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Number and dissimilarity of global change
factors influences soil properties and
functions

Mohan Bi1,2,5, Huiying Li1,2,5, Peter Meidl1,2, Yanjie Zhu1,2, Masahiro Ryo 3,4 &
Matthias C. Rillig 1,2

Soil biota and functions are impacted by various anthropogenic stressors,
including climate change, chemical pollution ormicroplastics. These stressors
do not occur in isolation, and soil properties and functions appear to be
directionally driven by the number of global change factors acting simulta-
neously. Building on this insight, we here hypothesize that co-acting factors
with more diverse effect mechanisms, or higher dissimilarity, have greater
impacts on soil properties and functions.We created a factor pool of 12 factors
and calculated dissimilarity indices of randomly-chosen co-acting factors
based on themeasured responses of soil properties and functions to the single
factors. Results show that not only was the number of factors important, but
factor dissimilarity was also key for predicting factor joint effects. By analyzing
deviations of soil properties and functions from three null model predictions,
we demonstrate that higher factor dissimilarity and a larger number of factors
could drive larger deviations from null models and trigger more frequent
occurrence of synergistic factor net interactions on soil functions (decom-
position rate, cellulase, and β-glucosidase activity), which provides mechan-
istic insights for understanding high-dimensional effects of factors. Our work
highlights the importance of considering factor similarity in future research on
interacting factors.

Global change factors (GCFs) induced by human activities have a
significant impact on soil physicochemical properties, process
rates, and microbial communities in diverse terrestrial
ecosystems1. The effect of individual GCFs on soil properties and
functions have been the focus of many prior studies. For example,
salinity reduces the availability of soil nutrients and has negative
impacts on soil microbial activities2, pesticides can pose adverse
effects on non-target soil organisms3, and drought affects soil
processes by directly stressing soil organisms and indirectly by
hindering substrate transport4. The multitude of GCFs collectively
gives rise to concerns about soil ecosystem health.

Only a few studies have addressed the effects at a high-
dimensional factor level with concurrent effects of a larger number
of factors. A systematic mapping showed that fewer than 2% of
experimental studies have explored the combined effects of three or
more factors in the context of soils1. One of the main obstacles for
studying joint effects of multiple factors at a time is the combinatorial
explosionproblem5. For traditional factorial designs,when the number
of factors increases, the number of possible factor combinations will
increase rapidly, meaning that such designs including a large number
of factors are not feasible in ecology. To overcome this experimental
challenge, recent studies investigating the effects of multiple factors
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followed an approach involving randomly selecting factors
from a predefined factor pool; such a design avoids factor combina-
tion problems without losing generalizability1,6,7. Using this experi-
mental approach addressed a general feature of multiple GCFs—the
number of co-acting factors—which has been shown to directionally
drive the effects of co-acting multiple factors on plants8, soil
ecosystems1 and the plant community6,9. Another study also indicated
that the increasing number of factors diminished the functions of soil
microbial diversity7. However, in general, our knowledge about
mechanisms underpinning the effects of multiple co-acting GCFs is
still limited.

To gain more insights into this high-dimensionality problem,
studies have highlighted the importance of ordering and classifying
GCFs from trait-based perspectives10–12. In previous studies, factors are
usually grouped by their sources instead of considering their effect
mechanisms and ecological-scale dependency12. Recently, an a priori
factor classification system has been introduced, using inherent traits
(physical, chemical, and biological agents) and theoretical effects
(effect mechanism, targets, and key properties) of 30 different
anthropogenic factors10. Building more comprehensive factor classifi-
cation systems may enable extracting features from factor traits to
predict general patterns of multiple GCF effects. In this context, factor
dissimilarity is a plausible feature that can be generated frommultiple
available factor traits and may capture patterns of high-dimensional
effects11. However, the role of factor dissimilarity in driving the effects
of multiple GCFs has never been investigated experimentally.

Another important feature of themultiple co-acting GCF effects is
the nature of factor interactions. Across marine and terrestrial eco-
systems, many studies found that when two or more factors are pre-
sent, the combined effects often differ fromwhat is expected based on
the single factor effects13–15. The interactions between factors are
defined as antagonistic when combined effects are less than expected,
while synergistic interactions cause combined effects larger than
expected effects. Although understanding interactions among factors
is crucial for prioritizing ecosystem stressor management, when more
than three factors are acting simultaneously, testing every pairwise
factor interaction or high-order interaction is extremely challenging
unless every factor combination has been separately replicated16. In
this case, revealing the overall net interactive effects of multiple GCFs
is amore practical solution and can also indicate potential interactions
among multiple GCFs. Nevertheless, there is still a lack of established
methods for identifying the net interactions for multiple co-acting
GCFs and insufficient knowledge about the potential mechanisms
underpinning such effects.

In this work, we aim to investigate the joint effects of multiple
GCFs on soil properties and functions, examining the effects of num-
ber of factors and dissimilarity of GCF combinations. We present a
microcosm experiment (Fig. 1) with 2, 5, and 8 factor levels to test the
following hypotheses: (i) factor dissimilarity can help predict soil
biological and ecological responses to multiple co-acting GCFs in
addition to the number of factors; (ii) a larger dissimilarity among
factors or larger number of factors will cause greater deviation of joint
effects on soil properties and functions from expected effects; (iii)
factor dissimilarity or number of factors may drive the emergence of
factor interactions (synergistic or antagonistic).

Results
Effects of individual factors on soil functions and properties
The 12 single factors, our factor pool, produced a variety of responses
on soil properties and functions, including positive, neutral and
negative trends (Fig. 2a(1)–a(3) and Fig. 3a(1)–a(4)). However, none of
the 12 single factors had significant effects on soil decomposition rate
and four soil enzyme activity (Supplementary Data 1). Salinity and
drought caused soil pH to increase (P =0.019 and <0.001, respectively,
Supplementary Data 1), while decreasing the proportion of water-

stable soil aggregates (WSA) (P = 0.021 and 0.042, respectively, Sup-
plementary Data 1).

