2 mm ³
Theta range for data collection	4.13 to 30.46°.
Index ranges	-8<=h<=8, -8<=k<=8, -20<=l<=23
Reflections collected	1724
Independent reflections	233 [R(int) = 0.1009]
Completeness to theta = 30.46°	66.2 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	233 / 0 / 13
Goodness-of-fit on F ²	1.157
Final R indices [I>2sigma(I)]	R1 = 0.0282, WR2 = 0.0489
R indices (all data)	R1 = 0.0282, WR2 = 0.0489
Extinction coefficient	0.0046(6)
Largest diff. peak and hole	1.306 and -1.100 e.Å ⁻³

Tabelle 12.Kristalldaten und Strukturverfeinerung für ReCl₆.

8.7 Darstellung von Vanadiumpentachlorid (VCl₅)

In ein auf -196 °C gekühltes 12 mm PFA-Rohr werden an einer Stahl-Hochvakuum-Apparatur 3 g (25.6 mmol) Bortrichlorid kondensiert und bei -78 °C von Spuren des Chlorwasserstoffs und elementaren Chlors befreit. Es werden 300 mg (2.06 mmol) Vanadiumpentafluorid in das Rohr kondensiert, das anschließend abgeschmolzen wird. Das PFA-Rohr wird nun wieder auf -78 °C erwärmt und sehr gut gemischt. Es wird dann auf -60 C erwärmt, wobei die dunkelviolette Lösung erhalten bleibt, aus der sich durch langsames Abkühlen auf –78 °C schwarze Kristalle abscheiden.

⁵¹V- NMR(BCl₃):

 δ (ppm) = 984.6 (s, VCl₅)

I abelle 13 Kristalldaten und Strukturverter	inerung für VCI5
Empirical formula	Cl5 V
Formula weight	228.19
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	triklinic
Space group	PĪ
Unit cell dimensions a, b, c (Å)	5.9415(18), 6.446(2), 8.792(15)
Angles α , β , γ (°)	108.938(11), 90.954(12), 116.079(11)
Volume	279.0(2) Å ³
Ζ	2
Density (calculated)	2.689 Mg/m ³
Absorption coefficient	3.969 mm ⁻¹
F(000)	216
Crystal size	0.02 x 0.03 x 0.1 mm ³
Theta range for data collection	2.50 to 30.57°.
Index ranges	-5<=h<=8, -9<=k<=9, -12<=l<=12
Reflections collected	1563
Independent reflections	1647 [R(int) = 0.0354]
Completeness to theta = 30.57°	95.9 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1563 / 0 / 56
Goodness-of-fit on F ²	1.269
Final R indices [I>2sigma(I)]	R1 = 0.0309, wR2 = 0.0957
R indices (all data)	R1 = 0.0336, $wR2 = 0.0983$
Largest diff. peak and hole	1.205 and819 e.Å ⁻³

foi----Taballa 12 Kristalldatan und Strukt fin VCL :

8.8 Darstellung von Iridiumhexafluorid (IrF₆)

2 g (10.4 mmol) Ir-Pulver werden in einen Monel-Autoklaven mit einem Volumen von 80 ml gefüllt. Das Metallpulver wird mit einem Überschuss an Fluor im Autoklaven über Nacht auf 300 °C erhitzt. Nachdem überschüssiges Fluor durch einen mit Natronkalk gefüllten Trockenturm geleitet wurde, kann das IrF_6 im Hochvakuum in ein PFA-Rohr kondensiert werden.

8.9 Darstellung von [XeF][IrF₆]

In ein auf -196 °C gekühltes Quarzrohr werden an einer Stahl-Hochvakuum-Apparatur 300 mg (0.98 mmol) IrF₆ und 1 ml Xenon kondensiert. Die Ampulle wird verschmolzen und auf RT gebracht (Vorsicht Druck!). Sofort entsteht eine schwarze Lösung. Das Quarz-Rohr wird im Ultraschallbad für 2 h erwärmt. Die auf – 196 °C gekühlte Quarzampulle wird geöffnet und in einem 12 mm PFA-Rohr an einer Stahl-Hochvakuum-Apparatur das gasförmige überschüssige Xenon abgepumpt. Im Handschuhkasten werden 200 mg (0.44 mmol) des entstandenen gelben Pulvers von Quarz getrennt und in ein PFA-Reaktionsrohr (4 mm Innendurchmesser) eingewogen. Darauf werden an einer Stahl-Hochvakuum-Apparatur 600 mg (30 mmol) aHF kondensiert. Das PFA-Rohr wird verschmolzen und auf 80 °C erwärmt und danach sehr langsam auf RT gebracht. Es scheiden sich gelbe Kristalle ab.

Tubene TT. Ristandaton and Straktarverie	
Empirical formula	F7 Ir Xe
Formula weight	456.50
Temperature	133(2) K
Wavelength	71.073 pm
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions a, b, c (Å)	7.950(2), 10.858(3), 21.320(6)
Angle β°	91.637(7)
Volume	$1.8394(10) \text{ nm}^3$
Z	4
Density (calculated)	1.648 Mg/m ³
Absorption coefficient	9.090 mm ⁻¹
F(000)	776
Crystal size	0.04 x 0.05 x 0.05 mm ³
Theta range for data collection	1.91 to 30.64°.
Index ranges	-8<=h<=11, -15<=k<=15, -21<=l<=30
Reflections collected	21449
Independent reflections	5478 [R(int) = 0.0444]
Completeness to theta = 30.64°	96.3%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5478 / 0 / 245
Goodness-of-fit on F ²	1.071
Final R indices [I>2sigma(I)]	R1 = 0.0323, WR2 = 0.0679
R indices (all data)	R1 = 0.0487, wR2 = 0.0717
Extinction coefficient	0.000039(14)
Largest diff. peak and hole	2.298 and -2.102 e.Å ⁻³

Tabelle 14. Kristalldaten und Strukturverfeinerung für [XeF][IrF₆]

8.10 Darstellung von Iridiumpentafluorid (IrF₅)

IrF₅ wird nach der Methode von Paine hergestellt.^[29] Es wird in einem 12 mm PFA-Reaktionsrohr an einer Stahl-Hochvakuum-Apparatur 500 mg (1.63 mmol) IrF₆ und 2 g (100 mmol) aHF vorgelegt. Es wird unter starkem Rühren 3 bar H₂-Drucks darauf geleitet. Nach ca 2-3 h ändert sich die Farbe der Lösung von gelb zu hell grün. Der Überschuss an aHF wird abgepumpt und der hellgrüne Niederschlag unter Vakuum getrocknet.

Ausbeute: 90%

8.11 Reaktion von Iridiumpentafluorid mit Xenon

In einem Quarzrohr wird im Handschuhkasten 40 mg (14 mmol) IrF_5 vorgelegt und an einer Stahl-Hochvakuum-Apparatur 1 ml Xenon darauf kondensiert. Das Quarzrohr wird abgeschmolzen und auf RT gebracht (Vorsicht Druck!). Im Ultraschallbad wird IrF_5 in Xenon gelöst. Durch langsames Abkühlen auf -78 °C scheiden sich gelbe Kristalle ab.

Empirical formula	F5 Ir
Formula weight	287.20
Temperature	133(2) K
Wavelength	71.073 pm
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensionsa b c	5.4534(7), 9.9202(14), 12.3580(16)
Angle β°	99.661(4)°
Volume	0.65907(15) nm ³
Ζ	4
Density (calculated)	2.894 Mg/m ³
Absorption coefficient	20.245 mm ⁻¹
F(000)	488
Crystal size	0.02 x .01 x 0.1 mm ³
Theta range for data collection	2.65 to 30.52°.
Index ranges	-7<=h<=7, -11<=k<=14, -14<=l<=17
Reflections collected	10368
Independent reflections	2008 [R(int) = 0.0484]
Completeness to theta = 30.52°	100.0%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2008 / 0 / 110
Goodness-of-fit on F ²	1.184
Final R indices [I>2sigma(I)]	R1 = 0.0416, $wR2 = 0.0750$
R indices (all data)	R1 = 0.0783, WR2 = 0.0881
Extinction coefficient	0.00079(8)
Largest diff. peak and hole	4.814 and -4.908 e.Å ⁻³

Tabelle 15.Kristalldaten und Strukturverfeinerung für IrF5.

8.12 Reaktion von Ir₄(CO)₁₂ in Supersäuremedium

In einem Handschuhkasten werden in ein 12 mm PFA-Rohr 200 mg (0.18 mmol) $Ir_4(CO)_{12}$ und 500 mg (2.3 mmol) SbF₅ vorgelegt. Es werden an einer Stahl-Hochvakuum-Apparatur 500 mg (25 mmol) aHF in das Rohr kondensiert, das anschließend abgeschmolzen wird. Das PFA-Rohr wird nun zuerst auf RT und anschließend auf 60 °C erwärmt bis alle Feststoffe in Lösung gehen. Durch langsames Abkühlen auf RT scheiden sich gelbe Kristalle ab.

Empirical formula	C24 F44 Ir8 O24 Sb8
Formula weight	4019.84
Temperature	133(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions a, b, c (Å)	11.769(3), 36.987(9), 16.957(4)
Angle β°	93.978(6)
Volume	7364(3) Å ³
Z	4
Density (calculated)	3.626 Mg/m ³
Absorption coefficient	17.441 mm ⁻¹
F(000)	7024
Crystal size	0.02 x .04 x 0.2 mm ³
Theta range for data collection	1.10 to 28.02°.
Index ranges	-14<=h<=15, -48<=k<=48, -22<=l<=13
Reflections collected	69282
Independent reflections	17537 [R(int) = 0.0520]
Completeness to theta = 28.02°	98.4%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	17537 / 0 / 991
Goodness-of-fit on F ²	1.139
Final R indices [I>2sigma(I)]	R1 = 0.0783, $wR2 = 0.1768$
R indices (all data)	R1 = 0.0976, $wR2 = 0.1863$
Largest diff. peak and hole	5.347 and -6.347 e.Å ⁻³

 $Tabelle \ 16. \ Kristalldaten \ und \ Strukturverfeinerung \ für \ [Ir_4(CO)_{12}(H)][(Sb_2F_{11})(F)]_2.$

8.13 Darstellung von (CO)₃IrF₃

In einem Handschuhkasten werden in einem 12 mm PFA-Rohr 1 g (0.9 mmol) $Ir_4(CO)_{12}$ vorgelegt. Es werden an einer Stahl-Hochvakuum-Apparatur 2 g (100.6 mmol) aHF in das Rohr kondensiert und auf RT gebracht. Unter starkem Rühren werden 3 bar Fluordruck darauf geleitet bis alle Feststoffe in Lösung gehen und die Farbe der Lösung sich von gelb zu hellbraun ändert. Nach 2 h werden die Überschuss an Fluor und aHF abgepumpt und die hellbraunen Feststoffe unter Vakuum getrocknet.

Ausbeute: 95%

8.14 Darstellung von [Ir₂(CO)₆(µ-SbF₆)₂(Sb₂F₁₁)₂]

Im Handschuhkasten wird in einem Quarzrohr 40 mg (12mmol) (CO)₃IrF₃ und 500 mg (2.3 mmol) SbF₅ vorgelegt. Es werden an einer Stahl-Hochvakuum-Apparatur 1 g (7.6 mmol) Xe in das Rohr kondensiert, das anschließend abgeschmolzen und auf RT gebracht wird (Vorsicht Druck!). Das Rohr wird im Ultraschallbad für 2 h erwärmt. Nach 2 Wochen scheiden sich gelbe Kristalle ab.

Empirical formulaC4 F16 Ir O3 Sb3Formula weight957.49Temperature100(2) KWavelength0.71073 ÅCrystal systemMonoclinicSpace groupP2(1)/cUnit cell dimensions a, b, c (Å)12.379(3), 8.2103(17), 16.329(3)Angle β° .98.433(19)Volume1641.7(6) Å ³ Z4Density (calculated)3.874 Mg/m ³ Absorption coefficient13.139 mm ⁻¹ F(000)1688Crystal size0.03 x 0.04 x 0.1 mm ³ Theta range for data collection.66 to 30.54°.Index ranges.17<=h<=17, -11<=k<=11, -21<=l<=23Reflections collected25608	
Formula weight 957.49 Temperature $100(2)$ KWavelength 0.71073 ÅCrystal systemMonoclinicSpace group $P2(1)/c$ Unit cell dimensions a, b, c (Å) $12.379(3)$, $8.2103(17)$, $16.329(3)$ Angle β° . $98.433(19)$ Volume $1641.7(6)$ Å ³ Z4Density (calculated) 3.874 Mg/m ³ Absorption coefficient 13.139 mm ⁻¹ F(000) 1688 Crystal size $0.03 \ge 0.04 \le 0.1$ mm ³ Theta range for data collection 1.66 to 30.54° .Index ranges $-17<=h<=17, -11<=k<=11, -21<=l<=23$ Reflections collected 25608	
Temperature $100(2)$ KWavelength 0.71073 ÅCrystal systemMonoclinicSpace group $P2(1)/c$ Unit cell dimensions a, b, c (Å) $12.379(3), 8.2103(17), 16.329(3)$ Angle β° . $98.433(19)$ Volume $1641.7(6)$ Å ³ Z4Density (calculated) 3.874 Mg/m ³ Absorption coefficient 13.139 mm ⁻¹ F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1$ mm ³ Theta range for data collection 1.66 to 30.54° .Index ranges $-17<=h<=17, -11<=k<=11, -21<=l<=23$ Reflections collected 25608	
Wavelength 0.71073 Å Crystal systemMonoclinicSpace group $P2(1)/c$ Unit cell dimensions a, b, c (Å) $12.379(3), 8.2103(17), 16.329(3)$ Angle β° . $98.433(19)$ Volume $1641.7(6) \text{ Å}^3$ Z4Density (calculated) 3.874 Mg/m^3 Absorption coefficient 13.139 mm^{-1} F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1 \text{ mm}^3$ Theta range for data collection $1.66 \text{ to } 30.54^{\circ}$.Index ranges $-17<=h<=17, -11<=k<=11, -21<=l<=23$ Reflections collected 25608	
Crystal systemMonoclinicSpace group $P2(1)/c$ Unit cell dimensions a, b, c (Å) $12.379(3)$, $8.2103(17)$, $16.329(3)$ Angle β° . $98.433(19)$ Volume $1641.7(6)$ Å ³ Z4Density (calculated) 3.874 Mg/m ³ Absorption coefficient 13.139 mm ⁻¹ F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1$ mm ³ Theta range for data collection 1.66 to 30.54° .Index ranges $-17<=h<=17, -11<<=k<=11, -21<=1<=23$ Reflections collected 25608	
Space group $P2(1)/c$ Unit cell dimensions a, b, c (Å) $12.379(3), 8.2103(17), 16.329(3)$ Angle β° . $98.433(19)$ Volume $1641.7(6)$ Å ³ Z4Density (calculated) 3.874 Mg/m^3 Absorption coefficient 13.139 mm^{-1} F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1 \text{ mm}^3$ Theta range for data collection $1.66 \text{ to } 30.54^{\circ}$.Index ranges $-17 < h < 17, -11 < k < 11, -21 < 1 < 23$ Reflections collected 25608	
Unit cell dimensions a, b, c (Å) $12.379(3), 8.2103(17), 16.329(3)$ Angle β° . $98.433(19)$ Volume $1641.7(6)$ Å ³ Z4Density (calculated) 3.874 Mg/m ³ Absorption coefficient 13.139 mm ⁻¹ F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1$ mm ³ Theta range for data collection 1.66 to 30.54° .Index ranges $-17<=h<=17, -11<=k<=11, -21<=l<=23$ Reflections collected 25608	
Angle β° .98.433(19)Volume1641.7(6) Å ³ Z4Density (calculated)3.874 Mg/m ³ Absorption coefficient13.139 mm ⁻¹ F(000)1688Crystal size0.03 x 0.04 x 0.1 mm ³ Theta range for data collection1.66 to 30.54°.Index ranges-17<=h<=17, -11<<=k<=11, -21<<=l<=23	
Volume $1641.7(6) Å^3$ Z4Density (calculated) $3.874 Mg/m^3$ Absorption coefficient $13.139 mm^{-1}$ F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1 mm^3$ Theta range for data collection $1.66 to 30.54^\circ$.Index ranges $-17 <=h <=17, -11 <=k <=11, -21 <= <=23$ Reflections collected 25608	
Z4Density (calculated) 3.874 Mg/m^3 Absorption coefficient 13.139 mm^{-1} F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1 \text{ mm}^3$ Theta range for data collection $1.66 \text{ to } 30.54^\circ$.Index ranges $-17 <=h <=17, -11 <=k <=11, -21 <=l <=23$ Reflections collected 25608	
Density (calculated) 3.874 Mg/m^3 Absorption coefficient 13.139 mm^{-1} F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1 \text{ mm}^3$ Theta range for data collection $1.66 \text{ to } 30.54^\circ$.Index ranges $-17 <=h <=17, -11 <=k <=11, -21 <=l <=23$ Reflections collected 25608	
Absorption coefficient 13.139 mm^{-1} F(000) 1688 Crystal size $0.03 \times 0.04 \times 0.1 \text{ mm}^3$ Theta range for data collection $1.66 \text{ to } 30.54^\circ$. Index ranges $-17 <=h <=17, -11 <=k <=11, -21 <=l <=23$ Reflections collected 25608	
$F(000)$ 1688Crystal size $0.03 \times 0.04 \times 0.1 \text{ mm}^3$ Theta range for data collection $1.66 \text{ to } 30.54^\circ$.Index ranges $-17 <=h <=17, -11 <=k <=11, -21 <=l <=23$ Reflections collected 25608	
Crystal size $0.03 \times 0.04 \times 0.1 \text{ mm}^3$ Theta range for data collection $1.66 \text{ to } 30.54^\circ$.Index ranges $-17 <=h <=17, -11 <=k <=11, -21 <=l <=23$ Reflections collected 25608	
Theta range for data collection $1.66 \text{ to } 30.54^{\circ}$.Index ranges $-17 <=h <=17, -11 <=k <=11, -21 <=l <=23$ Reflections collected 25608	
Index ranges -17<=h<=17, -11<=k<=11, -21<=l<=23 Reflections collected 25608	
Reflections collected 25608	
Independent reflections $5014 [R(int) = 0.0377]$	
Completeness to theta = 30.54° 99.6%	
Absorption correction None	
Refinement method Full-matrix least-squares on F ²	
Data / restraints / parameters 5014 / 0 / 129	
Goodness-of-fit on F^2 0.427	
Final R indices [I>2sigma(I)] $R1 = 0.0328, wR2 = 0.0922$	
R indices (all data) $R1 = 0.0422, wR2 = 0.1093$	
Largest diff. peak and hole6.745 and -1.444 e.Å-3	

Tabelle 17. Kristalldaten und Strukturverfeinerung für $[Ir_2(CO)_6(\mu-SbF_6)_2(Sb_2F_{11})_2].$

8.15 Darstellung von Ir(CO)₂(SO₃F)₃

In einem Handschuhkasten werden in einem 12 mm PFA-Rohr 200 mg (0.6 mmol) (CO)₃IrF₃ und 300 mg (3 mmol) HSO₃F vorgelegt. Es werden an einer Stahl-Hochvakuum-Apparatur 100 mg (5 mmol) aHF in das Rohr kondensiert, das anschließend abgeschmolzen wird. Das PFA-Rohr wird nun auf RT erwärmt und anschließend auf 80 °C erwärmt bis alle Feststoffe in Lösung gehen. Durch langsames Abkühlen auf RT scheiden sich gelbe Kristalle ab.

Empirical formula	C2 F6 Ir O9 S3
Formula weight	570.40
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	P1
Unit cell dimensions a, b, c (Å)	7.3627(17), 7.5661(17), 11.586(3)
Angles α , β , γ (°)	107.357(5), 104.457(4), 95.960(4)
Volume	585.3(2) Å ³
Ζ	2
Density (calculated)	3.236 Mg/m ³
Absorption coefficient	12.069 mm ⁻¹
F(000)	526
Crystal size	0.05 x 0.15 x 0.4 mm ³
Theta range for data collection	1.93 to 30.55°.
Index ranges	-10<=h<=7, -10<=k<=10, -16<=l<=16
Reflections collected	9731
Independent reflections	3496 [R(int) = 0.0214]
Completeness to theta = 30.55°	97.4%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3496 / 0 / 182
Goodness-of-fit on F ²	1.063
Final R indices [I>2sigma(I)]	R1 = 0.0154, WR2 = 0.0356
R indices (all data)	R1 = 0.0169, WR2 = 0.0364
Extinction coefficient	0.0012(2)
Largest diff. peak and hole	1.363 and -1.049 e.Å ⁻³

Tabelle 18. Kristalldaten und Strukturverfeinerung für Ir(CO)₂(SO₃F)₃.

8.16 Darstellung von [mer-Ir(CO)₃F(FSbF₅)₂]

Zuerst wird ein Y-formiges 12 mm PFA-Rohr so gebaut, dass nur ein Ende zum Verbinden an eine Stahl-Hochvakuum-Apparatur offen ist. In einem Handschuhkasten werden jeweils im zugeschmolzenden Ende 1 g (0.9 mmol) $Ir_4(CO)_{12}$ und 1.56 g (7.2 mmol) SbF₅ vorgelegt. Es werden an einer Stahl-Hochvakuum-Apparatur 2 g (100.6 mmol) aHF in das SbF₅-Rohr kondensiert und auf RT gebracht. Die entstehende Supersäure-Lösung wird in das $Ir_4(CO)_{12}$ -Rohr gegeben. Unter starker Gasentwicklung löst sich $Ir_4(CO)_{12}$ teilweise. Es werden 3 bar Fluordruck darauf geleitet bis alle Feststoffe in Lösung gehen. Nach 2 h wird der Überschuss Fluor und aHF abgepumpt und die gelben Feststoffe unter Vakuum getrocknet.

Ausbeute: 80%

Tabelle 1 7. Kilstalluatell ullu Strukturvelle	$\frac{1}{100} \frac{1}{100} \frac{1}$
Empirical formula	C3 F13 Ir O3 Sb2
Formula weight	766.73
Temperature	133(2) K
Wavelength	0.71073 Å
Crystal system	triclinic
Space group	$P\overline{1}$
Unit cell dimensions a, b, c (Å)	8.3504(17), 8.6522(17), 10.627(2)
Angles α , β , γ (°)	69.093(4), 76.917(5), 88.716(4)
Volume	697.2(2) Å ³
Ζ	2
Density (calculated)	3.652 Mg/m ³
Absorption coefficient	13.523 mm ⁻¹
F(000)	676
Crystal size	0.3 x 0.3 x 0.1 mm ³
Theta range for data collection	2.11 to 30.56°.
Index ranges	-11<=h<=11, -9<=k<=12, -15<=l<=12
Reflections collected	11495
Independent reflections	4143 [R(int) = 0.0324]
Completeness to theta = 30.56°	97.0%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4143 / 0 / 200
Goodness-of-fit on F ²	1.033
Final R indices [I>2sigma(I)]	R1 = 0.0265, WR2 = 0.0645
R indices (all data)	R1 = 0.0294, WR2 = 0.0661
Extinction coefficient	0.0022(3)
Largest diff. peak and hole	3.131 and -2.582 e.Å ⁻³

Tabelle 19. Kristalldaten und Strukturverfeinerung für [mer-Ir(CO)₃F(FSbF₅)₂]

8.17 Darstellung von [Ir₂(CO)₆(µ-F₂)(SbF₆)₂].2 HF

In einem Handschuhkasten werden in einem 12 mm PFA-Rohr 200 mg (0.9 mmol) [*mer*-Ir(CO)₃F(FSbF₅)₂] vorgelegt. Es werden an einer Stahl-Hochvakuum-Apparatur 2 g (100.6 mmol) aHF und 100 mg (0.76 mmol) Xe und 150 mg (3.9 mmol) F_2 in das Rohr kondensiert und auf RT gebracht. Das Rohr wird über Nacht mit UV bestrahlt. Am nächsten Tag scheiden sich gelbe Kristall ab.

