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Abstract We report a detailed analysis on the emer-
gence of bursting in a recently developed neural mass
model that includes short-term synaptic plasticity. Neu-
ral mass models can mimic the collective dynamics
of large-scale neuronal populations in terms of a few
macroscopic variables like mean membrane potential
and firing rate. The present one is particularly impor-
tant, as it represents an exact meanfield limit of synap-
tically coupled quadratic integrate and fire (QIF) neu-
rons. Without synaptic dynamics, a periodic external
current with slow frequency ε can lead to burst-like
dynamics. The firing patterns can be understood using
singular perturbation theory, specifically slow–fast dis-
section. With synaptic dynamics, timescale separation
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leads to a variety of slow–fast phenomena and their
role for bursting becomes inordinately more intricate.
Canards are crucial to understand the route to bursting.
They describe trajectories evolving nearby repelling
locally invariant sets of the system and exist at the
transition between subthreshold dynamics and burst-
ing. Near the singular limit ε = 0, we report pecu-
liar jump-on canards, which block a continuous tran-
sition to bursting. In the biologically more plausible ε-
regime, this transition becomes continuous and bursts
emerge via consecutive spike-adding transitions. The
onset of bursting is complex and involves mixed-type-
like torus canards, which form the very first spikes
of the burst and follow fast-subsystem repelling limit
cycles.We numerically evidence the samemechanisms
to be responsible for bursting emergence in the QIF
network with plastic synapses. The main conclusions
apply for the network, owing to the exactness of the
meanfield limit.

Keywords Bursting · Spiking neural network ·
Mean-field theory · Slow–fast dynamics · Canards

1 Introduction

In the past decade a novel approach in meanfield the-
ory, the so-called Ott–Antonson (OA) ansatz [1,2], has
received major attention. The ansatz serves as a recipe
to perform an exact reduction from a high-dimensional
network of interacting phase oscillators towards a
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low-dimensional dynamical system, that describes the
macroscopic behavior. It was firstly applied to the
prototypical model for synchronization, namely the
Kuramoto model [3]. In the thermodynamic limit one
obtains an exact agreement of the meanfield system
with respect to the macroscopic dynamics of the under-
lying network.

Remarkably, theOAansatz is applicable to a broader
class of phase oscillator networks and thereby has
found its way into the field of computational neuro-
science. One system of interest is the Quadratic Inte-
grate and Fire (QIF) neuron, which represents a canon-
ical model for Saddle-Node on Invariant Circle (SNIC)
bifurcations and so-called type I excitability.Under cer-
tain assumptions the QIF neuron is rendered equivalent
to the Ermentrout–Kopell model, also referred to as θ -
model [4]. It represents a phase oscillator model for
neuronal dynamics, which indeed fits into the class of
problems that can be treated within the OA framework.
The OA ansatz applied to an ensemble of QIF neurons,
in the work of Montbrió, Pazó and Roxin (MPR), has
led to an upsurge of next generation neuralmassmodels
[5].

Thesemodels try to capture themacroscopic dynam-
ics of networks of spiking neurons, using just a few
variables, like here, the population firing rate and
mean membrane potential. Various applications of the
MPR model have been studied in recent years. They
range from the inclusion of delayed synaptic interac-
tions [6], giving rise to chaos, to studies of cortical
oscillations in multipopulation models [7] and cross-
frequency coupling [8]. While the original MPRmodel
accounts for chemical synapses, the methodology can
be straightforwardly applied to include as well electri-
cal synapses, formed by gap junctions between neurons
[9,10]. Extensions of the MPR model towards sparse
networks [11] and fluctuation driven dynamics have
been proposed [12].

These examples of QIF networks and their neural
mass counterparts cangive rise to interestingdynamical
regimes, typically evoked by bistability in the system.
Indeed, the original MPR model exhibits a parameter
regimewhere a stable node and a focus coexist [5]. This
is particularly relevant for the macroscopic response of
neuronal ensembles when they are subject to an exter-
nal current: bistability implies that a time-dependent
external drive can lead to interesting firing rhythms.

A recent study takes into account synaptic dynam-
ics in form of exponentially decaying action poten-

tials [13]. In the present work however, we want
to explore a QIF network that accounts for synap-
tic dynamics in form of short-term synaptic plastic-
ity (STP), thus adding to the biological plausibility.
According to the phenomenological STP model of
Tsodyks and Markram two opposing effects must be
distinguished: depression, i.e. weakening, and facilita-
tion, i.e. strengthening, of synaptic connections [14].
To our knowledge, the role of STP in next generation
neural mass models has received just little attention,
despite being highly relevant in neuroscience. Previ-
ous macroscopic models of STP typically make use of
theWilson–Cowan (WC) model, hence are of heuristic
nature [15,16]. Nevertheless they helped to develop a
novel synaptic theory of working memory [17], a cog-
nitive system for short-term information storage and
manipulation in the brain. The synaptic theory of WM
has triggered various theoretical studies, which use the
WC model with STP in multipopulation topologies in
order to understand basic WM operations like infor-
mation loading and recall, as well as to estimate the
maximum WM capacity [18,19].

In a recent study, an extension of the MPR firing
rate equations towards STP was proposed, in order
to model WM [20]. The meanfield limit, in presence
of STP, remains exact. Therefore one can exploit this
limit, in order to get insight into the emergence of fir-
ing patterns in the network. An aspect that can lead to
complex behavior is the timescale separation, which
comes along with STP. Depression and facilitation
might indeed act on different timescales. As an exam-
ple, measurements in the prefrontal cortex suggest that
the facilitation of synapses can be maintained for sec-
onds, while depression decays within a few hundred
milliseconds [21].

Synaptic dynamics and additional timescales enrich
the dynamical landscape, by giving rise to bistability
involving limit cycles [20]. This is the foundation for
bursting rhythms to emerge. Bursting refers to dynam-
ics that alternates between a quiescent phase and rapid
oscillations. When slowly forcing the population of
QIF neurons, by virtues of a slowly drifting exter-
nal current, the system can transit from a quasi-static
motion to rapid oscillations associated with the pres-
ence of stable cycles in the system with constant exter-
nal current.

Bursting has been found in various experimen-
tal studies in neuroscience [22–29] and theoretical
approaches [30–35] not only aim at classifying the
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observed dynamics, but also mimicking and revealing
themechanisms responsible for the emergence of burst-
ing. While bursting in spiking neural networks is sub-
ject of recent studies [36,37], themechanisms responsi-
ble for their emergence often remain unclear: exploring
the state space of large scale networks is tedious and the
addition of slow–fast aspects complicates the problem.
The exactness of the MPR model helps to overcome
this limitation: analytic tools and bifurcation analysis
applied to the neural mass model allow to draw con-
clusions for the microscopic network [38].

Themain results of this work are related to the emer-
gence of bursting in a QIF network with STP. In par-
ticular, we investigate the transition from subthresh-
old oscillations to bursting in presence of an exter-
nal slow and periodic current. The forcing introduces
a clear timescale separation into the problem, giving
rise to intricate slow–fast phenomena and allowing for
the application of slow–fast dissection methods, to be
described later. As an outlook, the findings comprise
a differentiation of the route to bursting, depending
on the timescale separation. For strongly separated
timescales, far away from biologically plausible sce-
narios, the route is complicated, possibly discontinuous
in parameter space and it is related to a certain type of
so-called canards. However, moderate timescale sep-
aration reveals a number of intermingled slow–fast
mechanisms that lead to a continuous transition from
subthreshold oscillations to bursting and are related to
different types of canards. Our results are supported by
slow–fast arguments and numerical evidence.

A first illustration of the dynamical regime of inter-
est in this work is displayed in Fig. 1. Panel (a) depicts
the response of a large-scale network consisting of
N = 105 QIF neurons to a slow external sinusoidal
current. The second panel (b) shows the firing rate of
the QIF network, as well as the firing rate of the mean-
field limit. Both systems undergo a quiescent phase of
low firing activity. When the external current exceeds
a certain level, the systems start to burst, characterized
by a rapid series of synchronized firing at high rates.

In order to understand how these bursts emerge,
we have to encapsulate two main aspects. First, in the
upcoming Sect. 2, we will introduce the QIF network
model with STP as well as the corresponding mean-
field limit, and we will analyze the state space structure
and dynamics. Second, the presence of a slow external
drive calls for the application of slow–fast dissection.
For this it is essential to introduce the general slow–
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Fig. 1 Spiking neuron network and meanfield limit: a Scatter
plot of a subset of 2000 representative neurons out of 105. Each
dot represent a spike. b Firing rate of the network (black) and of
the corresponding meanfield limit (red). The blue curve shows a
time-dependent external current applied to the two systems and
is of sinusoidal form. (Color figure online)

fast framework and revise well known slow–fast mech-
anisms, which play a role for our model, in Sect. 3.
As a next step, this generic methodology for timescale
separated problems is applied to the present model
in Sect. 4. Dissection is crucial for understanding the
results in Sect. 5, where canards and in particular jump-
on canards are studied using slow–fast arguments. This
paves the way to investigate the mechanisms responsi-
ble for the emergence of bursting, as done in Sect. 6.
Finally, inSect. 7 the initially posedproblemofbursting
on macroscopic scale is approached by a comparison
of meanfield dynamics versus QIF network dynamics
in the bursting regime.

2 A next-generation neural mass model with
synaptic dynamics

Spiking neuron models can be characterized by their
response to the injection of a current, which is often
measured in terms of the f –I curve, determining the
relation of firing frequency f versus input current I .
The dynamics of Hodgkin–Huxley type neurons can
either be in the excitable or tonic regime [39]. Excitable
neurons in absence of input approach an equilibrium.
However, sufficient input can excite the membrane
potential beyond a threshold leading to the firing of
a single action potential, before going back to the rest
state. Tonic neurons on the other hand fire periodically
with a frequency f . Based on the behaviour at the tran-
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sition from excitable to tonic dynamics one can dis-
tinguish (at least) two classes of membranes. For class
I neurons the f –I curve is continuous and transitions
from quiescence ( f = 0) to repetitive firing at arbi-
trarily slow frequencies ( f > 0). Typically it occurs
at a SNIC bifurcation. Class II neurons on the other
hand exhibit a discontinuous f –I curve, leading to
nonzero firing rates at the onset of tonic firing, and they
are usually associated with a Hopf bifurcation. This
Hopf bifurcation is often subcritical, for example in
the Hodgkin–Huxley, FitzHugh–Nagumo [40,41] and
Morris–Lecar model [42].

2.1 Network of spiking neurons and meanfield limit

The model of interest for our work the canonical model
for type I excitability: theQIFneuron. In a networkof N
synaptically coupled neurons the membrane potentials
Vi (t) obey Eqs. (1).

