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Abstract 

We live in a structured world, where objects rarely exist in isolation but are often 

surrounded by similar environments. When objects consistently co-occur with certain 

objects and scene contexts, our neural systems can implicitly extract and learn such 

regularities in real-world environments. Predictive processing theories propose that our 

brains can use learned statistical regularities to predict the structure of incoming sensory 

input across space and time during visual processing. The predictions may allow us to 

efficiently recognize objects and understand scenes, thus forming coherent visual 

experiences in natural vision. 

In this dissertation, we conducted three studies to explore how our brains use real-world 

structures to create coherent visual experiences using neuroimaging techniques (EEG 

& fMRI) and multivariate pattern analyses (MVPA). Study 1 investigated how scene 

context affects object processing across time by recording EEG signals while 

participants viewed semantically consistent or inconsistent objects within scenes. The 

results reveal that semantically consistent scenes facilitate object representations, but 

this facilitation is task-dependent rather than automatic. In Study 2, we investigated 

how cortical feedback mediates the integration of visual information across space by 

manipulating the spatiotemporal coherence of naturalistic video stimuli shown in both 

visual hemifields. By analytically combining EEG and fMRI data, we demonstrated 

that spatial integration of naturalistic visual inputs is mediated by cortical feedback in 

alpha dynamics that fully traverse the visual hierarchy. In Study 3, we further 

investigated what level of spatiotemporal coherence is needed to trigger such 

integration-related alpha dynamics. The findings suggest that integration-related alpha 

dynamics have some flexibility so that they can accommodate information from videos 
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belonging to the same basic-level category. Together, the dissertation provides 

multimodal evidence demonstrating that contextual information facilitates object 

perception and scene integration, highlighting the critical role of predictions related to 

real-world regularities in constructing coherent visual experiences. 
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Zusammenfassung 

Wir leben in einer strukturierten Welt, in der Objekte selten isoliert existieren, sondern 

oft von ähnlichen Umgebungen umgeben sind. Wenn Objekte konsequent mit 

bestimmten Objekten und Szenenkontexten zusammen auftreten, können unsere 

neuronalen Systeme solche räumlich-zeitlichen Regelmäßigkeiten in realen 

Umgebungen implizit extrahieren und erlernen. Theorien zur prädiktiven Verarbeitung 

gehen davon aus, dass unser Gehirn erlernte statistische Regelmäßigkeiten nutzen kann, 

um die Struktur eingehender sensorischer Eingaben über Raum und Zeit während der 

visuellen Verarbeitung vorherzusagen. Die Vorhersagen könnten es uns ermöglichen, 

Objekte effizient zu erkennen und Szenen zu verstehen und so kohärente visuelle 

Erfahrungen im natürlichen Sehen zu bilden. 

In dieser Dissertation haben wir drei Studien durchgeführt, um zu untersuchen, wie 

unser Gehirn reale Strukturen nutzt, um kohärente visuelle Erfahrungen zu schaffen, 

indem wir Techniken des Neuroimaging (EEG und fMRT) sowie multivariate 

Musteranalysen einsetzten. Studie 1 untersuchte, wie der Szenenkontext die 

Objektverarbeitung über die Zeit hinweg beeinflusst, indem EEG-Signale 

aufgezeichnet wurden, während die Teilnehmer semantisch konsistente oder 

inkonsistente Objekte in Szenen betrachteten. Die Ergebnisse zeigen, dass semantisch 

konsistente Szenen die Objektrepräsentation erleichtern; diese Erleichterung ist jedoch 

eher aufgabenabhängig als automatisch. In Studie 2 untersuchten wir, wie kortikales 

Feedback die Integration visueller Informationen über den Raum hinweg vermittelt, 

indem wir die räumlich-zeitliche Kohärenz naturalistischer Videostimuli in beiden 

visuellen Hemifeldern manipulierten. Durch die analytische Kombination von EEG- 

und fMRI-Daten konnten wir zeigen, dass die räumliche Integration naturalistischer 

visueller Inputs durch kortikales Feedback in einer Alpha-Dynamik vermittelt wird, die 
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die visuelle Hierarchie vollständig durchläuft. In Studie 3 untersuchten wir weiter, 

welches Maß an raum-zeitlicher Kohärenz erforderlich ist, um solche 

integrationsbezogenen Alphadynamiken auszulösen. Die Ergebnisse deuten darauf hin, 

dass integrationsbezogene Alphadynamiken eine gewisse Flexibilität aufweisen, so 

dass sie Informationen aus Videos aufnehmen können, die zur gleichen Basiskategorie 

gehören. Zusammenfassend liefert die Dissertation multimodale Beweise dafür, dass 

Kontextinformationen die Objektwahrnehmung und Szenenintegration erleichtern, und 

unterstreicht die entscheidende Rolle von Vorhersagen im Zusammenhang mit 

Regelmäßigkeiten in der realen Welt bei der Konstruktion kohärenter visueller 

Erfahrungen.  
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Introduction 

 

1 Introduction 

The real world is structured. For instance, objects repeatedly co-occur with other 

objects (e.g. a computer with a keyboard) and appear in specific positions in scene 

contexts (e.g., a computer in the office). Over time, as we navigate life, information 

relating to spatiotemporal regularities in real-world environments is implicitly encoded 

in our information processing systems. Predictive processing theories cast visual 

perception as a process of probabilistic, knowledge-driven inference (Bastos et al., 2012; 

Friston, 2005; G. B. Keller & Mrsic-Flogel, 2018; Rao & Ballard, 1999; Walsh et al., 

2020). Accordingly, predictions based on learned real-world statistical regularities 

should guide our visual perception and facilitate the construction of coherent perceptual 

experiences. 

Statistical regularities may yield robust predictions regarding what objects tend to 

appear in what scenes, facilitating our object recognition and scene understanding in 

natural vision (Bar, 2004; Oliva & Torralba, 2007). For instance, we identify an object 

more quickly and accurately when it is within a consistent scene, e.g., a computer in 

the office, than within an inconsistent scene, e.g., a computer in the bathroom 

(Davenport, 2007; Davenport & Potter, 2004; Munneke et al., 2013). Statistical 

regularities also allow our sensory system to make reliable predictions about the 

structure of visual inputs across space and time (Bar, 2009; Goettker et al., 2021; 

Henderson, 2017; Kaiser & Cichy, 2021), facilitating our brains to integrate visual 

information from different locations into a whole percept. The integration enables us to 

efficiently understand the meaning of scenes and events in natural vision. In this 

dissertation, we investigated how real-world statistical regularities facilitate our brains 

to construct coherent visual experiences. 
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1.1 Predictive processing in visual perception 

In recent years, predictive processing has emerged as an increasingly influential model 

of how the brain processes sensory information. Traditionally, visual perception has 

been conceptualized as a hierarchical feedforward process, starting from light-sensitive 

cells in the retina, progressing through simple contrast and edge detectors in early visual 

regions, and subsequently forming more complex representations in higher visual areas 

(DiCarlo et al., 2012; DiCarlo & Cox, 2007; Riesenhuber & Poggio, 1999). Recent 

predictive processing theories challenge this view, casting that visual processing relies 

on the dynamic convergence of bottom-up stimulus analysis and top-down predictions 

generated by internal models (Bastos et al., 2012; Friston, 2005; G. B. Keller & Mrsic-

Flogel, 2018; Rao & Ballard, 1999; Walsh et al., 2020). Specifically, predictive 

processing theories posit that the brain contains internal generative models that 

continuously predict the sensory input it receives. These predictions are then sent to 

lower-level areas of the visual hierarchy, suppressing congruent sensory signals, and 

allowing only residual, unexplained sensory information to be forwarded to higher-

level regions as prediction errors. Subsequently, the generative models utilize these 

prediction-error signals to adjust the probability assigned to perceptual hypotheses, 

iterating across all hierarchical levels until the network achieves a coherent 

representation of the sensory input. In this framework, perception is proposed as the 

process of identifying the perceptual hypothesis that most accurately predicts sensory 

input and minimizing prediction errors. 

Recent studies provide some neural evidence supporting the predictive processing 

theories using invasive and non-invasive techniques. In the predictive processing 

framework, prior expectations may initiate stimulus-related predictions before the input 
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of sensory information (Wyart et al., 2012). In line with this, Bell et al. (2016) observed 

that the expected stimulus was decodable from neural activity in the inferior temporal 

cortex (IT) of macaques before stimulus onset, using multivariate pattern analyses 

(MVPA), in a single-unit recording study. In addition, recent studies have shown 

prediction responses in the sensory cortex when bottom-up input is absent. Kanisza 

illusion was often used, wherein the illusion is induced by circles with missing wedges 

(“Pac-Man” inducers). In a single-unit recordings study, Lee and Nguyen (2001) 

presented monkeys with illusory contours in the receptive fields of V1 and V2 neurons. 

They found that both V1 and V2 neurons responded to the illusory contours, with V2 

neurons showing consistent responses earlier. Similarly, Kok and de Lange (2014) 

reported increased neural activity in the subregion of V1 retinotopically corresponding 

to the illusory contours using fMRI and population receptive field (pRF) mapping. 

These results suggest there are top-down predictions to V1 from higher-order regions 

which encompass the entire shape. Furthermore, fMRI studies using lower-right 

quadrant occluded natural scenes (Morgan et al., 2019; Muckli et al., 2015; Smith & 

Muckli, 2010), have shown that scene information is decodable from response patterns 

in the non-stimulated region of V1 (i.e., retinotopically mapped to the occluded 

quadrant), suggesting predictive feedback to V1 from higher-order regions containing 

a representation of the whole scene image. 

A main challenge for testing predictive processing theories is to strictly differentiate 

between top-down predictions and bottom-up processing signals. Early animal studies 

have indicated that feedforward signals arrive in the middle layers, while top-down 

feedback primarily targets deep and superficial layers, bypassing the middle layers 

(Felleman & Van Essen, 1991; Harris & Mrsic-Flogel, 2013; Rockland & Pandya, 

1979). Recent evidence supports that feedforward and feedback information may also 
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appear at different cortical depths in the human brain using non-invasive laminar fMRI 

(Kok et al., 2016; Muckli et al., 2015; Self et al., 2019). These suggest that feedforward 

and feedback signals may be separated at different cortical depths. Another potential 

approach for achieving the differentiation is based on brain rhythms. Feedforward and 

feedback information flows were proposed to be coded by oscillatory activity in 

different frequency bands: high-frequency gamma rhythms mediate bottom-up 

feedforward propagation, whereas low-frequency alpha/beta rhythms carry predictive 

feedback to low-level areas (Bastos et al., 2015; Fries, 2015; Michalareas et al., 2016; 

van Kerkoerle et al., 2014). Supporting evidence has been shown in previous animal 

and human studies. In a monkey study, Kerkoerle et al. (2014) recorded neuronal 

activity in different layers of visual areas and investigated the propagation of alpha and 

gamma activities across cortical layers. They observed that gamma rhythms first 

emerged in the middle layer (layer 4) and then propagated to the superficial and deep 

layers, whereas alpha activity propagated in the opposite direction: from superficial 

(layers 1, 2) and deep layers (layer 5) to layer 4. Furthermore, they found that gamma 

rhythms propagated from V1 to V4, whereas the alpha rhythms propagated in the 

opposite direction. Their findings suggest that gamma activity is a signature of 

feedforward information propagation, while alpha activity is feedback signaling. 

Similar effects of alpha and gamma rhythms in visual perception were observed by 

Bastos et al. (2015) and Michalareas et al. (2016) using primate animals. In addition, 

using non-invasive electroencephalography (EEG), some recent studies found shared 

object/scene representations in the alpha frequency band between imagery and 

perception in the human brain (Stecher & Kaiser, 2023; Xie et al., 2020), suggesting 

alpha rhythms mediate top-down processing during imagery. The studies suggest EEG 
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oscillatory activities in different frequency bands may be used to distinguish feedback 

and feedforward information flows in the human brain. 

1.2 Scene semantics 

Objects usually occur in specific scenes in the real world. As “objects in scenes” is 

similar to “words in sentences”, semantics have been used to describe the scene-object 

relationship, determining whether an object aligns with the overall meaning of a scene 

(Võ et al., 2019). 

Behavioral studies have shown that semantic relations between objects and scenes 

influence object identification. Early studies using line drawings as stimuli, where they 

paired target objects with consistent or inconsistent scenes, showed that objects were 

detected more quickly and accurately when they were in a consistent scene (Biederman 

et al., 1982; Boyce et al., 1989; Boyce & Pollatsek, 1992; Palmer, 1975). Recent studies 

using scene photographs have reported similar facilitation effects (Davenport, 2007; 

Davenport & Potter, 2004; Munneke et al., 2013). Consistent with these findings, eye-

tracking studies have indicated that inconsistent objects received longer and more 

frequent fixations compared to consistent objects (Cornelissen & Võ, 2017; Võ & 

Henderson, 2009, 2011), suggesting that objects are perceived more rapidly within a 

consistent scene. Similar behavioral facilitation effects emerge when the scene, rather 

than the object, is task-relevant. Davenport et al. (2007; 2004) found that scenes were 

identified with higher accuracy when presented with a consistent foreground object than 

with an inconsistent object. These behavioral results suggest that objects and scenes are 

processed in a highly interactive manner. 
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Recent neuroimaging studies provide neural evidence for the interactions between 

object and scene processing in the brain (Brandman & Peelen, 2017, 2019; 

Wischnewski & Peelen, 2021). In an fMRI study, Brandman and Peelen (2017) 

presented participants with images containing degraded objects in scenes, degraded 

objects alone, and scenes alone, to investigate context-based object perception in the 

brain. They found that scenes enhanced the representations of degraded objects in 

object-selective lateral occipital cortex (LOC), and the facilitatory effect in LOC was 

correlated with activity in the scene-selective regions: occipital place area [OPA; or 

transverse occipital sulcus (TOS)], medial place area [MPA; or retrosplenial complex 

(RSC)], and parahippocampal place area (PPA). Similarly, using degraded scenes with 

objects, degraded scenes alone, and objects alone as stimuli, they explored the effect of 

objects on scene processing (Brandman & Peelen, 2019). They found a significant 

improvement of scene representations in the scene-selective cortex: OPA and PPA, 

when objects were presented. Additionally, in a recent transcranial magnetic stimulation 

(TMS) study, Wischnewski and Peelen (2021) stimulated early visual cortex (EVC), 

LOC, and OPA separately at different times after stimulus onset to further investigate 

the causal role of these regions in context-based object processing. They found that 

OPA was causally involved in context-based object processing at 160–200 ms, and LOC 

was involved later at 260–300 ms, after stimulus onset. The results suggest that scene 

information represented in the OPA may provide feedback to LOC to facilitate object 

representations. These studies have provided evidence for interactive facilitation 

between scenes and objects when they are relevant to the current task demands. In Study 

1, we further explored whether the facilitatory effect is task-dependent or automatic. 

In addition, recent electrophysiological studies have shown that N300 and N400 event-

related potential (ERP) components are relevant to semantic violations between objects 

13



Introduction 

 

and scenes. These studies showed objects within consistent or inconsistent scenes in 

either a sequential or simultaneous way (Coco et al., 2020; Draschkow et al., 2018; 

Ganis & Kutas, 2003; Mudrik et al., 2010; Võ & Wolfe, 2013). Using a sequential 

design, Võ and Wolfe (2013) presented a scene preview and then showed a consistent 

(e.g., a computer mouse on an office table) or an inconsistent object (e.g., a bar of soap 

on an office table) in an appropriate location within the scene. They found that objects 

in inconsistent scenes evoked higher N300 and N400 responses than objects in 

consistent scenes. Studies employing a simultaneous design, where participants viewed 

scene images containing either a consistent or an inconsistent object (Mudrik et al., 

2010, 2014; Truman & Mudrik, 2018), have reported similar N300 and/or N400 effects. 

As the N400 component is often found in language studies, the scene-object consistency 

related N400 was interpreted as more conceptual, semantic processing in previous 

studies (Mudrik et al., 2010, 2014; Võ & Wolfe, 2013). In contrast, the earlier N300 

effect is often linked to differences in perceptual processing between typically and 

atypically positioned objects (Kumar et al., 2021; Mudrik et al., 2010; Schendan & 

Maher, 2009). On this view, scene-object consistency related differences in the N300 

component arise from differences in the visual analysis of objects and scenes, rather 

than from post-perceptual processing of (in)consistency. If such differences in the N300 

waveform indeed index changes in perceptual processing, the N300 effect should be 

accompanied by differences in the neural representation of consistent and inconsistent 

objects. This question was explored in Study 1. 

1.3 Visual integration 

Wherever we go, our brains constantly integrate complex visual inputs from the 

environment into a unified whole. Thus, we always have seamless and coherent visual 
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experiences. Visual integration is a crucial perceptual process involving the ability to 

link individual local attributes of a scene to form a larger, more complex global structure. 

The integration allows us to efficiently understand the meaning of scenes and events in 

natural vision, guiding our behavior. 

In our visual system, sensory inputs cannot be initially integrated across space, as early 

visual areas have limited receptive fields and can only access spatially confined regions 

of the visual space. Therefore, these inputs must be spatially integrated at higher-order 

regions of the visual hierarchy to form more spatially extensive global aspects of the 

environment. Previous studies have probed neural integration of local edges into glocal 

shapes using a spatial array of oriented edges in which the edges can or cannot be 

integrated into a global form (Altmann et al., 2003; Kourtzi et al., 2003; Mannion et al., 

2013). Real-world inputs are more complex and contain richer information. It is unclear 

how our brains integrate information across space in natural vision.  