Empirical formula	C3 H F8 Ir O3 Sb
Formula weight	550.99
Temperature	133(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions a b c (Å)	8.0367(16), 9.1756(18), 14.606(4)
Angle $\beta(^{\circ})$	101.759(7)°
Volume	1054.4(4) Å ³
Ζ	4
Density (calculated)	3.471 Mg/m ³
Absorption coefficient	15.274 mm ⁻¹
F(000)	972
Crystal size	0.01 x 0.02 x 0.1 mm ³
Theta range for data collection	2.64 to 30.50°.
Index ranges	-11<=h<=11, -13<=k<=13, -20<=l<=19
Reflections collected	16626
Independent reflections	3213 [R(int) = 0.0374]
Completeness to theta = 30.50°	99.8%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3213 / 0 / 158
Goodness-of-fit on F ²	1.719
Final R indices [I>2sigma(I)]	R1 = 0.0349, wR2 = 0.0746
R indices (all data)	R1 = 0.0462, wR2 = 0.0767
Largest diff. peak and hole	3.879 and -2.679 e.Å ⁻³

Tabelle 20.Kristalldaten und Strukturverfeinerung für [Ir₂(CO)₆(µ-F₂)(SbF₆)₂].2HF

8.18 Darstellung von $Di-\mu-Chloro-dichlorobis(\eta^5-$

Pentamethylcyclopentadienyl)diiridium(III)

In einem Dreihalskolben werden 10 g (260 mmol) Iridium(III)-chlorid-Hydrat vorgelegt. Im Argongegenstrom wird 300 ml Methanol dazugegeben und die Mischung 5 min mit Argon gespült. Es wird 5 g (360 mmol) Pentamethylcyclopentadien dazugegeben und 48 h bei 80 °C unter Rückfluss gekocht. Das Produkt fällt als oranger Niederschlag aus. Der Niederschlag wird abfiltriert und mit Diethylether (3 \times 50 ml) gewaschen und anschließend im Hochvakuum getrocknet.

Ausbeute: 70%

Summenformel: Ir₂C₂₀H₃₀Cl₄

Empirical formula	C30 H40 B Cl2 F15 Ir
Formula weight	959.53
Temperature	133(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions a b c (Å)	21.073(6), 9.595(3), 18.596(5)
Angles $\beta(^{\circ})$	102.640(8)
Volume	3668.7(19) Å ³
Z	4
Density (calculated)	1.737 Mg/m ³
Absorption coefficient	3.882 mm ⁻¹
F(000)	1884
Crystal size	0.02 x 0.1 x 0.2 mm ³
Theta range for data collection	1.98 to 27.56°.
Index ranges	-27<=h<=27, -12<=k<=12, -20<=l<=24
Reflections collected	4214
Independent reflections	4214 [R(int) = 0.1658]
Completeness to theta = 27.56°	99.5 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4214 / 0 / 178
Goodness-of-fit on F ²	1.598
Final R indices [I>2sigma(I)]	R1 = 0.0874, $wR2 = 0.3392$
R indices (all data)	R1 = 0.0925, WR2 = 0.3428
Largest diff. peak and hole	6.120 and -6.971 e.Å ⁻³

Tabelle 21. Kristalldaten und Strukturverfeinerung für (Cp*Cl₂Ir)₂.

8.19 Darstellung von Tetramethyl(η⁵-Pentamethylcyclopentadienyl)iridium(V)

In einem Dreihalskolben werden 320 mg (0.4 mmol) Di- μ -Chloro-dichlorobis(η^5 -Pentamethylcyclopentadienyl)diiridium(III) vorgelegt. Es werden 30 ml trockenes *n*-Pentan in den Kolben kondensiert. Es werden bei -78 °C 2 ml Trimethylaluminium-Lösung (2,0 M in Heptan) sehr langsam zur suspendierten Mischung getropft. Die Mischung wird über Nacht bei starkem Rühren auf RT gebracht. Die Farbe der Lösung ändert sich zu rot. Am nächsten Tag wird der Schlenkkolben geöffnet und die Lösung 1h bei RT gerührt. Nebenbei fällt ein brauner Niederschlag aus. Die Lösung wird abfiltriert und der Niederschlag mit *n*-Pentan gewaschen um den Rest des Produkts vom Niederschlag zu trennen. Die gesamte Lösung wird in einer Sublimations-Apparatur am Hochvakuum abgepumpt und anschließend der entstehende Feststoff bei 85 °C und 10⁻³ mbar sublimiert.

Ausbeute: 30%

¹H-NMR (C₆D₆):

 $\delta(\text{ppm}) = 1,04(\text{s}, 15\text{H}, \text{C}_5 (\text{CH}_3)_5; 0, 95(\text{s}, \text{Ir}(\text{CH}_3)_4$

8.20 Darstellung von Bis(pentafluorobenzol)(η⁵pentamethylcyclopentadienyl)iridium(III)

In einem Handschuhkasten werden in einem Quarzrohr 20 mg (0.05mmol) Tetramethyl(η^5 -Pentamethylcyclopentadienyl)iridium(V) und 10 mg (0.02 mmol) Tris(pentafluorophenyl)boran vorgelegt. Es wird an einer Stahl-Hochvakuum-Apparatur 1 g (7.6 mmol) Xe in das Rohr kondensiert, das anschließend abgeschmolzen und auf RT gebracht wird (Vorsicht Druck!). Das Rohr wird im Ultraschallbad für 2 h homogenisiert und im Ofen auf 65 °C erwärmt und anschießend wieder auf RT gebracht. Dabei ändert sich die Farbe des Feststoffs von gelb zu rot-braun. Durch langsames Abkühlen auf -78 °C scheiden sich braun-schwarz Kristalle ab.

Empirical formula	C24 H15 F20 Ir
Formula weight	875 56
Temperature	133(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
space group	Pnma
Unit cell dimensions a, b, c(Å)	11.962(3), 18.733(5), 9.107(2)
Angels α , β , γ (°)	90 °
Volume	2040.6(8) A^3
Ζ,	4
Calculated density	2.850 Mg/m^3
Absorption coefficient	6.746 mm^-1
F(000)	1664
Crystal size	0.01 x 0.02 x 0.1 mm
Theta range for data collection	2.17 to 30.54 deg.
Limiting indices	-17<=h<=16, -21<=k<=26, -13<=l<=12
Reflections collected / unique	31706 / 3202 [R(int) = 0.1114]
Completeness to theta $= 30.54$	99.7%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3202 / 0 / 179
Goodness-of-fit on F ²	1.093
Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.0791
R indices (all data)	R1 = 0.0588, wR2 = 0.0901
Largest diff. peak and hole	4.458 and -2.376 e.A^-3

Tabelle 23. Kristalldaten und Strukturverfeinerung für Cp*Ir(C₆F₅)₂.

8.21 Darstellung von [Li(Et₂O)][Cp*Ir(C₆F₅)₃]

In einem 100-mL-Dreihalskolben werden 1.69 g (10 mmol, 4 Äq.) C₆HF₅ und 30 mL abs. Diethylether vorgelegt und die Lösung im Trockeneisbad auf -78 °C abgekühlt. Mit einer Spritze werden 4.0 mL BuLi (2.5 M in Hexan, 10 mmol, 4 Äq.) tropfenweise zugegeben. Das Reaktionsgemisch wird 1 h bei -78 °C gerührt. Anschließend werden 2.00 g $[Ir(\eta^5-C_5Me_5)Cl_2]_2$ (2.5 mmol, 1 q.) auf einmal hinzugegeben. Die Lösung wird über Nacht gerührt und währenddessen zu RT erwärmt. Anschließend wird die Lösung mit Hilfe einer Spritze vom Niederschlag getrennt. Der graue Niederschlag wird mit 3×10 mL abs. Diethylether gewaschen. Das Lösemittel wird bei Raumtemperatur entfernt. Der schwarze Rückstand wird mit 20 mL Hexan gewaschen und die Phasen werden getrennt und das Lösemittel von beiden Lösungen bei Raumtemperatur entfernt. Der Rückstand wurde bei 50 °C unter Vakuum getrocknet. Beide Produkte erwiesen sich als genug sauber. Es werden insgesamt 2.33 g (51%) dunkelviolettes Pulver erhalten.

¹ H-NMR (CDCl ₃ , 400 MHz):	$\delta(\text{ppm}) = 1.54 \ (15 \text{ H}, \text{ s}, \text{CH}_3)$		
¹³ C-NMR (CDCl ₃ , 400 MHz):	$\delta \text{ (ppm)} = 143.7 \text{ (o-C, } C_6F_5\text{)}, 137.7 \text{ (p-C, } C_6F_5\text{)}, 137.5 \text{ (m-C, } C_6F_5\text{)}, 127.7 \text{ (i-C, } C_6F_5\text{)}, 93.3(C_5Me_5\text{)}, 11.1(CH_2, Et_2O), 9.8 (C_5Me_5).$		
¹⁹ F-NMR (CDCl ₃ , 400 MHz):	δ(ppm) = -117.8, (<i>o</i> -F, m, 2 F) -160.0 (<i>p</i> -F, m, 1 F), -163.0 (<i>m</i> -F, m, 2 F).		
IR :	v(cm ⁻¹) = 2964; 2927; 1632; 1602; 1499; 1450; 1384; 1365; 1354; 1260; 1101; 1072; 1054; 1016; 947; 787; 611.		
Raman (52 mW):	$v (cm^{-1})= 2933(w); 1631(w); 1437(w); 1351(w);$ 794(m); 611(w); 584(sh); 577(m); 536(w); 486(m); 470(sh); 443(w); 427(m); 395(w); 367(m); 223(m); 205(m); 191(m); 178(sh); 152(m); 118(m); 83(s).		

MS: ((-)-ESI-TOF), Spray-Lösemittel:

(THF/MeCN):

m/z = 829.0624

(berechnet: 829.0546 für [M]⁻).

Tabelle 24. Kristalldaten und Strukturverfeinerung f Icp*Ir(C ₆ F ₅) ₃].	
--	--

Empirical formula	C22 H15 F10 Ir Li O
Formula weight	684.48
Temperature	133(2) K
Wavelength	71.073 pm
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions a, b, c (Å)	8.708(5), 20.296(10), 17.765(9)
Angle β°	101.422(11)°
Volume	$3.08(1) \text{ nm}^3$
Ζ	4
Density (calculated)	1.477 Mg/m ³
Absorption coefficient	4.408 mm ⁻¹
F(000)	1300
Crystal size	0.01 x 0.01 x 0.1 mm ³
Theta range for data collection	2.01 to 27.98°.
Index ranges	-11<=h<=11, -23<=k<=26, -23<=l<=22
Reflections collected	31491
Independent reflections	7342 [R(int) = 0.1322]
Completeness to theta = 27.98°	98.9%
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7342 / 0 / 458
Goodness-of-fit on F ²	1.000
Final R indices [I>2sigma(I)]	R1 = 0.0491, $wR2 = 0.0922$
R indices (all data)	R1 = 0.1146, $wR2 = 0.1136$
Largest diff. peak and hole	1.606 and -2.083 e.Å ⁻³

8.22 Darstellung von [Cp*Ir(η⁶-C₆HF₅)][(Sb₃F₁₄)(SbF₆)].HF

In einem Handschuhkasten werden in ein PFA-Rohr 200 mg $[Li(Et_2O)][Cp*Ir(C_6F_5)_3]$ und 300 mg (1.4mmol) SbF₅ eingewogen. An einer Stahl-Hochvakuum-Apparatur werden bei - 196 °C 400 mg (20 mmol) aHF in das Rohr kondensiert, das anschließend abgeschmolzen wird. Das PFA-Rohr wird nun auf RT erwärmt und sehr gut gemischt. Anschließend wird langsam auf -55 °C abgekühlt. Nach 3 Tagen werden gelbe Kristalle erhalten.

Empirical formula	C16 H16 F26 Ir Sb4
Formula weight	1381.49
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/n
Unit cell dimensions a, b, c (Å)	11.681(3), 20.791(5), 12.812(3)
Angel β°	90.363(5)
Volume	3111.6(12) Å ³
Ζ	4
Density (calculated)	2.949 Mg/m ³
Absorption coefficient	7.856 mm ⁻¹
F(000)	2508
Crystal size	0.1 x 0.3 x 0.3 mm ³
Theta range for data collection	0.98 to 30.55°.
Index ranges	-16<=h<=16, -29<=k<=29, -17<=l<=18
Reflections collected	50464
Independent reflections	9487 [R(int) = 0.0462]
Completeness to $\theta = 30.55^{\circ}$	99.5%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9487 / 0 / 434
Goodness-of-fit on F ²	1.130
Final R indices [I>2sigma(I)]	R1 = 0.0327, WR2 = 0.0677
R indices (all data)	R1 = 0.0448, WR2 = 0.0763
Largest diff. peak and hole	1.684 and -1.387 e.Å ⁻³

Tabelle 25. Kristalldaten und Strukturverfeinerung für $[Cp*Ir(\eta^6-C_6HF_5)][(Sb_3F_{14})(SbF_6)].HF.$

9 Anhang

	Х	у	Z	U(eq)
Mo(1)	0	0	0	9(1)
Mo(2)	3333	6667	4989(14)	8(1)
Cl(2)	2295(6)	7705(6)	7395(4)	17(1)
Cl(1)	1044(6)	-1044(6)	2438(4)	12(2)
Cl(3)	4375(5)	5625(5)	2509(5)	22(2)

Table 26. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 103) for **MoCl₆**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 27. Bond lengths [Å] and angles [°] for $MoCl_6$.

Mo(1)-Cl(1)#1	2.304(9)	Mo(2)-Cl(3)#8	2.318(9)
Mo(1)-Cl(1)#2	2.304(9)	Mo(2)-Cl(3)	2.318(9)
Mo(1)-Cl(1)#3	2.304(9)	Mo(2)-Mo(4)#9	2.69(2)
Mo(1)-Cl(1)	2.304(9)	Mo(2)-Mo(4)#10	2.85(2)
Mo(1)-Cl(1)#4	2.304(9)	Cl(2)-Mo(4)#9	2.302(13)
Mo(1)-Cl(1)#5	2.304(9)	Cl(1)-Mo(3)	2.345(9)
Mo(1)-Mo(3)#6	2.7699(11)	Cl(3)-Mo(4)#10	2.383(12)
Mo(1)-Mo(3)	2.7699(11)	Mo(3)-Cl(1)#3	2.345(9)
Mo(2)-Cl(2)	2.289(9)	Mo(3)-Cl(1)#11	2.345(9)
Mo(2)-Cl(2)#7	2.289(9)	Mo(3)-Cl(1)#12	2.345(9)
Mo(2)-Cl(2)#8	2.289(9)	Mo(3)-Cl(1)#1	2.345(9)
Mo(2)-Cl(3)#7	2.318(9)	Mo(3)-Cl(1)#13	2.345(9)

Mo(3)-Mo(1)#14	2.7699(11)	Cl(1)#2-Mo(1)-Mo(3)#6	54.11(17)
Mo(4)-Cl(2)#15	2.302(13)	Cl(1)#3-Mo(1)-Mo(3)#6	125.89(17)
Mo(4)-Cl(2)#16	2.302(13)	Cl(1)-Mo(1)-Mo(3)#6	125.89(17)
Mo(4)-Cl(2)#17	2.302(13)	Cl(1)#4-Mo(1)-Mo(3)#6	54.11(17)
Mo(4)-Cl(3)#18	2.383(12)	Cl(1)#5-Mo(1)-Mo(3)#6	54.11(17)
Mo(4)-Cl(3)#3	2.383(12)	Cl(1)#1-Mo(1)-Mo(3)	54.11(17)
Mo(4)-Cl(3)#19	2.383(12)	Cl(1)#2-Mo(1)-Mo(3)	125.89(17)
Mo(4)-Mo(2)#15	2.69(2)	Cl(1)#3-Mo(1)-Mo(3)	54.11(17)
Mo(4)-Mo(2)#19	2.85(2)	Cl(1)-Mo(1)-Mo(3)	54.11(17)
Cl(1)#1-Mo(1)-Cl(1)#2	180.00(13)	Cl(1)#4-Mo(1)-Mo(3)	125.89(17)
Cl(1)#1-Mo(1)-Cl(1)#3	89.1(2)	Cl(1)#5-Mo(1)-Mo(3)	125.89(17)
Cl(1)#2-Mo(1)-Cl(1)#3	90.9(2)	Mo(3)#6-Mo(1)-Mo(3)	180.0
Cl(1)#1-Mo(1)-Cl(1)	89.1(2)	Cl(2)-Mo(2)-Cl(2)#7	89.5(3)
Cl(1)#2-Mo(1)-Cl(1)	90.9(2)	Cl(2)-Mo(2)-Cl(2)#8	89.5(3)
Cl(1)#3-Mo(1)-Cl(1)	89.1(2)	Cl(2)#7-Mo(2)-Cl(2)#8	89.5(3)
Cl(1)#1-Mo(1)-Cl(1)#4	90.9(2)	Cl(2)-Mo(2)-Cl(3)#7	90.99(13)
Cl(1)#2-Mo(1)-Cl(1)#4	89.1(2)	Cl(2)#7-Mo(2)-Cl(3)#7	179.3(4)
Cl(1)#3-Mo(1)-Cl(1)#4	90.9(2)	Cl(2)#8-Mo(2)-Cl(3)#7	91.01(13)
Cl(1)-Mo(1)-Cl(1)#4	180.0(4)	Cl(2)-Mo(2)-Cl(3)#8	91.01(13)
Cl(1)#1-Mo(1)-Cl(1)#5	90.9(2)	Cl(2)#7-Mo(2)-Cl(3)#8	90.99(13)
Cl(1)#2-Mo(1)-Cl(1)#5	89.1(2)	Cl(2)#8-Mo(2)-Cl(3)#8	179.3(4)
Cl(1)#3-Mo(1)-Cl(1)#5	180.0(4)	Cl(3)#7-Mo(2)-Cl(3)#8	88.5(3)
Cl(1)-Mo(1)-Cl(1)#5	90.9(2)	Cl(2)-Mo(2)-Cl(3)	179.3(4)
Cl(1)#4-Mo(1)-Cl(1)#5	89.1(2)	Cl(2)#7-Mo(2)-Cl(3)	91.01(13)
Cl(1)#1-Mo(1)-Mo(3)#6	125.89(17)	Cl(2)#8-Mo(2)-Cl(3)	90.99(13)

Cl(3)#7-Mo(2)-Cl(3)	88.5(3)	Cl(1)#11-Mo(3)-Cl(1)#13	87.2(2)
Cl(3)#8-Mo(2)-Cl(3)	88.5(3)	Cl(1)#12-Mo(3)-Cl(1)#13	87.2(2)
Cl(2)-Mo(2)-Mo(4)#9	54.4(2)	Cl(1)#1-Mo(3)-Cl(1)#13	92.8(2)
Cl(2)#7-Mo(2)-Mo(4)#9	54.4(2)	Cl(1)#3-Mo(3)-Cl(1)	87.2(2)
Cl(2)#8-Mo(2)-Mo(4)#9	54.4(2)	Cl(1)#11-Mo(3)-Cl(1)	92.8(2)
Cl(3)#7-Mo(2)-Mo(4)#9	126.3(2)	Cl(1)#12-Mo(3)-Cl(1)	92.8(2)
Cl(3)#8-Mo(2)-Mo(4)#9	126.3(2)	Cl(1)#1-Mo(3)-Cl(1)	87.2(2)
Cl(3)-Mo(2)-Mo(4)#9	126.3(2)	Cl(1)#13-Mo(3)-Cl(1)	180.0
Cl(2)-Mo(2)-Mo(4)#10	125.6(2)	Cl(1)#3-Mo(3)-Mo(1)#14	127.24(16)
Cl(2)#7-Mo(2)-Mo(4)#10	125.6(2)	Cl(1)#11-Mo(3)-Mo(1)#14	52.76(16)
Cl(2)#8-Mo(2)-Mo(4)#10	125.6(2)	Cl(1)#12-Mo(3)-Mo(1)#14	52.76(16)
Cl(3)#7-Mo(2)-Mo(4)#10	53.7(2)	Cl(1)#1-Mo(3)-Mo(1)#14	127.24(16)
Cl(3)#8-Mo(2)-Mo(4)#10	53.7(2)	Cl(1)#13-Mo(3)-Mo(1)#14	52.76(16)
Cl(3)-Mo(2)-Mo(4)#10	53.7(2)	Cl(1)-Mo(3)-Mo(1)#14	127.24(16)
Mo(4)#9-Mo(2)-Mo(4)#10	180.000(8)	Cl(1)#3-Mo(3)-Mo(1)	52.76(16)
Mo(2)-Cl(2)-Mo(4)#9	71.6(6)	Cl(1)#11-Mo(3)-Mo(1)	127.24(16)
Mo(1)-Cl(1)-Mo(3)	73.1(3)	Cl(1)#12-Mo(3)-Mo(1)	127.24(16)
Mo(2)-Cl(3)-Mo(4)#10	74.7(5)	Cl(1)#1-Mo(3)-Mo(1)	52.76(16)
Cl(1)#3-Mo(3)-Cl(1)#11	180.0(3)	Cl(1)#13-Mo(3)-Mo(1)	127.24(16)
Cl(1)#3-Mo(3)-Cl(1)#12	92.8(2)	Cl(1)-Mo(3)-Mo(1)	52.76(16)
Cl(1)#11-Mo(3)-Cl(1)#12	87.2(2)	Mo(1)#14-Mo(3)-Mo(1)	180.0
Cl(1)#3-Mo(3)-Cl(1)#1	87.2(2)	Cl(2)#15-Mo(4)-Cl(2)#16	88.9(5)
Cl(1)#11-Mo(3)-Cl(1)#1	92.8(2)	Cl(2)#15-Mo(4)-Cl(2)#17	88.9(5)
Cl(1)#12-Mo(3)-Cl(1)#1	180.0(4)	Cl(2)#16-Mo(4)-Cl(2)#17	88.9(5)
Cl(1)#3-Mo(3)-Cl(1)#13	92.8(2)	Cl(2)#15-Mo(4)-Cl(3)#18	92.78(14)
- Cl(2)#16-Mo(4)-Cl(3)#18 177.6(7)
- Cl(2)#17-Mo(4)-Cl(3)#18 92.76(14)
- Cl(2)#16-Mo(4)-Cl(3)#3 92.78(14)

92.76(14)

Cl(2)#15-Mo(4)-Cl(3)#3

- Cl(2)#17-Mo(4)-Cl(3)#3 177.6(7)
- Cl(3)#18-Mo(4)-Cl(3)#3 85.5(5)
- Cl(2)#15-Mo(4)-Cl(3)#19 177.6(7)
- Cl(2)#16-Mo(4)-Cl(3)#19 92.76(14)
- Cl(2)#17-Mo(4)-Cl(3)#19 92.78(14)
- Cl(3)#18-Mo(4)-Cl(3)#19 85.5(5)
- Cl(3)#3-Mo(4)-Cl(3)#19 85.5(5)
- Cl(2)#15-Mo(4)-Mo(2)#15 54.0(4)
- Cl(2)#16-Mo(4)-Mo(2)#15 54.0(4)
- Cl(2)#17-Mo(4)-Mo(2)#15 54.0(4)
- Cl(3)#18-Mo(4)-Mo(2)#15 128.4(3)
- Cl(3)#3-Mo(4)-Mo(2)#15 128.4(3)
- Cl(3)#19-Mo(4)-Mo(2)#15 128.4(3)

- Cl(2)#15-Mo(4)-Mo(2)#19 126.0(4)
- Cl(2)#16-Mo(4)-Mo(2)#19 126.0(4)
- Cl(2)#17-Mo(4)-Mo(2)#19 126.0(4)
- Cl(3)#18-Mo(4)-Mo(2)#19 51.6(3)
- Cl(3)#3-Mo(4)-Mo(2)#19 51.6(3)
- Cl(3)#19-Mo(4)-Mo(2)#19 51.6(3)
- Mo(2)#15-Mo(4)-Mo(2)#19 180.000(2)

Symmetry transformations used to generate equivalent atoms:

- #1 -y,x-y,z #2 y,-x+y,-z #3 -x+y,-x,z
- #4 -x,-y,-z ,#5 x-y,x,-z #6 x,y,z-1 #7 x+y,-x+1,z #8 -y+1,x-y+1,z
- #9 x,y+1,z+1 #10 x,y+1,z #11 x-y,x,z+1 #12 y,-x+y,-z+1 #13 -x,-y,-z+1 #14 x,y,z+1 #15 x,y-1,z-1 #16 -y+1,xy,z-1 #17 -x+y,-x,z-1 #18 -y+1,x-y,z #19 x,y-1,z

	U11	U22	U33	U23	U13	U12
Mo(1)	8(1)	8(1)	9(2)	0	0	4(1)
Mo(2)	7(1)	7(1)	10(1)	0	0	4(1)
Cl(2)	23(3)	23(3)	13(3)	2(1)	2(1)	17(3)
Cl(1)	10(3)	10(3)	16(3)	1(1)	-1(1)	5(4)
Cl(3)	20(2)	20(2)	28(2)	-2(1)	2(1)	13(3)

Table 28. Anisotropic displacement parameters (Å²x 10³) for **MoCl**₆. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + 2 h k a* b* U¹²]

	x	у	Z	U(eq)
Re(1)	0	0	0	8(1)
Cl(2)	49(3)	3108(5)	798(6)	16(1)

Table 29. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **ReCl₆**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 30. Bond lengths [Å] and angles [°] for ReCl₆.

