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Abstract

Predicting stock price movements remains a major challenge in time series analysis.

Despite extensive research on various machine learning techniques, few models have

consistently achieved success in automated stock trading. One of the main challenges

in stock price forecasting is that the optimal model changes over time due to market

dynamics. This paper aims to predict stock prices using automated reinforcement

learning algorithms and to analyse their efficiency compared with conventional

methods. We automate DQN models and their variants, known for their adaptability,

by continuously retraining them using recent data to capture market dynamics. We

demonstrate that our dynamic models improve the accuracy of predicting the direc-

tions of various DAX stocks from 50.00% to approximately 60.00%, compared with

conventional methods. Additionally, we conclude that dynamic models should be

updated in response to shifts rather than at fixed intervals.
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1 | INTRODUCTION

Predicting stock price movements is one of the greatest challenges in time series data analysis (Gu et al., 2020). Despite extensive research explor-

ing various machine learning techniques (Jiang, 2021), only a few models have achieved success in automated stock trading (Gu et al., 2020). A

major problem in stock price forecasting is the non-stationary and chaotic nature of stock data (Gandhmal & Kumar, 2019). Non-stationarity

means that the distribution of input data shifts over time (Raza et al., 2015), requiring corresponding changes in the model (Chollet, 2018). This

phenomenon can be illustrated graphically in Figure 1.

In this context, existing market dynamics indicate that static models are inadequate for capturing long-term market changes. Nevertheless,

the modelling of time series from a distributional perspective remains unexplored (Du et al., 2021).

Against this background, this paper addresses the problem of dynamic data changes over time using automated machine learning models. Our

solution utilizes deep Q-networks (DQNs) due to their adaptability and high performance demonstrated in previous studies (Gao, 2024;

Thakkar & Chaudhari, 2021; Zhang & Lei, 2022). Consequently, automated reinforcement learning can adapt more effectively to market fluctua-

tions, while static models trained on non-stationary data become unusable over time (Ditzler et al., 2015).

So far, supervised learning algorithms have been preferred for stock price forecasts (Shi et al., 2021). Therefore, reinforcement learning algo-

rithms have received less attention, particularly in combination with automated implementation.

This study is unique in exploring how DQN models can be automated to adapt to the dynamic characteristics of non-stationary price data.

The practical importance of this study is to present, to the best of our knowledge, the first experimental results on how automated DQN models
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adapt to different market phases for stock price prediction, while its theoretical significance lies in highlighting the advantages of reinforcement

learning algorithms through their dynamic implementation.

The paper aims to present the first insight into how automated deep reinforcement learning algorithms can be used to develop models that

can better adapt to market fluctuations and learn to make optimal decisions in uncertain environments. The following research question is the

subject of the paper:

To what extent can automated DQN models improve forecast accuracy?

This paper makes three significant contributions:

1. We introduce a novel approach using automated DQN models for stock price prediction.

2. We propose an automated approach based on extensive evaluations of different DAX stocks and updating strategies.

3. We conduct a comprehensive analysis of the performance of different DQN variants and architectures.

The remainder of the paper is organized as follows: Section 2 provides an overview of related work, focusing on the challenges and auto-

mated machine learning models for stock price prediction. Section 3 presents the theoretical background on DQN models. In Section 4, we explain

the research methodology, including the data used and the updating process. Section 5 presents our findings, which are discussed in detail in

Section 6. Finally, Section 7 summarizes our conclusions and outlines directions for future research.

2 | RELATED WORK

The prediction of stock price developments has been a significant research topic for many years (Jiang, 2021), leading to several comprehensive

literature reviews (Gandhmal & Kumar, 2019; Kurani et al., 2021; Sezer et al., 2020; Thakkar & Chaudhari, 2021). For instance, the literature

review by Kurani et al. (2021) documents investigations that date back to the 1970s. These reviews reveal a diverse array of models employed in

stock price prediction, including multilayer perceptron networks (MLPs), convolutional neural networks (CNNs), recurrent neural networks

(RNNs), long short-term memory networks (LSTMs), generative adversarial networks (GANs), support vector machines (SVMs), ARIMA models,

Prophet models, and various hybrid models combining these approaches. Jiang (2021) and Sezer et al. (2020) highlight that recurrent models are

the most commonly used.

Furthermore, the previously mentioned literature studies demonstrate that researchers achieved test data accuracies of up to 99.9%,

depending on the specific stocks, indices, and time periods analysed. The accuracy of 99.9% was achieved by Selvamuthu et al. (2019) using feed-

forward neural networks for Reliance Private Limited stock tick data measured from 30.11.2017 to 11.01.2018.

Singh et al. (2022) review advancements in deep learning and reinforcement learning for financial applications such as forecasting, text min-

ing, portfolio management, and credit risk analysis. They compare traditional methods with various reinforcement learning techniques, highlighting

both value-based and policy-based methods. The study finds that reinforcement learning more effectively predicts market trends and outperforms

traditional algorithms due to superior feature extraction and problem-solving capabilities.

Other researchers, such as Li et al. (2020), have also demonstrated the feasibility of deep reinforcement learning in financial markets, showing

its credibility and utility for strategic decision-making through experiments with U.S. stocks. However, they point out that several challenges

remain, including the exploration-exploitation balance problem, slow convergence rates, and the risk of space catastrophe, among others.

F IGURE 1 Covariate shift. Source: Du et al. (2021).
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Zhang et al. (2023) aim to improve prediction accuracy through a fundamentally different approach. They introduce the first causal discovery

algorithm that integrates the LiNGAM algorithm with LSTMs to identify causal relationships and predict time series data. The authors argue that

the predicted stock prices depend on these causal relationships rather than merely on correlations.

Despite the versatility of various models, few have succeeded in automated stock trading (Gu et al., 2020). Kurani et al. (2021) point out that

many studies in recent decades have neglected external factors, such as current investor sentiment, a concern also raised by Jin et al. (2019).

Additionally, Jiang (2021) points out that some evaluations of trading strategies have focused solely on prediction results without considering

overall portfolio performance, including transaction costs. Furthermore, modelling time series from a distributional perspective remains

unexplored (Du et al., 2021), even though it is known that stock price data are non-stationary (Gandhmal & Kumar, 2019). Researchers such as

Guo et al. (2018) have demonstrated this non-stationarity through experiments showing that stock price data can exhibit different distributions

over time.

Krawczyk et al. (2020) and Souza et al. (2020) note that this issue can render historical data irrelevant or even harmful to forecasting models.

To address this challenge, Chollet (2018) suggests continuously retraining models with new data.

Related work that aims to enhance stock price prediction accuracy through continuous retraining is presented in Nguyen et al. (2019). They

compared the prediction accuracies of dynamic and static LSTMs using four stocks listed on NASDAQ, with daily price measurements. In the

dynamic LSTM, the model was updated after each prediction by adding the current prediction to the training set, whereas the static LSTM did not

adapt. After approximately 7 days of computation, the authors found that automating the LSTMs significantly improved prediction accuracy,

reducing the mean square error by 45.9% for the stock period from 2014 to 2019. They also noted that dynamic LSTMs were less dependent on

window size compared to static LSTMs.