Given the highly predictable spatial (Geisler, 2008; Kaiser, Quek, et al., 2019; Kaiser 

& Cichy, 2021; Võ et al., 2019) and temporal (Goettker et al., 2021; Hogendoorn, 2022) 

structure of natural visual inputs, predictive processing provides particularly pervasive 

accounts for scene recognition (Bar, 2004, 2009; Lange et al., 2018), natural visual 

exploration (Goettker et al., 2021; Henderson, 2017), and neural scene representation 

(Kaiser, Turini, et al., 2019; Kaiser & Cichy, 2021; Naselaris et al., 2009). Although 

research agrees on the importance of cortical feedback for visual integration and the 

generation of coherent precepts, it is still unclear how such feedback is mechanistically 

implemented in the brain. In Studies 2 and 3, we probed this question using fMRI and 

EEG. 

1.4 Research questions 
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The dissertation investigated how our brains utilize real-world regularities to create 

coherent visual experiences. We focused on the neural correlates of context-based 

object processing and global scene integration. Specifically, we explored the following 

questions: 1) how scenes facilitate cortical object representations and whether the 

facilitatory effect is automatic; 2) how visual inputs are integrated across space in the 

brain and whether cortical feedback signals mediate the integration; 3) what is required 

to trigger spatial integration in the brain, separately in three studies. 

In Study 1, we recorded EEG signals, while participants viewed scenes and 

consistent/inconsistent objects sequentially in two experiments: task-relevant (color 

discrimination) vs. task-relevant (object recognition). We probed whether the 

differences in the N300/N400 components between consistent and inconsistent scene-

object combinations reflect differences in the cortical representation of objects, and 

whether the facilitations between scenes and objects are automatic or task-dependent, 

using both univariate analyses and multivariate decoding analyses on the EEG-evoked 

response patterns. 

In Study 2, we manipulated the degree to which stimuli could be integrated across space 

through the spatiotemporal coherence of naturalistic video stimuli shown in the two 

visual hemifields, in both EEG and fMRI experiments. We probed how visual inputs 

are integrated across space and whether the integration process is mediated by rhythmic 

feedback signals in the brain, using multivariate decoding analyses on fMRI multi-

voxel patterns and EEG spectral patterns. 

In Study 3, we manipulated the degree of spatiotemporal coherence of stimuli and 

presented naturalistic stimuli using the paradigm from Study 2 in an EEG experiment. 

We further investigated what level of spatiotemporal coherence in the stimuli is needed 
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to trigger integration-related rhythmic signals using multivariate decoding analyses on 

EEG spectral patterns.
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2 Summary of dissertation studies 

In this chapter, I will summarize the three studies on which this dissertation is based. 

2.1 Study 1: Semantic scene-object consistency modulates N300/400 EEG 

components, but does not automatically facilitate object representations (Chen et 

al., 2022) 

Previous studies have shown that consistent scenes enhance the cortical representations 

of objects (Brandman & Peelen, 2017; Wischnewski & Peelen, 2021), and there are 

differences in the EEG-evoked N300/N400 components between consistent and 

inconsistent scene-object combinations (Coco et al., 2020; Draschkow et al., 2018; 

Ganis & Kutas, 2003; Mudrik et al., 2010; Võ & Wolfe, 2013). In this study, we 

conducted two EEG experiments to explore whether the scene-object N300/N400 

differences reflect changes in the cortical representations of objects, and whether the 

facilitations between objects and scenes are automatic. 

We selected scene images from eight categories, which were grouped into four pairs. 

For each scene pair, we chose four objects: two were consistent with one scene category 

(e.g., computers & printers with offices), and two were consistent with another scene 

category (e.g., microwaves & rice cookers with kitchens). We recorded EEG signals 

while participants viewed scene and object images during the experiments. Each trial 

began with a central fixation point, followed by a scene image (without the critical 

object). Then, a red dot appeared in the scene, indicating where the critical object would 

appear. Subsequently, we presented either a consistent or an inconsistent object at the 

dot position. Participants performed a color discrimination task in the first experiment 

(task-irrelevant). In some trials, the red dot changed to blue instead of the object 
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appearing. Participants were instructed to press a button when they detected the color 

change. In the second experiment (task-relevant), we used an object recognition task. 

After the object disappeared, we presented an object exemplar on the screen, either the 

same or a different exemplar from the same basic-level category. Participants were 

instructed to judge whether it was the exemplar they had seen in the trial. 

To replicate the previous scene-object N300/N400 effects (Coco et al., 2020; 

Draschkow et al., 2018; Ganis & Kutas, 2003; Mudrik et al., 2010; Võ & Wolfe, 2013), 

we chose nine mid-central channels (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, and CP2) 

and compared averaged evoked responses across nine channels at each time point (from 

-100 to 800 ms relative to object onset) between consistent and inconsistent scene-

object combinations, using preprocessed EEG data. We replicated previous findings 

that inconsistent scene-object combinations evoked stronger N300 and N400 

components in both experiments. 

Next, we investigated the influence of scenes on object representations across time 

using both timeseries decoding (Boring et al., 2020; Kaiser & Nyga, 2020) and 

cumulative decoding analyses (Kaiser et al., 2020b; Ramkumar et al., 2013) on EEG-

evoked response patterns. Timeseries decoding was performed using data from a sliding 

time window (50 ms), and cumulative decoding was conducted using aggregated data 

from all time points before the current time point in the epoch. Specifically, we decoded 

between two consistent objects (e.g., computers & printers) or two inconsistent objects 

(e.g., microwaves & rice cookers) within each scene category (e.g., offices) using 

evoked response patterns across channels. In both experiments, we found consistent 

and inconsistent objects were decodable from ~100 ms after object onset. Consistent 

and inconsistent objects were equally decodable in Experiment 1 (task-irrelevant), but 
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consistent objects were decoded better than inconsistent objects when objects were 

useful to the task (Experiment 2). Using a 2 (task-irrelevant vs. task-relevant objects) 

× 2 (ERP vs. object decoding) mixed ANOVA, we found the effect of task relevance 

was significantly larger in the cumulative decoding analysis than it was in the ERP 

analysis. 

Similarly, we also performed decoding analyses to investigate whether objects affect 

scene representations. Specifically, we decoded between every two scene categories 

separately for the consistent and inconsistent conditions. In both experiments where 

scenes were task-irrelevant, significant decoding for both consistent and inconsistent 

scenes emerged from ~50 ms after scene presentation, but no significant differences 

were found between consistent and inconsistent scenes. 

In summary, our results showed that differences in the N300/N400 components are 

accompanied by differences in the object decoding between consistent and inconsistent 

only in the task-relevant experiment but not in the task-irrelevant experiment, 

suggesting that the differences in the N300/N400 components do not reflect differences 

in perceptual object representations. Furthermore, the decoding effects of objects and 

scenes across two experiments suggest that the facilitations between objects and scenes 

are task-dependent rather than automatic. 

2.2 Study 2: Alpha-frequency feedback to early visual cortex orchestrates coherent 

naturalistic vision (Chen et al., 2023) 

Our brains must integrate sensory inputs across visual fields to create coherent visual 

experiences. On the classic hierarchical view of the human visual system, such 

integration is thought to be solved during feedforward processing (DiCarlo et al., 2012; 

20



Summary of dissertation studies 

 

DiCarlo & Cox, 2007; Riesenhuber & Poggio, 1999). Here, we challenge this view, 

asking whether the integration is mediated by cortical feedback. 

We selected eight natural original videos (3 seconds) as stimuli. In both EEG and fMRI 

experiments, we manipulated the degree to which stimuli could be integrated across 

space by presenting original videos through one aperture or two apertures left and right 

of the central fixation. We designed four conditions: left-only, right-only, consistent, 

and inconsistent. In the left- and right-only conditions, we presented videos through 

only one aperture, which can provide a baseline for processing visual inputs from one 

hemifield. In the consistent condition, we presented the same original video through 

two apertures, which could be easily integrated into a unified percept; in the 

inconsistent condition, the two parts were from different original videos, which could 

not be integrated into a unified percept. In each trial, we presented a central fixation for 

0.5 seconds, then showed the videos through one or two apertures, as mentioned above, 

for 3 seconds. During the video, the central fixation changed color every 200 ms, and 

we asked participants to maintain central fixation and judge whether a yellow or green 

dot was included in the sequence. We used this paradigm to present stimuli in both EEG 

and fMRI experiments. 

We first probed whether visual integration is mediated by rhythmic feedback signals 

using EEG data. Previous studies proposed that high-frequency gamma rhythms 

propagate bottom-up feedforward information, whereas low-frequency alpha/beta 

rhythms carry feedback signals from higher-order regions (Bastos et al., 2015; Fries, 

2015; Michalareas et al., 2016; van Kerkoerle et al., 2014). Accordingly, we probed our 

question using EEG decoding analysis on spectral patterns in different frequency bands. 

Specifically, after preprocessing, we performed spectral analyses using the fast Fourier 
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transform (FFT) to obtain the power value of each frequency (alpha: 8–12 Hz; beta: 

13–30 Hz; gamma: 31–70 Hz) separately for each EEG channel in each trial. We then 

decoded between the eight video stimuli within each condition using spectral power 

patterns across channels separately for alpha, beta, and gamma frequency bands. We 

found that video stimuli in the single-video conditions (left-/right-only) were decodable 

only from gamma activity. In the two-video conditions, inconsistent video stimuli were 

only decodable in the gamma band, whereas consistent stimuli were only decodable 

from alpha activity. There were significant differences between consistent and 

inconsistent conditions in these two frequency bands. The results indicate that when 

consistent visual inputs allow for integration into a unified percept, stimulus 

information is coded in the feedback-related alpha activity; when inconsistent inputs 

can not be integrated, stimulus information is coded in the feedforward-related gamma 

activity. 

Next, we localized the integration-related regions using preprocessed fMRI data. We 

defined seven regions of interest (ROIs): three from early visual cortex (V1, V2, V3), 

one motion-selective region (hMT), and three from scene-selective cortex (OPA, MPA, 

PPA). We decoded between the eight video stimuli within each condition using multi-

voxel patterns in each ROI separately for each brain hemisphere. The decoding results 

were averaged across hemispheres. We found that single-video stimuli were decodable 

in all seven regions, and the effects were only shown in contralateral brain regions, 

except for the hMT. Both consistent and inconsistent stimuli were decodable in all 

regions. Critically, consistent stimuli were decoded better than inconsistent stimuli in 

the MPA and PPA, and a similar trend was observed in the hMT. Using searchlight 

decoding analysis, we probed the effects in the whole brain. We found that the decoding 

differences between consistent and inconsistent conditions were only located in the 
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regions overlapping or close to hMT and scene-selective cortex. The results indicate 

that hMT and scene-selective cortex (MPA and PPA) aggregate spatiotemporally 

consistent information across hemifields, suggesting that these regions are likely the 

source of the integration-related feedback. 

Finally, we linked the EEG spectral representations with fMRI spatial representations 

using representational similarity analysis (Cichy et al., 2014; Cichy & Oliva, 2020; 

Kriegeskorte et al., 2008). We first performed pair-wise decoding analysis between each 

pair of stimuli within each condition to construct EEG representational dissimilarity 

matrices (RDMs) and fMRI RDMs in each subject. To increase the power, we averaged 

the fMRI RDMs across subjects, and then correlated the group-averaged fMRI RDMs 

in each region with subject-specific EEG RDMs in each frequency band. We found that 

the consistent condition had a higher correlation between alpha activity and 

representations in V1, and a similar trend was observed in V2 and V3. In our design, 

V1 received identical feedforward sensory inputs across consistent and inconsistent 

conditions; therefore, the correspondence difference observed here should be attributed 

to the feedback from higher-order regions that have access to both contralateral and 

ipsilateral information. 

In summary, Study 2 suggests that feedback-related alpha activity mediates visual 

integration across space. When spatiotemporal consistent inputs allow for integration 

into a unified percept, cortical feedback in the alpha frequency band reaches the earliest 

stage of cortical visual processing. 

2.3 Study 3: Coherent categorical information triggers integration-related alpha 

dynamics (Chen et al., 2024) 
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We demonstrated that feedback-related alpha dynamics mediate the spatial integration 

of visual inputs in Study 2. Here, we further investigated what level of spatiotemporal 

coherence is required to trigger integration-related alpha dynamics using the same 

paradigm in an EEG experiment. 

We selected a set of natural videos (3 s) and manipulated the spatiotemporal coherence 

of stimuli by presenting videos through two apertures left and right of the central 

fixation. We designed four conditions: video-level consistent, basic-level consistent, 

superordinate consistent, and inconsistent. Specifically, in the video-level consistent 

condition, two parts of stimuli were from the same video; in the basic-level consistent 

condition, the two parts were from two different videos belonging to the same basic 

category; in the superordinate consistent condition, the two parts were from two 

different videos belonging to the same superordinate category; and in the inconsistent 

condition, the two parts were from two very different videos (different superordinate 

categories). We presented the stimuli in the same manner as we did in Study 2. 

We first performed spectral analysis on the preprocessed EEG data. Then, we extracted 

the spectral power patterns across channels to decode between video stimuli within each 

condition separately for the alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–70 Hz) 

frequency bands. We found that stimuli in the superordinate consistent and inconsistent 

conditions were not decodable from the activity in all three frequency bands. Video-

level consistent and basic-level consistent stimuli were decodable from alpha activity, 

and the stimuli in these two conditions were decoded better than the stimuli in the 

superordinate consistent and inconsistent conditions in the alpha frequency band. The 

stimuli in all conditions were decodable from EEG broadband response patterns in the 

first 500 ms, indicating that the difference in alpha decoding across conditions was 
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unrelated to an absence of stimulus representation in the more incoherent conditions. 

In addition, we did not observe similar effects when we performed decoding analysis 

on spectral phase patterns, suggesting that the integration-related alpha effects were 

specific to spectral power. 

In summary, Study 3 suggests that rhythmic alpha activity mediates spatial integration, 

and such integration exhibits some flexibility so that broadly consistent videos from the 

same category can trigger integration-related alpha dynamics.
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3 Discussion 

3.1 Summary 

This dissertation investigated how real-world structures facilitate our brains' 

construction of coherent visual experiences. Specifically, we probed the neural 

correlates of context-based object perception and global visual integration through three 

studies.  

Study 1 probed how scenes facilitate the representations of consistent objects across 

time and whether the facilitations are automatic. We reveal that the N300/N400 

components related to scene-object consistency do not index perceptual representations; 

Furthermore, the predictions generated from scene representations enhance object 

representation in tasks requiring detailed object recognition.  

Study 2 investigated how visual inputs from two visual hemifields are integrated in the 

brain and whether cortical feedback signals mediate the integration. The results suggest 

that feedback-related alpha dynamics mediate spatial integration of visual inputs. Such 

feedback activity potentially originates from hMT and scene-selective cortex, targeting 

early visual cortex.  

In Study 3, we further probed what level of spatiotemporal coherence is required to 

trigger integration-related alpha dynamics. The findings reveal that such integration 

processes are flexible enough to accommodate information from different exemplars of 

the same basic-level category.  

Together, this dissertation demonstrates that our brains generate predictions about real-

world statistical regularties to facilitate local and global visual processing. Such 
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predictions play a crucial role in the construction of our coherent experiences in natural 

vision. 

3.2 Scene-object consistency related N300 and N400 effects 

In Study 1, we successfully replicated previous findings that stronger N300 and N400 

responses were evoked by inconsistent scene-object combinations (Coco et al., 2020; 

Draschkow et al., 2018; Ganis & Kutas, 2003; Mudrik et al., 2010; Võ & Wolfe, 2013). 

The N300 component is often associated with high-level visual processing, including 

object recognition (Schendan & Kutas, 2002), shape perception (Schendan & Kutas, 

2007), and canonical view of objects (Schendan & Kutas, 2003). In line with this, the 

N300 difference between consistent and inconsistent scene-object combinations has 

been previously interpreted as indicative of differences in perceptual processing (Dyck 

& Brodeur, 2015; Kumar et al., 2021; Mudrik et al., 2010; Sauvé et al., 2017; Schendan 

& Maher, 2009), particularly through the contextual facilitation theory (Bar, 2004; Bar 

et al., 2006; Bar & Ullman, 1996). According to this theory, the presentation of a scene 

can rapidly activate gist-consistent schemas. Subsequently, comparing these schemas 

and incoming object information facilitates a reduction in perceptual uncertainty during 

object recognition. When the object does not align with the scene gist, its identification 

may be impeded, potentially evoking a higher N300 component during perceptual 

processing. 

Our results in Study 1 challenge this interpretation of the N300 effect. Based on 

contextual facilitation theory, the N300 effect should reflect differences in object 

representations between consistent and inconsistent conditions. However, in our results, 

the differences in N300 did not consistently correspond with differences in object 

representations. Specifically, a higher N300 component was elicited by inconsistent 
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scene-object combinations in both task-irrelevant and task-relevant designs. In contrast, 

in multivariate decoding analyses, better decoding for consistent objects was observed 

only when objects were task-relevant. The differences in the decoding effect were also 

larger than the differences in the N300 effect between consistent and inconsistent 

conditions. Therefore, the N300 here may serve as a generic marker of inconsistency 

or a purely attentional response to a violation of expectation, rather than reflecting 

perceptual processing. In contrast, the N400 is widely accepted as a signature of post-

perceptual semantic processing. It is elicited by written words, pseudo-words, sounds, 

and mathematical symbols (Kutas & Federmeier, 2011). A recent study has shown that 

N400 effects are qualitatively similar to N300 effects (Draschkow et al., 2018), further 

supporting the notion that N300 differences do not directly indicate changes in 

perceptual processing. 