Effects of multiple co-acting GCFs on soil functions and
properties
The simultaneous effects of multiple factors on soil functions and
properties changed directionally with an increase in the number of
factors.Whenmultiple factorswere applied,WSA (P <0.001 for all of 2,
5, and 8 factor groups) decreased (Fig. 2a(3), Supplementary Data 2),
while soil pH (P <0.001 for all of 2, 5 and 8 factor groups) increased
compared to control (Fig. 2a(2), Supplementary Data 2). Soil decom-
position rate decreased only in the eight-factor group (P = < 0.001)
(Fig. 2a(1), Supplementary Data 2). Activity of β-glucosidase increased
in all three factor groups (P =0.015 for 2 factor group, P <0.001 for 5
and 8 factor groups) (Fig. 3a(3), Supplementary Data 2). Phosphatase
activity did not change in any factor group, while activity of N-acetyl-
glucosaminidase and cellulase increased in 5, 8 factors groups and 8
factors group, respectively (P = 0.017, 0.002 and 0.008, respectively)
(Fig. 3a(1) and a(2), Supplementary Data 2).

Correlations of soil property and function responses to co-
acting GCFs with factor dissimilarity
We used spearman correlation analyzes to show the changing
trendof soil property and function responses along factor dissimilarity
index range within each factor level. Factor dissimilarity was positively
associated with soil pH, but negatively associated with WSA
and soil decomposition rate (Fig. 2b(1)–d(3)). Soil enzymatic activity
was positively correlated with the factor dissimilarity index
(Fig. 3b(1)–d(4)). However, the correlation of soil responses with the
factor dissimilarity index could be caused by the artefact that factor
combinations with larger dissimilarity indices also have a higher
chanceof including the factorswith extreme effect size. Therefore, the
correlation analysis alone is insufficient to evaluate the true effect of
factor dissimilarity.

Hypothesis testing by hierarchical modeling framework
To test the possible drivers (number of factors and factor dissimilarity)
of the variability of soil responses to simultaneously acting multiple
factors and to separate the factor identity contribution, a hierarchical
modeling framework was implemented based on machine learning
and generalized linearmodel (GLM) algorithms (Supplementary Fig 2).
To separate the contribution of factor identity, we first built the
baseline model by predicting the soil functions and properties using
the three null model predictions (i.e., predicted responses calculated
by the responses of single factor treatments based on additive, mul-
tiplicative and dominative null model algorithms). Then, we tested the
effect of factor dissimilarity and number of factors by adding addi-
tional predictors on the basis of the baseline model. The contribution
of each predictor was evaluated by the increment of an R-squared
value for RandomForest (RF)models andby comparing the changes of
model AIC for the GLM.

The hierarchical modeling results based on the random forest
algorithm showed that adding the number of factors improved the
model R2 for soil decomposition rate and three types of soil enzymatic
activity (cellulase, β-glucosidase and phosphatase) (Fig. 2e(1),
Fig. 3e(1)–e(4), Supplementary Data 3 and 4). Adding the dissimilarity
indices further improved the model R2 largely for soil decomposition
rate and four types of soil enzymatic activity (Figs. 2e(1), 3e(1)–e(4),
Supplementary Data 3 and 4). The permutation-based random forest
approach also indicates that the importance of number of factors is
significant for predicting soil decomposition rate and three types of
soil enzymatic activity (cellulase, β-glucosidase and phosphatase), and
factor dissimilarity index is significant for predicting all the soil
responses except for WSA (Supplementary Data 5). The hierarchical
modeling based on the GLM algorithm also showed similar results as
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the RF models (Supplementary Data 7 and 8). Collectively, both
machine learning and GLM algorithms indicate that the number of
factors and factor dissimilarity are important predictors for the
variability of soil responses to multiple GCFs.

Emergence of factor net interactions in multiple-factor
treatments
We developed a methodology to assess the emergence of GCF inter-
actions based on the deviation of soil responses from null model
predictions (see methods and Fig. 4). Based on this approach, we
identified the net interaction type of 150multiple-factor treatments for
each soil response. At the two-factor level, net interaction represents
pairwise interaction. When the number of component factors is more
than two, net interaction represents the overall effect of all pairwise
interactions and higher-order interactions among factors. For soil
decomposition rate, soil cellulase and β-glucosidase activity, based on
three null model predictions, more synergistic net interactions
emerged when the factor dissimilarity index increased (Fig. 5a(1)–a(3)
and Fig. 6b(1)–b(3) and c(1)–c(3)). Across three number of factor levels,

no obvious change of the emergence of factor net interactions was
observed (Supplementary Figs. 4 and 5).

To evaluate the drivers of factor interactions, we assessed the
standardized deviations of soil responses from three null model pre-
dictions across the dissimilarity range and three factor levels, respec-
tively. From the three null models, the model with the smallest sum of
squared deviations (SSD) is used for estimating the deviation for each
soil response. For soil decomposition rate, the additive model has the
smallest SSD, while the dominative models have the smallest SSD for
soil pH andWSA. For soil enzymatic activity, themultiplicative models
have the smallest SSD, except for cellulase activity (dominativemodel)
(Supplementary Data 9). The standardized deviation of soil decom-
position rate from additive model predictions is correlated with the
factor dissimilarity index, with synergistic interactions becomingmore
frequent with higher dissimilarity (Fig. 5). The standardized deviation
of cellulase and β-glucosidase activity from the null models with the
smallest SSD also show correlations with factor dissimilarity index,
with more frequent synergistic interactions appearing with higher
dissimilarity (Fig. 6). The soil decomposition rate responses to eight-
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Fig. 1 | Experimental design and analysis workflow. a The design of the multiple
factor experiment. There were 20 replicates for the control; 10 replicates for water
control (without adding organic solvents); 8 replicates for single GCFs; 50 repli-
cates for each factor level in the multiple factor group; the total number of
experimental units = 20+ 10 + 8× 12 + 3× 50= 276. Factor combinations in 2, 5, and