Guo et al. (2018) explored the potential for automating the support vector machine regression (SVR) learning algorithm to improve prediction

accuracy. The study analysed stock price data from five randomly selected stocks on the Shanghai Stock Exchange, covering the period from

2015 to 2017. They automated the SVR algorithm using particle swarm optimization (PSO) and updated the parameters only when the model

error exceeded a specified threshold. The adaptive SVR algorithm demonstrated better adaptability and prediction accuracy compared to tradi-

tional SVR algorithms and backpropagation neural networks, reducing prediction error by 8%–41%. Additionally, their study showed that the pre-

dictive accuracy of static models deteriorated over time.

Liu et al. (2022) tackled the issue of changing data distributions by enabling LSTMs to dynamically fine-tune and adapt to the latest stock price data

distributions using model-agnostic meta-learning. They demonstrated that their method significantly enhances prediction accuracy for Chinese and

American stocks. In contrast, Wang et al. (2023) addressed the problem of changing distributions with a different approach, proposing a deep sequence

model based on Koopman theory. This model captures shared characteristics through a global operator and adapts to local dynamics with a local opera-

tor, and demonstrating state-of-the-art performance on highly non-stationary datasets, such as cryptocurrency forecasting.

Other related works, such as that of de Lima e Silva et al. (2020), apply non-stationary fuzzy time series (NSFTS) which can be used to dynam-

ically adjust fuzzy sets to take into account the changes in the stochastic process. Similarly, there is work such as that of Du et al. (2021), which

tries to characterize the different data distributions in a time series and then use RNNs to reduce the distribution divergences and improve the

predictions. However, to the best of our knowledge, no other study has investigated the automatic adjustment of DQNs to the changing charac-

teristics of non-stationary stock price data. Nonetheless, several studies have shown that static DQNs effectively predict stock prices and out-

perform traditional methods.

For instance, in the study by Thakkar and Chaudhari (2021), DQNs achieved an accuracy of nearly 100%, while many other models, including

LSTMs, RNNs, and CNNs, only reached an approximate accuracy of 50%.

Similarly, Bajpai (2021) evaluated the performance of DQNs using Indian stocks, suggesting that due to the highly stochastic and rapidly

changing nature of stock markets, DQN models outperform conventional methods because of their rapid adaptability. Zhang and Lei (2022)

observed similar results with U.S. stocks, noting that DQN models excel during turbulent market periods due to their adaptability. Analogously,

Gao et al. (2020) found that DQNs outperform 10 other traditional strategies in the context of stock market portfolio management with

U.S. stocks. Furthermore, Gao (2024) compared the performance of DQNs and Double DQNs in predicting WorldCall stock prices and concluded

that these models are better at capturing nonlinear features and dynamic changes in the stock market, with Double DQNs being slightly superior.

Similarly, Shi et al. (2021) analysed Double DQNs and found that they outperformed LSTMs and SVMs across various metrics using several Amer-

ican and Chinese stock indices.

Building on the success of DQNs in single-agent settings, Li and Hai (2024) explored their use in a multi-agent scenario. Their Collaborative

Multi-Agent Reinforcement Learning-based Stock Portfolio Management System employs three agents:

• Stock Market Agent: Captures short-term stock trends.

• Financial Index Agent: Recognizes long-term market changes.

• Stock Correlation Agent: Analyses stock interdependencies.

Their outputs are integrated using a self-attention network, resulting in superior performance and higher cumulative returns compared to

state-of-the-art models.
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Finally, it is important to point out the weaknesses of our literature review. Since the approach of this paper is highly specific, there are no

papers that show how well or poorly this approach worked for them. Either papers were cited that show how well automated ML algorithms

work, or static DQNs, but not automated DQNs. Another significant weakness of the aforementioned work on automated ML models is that the

very good results were achieved with small samples, such as in Guo et al. (2018) with five stocks or Nguyen et al. (2019) with four stocks, which

are not necessarily representative of all stocks.

3 | BACKGROUND

3.1 | Reinforcement learning

Reinforcement learning algorithms are able to perceive an environment based on feature vectors si and accordingly execute actions ai according

to the perceived state (Burkov, 2019). Different actions can result in different rewards Ri (Alpaydin, 2022). This process is illustrated in Figure 2.

The goal of reinforcement learning is to identify the actions that maximize expected rewards over time (Géron, 2019). A strategy is sought, similar

to a supervised learning algorithm, in the form of a function π sð Þ that outputs an optimal action given a perceiving feature vector representing the

state (Burkov, 2019).

3.2 | Markov decision process

The reinforcement learning algorithms are based on the formalism of Markov decision processes, which in turn are based on ordinary Markov pro-

cesses (Lapan, 2020). A Markov process is a stochastic process, that is, a family of random variables X tð Þ,t� Tf g whose probability distribution

functions have the Markov property. Accordingly, Markov processes can be defined as continuous-time or discrete-time Markov processes. For-

mally, a discrete-time Markov process Xn, n¼0,1,2,…f g is a stochastic process that satisfies the following Markov property for any finite set of

states xn, n¼0,1,2,…f g:

P Xnþ1 ¼ xnþ1jXn ¼ xn,Xn�1 ¼ xn�1,…,X0 ¼ x0ð Þ
¼ P Xnþ1 ¼ xnþ1jXn ¼ xnð Þ ð1Þ

Simply put, the Markov property means that the transition probabilities depend solely on the presence (Stewart, 2009).

Markov decision processes form the theoretical basis for reinforcement learning algorithms and were defined by Richard Bellman in the

1950s and differ from Markov processes by the following three additional characteristics (Géron, 2019):

1. At each step, there is the possibility of selecting multiple actions.

2. Transition probabilities depend on the action selected.

3. State transitions can return a positive or negative reward.

3.3 | Q-learning

Watkins (1989) introduced the Q-learning algorithm for situations where transition probabilities and the reward function are unknown.

Q-learning involves an agent trying different actions in various states and learning from the immediate rewards or punishments. Over time, the

F IGURE 2 Agent and environment. Source: Amiri et al. (2018).
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agent identifies the best actions by considering long-term rewards. The convergence theorem is detailed and proven in Watkins and Dayan

(1992). The Q-learning algorithm is defined as follows:

Q s,að Þ¼ 1�αð ÞQ s,að Þþα rþ γmaxQ s0 ,a0ð Þ½ � ð2Þ

In this equation, s is the current state, a is the chosen action, s0 is the subsequent state, r is the received reward, α is the learning rate, γ is the

discount factor and maxQ s0 ,a0ð Þ is the best the agent thinks it can do from state s0. In other words, the Q-value is the expected discounted reward

for taking action a in state s and following policy π thereafter.

3.4 | DQN

The described Q-learning algorithm is not scalable for Markov decision processes with many states and actions (Karunakaran et al., 2020). To this

extent, for action and state spaces that are too large, it is no longer possible to estimate the Q-value of each state-action pair s,að Þ. To solve

this problem, DeepMind published a paper in 2013 in which they proposed to learn a function Qθ s,að Þ that approximates the Q-value for each

state-action pair s,að Þ using feedforward neural networks (Mnih et al., 2013). This model idea was named deep Q-network (DQN) in the paper.

The target values of the neural network, with which the network error is measured, are to be determined by the Q-learning rule (see formula 2).