3.3 Interaction between scene and object processing 

The results from Study 1 support a task-dependent facilitation between scenes and 

objects. Specifically, we showed that consistent objects were decoded more accurately 

when participants performed the object recognition task than the color discrimination 

task. Additionally, scenes were task-irrelevant in both experiments. We found that 

scenes containing consistent objects and scenes containing inconsistent objects were 

decoded equally well in both experiments. In line with our results, previous studies have 

also reported neural facilitation between scenes and objects when such facilitation was 

beneficial for the current task demands. For instance, consistent scenes enhanced 

cortical object representations when participants were asked to memorize the objects 

(Brandman & Peelen, 2017), and consistent objects improved cortical representations 

of scene layout during a scene repetition task (Brandman & Peelen, 2019). A recent 
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study tested cortical object representations under different task demands (Kaiser et al., 

2021). They found that spatially consistent scene context facilitated object 

representation more effectively than spatially inconsistent scene context during an 

object category task. In contrast, when participants performed a scene-relevant task, 

object representations were comparable for both spatially consistent and inconsistent 

scene contexts. Our findings suggest that the visual system flexibly and strategically 

utilizes contextual information: when contextual information aligns with current task 

demands, it enhances the representations of scenes and objects. 

High-level representations of both objects and scenes were shown to emerge within 200 

ms after stimulus onset (Brandman & Peelen, 2023; Cichy et al., 2014). Scene-based 

enhancement for object representations was observed around 300 ms after stimulus 

onset in our Study 1 and Brandman & Peelen (2017), while object-based enhancement 

for scene representations was found at a similar latency in Brandman & Peelen (2023). 

These findings suggest a more parallel and interactive view of context-based object and 

scene processes. First, objects and scenes may be processed independently within 

distinct pathways in the first 200 ms through hierarchical predictive processing. 

Subsequently, scene-selective and object-selective regions compute semantic 

representations and mutually influence each other. This interaction between higher-

level regions may modulate the feedback propagations to lower-level regions of the 

visual pathway and further enhance the processing of consistent objects and scenes. The 

differences between conditions in decoding analysis across experiments in Study 1 

suggest that the later interaction between scene-selective and object-selective cortical 

areas may be modulated by task demands. Specifically, scene representations in the 

scene-selective cortex may generate predictions about probable objects related to the 

scene and then send the predictions to object-selective cortex, only when the tasks 
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require detailed object perception. The predictive mechanism may be less engaged or 

absent when tasks do not require detailed object perception. 

3.4 Rhythmic activities mediate visual integration 

Our results suggest that alpha rhythms may encode stimulus-related feedback during 

integration. Alpha oscillations are the most predominant rhythmic activity in the human 

brain. Initially considered idling activities, alpha oscillations are most prominent when 

eyes are closed but suppressed when eyes are open (Pfurtscheller et al., 1996; Romei et 

al., 2008). Furthermore, they have been associated with functional inhibition, as 

evidenced by a decrease in alpha power within task-relevant brain regions and an 

increase within task-irrelevant ones (Jensen & Mazaheri, 2010; Kelly et al., 2006; 

Romei et al., 2010). Contrary to the passive or inhibitory functions, our results support 

that alpha oscillations play an active role in cognitive processes. In Studies 2 and 3, we 

observed spatiotemporally consistent stimuli were decodable from EEG spectral alpha 

activity. This aligns with studies showing alpha encodes object/scene information 

during visual perception and imagery (Kaiser, 2022; Stecher & Kaiser, 2023; Xie et al., 

2020). Furthermore, we showed that consistent stimuli had a stronger correlation 

between alpha activity and representations in early visual cortex compared to 

inconsistent stimuli, suggesting cortical feedback from high-level regions sent to early 

visual cortex duing integration process. The role of feedback signaling for cortical alpha 

dynamics was also reported in recent primate and human studies (Bastos et al., 2015; 

Hetenyi et al., 2024; Michalareas et al., 2016; van Kerkoerle et al., 2014). 

Our results suggest that gamma rhythms may encode stimulus-related feedforward 

information. Gamma rhythms were initially linked to visual grouping and binding 

(Elliott & Müller, 1998; Gray & Singer, 1989; Tallon-Baudry et al., 1999). Later, they 
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were associated with attentional selection (Bichot et al., 2005; Fries et al., 2001) and 

the enhancement of stimulus strength and salience (Friedman-Hill et al., 2000; 

Swettenham et al., 2009). Drawing from these studies, researchers have proposed that 

gamma rhythms serve as a mechanism for the feedforward propagation of unpredicted 

information (“prediction error”) within the predictive processing framework (Bastos et 

al., 2012; Fries, 2015). In Study 2, we showed that when video stimuli were inconsistent 

across space (single video stimuli and inconsistent stimuli) and could not be integrated 

into a unified percept, they were only decodable from gamma activity. As the 

inconsistent stimuli in our experiments do not adhere to typical real-world regularities, 

the brain is unlikely to accurately predict them based on prior knowledge. Feedforward 

prediction-error signals may be informative and useful for processing such unexpected 

stimuli. 

In addition, our results suggest that feedback may dominate feedforward processing 

during the integration process. An absence of representations in the gamma band 

accompanied the increased involvement of alpha rhythms in coding the consistent 

visual stimuli in Study 2. An explanation for the lack of decoding from feedforward-

related gamma activity in the consistent condition is that accurate top-down predictions 

for stimuli efficiently suppress feedforward activities. In our experiments, video stimuli 

were presented over an extended duration, with a lack of rapid or unexpected visual 

events. The extended presentation may effectively silence feedforward propagation 

within the gamma activity for the consistent stimuli. 

Overall, our results align with the multiplexing hypothesis of predictive processing: 

feedforward and feedback information flows are coded in high-frequency gamma and 

low-frequency alpha/beta bands, respectively (Bastos et al., 2015; Fries, 2015; 
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Michalareas et al., 2016; van Kerkoerle et al., 2014). Unlike previous studies that 

employed invasive techniques (Bastos et al., 2015; Michalareas et al., 2016; van 

Kerkoerle et al., 2014), our studies indicate that EEG spectral activities in different 

frequencies are also sensitive enough to distinguish feedforward and feedback signals 

in the human brain. 

3.5 Feedback traverses the visual hierarchy during visual integration 

Higher correspondence between alpha activity and V1 representations in Study 2 

suggests that V1 receives feedback information from high-level regions. V1 is the first 

stage of cortical visual processing, and each hemisphere of V1 processes sensory 

information from the contralateral visual hemifield. In line with our results, V1 has also 

been shown to receive various types of feedback during mental imagery (Ragni et al., 

2021; Winlove et al., 2018), cross-modal perception (Vetter et al., 2014, 2020), and the 

˙interpolation of missing scene information (Morgan et al., 2019; Muckli et al., 2015; 

Smith & Muckli, 2010). Our results also indicate that the feedback signals emerging in 

V1 originate from high-level regions with access to the information in both hemifields, 

suggesting long-distance feedback. This aligns with studies showing contextual signals 

in V1 exhibit substantial delays compared to feedforward processing (A. J. Keller et al., 

2020; Kirchberger et al., 2023; Papale et al., 2022). Such feedback processes may use 

the spatial resolution of V1 as a flexible sketchpad mechanism (Dehaene & Cohen, 

2007; Williams et al., 2008) for recreating detailed feature mappings inferred from the 

global context. 

The fMRI results in Study 2 suggest that scene-selective MPA and PPA, and motion-

selective hMT, are potential sources of feedback signals to early visual cortex. MPA 

and PPA had stronger representations for spatiotemporally consistent stimuli than 

32



Discussion 

 

inconsistent stimuli. Scene-selective cortex is a logical candidate for providing 

contextual feedback as it is sensitive to the typical spatial configuration of scene stimuli 

(Bilalić et al., 2019; Kaiser et al., 2020a; Kaiser & Cichy, 2021; Mannion et al., 2014). 

The sensitivity allows these regions to generate feedback signals that convey 

information about whether and how stimuli should be integrated at lower levels of the 

visual hierarchy. Such feedback signals may arise from adaptively comparing 

contralateral feedforward information with ipsilateral information from 

interhemispheric connections. In the inconsistent condition, the ipsilateral information 

received from the other hemisphere does not match typical real-world regularities and 

may therefore not trigger the integration. Conversely, when stimuli are consistent, 

information from other hemisphere becomes critical for facilitating integration across 

visual hemifields. This idea aligns with previous studies showing increased inter-

hemispheric connectivity when object or word information needs to be integrated across 

visual hemifields (Mima et al., 2001; Stephan et al., 2007). 

Motion-selective hMT is another potential region for generating integration-related 

feedback during dynamic visual integration. Not only did this region show enhanced 

representations for spatiotemporally consistent stimuli, but it also had representations 

for both contralateral and ipsilateral visual inputs in the fMRI data of Study 2. The hMT 

was also shown to be sensitive to motion (Tootell et al., 1995; Watson et al., 1993) and 

exhibit bilaterally representations for visual information (Cohen et al., 2019). These 

functions were well-suited for integrating consistent motion patterns across visual 

hemifields. 

Our results suggest that scene-selective and motion-selective cortical areas may jointly 

generate feedback signals that integrate information about coherent scene content (MPA 
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and PPA) and coherent motion patterns (hMT). The generated feedback traverses to the 

earliest stage of cortical visual processing. 

3.6 Categorical information triggers integration-related neural dynamics 

Our findings in Study 3 demonstrate that integration-related alpha dynamics can be 

elicited not only by segments from the same video but also by segments from different 

videos within the same basic-level category. This indicates a spectral signature linked 

to the category-level feedback information used for spatial integration. According to 

Rosch (1978),  the basic level is the most informative, offering the highest degree of 

cue validity by maximizing attributes shared within the category while minimizing 

those shared with other categories. The brain potentially uses this optimal balance 

during integration processes. Nonetheless, our study can not determine whether 

integration-related alpha activity is driven by an abstract coherence at the basic-level 

category, potentially encoded in the high-level visual cortex (Proklova et al., 2016; 

Walther et al., 2009), or by the spatiotemporal coherence of visual features associated 

with a category (Coggan et al., 2019, 2022). Clarifying the distinct role of the basic 

level in integration would necessitate a systematic comparison of integration across 

basic, superordinate, and subordinate levels. 

3.7 Replicability and Reproducibility 

Reproducibility is fundamental for scientific research. The past decade has seen a 

growing concern about the reproducibility and replicability of research findings in 

cognitive neuroscience (Poldrack et al., 2017). Reproducibility is the capability to 

obtain the same results using the same data and code, while replicability is the ability 

to obtain consistent results using different datasets (Nichols et al., 2017). Several factors 
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may contribute to the low rates of reproducibility and replicability, including flexibility 

in data analysis and results reporting, low statistical power, and hypotheses being 

formed based on results.  

We uploaded our data and code related to our publications to open science platforms 

(e.g., OSF, Zenodo), allowing researchers to reanalyze the data and reproduce the 

results. Additionally, we examined the replicability of EEG effects in the dissertation. 

First, we replicated the scene-object consistency related N300/N400 ERP effects using 

a previous paradigm (Võ & Wolfe, 2013) in Study 1. We also examined the replicability 

of EEG rhythmic results by using the same paradigm and data analyses in Studies 2 and 

3. We successfully replicated the decoding effects for the consistent stimuli in the alpha 

band. These results indicate that broadband response and low-frequency rhythmic 

activity in the EEG data may be relatively stable. 

However, we failed to replicate the gamma effects for the spatiotemporally incoherent 

stimuli. Several factors may contribute to this. First, variations in participant groups 

and the use of different EEG systems may impact the detection of gamma effects, given 

that gamma activity is relatively weak and unreliable in EEG recordings. Second, the 

two studies employed distinct stimulus selection strategies. Study 2 intentionally 

maximized incoherence by selecting highly dissimilar videos, whereas Study 3 did not 

emphasize such dissimilarity in the stimulus selection. Highly spatiotemporally 

inconsistency in stimuli may be necessary to induce reliable gamma activity.  

3.8 Limitations and future directions 

In Study 1, the presentation time for the object was different between the two 

experiments. In the task-irrelevant experiment, it was 500 ms, whereas in the task-
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relevant experiment, we reduced it to 83 ms to increase the difficulty of the object 

recognition task. This raises the possibility that the longer presentation time, rather than 

the lack of behavioral relevance, in Experiment 1 abolished the decoding effects. 

Further experiments are needed to establish a clear distinction between these 

explanations. However, if the N300 and decoding effects reflect the same perceptual 

representations, both should be affected by presentation time. We observed differences 

in the decoding effects but not in the ERP effects between experiments. Thus, our 

effects are unlikely to be attributed to the difference in presentation time.  

In Study 2, we speculated that scene-selective cortex and hMT are the sources of the 

feedback to the early visual cortex during visual integration based on our searchlight 

and ROI decoding results. However, we did not provide solid evidence to support the 

speculation. To validate this, future studies could estimate functional connectivity (e.g., 

psychophysiological interaction, PPI, dynamic causal modeling, DCM) between scene-

selective cortex/hMT and early visual areas on fMRI data or use non-invasive brain 

stimulation techniques (e.g., TMS, tDCS) to stimulate scene-selective cortex/hMT 

during the integration experiment. 

In Studies 2 and 3, we used a fixation task to investigate the neural correlates of 

automatic integration. Such automatic integration is mainly based on phenomenological 

experience. However, we did not provide evidence for the occurrence of integration. 

Future research should explore how integration effects change when participants 

actively engage with the stimuli that need to be integrated. As the stimuli we used 

contain information in multiple dimensions (e.g., low-level and mid-level visual 

features, motion patterns), future studies could separate these and probe the critical 

features enabling integration and what is integrated. 
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In Study 1, we investigated context-based object processing. This requires integration 

between objects and scenes, which are processed in spatially distinct pathways. The 

interaction between pathways may only occur when objects/scenes are relevant to the 

task.  By contrast, Studies 2 and 3 investigated integration across different parts of 

scenes. Such integration may occur more automatically because different parts of 

scenes were processed mainly within the same pathway. Future studies could explore 

predictions within and between pathways under different tasks to clarify this. 

The dissertation has demonstrated that rhythmic feedback signals mediate spatial 

integration in the brain. To create coherent visual experiences, our brains need to 

integrate visual information not only across space but also across time. Given that real-

world inputs are highly predictable over time, cortical feedback may also play a crucial 

role in the temporal integration of sensory information. Future research could use 

spectral EEG and design similar experiments to explore this question. 

3.9 Conclusions 

This dissertation comprises three studies investigating how our brains utilize real-world 

regularities to facilitate object recognition and visual integration. Study 1 reveals that 

contextual information enhances object representations. Studies 2 and 3 demonstrate 

that top-down predictions in the alpha frequency mediate the integration of visual 

information across space. Collectively, our findings in the dissertation highlight that 

predictions based on real-world regularities are crucial for constructing coherent visual 

experiences.
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During natural vision, objects rarely appear in isolation, but often within a semantically related scene context. Previous studies
reported that semantic consistency between objects and scenes facilitates object perception and that scene-object consistency is
reflected in changes in the N300 and N400 components in EEG recordings. Here, we investigate whether these N300/400 differences
are indicative of changes in the cortical representation of objects. In two experiments, we recorded EEG signals, while participants
viewed semantically consistent or inconsistent objects within a scene; in Experiment 1, these objects were task-irrelevant, while in
Experiment 2, they were directly relevant for behavior. In both experiments, we found reliable and comparable N300/400 differences
between consistent and inconsistent scene-object combinations. To probe the quality of object representations, we performed
multivariate classification analyses, in which we decoded the category of the objects contained in the scene. In Experiment 1, in which
the objects were not task-relevant, object category could be decoded from ∼100 ms after the object presentation, but no difference
in decoding performance was found between consistent and inconsistent objects. In contrast, when the objects were task-relevant
in Experiment 2, we found enhanced decoding of semantically consistent, compared with semantically inconsistent, objects. These
results show that differences in N300/400 components related to scene-object consistency do not index changes in cortical object
representations but rather reflect a generic marker of semantic violations. Furthermore, our findings suggest that facilitatory effects
between objects and scenes are task-dependent rather than automatic.

Key words: multivariate pattern analysis; N300; object representation; scene-object consistency.

Introduction
In the real world, objects rarely appear in isolation, but
practically always within a particular scene context
(Bar 2004; Wolfe et al. 2011; Kaiser et al. 2019; Võ
et al. 2019). Objects are often semantically related to
the scene they appear in: for instance, microwaves
usually appear in the kitchen, but practically never in
the bathroom. Several behavioral studies have shown
that such semantic relations between objects and scenes
affect object identification. Early studies using line
drawings of scenes and objects found that objects were
detected faster and more accurately when they were
in a consistent setting than in an inconsistent setting
(Palmer 1975; Biederman et al. 1982; Boyce et al. 1989;
Boyce and Pollatsek 1992). Similar results were recently
reported for scene photographs (Davenport and Potter
2004; Davenport 2007; Munneke et al. 2013). In line with
such findings, eye-tracking studies have shown that
inconsistent objects are fixated longer and more often
than consistent objects (Võ and Henderson 2009, 2011;

Cornelissen and Võ 2017), suggesting that objects are
perceived more swiftly within a consistent than within
an inconsistent scene. Interestingly, such behavioral
facilitation effects are also observed when, instead of the
object, the scene is task-relevant: Davenport and Potter
(2004) and Davenport (2007) reported that scenes were
identified more accurately if they contained a consistent
foreground object compared with an inconsistent one.
These effects suggest that objects and scenes are
processed in a highly interactive manner.