V̇i = V 2
i + ηi + Jr(t) + I1(t) (1a)

if Vi > Vthresh : Vi ← Vr

r(t) = 1

N

N∑

j=1

∑

k:t (k)j <t

δ(t − t (k)j ) (1b)

The total current applied to the neuron is a sum of
the constant component ηi , the synaptic current Jr(t),
with synaptic weight J and an external, possibly time-
dependent, current I1(t). Variable r denotes the instan-
taneous firing rate and is composed of the single neuron
spike trains

∑
k:t (k)j <t

δ(t− t (k)j ), where t (k)j denotes the

k-th spike time of neuron j entering into the Dirac δ

function. Whether a QIF neuron is excitable or tonic
depends on ηi . Given r = 0, the neuron is excitable for
ηi < 0 and in tonic firing state for ηi > 0. Firing occurs
whenever Vi exceeds the threshold Vthresh at which the
reset rule applies leading to a reset of the potential to
Vr.

When performing the thermodynamic limit N →
∞ and imposing certain conditions, the mean dynam-
ics of the above microscopic model leads to a reduced
macroscopic description in terms of the mean mem-
brane potential v(t) and firing rate r(t), namely the
MPR model [5]. The derivation is based on the OA
ansatz and yields an exact reduction [1]. Thus, the col-
lective behavior of the QIF network, aside from finite

size fluctuations, is in perfect agreement with the MPR
model. Following the OA Ansatz and the derivation of
the MPR model the following assumptions have to be
made in order to obtain an exact firing rate formulation.

(i) The threshold and reset voltage have to be consid-
ered in the limit Vthresh = −Vr → ∞, rendering
the QIF neuron identical to the θ -model [4].

(ii) The excitabilities ηi are drawn from a Lorentzian
distribution g(η) = 1

π
�

(η−η̄)2+�2 , centred at η̄ and
with the width parameter �.

(iii) Neurons are all-to-all coupled. This way eachQIF
neuron receives identical synaptic current Jr(t).

(iv) The QIF network has to be considered in the ther-
modynamic limit N → ∞.

The resulting MPRmodel consists of two ordinary dif-
ferential equations for r(t) and v(t) given in Eqs. (2).

ṙ = �

π
+ 2rv (2a)

v̇ = v2 − (πr)2 + Jr + η̄ + I1(t) (2b)

Despite having a rather simple state-space structure,
the MPR model in absence of synaptic dynamics can
give rise to interesting periodic patterns when exter-
nally forced. In the case of constant I1 periodic solu-
tions are absent and one can find node, focus and sad-
dle equilibria. However, there are regions of param-
eter space in which bistability between the node and
focus appears. Hence slow periodic forcing, for exam-
ple given by I1 = A sin(εt), 0 < ε � 1, can lead
to a hysteretic loop in these regions, as shown in [5].
In this case the trajectories consist of a low firing rate
segment and a high firing rate segment with damped
oscillations, related to the presence of foci in the system
with constant I1. Orbits of this type can already be seen
as bursting patterns characterized by an alternation of
slow drifts and fast oscillations. However, in the limit
ε = 0 of infinitely slow forcing, the fast oscillations
vanish. In that case, the resulting cycles can be classi-
fied as relaxation oscillations, which are introduced in
Sect. 3.

2.2 Neural mass model with short-term plasticity

Our present study investigates bursting patterns in an
extended version of Eqs. (2) that accounts for STP as

123



Bursting in a next generation neural mass model 4265

described in the phenomenological model of Tsodyks
and Markram [14]. Short-term synaptic depression is
related to neurotransmitter depletion. Each neuron i
has a limited amount Xi (t) ∈ [0, 1] of resources (i.e
vesicles ready to be released). Spiking is followed by
the emittance of presynaptic action potentials. Upon
their arrival at the synaptic terminal a fraction Ui (t) ∈
[U0, 1] of the neurotransmitters is released into the
synaptic cleft, resulting in the generation of postsynap-
tic potentials (PSPs). Therefore, each presynaptic spike
is linked to the utilization and reduction of resources
available for the generation of upcoming PSPs, con-
sequently leading to a decrease of future postsynaptic
excitations. The resource Xi exponentially recovers to
its base value of Xi = 1 on a timescale τd = 200 ms
(depression timescale).

Facilitation, as opposed to depression, leads to
enhanced PSPs and is related to the neurotransmitter
release probability at the synaptic terminals, which is
modelled by the utilization factorUi . The release prob-
ability (and therefore Ui ) depends on the intracellular
calcium concentration. The neurotransmitter release is
associated with the accumulation of calcium ions in
the presynaptic terminal, hence each spike leads to an
increase of Ui . Calcium concentration and the utiliza-
tion factor decay to the base level Ui = U0 on the
facilitation timescale τf = 1500 ms.

We will focus on an implementation of STP into
the model on macroscopic level (m-STP) as suggested
in [20], in order to maintain the exactness of the fir-
ing rate model. In other words, depression and facilita-
tion, accounted for by Xi and Ui , respectively, will
not be treated on single-neuron level, but rather on
population level, with the depression and facilitation
variables x(t) and u(t), respectively. This results in N
membrane potential equations and two synaptic equa-
tions for the QIF network, as given in Eqs. (3). For
mean-field approximations taking into account STP on
single-neuron level we refer to [43].

V̇i = V 2
i + ηi + Juxr + I1(t) (3a)

ẋ = 1 − x

τd
− uxr (3b)

u̇ = U0 − u

τf
+U0(1 − u)r (3c)

The amount of resources x of the QIF network
reduces when the population firing rate r increases,

while at the same time the utilization u increases. Both
quantities enter into the effective synaptic weight Jux .
The extended system given in Eqs. (4), in the following
referred to as neural mass with STP (NMSTP), repre-
sents an exact meanfield limit of the QIF network given
inEqs. (3). The state variables are the firing rate r , mean
membrane potential v, amount of resources x and uti-
lization factor u.

ṙ = �

π
+ 2rv (4a)

v̇ = v2 − (πr)2 + Juxr + η̄ + I1(t) (4b)

ẋ = 1 − x

τd
− uxr (4c)

u̇ = U0 − u

τf
+U0(1 − u)r (4d)

Despite the fact that Eqs. (4) already possesses mul-
tiple timescales via τd and τf , the system will evolve
on the fastest timescale of the full problem in presence
of a slow periodic drive. However, as we will discuss
later, the inherent timescale separation of the NMSTP
is subtle and not observable everywhere in state space.
Nevertheless, it has significant impact on how the tran-
sition from subthreshold (non-bursting) behaviour to
bursting occurs (see also Sects. 5.2 and 6.3).

2.3 Dynamics under constant forcing

Most of the parameters values used for Eqs. (4) will
remain fixed and, if not stated differently, given in
Table 1. Note that the unit of time is given by the
membrane time constant τm. For more details on the
numerical methods, we refer to Appendix A.

Table 1 Parameters and their values, which are fixed throughout
this work, if not stated differently

Symbol Description Value

� Width of Lorentzian 0.5

η̄ Centre of Lorentzian − 1.7

J Synaptic weight 30

U0 Baseline utilization 0.1

τm Membrane time constant 20 ms

τd Depression timescale 200 ms/τm
τf Facilitation timescale 1500 ms/τm
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Fig. 2 Solution families of the system with constant forcing: a
Bifurcation diagram r versus I1 of Eqs. (4). For I1 � 0.25 there
exists only one fixed point (FP, solid black line). At I1 ≈ 0.25
the FP destabilizes via a subcritical Hopf-Bifurcation (HL, lower
orange dot), creating a branch of unstable limit cycles (LC,
orange dashed line). Two saddle-node bifurcations FL and FU
(black dots) of the unstable FP branch (dashed black line) occur
in a narrow regime of I1, folding the branch twice. Stability is
regained for I1 � 0.7 at a supercritical Hopf-Bifurcation (HU,
upper orange dot). The unstable LC stabilizes (solid orange line)
via a saddle-node bifurcation of cycles (purple dot) and van-
ishes at the second Hopf Bifurcation. The orange line marks the
maximum firing rates of the LC branch. An enlargement of the
bifurcation structure nearby FL and FU is shown in the inset,
together with the unstable LC branch emerging at the Hopf point
HL. c–e Periodic solution (r(t), v(t), x(t), u(t)) versus time t
for I1 = 0.4 marked in panel (a) by a dashed red line. The red
curves show simulations results of the NMSTP Eqs. (4), the gray
ones of the network Eqs. (3). b Spike scatter plot for 20,000 rep-
resentative neurons in the network out of N = 100,000. (Color
figure online)

We will outline the different dynamical regimes in
presence of a constant current I1(t) = const., using
the above parameter values. In Fig. 2a the resulting
bifurcation diagram is displayed.

The extendedmodel Eqs. (4) is able to generate peri-
odic oscillations due to plastic synapses even in absence
of time dependent forcing (I1 = const.), as outlined in
Sect. 2.2. Their existence depends on the exact choice
of parameters values, one of the important ones being
the total nonsynaptic current given by η̄ + I1. Limit
cycles can arise via a plethora of bifurcation scenarios.
Here, we consider the case of a subcritical Hopf bifur-
cation followed by a fold of limit cycles, giving rise to
stable oscillatory behaviour, when considering I1 as a
bifurcation parameter (see Fig. 2).

For currents I1 � 0.25 we find a branch of stable
node equilibria at low firing rates. The branch develops
into a family of foci and destabilizes around I1 ≈ 0.25
via a subcritical Hopf bifurcation (HL) followed by
two saddle-node (fold) bifurcation at FL and FU (black
dots), where Fk = (rk, vk, xk, uk, Ik), k ∈ {L,U},

denotes the equilibrium and parameter values of the
bifurcations. These folds can also be found in absence
of STP, in which case the upper branch is stable. How-
ever, in Fig. 2a the instability persists throughout the
S-shaped curve up until the upper supercritical Hopf
bifurcation HU. The lower Hopf bifurcation HL gener-
ates a family of unstable limit cycles that undergoes a
fold bifurcation of cycles, giving rise to stable periodic
solutions.

One of these trajectories (r(t), v(t), x(t), u(t)) is
presented in Fig. 2b–f as a function of time. It is super-
imposed onto the corresponding variables calculated
by simulating a QIF network governed by Eqs. (3) and
consisting of N = 100,000 neurons. For this network,
the firing rate is estimated via binning of time, i.e., by
counting the number of spikes per time bin of width
�t = 10−2. The average membrane potential for the
network reads v(t) = 1

N

∑N
j=1 Vj (t).

The primary mechanism driving the oscillations is
an interplay of so-called population bursts and the ensu-
ing synaptic depression and facilitation. At the micro-
scopic scale, population bursts are emitted via a cascade
of spikes throughout the network, which as a conse-
quence leads to the facilitation of synapses, leveraging
the firing activity further; see Fig. 2b, c, f. The conse-
quent depression suppresses the activity, but recovers
on the timescale τd allowing for the emittance of pop-
ulation bursts in a periodic manner.