3.5 | Double DQN

In 2015, DeepMind enhanced its DQN algorithm by introducing the Double DQN (van Hasselt et al., 2015). DeepMind researchers found that

their 2013 version overestimated Q-values, which negatively impacted training performance. The reason for this is believed to be the max opera-

tion (see formula 2), as the approximated Q-values are often noisy, and using the max operation leads to an overestimation of the Q-values. To

solve this problem, the DeepMind researchers proposed to split the max operation into action selection and action evaluation. They implemented

this as follows:

y¼ rþ γQθ0 s0, max
α0

Qθ s0 ,a0ð Þ
� �

ð3Þ

A first neural network Qθ , called the online network, evaluates the greedy strategy, that is, the action with the highest Q value is selected,

and a second neural network Qθ0 , called the target network, calculates the Q value based on the action selected by the online network. The target

network is a periodic copy of the online network.

3.6 | Duelling DQN

The Duelling DQN algorithm is also an updated version of the DQN algorithm also presented by DeepMind in 2015 (Wang et al., 2015). They

describe that their update provides the main advantage to generalize learning across actions without the need to change the underlying reinforce-

ment learning algorithm. The duelling DQN algorithm is based on the fact that the Q-value of a state-action pair s,að Þ can be expressed, as it were,

as follows:

Q s,að Þ¼V sð ÞþA s,að Þ ð4Þ

V sð Þ is a measure of how good it is to stay in a certain state s and A s,að Þ is a relative measure of the importance of the individual actions. For

the Q-value of the best action Q s,a�ð Þ it applies that A s,að Þ¼0. The duelling DQN calculates the state-action value Q s,að Þ by combining the value

V sð Þ and the advantage function A s,að Þ with a single deep model.

3.7 | Deep recurrent Q-network

The DRQN is a DQN that uses a recurrent neural network to approximate the function Qθ s,að Þ, and was also first introduced in 2015 by

Hausknecht and Stone (2017). The authors described that in real environments it is rather rare that the complete state of the system can be
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provided to the agent or even determined, so that in real environments the Markov property (see formula 1) rather rarely holds. They describe

that a partially observable Markov decision process (POMDP) better reflects the dynamics of many real environments. Therefore, Hausknecht

and Stone (2017) defined DRQNs and hypothesized that they can better handle POMDPs by leveraging advances in recurrent neural networks.

3.8 | Covariate shift

The so-called covariate shift describes the phenomenon that the data distribution changes over time (Raza et al., 2015). In mathematical terms, a

covariate shift occurs when the distribution P Xð Þ of the input changes, but the conditional distribution P YjXð Þ of the output remains the same

(Huyen, 2022).

3.9 | Mean directional accuracy

MDA¼ 1
N

XN
i¼1

1
sgn yi�yi�1ð Þ¼sgn byi�yi�1

� �� � ð5Þ

The mean directional accuracy (MDA) (see formula 5) is a measure of the probability of how accurately a model can predict the actual direc-

tion (upward or downward) of a time series (Dauphin et al., 2022).

3.10 | Root mean square error

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

� �Xn
i¼1

yi�byið Þ2
vuut ð6Þ

The root mean square error (RMSE) (see formula 6) is a widely used metric for evaluating models and is optimal for gaussian errors

(Hodson, 2022).

4 | RESEARCH METHODOLOGY

We begin by examining the data, with an emphasis on its distribution and significance (see section 5.1). This is followed by the main study, com-

prising two preliminary investigations and a primary investigation.

The first preliminary investigation identifies the optimal combinations of the four DQN variants with various network architectures (see

section 5.2).

In the second preliminary investigation, the best models from the first preliminary investigation are trained with an extended dataset to

ensure that any poor results are not due to unrepresentative training data (see section 5.3).

After that, the main investigation begins, where the best models from the first preliminary investigation are automated (see section 5.4). Five

different strategies are tried for the automation process, which are explained in more detail in section 4.6.

The study is then extended by examining how different stock price intervals and window sizes affect automation results.

Finally, supervised learning algorithms are also trained with the same data to provide further benchmarks (see section 5.5), and a statistical

test is performed to verify the improvements of the automated models (see section 5.6).

Before we start this research process in section 5, we first explain the conditions on which our study is based, such as our data structure, the

agent environment, network architectures, hyperparameters, DQN algorithm and update strategies.

4.1 | Data

As use case, the DAX stocks Adidas, BASF and Allianz are examined. We consider opening, high, low, and closing prices, trading volume, DAX

closing prices, and Google Trends data using the search queries ‘crash’ and the respective stock names (Adidas, BASF, or Allianz). The DAX closing
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prices are included in the study to have a rough overview of the other DAX participants and the Google Trends data is used to have a sentiment

indicator included in the prediction. The stock data is downloaded using the Python library yfinance1 and the Google Trends data is downloaded

using the Python library pytrends.2 The training data for the individual stocks is created using stock price data collected from 01.01.2017 to

31.12.2019.

For daily measured data, this corresponds to 738 data records (3 years � 52weeks � 7days) without the stock-free days. For the validation

data, the period from 01.01.2020 to 31.12.2020 is considered, and for the test data, the period from 01.01.2021 to 31.12.2021 is considered.

This corresponds to 248 data records (1 year � 52weeks � 7days) without the stock-free days. Together with the seven selected characteristics

(five historical stock data characteristics and two Google Trends data), this results in three data sets with the dimensions 738 � 7 and two times

248 � 7. The data set size would be reduced by a factor of around 5 for weekly stock data and increased by a factor of around 11–12 for hourly

stock data.

4.2 | Agent environment

One challenge of reinforcement learning is to provide an environment (see Figure 2) for an agent to develop a strategy for the underlying Markov

decision process (Géron, 2019). This challenge was addressed in this paper using the OpenAI Gym API3 by defining a custom agent environment,

which is illustrated in the following figure:

In the initial state s0, the agent has information about the opening, high, low, closing prices, trading volume, DAX closing prices and Google

Trends data of a particular stock from time t0 to t2 (see Figure 4). Based on this perceived state, the agent must choose an action a0 to determine

whether the closing price will rise or fall in the next time unit t3. If the price direction was predicted correctly, the agent receives a reward r0 of

1, otherwise a reward r0 of �1. Then the agent enters state s1 and perceives the stock's data from time t1 to t3, and this process repeats until the

agent is in the final state sn and must choose the last action an in order to predict the price direction for the last time tn. The DQN agents trained

in this environment were implemented using Tensorforce4 because it is very user-friendly.

4.3 | Neural network architectures

For the first preliminary investigation, the following neural network architectures are compared for the different DQN models (Table 1):

Model 1 is the default network architecture of Tensorforce and model 5 represents the DRQN. In addition, after the convolution layer, all

models have a poling layer with filter size = 2 followed by a flattening layer that transforms the result of the pooling layer into a 1D array. The

convolutions and pooling operations are performed with stride = 1 and padding = ‘same’ (input size = output size). Furthermore, the model 2 also

has 5 batch normalization layer.

As you can see, we have used larger network architectures with multiple layers (see model 4) and smaller ones with fewer layers (see model

1). We have varied this so that we do not suffer from underfitting due to too few parameters and overfitting due to too many parameters.

The number of dropout layers (which randomly deactivate a certain number of neurons) in our case was dependent on the number of hidden

layers, as we added one of these layers after each hidden layer (see Table 2). In this way, we wanted to make it as difficult as possible for irrele-

vant patterns to be memorized by individual layers. We determined the dropout rate of 0.3 experimentally.