Re(1)-Cl(2)#1	2.263(6)	Cl(2)#3-Re(1)-Cl(2)#4 90.3(3)
Re(1)-Cl(2)#2	2.263(6)	Cl(2)-Re(1)-Cl(2)#4 90.3(3)
Re(1)-Cl(2)#3	2.263(6)	Cl(2)#1-Re(1)-Cl(2)#5 90.3(3)
Re(1)-Cl(2)	2.263(6)	Cl(2)#2-Re(1)-Cl(2)#5 90.3(3)
Re(1)-Cl(2)#4	2.263(6)	Cl(2)#3-Re(1)-Cl(2)#5 89.7(3)
Re(1)-Cl(2)#5	2.263(6)	Cl(2)-Re(1)-Cl(2)#5 89.7(3)
Cl(2)#1-Re(1)-Cl(2)#2	89.7(3)	Cl(2)#4-Re(1)-Cl(2)#5 180.0(4)
Cl(2)#1-Re(1)-Cl(2)#3	90.3(3)		
Cl(2)#2-Re(1)-Cl(2)#3	180.0(4)		
Cl(2)#1-Re(1)-Cl(2)	180.0(4)	Symmetry transformations use	ed to
Cl(2)#2-Re(1)-Cl(2)	90.3(3)	generate equivalent atoms:	
Cl(2)#3-Re(1)-Cl(2)	89.7(3)	#1 -x,-y,-z #2 x-y,x,-z #3 -> #4 y -x+y -z	⊻+y,-x,z
Cl(2)#1-Re(1)-Cl(2)#4	89.7(3)	#5 -v x-v z	
Cl(2)#2-Re(1)-Cl(2)#4	89.7(3)	···· ,···	

	U11	U22	U33	U23	U13	U12
Re(1) (2) (2)	7(1)	7(1)	11(1)	0	0	3(1)
	22(2)	15(1)	15(2)	-2(1)	1(1)	12(1)

Table 31. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **ReCl₆**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + 2 h k a^* b^* U^{12}$]

Table 32. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **VCl₅**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
Cl(5)	6193(2)	1237(2)	3511(2)	12(1)
V(1)	3937(2)	2762(2)	2756(1)	8(1)
Cl(3)	5760(2)	3161(2)	694(2)	13(1)
Cl(1)	1980(2)	4887(2)	2522(2)	12(1)
Cl(4)	555(2)	-768(2)	1687(2)	13(1)
Cl(2)	7422(2)	6845(2)	4558(1)	8(1)

Cl(5)-V(1)	2.1781(16)	Cl(3)-V(1)-Cl(2)	89.82(6)
V(1)-Cl(4)	2.1465(17)	Cl(5)-V(1)-Cl(2)	85.27(7)
V(1)-Cl(3)	2.1480(17)	Cl(1)-V(1)-Cl(2)	84.76(6)
V(1)-Cl(1)	2.1998(16)	Cl(4)-V(1)-Cl(2)#1	88.58(6)
V(1)-Cl(2)	2.4678(17)	Cl(3)-V(1)-Cl(2)#1	168.27(6)
V(1)-Cl(2)#1	2.4695(18)	Cl(5)-V(1)-Cl(2)#1	85.93(6)
Cl(2)-V(1)#1	2.4695(18)	Cl(1)-V(1)-Cl(2)#1	85.47(6)
Cl(4)-V(1)-Cl(3)	103.14(7)	Cl(2)-V(1)-Cl(2)#1	78.46(5)
Cl(4)-V(1)-Cl(5)	94.39(7)	V(1)-Cl(2)-V(1)#1	101.54(5)
Cl(3)-V(1)-Cl(5)	93.51(6)		
Cl(4)-V(1)-Cl(1)	93.81(7)		
Cl(3)-V(1)-Cl(1)	93.21(6)	Symmetry transfo	rmations used
Cl(5)-V(1)-Cl(1)	167.95(7)	generate equivalent a	itoms:
Cl(4)-V(1)-Cl(2)	167.03(6)	#1 -x+1,-y+1,-z+1	

 Table 33. Bond lengths [Å] and angles [°] for VCl₅.

to

	U11	U22	U33	U23	U13	U12
Cl(5)	12(1)	14(1)	16(1)	6(1)	4(1)	9(1)
V(1)	9(1)	8(1)	7(1)	2(1)	1(1)	4(1)
Cl(3)	15(1)	14(1)	10(1)	5(1)	5(1)	6(1)
Cl(1)	12(1)	14(1)	13(1)	6(1)	2(1)	9(1)
Cl(4)	11(1)	10(1)	13(1)	3(1)	0(1)	2(1)
Cl(2)	9(1)	8(1)	7(1)	2(1)	3(1)	2(1)

Table 34. Anisotropic displacement parameters (Å²x 10³) for VCl₅. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + 2 h k a* b* U¹²]

Table 35. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (pm2x 10^{-1}) for [**XeF**][**IrF**₆]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
 F(1)	3616(7)	4457(5)	317(3)	35(2)
F(2)	3582(7)	4589(4)	1561(3)	29(1)
F(3)	773(6)	4169(5)	891(2)	26(1)
F(4)	4074(6)	6606(4)	916(3)	28(1)
F(5)	1270(7)	6190(5)	252(2)	29(1)
F(6)	1219(6)	6337(5)	1507(2)	22(1)
F(7)	3911(6)	7820(5)	3035(2)	27(1)
F(8)	8097(7)	9968(4)	8314(2)	25(1)

F(9)	6515(6)	8248(4)	8966(3)	27(1)
F(10)	9636(6)	8731(4)	9260(2)	25(1)
F(11)	5733(7)	10603(5)	9108(3)	30(1)
F(12)	8926(6)	11106(4)	9366(3)	26(1)
F(13)	7315(7)	9404(4)	10056(2)	20(1)
F(14)	7725(7)	6085(5)	10987(3)	33(1)
F(15)	7148(7)	5063(4)	3560(2)	25(1)
F(16)	9387(7)	5716(5)	2742(3)	34(1)
F(17)	6161(7)	5892(5)	2448(3)	34(1)
F(18)	5804(7)	3521(5)	2711(3)	37(2)
F(19)	8989(7)	3367(4)	3011(2)	27(1)
F(20)	8048(6)	4198(4)	1864(2)	23(1)
F(21)	6485(7)	1947(5)	394(3)	33(1)
Ir(1)	2436(1)	5365(1)	894(1)	14(1)
Ir(2)	7706(1)	9689(1)	9163(1)	11(1)
Ir(3)	7580(1)	4635(1)	2734(1)	10(1)
Xe(1)	2658(1)	7176(1)	2338(1)	13(1)
Xe(2)	7163(1)	2958(1)	1080(1)	14(1)
Xe(3)	7537(1)	7624(1)	10562(1)	13(1)

F(1)-Ir(1)	185.3(5)	F(21)-Xe(2) 189.4	(5)
F(2)-Ir(1)	186.8(5)	Ir(1)-F(6)-Xe(1)	119.3(2)
F(3)-Ir(1)	185.3(4)	Ir(2)-F(13)-Xe(3)	126.7(2)
F(4)-Ir(1)	187.3(5)	Ir(3)-F(20)-Xe(2)	141.9(3)
F(5)-Ir(1)	186.2(5)	F(1)-Ir(1)-F(3)	90.0(2)
F(6)-Ir(1)	195.6(5)	F(1)-Ir(1)-F(5)	91.0(3)
F(6)-Xe(1)	227.2(5)	F(3)-Ir(1)-F(5)	89.7(2)
F(7)-Xe(1)	189.8(5)	F(1)-Ir(1)-F(2)	91.2(3)
F(8)-Ir(2)	187.1(5)	F(3)-Ir(1)-F(2)	91.1(2)
F(9)-Ir(2)	187.0(5)	F(5)-Ir(1)-F(2)	177.7(2)
F(10)-Ir(2)	186.0(5)	F(1)-Ir(1)-F(4)	92.0(2)
F(11)-Ir(2)	185.7(5)	F(3)-Ir(1)-F(4)	178.1(2)
F(12)-Ir(2)	186.3(5)	F(5)-Ir(1)-F(4)	90.2(2)
F(13)-Ir(2)	196.2(5)	F(2)-Ir(1)-F(4)	89.0(2)
F(13)-Xe(3)	221.8(4)	F(1)-Ir(1)-F(6)	179.2(2)
F(14)-Xe(3)	190.4(5)	F(3)-Ir(1)-F(6)	90.8(2)
F(15)-Ir(3)	186.4(5)	F(5)-Ir(1)-F(6)	89.2(2)
F(16)-Ir(3)	185.5(5)	F(2)-Ir(1)-F(6)	88.6(2)
F(17)-Ir(3)	186.2(5)	F(4)-Ir(1)-F(6)	87.3(2)
F(18)-Ir(3)	185.8(5)	F(11)-Ir(2)-F(10)	176.7(2)
F(19)-Ir(3)	186.0(5)	F(11)-Ir(2)-F(12)	90.4(2)
F(20)-Ir(3)	195.9(5)	F(10)-Ir(2)-F(12)	90.8(2)
F(20)-Xe(2)	224.5(5)	F(11)-Ir(2)-F(9)	90.7(2)

 Table 36. Bond lengths [pm] and angles [°] for [XeF][IrF6].

- F(10)-Ir(2)-F(9) 88.2(2)
- F(12)-Ir(2)-F(9) 178.9(2)
- F(11)-Ir(2)-F(8) 90.9(2)
- F(10)-Ir(2)-F(8) 92.2(2)
- F(12)-Ir(2)-F(8) 89.5(2)
- F(9)-Ir(2)-F(8) 90.9(2)
- F(11)-Ir(2)-F(13) 89.4(2)
- F(10)-Ir(2)-F(13) 87.5(2)
- F(12)-Ir(2)-F(13) 90.0(2)
- F(9)-Ir(2)-F(13) 89.6(2)
- F(8)-Ir(2)-F(13) 179.5(2)
- F(16)-Ir(3)-F(18) 178.3(3)
- F(16)-Ir(3)-F(19) 90.3(3)
- F(18)-Ir(3)-F(19) 88.7(3)
- F(16)-Ir(3)-F(17) 90.0(3)
- F(18)-Ir(3)-F(17) 90.9(3)
- F(19)-Ir(3)-F(17) 179.3(3)
- F(16)-Ir(3)-F(15) 89.8(2)
- F(18)-Ir(3)-F(15) 91.5(3)
- F(19)-Ir(3)-F(15) 90.6(2)
- F(17)-Ir(3)-F(15) 90.0(2)
- F(16)-Ir(3)-F(20) 89.7(2)
- F(18)-Ir(3)-F(20) 89.0(2)
- F(19)-Ir(3)-F(20) 89.6(2)
- F(17)-Ir(3)-F(20) 89.9(2)

- F(15)-Ir(3)-F(20)179.4(2)F(7)-Xe(1)-F(6)177.8(2)F(21)-Xe(2)-F(20)177.5(2)F(14)-Xe(3)-F(13)179.3(2)
- Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
F(1)	34(3)	32(3)	41(4)	-26(3)	10(3)	-5(2)
F(2)	27(3)	27(3)	32(3)	1(2)	-13(2)	2(2)
F(3)	23(3)	29(3)	27(3)	6(2)	-8(2)	-19(2)
F(4)	16(3)	24(3)	44(4)	-9(2)	6(2)	-13(2)
F(5)	38(3)	28(3)	22(3)	8(2)	-7(2)	-4(2)
F(6)	10(2)	40(3)	17(3)	-6(2)	-3(2)	-1(2)
F(7)	17(3)	48(3)	17(3)	-19(2)	1(2)	-14(2)
F(8)	35(3)	27(3)	12(3)	1(2)	3(2)	-2(2)
F(9)	22(3)	20(2)	41(4)	-9(2)	7(2)	-7(2)
F(10)	18(3)	33(3)	25(3)	-1(2)	2(2)	7(2)
F(11)	22(3)	30(3)	38(4)	-3(2)	-4(3)	14(2)
F(12)	26(3)	22(2)	31(3)	-2(2)	0(2)	-12(2)
F(13)	31(3)	16(2)	15(3)	1(2)	9(2)	1(2)
F(14)	28(3)	31(3)	41(4)	12(2)	-4(3)	3(2)
F(15)	40(3)	20(2)	16(3)	-6(2)	14(2)	1(2)
F(16)	31(3)	39(3)	32(3)	-5(2)	3(3)	-27(3)
F(17)	27(3)	37(3)	39(4)	10(3)	-5(3)	19(2)
F(18)	30(3)	34(3)	46(4)	-5(3)	6(3)	-22(3)

Table 37. Anisotropic displacement parameters (pm2x 10-1)for [**XeF**][IrF₆]. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + 2hka^{*}b^{*}U^{12}$]

F(19)	35(3)	27(3)	19(3)	4(2)	3(2)	19(2)
F(20)	25(3)	29(3)	14(3)	-2(2)	-2(2)	-3(2)
F(21)	32(3)	37(3)	30(3)	-16(2)	5(3)	-17(2)
Ir(1)	12(1)	16(1)	13(1)	-1(1)	0(1)	-6(1)
Ir(2)	9(1)	11(1)	13(1)	1(1)	1(1)	-2(1)
Ir(3)	8(1)	10(1)	12(1)	0(1)	0(1)	0(1)
Xe(1)	9(1)	16(1)	13(1)	-3(1)	0(1)	0(1)
Xe(2)	13(1)	15(1)	14(1)	-1(1)	3(1)	0(1)
Xe(3)	13(1)	13(1)	14(1)	2(1)	-1(1)	-3(1)

	x	у	Z	U(eq)
F(1)	980(20)	4170(18)	1601(10)	19(3)
F(2)	56(19)	6504(17)	2504(8)	15(3)
F(3)	-760(20)	4233(19)	3480(10)	19(3)
F(4)	3984(19)	3346(17)	3566(8)	11(3)
F(5)	4860(20)	5708(18)	2501(9)	20(3)
F(6)	3011(16)	5891(17)	4459(8)	11(3)
F(7)	2270(20)	8222(18)	5474(8)	14(3)
F(8)	7740(20)	6709(19)	4525(8)	16(3)
F(9)	6909(17)	9047(17)	5493(7)	12(3)
F(10)	4053(19)	8338(18)	3594(8)	13(3)
Ir(1)	1934(1)	5000(1)	2985(1)	6(1)
Ir(2)	4979(2)	7535(1)	5022(1)	7(1)

Table 38. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (pm^2x 10-1) for IrF₅. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 39. Bond lengths [pm] and angles [°] for IrF₅.

F(1)-Ir(1)	189.0(13)	F(4)-Ir(1)	204.7(15)
F(2)-Ir(1)	185.0(15)	F(5)-Ir(1)	192.6(13)
F(3)-Ir(1)	184.9(13)	F(6)-Ir(2)	202.2(11)
F(4)-Ir(2)#1	194.9(11)	F(7)-Ir(2)	179.9(12)

F(8)-Ir(2)	190.3(12)	F(9)-Ir(2)-F(8)	90.7(7)
F(9)-Ir(2)	186.8(14)	F(7)-Ir(2)-F(10)	91.4(6)
F(10)-Ir(2)	192.5(12)	F(9)-Ir(2)-F(10)	90.0(7)
Ir(2)-F(4)#1	194.9(11)	F(8)-Ir(2)-F(10)	89.0(6)
Ir(2)#1-F(4)-Ir(1)	137.1(7)	F(7)-Ir(2)-F(4)#1	91.2(6)
Ir(2)-F(6)-Ir(1)	136.3(6)	F(9)-Ir(2)-F(4)#1	91.0(6)
F(3)-Ir(1)-F(2)	90.6(7)	F(8)-Ir(2)-F(4)#1	88.3(6)
F(3)-Ir(1)-F(1)	90.5(7)	F(10)-Ir(2)-F(4)#1	177.1(4)
F(2)-Ir(1)-F(1)	90.5(7)	F(7)-Ir(2)-F(6)	89.8(7)
F(3)-Ir(1)-F(5)	176.6(5)	F(9)-Ir(2)-F(6)	177.1(4)
F(2)-Ir(1)-F(5)	92.8(7)	F(8)-Ir(2)-F(6)	86.8(7)
F(1)-Ir(1)-F(5)	89.6(6)	F(10)-Ir(2)-F(6)	88.6(7)
F(3)-Ir(1)-F(6)	90.5(6)	F(4)#1-Ir(2)-F(6)	90.2(6)
F(2)-Ir(1)-F(6)	89.9(6)		
F(1)-Ir(1)-F(6)	179.0(4)		
F(5)-Ir(1)-F(6)	89.4(5)	Symmetry transform	nations used to generate
F(3)-Ir(1)-F(4)	88.4(7)	equivalent atoms:	

178.2(4)

91.1(7)

88.2(6)

88.6(6)

92.8(7)

176.6(5)

F(2)-Ir(1)-F(4)

F(1)-Ir(1)-F(4)

F(5)-Ir(1)-F(4)

F(6)-Ir(1)-F(4)

F(7)-Ir(2)-F(9)

F(7)-Ir(2)-F(8)

#1 -x+1,-y+1,-z+1

	U11	U22	U33	U23	U13	U12
F(1)	21(6)	9(6)	25(7)	-8(5)	4(5)	2(4)
F(2)	22(6)	10(8)	12(6)	0(4)	1(5)	4(4)
F(3)	11(5)	17(7)	31(7)	5(5)	8(5)	1(5)
F(4)	22(6)	5(6)	8(5)	2(4)	3(5)	-4(4)
F(5)	23(6)	10(7)	22(7)	-4(4)	-14(5)	1(4)
F(6)	13(6)	5(6)	14(6)	0(4)	2(5)	1(3)
F(7)	14(5)	15(7)	14(6)	-3(4)	2(4)	1(5)
F(8)	15(5)	21(8)	13(6)	-2(4)	4(4)	6(5)
F(9)	17(6)	7(7)	10(6)	-2(4)	-6(5)	2(4)
F(10)	18(6)	15(7)	7(5)	1(4)	4(4)	6(4)
Ir(1)	8(1)	5(1)	5(1)	1(1)	0(1)	0(1)
Ir(2)	9(1)	5(1)	6(1)	-2(1)	0(1)	1(1)

Table 40. Anisotropic displacement parameters $(pm^2x \ 10^{-1})$ for IrF_5 . The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^*2U^{11}+2hka^*b^*U^{12}]$

Table 41. Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for [Ir₄(CO)₁₂][Sb₂F₁₁]₂. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
C(1)	2391(18)	2126(5)	7804(12)	21(4)
C(2)	440(20)	2050(5)	6834(13)	24(5)
C(3)	590(20)	2589(6)	8094(13)	32(6)

C(4)	480(20)	3416(7)	6606(15)	33(5)
C(5)	2320(20)	3346(6)	5593(13)	26(5)
C(6)	233(18)	2972(5)	5214(13)	22(4)
C(7)	3682(19)	2024(6)	6164(15)	29(5)
C(8)	1602(18)	2235(5)	5340(12)	18(4)
C(9)	3618(18)	2645(6)	5104(11)	21(4)
C(10)	4122(19)	2774(6)	8141(13)	23(4)
C(11)	2170(20)	3233(7)	7991(14)	34(6)
C(12)	4110(20)	3352(6)	7074(12)	29(5)
C(13)	9340(20)	444(6)	8925(13)	26(5)
C(14)	7337(17)	866(6)	8640(11)	22(4)
C(15)	9206(19)	964(6)	7679(13)	25(5)
C(16)	5670(20)	961(6)	7146(15)	31(5)
C(17)	7543(18)	835(6)	6220(14)	26(5)
C(18)	5529(19)	390(6)	6027(13)	24(5)
C(19)	9090(20)	-419(6)	7202(15)	31(5)
C(20)	6974(19)	-283(6)	6297(14)	24(5)
C(21)	9000(20)	137(7)	6020(17)	39(6)
C(22)	5840(20)	-389(6)	7830(14)	29(5)
C(23)	7820(20)	-235(6)	8765(15)	31(5)
C(24)	5851(19)	196(6)	8964(13)	25(5)
F(1)	3540(17)	1766(4)	2808(9)	49(4)
F(2)	1463(14)	1627(5)	3447(11)	52(4)
F(3)	3148(14)	1883(4)	4364(9)	41(4)
F(4)	4431(14)	1330(5)	3984(11)	52(4)

F(5)	2744(15)	1073(4)	3059(10)	44(4)
F(6)	2510(16)	1217(5)	4570(10)	58(5)
F(7)	314(16)	1195(5)	4918(11)	59(5)
F(8)	1849(13)	1454(4)	5908(9)	39(3)
F(9)	821(15)	821(4)	6271(9)	45(4)
F(10)	3042(13)	859(5)	5856(11)	51(4)
F(11)	1475(15)	592(4)	4825(9)	44(4)
F(12)	1839(16)	2917(10)	3842(10)	115(12)
F(13)	1720(30)	2438(6)	2600(17)	104(10)
F(14)	464(13)	2983(5)	2567(11)	48(4)
F(15)	3566(17)	2846(9)	2825(14)	102(10)
F(16)	2216(16)	3418(5)	2740(13)	66(6)
F(17)	2080(20)	2955(5)	1602(10)	65(6)
F(18)	3499(18)	2556(5)	889(11)	64(6)
F(19)	1300(20)	2421(7)	701(15)	93(8)
F(20)	960(20)	3052(8)	173(14)	94(9)
F(21)	3100(20)	3201(6)	386(14)	79(6)
F(22)	2426(18)	2633(7)	-592(9)	78(8)
F(23)	7228(14)	264(6)	4660(10)	56(5)
F(24)	8660(20)	664(10)	3884(12)	122(13)
F(25)	8350(20)	11(8)	3472(13)	103(10)
F(26)	6500(20)	787(6)	3646(12)	72(6)
F(27)	6189(16)	120(4)	3245(9)	49(4)
F(28)	7602(16)	552(6)	2491(9)	60(5)
F(29)	6460(20)	197(7)	1376(12)	95(10)