8 levels are randomly selected from the full combinations by drawing 2, 5, and 8
factors from the 12 factors pool without repetition. b Analysis workflow. The nor-
malized dissimilarity index for each multi-factor treatment is calculated based on
the Euclidean distances among single factors and the randomly selected factor
combinations. c Experimental microcosm and response variables measured.
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factor treatments deviate significantly from the additive model (Sup-
plementary Fig. 4), and also the soil enzymatic activity responses to
higher number of factor treatments show significant deviation from
the null models with the smallest SSD(Supplementary Fig. 5). These
results suggest that the joint GCF effects on soil properties and func-
tions deviate from null model predictions, and the number of factors
and factor dissimilarity may drive the occurrence of more synergistic
factor interactions.

Discussion
By assessing soil ecological responses to a large set of factor combi-
nations (150 different factor combinations) at three different factor
levels (2, 5, and 8), our study suggests that, in addition to the number
of factors, factor dissimilarity also drives the effects of multiple GCFs.
Our study supports previous findings that the number of co-acting
factors affects soil responses toGCFs1,7. As hypothesized, (i) the effects
of factor dissimilarity played an important role in predicting the
variability of soil responses to multiple GCFs; (ii) a larger dissimilarity
among factors or larger number of factors will cause greater deviation
of joint effects on soil properties and functions from null models; (iii)
co-acting factors with higher dissimilarity tend to have more syner-
gistic interactions. This provides a mechanistic perspective for pre-
dicting the joint effects of multiple GCFs on soil properties and
functions and highlights the importance of systematically under-
standing the properties and mode of action of single GCFs. Our

findings also open opportunities towards improving management
approaches; management should prioritize local GCFs not just in
terms of the most severe factor(s), but should also take into account
factor dissimilarity building on known factor traits (Supplemen-
tary Fig S8).

Separating factor identity effects in multiple GCFs studies
A simultaneous manipulation of a large number of factors (usually
more than six) is needed in multiple factor research to test general
rules for multiple factor effects. However, the factor identity effect
cannot be ignored, as it may drive contradictory results. The concept
of “species identity effect” has been first raised in biodiversity studies
for separating it from the diversity effect17,18. Similarly, in multiple
factor studies, factors following the design we use here are randomly
chosen from a factor pool. When the number of selected factors
increases, there is also an increasing probability of including single
factorswith extremely strong effects in high-level factor combinations.
This higher chance of including extreme factors in the higher number
of factors group results in a “GCF-number effect” but this effect is not
due to the number of factor effects, but an increased rate of selecting
extreme single factors. When testing the effect of factor dissimilarity,
similarly, because the factor dissimilarity index is calculated based on
the single factor effects, a GCF with more extreme effect on soil
properties and functionswill also have larger effect ‘distances’ to other
GCFs.Therefore, a factor combination that includes the extreme factor

Fig. 2 | Response of different soil properties to global change factors applied
singly or in different numbers of factors (2, 5, and 8 co-acting factors). For each
soil property [a(1)–e(1), a(2)–e(2) and a(3)–e(3)], effect sizes of single factors (n = 8)
andmultiple factor groups (2, 5 and 8 factors, 50 treatments included in each factor
group) were estimated [a(1)–(3)], then the correlations of soil property responses
to the normalized factor dissimilarity index are shown in scatter plots [b(1)–d(1),
b(2)–d(2) and b(3)–d(3)], Spearman correlation coefficients and significance of

correlations are indicated by r and p, respectively. The statistical test usedwas two-
sided. [e(1)–(3)] show the soil response variability explained by Random Forest
models (R2). Added predictors represent the contributions of factor identity effect,
number of factors, factor dissimilarity, and factor composition to the model
explanatory rate. Points are the mean values and the error bars are their 95%
confidence intervals (CI) (permutation n = 1000) (see Supplementary Data. 3).
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is likely to have stronger combined effect and at the same time has a
relatively larger dissimilarity index. In this case, the correlations
between factor dissimilarity indices and soil properties and functions
could be only caused by the higher selecting rate of extreme factors,
and are insufficient to support the effect of factor dissimilarity. Thus,
an appropriate statistical method is needed for disentangling the
effect of factor number and dissimilarity from the factor identity
effects.

Althoughonly a few studies onmultipleGCFs have assessed factor
identity effects8,9, attempts have been made in some studies to use
bothparametric andnonparametricmethods1,6. Inspiredby identifying
contributions of species identities, previous work has employed a
hierarchical diversity-interaction modeling framework based on linear
mixed-effects models to assess the contribution of GCF identities by
ANOVA tests6. But the limitation of traditional statistical models is that
they lack the power to capture unknown nonlinear patterns of the
hypothesis in higher dimensionality19. Another way to identify the

individual factor contribution is comparing observed effects with
effects predicted by null models. Null models assume that there are no
interactions among factors20, thus the predictions of null models can
be viewed as the combinations of single factor effects. To better deal
with potential nonlinear relationships, a previous study explored the
potential to combine machine learning algorithms with null model
predictions to address the effects of factor number and todifferentiate
the factor identity contribution1. In our study, since null model pre-
diction results have been integrated as the baseline models in the
hierarchical modeling framework, the increase of the model predict-
ability from baseline models can be interpreted as the contribution of
factor number effect or factor dissimilarity effect other than the factor
identity effect. Additionally, we further analyzed the change of stan-
dardized deviation of factor joint effect from the best-fitting null
model across the dissimilarity index range, and indicated the direction
of deviations (the types of the emergent interactions). In this way, the
effect of factor dissimilarity can be depicted by both the explained