Notably, in the I1-interval depicted in the inset of
Fig. 2a we find bistability between equilibria and limit
cycles. We can therefore predict that a time dependent
slow current I1(t), evolving across this region, will lead
to a dynamic transition from the equilibrium branch to
the stable limit cycles, giving rise to bursting. This exact
example can be found in Fig. 1.

Overall, in contrast to the QIF network without
STP and original MPR model, where no limit cycles
exist, STP gives rise to bistability among equilibria and
cycles. In Ref. [5] a slow periodic currents leads to the
emergence of macroscopic relaxation-type oscillations
in the network. We want to investigate how the pres-
ence of STP impacts the response of the system towards
such an input. Simulations ofQIF networks are difficult
computationally. However, the expected agreement of
QIF network results and the NMSTP depicted in Fig.
2b–f justifies to perform the upcoming analysis using
solely the NMSTP. We will return to the implication of
NMSTP dynamics for the network in Sect. 7.
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2.4 Dynamics under slow periodic forcing

Owing to the previous observations in the system with
constant forcing, we will introduce a slow periodic
drive into the model via the external current I1. We
impose that it evolves periodically and on a timescale
considerably larger than the slowest timescale of the
neural mass, namely the facilitation decay time τf . In
order to remain in a general framework, I1(t) will be
sinusoidal, given by I1(t) = A sin (εt), with period
T = 2π

ε
� τf and amplitude A. Throughout this work

we set τf = 1500 ms/τm = 75, therefore the separa-
tion between forcing and slowest intrinsic timescale of
the fast subsystem is calculated as τf/T = ε τf

2π ≈ 10ε.
Through the choice of I1 to be explicitly time

dependent, the system given in Eqs. (4) becomes non-
autonomous. This in turn comes along with hurdles in
the application of slow–fast dissection. Thus, in order to
retrieve an autonomous system, a second forcing vari-
able I2 is introduced. The dynamics of (I1, I2) follows
a Hopf normal form as given below.

İ1 = εg1(I1, I2) = ε
[
I1(a − I 21 − I 22 ) + I2

]
(5a)

İ2 = εg2(I1, I2) = ε
[
I2(a − I 21 − I 22 ) − I1

]
(5b)

The Hopf bifurcation at a = 0 gives rise to stable limit
cycles of the form (I1, I2) = A · (sin εt, cos εt), with
amplitude A = √

a and angular frequency ε, in the
following referred to as forcing cycle. To assure equiv-
alence of the explicitly defined I1(t) = A sin(εt) and
the one generated by the Hopf form Eqs. (5), the ini-
tial conditions ((I1(t0), I2(t0)) will lie on (I1, I2) =
A · (sin εt, cos εt). The full system is given by the
NMSTP in presence of slow external forcing, i.e, Eqs.
(4) and (5).

To understand the impact of this slow forcing, it
is advantageous to superimpose solutions of the full
problem on the r versus I1 bifurcation diagram of the
unforced system, this is at the core of the slow–fast
dissection introduced by Rinzel [32–34]. An example
of a purely slow trajectory is shown in Fig. 3a1–c1 and
labeled γ 0(t). The firing rate r(t), shown in panel (b1),
increases and decreases following the same pattern as
the forcing I1(t) in panel (a1). Moreover, in r − I1 pro-
jection, shown in panel (c1), it becomes clear that the
dynamics takes place nearby the equilibrium branch
of the unforced system. The forcing introduces a drift

of the equilibrium, slow enough to be followed by the
dynamics in an O(ε) neighbourhood of the branch.

While this example can be understood as a quasi-
static motion, the more complex solutions γ 1(t) to
γ 4(t) in columns 2 and 3 of Fig. 3, exhibit canard
dynamics and bursting, respectively. A more rigorous
analysis is required, including a slow–fast dissection of
the model. In the next sections a generic framework in
which timescale separated problems can be treated is
introduced and applied to the NMSTP.

3 Slow–fast framework and state of the art

The dynamics of slow–fast systems can be regarded in
terms of fast variables Xf(t) ∈ R

k and slow variables
Xs(t) ∈ R

l . Their dynamics is governed by the differ-
ential equations given in Eqs. (6) and here referred to
as full system,

Ẋf = F(Xf , Xs) (6a)

Ẋs = εG(Xf , Xs) (6b)

with fast-time parametrisation t (the overdot denoting
differentiation with respect to t), F(Xf , Xs) : R

k ×
R
l → R

k andG(Xf , Xs) : Rk ×R
l → R

l . Here, the
separation of timescales is reflected by a small param-
eter 0 < ε � 1. We will refer to this type of system as
k-fast l-slow system.

A different formulation of the full system is obtained
in Eqs. (7) by parametrizing it in slow time τ := εt ,

εX′
f = F(Xf , Xs) (7a)

X′
s = G(Xf , Xs). (7b)

The derivative with respect to slow time τ is denoted
(_)′ := d/dτ(_) = 1

ε
˙(_). The two representations Eqs.

(6) and Eqs. (7) are equivalent, but they allow to exploit
the premise of slow–fast systems, namely the timescale
separation given by a small value of ε, in differentways.
It is natural to consider the singular limit ε = 0 and take
the fast and slow time parametrizations into account.
One obtains two different subsystems, which represent
a dissection of slow and fast dynamics of the full sys-
tem.

In the first case we obtain the fast subsystem Eqs.
(8). This limit can be used to understand the dynamics
of the full system for which Xf evolves fast and results
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Fig. 3 Typical solutions γ 0(t) to γ 4(t) of the full system: a
Periodic forcing current I1(t) and b firing rate r(t) versus time t .
c Same trajectories superimposed on the bifurcation diagram of
the unforced system in r–I1. In (c1) the blue trajectory evolves
towards larger I1 values in the vicinity of the stable equilibrium
branch and turns back nearby the Hopf bifurcation HL. The tra-
jectoryγ 3(t) in (c2)moves towards larger I1 values after reaching

the upper unstable equilibrium branch up to a maximum value,
given by the forcing amplitude, before following the branch down
again towards smaller I1 values. Note that in column (3) the firing
rate axis scale reaches until larger values than in columns (1, 2).
The parameter values are as follows: ε = 10−5; γ 0: A ≈ 0.2487;
γ 1 to γ 3: in increasing order exponentially close to A ≈ 0.2507;
γ 4: ε = 10−3, A ≈ 0.2553. (Color figure online)

in the following k + l ODEs, l of which are trivial:

Ẋf = F(Xf , Xs) (8a)

Ẋs = 0 (8b)

Indeed, the dynamics of the slow variables Xs is trivial
and their value does not change in time. As a matter of
fact they can be treated as parameters entering into the
dynamics of Xf .

The second limit ε → 0, now done in the slow-time
parametrization Eqs. (7), yields the slow subsystem,
namely:

0 = F(Xf , Xs) (9a)

X′
s = G(Xf , Xs). (9b)

Eqs. (9) is also referred to as the reduced system and it is
represented by a differential-algebraic system, inwhich
the dynamics of the slow variables remains unchanged
with respect to the full system and is governed by X′

s =
G(Xf , Xs). The dynamics of the fast variables on the

other hand are hiddenwithin the k algebraic constraints
Eq. (9a). They define the critical manifold:

S0 = {(Xf , Xs) | F(Xf , Xs) = 0}, (10)

usually a l-dimensional manifold embedded in R(k+l).
In the slow subsystem the dynamics of the fast vari-

ables is slaved to the slow variables, their relation
is given by the critical manifold’s equations, which
defines the state space of this limiting problem: motion
of the slow subsystem takes place on S0. At the same
time points of S0 correspond to equilibria of the fast
subsystem, as is clear from equation Eq. (8a). By join-
ing solutions of the different subsystems at specific
points, singular orbits can be constructed. They are tra-
jectories resulting from the concatenation of slow and
fast segments, for which the dynamics is determined
by the respective subsystem.

Solutions of systems of the type of Eqs. (6)with both
slow and fast segments are ε-perturbations of singular
orbits and the prototypical slow–fast cycles are relax-
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ation oscillations [44]. The way these cycles emerge
in parameter space is rather peculiar and involve the
famous canard solutions, which we briefly review in
the context of the classical van der Pol (VdP) system
below.

3.1 Classical canards in the van der Pol oscillator

The VdP system with 0 < ε � 1 displays various
dynamical regimes, from a stable equilibrium branch,
via Hopf cycles and canards, to relaxation oscillations.
The subthreshold regime, i.e, the branch of stable equi-
libria, terminates at a supercritical Hopf bifurcation, at
which stable small Hopf cycles emanate. These cycles
are not yet of relaxation type and only exist in an
O(ε) distance from the Hopf point. This regime is fol-
lowed by an exponentially narrow parameter interval,
for which the orbits grow in an explosive manner when
the parameter is varied. This phenomenon is known
as a canard explosion [45] and the associated canards
separate the small Hopf cycles from relaxation oscilla-
tions [46]. They evolve for some time near a repelling
branch of S0, before jumping to one of the attracting
branches. Two types of canards can be distinguished,
the ones with a head and those without a head. After the
canard explosion a wide regime of relaxation oscilla-
tion follows and terminates at a second (supercritical)
Hopf bifurcation.

Torus and mixed-type canards

The term canard is not restricted to dynamics taking
place in the vicinity of (or on) attracting and repelling
manifolds, which represent equilibria. In general, it
refers to any type of solution evolving near attracting
and repelling invariant sets associatedwith the fast sub-
system. These invariant sets can correspond to equi-
libria but also to limit cycles. Following this defini-
tion, a particular type of canard can be found in ellip-
tic bursters [47], which require at least a 2-fast 1-slow
system. Here elliptic bursting can arise due to a sub-
critical Hopf-Bifurcation (in the fast subsystem) giving
rise to unstable limit cycles, which stabilize via a fold
bifurcation of cycles. The Hopf bifurcation initiates the
burst, while the fold of cycles marks their termination.
Usually in elliptic bursters the full dynamics follow
the family of stable limit cycles of the fast subsystem.
However so-called torus canards can be found for small

enough ε [48,49]. They describe orbits following a sta-
ble family of fast subsystem cycles and switching to the
unstable one past the fold. For an overview of different
types of canards we refer to [50].

A hybrid of classical canards and torus canards, so-
called mixed-type canards, were reported in [51]. They
describe trajectories that spend time near repelling
branches of equilibria as well as limit cycles, and can
therefore be seen as amix of classical canards and torus
canards. Segments of these solutions evolve nearby
unstable equilibria and connect to unstable limit cycles
of the fast subsystem. These last types of canards are
found in bursting systems, which are ubiquitous in the
modeling of neural activity at both single-cell and pop-
ulation level.

In the following, in order to understand the emer-
gence of canards and bursting in the NMSTP under
slow forcing, i.e., Eqs. (4) and (5), we will treat the
problemwithin the slow fast framework.Moreover, the
introduction of an auxiliary system referred to as desin-
gularized reduced system (DRS) reveals that the pres-
ence of a so-called folded-saddle singularity is respon-
sible for the emergence of canards and has influence on
shaping bursting trajectories.