F(30)	6690(30)	866(8)	1233(15)	110(11)
F(31)	8820(20)	806(8)	1358(13)	112(12)
F(32)	8700(30)	140(7)	1519(14)	101(10)
F(33)	7704(16)	444(6)	228(10)	64(6)
F(34)	8717(18)	4444(5)	2922(13)	65(6)
F(35)	6445(18)	4363(6)	3113(15)	78(7)
F(36)	7890(20)	4407(7)	4348(12)	77(7)
F(37)	7650(20)	3823(4)	2599(14)	75(6)
F(38)	9070(20)	3889(8)	3834(14)	94(9)
F(39)	6900(30)	3782(6)	3989(18)	118(12)
F(40)	4840(20)	3745(10)	4350(20)	170(20)
F(41)	6360(30)	3896(6)	5466(17)	114(12)
F(42)	7450(20)	3317(9)	5147(18)	112(10)
F(43)	5960(30)	3158(6)	4036(16)	117(13)
F(44)	5258(16)	3257(5)	5518(10)	51(4)
F(45)	4078(18)	3499(7)	8798(13)	83(8)
F(46)	5582(15)	1114(5)	5312(11)	54(5)
Ir(1)	1449(1)	2442(1)	7218(1)	17(1)
Ir(2)	1356(1)	3034(1)	6146(1)	17(1)
Ir(3)	2750(1)	2468(1)	5990(1)	16(1)
Ir(4)	3045(1)	2960(1)	7280(1)	17(1)
Ir(5)	8270(1)	564(1)	8048(1)	15(1)
Ir(6)	6625(1)	551(1)	6873(1)	14(1)
Ir(7)	8110(1)	1(1)	6897(1)	16(1)
Ir(8)	6753(1)	26(1)	8102(1)	17(1)

O(1)	3096(15)	1947(5)	8159(10)	31(4)
O(2)	-131(15)	1821(5)	6618(11)	35(4)
O(3)	149(15)	2704(5)	8634(10)	35(4)
O(4)	-42(19)	3643(5)	6869(15)	58(7)
O(5)	2875(16)	3533(5)	5248(11)	39(4)
O(6)	-386(15)	2930(5)	4698(10)	35(4)
O(7)	4133(16)	1763(5)	6217(11)	37(4)
O(8)	868(15)	2094(4)	4992(9)	30(4)
O(9)	4048(17)	2732(5)	4586(11)	43(5)
O(10)	4712(17)	2641(5)	8582(11)	41(4)
O(11)	1683(17)	3406(6)	8393(11)	47(5)
O(12)	4768(16)	3566(5)	6988(12)	44(5)
O(13)	9962(16)	352(5)	9455(11)	41(5)
O(14)	6779(17)	1040(5)	8989(10)	40(4)
O(15)	9726(16)	1192(5)	7518(11)	38(4)
O(16)	5107(15)	1202(4)	7273(11)	36(4)
O(17)	8085(16)	990(5)	5831(12)	42(5)
O(18)	4911(14)	318(5)	5522(10)	32(4)
O(19)	9557(16)	-684(5)	7341(14)	48(6)
O(20)	6337(15)	-435(5)	5941(11)	35(4)
O(21)	9493(15)	234(6)	5521(10)	41(5)
O(22)	5304(16)	-650(5)	7638(12)	40(4)
O(23)	8474(18)	-389(5)	9149(13)	51(5)
O(24)	5365(17)	293(6)	9468(10)	41(5)
Sb(1)	2978(1)	1504(1)	3633(1)	24(1)

Sb(2)	1637(1)	1007(1)	5457(1)	25(1)
Sb(3)	1997(2)	2917(1)	2759(1)	38(1)
Sb(4)	2249(2)	2780(1)	457(1)	38(1)
Sb(5)	7415(2)	391(1)	3634(1)	38(1)
Sb(6)	7647(1)	490(1)	1306(1)	24(1)
Sb(7)	7819(2)	4145(1)	3424(1)	48(1)
Sb(8)	6054(2)	3512(1)	4797(1)	46(1)

Table 42. Bond lengths [Å] and angles [°] for $[Ir_4(CO)_{12}][Sb_2F_{11}]_2$.

C(1)-O(1)	1.19(3)	C(8)-Ir(3)	1.89(2)
C(1)-Ir(1)	1.85(2)	C(9)-O(9)	1.09(3)
C(2)-O(2)	1.12(3)	C(9)-Ir(3)	1.99(2)
C(2)-Ir(1)	1.96(2)	C(10)-O(10)	1.10(3)
C(3)-O(3)	1.17(3)	C(10)-Ir(4)	1.99(2)
C(3)-Ir(1)	1.93(2)	C(11)-O(11)	1.12(3)
C(4)-O(4)	1.14(3)	C(11)-Ir(4)	1.92(3)
C(4)-Ir(2)	1.95(2)	C(12)-O(12)	1.12(3)
C(5)-O(5)	1.14(3)	C(12)-Ir(4)	1.964(19)
C(5)-Ir(2)	1.91(2)	C(13)-O(13)	1.17(3)
C(6)-O(6)	1.11(3)	C(13)-Ir(5)	1.93(2)
C(6)-Ir(2)	2.00(2)	C(14)-O(14)	1.12(3)
C(7)-O(7)	1.10(3)	C(14)-Ir(5)	1.90(2)
C(7)-Ir(3)	1.99(2)	C(15)-O(15)	1.09(3)
C(8)-O(8)	1.14(3)	C(15)-Ir(5)	1.97(2)

C(16)-O(16)	1.13(3)	F(7)-Sb(2)	1.883(17)
C(16)-Ir(6)	1.97(2)	F(8)-Sb(2)	1.834(14)
C(17)-O(17)	1.11(3)	F(9)-Sb(2)	1.866(15)
C(17)-Ir(6)	1.91(2)	F(10)-Sb(2)	1.826(16)
C(18)-O(18)	1.12(3)	F(11)-Sb(2)	1.872(14)
C(18)-Ir(6)	1.95(2)	F(12)-Sb(3)	1.859(17)
C(19)-O(19)	1.14(3)	F(13)-Sb(3)	1.82(2)
C(19)-Ir(7)	1.98(2)	F(14)-Sb(3)	1.827(15)
C(20)-O(20)	1.09(3)	F(15)-Sb(3)	1.860(18)
C(20)-Ir(7)	1.93(2)	F(16)-Sb(3)	1.87(2)
C(21)-O(21)	1.12(3)	F(17)-Sb(3)	1.975(16)
C(21)-Ir(7)	1.94(3)	F(17)-Sb(4)	2.069(16)
C(22)-O(22)	1.18(3)	F(18)-Sb(4)	1.799(18)
C(22)-Ir(8)	1.91(2)	F(19)-Sb(4)	1.80(2)
C(23)-O(23)	1.13(3)	F(20)-Sb(4)	1.86(2)
C(23)-Ir(8)	1.89(2)	F(21)-Sb(4)	1.86(2)
C(24)-O(24)	1.12(3)	F(22)-Sb(4)	1.887(16)
C(24)-Ir(8)	1.97(2)	F(23)-Sb(5)	1.830(17)
F(1)-Sb(1)	1.862(15)	F(24)-Sb(5)	1.811(19)
F(2)-Sb(1)	1.846(16)	F(25)-Sb(5)	1.82(2)
F(3)-Sb(1)	1.874(13)	F(26)-Sb(5)	1.82(2)
F(4)-Sb(1)	1.885(17)	F(27)-Sb(5)	1.839(17)
F(5)-Sb(1)	1.878(14)	F(28)-Sb(6)	2.028(16)
F(6)-Sb(1)	2.019(16)	F(28)-Sb(5)	2.053(16)
F(6)-Sb(2)	2.033(15)	F(29)-Sb(6)	1.783(17)

F(30)-Sb(6)	1.79(2)	Ir(6)-Ir(7)	2.6806(11)
F(31)-Sb(6)	1.810(18)	Ir(6)-Ir(8)	2.8429(11)
F(32)-Sb(6)	1.81(2)	Ir(7)-Ir(8)	2.6815(12)
F(33)-Sb(6)	1.842(17)	O(1)-C(1)-Ir(1)	172.6(18)
F(34)-Sb(7)	1.787(17)	O(2)-C(2)-Ir(1)	179(2)
F(35)-Sb(7)	1.85(2)	O(3)-C(3)-Ir(1)	174(2)
F(36)-Sb(7)	1.84(2)	O(4)-C(4)-Ir(2)	179(2)
F(37)-Sb(7)	1.84(2)	O(5)-C(5)-Ir(2)	178(2)
F(38)-Sb(7)	1.85(2)	O(6)-C(6)-Ir(2)	178.4(19)
F(39)-Sb(7)	2.003(18)	O(7)-C(7)-Ir(3)	174(2)
F(39)-Sb(8)	2.018(18)	O(8)-C(8)-Ir(3)	175.4(18)
F(40)-Sb(8)	1.79(2)	O(9)-C(9)-Ir(3)	176(2)
F(41)-Sb(8)	1.84(2)	O(10)-C(10)-Ir(4)	173.6(19)
F(42)-Sb(8)	1.85(3)	O(11)-C(11)-Ir(4)	177(2)
F(43)-Sb(8)	1.836(19)	O(12)-C(12)-Ir(4)	176(2)
F(44)-Sb(8)	1.850(16)	O(13)-C(13)-Ir(5)	176(2)
Ir(1)-Ir(3)	2.6720(12)	O(14)-C(14)-Ir(5)	179(2)
Ir(1)-Ir(4)	2.6812(12)	O(15)-C(15)-Ir(5)	176(2)
Ir(1)-Ir(2)	2.8453(12)	O(16)-C(16)-Ir(6)	177(2)
Ir(2)-Ir(4)	2.6823(12)	O(17)-C(17)-Ir(6)	178(2)
Ir(2)-Ir(3)	2.6842(11)	O(18)-C(18)-Ir(6)	176(2)
Ir(3)-Ir(4)	2.8479(12)	O(19)-C(19)-Ir(7)	172(2)
Ir(5)-Ir(8)	2.6779(12)	O(20)-C(20)-Ir(7)	178(2)
Ir(5)-Ir(6)	2.6803(12)	O(21)-C(21)-Ir(7)	176(2)
Ir(5)-Ir(7)	2.8515(12)	O(22)-C(22)-Ir(8)	177(2)

O(23)-C(23)-Ir(8)	179(2)	C(4)-Ir(2)-Ir(4)	100.1(8)
O(24)-C(24)-Ir(8)	178(2)	C(6)-Ir(2)-Ir(4)	166.0(5)
Sb(1)-F(6)-Sb(2)	164.2(12)	C(5)-Ir(2)-Ir(3)	92.0(6)
Sb(3)-F(17)-Sb(4)	157.5(11)	C(4)-Ir(2)-Ir(3)	162.0(8)
Sb(6)-F(28)-Sb(5)	156.1(12)	C(6)-Ir(2)-Ir(3)	102.0(5)
Sb(7)-F(39)-Sb(8)	164.7(16)	Ir(4)-Ir(2)-Ir(3)	64.10(3)
C(1)-Ir(1)- $C(3)$	95.2(9)	C(5)-Ir(2)-Ir(1)	141.4(7)
C(1)-Ir(1)- $C(2)$	92.2(8)	C(4)-Ir(2)-Ir(1)	107.4(7)
C(3)-Ir(1)-C(2)	97.3(11)	C(6)-Ir(2)-Ir(1)	114.2(6)
C(1)-Ir(1)-Ir(3)	95.0(7)	Ir(4)-Ir(2)-Ir(1)	57.94(3)
C(3)-Ir(1)-Ir(3)	161.4(7)	Ir(3)-Ir(2)-Ir(1)	57.70(3)
C(2)-Ir(1)-Ir(3)	97.8(7)	C(8)-Ir(3)-C(9)	95.4(8)
C(1)-Ir(1)-Ir(4)	92.2(6)	C(8)-Ir(3)-C(7)	94.3(10)
C(3)-Ir(1)-Ir(4)	99.8(9)	C(9)-Ir(3)-C(7)	94.4(10)
C(2)-Ir(1)-Ir(4)	161.9(7)	C(8)-Ir(3)-Ir(1)	90.7(6)
Ir(3)-Ir(1)-Ir(4)	64.28(3)	C(9)-Ir(3)-Ir(1)	162.7(7)
C(1)-Ir(1)-Ir(2)	145.5(6)	C(7)-Ir(3)-Ir(1)	101.2(7)
C(3)-Ir(1)-Ir(2)	106.0(6)	C(8)-Ir(3)-Ir(2)	89.8(6)
C(2)-Ir(1)-Ir(2)	111.2(6)	C(9)-Ir(3)-Ir(2)	99.6(7)
Ir(3)-Ir(1)-Ir(2)	58.12(3)	C(7)-Ir(3)-Ir(2)	164.9(7)
Ir(4)-Ir(1)-Ir(2)	57.98(3)	Ir(1)-Ir(3)-Ir(2)	64.17(3)
C(5)-Ir(2)-C(4)	96.3(9)	C(8)-Ir(3)-Ir(4)	141.5(6)
C(5)-Ir(2)-C(6)	93.7(10)	C(9)-Ir(3)-Ir(4)	109.2(6)
C(4)-Ir(2)-C(6)	93.4(10)	C(7)-Ir(3)-Ir(4)	112.2(8)
C(5)-Ir(2)-Ir(4)	88.7(8)	Ir(1)-Ir(3)-Ir(4)	58.02(3)

Ir(2)-Ir(3)-Ir(4)	57.92(3)	Ir(8)-Ir(5)-Ir(6)	64.09(3)
C(11)-Ir(4)-C(12)	95.8(11)	C(14)-Ir(5)-Ir(7)	141.0(6)
C(11)-Ir(4)-C(10)	93.6(10)	C(13)-Ir(5)-Ir(7)	111.6(7)
C(12)-Ir(4)-C(10)	90.2(9)	C(15)-Ir(5)-Ir(7)	110.1(7)
C(11)-Ir(4)-Ir(1)	89.8(7)	Ir(8)-Ir(5)-Ir(7)	57.92(3)
C(12)-Ir(4)-Ir(1)	167.3(6)	Ir(6)-Ir(5)-Ir(7)	57.87(3)
C(10)-Ir(4)-Ir(1)	100.9(6)	C(17)-Ir(6)-C(18)	96.4(10)
C(11)-Ir(4)-Ir(2)	89.7(7)	C(17)-Ir(6)-C(16)	94.0(10)
C(12)-Ir(4)-Ir(2)	104.4(7)	C(18)-Ir(6)-C(16)	92.7(9)
C(10)-Ir(4)-Ir(2)	164.7(6)	C(17)-Ir(6)-Ir(5)	90.7(7)
Ir(1)-Ir(4)-Ir(2)	64.08(3)	C(18)-Ir(6)-Ir(5)	163.2(6)
C(11)-Ir(4)-Ir(3)	140.8(7)	C(16)-Ir(6)-Ir(5)	102.0(7)
C(12)-Ir(4)-Ir(3)	112.3(6)	C(17)-Ir(6)-Ir(7)	91.8(7)
C(10)-Ir(4)-Ir(3)	112.3(6)	C(18)-Ir(6)-Ir(7)	100.2(6)
Ir(1)-Ir(4)-Ir(3)	57.70(3)	C(16)-Ir(6)-Ir(7)	165.2(7)
Ir(2)-Ir(4)-Ir(3)	57.98(3)	Ir(5)-Ir(6)-Ir(7)	64.27(3)
C(14)-Ir(5)-C(13)	95.6(9)	C(17)-Ir(6)-Ir(8)	142.7(6)
C(14)-Ir(5)-C(15)	94.7(10)	C(18)-Ir(6)-Ir(8)	109.3(7)
C(13)-Ir(5)-C(15)	94.0(9)	C(16)-Ir(6)-Ir(8)	110.9(7)
C(14)-Ir(5)-Ir(8)	90.4(7)	Ir(5)-Ir(6)-Ir(8)	57.91(3)
C(13)-Ir(5)-Ir(8)	101.7(6)	Ir(7)-Ir(6)-Ir(8)	58.00(3)
C(15)-Ir(5)-Ir(8)	163.0(6)	C(20)-Ir(7)-C(21)	97.3(10)
C(14)-Ir(5)-Ir(6)	89.4(6)	C(20)-Ir(7)-C(19)	94.7(9)
C(13)-Ir(5)-Ir(6)	165.0(7)	C(21)-Ir(7)-C(19)	93.9(10)
C(15)-Ir(5)-Ir(6)	99.7(6)	C(20)-Ir(7)-Ir(6)	88.7(6)

C(21)-Ir(7)-Ir(6)	100.2(7)	Ir(7)-Ir(8)-Ir(6)	57.97(3)
C(19)-Ir(7)-Ir(6)	165.0(8)	F(2)-Sb(1)-F(1)	97.6(9)
C(20)-Ir(7)-Ir(8)	89.6(6)	F(2)-Sb(1)-F(3)	89.2(8)
C(21)-Ir(7)-Ir(8)	162.7(7)	F(1)-Sb(1)-F(3)	94.6(7)
C(19)-Ir(7)-Ir(8)	101.3(7)	F(2)-Sb(1)-F(5)	90.9(8)
Ir(6)-Ir(7)-Ir(8)	64.04(3)	F(1)-Sb(1)-F(5)	95.7(7)
C(20)-Ir(7)-Ir(5)	140.1(6)	F(3)-Sb(1)-F(5)	169.6(7)
C(21)-Ir(7)-Ir(5)	108.7(7)	F(2)-Sb(1)-F(4)	169.4(8)
C(19)-Ir(7)-Ir(5)	112.5(7)	F(1)-Sb(1)-F(4)	93.0(8)
Ir(6)-Ir(7)-Ir(5)	57.86(3)	F(3)-Sb(1)-F(4)	89.6(8)
Ir(8)-Ir(7)-Ir(5)	57.79(3)	F(5)-Sb(1)-F(4)	88.4(8)
C(23)-Ir(8)-C(22)	94.2(11)	F(2)-Sb(1)-F(6)	87.2(8)
C(23)-Ir(8)-C(24)	95.3(10)	F(1)-Sb(1)-F(6)	175.0(8)
C(22)-Ir(8)-C(24)	96.3(9)	F(3)-Sb(1)-F(6)	84.0(7)
C(23)-Ir(8)-Ir(5)	89.0(7)	F(5)-Sb(1)-F(6)	85.6(8)
C(22)-Ir(8)-Ir(5)	162.3(6)	F(4)-Sb(1)-F(6)	82.2(8)
C(24)-Ir(8)-Ir(5)	100.6(6)	F(10)-Sb(2)-F(8)	91.2(7)
C(23)-Ir(8)-Ir(7)	91.6(7)	F(10)-Sb(2)-F(9)	96.6(8)
C(22)-Ir(8)-Ir(7)	98.2(6)	F(8)-Sb(2)-F(9)	94.8(7)
C(24)-Ir(8)-Ir(7)	163.4(6)	F(10)-Sb(2)-F(11)	91.2(8)
Ir(5)-Ir(8)-Ir(7)	64.29(3)	F(8)-Sb(2)-F(11)	169.6(7)
C(23)-Ir(8)-Ir(6)	141.5(7)	F(9)-Sb(2)-F(11)	94.9(7)
C(22)-Ir(8)-Ir(6)	111.7(8)	F(10)-Sb(2)-F(7)	170.8(9)
C(24)-Ir(8)-Ir(6)	108.9(7)	F(8)-Sb(2)-F(7)	87.3(8)
Ir(5)-Ir(8)-Ir(6)	58.00(3)	F(9)-Sb(2)-F(7)	92.5(8)

F(11)-Sb(2)-F(7)	88.7(9)	F(18)-Sb(4)-F(20)	170.4(9)
F(10)-Sb(2)-F(6)	84.1(9)	F(21)-Sb(4)-F(20)	88.0(13)
F(8)-Sb(2)-F(6)	84.4(7)	F(19)-Sb(4)-F(22)	96.5(11)
F(9)-Sb(2)-F(6)	179.0(8)	F(18)-Sb(4)-F(22)	96.3(8)
F(11)-Sb(2)-F(6)	85.8(7)	F(21)-Sb(4)-F(22)	94.9(11)
F(7)-Sb(2)-F(6)	86.8(8)	F(20)-Sb(4)-F(22)	93.1(9)
F(13)-Sb(3)-F(14)	86.4(11)	F(19)-Sb(4)-F(17)	85.0(10)
F(13)-Sb(3)-F(15)	92.3(14)	F(18)-Sb(4)-F(17)	83.8(8)
F(14)-Sb(3)-F(15)	173.2(9)	F(21)-Sb(4)-F(17)	83.5(10)
F(13)-Sb(3)-F(12)	96.7(14)	F(20)-Sb(4)-F(17)	86.7(9)
F(14)-Sb(3)-F(12)	90.6(8)	F(22)-Sb(4)-F(17)	178.5(11)
F(15)-Sb(3)-F(12)	96.2(9)	F(26)-Sb(5)-F(25)	171.7(10)
F(13)-Sb(3)-F(16)	170.4(12)	F(26)-Sb(5)-F(24)	90.9(14)
F(14)-Sb(3)-F(16)	90.0(8)	F(25)-Sb(5)-F(24)	88.7(16)
F(15)-Sb(3)-F(16)	90.3(12)	F(26)-Sb(5)-F(23)	94.9(9)
F(12)-Sb(3)-F(16)	92.3(13)	F(25)-Sb(5)-F(23)	93.4(9)
F(13)-Sb(3)-F(17)	86.8(10)	F(24)-Sb(5)-F(23)	94.0(9)
F(14)-Sb(3)-F(17)	85.9(9)	F(26)-Sb(5)-F(27)	89.6(9)
F(15)-Sb(3)-F(17)	87.4(10)	F(25)-Sb(5)-F(27)	89.7(12)
F(12)-Sb(3)-F(17)	174.9(11)	F(24)-Sb(5)-F(27)	172.6(9)
F(16)-Sb(3)-F(17)	84.1(9)	F(23)-Sb(5)-F(27)	93.3(8)
F(19)-Sb(4)-F(18)	93.9(12)	F(26)-Sb(5)-F(28)	83.0(9)
F(19)-Sb(4)-F(21)	167.8(11)	F(25)-Sb(5)-F(28)	88.7(9)
F(18)-Sb(4)-F(21)	89.0(11)	F(24)-Sb(5)-F(28)	85.5(8)
F(19)-Sb(4)-F(20)	87.1(14)	F(23)-Sb(5)-F(28)	177.8(9)

F(27)-Sb(5)-F(28)	87.3(7)	F(37)-Sb(7)-F(35)	91.1(10)
F(29)-Sb(6)-F(30)	89.0(15)	F(34)-Sb(7)-F(39)	175.7(11)
F(29)-Sb(6)-F(32)	94.8(15)	F(38)-Sb(7)-F(39)	85.4(13)
F(30)-Sb(6)-F(32)	171.3(14)	F(36)-Sb(7)-F(39)	86.5(11)
F(29)-Sb(6)-F(31)	172.8(11)	F(37)-Sb(7)-F(39)	84.1(11)
F(30)-Sb(6)-F(31)	88.8(16)	F(35)-Sb(7)-F(39)	86.6(13)
F(32)-Sb(6)-F(31)	86.6(15)	F(40)-Sb(8)-F(42)	170.5(12)
F(29)-Sb(6)-F(33)	95.4(9)	F(40)-Sb(8)-F(41)	90.2(19)
F(30)-Sb(6)-F(33)	94.0(11)	F(42)-Sb(8)-F(41)	88.4(16)
F(32)-Sb(6)-F(33)	93.5(10)	F(40)-Sb(8)-F(43)	92.3(19)
F(31)-Sb(6)-F(33)	91.6(10)	F(42)-Sb(8)-F(43)	87.6(16)
F(29)-Sb(6)-F(28)	85.9(8)	F(41)-Sb(8)-F(43)	170.0(10)
F(30)-Sb(6)-F(28)	85.5(10)	F(40)-Sb(8)-F(44)	95.7(10)
F(32)-Sb(6)-F(28)	87.0(10)	F(42)-Sb(8)-F(44)	93.9(10)
F(31)-Sb(6)-F(28)	87.2(9)	F(41)-Sb(8)-F(44)	94.1(9)
F(33)-Sb(6)-F(28)	178.6(9)	F(43)-Sb(8)-F(44)	95.3(8)
F(34)-Sb(7)-F(38)	90.7(11)	F(40)-Sb(8)-F(39)	83.9(12)
F(34)-Sb(7)-F(36)	95.0(10)	F(42)-Sb(8)-F(39)	86.6(13)
F(38)-Sb(7)-F(36)	87.8(12)	F(41)-Sb(8)-F(39)	87.2(11)
F(34)-Sb(7)-F(37)	94.2(10)	F(43)-Sb(8)-F(39)	83.4(10)
F(38)-Sb(7)-F(37)	89.8(12)	F(44)-Sb(8)-F(39)	178.6(11)
F(36)-Sb(7)-F(37)	170.5(10)		
F(34)-Sb(7)-F(35)	97.3(11)		
F(38)-Sb(7)-F(35)	171.8(11)	Symmetry transfo	ormations used
		generate equivalent	atoms:

F(36)-Sb(7)-F(35) 90.0(11)

to

	U11	U22	U33	U23	U13	U12
C(1)	26(11)	15(9)	19(10)	-10(7)	-9(8)	-18(8)
C(2)	31(12)	17(9)	24(11)	0(8)	-12(9)	0(8)
C(3)	36(13)	36(12)	25(11)	33(10)	15(10)	27(10)
C(4)	27(13)	39(13)	34(13)	9(11)	14(10)	9(10)
C(5)	29(12)	24(10)	27(11)	-5(9)	19(10)	9(9)
C(6)	20(11)	16(9)	30(11)	-3(8)	7(9)	8(8)
C(7)	18(11)	30(12)	39(13)	2(10)	9(10)	15(9)
C(8)	27(11)	13(8)	15(9)	1(7)	5(8)	4(8)
C(9)	22(11)	33(11)	9(9)	1(8)	2(8)	-7(9)
C(10)	22(11)	22(10)	24(11)	-14(8)	1(9)	-7(8)
C(11)	43(15)	36(13)	21(11)	-21(10)	-15(10)	-13(11)
C(12)	47(15)	22(10)	17(10)	-2(8)	-1(9)	-32(10)
C(13)	31(13)	27(11)	19(10)	2(8)	7(9)	-6(9)
C(14)	14(10)	41(12)	10(9)	-11(8)	-6(7)	-2(9)
C(15)	24(11)	30(11)	20(10)	14(9)	-3(9)	-3(9)
C(16)	23(12)	30(12)	38(13)	6(10)	-12(10)	5(9)
C(17)	12(10)	29(11)	34(12)	-2(9)	-5(9)	0(8)
C(18)	21(11)	27(11)	22(11)	-4(8)	-11(9)	6(8)
C(19)	36(14)	19(10)	37(13)	3(9)	-1(11)	-2(9)
C(20)	21(11)	18(9)	33(12)	-8(9)	6(9)	11(8)
C(21)	31(14)	34(13)	49(17)	-18(12)	-9(12)	16(11)

Table 43. Anisotropic displacement parameters (Å2x 103)for $[Ir_4(CO)_{12}][Sb_2F_{11}]_2$. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a*2U^{11} + 2hka*b*U12]$

C(22)	36(13)	19(10)	36(13)	5(9)	26(11)	-7(9)
C(23)	39(14)	17(10)	39(13)	16(9)	10(11)	3(9)
C(24)	23(12)	27(11)	26(11)	4(9)	2(9)	-9(9)
F(1)	83(13)	42(9)	24(7)	3(6)	20(8)	-3(8)
F(2)	35(9)	56(11)	64(12)	-7(9)	-7(8)	10(8)
F(3)	54(10)	33(8)	39(8)	-20(6)	16(7)	-9(7)
F(4)	33(9)	62(11)	60(11)	0(9)	-2(8)	1(8)
F(5)	64(11)	19(7)	51(10)	-8(6)	2(8)	-1(7)
F(6)	64(12)	72(13)	43(10)	3(9)	32(9)	-20(10)
F(7)	52(11)	73(13)	49(11)	16(9)	-19(9)	-6(9)
F(8)	41(9)	28(7)	46(9)	-6(6)	-3(7)	-5(6)
F(9)	56(10)	46(9)	35(8)	-2(7)	17(8)	-18(8)
F(10)	29(9)	53(10)	71(12)	-11(9)	4(8)	22(7)
F(11)	70(11)	26(7)	39(9)	-15(6)	23(8)	-16(7)
F(12)	36(11)	300(40)	10(8)	-15(14)	-3(7)	33(16)
F(13)	150(30)	50(12)	120(20)	25(13)	90(20)	16(14)
F(14)	23(8)	62(11)	58(11)	10(8)	-13(7)	2(7)
F(15)	34(11)	200(30)	75(15)	65(17)	31(10)	46(14)
F(16)	49(11)	65(12)	86(15)	-47(11)	15(10)	-6(9)
F(17)	106(17)	66(12)	26(9)	-6(8)	21(10)	15(11)
F(18)	71(13)	71(13)	47(11)	-21(9)	-26(10)	31(10)
F(19)	110(20)	86(17)	83(17)	-21(13)	9(15)	-57(15)
F(20)	78(16)	140(20)	61(14)	-14(14)	1(12)	51(16)
F(21)	91(17)	74(15)	70(15)	6(12)	-3(12)	-18(13)
F(22)	74(14)	140(20)	15(7)	-13(10)	-3(8)	66(14)

F(23)	35(9)	91(14)	40(10)	23(9)	-3(7)	2(9)
F(24)	72(16)	250(40)	44(12)	33(16)	-25(11)	-110(20)
F(25)	98(19)	160(30)	54(13)	35(15)	9(13)	78(18)
F(26)	103(17)	59(12)	54(12)	-26(10)	0(11)	8(12)
F(27)	69(12)	43(9)	33(9)	4(7)	-12(8)	-7(8)
F(28)	59(12)	100(15)	19(8)	3(9)	-4(7)	-16(11)
F(29)	92(17)	150(20)	44(11)	-10(13)	0(11)	-103(17)
F(30)	130(20)	120(20)	81(17)	62(16)	48(16)	64(19)
F(31)	120(20)	150(20)	58(13)	29(15)	-30(14)	-110(20)
F(32)	160(30)	75(15)	72(16)	27(12)	41(16)	67(17)
F(33)	58(12)	108(17)	30(9)	-5(10)	18(8)	-19(11)
F(34)	74(14)	40(10)	84(15)	4(9)	30(11)	-23(9)
F(35)	57(13)	58(12)	120(20)	-30(12)	17(13)	12(10)
F(36)	86(16)	99(17)	48(12)	-16(11)	23(11)	-19(13)
F(37)	92(16)	23(8)	110(18)	-20(10)	14(14)	4(9)
F(38)	76(16)	140(20)	70(15)	34(15)	19(13)	34(16)
F(39)	170(30)	60(14)	140(20)	7(14)	130(20)	-37(15)
F(40)	110(20)	240(40)	170(30)	180(30)	100(20)	130(20)
F(41)	200(30)	44(12)	110(20)	-35(13)	90(20)	-42(16)
F(42)	67(16)	150(30)	120(20)	20(20)	28(16)	-13(17)
F(43)	180(30)	77(15)	109(19)	-65(14)	120(20)	-84(17)
F(44)	62(11)	50(10)	45(10)	7(8)	23(9)	-7(8)
F(45)	59(13)	116(19)	74(15)	-57(14)	14(11)	-24(13)
F(46)	44(10)	53(10)	64(12)	19(9)	-4(9)	6(8)
Ir(1)	19(1)	16(1)	16(1)	2(1)	4(1)	-1(1)

Ir(2)	19(1)	14(1)	16(1)	1(1)	3(1)	2(1)
Ir(3)	19(1)	15(1)	14(1)	-2(1)	1(1)	2(1)
Ir(4)	21(1)	18(1)	14(1)	-2(1)	3(1)	-2(1)
Ir(5)	18(1)	17(1)	12(1)	1(1)	-1(1)	-3(1)
Ir(6)	15(1)	15(1)	12(1)	1(1)	-1(1)	2(1)
Ir(7)	15(1)	17(1)	15(1)	-2(1)	-2(1)	2(1)
Ir(8)	18(1)	18(1)	15(1)	5(1)	-2(1)	-3(1)
O(1)	30(9)	36(9)	26(8)	8(7)	-11(7)	7(7)
O(2)	35(10)	29(9)	40(10)	0(7)	-9(8)	-8(7)
O(3)	36(10)	48(11)	22(8)	-2(7)	12(7)	2(8)
O(4)	61(14)	24(9)	95(18)	-14(10)	54(13)	-1(9)
O(5)	46(11)	30(9)	43(11)	20(8)	11(9)	4(8)
O(6)	32(10)	44(10)	27(9)	-9(8)	-4(8)	-1(8)
O(7)	43(11)	28(9)	39(10)	-9(7)	-9(8)	12(8)
O(8)	43(10)	25(8)	22(8)	-4(6)	-1(7)	-4(7)
O(9)	53(12)	50(11)	31(10)	2(8)	28(9)	-6(9)
O(10)	42(11)	45(11)	33(10)	12(8)	-10(9)	-1(9)
O(11)	47(12)	66(13)	28(10)	-32(9)	7(9)	-16(10)
O(12)	37(11)	41(10)	52(12)	16(9)	-14(9)	-18(8)
O(13)	39(11)	53(12)	30(10)	5(8)	-6(8)	-16(9)
O(14)	44(11)	52(11)	24(9)	-1(8)	1(8)	11(9)
O(15)	43(11)	25(8)	45(11)	2(8)	8(9)	-13(8)
O(16)	36(10)	23(8)	49(11) -	5(7)	9(8)	7(7)
O(17)	32(10)	50(11)	48(11)	22(9)	20(9)	-5(8)
O(18)	29(9)	38(9)	26(9)	4(7)	-12(7)	-7(7)

O(19)	34(11)	18(8)	90(17)	-1(9)	-15(10)	18(7)
O(20)	34(10)	33(9)	36(10)	-8(8)	-5(8)	-9(8)
O(21)	29(10)	75(14)	19(8)	-10(8)	16(7)	-2(9)
O(22)	33(10)	25(9)	61(13)	-4(8)	-3(9)	-5(7)
O(23)	54(13)	37(10)	59(13)	31(10)	-6(11)	-1(9)
O(24)	44(11)	64(13)	16(8)	13(8)	10(8)	-1(9)
Sb(1)	24(1)	28(1)	21(1)	-3(1)	6(1)	1(1)
Sb(2)	26(1)	22(1)	26(1)	-1(1)	6(1)	-1(1)
Sb(3)	34(1)	56(1)	23(1)	5(1)	7(1)	22(1)
Sb(4)	28(1)	61(1)	23(1)	-14(1)	1(1)	0(1)
Sb(5)	30(1)	65(1)	19(1)	2(1)	-3(1)	-4(1)
Sb(6)	23(1)	30(1)	20(1)	2(1)	2(1)	-1(1)
Sb(7)	44(1)	39(1)	64(1)	2(1)	29(1)	-8(1)
Sb(8)	51(1)	27(1)	64(1)	-1(1)	32(1)	-5(1)

Table 44. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for [Ir (CO)₃(μ -SbF₆)(Sb₂F₁₁)]₂. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)
Ir(1)	6998(1)	5748(1)	10741(1)	8(1)
Sb(2)	5209(1)	7097(1)	8725(1)	9(1)
Sb(3)	7969(1)	1718(1)	9729(1)	11(1)
Sb(4)	8758(1)	5077(1)	8196(1)	11(1)
F(6)	8681(4)	2967(6)	8903(3)	17(1)

F(12)	6396(3)	6066(5)	9473(3)	10(1)
F(3)	9335(4)	1649(6)	10339(3)	17(1)
F(13)	5067(4)	5152(6)	8144(3)	15(1)
F(4)	7287(4)	771(6)	10550(3)	19(1)
F(14)	6188(4)	8031(6)	8117(3)	17(1)
F(1)	7836(4)	3850(6)	10240(3)	13(1)
F(15)	3947(4)	7918(6)	8123(3)	20(1)
F(16)	5354(4)	8741(6)	9512(3)	18(1)
F(10)	10263(4)	4945(6)	8512(3)	21(1)
F(7)	8670(4)	6150(6)	9183(3)	18(1)
F(8)	7254(4)	4924(6)	8003(3)	22(1)
F(2)	6669(4)	2202(6)	9076(3)	21(1)
F(11)	8792(4)	6936(7)	7553(3)	24(1)
F(5)	8154(4)	-193(7)	9181(3)	25(1)
F(9)	8863(4)	3633(7)	7346(3)	25(1)
C(1)	5731(4)	3978(7)	10550(3)	0(1)
O(1)	8890(5)	8102(7)	10775(4)	16(1)
O(2)	7862(5)	4693(8)	12488(4)	19(1)
O(3)	5697(5)	8424(7)	11421(4)	18(1)
C(2)	8189(6)	7233(9)	10755(4)	12(1)
C(3)	7542(6)	5113(9)	11847(5)	13(1)
C(4)	6170(6)	7430(9)	11158(4)	11(1)

		· · · · · · · · · · · · · · · · · · ·	
Ir(1)-C(4)	1.904(7)	Sb(4)-F(6)	2.092(5)
Ir(1)-C(2)	1.911(7)	C(1)-Sb(2)#1	1.985(5)
Ir(1)-C(3)	1.905(7)	O(1)-C(2)	1.120(9)
Ir(1)-F(1)	2.103(4)	O(2)-C(3)	1.117(10)
Ir(1)-C(1)	2.127(5)	O(3)-C(4)	1.126(9)
Ir(1)-F(12)	2.112(4)	C(4)-Ir(1)-C(2)	89.3(3)
Sb(2)-F(13)	1.852(5)	C(4)-Ir(1)-C(3)	89.7(3)
Sb(2)-F(15)	1.846(5)	C(2)-Ir(1)-C(3)	89.9(3)
Sb(2)-F(14)	1.842(5)	C(4)-Ir(1)-F(1)	176.9(2)
Sb(2)-F(16)	1.855(5)	C(2)-Ir(1)-F(1)	93.1(2)
Sb(2)-F(12)	1.960(4)	C(3)-Ir(1)-F(1)	92.3(2)
Sb(2)-C(1)#1	1.985(5)	C(4)-Ir(1)-C(1)	97.2(3)
Sb(3)-F(4)	1.856(5)	C(2)-Ir(1)-C(1)	171.3(3)
Sb(3)-F(3)	1.833(5)	C(3)-Ir(1)-C(1)	95.9(3)
Sb(3)-F(5)	1.837(6)	F(1)-Ir(1)-C(1)	80.30(19)
Sb(3)-F(2)	1.839(5)	C(4)-Ir(1)-F(12)	97.4(2)
Sb(3)-F(1)	1.956(5)	C(2)-Ir(1)-F(12)	95.3(2)
Sb(3)-F(6)	1.999(5)	C(3)-Ir(1)-F(12)	171.2(2)
Sb(4)-F(9)	1.845(6)	F(1)-Ir(1)-F(12)	80.38(17)
Sb(4)-F(7)	1.854(5)	C(1)-Ir(1)-F(12)	78.10(18)
Sb(4)-F(8)	1.847(5)	F(13)-Sb(2)-F(15)	91.9(2)
Sb(4)-F(11)	1.857(6)	F(13)-Sb(2)-F(14)	96.0(2)
Sb(4)-F(10)	1.862(5)	F(15)-Sb(2)-F(14)	97.7(2)

Table 45. Bond lengths [Å] and angles [°] for $[Ir (CO)_3(\mu-SbF_6)(Sb_2F_{11})]_2$

F(13)-Sb(2)-F(16)	167.1(2)	F(2)-Sb(3)-F(6)	86.1(2)
F(15)-Sb(2)-F(16)	95.2(2)	F(1)-Sb(3)-F(6)	84.36(19)
F(14)-Sb(2)-F(16)	93.8(2)	F(9)-Sb(4)-F(7)	168.3(2)
F(13)-Sb(2)-F(12)	87.32(19)	F(9)-Sb(4)-F(8)	90.5(2)
F(15)-Sb(2)-F(12)	171.0(2)	F(7)-Sb(4)-F(8)	89.7(2)
F(14)-Sb(2)-F(12)	91.31(19)	F(9)-Sb(4)-F(11)	95.3(2)
F(16)-Sb(2)-F(12)	83.9(2)	F(7)-Sb(4)-F(11)	96.3(2)
F(13)-Sb(2)-C(1)#1	84.4(2)	F(8)-Sb(4)-F(11)	93.7(2)
F(15)-Sb(2)-C(1)#1	87.5(2)	F(9)-Sb(4)-F(10)	89.6(2)
F(14)-Sb(2)-C(1)#1	174.8(2)	F(7)-Sb(4)-F(10)	88.3(2)
F(16)-Sb(2)-C(1)#1	85.2(2)	F(8)-Sb(4)-F(10)	170.4(2)
F(12)-Sb(2)-C(1)#1	83.6(2)	F(11)-Sb(4)-F(10)	95.8(2)
F(4)-Sb(3)-F(3)	94.4(2)	F(9)-Sb(4)-F(6)	84.1(2)
F(4)-Sb(3)-F(5)	95.5(2)	F(7)-Sb(4)-F(6)	84.3(2)
F(3)-Sb(3)-F(5)	93.8(2)	F(8)-Sb(4)-F(6)	84.9(2)
F(4)-Sb(3)-F(2)	93.3(2)	F(11)-Sb(4)-F(6)	178.5(2)
F(3)-Sb(3)-F(2)	168.8(2)	F(10)-Sb(4)-F(6)	85.6(2)
F(5)-Sb(3)-F(2)	93.6(2)	Sb(3)-F(6)-Sb(4)	149.0(3)
F(4)-Sb(3)-F(1)	89.5(2)	Sb(2)-F(12)-Ir(1)	142.1(2)
F(3)-Sb(3)-F(1)	85.7(2)	Sb(3)-F(1)-Ir(1)	155.0(2)
F(5)-Sb(3)-F(1)	175.0(2)	Sb(2)#1-C(1)-Ir(1)	134.4(3)
F(2)-Sb(3)-F(1)	86.2(2)	O(1)-C(2)-Ir(1)	179.0(7)
F(4)-Sb(3)-F(6)	173.9(2)	O(2)-C(3)-Ir(1)	177.9(7)
F(3)-Sb(3)-F(6)	85.4(2)	O(3)-C(4)-Ir(1)	178.4(7)
F(5)-Sb(3)-F(6)	90.6(2)		

_

Symmetry transformations used to #1 - x + 1, -y + 1, -z + 2generate equivalent atoms:

Table 46. Anisotropic displacement parameters (Å2x 103) for $[Ir(CO)_3(\mu-SbF_6)(Sb_2F_{11})]_2$ The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + 2h k a^* b^* U^{12}]_2$

	U11	U22	U33	U23	U13	U12
Ir(1)	9(1)	9(1)	7(1)	1(1)	0(1)	1(1)
Sb(2)	10(1)	9(1)	7(1)	2(1)	-1(1)	0(1)
Sb(3)	13(1)	9(1)	10(1)	1(1)	0(1)	0(1)
Sb(4)	12(1)	12(1)	10(1)	2(1)	1(1)	2(1)

Table 47. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for $Ir(CO)_2(SO_3F)_3$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)		
C(1)	4766(4)	8241(4)	6509(2)	15(1)		
C(2)	3502(4)	11548(4)	6813(2)	14(1)		
F(1)	4753(3)	12550(3)	9503(2)	30(1)		
F(2)	948(3)	5855(3)	6758(2)	34(1)		
F(3)	7673(3)	14026(3)	7229(2)	31(1)		
Ir(1)	4712(1)	10302(1)	7922(1)	12(1)		
O(1)	4739(3)	6972(3)	5705(2)	23(1)		
O(2)	2919(3)	12349(3)	6178(2)	21(1)		
O(3)	-1158(3)	7917(3)	7312(2)	27(1)		
O(4)	632(3)	8214(4)	5811(2)	30(1)		
O(5)	7028(3)	10831(3)	5960(2)	23(1)		
O(6)	10156(3)	12301(3)	7561(2)	25(1)		
O(7)	2249(3)	9020(3)	8058(2)	17(1)		
O(8)	7363(3)	11738(3)	8209(2)	18(1)		
O(9)	6200(3)	9237(3)	9246(2)	16(1)		
O(10)	4874(3)	5845(3)	8290(2)	22(1)		
F(4)	7961(3)	7083(3)	9794(2)	26(1)		
S(1)	540(1)	7882(1)	6942(1)	19(1)		
S(2)	8141(1)	12056(1)	7186(1)	16(1)		
S(3)	5902(1)	7372(1)	9390(1)	15(1)		
	U11	U22	U33	U23	U13	U12
-------	-------	-------	-------	-------	-------	-------
C(1)	13(1)	20(1)	15(1)	9(1)	3(1)	2(1)
C(2)	14(1)	16(1)	9(1)	0(1)	6(1)	1(1)
F(1)	40(1)	28(1)	24(1)	10(1)	13(1)	6(1)
F(2)	26(1)	19(1)	53(1)	8(1)	8(1)	5(1)
F(3)	36(1)	22(1)	46(1)	17(1)	22(1)	12(1)
Ir(1)	12(1)	15(1)	10(1)	5(1)	4(1)	3(1)
O(1)	27(1)	23(1)	16(1)	3(1)	4(1)	7(1)
O(2)	21(1)	24(1)	19(1)	10(1)	5(1)	8(1)
O(3)	14(1)	30(1)	40(1)	15(1)	10(1)	4(1)
O(4)	21(1)	42(1)	20(1)	11(1)	-1(1)	-2(1)
O(5)	24(1)	31(1)	14(1)	7(1)	7(1)	3(1)
O(6)	15(1)	35(1)	26(1)	13(1)	8(1)	3(1)
O(7)	12(1)	24(1)	16(1)	8(1)	5(1)	1(1)
O(8)	14(1)	25(1)	14(1)	6(1)	5(1)	-1(1)
O(9)	18(1)	19(1)	13(1)	8(1)	6(1)	5(1)
O(10)	32(1)	20(1)	14(1)	2(1)	6(1)	7(1)
F(4)	20(1)	38(1)	26(1)	15(1)	6(1)	17(1)
S(1)	12(1)	20(1)	23(1)	8(1)	3(1)	2(1)
S(2)	14(1)	19(1)	17(1)	8(1)	7(1)	4(1)
S(3)	17(1)	18(1)	11(1)	6(1)	5(1)	7(1)

Table 48. Anisotropic displacement parameters (Å2x 103)for $Ir(CO)_2(SO_3F)_3$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + 2h k a^* b^* U^{12}]$

		· · · · · · · · · · · · · · · · · · ·	
C(1)-O(1)	1.115(3)	S(3)#1-F(1)-Ir(1)	132.03(12)
C(1)-Ir(1)	1.907(3)	C(1)-Ir(1)-C(2)	90.62(11)
C(2)-O(2)	1.120(3)	C(1)-Ir(1)-O(8)	95.49(10)
C(2)-Ir(1)	1.913(3)	C(2)-Ir(1)-O(8)	93.10(10)
F(1)-S(3)#1	1.467(2)	C(1)-Ir(1)-O(7)	93.70(10)
F(1)-Ir(1)	2.086(2)	C(2)-Ir(1)-O(7)	95.55(10)
F(2)-S(1)	1.555(2)	O(8)-Ir(1)-O(7)	167.30(7)
F(3)-S(2)	1.5527(19)	C(1)-Ir(1)-O(9)	94.02(9)
Ir(1)-O(8)	2.030(2)	C(2)-Ir(1)-O(9)	173.80(9)
Ir(1)-O(7)	2.0309(19)	O(8)-Ir(1)-O(9)	82.39(8)
Ir(1)-O(9)	2.0700(18)	O(7)-Ir(1)-O(9)	88.24(8)
O(3)-S(1)	1.420(2)	C(1)-Ir(1)-F(1)	177.89(9)
O(4)-S(1)	1.422(2)	C(2)-Ir(1)-F(1)	90.99(9)
O(5)-S(2)	1.423(2)	O(8)-Ir(1)-F(1)	83.07(8)
O(6)-S(2)	1.414(2)	O(7)-Ir(1)-F(1)	87.49(8)
O(7)-S(1)	1.515(2)	O(9)-Ir(1)-F(1)	84.27(8)
O(8)-S(2)	1.507(2)	S(1)-O(7)-Ir(1)	124.81(12)
O(9)-S(3)	1.4704(19)	S(2)-O(8)-Ir(1)	125.17(11)
O(10)-S(3)	1.411(2)	S(3)-O(9)-Ir(1)	131.58(12)
F(4)-S(3)	1.5300(19)	O(3)-S(1)-O(4)	121.19(14)
S(3)-F(1)#1	1.467(2)	O(3)-S(1)-O(7)	110.11(13)
O(1)-C(1)-Ir	(1) 176.1(2)	O(4)-S(1)-O(7)	111.84(12)
O(2)-C(2)-Ir	(1) 175.0(2)	O(3)-S(1)-F(2)	105.99(13)

Table 49. Bond lengths [Å] and angles [°] for Ir(CO)₂(SO₃F)₃.