Fig. 3 | Response of different soil enzyme activity to global changing factors
applied singly or in different numbers of factors (2, 5, and 8 co-acting factors).
For each soil enzymatic activity [a(1)–e(1), a(2)–e(2) and a(3)–e(3)], effect sizes of
single factors (n = 8) and multiple factor groups (2, 5 and 8 factors,50 treatments
included in each factor group) were estimated [a(1)–(3)], then the correlations of
soil enzymatic activity responses to the normalized factor dissimilarity index are
shown in scatter plots [b(1)–d(1), b(2)–d(2) and b(3)–d(3)], Spearman correlation

coefficients and significance of correlations are indicated by r and p, respectively.
The statistical test used was two-sided. [e(1)–(3)] show the soil response variability
explained by Random Forest models (R2). Added predictors represent the con-
tributions of factor identity effect, number of factors, factor dissimilarity, and
factor composition to the model explanatory rate. Points are the mean values and
the error bars are their 95% confidence intervals (CI) (permutation n = 1000) (see
Supplementary Data. 4).
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variability increased from the baseline model and the changes of
standardized deviation of soil responses from null models, but not
directly from the correlation of factor dissimilarity with soil responses.
For example, in our study, soil pH is strongly associated with factor
dissimilarity, but the correlation is mostly caused by the contribution
of extreme factors, because the baseline model can explain 85.4% of
the response variability and adding other predictors hardly increase
model R squared (Fig. 2b(2)–e(2) and Supplementary Data 7). WSA is
also negatively correlated with the dissimilarity index. However, from
the standardized deviation analysis of WSA from the dominative null

model prediction, we find the WSA responses are mostly subjected to
the dominative model and there is no correlation between factor dis-
similarity and standardized deviation from the dominative model
(Fig. 5c(3) and Supplementary Data 9). Because the factor identity
effect caused contradictory results, we suggest separating factor
identity effects from other effects driven by multiple GCFs. Our study
also provides a practical method to evaluate the contribution of factor
identity effects and it should be used as the baseline for testing other
hypotheses in future multiple GCFs studies based on randomly-drawn
factors.
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The role of factor dissimilarity in driving the emergence of GCF
interactive effects on soil properties and functions
We found increased emergence of synergistic factor interactions on
soil decomposition rate, soil cellulase and β-glucosidase enzymatic
activity when factor dissimilarity increases. By analyzing the deviation
of factor joint effects from the best-fitting null model predictions
across the dissimilarity index range, we found that factor dissimilarity
drives the interactions of multiple GCFs towards a more synergistic
direction (Figs. 5a(1), 6b(3), c(2)). Our finding indicates that factor
dissimilarity underpins the interactive mechanisms of GCFs on soil
properties and functions.

The role of factor dissimilarity in driving the interactive effects of
multiple GCFs could be due to three distinct mechanisms. Firstly,
factors that differ in their physicochemical nature may be more likely
to have direct interactions compared to factors with the same physi-
cochemical nature. These direct factor interactions are only related to
the physical or chemical properties of the factor itself, without con-
sidering how they affect soil organisms and processes21. For example,
drought can interact with other chemical factors as a concentration
amplifier22, and surfactants can increase the solubility or movement of
organic pollutants23. Direct factor interactions usually amplify the
intensity of single factors and, thus, the emergence of synergistic
effects of high-dissimilarity multiple factors may be derived from the
occurrences of direct factor interactions.

Secondly, factor dissimilarity may play a role in affecting species
adaptation to amultiple-GCF environment. Performance trade-offs are
common when populations are exposed to multiple-factor
environments24,25. Based on the pareto optimality theory, species
cannot optimize adaptation to multiple factors at the same time26,27.
When factors are more dissimilar, these trade-offs would be larger,
leading to a lower overall adaptation performance to the multiple-
factor environments. By contrast, when the effects of factors are
similar, the adaptation strategyof a population toone factor could also
allow its adaptation to another factor by applying the same genetic or
metabolic responses (e.g., cross-protection)28,29.

Thirdly, factor dissimilarity could reshape the co-tolerance space
of species to multiple factors. In the co-tolerance theory framework,
the resistance of a community to multiple-stressor environments is
affected by the relatedness of species’ tolerances to different
stressors30. If species tolerances to stressors are positively correlated,
the overall species loss will be less than if the tolerances are unrelated,
but if species tolerances to stressors are negatively correlated, more
species (and the functions they drive) will be lost in multi-stressors
environments.Whenmultiple factors are quite different, theirmode of
action or target species range might also be different. From the per-
spective of the community, species tolerances to factors would be
more negatively correlated. In this scenario, more species from the
community are likely to be lost whenmore dissimilar GCFs are applied

simultaneously. Biodiversity loss likely leads to reduced ecosystem
functions (e.g., litter decomposition rate) based on biodiversity
insurance theory31; this may explain why there aremore synergistically
negative effects on soil decomposition rate when factor dissimilarity
indices are higher (Figs. 5 and 6).

Our study investigated the effects of factor dissimilarity on soil
properties and ecological functions, suggesting that factor dissim-
ilarity can drive more frequent occurrence of synergistic effects on
several soil functions. Future work should address the effects of factor
dissimilarity at different levels of the ecological hierarchy (organism,
population and community levels), or the temporal variation in effects
of factor dissimilarity. Incorporating the effect of factor dissimilarity in
futuremultipleGCFs studieswill behelpful for estimating effects of co-
acting GCFs and may be useful in informing protocols for ecosystem
management and restoration.