At the same time, taking into account the dropout rates, we have set the number of hidden neurons in each layer slightly higher to 64, so that

we do not have too few neurons after the temporary dropout of neurons and consequently suffer from underfitting. We also do not set the num-

ber of hidden neurons to 128, as we have observed that with this setting the validation accuracy decreased while the training accuracy increased

(overfitting).

We only used one LSTM layer for the DRQN (see model 5) because we realized that the computing time for additional LSTM layers would

increase drastically and we could no longer make good use of this network architecture due to the computing time required for automation, and

so forth.

In our CNNs and in some hidden layers, we used the ReLU (rectified linear unit) activation function, defined by f xð Þ¼max 0,xð Þ. We chose

ReLU due to its minimal computational demands and its ability to accelerate the convergence of the network (Lin & Shen, 2018). For models

3 and 4, we incorporated alternative activation functions in response to recent research suggesting superior alternatives. The Exponential Linear

Unit, introduced by Clevert et al. (2015), integrates an exponential component to accommodate negative inputs, enhancing learning dynamics and

accuracy. Additionally, the Scaled Exponential Linear Unit, further developed by Klambauer et al. (2017), not only processes negative inputs but

also normalizes outputs automatically, significantly boosting model stability and performance.

We set the number of filters in models 2, 3, and 4 in ascending order (see Table 1), which is also recommended in literatures such as Géron

(2019), so that the CNN gradually learns to recognize increasingly complex patterns, and we selected their kernel sizes experimentally. For the
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DRQN (see model 5), we have defined the number of filters and the kernel sizes on the basis of the default network architecture of Tensorforce

(see model 1).

We have visualized the default network architecture of Tensorforce (see model 1) in Figure 5. The task of the CNN at the beginning is to rec-

ognize individual sequential patterns depending on the kernel size during training. Then the forward network prepares after the flatten layer the

output of the CNN with one hidden layer with 64 neurons and outputs the Q-value estimations Q s,að Þ for the prediction of the stock price direc-

tion (upwards or downwards).

4.4 | Hyperparameters

The following hyperparameters are used for the models:

We have chosen the parameters by testing different constellations and using the ones that produced the best results, while also taking into

account what other researchers such as Bajpai (2021) have selected in the literature.

The unusual batch size of 50 (see Table 3) is derived from various experiments and has also been used by other researchers, such as Shah

et al. (2018), in their stock price predictions. However, parameters such as a discount factor of 0.99 are also common practice in reinforcement

learning (Franceschetti et al., 2022).

We chose the Adam algorithm introduced by Kingma and Ba (2015) as the learning algorithm because it is described as suitable for non-

stationary targets and, according to researchers such as Camacho et al. (2019), is even the best choice for solving problems with non-stationary

targets and very noisy gradients. Furthermore, researchers such as Zhang et al. (2022) describe the Adam algorithm as a theoretically justified

algorithm that practitioners can use confidently.

4.5 | DQN algorithm

To better understand how the DQN by Mnih et al. (2013) works, its general steps are described below:

1. Initialize the weights of the neural network Qθ s,að Þ randomly and the maximum capacity N of the empty replay buffer D

2. Execute each step t¼0,…,T for M episodes as follows:

a. Select an action at using the epsilon-greedy method. Consequently, choose the action at with a probability of ϵ at random or with a proba-

bility of 1�ϵ according to arg maxa Qθ s,að Þ.
b. Perform the selected action at, change to the next state s0 and receive the reward r.

TABLE 1 Overview of the convolutional neural networks (CNNs) of the models.

Name of model

First 1D convolutional layer Second 1D convolutional layer

Filters Kernel size Activation function Filters Kernel size Activation function

Model 1 64 3 ReLU 64 3 ReLU

Model 2 32 7 ReLU 64 7 ReLU

Model 3 32 7 ReLU 64 7 ReLU

Model 4 32 7 ReLU 64 7 ReLU

Model 5 64 3 ReLU 64 3 ReLU

TABLE 2 Overview of the neural networks of the models after the convolutional neural networks.

Name of model

Hidden layers LSTM layer Dropout layers

No. of layers No. of neurons Activation function No. of layers Units Activation function No. of layers Rate

Model 1 1 64 ReLU - - - - -

Model 2 5 64 ReLU - - - 5 0.3

Model 3 5 64 ELU - - - 5 0.3

Model 4 8 64 SELU - - - 8 0.3

Model 5 3 64 ReLU 1 64 Tanh 3 0.3
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c. Save the transition information s,a, r,s0ð Þ in the replay buffer D.

d. Extract a random mini-batch with K transition information from the replay buffer.

e. Calculate the target values yi ¼ riþ γ �maxα0Qθ si0 ,α
0ð Þ. When the final state aT is reached, the target values yi ¼ ri.

f. Calculate the network error L θð Þ¼ 1
K

PK
i¼1

yi�Qθ si,aið Þð Þ2.
g. Update the network parameters θ of the function Qθ si ,aið Þ using a gradient descent method.

4.6 | Update strategies

The best performing models from the first preliminary investigation are updated at n fixed time intervals ti ¼ t0þ i �n.
Before the model is updated, at time ti�1 the stock price directions for the next n data points are predicted. The update is done by re-training

the model with an updated training data set. The updated training data set takes into account the stock price data that was not known at the time

of prediction. In addition to the described scheme, five following strategies are tried with respect to the agent state and the training dataset:

The purpose of resetting the agent after each update in strategies 1 and 3 (see Table 4) is to assess the utility of the pre-trained model. The

purpose of distinguishing how much historical stock price data should be considered for the update is to investigate whether the most recent n

information (instead of all known) are sufficient for the prediction. In this way, computation time can be saved and unnecessary price data can be

omitted. The idea behind strategy 5 is to make only the necessary updates. The assumption of whether a covariate shift has occurred is evaluated

using the open-source framework Arangopipe from ArangoDB.5 Arangopipe determines a data shift value by developing a classifier that measures

the accuracy of distinguishing between two datasets.

5 | RESULTS

With the study's foundational conditions established, we proceed to present the results of our research workflow (see Figure 3).

5.1 | Data exploration

In order to get an idea about the distribution of how the price direction changes for the next day, the following figures show histograms of the dif-

ferences between the closing prices of adjacent days tn and tnþ1 for each stock over the period from 01.01.2017 to 31.12.2021. Since it is widely

TABLE 3 Hyperparameters of the models.

Hyperparameter Value

Window size 10

Batch size 50

Episodes 1000

Discount factor 0.99

Memory size 624

Learning algorithm Adam

TABLE 4 Update strategies.

Strategy Description

1 After each update, the agent is reset to the initial state. For each update, only the data of the last n data points are considered.

2 The agent's parameters are continuously adjusted in the dynamic process. For each update, only the data of the last n data points are

considered.

3 After each update, the agent is reset to the initial state. For each update, all data known up to the time of the update is used.

4 The agent's parameters are continuously adjusted in the dynamic process. For each update, all data known up to the time of the update is

used.

5 The agent is updated only if a covariate shift is suspected. For each update, only the data of the last n data points are considered.
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believed that stock returns follow a normal distribution (Li, 2023), a probability density function of a normal distribution N μ,σ2
� �

with the esti-

mated sample mean x and variance s2 as parameters is also plotted for each histogram.