O(4)-S(1)-F(2)	104.79(15)	O(10)-S(3)-O(9)	116.59(12)
O(7)-S(1)-F(2)	100.47(12)	F(1)#1-S(3)-O(9)	111.64(11)
O(6)-S(2)-O(5)	120.87(14)	O(10)-S(3)-F(4)	108.31(13)
O(6)-S(2)-O(8)	110.40(12)	F(1)#1-S(3)-F(4)	103.33(11)
O(5)-S(2)-O(8)	111.94(12)	O(9)-S(3)-F(4)	101.31(11)
O(6)-S(2)-F(3)	106.24(13)		
O(5)-S(2)-F(3)	104.26(13)		
O(8)-S(2)-F(3)	100.75(12)	Symmetry transfe	ormations used to
O(10)-S(3)-F(1)#1	113.90(13)	generate equivalent a #1 $y \pm 1$ $y \pm 2$ $z \pm 2$	atoms:
		<i>π</i> 1 -∧ 1,-y 1∠,-Z⊤∠	

Table 50. Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($Å^2x$ 103) for $[Ir(CO)_3(\mu-F_2)]_2(SbF_6)_2.2HF$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
Ir	9313(1)	1063(1)	706(1)	11(1)
Sb	-103(1)	6262(1)	2071(1)	5(1)
F(2)	10957(6)	-618(5)	678(3)	13(1)
F(1)	7682(6)	-534(5)	631(3)	17(1)
F(8)	2015(6)	6009(5)	2879(3)	21(1)
F(4)	-1237(6)	6142(5)	3073(3)	20(1)
F(5)	-269(6)	4222(5)	1903(3)	20(1)
F(6)	980(6)	6370(5)	1041(4)	23(1)
F(3)	-2201(6)	6465(5)	1251(4)	23(1)
F(7)	99(7)	8273(5)	2268(3)	23(1)

F(9)	4638(7)	-1269(6)	756(4)	30(1)
O(1)	12152(8)	3288(7)	675(4)	21(1)
O(2)	9919(7)	1270(6)	2818(4)	20(1)
O(3)	6676(8)	3466(6)	499(4)	22(1)
C(3)	7623(10)	2559(9)	581(5)	14(2)
C(2)	9676(9)	1214(8)	2044(5)	14(1)
C(1)	11102(10)	2490(8)	681(6)	15(2)

Table 51. Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($Å^2x$ 103) for [Ir(CO)₃(μ -F₂)]₂(SbF₆)₂.2HF. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
Ir	9313(1)	1063(1)	706(1)	11(1)
Sb	-103(1)	6262(1)	2071(1)	5(1)
F(2)	10957(6)	-618(5)	678(3)	13(1)
F(1)	7682(6)	-534(5)	631(3)	17(1)
F(8)	2015(6)	6009(5)	2879(3)	21(1)
F(4)	-1237(6)	6142(5)	3073(3)	20(1)
F(5)	-269(6)	4222(5)	1903(3)	20(1)
F(6)	980(6)	6370(5)	1041(4)	23(1)
F(3)	-2201(6)	6465(5)	1251(4)	23(1)
F(7)	99(7)	8273(5)	2268(3)	23(1)
F(9)	4638(7)	-1269(6)	756(4)	30(1)
O(1)	12152(8)	3288(7)	675(4)	21(1)
O(2)	9919(7)	1270(6)	2818(4)	20(1)

O(3)	6676(8)	3466(6)	499(4)	22(1)
C(3)	7623(10)	2559(9)	581(5)	14(2)
C(2)	9676(9)	1214(8)	2044(5)	14(1)
C(1)	11102(10)	2490(8)	681(6)	15(2)

Table 52. Bond lengths [Å] and angles [°] for $[Ir(CO)_3(\mu-F_2)]_2(SbF_6)_2.2HF$.

Ir-C(3)	1.913(8)	C(3)-Ir-F(1)	94.4(3)
Ir-C(2)	1.921(8)	C(2)-Ir-F(1)	94.2(3)
Ir-F(1)	1.954(4)	C(3)-Ir-C(1)	91.6(3)
Ir-C(1)	1.951(8)	C(2)-Ir-C(1)	90.6(3)
Ir-F(2)#1	2.031(4)	F(1)-Ir-C(1)	172.3(3)
Ir-F(2)	2.036(4)	C(3)-Ir-F(2)#	196.9(3)
Ir-Ir#1 3	.1946(7)	C(2)-Ir-F(2)#	1172.2(3)
Sb-F(3)	1.867(5)	F(1)-Ir-F(2)#1	81.91(19)
Sb-F(8)	1.878(5)	C(1)-Ir-F(2)#	192.6(3)
Sb-F(7)	1.870(5)	C(3)-Ir-F(2)	172.8(3)
Sb-F(4)	1.878(5)	C(2)-Ir-F(2)	96.4(2)
Sb-F(6)	1.887(5)	F(1)-Ir-F(2)	82.05(18)
Sb-F(5)	1.889(5)	C(1)-Ir-F(2)	91.4(3)
F(2)-Ir#1	2.031(4)	F(2)#1-Ir-F(2))76.47(19)
F(9)-H	0.75(13)	C(3)-Ir-Ir#1	135.1(2)
O(1)-C(1)	1.118(10)	C(2)-Ir-Ir#1	134.5(2)
O(2)-C(2)	1.109(9)	F(1)-Ir-Ir#1	79.77(14)
O(3)-C(3)	1.118(10)	C(1)-Ir-Ir#1	92.6(2)
C(3)-Ir-C(2)	90.2(3)	F(2)#1-Ir-Ir#1	38.29(12)

F(2)-Ir-Ir#1	38.18(12)	F(4)-Sb-F(6)	178.4(2)
F(3)-Sb-F(8)	178.4(2)	F(3)-Sb-F(5)	89.1(2)
F(3)-Sb-F(7)	92.3(2)	F(8)-Sb-F(5)	89.4(2)
F(8)-Sb-F(7)	89.2(2)	F(7)-Sb-F(5)	178.4(2)
F(3)-Sb-F(4)	89.3(2)	F(4)-Sb-F(5)	90.6(2)
F(8)-Sb-F(4)	91.4(2)	F(6)-Sb-F(5)	88.9(2)
F(7)-Sb-F(4)	88.8(2)	Ir#1-F(2)-Ir	103.53(19)
F(3)-Sb-F(6)	89.2(2)	O(3)-C(3)-Ir	177.5(7)
F(8)-Sb-F(6)	90.1(2)	O(2)-C(2)-Ir	178.0(7)
F(7)-Sb-F(6)	91.8(2)	O(1)-C(1)-Ir	178.6(7)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,-z

Table 53. Anisotropic displacement parameters (Å2x 103)for $[Ir(CO)_3(\mu-F_2)]_2(SbF_6)_2.2HF$. The anisotropic displacement factor exponent takes the form: -2 ²[h²a^{*2}U¹¹ + 2 h k a* b* U¹²]

	U11	U22	U33	U23	U13	U12
Ir	12(1)	11(1)	10(1)	-1(1)	3(1)	0(1)
Sb	6(1)	6(1)	3(1)	0(1)	2(1)	0(1)
F(2)	14(2)	17(2)	10(2)	-1(2)	3(2)	1(2)
F(1)	17(2)	15(2)	18(2)	1(2)	5(2)	-3(2)
F(8)	15(2)	26(2)	20(2)	-1(2)	-1(2)	0(2)
F(4)	21(2)	23(2)	18(2)	2(2)	8(2)	1(2)

F(5)	27(3)	14(2)	20(2)	-2(2)	5(2)	-1(2)
F(6)	26(3)	22(2)	23(3)	2(2)	12(2)	1(2)
F(3)	19(2)	25(3)	23(3)	4(2)	0(2)	3(2)
F(7)	37(3)	14(2)	19(3)	0(2)	11(2)	-1(2)
F(9)	20(3)	35(3)	36(3)	-5(3)	6(2)	-8(2)
O(1)	22(3)	24(3)	17(3)	0(2)	2(2)	-4(3)
O(2)	20(3)	21(3)	21(3)	-2(2)	9(2)	2(2)
O(3)	21(3)	17(3)	27(3)	-3(2)	3(3)	4(2)
C(3)	11(4)	19(4)	12(4)	-2(3)	0(3)	-3(3)
C(2)	8(3)	18(3)	15(4)	0(3)	3(3)	5(3)
C(1)	18(4)	14(3)	12(4)	0(3)	4(3)	3(3)

Table 54. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **Ir (C₆F₅)**₂. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)	
C(1)	6485(5)	7500	10305(8)	15(1)	
C(2)	6867(4)	6869(2)	11096(5)	13(1)	
C(3)	7550(4)	7111(2)	12252(5)	16(1)	
C(5)	5762(7)	7500	8974(9)	24(2)	
C(6)	6581(5)	6110(3)	10708(7)	24(1)	
C(7)	8156(5)	6667(3)	13352(6)	23(1)	
C(9)	9130(4)	6688(2)	9198(5)	15(1)	
C(10)	8800(4)	6380(2)	7883(5)	18(1)	
C(11)	9328(5)	5800(3)	7234(6)	21(1)	

C(12)	10233(5)	5502(3)	7919(6)	22(1)
C(13)	10601(4)	5784(3)	9235(6)	22(1)
C(14)	10059(4)	6368(3)	9835(6)	19(1)
F(1)	7898(3)	6649(2)	7162(3)	27(1)
F(2)	8975(3)	5540(2)	5941(3)	30(1)
F(3)	10765(3)	4940(2)	7325(4)	35(1)
F(4)	11480(3)	5485(2)	9928(4)	34(1)
F(5)	10449(3)	6624(2)	11126(4)	29(1)
Ir(1)	8256(1)	7500	10209(1)	12(1)

Table 55.Bond lengths [A] and angles [deg] for $Ir (C_6F_5)_2$.

C(1)-C(2)#1	1.457(6)	C(6)-H(6B)	0.88(7)
C(1)-C(2)	1.457(6)	C(6)-H(6C)	1.03(7)
C(1)-C(5)	1.488(10)	C(7)-H(7A)	0.91(8)
C(1)-Ir(1)	2.119(7)	C(7)-H(7B)	0.96(7)
C(2)-C(3)	1.407(7)	C(7)-H(7C)	1.03(7)
C(2)-C(6)	1.506(7)	C(9)-C(10)	1.387(7)
C(2)-Ir(1)	2.192(4)	C(9)-C(14)	1.390(7)
C(3)-C(3)#1	1.456(9)	C(9)-Ir(1)	2.062(5)
C(3)-C(7)	1.491(7)	C(10)-F(1)	1.360(6)
C(3)-Ir(1)	2.168(5)	C(10)-C(11)	1.390(7)
C(5)-H(5A)	0.94(11)	C(11)-F(2)	1.342(6)
C(5)-H(5B)	0.83(6)	C(11)-C(12)	1.367(8)
C(6)-H(6A)	0.91(7)	C(12)-F(3)	1.344(6)

C(12)-C(13)	1.382(8)	C(7)-C(3)-Ir(1)	125.1(4)
C(13)-F(4)	1.348(6)	C(1)-C(5)-H(5A)	114(6)
C(13)-C(14)	1.384(7)	C(1)-C(5)-H(5B)	107(5)
C(14)-F(5)	1.353(6)	H(5A)-C(5)-H(5B)	109(6)
Ir(1)-C(9)#1	2.062(5)	C(2)-C(6)-H(6A)	109(4)
Ir(1)-C(3)#1	2.168(5)	C(2)-C(6)-H(6B)	112(5)
Ir(1)-C(2)#1	2.192(4)	H(6A)-C(6)-H(6B)	106(7)
Ir(1)-H(1)	0.39(13)	C(2)-C(6)-H(6C)	106(4)
C(2)#1-C(1)-C(2)	108.3(6)	H(6A)-C(6)-H(6C)	119(6)
C(2)#1-C(1)-C(5)	125.8(3)	H(6B)-C(6)-H(6C)	106(6)
C(2)-C(1)-C(5)	125.8(3)	C(3)-C(7)-H(7A)	115(5)
C(2)#1-C(1)-Ir(1)	73.0(3)	C(3)-C(7)-H(7B)	108(4)
C(2)-C(1)-Ir(1)	73.0(3)	H(7A)-C(7)-H(7B)	104(6)
C(5)-C(1)-Ir(1)	123.2(5)	C(3)-C(7)-H(7C)	113(4)
C(3)-C(2)-C(1)	106.9(4)	H(7A)-C(7)-H(7C)	101(6)
C(3)-C(2)-C(6)	127.7(4)	H(7B)-C(7)-H(7C)	116(5)
C(1)-C(2)-C(6)	125.4(5)	C(10)-C(9)-C(14)	114.1(4)
C(3)-C(2)-Ir(1)	70.3(3)	C(10)-C(9)-Ir(1)	123.2(4)
C(1)-C(2)-Ir(1)	67.6(3)	C(14)-C(9)-Ir(1)	122.5(4)
C(6)-C(2)-Ir(1)	126.5(4)	F(1)-C(10)-C(9)	119.3(4)
C(2)-C(3)-C(3)#1	108.8(3)	F(1)-C(10)-C(11)	116.5(4)
C(2)-C(3)-C(7)	127.2(4)	C(9)-C(10)-C(11)	124.3(5)
C(3)#1-C(3)-C(7)	123.9(3)	F(2)-C(11)-C(12)	120.1(4)
C(2)-C(3)-Ir(1)	72.1(3)	F(2)-C(11)-C(10)	120.8(5)
C(3)#1-C(3)-Ir(1)	70.38(12)	C(12)-C(11)-C(10)	119.0(5)

F(3)-C(12)-C(11)	120.7(5)	C(1)-Ir(1)-C(2)	39.46(15)
F(3)-C(12)-C(13)	119.8(5)	C(3)#1-Ir(1)-C(2)	64.54(17)
C(11)-C(12)-C(13)	119.5(5)	C(3)-Ir(1)-C(2)	37.65(17)
F(4)-C(13)-C(12)	119.8(5)	C(9)-Ir(1)-C(2)#1	161.05(18)
F(4)-C(13)-C(14)	120.6(5)	C(9)#1-Ir(1)-C(2)#1	98.69(17)
C(12)-C(13)-C(14)	119.7(5)	C(1)-Ir(1)-C(2)#1	39.46(15)
F(5)-C(14)-C(13)	117.5(5)	C(3)#1-Ir(1)-C(2)#1	37.65(17)
F(5)-C(14)-C(9)	119.0(4)	C(3)-Ir(1)-C(2)#1	64.54(17)
C(13)-C(14)-C(9)	123.4(5)	C(2)-Ir(1)-C(2)#1	65.2(2)
C(9)-Ir(1)-C(9)#1	95.0(3)	C(9)-Ir(1)-H(1)	67(9)
C(9)-Ir(1)-C(1)	121.65(17)	C(9)#1-Ir(1)-H(1)	67(9)
C(9)#1-Ir(1)-C(1)	121.65(16)	C(1)-Ir(1)-H(1)	87(10)
C(9)-Ir(1)-C(3)#1	145.87(18)	C(3)#1-Ir(1)-H(1)	145(10)
C(9)#1-Ir(1)-C(3)#1	109.43(18)	C(3)-Ir(1)-H(1)	145(10)
C(1)-Ir(1)-C(3)#1	64.9(2)	C(2)-Ir(1)-H(1)	107(10)
C(9)-Ir(1)-C(3)	109.43(18)	C(2)#1-Ir(1)-H(1)	107(10)
C(9)#1-Ir(1)-C(3)	145.87(18)		
C(1)-Ir(1)-C(3)	64.9(2)		
C(3)#1-Ir(1)-C(3)	39.2(2)		
C(9)-Ir(1)-C(2)	98.69(18)	Symmetry transfo	rmations used
		generate equivalent a	toms:

C(9)#1-Ir(1)-C(2) 161.05(18)

#1 x,-y+3/2,z

to

U11	U22	U33	U2	U13	U12	
C(1)	11(3)	17(3)	18(3)	0	2(2)	0
C(2)	10(2)	13(2)	18(2)	0(2)	1(2)	-2(2)
C(3)	16(2)	14(2)	18(2)	-1(2)	2(2)	1(2)
C(5)	19(4)	31(4)	22(4)	0	-2(3)	0
C(6)	24(3)	16(2)	32(3)	-5(2)	1(2)	-3(2)
C(7)	25(3)	25(3)	19(2)	7(2)	1(2)	1(2)
C(9)	17(2)	15(2)	14(2)	3(2)	2(2)	0(2)
C(10)	17(2)	15(2)	21(2)	1(2)	2(2)	2(2)
C(11)	28(3)	14(2)	21(3)	4(2)	4(2)	-1(2)
C(12)	24(3)	12(2)	29(3)	-4(2)	9(2)	0(2)
C(13)	16(3)	17(2)	34(3)	0(2)	3(2)	4(2)
C(14)	18(2)	16(2)	22(2)	-1(2)	0(2)	0(2)
F(1)	29(2)	30(2)	23(2)	-5(1)	-8(1)	9(1)
F(2)	46(2)	23(2)	23(2)	-11(1)	0(2)	2(2)
F(3)	37(2)	22(2)	46(2)	-11(2)	6(2)	10(2)
F(4)	24(2)	29(2)	49(2)	-3(2)	-7(1)	13(1)
F(5)	24(2)	36(2)	27(2)	-13(1)	-10(1)	7(1)
Ir(1)	12(1)	11(1)	12(1)	0	1(1)	0

Table 56. Anisotropic displacement parameters (A² x 10³) for **Ir** (C₆F₅)₂. The anisotropic displacement factor exponent takes the form:-2 π^2 [h² a² U11 + 2 h k a^{*} b^{*} U12]

Table 57. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (pm2x 10-1) for $Li(Et_2O)Cp*Ir(C_6F_5)_3$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
C(1)	5552(8)	899(4)	7690(4)	15(2)
C(2)	6604(8)	1238(4)	8293(5)	14(2)
C(3)	7517(9)	722(5)	8731(4)	21(2)
C(4)	7085(9)	83(4)	8391(5)	19(2)
C(5)	5838(9)	205(4)	7735(4)	14(2)
C(6)	4207(9)	1214(5)	7146(5)	27(2)
C(7)	6553(10)	1945(5)	8495(5)	27(2)
C(8)	8645(10)	828(5)	9492(5)	28(2)
C(9)	7575(11)	-566(4)	8763(5)	29(2)
C(10)	4789(10)	-307(4)	7279(5)	29(2)
C(11)	7294(8)	1289(4)	6508(5)	17(2)
C(12)	7182(9)	1965(4)	6439(5)	19(2)
C(13)	6509(9)	2319(4)	5793(5)	19(2)
C(14)	5798(9)	1981(5)	5150(5)	21(2)
C(15)	5782(9)	1298(4)	5179(5)	20(2)
C(16)	6511(9)	971(4)	5831(5)	18(2)
C(17)	9072(9)	121(4)	6832(5)	16(2)
C(18)	10152(9)	349(4)	6426(5)	18(2)
C(19)	10908(9)	-29(4)	5956(5)	22(2)
C(20)	10574(9)	-692(5)	5885(5)	28(2)

C(21)	9513(11)	-953(4)	6273(5)	26(2)
C(22)	8814(9)	-558(4)	6737(5)	22(2)
C(23)	10380(8)	897(4)	8113(4)	14(2)
C(24)	11049(9)	1488(4)	8390(5)	18(2)
C(25)	12451(9)	1569(4)	8904(5)	22(2)
C(26)	13320(10)	1026(5)	9159(5)	24(2)
C(27)	12752(9)	408(5)	8896(5)	23(2)
C(28)	11336(9)	359(4)	8399(5)	21(2)
C(29)	2734(13)	3133(5)	7313(7)	56(3)
C(30)	1121(11)	3071(5)	6861(6)	37(3)
C(31)	713(11)	2383(5)	5710(5)	31(2)
C(32)	2258(13)	2353(8)	5499(6)	72(5)
F(1)	6345(6)	318(2)	5811(3)	27(1)
F(2)	5066(6)	960(3)	4567(3)	33(1)
F(3)	5079(6)	2298(3)	4518(3)	34(1)
F(4)	6515(6)	2990(2)	5787(3)	35(1)
F(5)	7869(5)	2357(2)	7056(3)	24(1)
F(6)	10571(5)	1004(2)	6463(3)	18(1)
F(7)	11946(6)	252(3)	5588(3)	30(1)
F(8)	11267(7)	-1069(3)	5424(3)	40(2)
F(9)	9199(7)	-1604(3)	6208(4)	44(2)
F(10)	7802(6)	-877(2)	7106(3)	33(1)
F(11)	10291(5)	2066(2)	8130(3)	22(1)
F(12)	12973(5)	2176(3)	9135(3)	28(1)
F(13)	14687(5)	1087(3)	9675(3)	32(1)

F(14)	13609(6)	-129(3)	9156(3)	31(1)
F(15)	10890(6)	-268(2)	8226(3)	29(1)
Ir(1)	8016(1)	731(1)	7542(1)	13(1)
O(1)	788(7)	2421(3)	6530(4)	30(2)
Li(1)	9812(16)	1753(7)	7022(8)	22(3)

Table 58. Bond lengths [pm] and angles [°] for $Li(Et_2O)Cp*Ir(C_6F_5)_3$.