Methods
Experimental design
The experiment was set up with a GCF pool that includes 12 factors:
salinity, drought, microplastic, fungicide, herbicide, antibiotic, insec-
ticide, surfactant, nitrogen deposition, heavy metal pollution, per-
fluoroalkyl and polyfluoroalkyl substances (PFAS), lithium. The
selected factors were chosen from the most frequently occurring
anthropogenic factors in soil ecosystems subject to intense human
influence32,33, and differ in intrinsic features (physical, chemical etc.)
and effectmechanisms (mode of action, effect targets etc.) in affecting
soil properties and functions10,11. Detailed information about the
selected GCFs is presented in the supplementary information. On the
basis of previous experimental designs1,34,35, three multi-factor levels
(2, 5 and 8 factors, 50 replicates) were created by a random factor-
selection method. To achieve this, first, complete sets of factor com-
binations for each factor level were generated (e.g., for the 5 factor
level, there were in total 792 different factor combinations for
choosing 5 factors from a 12 factor pool). Then we randomly selected
50 factor combinations from all the possible combinations at each
factor level without replacement to avoid selecting repeated factor
combinations. Furthermore, we set up single factor treatments with 8
replicates for each factor and the control group including 20 repli-
cates. Finally, to test for the effects of organic solvents (dimethyl
sulfoxide (DMSO) and acetone) used to apply chemical GCFs (fungi-
cide and herbicide) on soil properties and functions, we included 10
additional replicates (water control) that received the same rate of
water instead of organic solvent in the experiment. Collectively, we
had (50× 3) + (12×8) + 20 + 10 = 276 units in our experiment (Fig. 1a).

Soil preparation and incubation system
The soil used in the experiment was collected in February 2022 from
a local grassland at an experimental site of Freie Universität Berlin

Fig. 4 | Calculating soil response deviation from null model prediction and net
interaction type classification for 150 multi-factor treatments. a Treatments in
the experimental design. Single factor treatments are shown in blue ovals. Each
multi-factor treatment is shown by a red oval. The subscript of a multi-factor
treatment indicates the component factors. b Interaction type classification
workflow for multi-factor treatments. The workflow includes two parts: (1) esti-
mating the joint response distributions of component factors of multi-factor
treatments; (2) identifying the net interaction type for multi-factor treatments. For
illustration purposes, one two-factor treatment (includes factor A and B) is taken as
an example. In Step 1, we resampled from each control, single factor A and B
treatment with replacement to generate Ci, TAi and TBi. Then, in Step 2, mean
values of each resampled treatment (ci, tai and tbi) are calculated. In Step 3,
absolute effect sizes from control (Zai and Zbi) for A and B single factor treatments
are calculated. In Step 4, combined effect size of A and B (Zi) are calculated
depending on different null model assumptions (additive, multiplicative or dom-
inative). Then the control mean is added to Zi to generate predicted joint response

(Ti). Steps 1-4 are repeated K times to generate the distribution of the predicted
joint response of factor A and B. Then in Step 5, we compared the actual joint
response of factor A and B (TMab) to the predicted response distribution. If the
actual observation fitted within the 95% confidence intervals (CIs) of prediction
distribution, then it was regarded as no net interaction. If it did not fit, then we
calculated the rescaled Deviation from Null model prediction (DN). Then we clas-
sified the net interaction type based on the rescaled DN. c Visualization of the
rescaled DN and net interaction types of 150 multi-factor treatments. d Statistical
analysis of rescaled DN of soil response across factor dissimilarity index and in
three different number of factor groups. Two-sided t-tests were performed for
three factor groups. Asterisks represent the statistically significant difference of
treatment group from zero (n = 50): ***P <0.001, **P <0.01, *P <0.05. Boxplots
showing the distribution of deviations across factor groups. The box spans the
interquartile range (IQR) with the median indicated by the line inside. Whiskers
extend to theminimum andmaximumwithin 1.5 times the IQR. Outliers are shown
as dots.
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(52° 28′ N, 13° 18′ E, Berlin, Germany) with a sandy loamy texture. A
sandy loamy texture refers to soil that contains a balanced pro-
portion of sand, silt, and clay particles, with sand being the pre-
dominant component. Before the start of the experiment, the soil
was air dried and passed through a 2mm sieve to remove large
stones and big grass roots. To prepare the “loading soil” for the
factor implementation, one eighth of the air-dried sieved soil was
sterilized at 121 °C for 20min. Loading soil was used to more

effectively mix small amounts of chemicals into the experimental
units; it was sterilized to avoid large local effects of concentrated
chemicals on soil microbes.

The experimental unit was a 50mL mini-bioreactor (Product Nr:
431720, Corning®, USA) with a vented film, which allows gas exchange
but prevents microbial contamination (Fig. 1c). Inside the bioreactor
we added 40.0 g (dry weight, d.w.) soil with the respective GCF
treatments.

Fig. 5 | Correlation between rescaled deviation of soil responses (decomposi-
tion rate, soil pH andWSA) from three null model predictions and normalized
dissimilarity index. a(1)–c(3) Scatter plots show the standardized deviation of soil
responses from null model predictions for multiple-factor treatments. Net inter-
action type of eachmultiple-factor treatment is marked as different colored points
(antagonistic, blue; synergistic, red; no interaction, gray). The better-fitting null
model for each soil response has been selected based on the smallestmodel sumof