From a mathematical point of view, it is intuitive to assume that stock returns follow a normal distribution since they fulfil the conditions of

the central limit theorem (the sample size is large enough and is influenced by various factors), but the actual distribution of stock returns often

has characteristics such as high peaks and fat tails that make them appear non-normally distributed (Li, 2023).

This can also be observed in our histograms. The samples appear to be normally distributed as most of them are approximately symmetrical

around the mean, which is close to 0 for all histograms (see e.g., Figures 11 and 14). However, these histograms also exhibit a pronounced peak at

this point, indicating a deviation from normality. Due to these observations, researchers recommend using distributions for stock returns that

resemble a normal distribution while incorporating additional characteristics, such as high peaks and fat tails (Li, 2023). One example of such a

F IGURE 3 Research workflow.

F IGURE 4 Example for self-defined environment with window size = 3.

F IGURE 5 Model 1 with window size = 10.
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F IGURE 6 Histogram of weekly closing price differences for Adidas with N 0:417,112:246ð Þ.

F IGURE 7 Histogram of daily closing price differences for Adidas with N 0:084,19:786ð Þ.

F IGURE 8 Histogram of hourly closing price differences for Adidas with N 0:008,1:756ð Þ.
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F IGURE 9 Histogram of weekly closing price differences for Allianz with N 0:179,43:205ð Þ.

F IGURE 10 Histogram of daily closing price differences for Allianz with N 0:039,7:7ð Þ.

F IGURE 11 Histogram of hourly closing price differences for Allianz with N 0:004,1:061ð Þ.
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F IGURE 12 Histogram of weekly closing price differences for BASF with N �0:099,5:881ð Þ.

F IGURE 13 Histogram of daily closing price differences for BASF with N�0:021,1:051ð Þ.

F IGURE 14 Histogram of hourly closing price differences for BASF with N�0:002,0:145ð Þ.
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distribution is the exponential power distribution, which better captures these features and thus provides a more realistic modelling of stock

returns (Li, 2023).

We hypothesize that by testing a sufficient number of parameters and distributions that are similar to a normal distribution, it is possible to

identify a distribution that matches our samples. However, a more critical and challenging task lies in recognizing and modelling the evolving distri-

butions over time. To illustrate the difficulty of this task, the sample means and variances of the daily closing price differences between adjacent

days tn and tnþ1 are plotted for each month in Figures 15 and 16.

It can be observed that the monthly means fluctuate between the values of �2 and 2, and that the stocks Adidas and Allianz exhibit greater

volatility than BASF (see Figure 15). It can also be observed that the mean values over the entire 5-year period (see Figures 7, 10, and 13) are

close to 0; however, they can vary significantly from month to month. Similar to the mean values, the variances show that the fluctuations were

much greater for the stocks Adidas and Allianz than for BASF (see Figure 16). We can also clearly see that the stocks Adidas and Allianz both sud-

denly had a very high variance and negative mean value in March 2020, probably due to the announcement by World Health Organization (2020)

on 11 March 2020, that the coronavirus has been declared to a global pandemic. This graph shows why it is important to always update the pre-

dictive model, as a static model trained before March 2020, for example, would not take this drastic change in distribution into account.

The histograms show that the sample variance decreases with finer price intervals, as demonstrated by comparing Figures 6, 9, and 12 with

Figures 8, 11, and 14. This means that the probability of a larger gain or loss increases with the length of time a stock remains in the portfolio.

Due to the symmetry of the mean value of the normal distribution-like samples (see e.g., Figures 8 and 10), it can also be concluded that the prob-

ability of a positive direction of the price change is approximately the same as that of a negative direction. To verify this, one can look at the pro-

portion of positive and negative price direction changes from the entire data set (Table 5).

It can be seen that the positive proportion of directional changes is close to 50% for almost all stocks and price intervals.

F IGURE 15 Monthly mean values of daily closing price differences.

F IGURE 16 Monthly variances of daily closing price differences.
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However, there are also cases, such as the Adidas stock in the weekly interval, where the positive share deviates by around 3%. We suspect

that this is due to the amount of data and that the positive proportion of directional changes can fluctuate depending on which smaller slice of a

data series is selected. The next step is to investigate how much and if at all our selected Google Trends data can add value to our stock predic-

tion. The following Table 6 shows the Pearson correlation coefficients and their p-values between our Google Trends data and the closing prices

for all price intervals.

F IGURE 17 Mean directional accuracy regarding the stock Adidas and different update strategies.

F IGURE 18 Mean directional accuracy regarding the stock Allianz and different update strategies.

F IGURE 19 Mean directional accuracy regarding the stock BASF and different update strategies.
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It can be seen that for the daily price data, all Pearson correlation coefficients are significant with a value greater than 0. However, with a sig-

nificance level of α¼0:01 for the weekly and hourly price data, there are Google Trends data that does not correlate significantly with our closing

price. The highest correlation can be seen for all price intervals with the keyword ‘crash’. It is interesting to see that the price interval of the stock

can also influence the direction of the relationship (e.g., for hourly and daily BASF stock data with the keyword ‘crash’).
The lowest p-values are observed in the hourly data, likely due to the higher volume of data during this period. Overall, these statistics sug-

gest that the Google Trends data, especially for the keyword ‘crash’, will likely help us increase the explainable variance.

5.2 | First preliminary investigation

This investigation aimed to identify the most effective network architectures for different DQN variants in predicting stock prices. For all possible

combinations of network architectures (see Tables 1 and 2) and DQN variants, the following models achieved the best results (see Table 7).

F IGURE 20 Mean directional accuracy regarding different window sizes and daily measured stock data.

F IGURE 21 Mean directional accuracy regarding different window sizes and weekly measured stock data.

F IGURE 22 Mean directional accuracy regarding different window sizes and hourly measured stock data.
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The performances of all other model combinations are detailed in Table A1 in the Appendix A. This appendix also contains illustrations show-

ing the training process of the DRQN (see Figures A1 and A2).

5.3 | Second preliminary investigation

This preliminary investigation aims to enhance the results of the best models from the first preliminary investigation by utilizing extended training

data. For training data, instead of the period from 01.01.2017 to 31.12.2019, the period from 01.01.2010 to 31.12.2019 (1778 more data

records) is now considered. The best models from the first preliminary study were able to achieve the following accuracies using the extended

training data set (see Table 8).

The training process from this preliminary investigation can be seen in Appendix B (see Figures B1 and B2).

F IGURE 24 Mean directional accuracy of automated agents regarding weekly measured stock data and different window sizes.

F IGURE 25 Mean directional accuracy of automated agents regarding hourly measured stock data and different window sizes.

F IGURE 23 Mean directional accuracy of automated agents regarding daily measured stock data and different window sizes.
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5.4 | Main investigation

In the main study, agents are first automated using daily stock price data and different strategies. Figures 17–19 thus show the accuracies of the

automated agents per strategy and stock at different time steps n (time interval per update). The automated agents are evaluated based on

the test data used in the preliminary experiments. This allows a comparison of whether the test accuracy, which ranged from 48.59% to 51.41%

for the best agents (see Table 7), has improved with the automated implementation. Afterwards, the investigation is extended by examining win-

dow sizes from 1 to 35 (see Figures 20–22). Daily and weekly measured price data are now also examined. Then, based on the three best window

sizes for each stock and price interval, the agents are automated again by strategy 1 (see Figures 23–25). On the following pages you can see

these nine figures, for which a total of several weeks of computing time was required:

5.5 | Comparison with supervised learning algorithms

To compare the effectiveness of automatic agents against conventional methods, we also trained and tested three LSTMs, SVMs, and logistic

regression models using the same data split (see section 4.1) and hyperparameters (see Table 3). We selected SVM and logistic regression models

TABLE 6 Correlation between Google Trends data and stock closing prices.