4 Slow–fast dissection of the model

We will start a systematic investigation of the full sys-
tem by dissecting it into a slow and fast subsystem.
The full problem represents a 4-fast 2-slow systemwith
Xf = (r, v, x, u) and Xs = (I1, I2). Their dynamics is
governed by the right hand sides F(Xf , Xs) and G(Xs),
recalled below:

F(Xf , Xs) =

⎛

⎜⎜⎝

�
π

+ 2rv
v2 + Juxr − (πr)2 + I1

(1 − x)/τd − uxr
(U0 − u)/τf +U0(1 − u)r

⎞

⎟⎟⎠ (11)

G(Xs) = ε

(
g1(I1, I2)
g2(I1, I2)

)

= ε

((
I1(a − I 21 − I 22 ) + I2

)
(
I2(a − I 21 − I 22 ) − I1

)
)

. (12)

The equilibrium branches of the fast subsystem, shown
in Fig. 2a, are defined via {Xf |Ẋf = 0}, with the slow
variable coordinates acting as bifurcation parameters.
This naturally coincides with the definition Eq. (13) of

123



4270 H. Taher et al.

the critical manifold S0,

F(Xf , Xs) = 0. (13)

We can therefore already infer the shape of S0. It
corresponds to the cartersian product S∗ ×{I2|I2 ∈ R},
where S∗ denotes the S-shaped branch of equilibria of
the fast subsystem and is given in Eq. (14),

S∗ := {(r, v, x, u, I1)|F(Xf , Xs) = 0}. (14)

Hence the associated fold set F has two 1D con-
nected components, namely the two lines FU :=
{FU} × {I2|I2 ∈ R} and FL := {FL} × {I2|I2 ∈ R}.
This means that the two fold lines are parametrised by
I2. These two fold lines of S0, alongFL andFU, can be
seen in Fig. 4, together with the critical manifold S0 in
I1–I2–r projection and the trajectories γ 0(t) to γ 4(t)
of Fig. 3.

4.1 Singular dynamics: fast subsystem

Essentially, since S0 consists of fast subsystem equi-
libria, the bifurcation diagram in Fig. 2a is a projec-
tion of S0 onto the I1–r plane and we can associate
local stability properties of the fast subsystem with
the critical manifold. Stable (unstable) parts of the
equilibrium branch in Fig. 2a will become attracting
(repelling) sheets of the critical manifold. This prop-
erty can be seen as an indicator for fast flow in the
full system, distant from S0. Here the fast dynamics
dominates and (r, v, x, u)will be repelled and attracted
accordingly. The stability changes along the set ofHopf
bifurcation given by HL := {HL} × {I2‖I2 ∈ R} and
HU := {HU} × {I2‖I2 ∈ R} . Attracting (repelling)
parts of S0 are marked as green (light green) surfaces
throughout this chapter, as can be seen in Fig. 4.

We can already exploit this in order to examine the
full system dynamics further. To start with, γ 0(t) in
Fig. 4a1 evolves entirely in the vicinity of the lower
attracting sheet of the critical manifold S0. This means
that the dynamics is purely slow and in approximation
bounded to S0. For γ 1(t) we see the typical canard
dynamics, since it follows the middle repelling part of
S0 for some time, before jumping to the bottom attract-
ing sheet. Moreover, γ 2(t) in Fig. 4a2 resembles the
behavior of a canard with a head. However, while in
the VdP system the upper branch of the fast subsystem

is attracting, we find the same behavior here, but with
a repelling upper sheet of S0. We will refer to this sur-
prising solution of the full system as jump-on canard.
Similarly, γ 3(t) exhibits a jump to the upper sheet, but
in absence of a canard segment along the middle sheet.
Finally, the bursting solution γ 4(t) in Fig. 4a3 has seg-
ments along the bottom sheet of S0 and displays a short
canard segment along the repellingmiddle sheet, before
it pierces through the critical manifold S0 and starts to
burst. In order to understand the emergence of canards,
jump-on canards and bursting, we will proceed with
the analysis of the slow subsystem in the following.

4.2 Singular dynamics: slow subsystem

Slow flow

We make further use of the dissection by studying
the slow flow on the critical manifold S0. In the slow
subsystem Eqs. (9) the state space is reduced to S0,
described by four algebraic conditions in Eq. (13),
the solutions of which depend on the slow variable
I1 entering into the membrane potential equation. The
state variables in this limit are subject to the slow flow
(X′

f , X′
s) describing their dynamics on S0. For Xs =

(I1, I2) this is explicitly given via theHopf normal form
Eq. (12). For the fast variables Xf = (r, v, x, u) how-
ever, the algebraic constraints define Xf as well as X′

f
on S0 implicitly. In this case the flow can be obtained
by taking the total (slow) time derivative of Eq. (9a) as
done in Eq. (15),

0 = d

dτ
F(Xf(τ ), Xs(τ )) = ∂F

∂Xf

dXf

dτ
+ ∂F

∂Xs

dXs

dτ
,

(15)

where ∂(·)/∂a is the Jacobian of (·)with respect to a. If
the Jacobian ∂F/∂Xf is invertible, i.e., det(∂F/∂Xf) 
=
0, then the slow flow ofXf can be calculated and results
in Eq. (16),

dXf

dτ
≡ X′

f = −
(

∂F
∂Xf

)−1 (
∂F
∂Xs

X′
s

)
. (16)

This slow flow is only defined on S0 and represents a
system of ODEs capturing the dynamics of Xf and Xs

on the manifold.

123



Bursting in a next generation neural mass model 4271

I1
− 0.25 0.00 0.25

I2 − 0.2
0.0

0.2

r

0.1

0.2

HL

FL

FU

Sa
0

Sr
0

γ0

(a1)

I1
0.24

0.25

I 2

− 0.1

0.0

0.1

r

0.15

0.20

γ1

γ2

γ3

(a2)

I1
0.20

0.25

I 2

− 0.1
0.0

0.1

r

0.10

0.15

0.20

γ4

(a3)

Fig. 4 Slow–fast dissection and critical manifold: Solutions γ 0(t) to γ 4(t) of the full system superimposed on the critical manifold S0
in (I1, I2, r)-space. The parameter values are identical to those in Fig. 3. (Color figure online)

In the particular case of the neural mass we have
Xf = (r, v, x, u), Xs = (I1, I2) and F, G given in
Eqs. (11) and (12), respectively. Values of Xf on S0
are determined via the algebraic conditions Eq. (13),
which entangle the fast variables to each other and to
I1.Given either r ,v, x oru, the other components canbe
calculated straightforwardly. In other words, it is suffi-
cient to consider the slow flow of one the fast variables,
here r , to understand the slow dynamics. Taken this
into account we finally obtain the slow flow (r ′, I ′

1, I
′
2)

given in Eqs. (17)

r ′ = g1(I1, I2)Ar(1 + ruτd)(1 + rU0τf)/D (17a)

I ′
1 = g1(I1, I2) (17b)

I ′
2 = g2(I1, I2) (17c)

We can see the relevance of the denominator D,
given in Eq. (18), by noting that D = 0 defines the
fold set of S0 at which the fast subsystem Jacobian
∂F/∂Xf is singular:

D = 2
[
(πr)2 + v2

]
(rτdu + 1)(rτfU0 + 1)

− J xr(rτfU0 + u). (18)

Saddle-node bifurcations of the fast subsystem are
characterizedby the identical conditiondet(∂F/∂Xf) =
0 and are equivalent to the fold curves FL and FU

shown in Fig. 4. Therefore, the slow flow is unde-
fined along these lines and the slow subsystem fails to
describe the slow dynamics. This is for example rel-
evant for the canard trajectories γ 1(t) and γ 2(t) in

Figs. 3 and 4, which projected onto the (r, I2) plane
cross FL transversely.

Desingularization

This limitation can be mitigated by introducing an aux-
iliary system and desingularizing Eqs. (17) through the
application of a nonlinear time rescaling τ �→ D · τ .
One obtains the desingularized reduced system (DRS)
given in Eqs. (19) with τ̂ := Dτ :

dr

dτ̂
= g1(I1, I2)Ar(1 + ruτd)(1 + rU0τf) (19a)

dI1
dτ̂

= g1(I1, I2) · D (19b)

dI2
dτ̂

= g2(I1, I2) · D. (19c)

The DRS benefits from the fact that the singularities
are resolved, allowing to investigate the slow dynamics
near and on the fold linesFL andFU. At the same time
new equilibria are introduced satisfying D = 0. Addi-
tionally, as a consequence of the employed non-linear
time rescaling, the flow direction is not preserved. At
the fold curves, with D = 0, a change of sign of D
takes place. Hence, between FL and FU, i.e, on the
middle sheet of S0, the flow of the DRS is opposite to
the slow flow.

Slow trajectories which entirely remain on the same
sheet of S0 can be easily understood using the slowflow
Eqs. (17). Canard orbits evolve on attracting as well as
repelling sheets of S0 and therefore require a view on
the dynamics near the folds. For this, wewill determine
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the equilibria of the DRS Eqs. (19) in the following and
analyze their invariantmanifolds. Equilibria of theDRS
which satisfy D = 0 necessarily coincide with a fold
of S0. As we will show in the following section, this
gives rise to so-called folded singularities.

Folded saddle and folded homoclinics

Up to three focus equilibria are located at p1 =
(I1, I2, r) = (0, 0, rk), where the rk are points of S0
given (I1, I2) = (0, 0). In this workwewill remain at η̄
values for which only one equilibrium p0 = (0, 0, r0)
exists. This point is the only equilibrium of the slow
flowEqs. (17). In theDRS (Eqs. (19)) however, the con-
dition {g1(I1, I2) = 0, D = 0} yields additional fixed
points p1 and p2 located on the fold lines at D = 0.

The three equilibria of the DRS are displayed in
Fig. 5a on S0 in r − I2 projection. In the full system,
for sufficiently small A and ε, solutions lie close to the
bottom, attracting, sheet of S0. When the amplitude is
increased, these cycles can pass very close to p1 and
start to follow the middle, repelling sheet. One way to
understand this canard dynamics is to make use of the
properties of the pk in the DRS and their role for the
slow subsystem.
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Fig. 5 Folded-saddle and jump-on canards: a Critical manifold
S0 in r − I2 projection superimposed with the slow flow [green
arrows, see Eqs. (17)]. The black dots p0 (unstable focus), p1
(saddle), p2 (center) denote equilibria of the DRS Eqs. (19). The
point p1 denotes a folded-saddle equilibrium with the associated
stable (unstable) eigendirection indicated by a solid (dashed)
arrow along the slow flow. The orange curves MFS mark the
stable and unstable manifolds of p1, forming heteroclinic con-
nections through p1. (b) S0 in (I1, I2, r)-space. The curves γ 2(t)
and γ 3(t) are solutions of the full system. The objects p1, p2 and
MFS depend on the choice of A, here they correspond to the value
used to obtain γ 3(t). Other parameters values are as in Figs. 3
and 4. (Color figure online)

Located on the bottom sheet of S0, p0 results from
the Hopf form given in Eqs. (5) and is an unstable focus
at (I1, I2) = (0, 0). On the other hand, p2 lays on the
upper fold line FU and denotes a center, i.e., it has
purely imaginary complex conjugate eigenvalues. The
equilibrium p1 can be found on the lower fold line FL

and is of saddle type. At a specific value of A, namely,
when the forcing cycle intersects with p1, an 8-shaped
double homoclinic connection MFS = ML

FS ∪ MU
FS

forms, consisting of two parts, which are connected via
p1; see the orange curve in Fig. 5a, b. The connection
ML

FS is located on the lower sheet, while MU
FS spans

the middle and upper sheet of S0. They revolve around
the unstable focus p0 and center p2, respectively, and
are the stable and unstable manifolds of p1.