To characterize the neural basis of these semantic
consistency effects, EEG studies have used paradigms in
which objects appear within consistent or inconsistent
scenes, either simultaneously or sequentially (Ganis
and Kutas 2003; Mudrik et al. 2010; Võ and Wolfe 2013;
Draschkow et al. 2018; Coco et al. 2020). For example, Võ
and Wolfe (2013) adopted a sequential design, in which
participants first viewed a scene image, followed by a
location cue, where then appeared a consistent (e.g., a
computer mouse on an office table) or an inconsistent
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object (e.g., a soap on an office table). They found
objects in an inconsistent scene evoked more negative
responses than consistent objects in the N300 (∼250–
350 ms) and N400 (∼350–600 ms) windows. Several other
studies (Mudrik et al. 2010, 2014; Truman and Mudrik
2018) using a simultaneous design, in which the scene
and object were presented simultaneously, reported
similar N300 and/or N400 modulations. Critically, the
earlier N300 effects are often considered to reflect
differences in perceptual processing between typically
and atypically positioned objects (Schendan and Maher
2009; Mudrik et al. 2010; Kumar et al. 2021). On this view,
consistency-related differences in EEG waveforms arise
as a consequence of differences in the visual analysis of
objects and scenes, rather than due to a postperceptual
signaling of (in)consistency.

If differences in the N300 waveform indeed index
changes in perceptual processing, the N300 ERP effect
should be accompanied by differences in the neural
representation of the objects. In this study, we put
this prediction to the test. Across two experiments,
we compared differences in the N300/400 EEG com-
ponents to multivariate decoding of objects contained
in consistent and inconsistent scenes. In both experi-
ments, participants completed a sequential semantic
consistency paradigm, in which scenes from eight
different categories were consistently or inconsistently
combined with objects from 16 categories. We then
examined the influence of scene-object consistency on
EEG signals, both when the objects were task-irrelevant
(Experiment 1) and when participants performed a
recognition task on the objects (Experiment 2). In both
experiments, we replicated previously reported ERP
effects, with greater N300 and N400 components for
inconsistent scene-object combinations, compared with
consistent combinations. To probe the quality of object
and scene representations, we performed multivariate
classification analyses, in which we decoded between
the object and scene categories separately for each
condition. In Experiment 1, in which the objects were
not task-relevant, object category could be decoded
from ∼100 ms after the object presentation, but no
difference in decoding performance was found between
consistent and inconsistent objects. In Experiment 2,
in which the objects were directly task-relevant, we
found enhanced decoding of semantically consistent,
compared with semantically inconsistent, objects. In
both experiments, we found no differences in scene
category decoding between semantically consistent
and inconsistent conditions. Altogether, these results
show that differences in N300/400 components related
to scene-object consistency do not necessarily index
changes in cortical object representations, but rather
reflect a generic marker of semantic violations. Fur-
thermore, they suggest that facilitation effects between
objects and scenes are task-dependent rather than
automatic.

Materials and Methods
All materials and methods were identical for the two
experiments, unless stated otherwise.

Participants. Thirty-two participants (16 males,
mean age 26.23 years, SD = 2.05 years), with normal or
corrected-to-normal vision, took part in Experiment 1.
Another 32 participants (14 males, mean age 26.97 years,
SD = 1.67 years) took part in Experiment 2. Participants
were paid volunteers or participated for partial course
credits. All participants provided written, informed
consent prior to participating in the experiment. The
experiments were approved by the ethical committee of
the Department of Education and Psychology at Freie
Universität Berlin and were conducted in accordance
with the Declaration of Helsinki.

Stimuli. The stimulus set comprised scene images
from eight categories: beach, bathroom, office, kitchen,
gym, street, supermarket, and prairie. The scenes were
grouped into four pairs (beach and bathroom, office and
kitchen, gym and street, and supermarket and prairie).
We chose four objects for each scene pair, two of which
were semantically consistent with one scene and two
of which were semantically consistent with the other
scene. To create semantically inconsistent scene-object
combinations, we simply exchanged the objects between
the scenes. All combinations of scenes and objects can
be found in Table 1. For example, consider the office and
kitchen pair: we first chose a computer and a printer as
consistent objects for the office and chose a rice cooker
and a microwave as consistent objects for the kitchen.
We in turn chose the rice cooker and microwave as
inconsistent objects for the office and the computer and
printer as inconsistent objects for the kitchen. We pasted
the objects into the scene images using Adobe Photoshop.
The object locations were the same across the consistent
and inconsistent objects, and they were always in line
with the typical position of the consistent object (e.g.,
a computer was positioned on an office desk in the
same way as a rice cooker). We used three exemplars for
each scene category and three exemplars for each object,
yielding 288 unique stimuli. During the experiments, the
scenes could also be shown without objects (see below).
Figure 1A shows some examples of the stimuli.

Paradigm. Participants were seated 53 cm from an LCD
monitor with a size of 34 × 27 cm and a refresh rate of
60 Hz. The images were presented on the screen at a
visual angle: horizontal 20◦, vertical 15.6◦. We adopted
a sequential scene-object congruity paradigm similar to
Võ and Wolfe (2013). Image presentation and recording
of subjects’ behavioral responses were controlled using
MATLAB and the Psychophysics Toolbox (Brainard 1997).
Each trial began with a fixation cross “+” shown for a
random interval between 1.3 and 1.5 s, after which a
scene image (without the critical object) was presented
for 500 ms. Next, a red dot cue was presented at a single
location in the scene for 500 ms, indicating where the
critical object would appear. Participants were instructed
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Table 1. Combinations of scenes and objects for the consistent and inconsistent conditions. Note that scenes were grouped into pairs;
for each pair, four objects were used as consistent and inconsistent objects

Scenes Consistent objects Inconsistent objects

Bathroom Toilet, washing machine Parasol, deck chair
Beach Parasol, deck chair Toilet, washing machine
Office Computer, printer Microwave, rice cooker
Kitchen Microwave, rice cooker Computer, printer
Gym Treadmill, spinning bike Scooter, bus stop sign
Road Scooter, bus stop sign Treadmill, spinning bike
Supermarket Shopping cart, shop assistant Ostrich, zebra
Prairie Ostrich, zebra Shopping cart, shop assistant

Fig. 1. Experimental design. (A) Examples of consistent and inconsistent scene-object combinations. (B) Trial sequence in Experiment 1. After a fixation
interval, a scene without the critical object was presented. Next, a red dot cue was presented, and participants were asked to move their eyes to this
location. After that, the critical object appeared at the cued location in the scene. On target trials, the red cue turned blue, and participants were
instructed to press spacebar. (C) Trial sequence in Experiment 2. Here, the objects were displayed briefly at the location of the cue. In a subsequent
recognition test, an object of the same category appeared on the screen. Participants were asked to determine whether this object exemplar was the
one that appeared earlier in the scene.

to move their eyes to the dot as quickly as possible.
To avoid eye movement artifacts during the subsequent
object presentation, we told the participants not to move
their eyes away from the dot location until the beginning
of the next trial. After that, a semantically consistent
or inconsistent object appeared at the location of the
red dot.

In Experiment 1, the objects were not task-relevant.
The object simply remained visible together with the
scene for 1500 ms before the next trial started. Partici-
pants performed an unrelated attention control task: to
ensure that they attended the cued location, we added
task trials (10% of trials) during which no object appeared
after the cue. Instead, the color of the dot changed from
red to blue. Participants were instructed to press the

spacebar when they detected the change (detection rate
in target trials: 97.8%, SE = 0.63%). An example trial for
Experiment 1 is shown in Figure 1B.

In Experiment 2, the objects were directly task-
relevant. The consistent or inconsistent object appeared
only very briefly (83 ms) at the location of the red dot.
The scene image remained on the screen for another
500 ms after the object disappeared. After a 200-ms
blank internal, participants were asked to perform an
object recognition test. During the test, an object was
shown on the screen, which was either the same object
exemplar they had just seen or a different exemplar
of the same category. Test objects were presented in
grayscale to increase task difficulty. Participants were
asked to determine whether this object exemplar was

53

Original publication of Study 1



3556 | Cerebral Cortex, 2022, Vol. 32, No. 16

the one that appeared earlier in the scene. If it was, the
participants should press G button, otherwise press H
button. The next trial began as soon as participants made
a choice. An example trial for Experiment 2 is shown in
Figure 1C.

Both experiments included three runs and all 288
unique stimulus images were presented once in random
order within each run. Across runs, there were 27 repeti-
tions for each specific scene-object combination.

EEG Recording and Preprocessing
EEG signals were recorded using an EASYCAP 64-
electrode system and a Brainvision actiCHamp amplifier
in both Experiments. Electrodes were arranged according
to the 10–10 system. EEG data were recorded with a
sample rate of 1000 Hz and filtered online between 0.03
and 100 Hz. All electrodes were referenced online to the
Fz electrode and rereferenced offline to the average of
data from all channels. Offline data preprocessing was
performed using FieldTrip (Oostenveld et al. 2011). EEG
data were segmented into epochs from −100 to 800 ms
relative to the onset of the critical object and baseline
corrected by subtracting the mean signal prior to the
object onset. To track the temporal representations of
scenes, EEG data were segmented into epochs from
−1100 to 800 ms relative to the onset of the object
and baseline corrected by subtracting the mean signal
prior to the scene presentation (−100 to 0 ms relative
to the scene onset). Channels and trials containing
excessive noise were removed by visual inspection. On
average, we removed 1.50 ± 0.51 channels in Experiment
1 and 1.53 ± 0.57 channels in Experiment 2. These
channels were not interpolated in further ERP and
decoding analyses. Blinks and eye movement artifacts
were removed using independent component analysis
and visual inspection of the resulting components.
The epoched data were downsampled to 200 Hz. As
filtering is often recommended for univariate analyses
but discouraged for multivariate analyses (Grootswagers
et al. 2017; van Driel et al. 2021), the EEG data were
not filtered for the decoding analyses. For the ERP
analyses, the preprocessed data were additionally band-
pass filtered at 0.1–30 Hz. This additional filtering
was performed after the other preprocessing steps
to equate the preprocessing pipeline between the
ERP and decoding analyses. Performing the filtering
before epoching yielded highly similar ERP results (see
Supplementary Figs 6 and 7).

ERP Analyses
To replicate semantic consistency ERP effect reported in
previous scene studies (e.g., Võ and Wolfe 2013; Mudrik
et al. 2014), we performed ERP analyses using FieldTrip.
In accordance with Võ and Wolfe (2013), we chose nine
electrodes (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, and CP2)
located in the mid-central region for further ERP analysis.
This a-priori electrode selection was corroborated in a
topographical analysis of the scene-consistency effect

(see Supplementary Fig. 5). We first averaged the evoked
responses across these electrodes and then averaged
these mean responses separately for the consistent and
inconsistent conditions and each participant.

Decoding Analyses
We performed two complementary multivariate decod-
ing analyses to track temporal representations of objects
and scenes across time. First, to track representations
of objects and investigate how consistent or inconsis-
tent scene contexts affect objects processing, we per-
formed decoding analyses between two consistent and
inconsistent objects separately within each scene at each
time point from −100 to 800 ms relative to the onset
of the object. For example, we performed classification
analyses to either differentiate printers (consistent) from
computers (consistent) in office scenes or to differentiate
printers (inconsistent) from computers (inconsistent) in
kitchen scenes, at each time point. Second, to track the
impact of consistent or inconsistent objects on scenes
representations, we performed decoding analyses to dis-
criminate between every two scene categories separately
for consistent and inconsistent conditions at each time
point from −100 to 1800 ms relative to the onset of
the scene (−1100 to 800 ms relative to the onset of the
object). For example, we performed classification anal-
yses to differentiate office scenes containing a printer
or computer (consistent) from kitchen scenes contain-
ing a microwave or rice cooker (consistent), or to dif-
ferentiate office scenes containing a microwave or rice
cooker (inconsistent) from kitchen scenes containing a
printer or computer (inconsistent). In both analyses, we
used all available trials, including those in participants
responded incorrectly. For each decoding analysis, we
adopted two approaches: standard timeseries decoding
(Boring et al. 2020; Kaiser and Nyga 2020), using data from
a sliding time window, and cumulative decoding (Ramku-
mar et al. 2013; Kaiser et al. 2020a), using aggregated
data from all elapsed time points. The two approaches
are detailed in the following paragraphs.

Timeseries decoding. Timeseries decoding analyses
were performed using Matlab and CoSMoMVPA (Oost-
erhof et al. 2016). To increase the power of our timeseries
decoding, the analysis was performed on a sliding time
window (50-ms width), with a 5-ms resolution. This
approach thus not only utilizes data from current time
point, but the data from five time points before and after
the current time point. For each sliding window position,
we concatenated the response patterns across all time
points within the time window and then unfolded the
whole pattern into a vector. For a comparison with
alternative timeseries decoding approach, which use
individual time point or average data across the sliding
windows, see Supplementary Figures 2 and 3.

Considering excessive data dimensionality may harm
classification, we adopted principal component anal-
ysis (PCA) to reduce the dimensionality of the data
(Grootswagers et al. 2017; Kaiser et al. 2020a;
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Kaiser and Nyga 2020). For each classification, a PCA
was performed on all data from the training set, and the
PCA solution was projected onto data from the testing
set (Experiment 1, mean 34.8 PCs for object decoding,
mean 52.1 PCs for scene decoding; Experiment 2, mean
41.2 PCs for object decoding, mean 69.9 PCs for scene
decoding). For each PCA, we retained the set of com-
ponents explaining 99% of the variance in the training
set data.

The classification was performed separately for each
time point from −100 to 800 ms (from −1100 to 800 ms for
scene decoding), using LDA classifiers with 10-fold cross-
validation. Specifically, the EEG data from all epochs
were first allocated to 10 folds randomly. LDA classi-
fiers were then trained on data from 9 folds and then
tested on data from the left-out fold. The amount of
data in the training set was always balanced across con-
ditions. For each object decoding analysis, the training
set included up to 48 trials, and the testing set included
up to six trials; for each scene decoding analysis, the
training set included up to 96 trials and the testing set
included up to 12 trials. The classification was done
repeatedly until every fold was left out once. For each
time point, the accuracies were averaged across the 10
repetitions.

Cumulative decoding. We also performed cumulative
decoding analyses, which takes into account the data
of all time points before the current time point in the
epoch for classifications (Ramkumar et al. 2013; Kaiser
et al. 2020a). For example, for the first time point in the
epoch, the classifier was trained and tested on response
patterns at this time point in the epoch; at the second
time point in the epoch, the classifier was trained and
tested on response patterns at the first and second time
points in the epoch; and at the last time point in the
epoch, the classifier was trained and tested on response
patterns at all time points in the epoch. For each time
point, we concatenated the response patterns across all
time points up to the current one and then unfolded the
whole pattern into a vector that was subsequently used
for decoding.

The cumulative decoding approach uses increas-
ingly large amounts of data that span multiple time
points. This allows classifiers to capitalize on complex
spatiotemporal response patterns that emerge across
the trial, which may provide additional sensitivity for
detecting effects that are not only visible across electrode
space but that are also transported by variations in
the time domain. On the flip side, this renders the
interpretation of the results less straightforward: one
can only conclude that spatiotemporal response patterns
up to the current point allow for classification, but not
which features enable this classification.

As for the timeseries decoding, LDA classifiers with
10-fold cross-validation were used for classifications and
PCA was adopted to reduce the dimensionality of the
data for each classification step across time (Experiment
1, mean 39.2 PCs for object decoding, mean 73.5 PCs for

scene decoding; Experiment 2, mean 43.9 PCs for object
decoding, mean 86.9 PCs for scene decoding).

Statistics
For the behavioral responses in Experiment 2, we used
paired t-tests to compare participants’ accuracy and
response times when they were asked to recognize
consistent and inconsistent objects.

For ERP analyses, we used paired t-tests to compare the
averaged EEG responses evoked by consistent and incon-
sistent scene-object combinations, at each time point.

For decoding analyses, we used one-sample t-tests
to compare decoding accuracies against chance level
(similar results were obtained using a permutation-based
testing approach, see Supplementary Fig. 1) and paired t-
tests to compare decoding accuracies between the con-
sistent and inconsistent conditions, at each time point.

Differences in ERP and decoding effects between
experiments were assessed using independent t-tests.
Direct differences between the ERP and decoding effects
obtained in the two experiments were assessed in a
mixed-effects ANOVA with the factors consistency effect
(ERP vs. decoding) and experiment (Experiment 1 vs.
Experiment 2).

Multiple-comparison corrections were performed
using FDR (P < 0.05), and only clusters of at least five
consecutive significant time points (i.e., 25 ms) were
considered. We also calculated Bayes factors (Rouder
et al. 2009) for all analyses.

Results
Experiment 1
ERP Signals Indexing Scene-Object Consistency
To track the influence of scene-object consistency on
EEG responses, we first analyzed EEG waveforms in mid-
central electrodes. In this analysis, we found more nega-
tive responses evoked by inconsistent scene-object com-
binations than consistent combinations, which emerged
at 170–330 ms (peak: t(31) = 4.884, BF10 = 765.26) and 355–
470 ms (peak: t(31) = 3.429, BF10 = 20.06) (Fig. 2). These
results demonstrate larger N300 and N400 components
evoked by inconsistent scenes, which is in line with
previous findings (Mudrik et al. 2010, 2014; Võ and Wolfe
2013).