squared deviation (SSD), and it is indicated by the bold frame [a(1), b(3) and c(3)].
The correlations between standardized deviation of soil responses fromnullmodel
predictions and normalized dissimilarity index are shown in linear correlation with
95% confidence intervals (CIs). The statistical test used was two-sided. Spearman
correlation coefficients and significance of correlations are indicated by R and p,
respectively.
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Fig. 6 | Correlation between rescaled deviation of soil enzymatic activity from
three null model predictions and normalized dissimilarity index. a(1)–d(3)
Scatter plots show the standardized deviation of soil enzymatic activity from null
model predictions for multiple-factor treatments. Net interaction type of each
multiple-factor treatment ismarked as different colored points (antagonistic, blue;
synergistic, red; no interaction, gray). The better-fitting null model for each soil
enzymatic activity has been selected based on the smallest model sum of squared

deviation (SSD), and is indicated by the bold frame [a(2), b(3), c(2) and d(2)]. The
correlations between standardized deviation of soil enzymatic activity from null
model predictions and normalized dissimilarity index are shown in linear correla-
tion with 95% confidence intervals (CIs). The statistical test used was two-sided.
Spearman correlation coefficients and significance of correlations are indicated by
R and p, respectively.
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Implementation of GCFs and harvest
We included 12 GCFs in the factor pool: salinity, drought, microplastic,
fungicide, herbicide, antibiotics, insecticide, surfactant, nitrogen
deposition, heavy metals, PFAS and lithium. We used 30% water
holding capacity to represent the drought treatment, while other units
kept 60% water holding capacity for the entire incubation period1. To
simulate a copper contamination spot, we added copper using Copper
(II)- sulfate- pentahydrate (CAS: 7758-99-8) in distilled water to reach a
final concentration of 100mg Cu/ kg dry soil1. For microplastic treat-
ment, we picked tire wear particles as themicroplastic pollution with a
concentration of 0.1% (w%w)36. To simulate the annual N accumulation
rate of 100 kgNha−1 yr-11, we assumed that the surface 10 cmdepth soil
acted as the recipient of all N deposition. We used a one-time addition
method to add dissolved form of ammonium nitrate (>98%, p.A., ACS.
Roth GmbH, Karlsruhe, D. article K299.1) to reach the final ammonium
nitrate concentration of 439.6mgkg−1 in soil. For soil salinization, we
chose the 4.0 dS/m conductivity to represent a soil salinization situa-
tion with the approach of mixing solid NaCl with the soil37. For herbi-
cide treatment, we took diflufenican, a typical commercial herbicide,
with the application rate of 1.0mg/kg and dissolved it in acetone to
simulate the field application38. A field application rate of Carbendazim
(PESTANAL ® analytical standard, Sigma-Aldrich, MO, USA, catalog
#45368) at 6.0mg/kgwas selected as the application fungicide dosage
in our experiment39.We adopted the concentrationof antibiotic froma
previous experiment as 3.0mg oxytetracycline (Sigma-Aldrich, MO,
USA, catalog #PHR1537) per kg soil1. We took a moderate dosage of
50 ng g-1 dry soil imidacloprid (PESTANAL ® analytical standard, Sigma-
Aldrich, MO, USA, catalog #37894), one of the most common neoni-
cotinoid pesticides, to simulate the pollution of pesticides1. Per-
fluorooctanoic acid (PFOA) concentration in surface-soil was reported
up to 50mg/kg40. Around 1 ppm perfluorooctanoic acid (CAS: 335-67-1)
was used to simulate the existence of PFOA in agricultural soil in
Germany41,42. In the context of sandy soil, the toxicity of surfactant
occurred at a concentration of 16mgkg-1 in a field experiment43.
Therefore, we used 16mgkg-1 sodium dodecylbenzenesulfonate (CAS:
25155-30-0) to simulate a surfactant contaminated hotspot in agri-
cultural soil. In European agricultural soil, it has been reported that the
mean concentration of Li is approximately 11.4mg/kg44,45. We applied
11.4mgkg-1 lithium chloride in solution form to the soil to simulate a
Lithium contaminated soil.

To homogeneously mix GCFs with the testing soil, we added
chemical factors to 5.0 g (d.w.) loading soil first thenmixed the loading
soil with the other 35.0 g (d.w.) soil. Concentrated solutions were
prepared for everychemical factor except for salinity andmicroplastic.
Most of the chemicals we usedwere dissolved in distilledwater, except
for fungicide (carbendazim, dissolved in DMSO) and herbicide (Diflu-
fenican, dissolved in acetone). According to the designed factor
combination for each treatment, 100μL solution (water, DMSO or
acetone) carrying appropriate chemical dose for 40.0 g (d.w.) soil was
added to 5.0 g (d.w.) loading soil inside a 150mL cup. To standardize
the amount of solvents we added into every treatment, treatments
which had fewer factors, for instance, single factor treatments and
control treatments, additionally received solvents (water, DMSO or
acetone) to the same amount of solvents added in the eight factor
treatments. To further test the effects of the solvents (DMSO and
acetone) on soil properties and functions, another 10 control treat-
ments only received the same amount of distilled water. The effects of
organic solvents on soil properties and functions are shown in Sup-
plementary Fig. 6. For the experimental units that includemicroplastic
or salinity treatments, 40.0mg tire particles (1–2mm diameter) or
200.0mg sodium chloride were added into the 150mL cup accord-
ingly. Then an additional 35.0 g of air-dried soil was added to every
150mL cup. After covering with a cap, all the soil treatments were
mixed for 30min with a shaking machine (Product Nr: 541-21009-00,

Reax2, Heidolph Instrument GmbH&Co. KG, Schwabach, Germany) at
a speed of 80 rpm to achieve a homogeneous distribution. After the
mixing process, the soil-chemicalmixturewas transferred to the 50mL
mini bioreactors. For tracking the litter decomposition rate during the
experiment, a sterilized tea bag was placed vertically in the center of
the soil. Finally, distilled water was added to bring the soil water con-
tent to 60% of the soil water-holding capacity (30% of water-holding
capacity for drought treatments).