Stock Interval Keyword Correlation p-Value

Adidas Weekly ‘Adidas’ 0.128 0.03846

Allianz Weekly ‘Allianz’ �0.068 0.26930

BASF Weekly ‘BASF’ 0.175 0.00442

Adidas Weekly ‘Crash’ �0.177 0.00395

Allianz Weekly ‘Crash’ �0.211 0.00059

BASF Weekly ‘Crash’ 0.162 0.00869

Adidas Daily ‘Adidas’ 0.113 6.005e-05

Allianz Daily ‘Allianz’ �0.108 1.351–04

BASF Daily ‘BASF’ 0.114 5.220e-05

Adidas Daily ‘Crash’ �0.173 8.733e-10

Allianz Daily ‘Crash’ �0.190 1.416e-11

BASF Daily ‘Crash’ 0.152 7.834e-08

Adidas Hourly ‘Adidas’ 0.101 3.148e-32

Allianz Hourly ‘Allianz’ �0.069 6.765e-16

BASF Hourly ‘BASF’ �0.120 2.871e-44

Adidas Hourly ‘Crash’ 0.144 1.032e-63

Allianz Hourly ‘Crash’ �0.018 0.0304

BASF Hourly ‘Crash’ �0.219 2.880e-146

TABLE 5 Overview of the proportion of positive and negative price direction changes.

Stock Interval Positive directions Negative directions Positive ratio (%)

Adidas Weekly 122 138 46.9

Allianz Weekly 129 131 49.6

BASF Weekly 125 135 48.0

Adidas Daily 588 646 47.6

Allianz Daily 605 629 49.0

BASF Daily 599 635 48.5

Adidas Hourly 6551 6392 50.6

Allianz Hourly 6600 6324 51.0

BASF Hourly 6603 6527 50.2
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because our target variable is binary (price rises/price falls), and these algorithms are particularly well-suited for binary classification tasks. The

LSTM models were initialized with ten LSTM layers, each containing 64 LSTM units and a dropout layer with a dropout rate of 0.4. The supervised

learning algorithms achieved the following results:

5.6 | Statistical analysis of the improvement

In order to verify the improved accuracy provided by the automation, the non-parametric test from Pesaran and Timmermann (1992) is applied.

This test was chosen because its aim of examining the prediction's ability to forecast the direction of change fits perfectly with our target criterion

of maximizing the MDA of our agent environment (see section 4.2). We also do not need a distribution assumption. Our null hypothesis H0 here

is that our model does not have the ability to predict directions of change, whereby the Pesaran-Timmermann test statistic S follows a standard

normal distribution. As the test is a right-tailed hypothesis test, the null hypothesis is rejected with a significance level of α¼0:01 for S-values

>2.3263. Table 11 shows the S-values and p-values for the best static (see Table 7) and automated DQN models (see Table 9).

The p-values clearly show that at a significance level of α¼0:01, H0 can be rejected for the automated models and H0 can be assumed for

the static models. This shows that our methodology improved the results.

5.7 | Comparison with previous systems

In comparison to other studies that have automated their models, we also achieved significant enhancements. Guo et al. (2018) reduced the

RMSE by 8%–41% with their adaptive SVR learning algorithm, and Nguyen et al. (2019) achieved a 45.9% reduction in MSE with their dynamic

LSTM. In our study, we accomplished an RMSE reduction for our stocks ranging from approximately 8%–12.5% (compare Table 7 with Table 9).

Although our results are not as substantial as those of the other researchers, it is important to note that Guo et al. (2018) and Nguyen et al.

(2019) focused on predicting actual stock prices, while we predicted the direction of price movements. Predicting price directions generally offers

less potential for significant RMSE improvements compared to predicting continuous price values.

Therefore, it is also relevant to consider studies that aimed to predict price direction without automating their models, such as the study by

Nair et al. (2010), which proposed a hybrid decision tree-neuro-fuzzy system. This system uses technical analysis for feature extraction and deci-

sion trees for feature selection, followed by dimensionality reduction. The refined features are then applied to an adaptive neuro-fuzzy system for

next-day trend prediction. Tested on the BSE-SENSEX, FTSE 100, NASDAQ 100, and NIKKEI 225 indices from January 2003 to March 2010, it

achieved a prediction accuracy ranging from 82% to 91.2%.

Compared to our work, their approach achieved significantly higher accuracy, likely due to effective feature selection and reduction. How-

ever, our stock data, influenced by the financial crisis induced by the coronavirus, may be more challenging to predict.

TABLE 7 The best models of the performance comparison.

Stock

Best combination MDA RMSE

Variant Model Training (%) Validation (%) Test (%) Training Validation Test

Adidas Duelling DQN 4 86.34 61.24 51.14 0.37 0.62 0.70

Allianz Duelling DQN 4 91.12 59.68 48.59 0.30 0.63 0.72

BASF DQN 3 88.94 60.07 48.99 0.33 0.63 0.71

Abbreviations: MDA, mean directional accuracy; RMSE, root mean square error.

TABLE 8 Performance based on the extended training data set.

Stock

MDA RMSE

Training (%) Validation (%) Test (%) Training Validation Test

Adidas 50.37 56.29 53.68 0.70 0.66 0.68

Allianz 50.49 55.90 48.62 0.70 0.66 0.72

BASF 56.36 57.48 46.27 0.66 0.65 0.73

Abbreviations: MDA, mean directional accuracy; RMSE, root mean square error.
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A system specifically tested for financial crises, like the one introduced by Atsalakis et al. (2016), may provide better insights for comparison.

This neuro-fuzzy-based system consists of two adaptive neuro-fuzzy inference systems: a controller managing the process model and a process

model forecasting the stock price trend for the next day. Tested on stocks listed on the NYSE during four major financial crises, it achieved an

average accuracy of 66.54%, with a range of 64.23%–68.5%. Although this system's accuracy is significantly lower than that of Nair et al. (2010),

it still surpasses our results, albeit not by a large margin.

Zhong and Enke (2017) aimed to predict the daily direction of the SPDR S&P 500 ETF by utilizing 60 financial and economic factors. To

achieve this, they combined three dimensionality reduction techniques, including principal component analysis (PCA) with artificial neural net-

works (ANNs). Their dataset encompassed the period from June 2003 to May 2013 and was divided into 70% training data (1762 records) and

15% each for test and validation data (378 records each). This study achieved MDAs ranging from 58.1% to 59.2% for the test data. While their

results were similar to ours and did not involve automation, their main advantage was the use of significantly more input variables (60 compared

to our 7).

In contrast, Kara et al. (2011) employed 10 technical indicators to predict the daily direction of the Istanbul Stock Exchange National

100 Index. The analysis included data from January 1997 to December 2007, which was split into training and test sets, each consisting of 50%

of the total 2733 records. The authors utilized SVMs and ANNs, performing an extensive grid search with 900 parameter combinations for SVM

and 700 for ANN. The study achieved average directional accuracies of 71.52% for the SVM and 75.74% for the ANN. Although this study dem-

onstrates better MDAs than ours, possibly due to more comprehensive parameter optimization, a full comparison is not feasible because the test

data evaluated by the model are different.