The points p2, p1, and in particular the invariant
manifolds associated with p1, play an important role
for the slow subsystem. Due to the negative sign D < 0
on the middle sheet of S0 the slow flow is reversed with
respect to the DRS. As a consequence the DRS saddle
p1 and center p2 become folded singularities of the
slow subsystem. These folded saddle (p1) and folded
center (p2) are not equilibria of the slow flow. How-
ever, for the slow dynamics they have similar impact
on the dynamics as there unfolded counterparts, but
with the crucial difference of reversed flow direction
betweenFL andFU. Accordingly, the folded saddle p1
has significant influence on the dynamics of the slow
subsystem along MFS, as described in the following.

(i) First of all, trajectories in the DRS evolving
on MFS necessarily approach p1 asymptotically
from the direction of the stable eigenvector, but
can never pass through the saddle.

(ii) In the slow subsystem however, the folded sad-
dle p1 allows a pass-through along this direction.
Below FL trajectories are attracted to and above
repelled from p1.

(iii) The double homoclinic connection MFS of the
DRS is referred to as a folded homoclinic in the
slow subsystem. For this solution the passage of
trajectories through p1 occurs in finite time [52].

(iv) Using the same type of argument, the invari-
ant manifold MU

FS around the folded center p2
becomes disconnected at the two intersections
with FU, due to a reversal of the slow flow direc-
tion. Solutions of the slow subsystem on MU

FS
cannot cross this line.
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As a consequence of the previous properties (i)–(iv)
and given a specific value of A a solution of the slow
subsystem exists, that evolves along the folded homo-
clinicMFS below the bottom fold lineFL and extends,
while remaining on S0, beyond the folded-saddle p1
until the upper fold FU. This solution of the slow sub-
system represents a canard segment in the context of
the full problem. More specifically it is associated with
the maximal canard introduced below.

Singular canard orbits

For the construction of singular orbits, we note once
more that the middle sheet of S0 is repelling while the
bottom sheet is attracting. Accordingly, a continuum
of fast segments emerging from the middle sheet and
connecting to the bottom sheet exist in the fast sub-
system. This family of fast orbits collides with MFS

and likewise with the singular canard described above.
As a result, infinitely many singular orbits can be con-
structed, by merging the singular canard at arbitrary
positions on the middle sheet of S0, with fast segments.

These singular orbits evolve on the bottom sheet of
S0, continue through the folded-saddle p1, while fol-
lowing the folded homoclinic, and jump at different
heights, in terms of the coordinate r , from the middle
to the bottom sheet of S0. The full system solution γ 1(t)
in Figs. 3 and 4 displays this type of dynamics. The sin-
gular canard, hence also the family of singular canard
orbits, can at most reach the upper fold line FU. Here
the slow flow is undefined and the reduction of state
space to S0 fails to describe the dynamics. This is addi-
tionally reflected by the fact thatMU

FS is disconnected
at the intersections withFU, due to the folded property
of p2; see (iv) above. The singular canard orbit which
reaches up until this point is the maximal canard.

5 Full system dynamics: beyond singular orbits
and classical canards

The solutions γ 0(t) to γ 4(t) are results of numerical
computations for ε > 0. As such, their slow segments
evolve not on, but in anO(ε) neighborhood of S0. This
is to some extent an implication of Fenichel’s theory
[53]. For 0 < ε � 1, it guarantees the existence of a
slow manifold Sε, that is in an O(ε) neighborhood of
S0, if S0 is normally hyperbolic (see below). Addition-
ally, Sε is locally invariant under the flow of the full

system. The theorem also states that stable and unsta-
ble manifolds associated to S0 persist as O(ε) pertur-
bations. In other words, the flow on Sε can be seen as
a perturbation of the flow on S0; and the flow perpen-
dicular to S0 as a perturbation of the fast subsystem’s
flow. For normally hyperbolic critical manifolds, one
can deduce that singular orbits persist for ε and perturb
into an O(ε) neighborhood.

Normal hyperbolicity requires all eigenvalues of the
Jacobian (∂F/∂Xf)|S0 to have non-zero real part [54].
The theorem can therefore not be applied on FL and
FU, given that they describe lines of saddle-node bifur-
cations. However, one can consider the three sheets of
S0 separately, each one up to an O(ε) neighborhood
of the folds. From this we can conclude the persis-
tence of slow segments nearby S0 for ε > 0, including
the repelling segments within a canard solution, until
close to the folds. Fenichel’s theory does not encompass
whether or not a connection of these segments exists.
Yet, γ 1(t) to γ 3(t) exemplify such connection numer-
ically: segments that evolve close to the bottom sheet
of S0 connect to segments close to the middle sheet.
A detailed treatment of these connections nearby the
non-hyperbolic points, exceeds the scope of this work.
Formore rigorous approaches,we refer to non-standard
analysis [46], matched asymptotics [55] and so-called
blow-up techniques [56]. With these advanced meth-
ods, it is possible to show that orbits with canard seg-
ments of different length perturb at different parame-
ter values within an exponentially narrow regime, thus
leading to the canard explosion in the full system.

5.1 Jump-on canards

The construction of singular canard orbits linked with
Fenichel’s theorem explains the dynamics of γ 1(t) in
Figs. 3 and 4, where the forcing amplitude A is large
enough to surpass the lower Hopf bifurcation HL and
the lower fold FL.Headless canards, like this one, have
a jump to the bottombranch in common. Slow–fast sys-
tems may also have canard solutions with a head. They
usually appear in systems, which have two folds: the
first one destabilizing, the second one stabilizing the
branch. Headed canards jump onto this stable upper
part. In 3D systems with an 1D or 2D S-shaped criti-
cal manifold, the upper sheet is typically unstable near
the upper fold, thus preventing the existence of headed
canards. Instead, past the maximal canard, fast oscil-
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lations related to the existence of limit cycles develop
and lead to bursting solutions; see Sect. 6.

The trajectory γ 2(t) in Figs. 3 and 4 has the char-
acteristic dynamics of a headed canard. However, it is
peculiar for various reasons. First of all, we can clas-
sify this type of dynamics as jump-on canard, since
the trajectory lands (after the fast jump) on a seem-
ingly repelling slow manifold. Moreover, the jump-on
dynamics can occur after a regular canard segment, as
for γ 2 or independent of that, like for γ 3. As a matter
of fact, trajectories of the latter type resemble relax-
ation oscillations, like in VdP, despite the repelling
upper sheet of S0. This has an additional consequence:
for small enough ε a continuous transition from sub-
threshold oscillations to bursting is blocked by jump-
on canards. The fact that fast oscillations other than
relaxation oscillations are absent beyond the maximal
canard are novel and unexpected phenomena. In the
following we will address how these solutions emerge.
Their impact on the route towards bursting is discussed
in detail in Sect. 6.3.

The two solutions γ 2(t) and γ 3(t) are shown in
Figs. 5b and 6 using two different projections. They
exemplify two types of jump-on canards, that have an
approach towards globally repelling equilibria of the
fast subsystem in common. The cyan solution γ 3 rep-
resents an orbit which does not interact with the folded-
saddle p1. It slowly evolves on the lower sheet of S0,
crosses the curve of Hopf bifurcationsHL and reaches
the lower fold curve FL at which the slow subsystem
is singular. Fast dynamics come into play and expect-
edly the dynamics will approach attractors of the fast
subsystem. Such attractors for the considered I1 value
at which the curve escapes S0 are solely the stable limit
cycles displayed in Fig. 2a. Instead of entering a period
of bursting, the cyan trajectories approaches the upper
branch of unstable equilibria. As soon as it jumps onto
S0, the slow subsystem becomes a valid limit anew and
the curve remains on S0 until it reaches FU, where it
jumps down to the stable sheet.

In the second case, γ 2 in Figs. 5b and 6 the orbit pos-
sesses a canard segment and jumps from the repelling
middle sheet to the repelling upper sheet of S0. Simi-
lar to the previous case, it evolves on S0 until FU and
finally jumps down. The global motion is identical to
that of a canard with a head in VdP.

Multiple elements of these singular cycles have to
be understood. First of all, both cases have a similar
slow segment in common, namely the part of the tra-

jectory on the upper sheet of S0. They can be approxi-
mated by solutions of the reduced problem Eqs. (9) and
are enforced by the presence of p2, around which the
trajectory evolves. Since the center p2 is folded, full
rotations around it are not possible and the slow parts
terminate atFU,where the slowflow is undefined.Here
the trajectory can be joined to a fast bit which connects
from FU to the attracting sheet of S0. After this part,
the dynamics on S0 is again governed by the slow sub-
system and depending on the forcing amplitude A, the
two orbits take different paths. The solution γ 3 crosses
FL far from p1 and the slow segment on the attracting
sheet stops; γ 2 passes through a neighbourhood of p1
and exhibits canard dynamics before a jump occurs.
These parts of the orbits are entirely described within
the scope of the slow subsystem.

5.2 Nested timescale separation

Understanding the remaining segment that leadsγ 2 and
γ 3 towards the repelling sheet of S0 requires a more
detailed analysis. The mechanism is the same for both
cases andwill be discussed in the following. Since these
pieces of the orbits evolve on the fast timescale we
present a visualization of the curves in I1−v −r space
in Fig. 6. In this projection the critical manifold S0
is shown as a green curve r(I1), v(I1) with attracting
(repelling) parts as a solid (dashed) line. In the singular
limit, the jump-on points γ ∗

2,3 = (r∗
2,3, v

∗
2,3, x

∗
2,3, u

∗
2,3)

of the jump-on canard solutions γ 2 and γ 3, marked
by the red and cyan dots in Fig. 6, are of saddle-focus

I1

0.245 0.250 v
− 0.6

− 0.4
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γ*
2
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0.250

v
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r
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Fig. 6 Folded-saddle and jump-on canards: S0 in I1–v–r space
(green curve). The gray surface Mrv is defined by r = − �

2πv
.