Tracking Object Representations in Consistent
and Inconsistent Scenes
Having established reliable ERP differences between
consistent and inconsistent scene-object combinations,
we were next interested if these differences were accom-
panied by differences in how well the consistent and
inconsistent objects were represented. We performed
timeseries and cumulative decoding analyses between
two consistent or inconsistent objects separately within
each scene at each time point from −100 to 800 ms
relative to the onset of the object. In both analyses,
we found highly similar decoding performances for
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Fig. 2. Event-related potentials (ERPs) in Experiment 1. (A) ERPs recorded from the mid-central region for consistent and inconsistent scene-object
combinations. Error margins represent standard errors. (B) t-values for the comparisons between consistent and inconsistent conditions. Line markers
denote significant differences between conditions (P < 0.05, FDR-corrected). (C) Bayes factors (BF10) for the comparisons between consistent and
inconsistent conditions. For display purposes, the BF10 values were log-transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high
(BF10 = 10) evidence for a difference between conditions. In line with previous reports, these results show that scene-object consistency is represented
in evoked responses 170–330 ms and 355–470 ms after the object onset.

both consistent and inconsistent objects. Specifically,
there was significant decoding between consistent
objects, which emerged at 65–790 ms in the timeseries
decoding (Fig. 3A) and between 80 and 800 ms in the
cumulative decoding (Fig. 3D), and there was significant
decoding between inconsistent objects in both the
timeseries decoding (60–645 ms; Fig. 3A) and cumulative
decoding (90–800 ms; Fig. 3D). No significant differences
in decoding accuracy were found between consistent
and inconsistent objects. Hence, despite the reliable ERP
differences between consistent and inconsistent scene-
object stimuli, there was no evidence for an automatic
facilitation from the scene to the semantically consistent
object.

Tracking the Representation of Scenes with Consistent
and Inconsistent Objects
Although scene-object consistency does not automati-
cally facilitate the representation of the objects, there
may still be an opposite cross-facilitation effect where
the consistent object enhances scene representations. To
test this possibility, we performed decoding analyses to
discriminate between every two categories separately for
the consistent and inconsistent conditions from −100 to
1800 ms relative to the onset of the scene. We found
significant decoding between scenes with a consistent
object in both the timeseries decoding (45–1800 ms) and
cumulative decoding (80–1800 ms) analyses. Significant
decoding between scenes that contained inconsistent
objects was also found in both the timeseries decoding
(40–1800 ms) and cumulative decoding (80–1800 ms).
These results are consistent with previous findings (Lowe
et al. 2018; Kaiser et al. 2020b), which suggest that scene

category can be decoded within 100 ms (Fig. 4). How-
ever, no significant differences were found between these
scenes with consistent and inconsistent objects. Such
differences were also not observed when we corrected
for multiple comparisons solely between 0 and 800 ms
relative to the onset of the object. These results suggest
that scene category can be decoded in a temporally
sustained way, but semantically consistent objects have
no facilitatory effect on scene representations.

Experiment 2
In Experiment 1, we did not find differences in object
and scene representations between the consistent and
inconsistent object-scene combinations, despite robust
ERP differences between the two conditions. However, the
objects and scenes were both not task-relevant in Exper-
iment 1—although participants spatially attended the
object location, the objects’ features were not important
for solving the task. Under such conditions, object repre-
sentations may not benefit from semantically consistent
context to the same extent as when object features are
critical for solving the task. In Experiment 2, we therefore
made the objects task-relevant.

Behavioral Object Recognition in Semantically Consistent
and Inconsistent Scenes
In Experiment 2, participants performed a recognition
task, in which they were asked to report whether a
test object was identical to the one they had previously
seen in the scene (Fig. 1C). In line with previous findings
(Davenport and Potter 2004; Davenport 2007; Munneke
et al. 2013), we found that objects were recognized more
accurately when they were embedded in consistent
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Fig. 3. Decoding for the consistent or inconsistent objects within each scene in Experiment 1. (A) Timeseries decoding results, separately for consistent
and inconsistent objects. Line markers denote significant above-chance decoding (P < 0.05, FDR-corrected). (B) t-values for the comparisons between
consistent and inconsistent conditions. (C) Bayes factors (BF10) for the comparisons between consistent and inconsistent conditions. For display purposes,
the BF10 values were log-transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) evidence for a difference between
conditions. (D) Cumulative decoding results, separately for consistent and inconsistent objects. Line markers denote significant above-chance decoding
(P < 0.05, FDR-corrected). (E, F) t-values and Bayes factors (BF10) for the comparisons between consistent and inconsistent conditions, as in (B, C).
These results show robust decoding for consistently and inconsistently placed objects. However, despite the reliable differences between consistent
and inconsistent scene-object combinations in ERP signals, object decoding was highly similar between the consistent and inconsistent conditions.

scenes than in inconsistent scenes (mean accuracy:
consistent = 82.36%, inconsistent = 79.30%; t(31) = 2.598,
P = 0.011). These results suggest that semantically
consistent scenes can enhance the recognition of objects.
There was no difference in response times between two
conditions (mean response time: consistent = 723.8 ms,
inconsistent = 742.4 ms; t(31) = −0.648, P = 0.519).

ERP Signals Indexing Scene-Object Consistency
Inconsistent scene-object combinations evoked more
negative responses in mid-central electrodes than con-
sistent combinations at 240–335 ms (peak: t(31) = 4.385,
BF10 = 210.85), 360–500 ms (peak: t(31) = 4.291, BF10 =
165.94), and 570–590 ms (peak: t(31) = 2.986, BF10 = 7.36)

(Fig. 5). The results suggest larger N300 and N400
components evoked by semantically inconsistent scene-
object combinations, replicating the findings from
Experiment 1.

Tracking Object Representations in Consistent
and Inconsistent Scenes
To test whether semantically consistent scenes facilitate
object representations differently from semantically
inconsistent scenes when the objects are task-relevant,
we performed both timeseries and cumulative decod-
ing analyses, where we classified two consistent or
inconsistent objects within each scene at each time
point from −100 to 800 ms relative to the onset of the
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Fig. 4. Decoding between scenes with consistent or inconsistent objects in Experiment 1. (A) Timeseries decoding results, separately for scene with
consistent and inconsistent objects. Line markers denote significant above-chance decoding (P < 0.05, FDR-corrected). (B) t-values for the comparisons
between consistent and inconsistent conditions. (C) Bayes factors (BF10) for the comparisons between consistent and inconsistent conditions. For display
purposes, the BF10 values were log-transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) evidence for a difference
between conditions. (D) Cumulative decoding results, separately for scene with consistent and inconsistent objects. Line markers denote significant
above-chance decoding (P < 0.05, FDR-corrected). (E, F) t-values and Bayes factors (BF10) for the comparisons between consistent and inconsistent
conditions, as in (B, C). These results show that scene category can be well decoded across time, but the consistency of embedded objects has no
facilitatory effects on scene representations.

object. We found significant decoding for both consistent
objects (timeseries decoding: 60–800 ms; cumulative
decoding: 70–800 ms) and inconsistent objects (time-
series decoding: 70–760 ms; cumulative decoding: 90–
800 ms). Critically, we found that the consistent objects
were decoded more accurately than inconsistent objects
in both the timeseries decoding (310–410 and 545–
680 ms) and cumulative decoding analyses (160–190,
255–295, and 370–800 ms) (Fig. 6). Additional electrode-
space searchlight analyses suggest that these enhanced
representations primarily emerge in posterior electrodes

over the right hemisphere (see Supplementary Fig. 4).
These results suggest that scene-object consistency
can facilitate cortical object representations—but only
when the objects are task-relevant. Our data show that
such effects arise at least from ∼300 ms, although
the more sensitive cumulative decoding suggests that
such effects may be seen much earlier, even within the
first 200 ms of processing. As the current evidence for
such early effects is only moderately strong, the exact
timing of such effects needs to be confirmed in future
studies.
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Fig. 5. ERPs in Experiment 2. (A) ERPs recorded from the mid-central region for consistent and inconsistent scene-object combinations. Error margins
represent standard errors. (B) t-values for the comparisons between consistent and inconsistent conditions. Line markers denote significant differences
between conditions (P < 0.05, FDR-corrected). (C) Bayes factors (BF10) for the comparisons between consistent and inconsistent conditions. For display
purposes, the BF10 values were log-transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) evidence for a difference
between conditions. Similar to Experiment 1, inconsistent scene-object combinations evoked more negative responses at 240–335, 360–500, and 570–
590 ms after the object onset relative to consistent combinations.

Tracking the Representation of Scenes with Consistent
and Inconsistent Objects
As in Experiment 1, we also tested whether semantically
consistent objects can facilitate scene representations.
We performed timeseries and cumulative decoding anal-
yses to discriminate between every two scene categories
separately for the consistent and inconsistent condi-
tions from −100 to 1800 ms relative to the onset of the
scene. We found very similar results as the Experiment
1, with significant decoding for both consistent scenes
(timeseries decoding: 55–1800 ms; cumulative decoding:
85–1800 ms) and inconsistent scenes (timeseries decod-
ing: 60–1800 ms; cumulative decoding: 85–1800 ms), but
no difference in decoding performance between consis-
tent and inconsistent conditions (Fig. 7). As in Experi-
ment 1, such differences were also not observed when
we corrected for multiple comparisons solely between
0 and 800 ms relative to the onset of the object. These
results suggest that facilitation effects between scenes
and objects are not mutual but that they likely depend on
behavioral goals: once the objects were task relevant, we
found a facilitation effect originating from semantically
consistent scenes.

Comparison across Experiments
The pattern of results across our experiments revealed
reliable ERP effects that are independent of task-
relevance, but multivariate decoding demonstrated that
representational facilitation effects can only be observed
when the objects are task relevant. To statistically
quantify this pattern, we directly compared the ERP
and decoding results between two experiments. For
each participant, we computed the difference between

the consistent and inconsistent conditions and then
compared these differences across experiments using
independent-samples t-tests. For the ERP results, we
found no statistical differences across the experiments
(all P > 0.05, FDR-corrected; Fig. 8A), suggesting that
N300/400 effects emerge independently of the task-
relevance of the objects. On the flipside, object repre-
sentations benefitted more strongly from semantically
consistent context when the objects were directly task-
relevant: In the timeseries decoding, differences between
the two experiments emerged at 215–245, 295–335, and
610–635 ms (max t(62) = 3.40, P = 0.001), suggesting that
during these time points, task-relevance enhances the
effect of semantically consistent scene context (Fig. 8B).
Clear evidence for this effect was also found in the
cumulative decoding, where the effect of semantically
consistent scene context was stronger in Experiment 2
between 160–190 and 255–800 ms (Fig. 8C). There were
no significant differences in scene decoding between the
two experiments.

Finally, we asked whether the difference in results
across experiments was statistically different for the
ERP and the object decoding analyses. To answer this
question, we performed a 2 × 2 mixed ANOVA with the
factors task-relevance (task-irrelevant vs. task-relevant
objects, i.e., Experiment 1 vs. Experiment 2) and neural
measure (ERP vs. object decoding). For this analysis, we
first needed to make the ERP and decoding effects com-
parable. To achieve this, we first calculated the ERP dif-
ference between consistent and inconsistent conditions
at each time point for each participant and standardized
the difference values by dividing them by the standard
deviation of ERP differences within the group at each
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Fig. 6. Decoding for the consistent or inconsistent objects within each scene in Experiment 2. (A) Timeseries decoding results, separately for consistent
and inconsistent objects. Line markers denote significant above-chance decoding (P < 0.05, FDR-corrected). (B) t-values for the comparisons between
consistent and inconsistent conditions. Line markers denote significant differences between the consistent and inconsistent conditions (P < 0.05, FDR-
corrected). (C) Bayes factors (BF10) for the comparisons between consistent and inconsistent conditions. For display purposes, the BF10 values were
log-transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) evidence for a difference between conditions. (D) Cumulative
decoding results, separately for consistent and inconsistent objects. Line markers denote significant above-chance decoding (P < 0.05, FDR-corrected).
(E, F) t-values and Bayes factors (BF10) for the comparisons between consistent and inconsistent conditions, as in (B, C). These results are markedly
different from Experiment 1: Scenes can indeed facilitate the cortical representations of consistent objects when the objects are task-relevant.

time point. The effects for timeseries and cumulative
object decoding were calculated and standardized in the
same way. Next, to obtain a more reliable estimate of the
ERP and decoding effects, we used the time span in which
the ERP effects emerged in both experiments (between
170 and 590 ms after object onset) to average the ERP and
decoding effects across time. Finally, we performed 2 × 2
mixed ANOVAs to test the interaction effect, separately
for the timeseries and cumulative decoding results. The
expected interaction between task-irrelevance/relevance
and ERP/decoding failed to reach significance when look-
ing at the timeseries decoding but revealed a trend (F(1,
62) = 3.009, P = 0.088; Fig. 8D). When comparing between

ERPs and cumulative decoding, the interaction reached
significance (F(1, 62) = 4.296, P = 0.042; Fig. 8E). This result
indicates that the effect of task-relevance is significantly
larger in the cumulative object decoding than it is in
the ERP analysis. This corroborates the notion that the
N300/400 effects are dissociable from changes in object
representation, as indexed by our decoding analyses.

Altogether, this shows that N300/400 ERP differences
emerge independently of task relevance, suggesting that
they do not index changes in object representations. In
contrast, multivariate decoding reveals that changes in
object representations are modulated by task-relevance:
when the objects are critical for behavior, semantically
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Fig. 7. Decoding between scenes with consistent or inconsistent objects in Experiment 2. (A) Timeseries decoding results, separately for scene with
consistent and inconsistent objects. Line markers denote significant above-chance decoding (P < 0.05, FDR-corrected). (B) t-values for the comparisons
between consistent and inconsistent conditions. (C) Bayes factors (BF10) for the comparisons between consistent and inconsistent conditions. For display
purposes, the BF10 values were log-transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) evidence for a difference
between conditions. (D) Cumulative decoding results, separately for scene with consistent and inconsistent objects. Line markers denote significant
above-chance decoding (P < 0.05, FDR-corrected). (E, F) t-values and Bayes factors (BF10) for the comparisons between consistent and inconsistent
conditions, as in (B, C). The results show that consistent embedded objects do not automatically facilitate the representation of scenes.

consistent scenes more strongly enhance their cortical
representation.

Discussion
In this study, we used EEG to investigate how scene-
object consistency affects the quality of object and
scene representations. In two experiments, we replicated
previous scene-object consistency ERP effects (Mudrik
et al. 2010, 2014; Võ and Wolfe 2013), showing that
inconsistent scene-object combinations evoked more
negative responses in the N300 and N400 windows
than consistent combinations. Critically, multivariate

decoding analyses revealed whether these scene-object
consistency effects in ERPs were accompanied by
changes in the quality of cortical object and scene rep-
resentations. We found that task-irrelevant consistent
and inconsistent objects were decoded equally well in
Experiment 1, despite pronounced ERP differences in the
N300/400 range. When the objects were task-relevant in
Experiment 2, we observed a comparable N300/400 ERP
effect, which now was accompanied by enhanced object
decoding. Across both experiments, we found no signif-
icant differences in scene category decoding between
consistent and inconsistent conditions. These results
suggest that the N300/400 ERP effects are not necessarily
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Fig. 8. Comparisons of ERP and decoding effects between experiments. (A) Differences in ERP effects (consistent—inconsistent) between experiments.
(B) Differences in decoding effects (consistent—inconsistent) for object in timeseries decoding analyses between experiments. Line markers denote
significant differences between two experiments (P < 0.05). (C) Differences in decoding effects for object in cumulative decoding analyses between
experiments. Line markers denote significant differences between two experiments (P < 0.05). These results show that the N300/400 effects emerge
independently of the task relevance of the objects, but facilitations from scenes to the representations of objects are task-dependent. (D) Standardized
consistency effects in ERPs and timeseries object decoding in both experiments, averaged across the time span during which ERP effects were observed
in the two experiments (170–590 ms). (E) Standardized effects in ERPs and cumulative object decoding in both experiments, averaged across 170–590 ms.
The difference between ERP and decoding effects in the two experiments was assessed using a mixed effects ANOVA. Error bars represent standard
error of the mean. ◦ represents P < 0.1; ∗ represents P < 0.05; ∗∗ represents P < 0.01.

indicative of enhanced object or scene representations.
Furthermore, they suggest that facilitations between
objects and scenes are task-dependent rather than
automatic.

N300 Effects Do Not Index Changes
in Perceptual Processing
The N300 effects found in the study replicated previous
findings in studies of scene-object consistency (Võ
and Wolfe 2013; Mudrik et al. 2014; Draschkow et al.
2018; Truman and Mudrik 2018; Coco et al. 2020).
Particularly, the early N300 effects were often inter-
preted as reflecting differences in perceptual processing
(Schendan and Maher 2009; Mudrik et al. 2010; Dyck
and Brodeur 2015; Sauvé et al. 2017; Kumar et al. 2021).
Such findings are often explained through models of
contextual facilitation (Bar and Ullman 1996; Bar 2004),
which propose that object representations are refined by
more readily available information about the consistent
context. Specifically, when a scene is presented, gist-
consistent schemas are rapidly activated through
nonselective processing channels (Wolfe et al. 2011). By
comparing this rapidly available scene gist to incoming
visual information, perceptual uncertainty in object

recognition is reduced. However, if the object does
not match the scene gist, its identification should be
impeded. It was argued that this mismatch between
inconsistent objects and the preactivated schemas
elicits a larger N300 amplitude, signifying a prediction
error that occurs during perceptual object analysis
(Kumar et al. 2021).