All 50mL mini-bioreactors were incubated at 25 °C in a dark
environment for 42 days. As there was on average 0.5 g weight loss
every week for each mini-bioreactor, we added 0.5mL distilled water
to each treatment everyweek to keep thewater content constant. After
42 days, all units were harvested. Soil cores were taken from the
bioreactors, the tea bags (see below) were removed and the soil of
each treatment was homogeneously mixed by a spoon in a sterilized
Petri dish for 2min. 5.0 g fresh soil was collected and stored at 4 °C for
enzymatic activity measurement, and the remaining soil was air dried
at room temperature for soil property measurements. Tea bags from
all units were collected and oven dried (60 °C) before measuring litter
decomposition rate.

Soil response variables
The soil response variables we measured in this experiment are: litter
decomposition rate, soil pH,WSA, and the activity of four extracellular
soil enzymes. The litter decomposition rate was measured and calcu-
lated using the tea bag index method46. Briefly, a sealed tiny bag (with
38μm mesh size) containing 300.0mg (d.w.) tea biomass was placed
into the soil, then the proportionalweight losswas calculated based on
the tea biomass (d.w.) inside the bag before and after the incubation.
For the soil pH, 5.0 g air dried soil wasmixedwith 25mL distilled water
within a 50mL centrifuge tube, and then the pH of the soil suspension
wasmeasured by a pHmeter (Hanna Instrument, Smithfield, USA). The
proportion ofWSAwasmeasured following amodified protocol47. The
measurements of N-acetyl-glucosaminidase (chitin degradation), cel-
lulase (cellulose degradation), β-glucosidase (cellulose degradation)
and phosphatase (organic phosphorus mineralization) activity fol-
lowed a high throughput microplate protocol48 using a microplate
reader (BioRad, Benchmark Plus, Japan).

Effect size calculation and significance test of single and multi-
ple factor groups
DatawereanalyzedwithRVersion4.1.149. For single factor andmultiple
factor groups, the effect size and95% confidence intervals (CIs) of each
group were estimated with a nonparametric bootstrap method with
10,000 permutations50. Considering the multiple testing problem, the
statistical significance of single and multiple factor effects was eval-
uated by using adjusted P-values based on the Benjamini-Hochberg
method51.

Calculating factor dissimilarity
We used the “vegan”52 R package to calculate the Euclidean distances
between all pairwise factor combinations based on the corresponding
standardized effect sizes of singly applied factors on the seven soil
properties (including four soil enzyme activity, WSA, soil decomposi-
tion rate and soil pH). Clusteringof single factorswas conductedbased
on Euclidean distance by using hierarchical clustering analysis
(“ggdendro”53 and “dendextend” R packages were used)(Supplemen-
tary Fig. 1a). Then, we used principal coordinate analysis to visualize
the distances among factors, resulting in the PCoA1 and PCoA2 axes
explaining 55.43% and 23.38% of the variation respectively (Supple-
mentary Fig. 1b).

For the multiple-factor treatments, we calculated a dissimilarity
index (DI) for each unique factor combination by adding up the
Euclidean distances between every two component factors in the
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multiple-factor treatments,

DIi =
X

j2Ni

dj ð1Þ

where DIi (i = 1,2, …, 50) is the dissimilarity index of multiple-factor
treatment’s i-th combination in a specific level of number of factors
(2, 5, and 8), dj is the Euclidean distance between the j-th two factor
pair estimated based on the single factor experiment, and Ni is the set
of all unique factor pairs of the treatment i.

To compare dissimilarity indices between different numbers of
factor levels, we normalized the dissimilarity indices of each factor
level to a range between 0 and 1 by using the “range” method of the
preProcess function from the “caret” R package54. To do this, we sub-
tract the minimum value from each dissimilarity index and divide it by
the range of the dissimilarity indices of each number of factor level.
The distributions of normalized factor dissimilarity indices in three
factor levels and the reasons for choosing the normalization method
are shown in Supplementary Fig 7.

Correlations between soil responses and factor dissimilarity
within factor levels
To show the changing trend of soil property and function responses
across the range of factor dissimilarity within factor levels, we applied
Spearman correlation analyses to the normalized dissimilarity index
and soil properties and functions in each factor level. Estimated P value
and coefficient are provided respectively for each correlation.

Predicting effects of multiple co-acting factors by null models
In ecological studies, null models are used for predicting the joint
effect of multiple factors without considering interactions55. For
commonly-usednullmodels, the additivemodel assumes that the joint
effect of multiple factors will be the sum of the effects of the single
factors, indicating that the sensitivities of the target to factors are
negatively correlated. The multiplicative model assumes that the
effects of single factors are combined by proportional change, mean-
ing that the factor sensitivities are non-correlated. In the dominative
model, the factor with the largest absolute effect overrides other fac-
tors, implying the factor sensitivities arepositively correlated. Tomake
plausible predictions of multiple-factor effects on soil responses, we
imposed three null model assumptions (i.e., additive, multiplicative,
and dominative assumption) for generating predictions for the mul-
tiple factor treatments instead of arbitrarily selecting one20. For each
null model assumption, we applied the calculation methods from a
previous study1. For each number of factors level, the unique subset of
factor combinations randomly chosen from the 12 factor pool is
denoted as An (n = 2, 5, 8). For each multiple-factor combination Km 2
An (e.g., K1 = [Microplastic, Drought], K2 = [Antibiotic, Fungicide] …,
K50 = [Salinity, PFAS]; K1, K2, … K50 2 A2), Km includes N component
factors, denoted as (Fm1

, Fm2
,… FmN

) (N = 2 forA2,N = 5 forA5,N = 8 for
A8 ). ESmi

is themeanof estimated effect sizeof the factor Fmi
observed

from the single factor treatment. In additive assumption, the predicted
effect size of factor combination Km,

Padditivem
=
XN

i= 1

ESmi
ð2Þ

Considering each set of An has 50 elements (Km), we applied a
bootstrapping method (with 1000 iterations; see Fig. 4) for each Km.
Each Km has 1000 iterated effect size predictions, in total 50,000
effect size predictionsweremade for all treatments for eachnumber of
factors level, which should be sufficient for generating reliable esti-
mates. Afterwards, themean value and 95%CIwere calculated from the
distribution of each factor combination. The same bootstrapping
procedures were used in multiplicative and dominative assumptions.