C(1)-C(5)	143.0(11)	C(6)-H(6C)	98.00
C(1)-C(2)	144.0(10)	C(7)-H(7A)	98.00
C(1)-C(6)	150.6(10)	C(7)-H(7B)	98.00
C(1)-Ir(1)	223.9(7)	C(7)-H(7C)	98.00
C(2)-C(3)	144.5(11)	C(8)-H(8A)	98.00
C(2)-C(7)	148.2(12)	C(8)-H(8B)	98.00
C(2)-Ir(1)	223.7(8)	C(8)-H(8C)	98.00
C(3)-C(4)	144.9(12)	C(9)-H(9A)	98.00
C(3)-C(8)	152.1(11)	C(9)-H(9B)	98.00
C(3)-Ir(1)	223.9(7)	C(9)-H(9C)	98.00
C(4)-C(5)	144.8(11)	C(10)-H(10A)	98.00
C(4)-C(9)	149.7(11)	C(10)-H(10B)	98.00
C(4)-Ir(1)	226.8(9)	С(10)-Н(10С)	98.00
C(5)-C(10)	150.8(11)	C(11)-C(12)	138.1(12)
C(5)-Ir(1)	226.1(7)	C(11)-C(16)	141.4(11)
C(6)-H(6A)	98.00	C(11)-Ir(1)	214.4(8)
C(6)-H(6B)	98.00	C(11)-Li(1)	239.5(15)

C(12)-C(13)	138.1(11)	C(23)-Li(1)	257.6(17)
C(12)-F(5)	139.0(9)	C(24)-F(11)	138.0(9)
C(12)-Li(1)	235.9(16)	C(24)-C(25)	138.2(11)
C(13)-F(4)	136.1(9)	C(24)-Li(1)	251.2(16)
C(13)-C(14)	137.0(12)	C(25)-F(12)	134.9(10)
C(14)-F(3)	133.7(9)	C(25)-C(26)	136.2(12)
C(14)-C(15)	138.8(12)	C(26)-F(13)	135.7(9)
C(15)-F(2)	133.2(9)	C(26)-C(27)	139.5(13)
C(15)-C(16)	137.7(11)	C(27)-F(14)	134.9(9)
C(16)-F(1)	133.3(9)	C(27)-C(28)	137.0(11)
C(17)-C(18)	137.3(12)	C(28)-F(15)	134.9(10)
C(17)-C(22)	140.1(11)	C(29)-C(30)	147.9(13)
C(17)-Ir(1)	210.4(8)	C(29)-H(29A)	98.00
C(18)-F(6)	137.6(9)	C(29)-H(29B)	98.00
C(18)-C(19)	139.2(12)	C(29)-H(29C)	98.00
C(19)-F(7)	134.2(10)	C(30)-O(1)	145.1(10)
C(19)-C(20)	137.9(13)	C(30)-H(30A)	99.00
C(20)-F(8)	134.8(10)	C(30)-H(30B)	99.00
C(20)-C(21)	136.4(13)	C(31)-O(1)	144.6(10)
C(21)-F(9)	135.0(10)	C(31)-C(32)	146.7(14)
C(21)-C(22)	137.6(12)	C(31)-H(31A)	99.00
C(22)-F(10)	136.2(10)	C(31)-H(31B)	99.00
C(23)-C(24)	138.1(11)	C(32)-H(32A)	98.00
C(23)-C(28)	140.5(11)	C(32)-H(32B)	98.00
C(23)-Ir(1)	213.4(7)	C(32)-H(32C)	98.00

F(5)-Li(1)	210.0(15)	C(5)-C(4)-C(9)	127.5(8)
F(6)-Li(1)	199.9(16)	C(3)-C(4)-C(9)	125.1(8)
F(11)-Li(1)	203.1(15)	C(5)-C(4)-Ir(1)	71.1(5)
Ir(1)-Li(1)	285.8(14)	C(3)-C(4)-Ir(1)	70.1(5)
O(1)-Li(1)#1	190.4(16)	C(9)-C(4)-Ir(1)	134.1(6)
Li(1)-O(1)#2	190.4(16)	C(1)-C(5)-C(4)	107.9(7)
C(5)-C(1)-C(2)	110.6(7)	C(1)-C(5)-C(10)	124.6(7)
C(5)-C(1)-C(6)	124.0(7)	C(4)-C(5)-C(10)	126.3(7)
C(2)-C(1)-C(6)	125.0(8)	C(1)-C(5)-Ir(1)	70.6(4)
C(5)-C(1)-Ir(1)	72.3(4)	C(4)-C(5)-Ir(1)	71.6(4)
C(2)-C(1)-Ir(1)	71.2(4)	C(10)-C(5)-Ir(1)	132.9(6)
C(6)-C(1)-Ir(1)	129.1(6)	C(1)-C(6)-H(6A)	109.5
C(1)-C(2)-C(3)	104.7(7)	C(1)-C(6)-H(6B)	109.5
C(1)-C(2)-C(7)	126.8(7)	H(6A)-C(6)-H(6B)	109.5
C(3)-C(2)-C(7)	127.7(8)	C(1)-C(6)-H(6C)	109.5
C(1)-C(2)-Ir(1)	71.3(4)	H(6A)-C(6)-H(6C)	109.5
C(3)-C(2)-Ir(1)	71.2(4)	H(6B)-C(6)-H(6C)	109.5
C(7)-C(2)-Ir(1)	129.5(6)	С(2)-С(7)-Н(7А)	109.5
C(2)-C(3)-C(4)	110.8(7)	C(2)-C(7)-H(7B)	109.5
C(2)-C(3)-C(8)	124.4(8)	H(7A)-C(7)-H(7B)	109.5
C(4)-C(3)-C(8)	124.4(8)	C(2)-C(7)-H(7C)	109.5
C(2)-C(3)-Ir(1)	71.1(4)	H(7A)-C(7)-H(7C)	109.5
C(4)-C(3)-Ir(1)	72.4(5)	H(7B)-C(7)-H(7C)	109.5
C(8)-C(3)-Ir(1)	128.7(5)	C(3)-C(8)-H(8A)	109.5
C(5)-C(4)-C(3)	105.9(7)	C(3)-C(8)-H(8B)	109.5

H(8A)-C(8)-H(8B)	109.5	C(11)-C(12)-Li(1)	74.6(6)
C(3)-C(8)-H(8C)	109.5	C(13)-C(12)-Li(1)	132.5(7)
H(8A)-C(8)-H(8C)	109.5	F(5)-C(12)-Li(1)	61.9(5)
H(8B)-C(8)-H(8C)	109.5	F(4)-C(13)-C(14)	119.7(7)
C(4)-C(9)-H(9A)	109.5	F(4)-C(13)-C(12)	121.6(8)
C(4)-C(9)-H(9B)	109.5	C(14)-C(13)-C(12)	118.7(8)
H(9A)-C(9)-H(9B)	109.5	F(3)-C(14)-C(13)	121.2(8)
C(4)-C(9)-H(9C)	109.5	F(3)-C(14)-C(15)	120.4(8)
H(9A)-C(9)-H(9C)	109.5	C(13)-C(14)-C(15)	118.4(7)
H(9B)-C(9)-H(9C)	109.5	F(2)-C(15)-C(16)	120.1(8)
C(5)-C(10)-H(10A)	109.5	F(2)-C(15)-C(14)	119.4(7)
C(5)-C(10)-H(10B)	109.5	C(16)-C(15)-C(14)	120.4(8)
H(10A)-C(10)-H(10B)	109.5	F(1)-C(16)-C(15)	115.3(7)
C(5)-C(10)-H(10C)	109.5	F(1)-C(16)-C(11)	120.5(7)
H(10A)-C(10)-H(10C)	109.5	C(15)-C(16)-C(11)	124.1(8)
H(10B)-C(10)-H(10C)	109.5	C(18)-C(17)-C(22)	112.2(8)
C(12)-C(11)-C(16)	111.4(7)	C(18)-C(17)-Ir(1)	122.9(6)
C(12)-C(11)-Ir(1)	127.2(6)	C(22)-C(17)-Ir(1)	124.9(6)
C(16)-C(11)-Ir(1)	119.9(6)	C(17)-C(18)-F(6)	120.1(8)
C(12)-C(11)-Li(1)	71.7(6)	C(17)-C(18)-C(19)	125.8(8)
C(16)-C(11)-Li(1)	139.0(7)	F(6)-C(18)-C(19)	114.1(7)
Ir(1)-C(11)-Li(1)	77.8(4)	F(7)-C(19)-C(20)	121.4(8)
C(11)-C(12)-C(13)	126.9(8)	F(7)-C(19)-C(18)	120.2(8)
C(11)-C(12)-F(5)	119.2(7)	C(20)-C(19)-C(18)	118.4(8)
C(13)-C(12)-F(5)	113.8(7)	F(8)-C(20)-C(21)	121.1(9)

F(8)-C(20)-C(19)	119.9(8)	C(25)-C(26)-C(27)	118.7(7)
C(21)-C(20)-C(19)	119.0(8)	F(14)-C(27)-C(28)	122.0(8)
F(9)-C(21)-C(20)	118.8(8)	F(14)-C(27)-C(26)	118.4(7)
F(9)-C(21)-C(22)	121.1(8)	C(28)-C(27)-C(26)	119.6(8)
C(20)-C(21)-C(22)	120.1(8)	F(15)-C(28)-C(27)	113.3(7)
F(10)-C(22)-C(21)	114.6(7)	F(15)-C(28)-C(23)	121.8(7)
F(10)-C(22)-C(17)	121.0(8)	C(27)-C(28)-C(23)	124.8(8)
C(21)-C(22)-C(17)	124.4(8)	С(30)-С(29)-Н(29А)	109.5
C(24)-C(23)-C(28)	111.6(7)	C(30)-C(29)-H(29B)	109.5
C(24)-C(23)-Ir(1)	127.2(6)	H(29A)-C(29)-H(29B)	109.5
C(28)-C(23)-Ir(1)	119.7(6)	С(30)-С(29)-Н(29С)	109.5
C(24)-C(23)-Li(1)	71.7(6)	H(29A)-C(29)-H(29C)	109.5
C(28)-C(23)-Li(1)	143.9(7)	H(29B)-C(29)-H(29C)	109.5
Ir(1)-C(23)-Li(1)	74.0(4)	O(1)-C(30)-C(29)	112.9(8)
F(11)-C(24)-C(23)	118.7(7)	O(1)-C(30)-H(30A)	109.0
F(11)-C(24)-C(25)	114.9(7)	С(29)-С(30)-Н(30А)	109.0
C(23)-C(24)-C(25)	126.4(8)	O(1)-C(30)-H(30B)	109.0
F(11)-C(24)-Li(1)	53.8(5)	C(29)-C(30)-H(30B)	109.0
C(23)-C(24)-Li(1)	76.8(6)	H(30A)-C(30)-H(30B)	107.8
C(25)-C(24)-Li(1)	140.1(7)	O(1)-C(31)-C(32)	113.5(8)
F(12)-C(25)-C(26)	120.4(7)	O(1)-C(31)-H(31A)	108.9
F(12)-C(25)-C(24)	120.6(8)	C(32)-C(31)-H(31A)	108.9
C(26)-C(25)-C(24)	118.9(8)	O(1)-C(31)-H(31B)	108.9
F(13)-C(26)-C(25)	120.4(8)	C(32)-C(31)-H(31B)	108.9
F(13)-C(26)-C(27)	120.9(8)	H(31A)-C(31)-H(31B)	107.7

C(31)-C(32)-H(32A)	109.5	C(23)-Ir(1)-C(5)	139.6(3)
C(31)-C(32)-H(32B)	109.5	C(11)-Ir(1)-C(5)	105.5(3)
H(32A)-C(32)-H(32B)	109.5	C(2)-Ir(1)-C(5)	63.3(3)
C(31)-C(32)-H(32C)	109.5	C(3)-Ir(1)-C(5)	61.8(3)
H(32A)-C(32)-H(32C)	109.5	C(1)-Ir(1)-C(5)	37.0(3)
H(32B)-C(32)-H(32C)	109.5	C(17)-Ir(1)-C(4)	108.3(3)
C(12)-F(5)-Li(1)	82.3(5)	C(23)-Ir(1)-C(4)	102.4(3)
C(18)-F(6)-Li(1)	130.4(6)	C(11)-Ir(1)-C(4)	142.5(3)
C(24)-F(11)-Li(1)	92.9(6)	C(2)-Ir(1)-C(4)	63.8(3)
C(17)-Ir(1)-C(23)	83.3(3)	C(3)-Ir(1)-C(4)	37.5(3)
C(17)-Ir(1)-C(11)	83.4(3)	C(1)-Ir(1)-C(4)	62.2(3)
C(23)-Ir(1)-C(11)	114.6(3)	C(5)-Ir(1)-C(4)	37.3(3)
C(17)-Ir(1)-C(2)	170.2(3)	C(17)-Ir(1)-Li(1)	84.3(4)
C(23)-Ir(1)-C(2)	103.7(3)	C(23)-Ir(1)-Li(1)	60.1(3)
C(11)-Ir(1)-C(2)	99.5(3)	C(11)-Ir(1)-Li(1)	55.0(3)
C(17)-Ir(1)-C(3)	138.6(3)	C(2)-Ir(1)-Li(1)	105.0(4)
C(23)-Ir(1)-C(3)	84.4(3)	C(3)-Ir(1)-Li(1)	122.1(4)
C(11)-Ir(1)-C(3)	137.2(3)	C(1)-Ir(1)-Li(1)	121.7(4)
C(2)-Ir(1)-C(3)	37.7(3)	C(5)-Ir(1)-Li(1)	157.0(3)
C(17)-Ir(1)-C(1)	134.6(3)	C(4)-Ir(1)-Li(1)	157.8(4)
C(23)-Ir(1)-C(1)	141.0(3)	C(31)-O(1)-C(30)	114.9(8)
C(11)-Ir(1)-C(1)	84.0(3)	C(31)-O(1)-Li(1)#1	119.4(7)
C(2)-Ir(1)- $C(1)$	37.5(3)	C(30)-O(1)-Li(1)#1	122.2(8)
C(3)-Ir(1)- $C(1)$	61.4(3)	O(1)#2-Li(1)-F(6)	95.3(7)
C(17)-Ir(1)-C(5)	107.0(3)	O(1)#2-Li(1)-F(11)	101.4(7)

used

to

F(6)-Li(1)-F(11)	134.0(8)	C(24)-Li(1)-C(23)	31.5(3)
O(1)#2-Li(1)-F(5)	91.9(6)	O(1)#2-Li(1)-Ir(1)	171.2(7)
F(6)-Li(1)-F(5)	143.7(7)	F(6)-Li(1)-Ir(1)	82.2(5)
F(11)-Li(1)-F(5)	78.6(6)	F(11)-Li(1)-Ir(1)	86.3(5)
O(1)#2-Li(1)-C(12)	98.7(7)	F(5)-Li(1)-Ir(1)	85.4(5)
F(6)-Li(1)-C(12)	108.0(6)	C(12)-Li(1)-Ir(1)	74.3(4)
F(11)-Li(1)-C(12)	111.3(7)	C(11)-Li(1)-Ir(1)	47.2(3)
F(5)-Li(1)-C(12)	35.7(3)	C(24)-Li(1)-Ir(1)	71.9(4)
O(1)#2-Li(1)-C(11)	124.3(7)	C(23)-Li(1)-Ir(1)	45.9(3)
F(6)-Li(1)-C(11)	83.0(5)		
F(11)-Li(1)-C(11)	119.3(7)		
F(5)-Li(1)-C(11)	63.8(4)	Symmetry transfo	rmations
C(12)-Li(1)-C(11)	33.8(3)	generate equivalent atoms:	
O(1)#2-Li(1)-C(24)	116.8(6)	#1 x-1,y,z #2 x+1,y	/,Z
F(6)-Li(1)-C(24)	101.4(6)		
F(11)-Li(1)-C(24)	33.3(3)		
F(5)-Li(1)-C(24)	106.9(6)		
C(12)-Li(1)-C(24)	131.1(7)		
C(11)-Li(1)-C(24)	118.0(6)		
O(1)#2-Li(1)-C(23)	142.1(7)		
F(6)-Li(1)-C(23)	80.1(5)		
F(11)-Li(1)-C(23)	60.7(4)		
F(5)-Li(1)-C(23)	114.1(7)		
C(12)-Li(1)-C(23)	118.6(6)		
C(11)-Li(1)-C(23)	92.7(5)		

	U11	U22	U33	U23	U13	U12
C(1)	11(3)	31(5)	5(4)	-6(3)	6(3)	1(3)
C(2)	9(4)	25(5)	12(4)	3(4)	9(3)	2(3)
C(3)	20(4)	33(5)	11(4)	2(4)	12(3)	1(4)
C(4)	17(4)	26(5)	17(4)	3(4)	11(3)	9(4)
C(5)	17(4)	12(4)	15(4)	1(3)	9(3)	-4(3)
C(6)	13(4)	41(6)	27(5)	2(5)	1(4)	5(4)
C(7)	19(4)	38(6)	24(5)	-11(5)	6(4)	-1(4)
C(8)	28(4)	36(6)	18(4)	-2(4)	1(4)	-1(4)
C(9)	32(5)	28(6)	29(5)	5(4)	10(4)	11(4)
C(10)	24(4)	26(5)	38(6)	2(5)	10(4)	-7(4)
C(11)	10(4)	21(5)	20(5)	8(4)	5(3)	2(3)
C(12)	18(4)	25(5)	15(4)	0(4)	10(3)	3(4)
C(13)	20(4)	12(4)	25(5)	8(4)	3(3)	0(3)
C(14)	18(4)	35(5)	12(4)	13(4)	5(3)	4(4)
C(15)	17(4)	24(5)	18(5)	4(4)	3(3)	1(3)
C(16)	18(4)	20(4)	18(4)	2(4)	6(3)	1(3)
C(17)	19(4)	12(4)	14(4)	-4(3)	-4(3)	2(3)
C(18)	16(4)	14(5)	21(5)	0(4)	-7(3)	-6(3)
C(19)	20(4)	26(5)	20(5)	-1(4)	-1(4)	1(4)
C(20)	25(4)	30(5)	31(5)	-10(5)	11(4)	8(4)

Table 59. Anisotropic displacement parameters (pm2x 10-1) for $\text{Li}(\text{Et}_2\text{O})\text{Cp*Ir}(\text{C}_6\text{F}_5)_3$. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a*²U11 + 2 h k a* b* U12]

C(21)	37(5)	14(5)	29(5)	-2(4)	11(4)	1(4)
C(22)	22(4)	20(5)	24(5)	3(4)	9(4)	1(3)
C(23)	9(3)	26(5)	6(4)	-10(3)	0(3)	-7(3)
C(24)	11(4)	19(5)	26(5)	0(4)	6(3)	5(3)
C(25)	21(4)	26(5)	22(5)	-4(4)	10(4)	-7(4)
C(26)	20(4)	42(6)	9(4)	-3(4)	0(3)	-3(4)
C(27)	20(4)	32(5)	16(5)	11(4)	-1(3)	7(4)
C(28)	18(4)	22(5)	24(5)	0(4)	4(4)	4(4)
C(29)	64(8)	31(7)	69(9)	-9(6)	2(7)	-7(6)
C(30)	42(6)	15(5)	49(7)	-5(5)	-2(5)	-2(4)
C(31)	36(5)	40(6)	18(5)	4(5)	4(4)	0(5)
C(32)	47(7)	145(14)	26(6)	29(8)	13(5)	16(8)
F(1)	37(3)	14(3)	27(3)	-2(2)	-1(2)	-2(2)
F(2)	36(3)	38(3)	20(3)	-3(2)	-5(2)	-2(2)
F(3)	35(3)	42(3)	20(3)	18(3)	-2(2)	1(3)
F(4)	45(3)	16(3)	36(3)	6(2)	-10(3)	-1(2)
F(5)	26(3)	20(3)	25(3)	-6(2)	-1(2)	1(2)
F(6)	17(2)	17(2)	22(3)	0(2)	7(2)	-2(2)
F(7)	26(3)	41(3)	26(3)	-2(3)	16(2)	1(2)
F(8)	51(4)	37(3)	37(3)	-15(3)	21(3)	7(3)
F(9)	60(4)	13(3)	64(4)	-11(3)	27(3)	-6(3)
F(10)	39(3)	22(3)	41(3)	-1(3)	17(3)	-3(2)
F(11)	22(2)	20(3)	22(3)	0(2)	2(2)	2(2)
F(12)	20(2)	33(3)	27(3)	-12(3)	-2(2)	-2(2)
F(13)	18(2)	49(4)	22(3)	1(3)	-8(2)	-1(2)

F(14)	28(3)	32(3)	30(3)	15(3)	-2(2)	11(2)
F(15)	27(3)	22(3)	36(3)	7(3)	1(2)	1(2)
O(1)	35(4)	20(3)	36(4)	-4(3)	14(3)	-1(3)
Li(1)	23(7)	21(8)	21(8)	0(7)	1(6)	-8(6)

Table 60. Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for [Cp*Ir(η^6 -C₆F₅H)][(Sb₃F₁₁)(SbF₆)] U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
Ir(1)	8089(1)	1369(1)	7545(1)	14(1)
Sb(3)	1810(1)	4665(1)	7025(1)	19(1)
Sb(2)	3582(1)	3029(1)	7645(1)	19(1)
Sb(1)	1522(1)	5989(1)	4731(1)	20(1)
Sb(4)	1935(1)	5939(1)	9406(1)	24(1)
F(5)	1223(4)	5483(2)	5977(3)	27(1)
F(11)	3229(4)	5083(2)	6865(3)	31(1)
F(10)	2053(4)	4211(2)	5765(3)	33(1)
F(3)	418(4)	6556(2)	5213(4)	32(1)
F(7)	2971(4)	2902(2)	8971(3)	32(1)
F(12)	899(4)	5825(2)	8298(3)	34(1)
F(2)	1787(4)	6459(2)	3523(4)	41(1)
F(13)	854(5)	5576(3)	10332(4)	45(1)
F(1)	2678(4)	6407(2)	5468(4)	43(1)
F(8)	4861(4)	3415(3)	8263(4)	43(1)
F(6)	2551(4)	5341(2)	4352(4)	36(1)

F(4)	360(4)	5512(2)	4070(4)	37(1)
F(15)	4318(4)	2235(2)	7622(4)	38(1)
F(9)	2875(4)	3889(2)	7688(3)	34(1)
F(14)	2457(5)	5100(2)	9090(4)	45(1)
F(16)	1326(5)	6739(2)	9702(4)	49(1)
F(18)	2227(4)	2737(3)	7056(4)	43(1)
F(19)	4131(5)	3233(3)	6337(4)	49(1)
C(5)	9825(5)	1673(3)	8000(5)	16(1)
C(1)	9630(5)	1018(3)	8332(4)	14(1)
C(4)	9706(5)	1686(3)	6866(5)	18(1)
C(2)	9422(5)	629(3)	7424(5)	18(1)
F(17)	3007(4)	6271(3)	8495(4)	49(1)
C(13)	6369(5)	875(3)	7481(5)	22(1)
C(3)	9457(5)	1041(3)	6522(5)	19(1)
C(11)	6751(5)	1751(3)	8669(5)	22(1)
C(12)	6549(6)	1093(3)	8518(5)	21(1)
F(20)	6929(4)	1984(2)	9613(3)	30(1)
F(23)	6193(4)	254(2)	7301(3)	32(1)
F(21)	7038(4)	2793(2)	7989(4)	36(1)
F(22)	6298(4)	1083(3)	5667(3)	37(1)
C(8)	9292(6)	838(4)	5412(5)	26(1)
C(6)	9699(5)	779(3)	9431(5)	20(1)
C(7)	9224(6)	-85(3)	7392(6)	26(1)
C(15)	6650(5)	1952(3)	6792(5)	25(1)
C(16)	6816(6)	2190(3)	7828(6)	25(1)

C(14)	6439(6)	1295(4)	6624(5)	25(1)
C(9)	9861(6)	2256(3)	6184(5)	23(1)
C(10)	10099(6)	2230(3)	8683(5)	23(1)
F(24)	6696(4)	2352(2)	6001(3)	36(1)
F(25)	-340(5)	6151(3)	11705(5)	56(2)
F(26)	2981(5)	5976(4)	10508(5)	71(2)

Table 61. Bond lengths [Å] and angles [°] for $[Cp*Ir(\eta^6-C_6F_5H)][(Sb_3F_{11})(SbF_6)]$.