Our data challenge this interpretation. We show that
enhanced N300 amplitudes are observed independently
of changes in object decoding. We found reliable N300
differences between consistent and inconsistent objects,
which were highly similar for task-relevant and task-
irrelevant objects. In contrast, object information, as
measured by our multivariate object decoding analyses,
was similar for consistent and inconsistent objects
when they were not task-relevant; only when they were
task-relevant, we found that scene-object consistency
facilitated object representations. It is worth noting that
both task-relevant and task-irrelevant objects within the
scenes could be decoded reliably and with high accuracy
in both experiments, which is in line with previous
reports (Kaiser et al. 2016); our results therefore cannot
be attributed to a failure to decode the objects in the first
place.
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The pattern of results obtained in our study is
therefore inconsistent with the N300 indexing a change
in perceptual representations. Our results are rather
consistent with an interpretation that views the N300 as
a general marker of inconsistency or a purely attentional
response to a violation of expectation. On this view, N300
differences are postperceptual in nature. Contrary to
the N300, consistency-related differences in the N400
time window are commonly interpreted as a marker
of differences in postperceptual semantic processing
(Võ and Wolfe 2013; Truman and Mudrik 2018). In
fact, a recent study has shown that N400 effects are
qualitatively similar to N300 effects (Draschkow et al.
2018), further supporting the view that N300 differences
are not directly indicative of changes in perceptual
encoding.

When interpreting the results of our study, two limi-
tations should be considered. First, to render the object-
level task sufficiently difficult, we drastically reduced
the presentation time of the object in Experiment 2 (from
1500 to 83 ms). There is thus a possibility that the longer
timing, rather than the lack of behavioral relevance, in
Experiment 1 abolished decoding effects in Experiment
1. Further experiments are needed to establish a clear
distinction between these explanations. However, if the
ERP effects and the decoding effects were indeed a
reflection of the same underlying changes in perceptual
representations, they should both be affected by object
timing—given that we did not observe any change in
ERP effects across the two experiments, but a marked
difference in object decoding, it is unlikely that the timing
difference concealed an otherwise tight correspondence
between the two effects. Furthermore, we observed
highly comparable overall decoding in the two experi-
ments, which suggests that longer presentation times do
not per se alter object decoding. Second, our study com-
pares univariate ERP analyses that average many trials
on a small set of electrodes with multivariate decoding
analyses that probe a set of pairwise combinations
between conditions across large-scale electrode patterns.
Ultimately, these different approaches yield different
(unknown) sensitivities, so that a comparison between
results obtained with the two approaches within a single
experiment can be challenging. However, the different
results obtained across our two experiments cannot be
attributed to an overall sensitivity difference between
methods.

Semantic Consistency Only Facilitates
Task-Relevant Representations
Our results suggest that cross-facilitation effects between
objects and scenes are not automatic but task-dependent.
Consistent objects were only decoded better than
inconsistent objects in Experiment 2 where they were
directly task-relevant, suggesting that semantically con-
sistent scenes only facilitate object processing when the
objects are critical for behavior. Furthermore, decoding

between the different scenes was similar for scenes
that contained consistent and inconsistent objects. As
the scenes were never task-relevant, this supports the
view that mutual influences between scene and object
representations are only observed when they support
ongoing behavior.

Several previous neuroimaging studies reported a
cross-facilitation between scene and object processing
(Brandman and Peelen 2017, 2019; Kaiser et al. 2021),
reporting that scenes enhance the cortical represen-
tation of objects (Brandman and Peelen 2017; Kaiser
et al. 2021), and objects facilitate the representation of
scenes (Brandman and Peelen 2019). In these studies,
participants were asked to attend the objects or scenes
by memorizing them, completing repetition detection
tasks, or categorization tasks. One recent study directly
compared cross-facilitation effects between objects and
scenes under different task demands (Kaiser et al.
2021). In this study, spatially consistent scene context
facilitated object representation more than spatially
inconsistent scene context when the objects were task-
relevant. When participants instead performed a task on
the scene, object representations were comparable for
the spatially consistent and inconsistent scene contexts.

These results are in line with the current study,
in which semantically consistent scene context only
facilitated perceptual object processing when it was
beneficial for the task at hand. Our findings therefore
support a view where the visual system uses contextual
information in a flexible and strategic way: when scene
context is beneficial for the current task demands,
the visual system harnesses contextual information
to enhance object representations. Conversely, if the
current task does not benefit from contextual infor-
mation, no cross-facilitation between object and scene
processing is found.

What mechanism governs such situational interac-
tions between the scene and object processing systems?
A recent TMS study shines new light on how contextual
information from a scene may impact object process-
ing in visual cortex (Wischnewski and Peelen 2021): by
virtually lesioning key nodes of the scene and object
processing networks, they established that information is
first processed in parallel in object- and scene-selective
cortices (until ∼200 ms of processing), before informa-
tion from scene-selective brain regions converges with
object coding in object-selective regions (after 250 ms
of processing). Our results suggest that the information
flow from scene-selective to object-selective cortex is
gated by behavioral demands: when the task requires
perceiving object details, the brain may use scene rep-
resentations to actively generate predictions about the
objects that are likely to appear in the scene (Hochstein
and Ahissar 2002; Bar 2004). By feeding back these pre-
dictions to object-selective cortex, the perceptual repre-
sentation of consistent object information is then facil-
itated, for instance by sharpening the neural response
(de Lange et al. 2018). When the task does not require
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perceiving object detail, such predictions may simply
not be generated—or not generated to the same extent.
This showcases how predictive processing is adaptive
tailored to situational needs.

Conclusion
In the study, we investigated how scene-object con-
sistency affects scene and object representations. Our
results suggest that differences in the N300/400 compo-
nents related to scene-object consistency do not directly
index differences in perceptual representations, but
rather reflect a generic marker of semantic violations.
Furthermore, they suggest that facilitation effects
between objects and scenes are task-dependent rather
than automatic. Our findings highlight that there are
multiple markers of semantic consistency that reflect
different underlying brain mechanisms. How these
mechanisms interact to support efficient real-world
vision needs to be explored in future studies.
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Supplementary material can be found at Cerebral Cortex
online.
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Fig. S1 Permutation-test for timeseries object decoding against chance level. (A) Timeseries 
decoding results in Experiment 1, separately for consistent and inconsistent objects. Line markers 
denote significant above-chance decoding (permutation-test 1,000 times, FDR-corrected). (B) 
Null distribution for the timeseries decoding of consistent objects in Experiment 1 at each time 
point obtained from the permutation test. (C) Null distribution for the timeseries decoding of 
inconsistent objects in Experiment 1 at each time point obtained from the permutation test. (D) 
Timeseries decoding results in Experiment 2. (E) Null distribution for the timeseries decoding of 
consistent objects in Experiment 2 at each time point. (F) Null distribution for the timeseries 
decoding of inconsistent objects in Experiment 2 at each time point. These results show the 
empirical chance levels for the timeseries decoding of both consistent and inconsistent objects in 
both experiments are centered around 50% and the significant timepoints are virtually identical to 
our original approach. 
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Fig. S2 Decoding of consistent and inconsistent objects in Experiment 1. (A) Results of timeseries 
decoding using the data from a single time point without using sliding windows, separately for 
consistent and inconsistent objects. Line markers denote significant above-chance decoding (p < 
0.05, FDR-corrected). (B) t-values for the comparisons between consistent and inconsistent 
conditions. (C) Bayes factors (BF10) for the comparisons between consistent and inconsistent 
conditions. For display purposes, the BF10 values were log-transformed. Dotted lines show low 
(BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) evidence for a difference between conditions. 
(D) Results of timeseries decoding using the data averaged across time within each 50 ms sliding
window, separately for consistent and inconsistent objects. (E, F) t-values and Bayes factors (BF10)
for the comparisons between consistent and inconsistent conditions, as in (B, C). These results are
very similar to the results of our timeseries decoding using sliding windows.
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Fig. S3 Decoding of consistent and inconsistent objects in Experiment 2. (A) Results of timeseries 
decoding using the data from a single time point without using sliding windows, separately for 
consistent and inconsistent objects. Line markers denote significant above-chance decoding (p < 
0.05, FDR-corrected). (B) t-values for the comparisons between consistent and inconsistent 
conditions. Line markers denote significant differences between the consistent and inconsistent 
conditions (p < 0.05, FDR-corrected). (C) Bayes factors (BF10) for the comparisons between 
consistent and inconsistent conditions. For display purposes, the BF10 values were log-transformed. 
Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) evidence for a 
difference between conditions. (D) Results of timeseries decoding using the data averaged across 
time within each 50 ms sliding window, separately for consistent and inconsistent objects. (E, F) 
t-values and Bayes factors (BF10) for the comparisons between consistent and inconsistent
conditions, as in (B, C). Results for the analysis on averaged time windows are similar to our
original results using sliding windows: the consistent objects are decoded better than inconsistent
objects when the objects are task relevant. The results on individual time points are also
qualitatively similar, but the differences failed to reach statistical significance.
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Fig. S4 Topographies of decoding accuracy for consistent and inconsistent objects in Experiments 
1 and 2. Here, the timeseries decoding analysis was repeated for a moving spherical neighborhood 
of 11 electrodes and accuracies were mapped back onto the scalp location of the central electrode 
in the neighborhood. The results show that both consistent and inconsistent objects could be 
decoded across the scalp and from 50-100 ms after object onset, with the strongest decoding in 
posterior sensors located over visual cortex. Differences between consistent and inconsistent object 
decoding in Experiment 2 emerged primarily in right-posterior electrodes. For this analysis, 
electrodes removed during preprocessing were interpolated using data from neighboring electrodes. 
Asterisks (*) indicate the significant results of comparisons against chance level or between 
conditions, after FDR correction across electrodes.  
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Fig. S5 Topographies of ERP differences between consistent and inconsistent scene-object 
combinations in Experiments 1 and 2. Corroborating our electrode selection for main ERP analysis, 
the most significant scene consistency effects emerged in mid-central region. For this analysis, 
electrodes removed during preprocessing were interpolated using data from neighboring electrodes. 
Asterisks (*) indicate the significant differences between the consistent and inconsistent conditions, 
after FDR correction across electrodes. 
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Fig. S6 Event-related potentials (ERPs) in Experiment 1, with filtering performed before 
epoching. (A) ERPs recorded from the mid-central region for consistent and inconsistent scene-
object combinations. Error margins represent standard errors. (B) t-values for the comparisons 
between consistent and inconsistent conditions. Line markers denote significant differences 
between conditions (p < 0.05, FDR-corrected). (C) Bayes factors (BF10) for the comparisons 
between consistent and inconsistent conditions. For display purposes, the BF10 values were log-
transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) 
evidence for a difference between conditions. Similar to our original analysis, in which filtering 
was performed after the other preprocessing steps, inconsistent scene-object combinations evoked 
more negative responses than consistent combinations at 160-445 ms after object onset.  

  

72

Original publication of Study 1



 

Fig. S7 Event-related potentials (ERPs) in Experiment 2, with filtering performed before 
epoching. (A) ERPs recorded from the mid-central region for consistent and inconsistent scene-
object combinations. Error margins represent standard errors. (B) t-values for the comparisons 
between consistent and inconsistent conditions. Line markers denote significant differences 
between conditions (p < 0.05, FDR-corrected). (C) Bayes factors (BF10) for the comparisons 
between consistent and inconsistent conditions. For display purposes, the BF10 values were log-
transformed. Dotted lines show low (BF10 = 1), moderate (BF10 = 3), and high (BF10 = 10) 
evidence for a difference between conditions. As for Experiment 1, and similar to our original 
analysis, inconsistent scene-object combinations evoked more negative responses at 245-340 ms 
and 360-495 ms after object onset, relative to consistent combinations.  

 

 

73

Original publication of Study 1



Original publication of Study 2 

 

5.2 Original publication of Study 2 

Chen, L., Cichy, R. M.*, & Kaiser, D.* (2023). Alpha -frequency feedback to early 

visual cortex orchestrates coherent naturalistic vision. Science Advances, 9(45), 

eadi2321. https://doi.org/10.1126/sciadv.adi2321 

* The authors contributed equally. 

Copyright 

This is an open-access article distributed under the terms of the Creative Commons 

Attribution-NonCommercial license, which permits use, distribution, and reproduction 

in any medium, so long as the resultant use is not for commercial advantage and 

provided the original work is properly cited.

 

  

74

https://doi.org/10.1126/sciadv.adi2321
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


C O G N I T I V E  N E U R O S C I E N C E  

Alpha-frequency feedback to early visual cortex 
orchestrates coherent naturalistic vision 
Lixiang Chen1*, Radoslaw M. Cichy1†, Daniel Kaiser2,3*†
During naturalistic vision, the brain generates coherent percepts by integrating sensory inputs scattered across 
the visual !eld. Here, we asked whether this integration process is mediated by rhythmic cortical feedback. In 
electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) experiments, we experimen-
tally manipulated integrative processing by changing the spatiotemporal coherence of naturalistic videos pre-
sented across visual hemi!elds. Our EEG data revealed that information about incoherent videos is coded in 
feedforward-related gamma activity while information about coherent videos is coded in feedback-related 
alpha activity, indicating that integration is indeed mediated by rhythmic activity. Our fMRI data identi!ed 
scene-selective cortex and human middle temporal complex (hMT) as likely sources of this feedback. Analyti-
cally combining our EEG and fMRI data further revealed that feedback-related representations in the alpha band 
shape the earliest stages of visual processing in cortex. Together, our !ndings indicate that the construction of 
coherent visual experiences relies on cortical feedback rhythms that fully traverse the visual hierarchy. 

Copyright © 2023 The 
Authors, some  
rights reserved;  
exclusive licensee  
American Association  
for the Advancement  
of Science. No claim to  
original U.S. Government  
Works. Distributed  
under a Creative  
Commons Attribution  
NonCommercial  
License 4.0 (CC BY-NC).   

INTRODUCTION 
We consciously experience our visual surroundings as a coherent 
whole that is phenomenally unified across space (1, 2). In our 
visual system, however, inputs are initially transformed into a spa-
tially fragmented mosaic of local signals that lack integration. How 
does the brain integrate this fragmented information across the sub-
sequent visual processing cascade to mediate unified perception? 

Classic hierarchical theories of vision posit that integration is 
solved during feedforward processing (3, 4). On this view, integra-
tion is hard wired into the visual system: Local representations of 
specific features are integrated into more global representations of 
meaningful visual contents through hierarchical convergence over 
features distributed across visual space. 

More recent theories instead posit that visual integration is 
achieved through complex interactions between feedforward infor-
mation flow and dynamic top-down feedback (5–7). On this view,
feedback information flow from downstream adaptively guides the 
integration of visual information in upstream regions. Such a con-
ceptualization is anatomically plausible, as well as behaviorally 
adaptive, as higher-order regions can flexibly adjust current 
whether or not stimuli are integrated through the visual system’s
abundant top-down connections (8–10).

However, the proposed interactions between feedforward and 
feedback information pose a critical challenge: Feedforward and 
feedback information needs to be multiplexed across the visual hi-
erarchy to avoid unwanted interferences through spurious interac-
tions of these signals. Previous studies propose that neural systems 
meet this challenge by routing feedforward and feedback informa-
tion in different neural frequency channels: High-frequency gamma 
(31 to 70 Hz) rhythms may mediate feedforward propagation, 

whereas low-frequency alpha (8 to 12 Hz) and beta (13 to 30 Hz) 
rhythms carry predictive feedback to upstream areas (11–14).

Here, we set out to test the hypothesis that rhythmic coding acts 
as a mechanism mediating coherent visual perception. We used a 
novel experimental paradigm that manipulated the degree to 
which stimuli could be integrated across space through the spatio-
temporal coherence of naturalistic videos shown in the two visual 
hemifields. Combining electroencephalography (EEG) and func-
tional magnetic resonance imaging (fMRI) measurements, we 
show that when inputs are integrated into a coherent percept, cor-
tical alpha dynamics carry stimulus-specific feedback from high- 
level visual cortex to early visual cortex. Our results show that 
spatial integration of naturalistic visual inputs is mediated by feed-
back dynamics that traverse the visual hierarchy in low-frequency 
alpha rhythms. 

RESULTS 
We experimentally mimicked the spatially distributed nature of nat-
uralistic inputs by presenting eight 3-s naturalistic videos (Fig. 1A) 
through two circular apertures right and left of fixation (diameter, 
6° visual angle; minimal distance to fixation, 2.64°). To assess spatial 
integration in a controlled way, we varied how the videos were pre-
sented through these apertures (Fig. 1B): In the right- or left-only 
condition, the video was shown only through one of the apertures, 
providing a baseline for processing inputs from one hemifield, 
without the need for spatial integration across hemifields. In the co-
herent condition, the same original video was shown through both 
apertures. Here, the input had the spatiotemporal statistics of a 
unified scene expected in the real world and could thus be readily 
integrated into a coherent unitary percept. In the incoherent condi-
tion, by contrast, the videos shown through the two apertures 
stemmed from two different videos (see fig. S1). Here, the input 
did not have the spatiotemporal real-world statistics of a unified 
scene and thus could not be readily integrated. Contrasting brain 
activity for the coherent and incoherent condition thus reveals 
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neural signatures of spatial integration into unified percepts across 
visual space. 