The curves γ 2,3(t) are solutions of the full system and their jump-
on points γ ∗

2,3 on the upper repelling sheet of S0 are marked by
dots. Parameters values are as in Fig. 5. (Color figure online)
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type. Linearization of the dynamics reveals a weakly
and strongly attracting direction in a neighbourhood of
the jump-on points together with a repelling direction
with complex conjugate eigenvalues. This suggests a
2D stablemanifold leading toγ ∗

2,3.Wewill simplify the
problem further by noting that the entire dynamics of
jump-on canards takes place close to the surface Mrv

defined in Eq. (20) and obtained by setting ṙ = 0 in
Eq. (4a). On one hand, for the slow pieces of the curve
this observation is as expected, since by definition this
conditions holds on S0:

ṙ = 0 ⇒ r = − �

2πv
for v 
= 0. (20)

On the other hand, also the fast parts of the orbits remain
onMrv . This implies a reduction of the fast dynamics
to Mrv for the part of state space in which jump-on
canards can be found. We will exploit this reduction
and investigate a secondary differential-algebraic sys-
tem resulting from the fast subsystem Eqs. (4) in which
the flow ṙ is equilibrated.

This latter step, without having a complete picture
of the time scaling, is analogous to an additional dissec-
tion of the fast subsystem. In other words, the full sys-
tem exhibits three timescales for what concerns jump-
on canards: the dynamics of r takes place on a fast,
that of (v, x, u) on an intermediate and that of (I1, I2)
on a slow timescale. The equilibration ṙ = 0 elimi-
nates the fastest of these scales, resulting in Eqs. (21),
and approximates the intermediate scale dynamics of
jump-on canards, which takes place in the vicinity of
Mrv .

0 = �

π
+ 2rv (21a)

v̇ = v2 − (πr)2 + Juxr + η̄ + I1 (21b)

ẋ = 1 − x

τd
− uxr (21c)

u̇ = U0 − u

τf
+U0(1 − u)r (21d)

In this new framework Mrv describes a manifold
on which the dynamics of (v, x, u) take place, while
I1, I2 remain frozen. The jump-on points (v∗, x∗, u∗)
[red and cyan dots in Fig. 6] are mutual points ofMrv

and the upper sheet of S0. In the reduced problem on
Mrv , (v∗, x∗, u∗) are of saddle type with eigenvalues

λ1 � λ2 � −λ3 > 0 and therefore have associated
1D stable manifolds MJO ⊂ Mrv [orange curves in
Fig. 6]. They exists for any value of I1 after the upper
fold. For values of I1 beyond the lower fold, they extend
down to r = 0.

In the singular limit one can concatenate these solu-
tions of Eqs. (21) with the regular canard segments
that populate the middle sheet of S0 and thereby con-
struct singular jump-on canards. Overall, the family of
1D stablemanifolds associatedwith the jump-on points
can guide trajectories towards the upper repelling sheet
of S0 and this way leads to the existence of jump-on
canards. For 0 < ε � 1 the singular jump-on canards
persists as ε perturbations, analogous to the classical
canards.

So far we have discussed singular orbits, for which
the fast segments connect different sheets of the critical
manifold S0. In the case of regular canards, for ε > 0
small enough, these correspond to stable equilibria of
the fast subsystem. For jump-on canards they might
be unstable, but possess a stable direction, allowing to
reach and stay on the repelling sheet of S0. The main
dynamics of these singular orbits takes place on S0
and does not display phases of fast oscillations, as for
bursting solutions, but only single fast jumps.

6 Slow-fast transition to bursting: a tale of two
routes

Opposed to that, the solution γ 4(t) (see Figs. 3 and 4)
and the case initially illustrated inFig. 1 exhibit bursts: a
slow segment is followed by fast oscillations. Periodic
solutions of the fast subsystem are the underpinning
elements of bursting, such that a classification in terms
of the fast subsystem’s bifurcations appears appropri-
ate. As shown in the bifurcation diagram Fig. 2a, limit
cycles originate and terminate at Hopf bifurcations,
and change stability at a fold of cycles. Strictly follow-
ing the classification of Izhikevich, bursting solutions
in this system are of subcritical Hopf/fold cycle type.
However, the subcriticalHopf bifurcation is closely fol-
lowed by a fold of the underlying equilibrium branch.
Due to a delay effect when surpassing the subcritical
Hopf bifurcation [57–59], bursting can effectively be
initiated at that fold; see e.g. Fig. 7(b4). We will restrict
our analysis to these cases. Here a more aptly descrip-
tion of the bursting type is fold/fold cycle, which corre-
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sponds to elliptic bursting in the classification of Rinzel
[33].

In order to understand bursting solutions of the full
system, we want to remain in the slow-fast dissec-
tion. However, the neural mass with STP in presence
of periodic forcing turns out to be a peculiar system
and numerically difficult to handle. We are constrained
by two main factors. First of all, as soon as we leave
the singular limit, i.e., for ε > 0, slow segments of
trajectories diverge sensitively from the critical man-
ifold. In other words, ε is required to be remarkably
small to maintain a good agreement between between
full system trajectories and singular orbits. Secondly,
numerical simulation aswell as numerical continuation
of the full system for small enough ε are challenging,
since the dynamics appears to be stiff and require high
accuracy.

Therefore a clear view on the emergence of burst-
ing cannot be gained easily in this framework. For
this reason we will provide, additionally to geomet-
rical arguments, numerical evidence on how bursting
forms in the present system, either via direct simula-
tion or continuation using the full system. In general,
bursts might emerge via a spike-adding mechanism,
that is, the consecutive addition of spikes into the orbit,
when varying a parameter (e.g., the forcing amplitude).
For parabolic bursting this spike-adding is mediated
by folded-saddle canards [52]; in square-wave bursters
on the other hand, passages through a fast-subsystem
saddle-homoclinic bifurcation and a folded node deter-
mine the number of large-amplitude oscillations in the
burst and small-amplitude oscillations before the burst,
respectively [60]. In the following, we report the spike-
adding mechanism for the NMSTP. At its basis is an
interaction of the canards dynamics invoked by the
presence of the folded saddle p1, as well as unexpected
torus-canard dynamics.Moreover, wewill point out the
role of jump-on canards for this spike-adding transition.

6.1 Canard explosion and spike-adding

To start with, we consider the case ε = 10−3 and inves-
tigate the full system dynamics by performing continu-
ation with the forcing amplitude A as a parameter. We
want to stress that this ε value, although very small,
proves to be rather distant from the singular limit and
slow-fast dissection arguments have to be taken with
caution. The initial solution is for an A value cor-

responding to subthreshold oscillations, like γ 0(t) in
Figs. 3 and 4, and is continued towards larger ampli-
tudes.

As a solution measure the L2-norm of this family
is plotted vs. A in Fig. 7a. The first part until A =
A∗ ≈ 0.25531851205 is in the subthreshold regime.
Around A∗ a very sharp transition occurs, resembling
a canard explosion. In this transition region the orbits
already exhibit first spikes, here defined as the number
ns of local maxima of r(t) for which r(t) > 0.21. This
is followed up by a series of arches (on the solution
branch) at A > A∗.

The arches are clearly related to the addition of new
spikes to the orbit: with every termination of an arch,
by means of a vertical dip of the curve, the number
of spikes ns increases. This behaviour can be better
observed for larger A, for which each arch is related to
the adding of exactly one spike. Prior, the arches lay
more dense along A and the spike adding appears to be
of more complex nature. Despite the fact that the points
of ns vs. A depend on the choice of the r -threshold for
which a spike is counted, it is evident that spikes are
added consecutively. It is also clear that these bursting
solutions emerge, in a continuous manner, from sub-
threshold oscillations.

A more detailed view on the full system dynamics
near the explosive transition around A = A∗ is given in
the columns (b–d) of Fig. 7. Column (b) shows the solu-
tion in r − I1 projection superimposed on the fast sub-
system’s bifurcation diagram; column (c) in (I1, I2, r)-
space together with S0; column (d) in (I1, v, x)-space.

In projection onto the (I1, v, x)-space, the criti-
cal manifold appears as a curve (I1, v(I1), x(I1))).
Additionally we show the family of fast subsystem
limit cycles, which emerge at the lower subcritical
Hopf bifurcation HL. Unstable periodic solutions of
this branch will be denoted by �r, stable ones after
the fold of cycles by �a. Embedding these solutions
�a,r(I1, t) = (r, v, x, u)(I1, t) into the state space of
the full system one obtains the surface P = Pa ∪ P r,
which consists of attracting and repelling parts Pa,r =
{(�a,r(I1, t), I1) | t ∈ [0, T (I1)]}×{I2 | I2 ∈ R}, corre-
sponding to stable and unstable branches of the solution
family, respectively. The period T (I1) of these cycles
depends on I1.
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Fig. 7 Emergence of bursting: a Bifurcation diagram of the full
system. The black curve shows the L2-norm of a family of peri-
odic solutions versus the forcing amplitude A. The blue dots show
the number of spikes ns, defined as the local maxima of for which
r(t) > 0.21. The dashed vertical line is located at A = A∗ =
0.25531851205. b Solutions (r(t), v(t), x(t), v(t), I1(t), I2(t))
in r − I1 projection superimposed on the bifurcation diagram of
the fast subsystem.The insets show the solution in time. c, dSame
solutions as in (b) and critical manifold S0 in (I1, I2, r)-space
(c) and in (I1, v, x)-space (d). In (d) attracting (repelling) sheets

of S0 are visualized as a green solid (dotted) line; the orange sur-
face (wireframe) represents the family of stable (unstable) limit
cycles of the fast subsystem [orange branch in column (b)]. Note
that here the x-axis is inverted. In (b) the black dots denote FL
and FU, the orange dotHL, while the black dots in (c) show the
folded singularity p1, assuming A = A∗. Spikes contributing
to ns are marked with blue dots. The dashed red curves show
the solutions of the panels above. The A values in (b–d) are in
increasing order from top to bottom and near A∗. Full system
solutions obtained at ε = 10−3. (Color figure online)

Onset of fast oscillations (b1, c1, d1)

At the smallest of the chosen A values near A∗ one can
already observe fast oscillations, consisting of five not
fully developed spikes. They occur after the trajectory

has turned around the folded saddle p1, marked by a
black dot in (c1). It is this motion around p1, taking
place in the vicinity of the critical manifold S0, which
has signs of a turning point, guiding the trajectory along
the repelling sheet of S0. Taking the rather large ε value
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into account, this turn hints at a canard segment aris-
ing due to the presence of the folded saddle p1. After
this segment, in (I1, I2, r)-space (panel c1), the trajec-
tory pierces through the repelling sheet of S0 and fast
oscillations set in. These results suggest that bursting is
initiated at the termination of a canard segment, closely
following the repelling middle sheet of S0.