Ir(1)-C(3)	2.183(6)	Sb(2)-F(18)	1.852(5)
Ir(1)-C(1)	2.184(6)	Sb(2)-F(15)	1.863(4)
Ir(1)-C(4)	2.186(6)	Sb(2)-F(7)	1.866(4)
Ir(1)-C(2)	2.196(6)	Sb(2)-F(8)	1.867(5)
Ir(1)-C(5)	2.199(6)	Sb(2)-F(9)	1.970(4)
Ir(1)-C(13)	2.257(6)	Sb(1)-F(3)	1.855(4)
Ir(1)-C(14)	2.258(7)	Sb(1)-F(1)	1.859(5)
Ir(1)-C(12)	2.268(6)	Sb(1)-F(2)	1.859(4)
Ir(1)-C(11)	2.275(6)	Sb(1)-F(6)	1.872(4)
Ir(1)-C(15)	2.282(6)	Sb(1)-F(4)	1.877(4)
Ir(1)-C(16)	2.293(6)	Sb(1)-F(5)	1.944(4)
Sb(3)-F(11)	1.884(4)	Sb(4)-F(16)	1.849(5)
Sb(3)-F(10)	1.893(4)	Sb(4)-F(17)	1.851(5)
Sb(3)-F(9)	2.203(4)	Sb(4)-F(26)	1.863(5)
Sb(3)-F(5)	2.272(4)	Sb(4)-F(12)	1.874(4)
Sb(2)-F(19)	1.847(5)	Sb(4)-F(14)	1.892(5)

Sb(4)-F(13)	1.894(5)	C(6)-H(6C)	0.9600
C(5)-C(1)	1.445(8)	C(7)-H(7A)	0.9600
C(5)-C(4)	1.459(8)	C(7)-H(7B)	0.9600
C(5)-C(10)	1.485(8)	C(7)-H(7C)	0.9600
C(1)-C(2)	1.436(8)	C(15)-F(24)	1.311(7)
C(1)-C(6)	1.494(8)	C(15)-C(14)	1.405(10)
C(4)-C(3)	1.441(9)	C(15)-C(16)	1.428(10)
C(4)-C(9)	1.485(8)	C(9)-H(9A)	0.9600
C(2)-C(3)	1.438(9)	C(9)-H(9B)	0.9600
C(2)-C(7)	1.502(9)	C(9)-H(9C)	0.9600
C(13)-F(23)	1.327(8)	C(10)-H(10A)	0.9600
C(13)-C(14)	1.405(9)	C(10)-H(10B)	0.9600
C(13)-C(12)	1.419(9)	C(10)-H(10C)	0.9600
C(3)-C(8)	1.495(8)	C(3)-Ir(1)-C(1)	64.4(2)
C(11)-F(20)	1.318(7)	C(3)-Ir(1)-C(4)	38.5(2)
C(11)-C(12)	1.401(10)	C(1)-Ir(1)-C(4)	64.7(2)
C(11)-C(16)	1.415(9)	C(3)-Ir(1)-C(2)	38.4(2)
C(12)-H(1)	0.96(6)	C(1)-Ir(1)-C(2)	38.3(2)
F(21)-C(16)	1.298(8)	C(4)-Ir(1)-C(2)	64.4(2)
F(22)-C(14)	1.312(8)	C(3)-Ir(1)-C(5)	64.6(2)
C(8)-H(8A)	0.9600	C(1)-Ir(1)-C(5)	38.5(2)
C(8)-H(8B)	0.9600	C(4)-Ir(1)-C(5)	38.8(2)
C(8)-H(8C)	0.9600	C(2)-Ir(1)-C(5)	64.3(2)
C(6)-H(6A)	0.9600	C(3)-Ir(1)-C(13)	119.4(2)
C(6)-H(6B)	0.9600	C(1)-Ir(1)-C(13)	126.6(2)

$O(4) = I_{1}(1) = O(12)$	152 2(2)	$C(1) \downarrow (1) C(15)$	1(7,4(0))
C(4)-Ir(1)-C(13)	153.3(2)	C(1)-Ir(1)-C(15)	167.4(2)
C(2)-Ir(1)- $C(13)$	108.1(2)	C(4)-Ir(1)- $C(15)$	107.9(2)
C(5)-Ir(1)-C(13)	163.6(2)	C(2)-Ir(1)-C(15)	149.7(2)
C(3)-Ir(1)-C(14)	106.9(2)	C(5)-Ir(1)-C(15)	129.4(2)
C(1)-Ir(1)-C(14)	156.5(3)	C(13)-Ir(1)-C(15)	64.8(2)
C(4)-Ir(1)-C(14)	123.3(2)	C(14)-Ir(1)-C(15)	36.1(3)
C(2)-Ir(1)-C(14)	121.3(2)	C(12)-Ir(1)-C(15)	77.4(2)
C(5)-Ir(1)-C(14)	160.1(2)	C(11)-Ir(1)-C(15)	64.9(2)
C(13)-Ir(1)-C(14)	36.3(2)	C(3)-Ir(1)-C(16)	143.6(2)
C(3)-Ir(1)-C(12)	146.8(2)	C(1)-Ir(1)-C(16)	135.2(2)
C(1)-Ir(1)-C(12)	108.4(2)	C(4)-Ir(1)-C(16)	113.7(2)
C(4)-Ir(1)-C(12)	170.0(2)	C(2)-Ir(1)-C(16)	173.4(2)
C(2)-Ir(1)-C(12)	115.3(2)	C(5)-Ir(1)-C(16)	110.0(2)
C(5)-Ir(1)-C(12)	131.3(2)	C(13)-Ir(1)-C(16)	76.5(2)
C(13)-Ir(1)-C(12)	36.5(2)	C(14)-Ir(1)-C(16)	65.3(3)
C(14)-Ir(1)-C(12)	66.0(2)	C(12)-Ir(1)-C(16)	65.5(2)
C(3)-Ir(1)-C(11)	176.2(2)	C(11)-Ir(1)-C(16)	36.1(2)
C(1)-Ir(1)-C(11)	113.1(2)	C(15)-Ir(1)-C(16)	36.4(3)
C(4)-Ir(1)-C(11)	138.2(2)	F(11)-Sb(3)-F(10)	90.0(2)
C(2)-Ir(1)-C(11)	141.2(2)	F(11)-Sb(3)-F(9)	83.43(18)
C(5)-Ir(1)-C(11)	111.6(2)	F(10)-Sb(3)-F(9)	82.97(17)
C(13)-Ir(1)-C(11)	64.3(2)	F(11)-Sb(3)-F(5)	81.46(17)
C(14)-Ir(1)-C(11)	76.5(2)	F(10)-Sb(3)-F(5)	85.12(17)
C(12)-Ir(1)-C(11)	35.9(2)	F(9)-Sb(3)-F(5)	160.71(16)
C(3)-Ir(1)-C(15)	116.9(2)	F(19)-Sb(2)-F(18)	90.3(3)

F(19)-Sb(2)-F(15)	91.5(2)	F(1)-Sb(1)-F(5)	88.2(2)
F(18)-Sb(2)-F(15)	95.5(2)	F(2)-Sb(1)-F(5)	178.7(2)
F(19)-Sb(2)-F(7)	174.6(2)	F(6)-Sb(1)-F(5)	86.73(19)
F(18)-Sb(2)-F(7)	89.6(2)	F(4)-Sb(1)-F(5)	87.25(19)
F(15)-Sb(2)-F(7)	93.9(2)	F(16)-Sb(4)-F(17)	93.2(2)
F(19)-Sb(2)-F(8)	90.3(3)	F(16)-Sb(4)-F(26)	93.3(3)
F(18)-Sb(2)-F(8)	173.4(2)	F(17)-Sb(4)-F(26)	91.1(3)
F(15)-Sb(2)-F(8)	91.1(2)	F(16)-Sb(4)-F(12)	91.3(2)
F(7)-Sb(2)-F(8)	89.1(2)	F(17)-Sb(4)-F(12)	90.3(2)
F(19)-Sb(2)-F(9)	88.1(2)	F(26)-Sb(4)-F(12)	175.1(3)
F(18)-Sb(2)-F(9)	87.3(2)	F(16)-Sb(4)-F(14)	176.2(3)
F(15)-Sb(2)-F(9)	177.2(2)	F(17)-Sb(4)-F(14)	89.3(2)
F(7)-Sb(2)-F(9)	86.58(19)	F(26)-Sb(4)-F(14)	89.4(3)
F(8)-Sb(2)-F(9)	86.2(2)	F(12)-Sb(4)-F(14)	85.9(2)
F(3)-Sb(1)-F(1)	92.2(2)	F(16)-Sb(4)-F(13)	88.3(2)
F(3)-Sb(1)-F(2)	93.6(2)	F(17)-Sb(4)-F(13)	178.4(2)
F(1)-Sb(1)-F(2)	93.0(2)	F(26)-Sb(4)-F(13)	88.8(3)
F(3)-Sb(1)-F(6)	172.9(2)	F(12)-Sb(4)-F(13)	89.7(2)
F(1)-Sb(1)-F(6)	90.2(2)	F(14)-Sb(4)-F(13)	89.1(2)
F(2)-Sb(1)-F(6)	93.0(2)	Sb(1)-F(5)-Sb(3)	146.7(2)
F(3)-Sb(1)-F(4)	89.1(2)	Sb(2)-F(9)-Sb(3)	152.7(2)
F(1)-Sb(1)-F(4)	175.3(2)	C(1)-C(5)-C(4)	107.3(5)
F(2)-Sb(1)-F(4)	91.5(2)	C(1)-C(5)-C(10)	126.5(5)
F(6)-Sb(1)-F(4)	88.1(2)	C(4)-C(5)-C(10)	126.3(6)
F(3)-Sb(1)-F(5)	86.66(18)	C(1)-C(5)-Ir(1)	70.2(3)

C(4)-C(5)-Ir(1)	70.1(3)	C(12)-C(13)-Ir(1)	72.2(4)
C(10)-C(5)-Ir(1)	125.1(4)	C(2)-C(3)-C(4)	108.4(5)
C(2)-C(1)-C(5)	108.5(5)	C(2)-C(3)-C(8)	126.3(6)
C(2)-C(1)-C(6)	125.7(5)	C(4)-C(3)-C(8)	125.3(6)
C(5)-C(1)-C(6)	125.7(5)	C(2)-C(3)-Ir(1)	71.3(3)
C(2)-C(1)-Ir(1)	71.3(3)	C(4)-C(3)-Ir(1)	70.9(3)
C(5)-C(1)-Ir(1)	71.3(3)	C(8)-C(3)-Ir(1)	124.7(5)
C(6)-C(1)-Ir(1)	125.8(4)	F(20)-C(11)-C(12)	120.8(6)
C(3)-C(4)-C(5)	107.8(5)	F(20)-C(11)-C(16)	116.9(6)
C(3)-C(4)-C(9)	126.1(6)	C(12)-C(11)-C(16)	122.3(6)
C(5)-C(4)-C(9)	126.1(6)	F(20)-C(11)-Ir(1)	127.2(4)
C(3)-C(4)-Ir(1)	70.6(3)	C(12)-C(11)-Ir(1)	71.8(4)
C(5)-C(4)-Ir(1)	71.0(3)	C(16)-C(11)-Ir(1)	72.6(4)
C(9)-C(4)-Ir(1)	125.7(4)	C(11)-C(12)-C(13)	117.7(6)
C(1)-C(2)-C(3)	108.1(5)	C(11)-C(12)-Ir(1)	72.3(4)
C(1)-C(2)-C(7)	127.1(6)	C(13)-C(12)-Ir(1)	71.3(4)
C(3)-C(2)-C(7)	124.8(6)	C(11)-C(12)-H(1)	126(4)
C(1)-C(2)-Ir(1)	70.4(3)	C(13)-C(12)-H(1)	116(4)
C(3)-C(2)-Ir(1)	70.3(3)	Ir(1)-C(12)-H(1)	131(4)
C(7)-C(2)-Ir(1)	125.8(4)	C(3)-C(8)-H(8A)	109.5
F(23)-C(13)-C(14)	118.6(6)	C(3)-C(8)-H(8B)	109.5
F(23)-C(13)-C(12)	119.7(6)	H(8A)-C(8)-H(8B)	109.5
C(14)-C(13)-C(12)	121.6(6)	C(3)-C(8)-H(8C)	109.5
F(23)-C(13)-Ir(1)	125.9(4)	H(8A)-C(8)-H(8C)	109.5
C(14)-C(13)-Ir(1)	71.9(4)	H(8B)-C(8)-H(8C)	109.5

C(1)-C(6)-H(6A)	109.5	F(22)-C(14)-C(15)	119.3(6)
C(1)-C(6)-H(6B)	109.5	C(13)-C(14)-C(15)	119.7(6)
H(6A)-C(6)-H(6B)	109.5	F(22)-C(14)-Ir(1)	127.8(5)
C(1)-C(6)-H(6C)	109.5	C(13)-C(14)-Ir(1)	71.8(4)
H(6A)-C(6)-H(6C)	109.5	C(15)-C(14)-Ir(1)	72.9(4)
H(6B)-C(6)-H(6C)	109.5	C(4)-C(9)-H(9A)	109.5
C(2)-C(7)-H(7A)	109.5	C(4)-C(9)-H(9B)	109.5
C(2)-C(7)-H(7B)	109.5	H(9A)-C(9)-H(9B)	109.5
H(7A)-C(7)-H(7B)	109.5	C(4)-C(9)-H(9C)	109.5
C(2)-C(7)-H(7C)	109.5	H(9A)-C(9)-H(9C)	109.5
H(7A)-C(7)-H(7C)	109.5	H(9B)-C(9)-H(9C)	109.5
H(7B)-C(7)-H(7C)	109.5	C(5)-C(10)-H(10A)	109.5
F(24)-C(15)-C(14)	120.4(7)	C(5)-C(10)-H(10B)	109.5
F(24)-C(15)-C(16)	119.5(6)	H(10A)-C(10)-H(10B)	109.5
C(14)-C(15)-C(16)	120.0(6)	С(5)-С(10)-Н(10С)	109.5
F(24)-C(15)-Ir(1)	129.0(4)	H(10A)-C(10)-H(10C)	109.5
C(14)-C(15)-Ir(1)	71.1(4)	H(10B)-C(10)-H(10C)	109.5
C(16)-C(15)-Ir(1)	72.2(4)		
F(21)-C(16)-C(11)	121.0(6)		
F(21)-C(16)-C(15)	120.5(6)	Symmetry transformation	ns used
C(11)-C(16)-C(15)	118.5(6)	generate equivalent atoms:	
F(21)-C(16)-Ir(1)	128.0(5)		
C(11)-C(16)-Ir(1)	71.3(4)		
C(15)-C(16)-Ir(1)	71.4(4)		
F(22)-C(14)-C(13)	120.9(7)		

to

Table62.Anisotropicdisplacementparameters $(Å^2x \ 10^3)$ for $[Cp*Ir(\eta^6 - C_6F_5H)][(Sb_3F_{11})(SbF_6)]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11 + 2hka^*b^*U12]$

	U11	U22	U33	U23	U13	U12
Ir(1)	11(1)	16(1)	15(1)	1(1)	0(1)	1(1)
Sb(3)	21(1)	17(1)	18(1)	1(1)	-1(1)	2(1)
Sb(2)	18(1)	20(1)	19(1)	1(1)	-1(1)	3(1)
Sb(1)	16(1)	17(1)	26(1)	3(1)	2(1)	1(1)
Sb(4)	18(1)	26(1)	28(1)	-5(1)	-3(1)	2(1)
F(5)	32(2)	23(2)	25(2)	5(2)	1(2)	3(2)
F(11)	20(2)	36(2)	37(2)	10(2)	-3(2)	-5(2)
F(10)	42(3)	34(2)	22(2)	-7(2)	-4(2)	9(2)
F(3)	31(2)	25(2)	39(2)	7(2)	10(2)	11(2)
F(7)	38(3)	36(2)	22(2)	8(2)	7(2)	0(2)
F(12)	27(2)	41(3)	33(2)	1(2)	-10(2)	1(2)
F(2)	47(3)	40(3)	37(2)	18(2)	17(2)	6(2)
F(13)	50(3)	47(3)	38(3)	15(2)	7(2)	-2(2)
F(1)	28(2)	36(3)	64(3)	-7(2)	-5(2)	-14(2)
F(8)	22(2)	53(3)	54(3)	-11(2)	-7(2)	-6(2)
F(6)	34(2)	32(2)	42(3)	1(2)	7(2)	14(2)
F(4)	31(2)	43(3)	36(2)	3(2)	-11(2)	-9(2)
F(15)	37(3)	31(2)	45(3)	1(2)	-2(2)	16(2)
F(9)	45(3)	27(2)	30(2)	2(2)	-2(2)	13(2)

F(14)	55(3)	39(3)	41(3)	-5(2)	-8(2)	25(2)
F(16)	67(4)	27(2)	52(3)	-5(2)	17(3)	10(2)
F(18)	30(3)	54(3)	45(3)	-16(2)	-12(2)	-3(2)
F(19)	64(4)	53(3)	31(2)	10(2)	22(2)	12(3)
C(5)	12(3)	15(3)	20(3)	3(2)	-3(2)	3(2)
C(1)	7(2)	18(3)	18(3)	1(2)	-1(2)	2(2)
C(4)	12(3)	21(3)	20(3)	3(2)	3(2)	3(2)
C(2)	14(3)	15(3)	23(3)	0(2)	-1(2)	3(2)
F(17)	31(3)	52(3)	65(3)	-13(3)	18(2)	-15(2)
C(13)	13(3)	28(3)	26(3)	0(3)	-1(2)	0(2)
C(3)	15(3)	24(3)	17(3)	-2(2)	2(2)	1(2)
C(11)	14(3)	30(3)	22(3)	1(2)	4(2)	4(3)
C(12)	15(3)	25(3)	23(3)	4(2)	3(2)	0(2)
F(20)	28(2)	38(2)	24(2)	-8(2)	4(2)	2(2)
F(23)	28(2)	28(2)	38(2)	-1(2)	-7(2)	-9(2)
F(21)	33(2)	22(2)	53(3)	2(2)	12(2)	7(2)
F(22)	26(2)	62(3)	23(2)	-1(2)	-7(2)	-8(2)
C(8)	26(3)	35(4)	16(3)	-7(3)	-3(2)	0(3)
C(6)	16(3)	23(3	21(3)	4(2)	-2(2)	0(2)
C(7)	27(3)	17(3)	35(4)	-1(3)	0(3)	-2(3)
C(15)	12(3)	31(3)	30(3)	11(3)	1(2)	7(3)
C(16)	17(3)	23(3)	34(3)	1(3)	5(3)	7(2)
C(14)	12(3)	39(4)	23(3)	3(3)	-2(2)	3(3)
C(9)	21(3)	21(3)	26(3)	9(2)	2(2)	5(3)
C(10)	26(3)	20(3)	23(3)	-6(2)	-5(3)	2(3)

F(24)	32(2)	45(3)	33(2)	23(2)	0(2)	7(2)
F(25)	61(4)	44(3)	65(4)	14(3)	31(3)	-1(3)
F(26)	51(4)	110(6)	52(3)	-31(4)	-25(3)	16(4)

10 Literatur

- [1] J. C. Taylor, P. W. Wilson, in *Acta Crystallographica Section B, Vol. 30*, **1974**, 1216.
- [2] V. Dyke, E. Ross, E. C. Evers, *US patent* 272527919551129 **1955**.
- [3] T. A. O'Donnell, P. W. Wilson, *Inorganic Syntheses* 1967, 16, 143.
- [4] a) S. Seidel, K. Seppelt, Angewandte Chemie International Edition 2000, 39, 3923; b)
 F.Tamadon, Diss., Freie Universität Berlin 2012.
- [5] R. C. Burns, T. A. O'Donnell, *Inorganic Chemistry* **1979**, *18*(*11*), 3081.
- [6] B. Roessler, K. Seppelt, *Angewandte Chemie International Edition* **2000**, *39*, 1259.
- [7] G. S. Quiñones, G. Hägele, K. Seppelt, *Chemistry A European Journal* **2004**, *10*, 4755.
- [8] J. Fawcatt, R. D. Peacock, D. R. Russell, *Journal of the Chemical Society, Chemical Communications* **1982**, 958.
- [9] H. Schäfer, H. G. V. Schnering, J. Tillack, F. Kuhnen, H. Wöhrle, H. Baumann, *Zeitschrift für anorganische und allgemeine Chemie* **1967**, *353*, 281.
- [10] J. Beck, F. Wolf, in Acta Crystallographica Section B, Vol. 53, 1997, 895.
- [11] M. Mercer, *Chemical Communications (London)* **1967**, 119.
- [12] T. A. O'Donnell, D. F. Stewart, *Journal of Inorganic and Nuclear Chemistry* **1962**, *24*, 309.
- [13] S. Giese, K. Seppelt, Angewandte Chemie 1994, 106, 473.
- [14] F.A.Cotton, B.G.DeBoer, Z.Mester, *Journal of the American Chemical Society* **1973**, *95*, 1159.
- [15] K. F. Mucker, G. S. Smith, Q. Johnson, in *Acta Crystallographica Section B, Vol. 24*, **1968**, 874.
- [16] J. H. Canterford, A. B. Waugh, *Inorganic and Nuclear Chemistry Letters* 1971, 7, 395.
- [17] D. Brown, R. Colton, *Journal of the Chemical Society (Resumed)* **1964**, 714.
- [18] K. Tanemoto, G. Mamantov, G. M. Begun, *Inorganica Chimica Acta* 1983, 76, L79.
- [19] A. Zalkin, D. E. Sands, in Acta Crystallographica, Vol. 11, 1958, 615.
- [20] S.Rabe, U.Muller, *Zeitschrift fuer Kristallographie* **2000**, 215.
- [21] J. H. Simons, M. G. Powell, Journal of the American Chemical Society 1945, 67, 75.
- [22] a) A. Slawisch, A. Jannopulos, Zeitschrift für anorganische und allgemeine Chemie 1970, 374, 101, b) B. H.Edwin, Inorganic and Nuclear Chemistry Letters 1971, 7, 1147.
- [23] K.Seppelt, Z.anorg.allg.Chem 1977, 434, 5.
- [24] A. J. Edwards, G. R. Jones, *Journal of the Chemical Society A: Inorganic, Physical, Theoretical* **1969**, 1651.
- [25] K. Seppelt, Angewandte Chemie 1976, 88, 410.

- [26] a) S. Seidel, K. Seppelt, *Science* **2000**, *290*, 117; b) I.-C. Hwang, S. Seidel, K. Seppelt, *Angewandte Chemie International Edition* **2003**, *42*, 4392.
- [27] S.Seidel, Diss., Freie Universität Berlin 2001.
- [28] T. Drews, J. Supel, A. Hagenbach, K. Seppelt, *Inorganic Chemistry* **2006**, *45*, 3782.
- [29] R. T. Paine, L.B.Asprey, Inorganic Chemistry 1975, 14(5), 1111.
- [30] N. Bartlett, P. R. Rao, Chemical Communications (London) 1965, 252.
- [31] S. A. Brewer, J. H. Holloway, E. G. Hope, P. G. Watson, *Journal of the Chemical Society, Chemical Communications* **1992**, 1577.
- [32] I.-C. Hwang, K. Seppelt, *Inorganic Chemistry* 2003, 42, 7116.
- [33] C. White, A.Yates, P. M.Maitlis, D. M.Heinekey, *Inorganic Syntheses* 1992, 29, 228.
- [34] K. Isobe, A. V. de Miguel, A. Nutton, P. M. Maitlis, *Journal of the Chemical Society, Dalton Transactions* **1984**, 929.
- [35] T. Wondimagegn, Z. Xu, K. Vanka, T. Ziegler, Organometallics 2004, 23, 3847.
- [36] T. M. Klapötke, B. Krumm, K. Polborn, *European Journal of Inorganic Chemistry* **1999**, 1359.
- [37] V. R. Thalladi, H.-C. Weiss, D. Blaeser, R. Boese, A. Nangia, G. R. Desiraju, *Journal* of the American Chemical Society **1998**, *120*, 8702.
- [38] F. X. Kohl, P. Jutzi, Journal of Organometallic Chemistry 1983, 243, 119.