Promising systems that predict not only the stock trend but also the actual closing price have been highlighted in the study by Shaban et al.

(2024). They introduced the Stock Market Prediction based on Deep Learning (SMP-DL) system, which consists of data preprocessing and a stock

price prediction component. The prediction component integrates LSTM and Bidirectional Gated Recurrent Unit models. The study evaluates

their model using Apple and Google stock data from March 2020 to April 2022, splitting the dataset into 80% for training and 20% for testing to

benchmark it against seven state-of-the-art methods.

TABLE 10 Performance of the supervised learning algorithms.

Stock

Test MDA Test RMSE

LSTM (%) Logistic regression (%) SVM (%) LSTM Logistic regression SVM

Adidas 50.22 50.39 50.02 0.71 0.70 0.71

Allianz 50.17 51.18 50.01 0.71 0.70 0.71

BASF 49.92 48.81 48.81 0.71 0.72 0.72

Abbreviations: MDA, mean directional accuracy; RMSE, root mean square error.

TABLE 9 Best strategies and update intervals for Figures 17–19.

Stock Strategy n Test MDA (%) Test RMSE

Adidas 3 7 59.32 0.64

Allianz 5 4 60.31 0.63

BASF 1 20 58.41 0.64

Abbreviations: MDA, mean directional accuracy; RMSE, root mean square error.

TABLE 11 Static verification of the improved accuracy.

Stock

Static model Automated model

MDA (%) S-value p-Value MDA (%) S-value p-Value

Adidas 51.14 0.376 0.353 59.32 3.146 0.0008

Allianz 48.59 �0.413 0.660 60.31 3.261 0.0006

BASF 48.99 �0.317 0.625 58.41 2.595 0.0047

Abbreviation: MDA, mean directional accuracy.
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The SMP-DL system achieved an RMSE of 0.2883 and an R2 of 0.9948 in predicting stock prices for the next 10 and 30min, thus out-

performing all other state-of-the-art methods. These other methods had RMSE values ranging from 0.3169 to 0.3638 and R2 values ranging from

0.9458 to 0.9804.

The second-best method, with an RMSE of 0.3169 and an R2 of 0.9804, was achieved with a Convolutional Extreme Learning Machine Model

with Kernel Support (CKELM) developed by Agarwal et al. (2023). In their work, they demonstrated that this model achieves remarkable perfor-

mance, with an accuracy of around 98.3%.

These studies indicate that our achieved accuracies are relatively modest, highlighting the need to expand our approach by considering addi-

tional factors. Therefore, our results suggest that while we demonstrated the potential for improvement through automation, achieving high accu-

racies remains challenging. However, these studies also reveal the issue noted in Jiang (2021), that their models do not integrate the forecasting

problem with portfolio structuring, making them unsuitable for automated trading.

6 | DISCUSSION

Both the best static DQN models, regardless of whether 7 more years of training data were available, and the supervised learning algorithms failed

to achieve test accuracies significantly greater than 50% (see Tables 7, 8 and 10). This may be due to the non-stationary nature of the stock price

data. As researchers such as Krawczyk et al. (2020) and Souza et al. (2020) describe, historical price data can be irrelevant or even harmful to fore-

cast models due to shifting data distributions. This is most evident from the fact that 7 more years of training data actually worsened the results

(compare Table 7 with Table 8), although the inclusion of more training data is very helpful in most machine learning tasks.

Only the automation of the agents was able to significantly improve the prediction accuracy. We assume that the improvements over the

static methods are due to updating the model parameters at specific points when the data distribution changed, whereas static models assume a

constant data distribution. For the Adidas stock, the MDA could be improved from 51.14%–59.32% using strategy 3 (see Figure 17) and n¼7

(parameter adjustment every 7 days). The second-best MDA of 59.27% was achieved for the Adidas stock using strategy 5 and n¼11. Thus, it

performed almost as well as strategy 3, despite requiring significantly less computing time. For the Allianz stock, strategy 5 using n¼4 was able to

improve the MDA from 48.59% to 60.31% (see Figure 18). For the BASF stock, strategy 1 with n¼20 improved the MDA from 48.99% to

58.41% (see Figure 19). It can be seen that for each stock the optimal time interval n at which the agents were updated is different (see Table 9).

This implies that for each stock the covariate shifts occurred at different times and therefore no optimal time interval n could be specified for all

stocks. This may be due to the fact that stock prices can also be affected by individual factors, as has been shown in some studies such as those

by Velankar et al. (2017) or Imansyah and Mustafa (2021) (Tables 10 and 11).

However, it is notable that for certain time steps n the test accuracies decreased (see Figures 17–19). This means that if an agent is trained

with stock price data from the recent past every n days, for example, it may also become unstable. This is probably because the agents have also

been updated unnecessarily, that is, the parameters have been adjusted, although the data distribution has not changed. These considerations

imply that answering the question at which intervals DQNs should be updated is related to the question of when covariate shifts occur in time

series data.

This indicates a need for further research to determine when data distribution changes in time series occur.

Raza et al. (2013, 2015) have already conducted investigations into this problem and developed noteworthy methods to address it. Raza et al.

(2013) demonstrated with their first version of the method, which is based on an exponentially weighted moving average (EWMA) chart, that for

a time series with 1000 observations, all time points at which the data distribution changes can be determined for certain smoothing constants λ.

However, their first version of the method had simultaneously resolved a number of false alarms, that is, it had also named time points at

which the data distribution remained the same. Accordingly, they extended their method Raza et al. (2015) by additionally validating the time

points at which the covariate shifts were suspected using the Kolmogorov–Smirnov test for univariate time series or Hotelling's T-squared test

for multivariate time series. In this context, they demonstrated that this adjustment reduced the number of false alarms. Recent works, such as

those by Musayev et al. (2024), propose sequential algorithms for detecting changes or anomalies in multivariate time series data. These tech-

niques examine inter-channel connections, utilize dimensionality reduction through singular value decomposition, and show exceptional ability to

detect standard anomalies.

Looking at the research of Raza et al. (2013, 2015), it becomes clear why strategy 5 (see Table 4) did not prove to be the best strategy for all

stocks. This is because the methodology of the open-source framework Arangopipe is quite simple compared to the methodology of Raza et al.

(2015), which itself even raises false alarms. One issue with the methodology from Arangopipe is that it does not check whether the estimated

covariate shifts are statistically significant.

In terms of the update strategies (see Table 4), it can also be said that strategies 2 and 4 were the worst on average. Thus, it can be concluded

that avoiding unnecessary updates is better for the dynamic process. This illustrates the importance of adjusting the parameters of the models

only when the data distribution has actually changed. Because future updates could be negatively affected by useless adjustments in the past.

Regarding how many data points should be considered for parameter adjustment, the results did not provide a clear answer.
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It is suspected that taking all previous data points into account is inefficient because computation time increases significantly over time, and

not all data are likely relevant due to covariate shifts. It is possible that this question builds on answering the question of at what time points the

covariate shifts occur. If it is known at what point in time the characteristics of the data distribution changes, it is possible to determine specific

data points that are representative for the market change.