Taking the fast subsystem LC family �a,r into
account, a remarkable feature of the dynamics can
be seen in (I1, v, d) space (panel (d1)). The spikes
of the burst appear to follow the family of unstable
limit cycles, thus evolving near the repelling surface
P r. Unexpectedly, after piercing through the critical
manifold, the bursting solution stays in the proximity
of P r, instead of being repelled from it. As I1 slowly
drifts towards smaller values, the trajectory remains
close to P r. These windings around P r correspond to
the first not fully grown spikes of the full system solu-
tion. The spikes increase in amplitude, as I1 decreases,
but remain small; see panel (b1) and inset. An enlarge-
ment of two full system trajectories in (I1, v, x)-space
is shown in Fig. 8, with two exponentially close A val-
ues near A∗.

Finally, the fast oscillations terminate via an escape
from P r. By approaching the bottom sheet of S0, the
dynamics change to that of a drifting equilibrium, pass-
ing from burst to quiescence.

Explosivity and spike-adding (b2, c2, d2)

At a slightly larger A value, close to A∗, a majority
of the trajectory remains essentially unchanged, with
respect to the previous A. The slowly drifting part along
the bottom equilibrium branch of the fast subsystem
and the canard segment, as well as the first oscilla-
tions, appear frozen. This is clear by comparing the
blue trajectory with the red dashed curves in panels
(b2, c2, d2), as well as in Fig. 8. The fact that part of the
trajectory near the fold freezes, while the following part
changes significantly, is a strong indication for explo-
sivity of the solution, when varying the parameter. This
strong sensitivity towards parameter changes is typical
for canard dynamics. It is caused by the presence of
repelling objects in the fast subsystem, typically, but
not exclusively, equilibria, like the middle sheet of S0.

Indeed, in panels (b2, c2, d2), the full system trajec-
tory possesses a canard segment stayingnear themiddle
sheet of S0, when it turns around the folded saddle p1.
Hence the sensitivity is to be expected. Moreover, dur-
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Fig. 8 Emergence of bursting: Enlargement of Fig. 7(d3). Criti-
cal manifold in (I1, v, x)-space with attracting (repelling) sheets
of S0 visualized as a green solid (dotted) line; the orange surface
(wireframe) represents the family of stable (unstable) limit cycles
of the fast subsystem, emerging from the lower Hopf bifurcation
HL (orange dot). The blue and red curves show solutions of the
full system near the canard explosion. Forcing amplitude for the
blue trajectory (A ≈ 0.25531851417) is larger than for red one
(A ≈ 0.2553185136) and both exponentially close to the canard
explosion at A∗. Solutions obtained for ε = 10−3. (Color figure
online)

ing the fast oscillations, the bursting solution evolves
close to P r, thus adding an additional layer of sensitiv-
ity.

Compared to the previous case in Fig. 7(b1, c1, d1),
the full system solution winds around P r more often
until smaller values of I1, before jumping back to
S0. The trajectory essentially remains close to P r, but
reaches up higher. This way, by passing through A∗,
more and more spikes with increasing amplitude are
added to the burst. These spikes are yet not fully grown
to the amplitude of the stable limit cycles present in
this I1 region. Furthermore, we note that distance of
the blue trajectory to P r increases, as it winds around
it, indicating some extent of repulsion near the surface;
see also panel (b2). This way, the full dynamics starts
to escape from P r and gets attracted to Pa.

Emergence of bursting (b3, c3, d3)

As A increases further, the point at which the trajectory
starts to escape from P r shifts towards the lower Hopf
bifurcation HL. In fact, the last two spikes are already
repelled sufficiently to evolve close to the attracting sur-
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facePa; see panels (b3,d3). In other words, the number
of revolutions near P r reduces, while the ones around
Pa increases. These oscillations near Pa are of large
amplitude and mark the start of a dense burst following
for larger A.

Bursting (b4, c4, d4)

At the next step in panels b4 - d4, most of the windings
around P r have vanished and the fast oscillations take
place in the proximity of Pa. Additionally, the burst
consists of more spikes in total, with respect to the first
considered A value (panels (b1, c1, d1)).

Here, an additional spike-addingmechanismbeyond
the critical value A∗ acts and is related to the period
T (I1) of Pa as a function of I1. When A is beyond
the canard explosion at A∗ the full system dynamics
approach Pa right after surpassing the lower fold FL,
without the excursion on P r. As the amplitude A is
increased, this attraction to Pa occurs at larger I1 val-
ues. The period T (I1) of the fast subsystem limit cycles
decreases with increasing I1 and this finally leads to
more windings around Pa. On top of this, the frac-
tion of time for which the trajectory remains near Pa

increases. Both effects add more spikes to the burst and
result in the spike-adding arches observed in Fig. 7a.

The presented results already show the complex-
ity of how bursts are generated, that is, via a transi-
tion through the canard explosion at A = A∗, which
rather surprisingly leads the canard segment to evolve
around the repelling object P r. This is followed by
spike growth via repulsion from P r and attraction to
Pa, until all oscillations evolve near Pa.

6.2 Continuous route to bursting: spike-adding via
mixed-type-like torus canards

Before the bursting transition, the full system dynam-
ics can be described by a single slow frequency, deter-
mined by ε. After the transition, a full cycle consists of a
slowphase followed by fast spiking. It is therefore char-
acterized by the slow frequency and a fast one, given
by properties of the fast subsystem. In the context of
bursting and in slow-fast systems, whose fast subsys-
tem has both stable and unstable cycles, this change of
the dynamics, from one to two frequencies, hints at a
torus (Neimark–Sacker) bifurcation in the full system.

This can indicate the existence of mixed type-torus
canards (MTTCs). Indeed, the full system dynamics
nearby the canard explosion not only exhibits a canard
segment along the repelling sheet of S0, but as well a
canard segment on the repelling higher dimensional
invariant set P r. This clearly resembles mixed-type
canards as described in [51]. Very similar MTTCs have
been reported in [47], where they evidently arise in the
singular limit ε → 0. In particular Fig. 2 of [47] reports
dynamicswhere a quasi-staticmotion of the full system
along the attracting sheet of S0 connects to a repelling
set of limit cycles created by a subcritical Hopf bifur-
cation. In the NMSTP however, the understanding of
mixed-type torus canards is more complex for various
reasons and as we will show, they are only observed for
intermediate timescale separations.

First of all, in the ε regime for which we observe
mixed-type torus canards, the timescale separation is
small enough for the canard segment on the middle
sheet of S0 to persist as a strongly perturbed version of
its singular counterpart. One can observe a turn around
the lower fold FU, mediated by the folded-saddle sin-
gularity p1. It forces the trajectory to pierce through
S0, bringing it very close to P r; see Fig. 8.

Secondly, the solutions �r ⊂ P r, despite being
globally repelling, possess two stable Floquet multi-
pliers. We argue that the associated stable directions,
similar to the jump-on canard case (see Sect. 5.2), form
due to the intrinsic timescales of the fast subsystem.
Consequently, this means that stable manifolds can be
associated with P r: it can attract trajectories along cer-
tain directions.

Thirdly, for large enough ε, one can expect dynam-
ics very distinct from singular orbits. In particular,
solutions may not only evolve nearby, but also switch
between different attracting branches of the fast subsys-
tem. We observe this transition from the middle sheet
of S0 toP r. Despite both being repulsive, the reasoning
holds: the folded-saddle canard dynamics enforces the
full system to stay close to the middle sheet of S0; sta-
ble directions allow an attraction towards P r; the large
ε allows to bridge S0 to P r and finally torus canard
dynamics allow to follow Pa closely, adding more and
more spikes in the transition region around A∗.
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Fig. 9 Families of bursting solutions and canards: The bifurca-
tion diagram shows solution families of the full system in terms
of the L2-norm vs. the shifted forcing amplitude A − A∗. For
all branches (br.) apart from br. 4, the A∗ denotes the location
of the canard explosion. For br. 4 on the other hand it marks the
termination of continuation due to insufficient accuracy. There

are two types of solution families: the ones which undergo a con-
tinuous transition from subthreshold oscillations to bursting (red
curves) and those which transition from subthreshold to jump-
on canard dynamics (cyan curves). Br. 4 and 5 have identical
ε ≈ 2.667521298 × 10−4. (Color figure online)

6.3 Discontinuous route to bursting: block evoked by
jump-on canards

The transition from subthreshold oscillations to burst-
ing when increasing the forcing amplitude A explains
the emergence of the very first spikes in the burst, which
occur for forcing amplitudes exponentially close to A∗.
They also show how the subsequent spike-adding pro-
cess, reflected by the arches in Fig. 7a, occurs. In the
following we will extend the analysis of this transition,
taking into account different values of the parameter
ε. As an outlook, we will describe how, for ε values
closer to the singular limit, jump-on canards interfere
and block the transition. Nevertheless bursting can be
observed and possibly emerges in a discontinuousman-
ner in parameter space.

In Fig. 9 solution families of periodic orbits are dis-
played, obtained via numerical continuation of the full
system Eqs. (4) and (5). The figure comprises seven
branches for ε values ranging from ε = 5 × 10−3 to
ε = 1×10−5 and they are aligned to the canard explo-
sion at A = A∗ (apart from branch 4). Branch 3 is
identical to the one shown in Fig. 7 and undergoes a
continuous transition from subthreshold oscillations to
bursting.

As a general result, we find two types of solution
families, which, beyond the canard explosion, i.e, for

A > A∗, take different paths. For ε � 2.7 × 10−4

the branches display a continuous transition from sub-
threshold oscillations to bursting; see red curves in
Fig. 9. For ε � 2.7 × 10−4 on the other hand the
branches evolve into families of jump-on canards (cyan
curves in Fig. 9). A value of ε ≈ 2.667521298× 10−4

separates the two ε regimes.
However, it is clear by considering branches 4 and

5 with identical ε, that bursting solutions do not cease
to exist for smaller ε values. Instead they coexist with
the jump-on type solutions.

It remains unclear how bursting forms for ε �
2.7 × 10−4. Nevertheless the role of jump-on canards
for the emergence of bursting becomes evident: for
singular or small enough ε � 2.7 × 10−4 regular
canards are observed, evolving on the middle sheet of
S0.Beyond themaximal canard, the intrinsic timescales
of the fast subsystem come into play and lead to the
emergence of jump-on canards (see Sect. 5.2). They
block a transition towards P and as a consequence,
bursting remains absent for these solutions families.

For ε � 2.7×10−4 however, jump-on canards cease
to exist. In the amplitude regime where they would be
expected, the system approachesPa and bursts instead.
The region around the canard explosion is populated by
MTTCs and separates subthreshold oscillations from
the bursting regime. It remains an open question for
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future work how the differentiation depending on ε

occurs and in particular which possible bifurcations
of the full dynamics result in the distinct regimes of
continuous bursting transition and blocking jump-on
canards.