Participants viewed the video stimuli in separate EEG (n = 48) 
and fMRI (n = 36) recording sessions. Participants performed an 
unrelated central task (Fig. 1C) to ensure fixation and to allow us 
to probe integration processes in the absence of explicit 
task demands. 

Harnessing the complementary frequency resolution and spatial 
resolution of our EEG and fMRI recordings, we then delineated how 
inputs that either can or cannot be integrated into a coherent 
percept are represented in rhythmic neural activity and regional ac-
tivity across the visual hierarchy. Specifically, we decoded between 
the eight different video stimuli in each of the four conditions from 
frequency-resolved EEG sensor patterns (15, 16) and from spatially 
resolved fMRI multivoxel patterns (17). 

Rhythmic brain dynamics mediate integration across 
visual space 
Our first key analysis determined how the feedforward and feedback 
information flows involved in the processing and integrating visual 
information across space are multiplexed in rhythmic codes. We hy-
pothesized that conditions not affording integration lead to neural 
coding in feedforward-related gamma activity (11, 14), whereas 
conditions that allow for spatiotemporal integration lead to 
coding in feedback-related alpha/beta activity (11, 14). 

To test this hypothesis, we decoded the video stimuli from spec-
trally resolved EEG signals, aggregated within the alpha, beta, and 
gamma frequency bands, during the whole stimulus duration 
(Fig. 2A; see Materials and Methods for details). Our findings sup-
ported our hypothesis. We observed that incoherent video stimuli, 
as well as single video stimuli, were decodable only from the gamma 
frequency band [all t(47) > 3.41, P < 0.001; Fig. 2, B and C]. By stark 
contrast, coherent video stimuli were decodable only from the 
alpha-frequency band [t(47) = 5.43, P < 0.001; Fig. 2C]. Comparing 

the pattern of decoding performance across frequency bands re-
vealed that incoherent video stimuli were better decodable than co-
herent stimuli from gamma responses [t(47) = 3.04, P = 0.004] and 
coherent stimuli were better decoded than incoherent stimuli from 
alpha responses [t(47) = 2.32, P = 0.025; interaction: F(2, 94) = 7.47, 
P < 0.001; Fig. 2C]. The observed effects also held when analyzing 
the data continuously across frequency space rather than aggregated 
in predefined frequency bands (see fig. S2) and were not found triv-
ially in the evoked broadband responses (see fig. S3). We also ana-
lyzed the theta (4 to 7 Hz) and high-gamma bands (71 to 100 Hz) 
using the decoding analysis. For the theta band, we did not find any 
significant decoding (see figs. S2 and S4). The results from the high- 
gamma band were highly similar to the results obtained for the 
lower-gamma frequency range (see figs. S2 and S4). In addition, 
we conducted both univariate and decoding analyses on time- 
and frequency-resolved responses, but neither of these analyses re-
vealed any differences between the coherent and incoherent condi-
tions (see fig. S5), indicating a lack of statistical power for resolving 
the data both in time and frequency. Together, our results demon-
strate the multiplexing of visual information in rhythmic informa-
tion flows. When no integration across hemifields was required, 
visual feedforward activity is carried by gamma rhythms. When 
spatiotemporally coherent inputs allow for integration, integra-
tion-related feedback activity is carried by alpha rhythms. 

The observation of a frequency-specific channel for feedback in-
formation underlying spatial integration immediately poses two 
questions: (i) Where does this feedback originate from? and (ii) 
Where is this feedback heading? We used fMRI recordings to 
answer these two questions in turn. 

Scene-selective cortex is the source of integration-related 
feedback 
To reveal the source of the feedback, we evaluated how representa-
tions across visual cortex differ between stimuli that can or cannot 

Fig. 1. Stimuli and experimental design. (A) Snapshots from the eight videos used. (B) In the experiment, videos were either presented through one aperture in the 
right or left visual field or through both apertures in a coherent or incoherent way. (C) During the video presentation, the color of the fixation dot changed periodically 
(every 200 ms). Participants reported whether a green or yellow fixation dot was included in the sequence.  
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be integrated across space (Fig. 3A). We reasoned that regions 
capable of exerting integration-related feedback should show stron-
ger representations of spatiotemporally coherent inputs that can be 
integrated, compared to incoherent inputs that do not. Scene-selec-
tive areas in visual cortex are a strong contender for the source of 
this feedback, as they have been previously linked to the spatial in-
tegration of coherent scene information (18, 19). 

To test this assertion, we decoded the video stimuli from multi-
voxel patterns in a set of three early visual cortex regions (V1, V2, 
and V3), one motion-selective region [human middle temporal 
complex (hMT)/V5], and three scene-selective regions [the occipi-
tal place area (OPA), the medial place area (MPA), and the parahip-
pocampal place area (PPA)]. 

In a first step, we decoded between the single video stimuli and 
found information in early visual cortex (V1, V2, and V3) and 
scene-selective cortex (OPA, MPA, and PPA) only when video 
stimuli were shown in the hemifield contralateral to the region in-
vestigated [all t(35) > 3.75, P < 0.001; Fig. 3B]. This implies that any 
stronger decoding for coherent, compared to incoherent, video 
stimuli can only be driven by the interaction of ipsilateral and con-
tralateral inputs, rather than by the ipsilateral input alone. On this 
interpretative backdrop, we next decoded coherent and incoherent 
video stimuli. Both were decodable in each of the seven regions [all t 
(35) > 4.43, P < 0.001; Fig. 3C]. Critically, coherent video stimuli
were only better decoded than incoherent stimuli in the MPA [t
(35) = 3.61, P < 0.001; Fig. 3C] and PPA [t(35) = 3.32, P = 0.002;
Fig. 3C]. A similar trend was found in hMT [t(35) = 1.73, P = 0.092;
Fig. 3C]. In hMT, MPA, and PPA, coherent video stimuli were also
better decoded than contralateral single video stimuli [all t(35) >
2.99, P < 0.005]. Similar results were found in the whole-brain
searchlight-decoding analysis. We found significant decoding for
single video stimuli across the visual cortex in the contralateral
hemisphere (see fig. S6) as well as significant decoding across the
visual cortex for both coherent (Fig. 3D) and incoherent stimuli
(Fig. 3E). The differences between coherent and incoherent condi-
tions were only found in locations overlapping—or close to—
scene-selective cortex and hMT (Fig. 3F). Given the involvement

of motion-selective hMT in integrating visual information, we 
also tested whether differences in motion coherence (operational-
ized as motion energy and motion direction) contribute to the in-
tegration effects observed here. When assessing differences between 
videos with high and low motion coherence across hemifields, 
however, we did not find qualitatively similar effects to our main 
analyses (see fig. S7), suggesting that motion coherence is not the 
main driver of the integration effects. 

Together, these results show that scene-selective cortex and hMT 
aggregate spatiotemporally coherent information across hemifields, 
suggesting these regions as likely generators of feedback signals 
guiding visual integration. 

Integration-related feedback traverses the visual hierarchy 
Last, we determined where the feedback-related alpha rhythms are 
localized in brain space. We were particularly interested in whether 
integration-related feedback traverses the visual hierarchy up to the 
earliest stages of visual processing (20, 21). To investigate this, we 
performed an EEG/fMRI fusion analysis (22, 23) that directly 
links spectral representations in the EEG with spatial representa-
tions in the fMRI. To link representations across modalities, we 
first computed representational similarities between all video 
stimuli using pairwise decoding analyses and then correlated the 
similarities obtained from EEG alpha responses and fMRI activa-
tions across the seven visual regions (Fig. 4A). Here, we focused 
on the crucial comparison of regional representations (fMRI) and 
alpha-frequency representations (EEG) between the coherent and 
the incoherent conditions. Our fMRI decoding analyses for the 
single video stimuli demonstrate that V1 only receives sensory in-
formation from the contralateral visual field. As feedforward inputs 
from the contralateral visual field are identical across both condi-
tions, any stronger correspondence between regional representa-
tions and alpha-frequency representations in the coherent 
condition can unequivocally be attributed to feedback from 
higher-order systems, which have access to both ipsi- and contralat-
eral input. We found that representations in the alpha band were 
more strongly related to representations in the coherent condition 

Fig. 2. EEG decoding analysis. (A) Frequency-resolved EEG decoding analysis. In each condition, we used eight-way decoding to classify the video stimuli from patterns 
of spectral EEG power across electrodes, separately for each frequency band (alpha, beta, and gamma). (B and C) Results of EEG frequency-resolved decoding analysis. The 
incoherent and single video stimuli were decodable from gamma responses, whereas the coherent stimuli were decodable from alpha responses, suggesting a switch 
from dominant feedforward processing to the recruitment of cortical feedback. Error bars represent SEs. *P < 0.05 (FDR-corrected).  
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than in the incoherent condition in V1 [t(35) = 3.37, P = 0.001; 
Fig. 4B]. A similar trend emerged in V2 [t(35) = 2.32, Puncorrected 
= 0.025; Fig. 4B] and V3 [t(35) = 2.15, Puncorrected = 0.036; 
Fig. 4B] but not in hMT [t(35) = −0.28, P = 0.783; Fig. 4B] and 
scene-selective cortex [OPA: t(35) = 0.94, P = 0.351; MPA: t(35) = 
0.005, P = 0.996; PPA: t(35) = −1.64, P = 0.108; Fig. 4B]. The cor-
respondence between alpha-band representations in the EEG and 
activity in early visual cortex persisted after we controlled for 
motion coherence in the fusion analysis (see fig. S8), suggesting 
that the effect was not solely attributable to coherent patterns of 
motion. By contrast, no such correspondences were found 
between beta/gamma EEG responses and regional fMRI activations 
(see fig. S9). The results of the fusion analysis show that when inputs 
are spatiotemporally coherent and can be integrated into a unified 
percept, feedback-related alpha rhythms are found at the earliest 
stages of visual processing in cortex. 

DISCUSSION 
Our findings demonstrate that the spatial integration of naturalistic 
inputs integral to mediating coherent perception is achieved by cor-
tical feedback: Only when spatiotemporally coherent inputs can be 
integrated into a coherent whole, stimulus-specific information was 
coded in feedback-related alpha activity. We further show that 
scene-selective cortex and hMT interactively process information 
across visual space, highlighting them as likely sources of integra-
tion-related feedback. Last, we reveal that integration-related 
alpha dynamics are linked to representations in early visual 
cortex, indicating that integration is accompanied by feedback 
that traverses the whole cortical visual hierarchy from top to 
bottom. Together, our results promote an active conceptualization 
of the visual system, where concurrent feedforward and feedback 
information flows are critical for establishing coherent naturalis-
tic vision. 

Fig. 3. fMRI decoding analysis. (A) fMRI decoding analysis in regions of interest (ROIs). In each condition, we used eight-way decoding to classify the video stimuli on 
response patterns in each ROI (V1, V2, V3, hMT, OPA, MPA, and PPA). (B) Results of fMRI ROI decoding analysis for the right- and left-only conditions. Single video stimuli 
were decodable in regions contralateral to the stimulation. In the ipsilateral hemisphere, they were only decodable in hMT but not in early visual cortex (V1, V2, and V3) 
and scene-selective cortex (OPA, MPA, and PPA). (C) Results of fMRI ROI decoding analysis for the coherent and incoherent conditions. Video stimuli were decodable in 
both conditions in each of the seven regions. Coherent stimuli were decoded better than incoherent stimuli in scene-selective cortex (MPA and PPA). (D) Results of fMRI 
searchlight decoding analysis for the coherent condition. Coherent stimuli were decodable across visual cortex. (E) Results of fMRI searchlight decoding analysis for the 
incoherent condition. Incoherent stimuli were decodable across visual cortex. (F) Significant differences between coherent and incoherent conditions in fMRI searchlight 
decoding analysis. Significant differences between the coherent and incoherent conditions were observed in locations overlapping—or close to—scene-selective cortex 
and hMT. Together, the results suggested that scene-selective cortex and hMT integrate dynamic information across visual hemifields. Error bars represent SEs. *P < 0.05 
(FDR-corrected).  
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Our finding that feedback reaches all the way to initial stages of 
visual processing supports the emerging notion that early visual 
cortex receives various types of stimulus-specific feedback, such 
as during mental imagery (24, 25), in cross-modal perception (26, 
27), and during the interpolation of missing contextual information 
(28, 29). Further supporting the interpretation of such signals as 
long-range feedback, recent animal studies have found that contex-
tual signals in V1 are substantially delayed in time, compared to
feedforward processing (30–32). Such feedback processes may use
the spatial resolution of V1 as a flexible sketchpad mechanism (33, 
34) for recreating detailed feature mappings that are inferred from
global context.

Our fMRI data identify scene-selective areas in the anterior 
ventral temporal cortex (the MPA and the PPA) and motion-selec-
tive area hMT as probable sources of the feedback to early visual 
cortex. These regions exhibited stronger representations for spatio-
temporally coherent stimuli placed in the two hemifields. Scene-se-
lective cortex is a logical candidate for a source of the feedback: 
Scene-selective regions are sensitive to the typical spatial configura-
tion of scene stimuli (18, 19, 35, 36), allowing them to create feed-
back signals that carry information about whether and how stimuli 
need to be integrated at lower levels of the visual hierarchy. These 
feedback signals may stem from adaptively comparing contralateral 
feedforward information with ipsilateral information from inter-
hemispheric connections. In the incoherent condition, the ipsilat-
eral information received from the other hemisphere does not 
match with typical real-world regularities and may thus not 
trigger integration. Conversely, when stimuli are coherent, inter-
hemispheric transfer of information may be critical for facilitating 

integration across visual fields. This idea is consistent with previous 
studies showing increased interhemispheric connectivity when 
object or word information needs to be integrated across visual 
hemifields (37, 38). Motion-selective hMT is also a conceivable can-
didate for integration-related feedback. The region not only showed 
enhanced representations for spatiotemporally coherent stimuli but 
also had representations for both contralateral and ipsilateral
stimuli. The hMT’s sensitivity to motion (39, 40) and its bilateral
visual representation (41) make it suited for integrating coherent 
motion patterns across hemifields. Although speculative at this 
point, scene-selective and motion-selective cortical areas may 
jointly generate adaptive feedback signals that combine information 
about coherent scene content (analyzed in MPA and PPA) and co-
herent motion patterns (hMT). Future studies need to map out 
cortico-cortical connectivity during spatial integration to test 
this idea. 

Our results inform theories about the functional role of alpha 
rhythms in cortex. Alpha is often considered an idling rhythm
(42, 43), a neural correlate of active suppression (44–46), or a cor-
relate of working memory maintenance (47, 48). More recently, 
alpha rhythms were associated with an active role in cortical feed-
back processing (12, 14, 49, 50). Our results highlight that alpha dy-
namics not only modulate feedforward processing but also encode 
stimulus-specific information. Our findings thus invite a different 
conceptualization of alpha dynamics, where alpha rhythms are crit-
ically involved in routing feedback-related information across the 
visual cortical hierarchy (15, 16, 51, 52). An important remaining 
question is whether the feedback itself traverses in alpha rhythms 
or whether the feedback initiates upstream representations that 

Fig. 4. EEG-fMRI fusion analysis. (A) For each condition, EEG representational dissimilarity matrices (RDMs) for each frequency band (alpha, beta, and gamma) and fMRI 
RDMs for each ROI (V1, V2, V3, hMT, OPA, MPA, and PPA) were first obtained using pairwise decoding analyses. To assess correspondences between spectral and regional 
representations, we calculated Spearman correlations between the participant-specific EEG RDMs in each frequency band and the group-averaged fMRI RDMs in each 
region, separately for each condition. (B) Results of EEG-fMRI fusion analysis in the alpha band. Representations in the alpha band corresponded more strongly with 
representations in V1 (with a similar trend in V2 and V3) when the videos were presented coherently, rather than incoherently. No correspondences were found between 
the beta and gamma bands and regional activity (see fig. S9). Error bars represent SEs. *P < 0.05 (FDR-corrected), +P < 0.05 (uncorrected).  
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themselves fluctuate in alpha rhythms (53, 54). The absence of a 
correspondence of alpha-band representations and regional activity 
in scene-selective cortex may suggest that it is not the feedback itself 
that is rhythmic, but alpha dynamics in scene-selective cortex may
also be weaker—or to some extent initiated for both coherent and
incoherent stimuli. More studies are needed to dissociate between 
the rhythmic nature of cortical feedback and the representations it 
instills in early visual cortex. 

The increased involvement of alpha rhythms in coding the co-
herent visual stimuli was accompanied by an absence of concurrent 
representations in the gamma band. A potential reason for the 
absence of decoding from feedforward-related gamma activity in 
the coherent condition is that feedforward representations were ef-
ficiently suppressed by accurate top-down predictions (5). In our 
experiment, the video stimuli were presented for a relatively long 
time, without many rapid or unexpected visual events, potentially 
silencing feedforward propagation in the gamma range. We also did 
not find a correspondence between gamma dynamics and regional 
fMRI activity. Despite a general difficulty in linking high-frequency 
EEG activity and fMRI signals, another reason may be that, unlike 
the alpha dynamics, the gamma dynamics were relatively broad-
band and did not reflect a distinct neural rhythm (see fig. S2). 