Regarding the influence of the window size on the MDA, similar results could be observed as for the results about the variation of the time

step n. Some settings for window size proved to be better for some stocks than others (see Figures 20–22). Based on the results, it can further be

concluded that higher window sizes need not lead to better results due to the consideration of more data. This is likely due to some data becom-

ing irrelevant because of market dynamics, which consequently have a disruptive effect on the agent. In conclusion, it is recommended to test

several window sizes.

It can also be observed that for certain time steps n and window sizes, the automated agents were able to improve test accuracy only for

stock data measured in weekly and daily intervals (compare Figures 23 and 24 with Figures 20 and 21). For stock price data measured in hours

(compare Figure 25 with Figure 22), the agent automation could not improve the results. Since it was generally observed that the results for both

the automatic and static DQNs worsened as the price intervals decreased (see Figures 20–22), it is assumed that this deterioration is due to fluc-

tuations in investor sentiment having a greater impact in smaller price intervals, thereby increasing the unexplained variance. This assumption is

simultaneously consistent with Shah et al. (2020) claims that the stock market is more predictable and has less noise in the long run. To empirically

verify this hypothesis, a follow-up study could examine whether the distribution of stock price data changes more frequently over time for smaller

price intervals than for larger price intervals.

It is also evident that the test accuracies decrease for nearly all window sizes compared to the validation accuracies (see Figures 20–22). This

is due to the fact that the parameters of the model were adjusted on the basis of the validation data and the test data may have an even less simi-

lar distribution to the training data than the validation data due to the existing market dynamics. Guo et al. (2018) also observed this when they

realized that the accuracy of their static models had decreased over time.

Nevertheless, it must also be mentioned that our method also has a significant drawback. Our method has a much higher computation time

than conventional methods where you train the model only once based on training data. In our method, the parameters of the model are adjusted

n times, which increases the effort. And this higher effort does not always lead to better results, as we can also make unnecessary updates due to

poor methods for determining covariate shifts or biased data. The comparison with previous systems (see section 5.7) has also shown that our

results are relatively modest, highlighting the need to expand our approach by considering additional factors.

Furthermore, a serious limitation of our study is the lack of previous research studies on our exemplary defined method and selected data.

This makes our work less comparable. Further research is therefore needed in this area. Another limitation is that not many more stocks could be

analysed, which might have made the results more accurate and representative. The problem with many more stocks would have been that the

calculation times for our intensive investigations would then no longer have been acceptable, as the calculation times for our few stocks already

amounted to several weeks despite the use of the chargeable TPU from Google Colab Pro+.6 However, future studies would not need to take so

long, as their studies can build on ours, as they do not need to perform all of our preliminary research and test variants in terms of update strate-

gies, window sizes or stock data intervals. For example, they would not have to update the model every n days and try different strategies, but

only when covariate shifts occur.

During the course of the study, some notable additional insights were also gained, such as that Duelling DQNs can lead to good results when

combined with a self-normalizing network architecture, or that the benefits of DRQNs do not necessarily outperform those of DQNs. During

training, the DRQNs actually exhibited negative reward sums (see Figure A1), unlike the DQNs.

It is possible that the ability of the LSTM model to remember information over time could cause the DRQN models to remember irrelevant

information due to covariate shifts and noise. Approaches to the correctness of the assumption can be validated by studies such as that of Elliot

and Hsu (2017). They showed that the martingale model, whose prediction of the next value is based solely on the current value, outperforms the

LSTM models in predicting the S&P 500 index.

7 | CONCLUSIONS AND FUTURE WORK

Automating machine learning models demonstrates significant potential for improving stock price forecasting accuracy, as demonstrated by this

study and other related research. This highlights the need for models to dynamically adjust to market fluctuations, emphasizing the critical impor-

tance of timely updates.

After thorough analysis and discussion of our findings, we concluded that updating models at fixed intervals may not effectively capture mar-

ket dynamics. This inefficiency arises because data distributions can shift unpredictably, and unnecessary adjustments to parameters can destabi-

lize the model, leading to poor performance. Therefore, we recommend an adaptive update interval. Adjusting parameters only when significant

shifts in covariates are detected is crucial for improving the accuracy of stock price predictions. Accordingly, there is a need to combine rapidly

adaptable models, such as DQNs, to capture changing market dynamics with methods to determine when covariate shifts occur. Methods such as
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those of Raza et al. (2015) can be used, in which statistical procedures are additionally used to test whether the assumption of a shift in the data

distribution is significant, or as in Musayev et al. (2024), where sequential algorithms are employed to incorporate inter-channel connections in

multivariate time series. If the exact timing of market changes can be determined, timely decisions can be made regarding the initiation of

adjustments.

Building on this, our approach should be further explored by incorporating additional stocks and features. This will enhance the understanding

of automated deep reinforcement models as this field of research continues to expand. As more results emerge, we will gain a clearer insight into

their potential.

As mentioned in the discussion, our methodology can be improved by employing more efficient methods to detect covariate shifts. This could

significantly enhance the results by further reducing unnecessary updates and increasing the frequency of necessary updates when covariate

shifts occur. In our opinion, this is the most crucial aspect for improving this method.

We do not dismiss the possibility that more efficient methods for automating the models exist; however, updating the parameters when a sig-

nificant covariate shift occurs appears to be the most plausible approach. Therefore, we encourage other researchers to explore alternative

methods if they have innovative ideas.

For future research, we recommend incorporating additional characteristics to reduce high unexplained variance, specifically by including

behavioural datasets. Many researchers (Breaban & Noussair, 2018; Duxbury et al., 2020; Jin et al., 2019) emphasize the importance of investor

sentiment in stock price prediction. We believe that the detection of covariate shifts can become more accurate with the inclusion of more behav-

ioural datasets. Additionally, our approach can be enhanced with further methodological components and integrated into a larger system, poten-

tially utilizing multi-agent systems as described by Li and Hai (2024).

After developing an efficient dynamic model, we recommend avoiding the mistake of evaluating the profit and risk of the trading strategy

based solely on prediction results, as other studies have done according to Jiang (2021). Instead, we should leverage the advantage of reinforce-

ment learning described by Singh et al. (2022), which integrates the prediction problem with the portfolio structuring task. This approach allows

us to account for factors such as transaction costs, which, in combination with a robust adaptive model, leads to successful automated trading.
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APPENDIX A

A.1 | FIRST PRELIMINARY INVESTIGATION

TABLE A1 Validation accuracies of all possible model combinations.

Model

Adidas Allianz BASF

DQN
(%)

Double
DQN (%)

Duelling
DQN (%)

DQN
(%)

Double
DQN (%)

Duelling
DQN (%)

DQN
(%)

Double
DQN (%)

Duelling
DQN (%)

Model

1

55.81 53.10 53.87 54.65 56.58 56.91 54.26 56.20 55.03

Model

2

56.97 56.17 56.20 57.75 57.36 58.13 50.77 57.21 57.25

Model

3

57.36 58.52 56.97 59.68 56.20 59.38 60.07 58.52 59.93

Model

4

59.30 58.13 61.24 57.36 58.91 59.68 56.97 56.20 56.97

F IGURE A1 Reward during training for the DRQNs.

F IGURE A2 Mean directional accuracy during validation for the DRQNs.
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APPENDIX B

B.1 | SECOND PRELIMINARY INVESTIGATION

F IGURE B1 Reward during training with the extended training data and the best models.

F IGURE B2 Mean directional accuracy during validation with the extended training data and the best models.
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