7 Network behaviour

The neural mass model with STP Eqs. (4) is an exact
limit of the underlying QIF network Eqs. (3) as N →
∞. We want to emphasize the benefits of neural mass
models and their capability of describing neuronal
dynamics at a macroscopic scale. In Fig. 2b–f results
using the fast subsystem and the corresponding QIF
network have been shown. For the original neural mass
model [5] the exactness of the meanfield limit has been
exploited in various studies in order to understand the
collective dynamics of large neuronal populations [6–
8,20,61,62]. We want to note that STP, as opposed to
exponential synapses used in Ref. [13], results in a sub-
stantially higher sensitivity towards finite size fluctu-
ations and numerical errors, rendering the agreement
of network and neural mass less clear, in particular in
the canard regime.We suspect the additional state vari-
ables and their contributions to the non-linearity of the
system to be responsible for this.

Here we want to assess if the mechanisms leading
to bursting in the neural mass model persists in a finite-
sized network. To our knowledge such analysis, in par-
ticular in presence of short-term synaptic plasticity, has
not been performed. For this we introduce the external
periodic forcing I1 = A sin(εt) also into the network
Eqs. (3) and investigate the QIF population dynamics
nearby the canard explosion of the neural mass.

In Fig. 10a the family of periodic solutions tran-
sitioning from subthreshold oscillation to bursting is
shown for ε = 2 · 10−3. Two dashed black lines mark
the values A = 0.265 and A = 0.27, respectively, for
which neural mass (red) as well as QIF network tra-
jectories (black) are depicted in Fig. 10b, c. Row (b)
shows the time series x(t) vs. t , row (c) the trajectories
in (I1, v, x)-space.

The QIF network consists of N = 100000 neurons
and ε = 2 ·10−3 is chosen to maintain reasonable com-
putation times. In the network, the initial conditions are
chosen according to fixed point values (r∗, v∗, x∗, u∗)
obtained from the neural mass at I1 = 0. However, ini-
tializing the network firing rate and average membrane
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Fig. 10 Bursting in the QIF network: a The bifurcation diagram
shows a family of periodic orbits of the full neural mass system
in terms of the L2-norm versus the forcing amplitude A− A∗. It
corresponds to br. 2 in Fig. 9. The black dashed lines mark A =
0.265 and A = 0.270 respectively. b, c Trajectories of the full
system (red) superimposed on results obtained by simulating the
QIF networkEqs. (3)with N = 100,000 neurons and in presence
of sinusoidal forcing I1(t) = A sin(εt). In (b1,c1) the forcing
amplitude is given by A = 0.265; in (b2,c2) by A = 0.270. Row
(b) shows the time series of the solution in terms of x(t) versus
time t . In row (c) they are shown in (I1, v, x)-space together
with the critical manifold S0, with attracting (repelling) sheets as
a solid (dashed) green line, and the invariant manifold P of the
fast subsystem (orange wireframe and surface). The orange dot
denotesHL, the black dots FL and FU. The x-axis is inverted in
(c)

potential at a given value is a non-trivial problem. To
overcome this, the initial conditions of the QIF net-
work are set to Vi = v∗ for all i = 1, . . . , N , x = x∗
and u = u∗. After a short transient, at time t = 0,
the network has reached equilibrium and the forcing
I = A sin(εt) sets in.

We start the analysis by considering A = 0.265,
marked by the left most dashed line in Fig. 10a. It
lays within the spike-adding arches of the neural mass,
which displays burstingwith amultitude of fully grown
spikes; see red curves in Fig. 10(b1, c1). They mainly
evolve in the proximity of the invariant set Pa. This
periodic solution of the full problem does not high-
light a canard segment around the folded singularity
p1, which is to be expected, since A is not close enough
to the canard explosion at A∗.
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On the other hand, the macroscopic state of the QIF
network is found to be just at the start of the spike-
adding process. The orbit possesses a canard segment:
the turn around the lower fold FL is evident. This is
clear by looking at the black curve in Fig. 10(c1). More
strikingly, a few low-amplitude oscillations are picked
up in the vicinity of the repelling invariant set P r. This
means that, despite the discrepancies, the mixed-type
torus canards observed in the neuralmass are also found
in the QIF network. It is plausible to assume that spike-
adding in the network follows the same mechanism as
described in Sect. 6.

At the larger amplitude A = 0.270, shown in
Fig. 10(b2, c2), the agreement between neural mass and
network trajectory is more distinct. In both systems the
canard segment is absent and they both exhibit bursting
with a comparable number of large amplitude spikes.
Taking also into account the previous case A = 0.265,
it appears that the bifurcation structure of the network
is shifted towards larger amplitudes with respect to the
neural mass.

8 Discussion

Wemade use of recent developments of meanfield the-
ory, namely the powerful OA ansatz, in order to under-
stand the emergent dynamics of spiking neuronal net-
works on macroscopic scale.

Through the inclusion of synaptic dynamics, in form
of STP, we employ amore biologically plausiblemodel
in this work than the original MPR model, while pre-
serving the exactness of themeanfield limitwith respect
to the QIF network. This adds more details to the QIF
network and neural mass, but at the same time com-
plexifies the collective dynamics, even in absence of
external forcing. In the part of parameter space cho-
sen here, STP allows for the existence limit cycles, that
are absent in the original model. As we have shown
via extensive numerical evidence, STP leads to vari-
ous peculiarities, when forcing the system slowly and
periodically.

That leads to the third point, which we put our focus
on: the treatment of the forced neural mass with STP
using methods of singular perturbation theory, in par-
ticular slow-fast dissection. Without STP, slow exter-
nal forcing already gives rise to bursts, as shown in [5].
The fast oscillations of these orbits vanish in the singu-

lar limit and relaxation oscillations remain. Accounting
for STP, however, leads to more intricate dynamics.

One of the fundamental elements are canards.
Expectedly, due to the slow harmonic passage through
a fold of the S-shaped critical manifold, they appear
as folded-saddle canards, which play a role for spike-
adding in parabolic bursters. Here, despite the fact that
the equilibriumdestabilizing bifurcation is a subcritical
Hopf bifurcation, the observed bursts are reminiscent
of elliptic bursting (i.e., subcritical fold/fold of cycles
bursting), due the slow passage through the Hopf bifur-
cation.

Concerning the full system dynamics, a folded sad-
dle canbe found,with associated explosive canard solu-
tions. It separates quiescent orbits with purely slow
dynamics from bursting ones. In this transition region
we find an intriguing interplay of slow-fast effects:
jump-on canards exist close enough to the singular limit
and are associated with a subtle timescale separation of
the neural mass, allegedly invoked by STP. They con-
nect two repelling sheets of the critical manifold and
more strikingly, block a continuous transition from qui-
escence to bursting.

Jump-on canards are one of the surprising elements
of this work. However, they vanish when considering
biologically more plausible frequencies of the peri-
odic external current. Despite the rather insufficient
timescale separation in this parameter regime, we find
orbits which display a strongly perturbed canard seg-
ment. It is remarkable that these canards, as opposed
to the jump-on case, do not block a continuous tran-
sition towards bursting, but much more promote it.
Specifically they guide the trajectories into the prox-
imity of unstable limit cycles of the fast subsystem.
Here once again, an unexpected mechanisms sets in
and allows attraction towards these globally repelling
cycles. The final element to the spike-adding mecha-
nisms in this region are rapidly oscillating segments
that revolve around the branch of unstable limit cycles
and consecutively add more spikes to the orbit.

Overall, the full dynamics nearby the canard explo-
sion can be seen as mixed-type-like canards of pecu-
liar nature: orbits evolve nearby the repelling mid-
dle sheet of the critical manifolds, as well nearby
unstable limit cycles. Typically mixed-type canards are
observed towards the singular limit, as they represent
a slow-fast effect. The neural mass with STP exhibits
mixed-type-like canards only for large enough forcing
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frequency; the phenomenon disappears for too slow
forcing and is blocked by jump-on canards.

By virtue of the NMSTP model being the main sub-
ject of this work, we want to emphasize that it rep-
resents an exact limit of the QIF network with STP.
Discrepancies between network and NMSTP arise due
to numerical errors and finite-size fluctuations, espe-
cially under slow forcing. Nevertheless, our results
clearly show a good agreement between the two mod-
els. In particular, the network simulations display the
mixed-type-like torus canard dynamics, hence this can
be regarded as a strong evidence for the same mech-
anisms to be responsible for burst spike-adding in the
network.

In summary, the NMSTP turns out to be a useful
approach in order to investigate the ensemble dynam-
ics of neuronal populations in presence of STP. Slow-
fast dissection reveals themechanisms underlying burst
generation on population level. As is it turns out, synap-
tic dynamics indeed enriches the complexity of the
problem, by giving rise to peculiar jump-on andmixed-
type like torus canards, which both appear due to the
timescales associated with STP.

Finally,while thiswork is in the scope of neuralmass
models and STP, the methodology of OA reduction and
slow-fast dissection, coupled with numerical bifurca-
tion analysis, can be applied to a much broader class
of phase oscillator systems, like the Kuramoto model.
This can lead to a better understanding of emerging
collective slow-fast dynamics of large scale networks.
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Appendix A: Numerical methods

The results in Figs. 2a and 3–10 are obtained using the
continuation software AUTO-07p [63], to numerically
calculate solutions and solution branches of the fast
subsystem Eq. (11) and full system Eqs. (11) and (12)

For Figs. 1, 2b–f, and 10 direct simulations of the
QIF networkwith STPEqs. (3)were performed, aswell
as simulations of the neural mass with STP Eq. (11).
The latter was integrated using Python and the adaptive
Dormand–Prince method [64]. The QIF network sim-
ulations use values of the Lorentzian distributed con-
stant currents ηi , that are deterministically set as given
below.

ηi = η̄ + � tan

(
π(2i − N − 1)

2(N + 1)

)
(A1)

Furthermore the numerical integration requires sim-
plifications of the problem, in order to maintain rea-
sonable computation times. For this we followed the
method suggested in [5]. First of all, the network is
integrated using the Euler scheme, with a timestep
dt = 10−4. Second, the limit Vthresh → ∞ is not
realizable numerically. However, one can approximate
the time T∞ required for the membrane potential of a
QIF neuron to evolve from a value Vmax to infinity as
T∞ ≈ 1

Vmax
, given that the total input I to that neuron

fulfills
√
I � Vmax. The time from negative infinity to

Vi = −Vmax is given by the same expression. As soon
as a neuron crosses the threshold Vi > Vmax it is reset
to Vi = −Vmax and enters into a refractory period of
2T∞ = 2/Vmax, for which its dynamics is deactivated.
This is to account for the integration from Vi = Vmax

to infinity and from negative infinity to Vi = −Vmax.
A spike is registered at half of this refractory period,

via an instantaneous change of all membrane potentials
and the synaptic variables, as stated below.
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Vi (t
+) = J

N
u(t−)x(t−) (A2)

x(t+) = x(t−) − 1

N
u(t−)x(t−) (A3)

u(t+) = u(t−) + 1

N
U0(1 − u(t−)) (A4)

For clarity the time before the increment is denoted by
t−, the time after by t+.
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