For multiplicative assumption, based on a previous method20, the
predicted effect size of factor combination Km is shown as:

Pmultiplicativem
=CT

YN

i = 1
1 +

ESmi

CT

� �
� CT ð3Þ

CT is the estimated response of the control group. For the dom-
inative null models, the predicted effect size is

Pdominativem
= ESmi

ðjESmi
j= maxðjESm1

j,jESm2
j, . . . jESmn

jÞ ð4Þ

Hierarchical modeling framework for hypothesis testing
To disentangle the contribution of possible drivers (number of factor
effect and factor dissimilarity effect) on the variability of soil proper-
ties and functions in response to multiple GCFs, a hierarchical mod-
eling frameworkwas implemented (Supplementary Fig 2). To generate
robust results, we compared the modeling results generated by both
machine learning56 and GLM. In the modeling, data from all the treat-
ments except for the controls were used. In both algorithms, to
separate the factor identity effects, the null model predictions (from
additive, multiplicative, and dominativemodels) were first included as
predictors in the baseline model (Model 1), which is regarded as the
soil response variability explained by the contributions of factor
identity. Number of factors was solely included as the predictor in
Model 2, and in Model 3 factor dissimilarity indices were included
instead. Then, on the basis of the baseline model, each soil response
was modeled by adding the number of factors or factor dissimilarity
indices as an additional predictor inModel 4 andModel 5 respectively.
Furthermore, in Model 6, both factor dissimilarity indices and number
of factors were added on the basis of the baselinemodel. Lastly, factor
composition (i.e., a binary matrix coding the features for each treat-
ment,where 1 or0 represent thepresenceor absenceof each stressor.)
was included as the last predictor for the final model (Model 7). The
formula describing each model is shown in Supplementary Data 6. In
Model 7, due to different model algorithms, factor composition has a
different meaning. For the Random Forest algorithm, the factor com-
position stands for all the information from the experimental design
(also includes the information of other predictors, e.g., number of
factors), and theoretically it can provide the best model fits. Thus, in
the hierarchical modeling framework, the factor composition is only
being added at the end to show the variability that can be explained by
the experimental treatments (the randomly-drawn factors). In the
GLM, including factor composition does not stand for the factor
identity effects and also does not have a specific statistical meaning in
this case. But for comparison to the Random Forest model, we still
provide the modeling results of Model 7.

We evaluated the variability of soil responses explained by all
seven models with model R-squared values (R2, %). To evaluate the
contribution of each model predictor, for the GLM, we compared
models by their AIC (Akaike information criterion) values based on the
ANOVA tests (Supplementary Data 7 and 8) and evaluated the increase
in model R-squared values. For the Random Forest models, the con-
tribution of eachmodel predictor was evaluated by the increase in the
model R-squared values. To address the statistical inference of pre-
dictor contributions in the Random Forest models, we used a
permutation-based random forest model approach with 1000 per-
mutations to calculate the relative importance of each predictor19,57.
Adjusted p values of relative importance for each model predictor are
shown in Supplementary Data 5.

Identify factor net interactions and quantify deviations of joint
effects from null model predictions
To understand the joint effects ofmultiple factors, interactions among
multiple factors can be evaluated by the deviation of experimental
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observation of soil responses from null model predictions58. For each
soil property or function, we identified the net interaction type of all
150 tested factor combinations. The net interaction represents the
overall effect of all interactions among component factors, including
all pairwise interactions andhigh-order interactions. For classifying the
type of the net interaction, we applied a framework for measuring
ecological stressor interaction58 and modified it for our research
objectives (Fig. 4). In our study, we first compared the observed soil
responses with the 95% CIs of null model predictions (generated by
bootstrapping method with 1000 permutation) (Fig. 4 b). Observa-
tions that fit into the 95% of the null model CIs were classified as no
interaction, others were categorized as antagonistic or synergistic net
interaction depending on the direction of the deviation. For variables
with positive responses to multiple GCFs (including four soil enzyme
activity, soil pH), observations that did not fit in nullmodel predictions
were classified as synergistic interactions when rescaled Deviation
from Null model (DN) > 0, and as antagonistic interactions when
DN<0. For negative responses (including soil decomposition rate and
WSA), they were classified as synergistic interactions when DN<0, but
as antagonistic when DN>0. Additionally, because there is still insuf-
ficient knowledge of choosing suitable null model assumptions for
higher levels of ecological organization targets (e.g., community or
ecosystem functions)59, we assessed the overall deviation of all
multiple-factor treatments from three null model assumptions (addi-
tive, multiplicative and dominative), respectively. The null model that
had the smallest sum of the squared deviation from the treatment
responses was selected as the best-fitting null model for a certain soil
response (Supplementary Data 9). To test the effects of the number of
factors and factor dissimilarity on driving factor interactive effects,
statistical analysis was implemented for standardized deviations
across the number of factor levels (Supplementary Data 10) and the
factor dissimilarity range (Figs. 5 and 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in the
Github repository, with the identifier https://doi.org/10.5281/zenodo.
13384438. Source data are provided with this paper.

Code availability
Documented code and data to replicate all analyses in this manuscript
is available from a released GitHub repository: https://doi.org/10.5281/
zenodo.13384438.
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