Our findings can be linked to theories of predictive processing 
that view neural information processing as a dynamic exchange of 
sensory feedforward signals and predictions stemming from higher- 
order areas of cortex (5, 6, 51). On this view, feedback signals arising 
during stimulus integration are conceptualized as predictions about 
sensory input derived from spatially and temporally coherent con-
tralateral input. In our paradigm, feedback signals can be conceptu-
alized as predictions for the contralateral input generated from the 
spatiotemporally coherent ipsilateral input. A challenge for predic-
tive coding theories is that it requires a strict separation of the feed-
forward sensory input and the predictive feedback. Our results 
indicate a compelling solution through multiplexing of feedforward 
and feedback information in dedicated frequency-specific channels 
(11, 13, 14, 49) in human cortex. It will be interesting to see whether 
similar frequency-specific correlates of predictive processing are 
unveiled in other brain systems in the future. 

Our findings further pave the way toward researching integra-
tion processes under various task demands. In our experiments, 
we engaged participants in an unrelated fixation task, capitalizing 
on automatically triggered integration processes for spatiotempor-
ally coherent stimuli. Such automatic integration is well in line with 
phenomenological experience: The coherent video stimuli, but not 
the incoherent stimuli, strongly appear as coherent visual events 
that happen behind an occlude. Future studies should investigate 
how integration effects vary when participants are required to 
engage with the stimuli that need to be integrated. It will be partic-
ularly interesting to see whether tasks that require more global or 
local analysis are related to different degrees of integration and dif-
ferent rhythmic codes in the brain. These future studies could also 
set out to determine the critical features that enable integration and 
what is integrated. As our incoherent stimuli were designed to be 
incoherent along many different dimensions (e.g., low- and mid- 
level visual features, categorical content, and motion patterns), a 
comprehensive mapping of how these dimensions independently 
contribute to integration is needed. Future studies could thereby de-
lineate how integration phenomenologically depends on the coher-
ence of these candidate visual features. 

More generally, our results have general implications for under-
standing and modeling feedforward and feedback information 
flows in neural systems. Processes like stimulus integration that 
are classically conceptualized as solvable in pure feedforward cas-
cades may be more dynamic than previously thought. Discoveries 
like ours arbitrate between competing theories that either stress the 
power of feedforward hierarchies (3, 4) or emphasize the critical role 
of feedback processes (5, 6). They further motivate approaches to
computational modeling that capture the visual system’s abundant
feedback connectivity (55, 56). 

Together, our results reveal feedback in the alpha-frequency 
range across the visual hierarchy as a key mechanism for integrating 
spatiotemporally coherent information in naturalistic vision. This 
strongly supports an active conceptualization of the visual system, 
where top-down projections are critical for the construction of co-
herent and unified visual percepts from fragmented sensory 
information. 

MATERIALS AND METHODS 
Participants 
Forty-eight healthy adults (gender: 12 males/36 females, age: 21.1 ± 
3.8 years) participated in the EEG experiment, and another 36 
(gender: 17 males/19 females, age: 27.3 ± 2.5 years) participated 
in the fMRI experiment. Sample size resulted from convenience 
sampling, with the goal of exceeding n = 34 in both experiments 
(i.e., exceeding 80% power for detecting a medium effect size of d 
= 0.5 in a two-sided t test). All participants had normal or corrected- 
to-normal vision and had no history of neurological/psychiatric dis-
orders. They all signed informed consent before the experiment, 
and they were compensated for their time with partial course 
credit or cash. The EEG protocol was approved by the ethical com-
mittee of the Department of Psychology at the University of York, 
and the fMRI protocol was approved by the ethical committee of the 
Department of Psychology at Freie Universität Berlin. All experi-
mental protocols were in accordance with the Declaration of 
Helsinki. 

Stimuli and design 
The stimuli and design were identical for the EEG and fMRI exper-
iments unless stated otherwise. Eight short video clips (3 s each; 
Fig. 1A) depicting everyday situations (e.g., a train driving past 
the observer; a view of red mountains; a view of waves crashing 
on the coast; first-person perspective of walking along a forest 
path; an aerial view of a motorway toll station; a group of zebras 
grazing on a prairie; first-person perspective of skiing in the 
forest; and first-person perspective of walking along a street) were 
used in the experiments. During the experiment, these original 
videos were presented on the screen through circular apertures 
right and left of central fixation. We manipulated four experimental 
conditions (right-only, left-only, coherent, and incoherent) by pre-
senting the original videos in different ways (Fig. 1B). In the right- 
or left-only condition, we presented the videos through right or left 
aperture only. We also showed two matching segments from the 
same video in the coherent condition, while we showed segments 
from two different videos in the incoherent condition, through 
both apertures. In the incoherent condition, the eight original 
videos were yoked into eight fixed pairs (see fig. S1), and each 
video was always only shown with its paired video. Thus, there  
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were a total of 32 unique video stimuli (8 for each condition). The 
diameter of each aperture was 6° visual angle, and the shortest dis-
tance between the stimulation and central fixation was 2.64° visual 
angle. The borders of the apertures were slightly smoothed. The 
central fixation dot subtended 0.44° visual angle. We selected our 
videos to be diverse in content (e.g., natural versus manmade) 
and motion (e.g., natural versus camera motion). This was done 
to maximize the contrast between the coherent and incoherent 
video stimuli. For assessing motion, we quantified the motion 
energy for each video stimulus using Motion Energy Analysis soft-
ware (https://psync.ch/mea/). We did not find any significant 
between-condition differences [comparison on the means of 
motion energy: right- versus left-only, t(7) = 0.36, P = 0.728, coher-
ent versus incoherent, t(7) = 0.03, P = 0.976; comparison on the SDs 
of motion energy: right- versus left-only, t(7) = 1.08, P = 0.316, co-
herent versus incoherent, t(7) = 1.13, P = 0.294]. Although this sug-
gests that there was no difference in overall motion between 
conditions, there are many other candidates for critical differences 
between conditions, which will have to be evaluated in 
future studies. 

The experiments were controlled through MATLAB and the 
Psychophysics Toolbox (57, 58). In each trial, a fixation dot was 
first shown for 500 ms, after which a unique video stimulus was dis-
played for 3000 ms. During the video stimulus playback, the color of 
the fixation changed periodically (every 200 ms) and turned either 
green or yellow at a single random point in the sequence (but never 
the first or last point). After every trial, a response screen prompted 
participants to report whether a green or yellow fixation dot was in-
cluded in the sequence. Participants were instructed to keep central 
fixation during the sequence so they would be able to solve this task 
accurately. In both experiments, participants performed the color 
discrimination with high accuracy (EEG: 93.28 ± 1.65% correct; 
fMRI: 91.44 ± 1.37% correct), indicating that they indeed focused 
their attention on the central task. There were no significant differ-
ences in behavioral accuracy and response time (RT) between the 
coherent and incoherent conditions in both the EEG and fMRI ex-
periments [accuracy-EEG, t(47) = 1.07, P = 0.29; accuracy-fMRI, t 
(35) = 0.20, P = 0.85; RT-fMRI, t(35) = 0.41, P = 0.69]. Note that RTs
were not recorded in the EEG experiment. The mean accuracy and
RT for each condition in both experiments are listed in table S1. In
the EEG experiment, the next trial started once the participant’s re-
sponse was received. In the fMRI experiment, the response screen
stayed on the screen for 1500 ms, irrespective of participants’ RT.
An example trial is shown in Fig. 1C.

In the EEG experiment, each of the 32 unique stimuli was pre-
sented 20 times, resulting in a total of 640 trials, which were present-
ed in random order. In the fMRI experiment, participants 
performed 10 identical runs. In each run, each unique stimulus 
was presented twice, in random order. Across the 10 runs, this 
also resulted in a total of 640 trials. The extensive repetition of 
the incoherent combinations may lead to some learning of the in-
consistent stimuli in our experiment (59). However, such learning 
would, if anything, lead to an underestimation of the effects: Learn-
ing of the incoherent combination would ultimately also lead to an 
integration of the incoherent stimuli and thus create similar—albeit
weaker—neural signatures of integration as found in the coherent
condition. 

To make sure that our intuition about the coherence of video 
stimuli in the coherent and incoherent conditions is valid, we 

conducted an additional behavioral experiment on 10 participants 
(gender: 4 males/6 females, age: 24.8 ± 2.5 years). In the experiment, 
we presented each of the coherent and incoherent video stimuli 
once. After each trial, we asked the participants to rate the degree 
of unified perception of the stimulus on a 1 to 5 scale. We found 
that the rating of coherent stimuli was higher than the rating of in-
coherent stimuli (mean ratings for coherent stimuli: 4.1 to 4.6, mean 
ratings for incoherent stimuli: 1.2 to 1.6; t(9) = 36.66, P < 0.001), 
showing that the coherent stimuli were indeed rated as more coher-
ent than the incoherent ones. 

To assess the general fixation stability for our paradigm, we col-
lected additional eye-tracking data from six new participants (see 
fig. S10 for details). We calculated the mean and SD of the horizon-
tal and vertical eye movement across time (0 to 3 s) in each trial and 
then averaged the mean and SD values across trials separately for 
each condition. For all participants, we found means of eye move-
ment lower than 0.3°, and SDs of eye movement lower than 0.2°, 
indicating stable central fixation (see fig. S10A). In addition, partic-
ipants did not disengage from fixating after the target color was pre-
sented (see fig. S10B). 

EEG recording and preprocessing 
EEG signals were recorded using an ANT waveguard 64-channel 
system and a TSMi REFA amplifier, with a sample rate of 1000 
Hz. The electrodes were arranged according to the standard 10-10 
system. EEG data preprocessing was performed using FieldTrip 
(60). The data were first band-stop filtered to remove 50-Hz line 
noise and then band-pass filtered between 1 and 100 Hz. The fil-
tered data were epoched from −500 to 4000 ms relative to the 
onset of the stimulus, re-referenced to the average over the entire 
head, downsampled to 250 Hz, and baseline corrected by subtract-
ing the mean prestimulus signal for each trial. After that, noisy 
channels and trials were removed by visual inspection, and the 
removed channels (2.71 ± 0.19 channels) were interpolated by the 
mean signals of their neighboring channels. Blinks and eye move-
ment artifacts were removed using independent component analy-
sis and visual inspection of the resulting components. 

EEG power spectrum analysis 
Spectral analysis was performed using FieldTrip. Power spectra were 
estimated between 8 and 70 Hz (from alpha to gamma range), from 
0 to 3000 ms (i.e., the period of stimulus presentation) on the pre-
processed EEG data, separately for each trial and each channel. A 
single taper with a Hanning window was used for the alpha band 
(8 to 12 Hz, in steps of 1 Hz) and the beta band (13 to 30 Hz, in 
steps of 2 Hz), and the discrete prolate spheroidal sequences multi-
taper method with ±8 Hz smoothing was used for the gamma band 
(31 to 70 Hz, in steps of 2 Hz). 

EEG decoding analysis 
To investigate whether the dynamic integration of information 
across the visual field is mediated by oscillatory activity, we per-
formed multivariate decoding analysis using CoSMoMVPA (61) 
and the Library for Support Vector Machines (LIBSVM) (62). In 
this analysis, we decoded between the eight video stimuli using pat-
terns of spectral power across channels, separately for each frequen-
cy band (alpha, beta, and gamma) and each condition. Specifically, 
for each frequency band, we extracted the power of the frequencies 
included in that band (e.g., 8 to 12 Hz for the alpha band) across all  
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channels from the power spectra and then used the resulting pat-
terns across channels and frequencies to classify the eight video 
stimuli in each condition. For all classifications, we used linear 
support vector machine (SVM) classifiers to discriminate the 
eight stimuli in a 10-fold cross-validation scheme. For each classifi-
cation, the data were allocated to 10 folds randomly, and then an 
SVM classifier was trained on data from 9 folds and tested on 
data from the left-out fold. The classification was done repeatedly 
until every fold was left out once, and accuracies were averaged 
across these repetitions. The amount of data in the training set 
was always balanced across stimuli. For each classification, a 
maximum of 144 trials (some trials were removed during prepro-
cessing) were included in the training set (18 trials for each stimu-
lus) and 16 trials were used for testing (2 trials for each stimulus). 
Before classification, principal components analysis (PCA) was 
applied to reduce the dimensionality of the data (63). Specifically, 
for each classification, PCA was performed on the training data, 
and the PCA solution was projected onto the testing data. For 
each PCA, we selected the set of components that explained 99% 
of the variance of the training data. As a result, we obtained decod-
ing accuracies for each frequency band and each condition, which 
indicated how well the video stimuli were represented in frequency- 
specific neural activity. We first used a one-sample t test to investi-
gate whether the video stimuli could be decoded in each condition 
and each frequency band. We also performed a 2-condition (coher-
ent and incoherent) × 3-frequency (alpha, beta, and gamma) two- 
way analysis of variance (ANOVA) and post hoc paired t tests [false
discovery rate (FDR)–corrected across frequencies; Pcorrected < 0.05]
to compare the decoding differences between coherent and incoher-
ent conditions separately for each frequency band. The compari-
sons of right- and left-only conditions were conducted using the 
same approaches. To track where the effects appeared across a con-
tinuous frequency space, we also decoded between the eight stimuli 
at each frequency from 8 to 70 Hz using a sliding window approach 
with a five-frequency resolution (see fig. S2). 

fMRI recording and processing 
MRI data were acquired using a 3T Siemens Prisma scanner 
(Siemens, Erlangen, Germany) equipped with a 64-channel head 
coil. T2*-weighted BOLD images were obtained using a multiband 
gradient-echo echo-planar imaging (EPI) sequence with the follow-
ing parameters: multiband factor = 3, repetition time (TR) = 1500 
ms, echo time (TE) = 33 ms, field of view = 204 mm by 204 mm, 
voxel size = 2.5 mm by 2.5 mm by 2.5 mm, 70° flip angle, 57 slices, 
and 10% interslice gap. Field maps were also obtained with a 
double-echo gradient echo field map sequence (TR = 545 ms, 
TE1/TE2 = 4.92 ms/7.38 ms) to correct for distortion in EPI. In ad-
dition, a high-resolution 3D T1-weighted image was collected for 
each participant (magnetization-prepared rapid gradient-echo, TR 
= 1900 ms, TE = 2.52 ms, TI = 900 ms, 256 × 256 matrix, 1-mm by 1- 
mm by 1-mm voxel, 176 slices). 

MRI data were preprocessed using MATLAB and SPM12 (www. 
fil.ion.ucl.ac.uk/spm/). Functional data were first corrected for geo-
metric distortion with the SPM FieldMap toolbox (64) and re-
aligned for motion correction. In addition, individual
participants’ structural images were coregistered to the mean re-
aligned functional image, and transformation parameters to Mon-
treal Neurological Institute (MNI) standard space (as well as inverse 
transformation parameters) were estimated. 

The GLMsingle Toolbox (65) was used to estimate the fMRI re-
sponses to the stimulus in each trial based on realigned fMRI data. 
To improve the accuracy of trialwise beta estimations, a three-stage 
procedure was used, including identifying an optimal hemodynam-
ic response function (HRF) for each voxel from a library of 20 HRFs, 
denoising data-driven nuisance components identified by cross- 
validated PCA, and applying fractional ridge regression to regular-
ize the beta estimation on a single-voxel basis. The resulting single- 
trial betas were used for further decoding analyses. 

fMRI regions of interest de!nition 
fMRI analyses were focused on seven regions of interest (ROIs). We
defined three scene-selective areas—OPA [also termed transverse
occipital sulcus (66, 67)], MPA [also termed retrosplenial cortex
(68, 69)], and PPA (70)—from a group functional atlas (71) and
three early visual areas—V1, V2, and V3, as well as motion-selective
hMT/V5—from a probabilistic functional atlas (72). All ROIs were
defined in MNI space and separately for each hemisphere and then 
transformed into individual-participant space using the inverse 
normalization parameters estimated during preprocessing. 

fMRI ROI decoding analysis 
To investigate how the video stimuli were processed in different 
visual regions, we performed multivariate decoding analysis using 
CoSMoMVPA and LIBSVM. For each ROI, we used the beta values 
across all voxels included in the region to decode between the eight 
video stimuli, separately for each condition. Leave-one-run-out 
cross-validation and PCA were used to conduct SVM classifications. 
For each classification, there were 144 trials (18 for each stimulus) in 
the training set and 16 trials (2 for each stimulus) in the testing set. 
For each participant, we obtained a 4-condition × 14-ROI (7 ROIs 
by two hemispheres) decoding matrix. Results were averaged across 
hemispheres, as we consistently found no significant interhemi-
spheric differences (condition × hemisphere and condition × 
region × hemisphere interaction effects) in a 2-condition (coherent 
and incoherent) × 7-region (V1, V2, V3, hMT, OPA, MPA, and 
PPA) × 2-hemisphere (left and right) three-way ANOVA test. We 
first tested whether the video stimuli were decodable in each condi-
tion and each region using one-sample t tests (FDR-corrected across 
regions; Pcorrected < 0.05). To further investigate the integration 
effect, we used paired t tests to compare the decoding difference 
between coherent and incoherent conditions in different regions. 
For the right- and left-only conditions, we averaged the decoding 
results in a contralateral versus ipsilateral fashion (e.g., left stimulus, 
right brain region was averaged with right stimulus, left brain region 
to obtain the contralateral decoding performance). 

fMRI searchlight decoding analysis 
To further investigate the whole-brain representation of video 
stimuli, we performed searchlight decoding analyses using CoS-
MoMVPA and LIBSVM. The single-trial beta maps in the native 
space were first transformed into the MNI space using the normal-
ization parameters estimated during preprocessing. For the search-
light analysis, we defined a sphere with a radius of five voxels around 
a given voxel and then used the beta values of the voxels within this 
sphere to classify the eight video stimuli in each condition. For the 
left- and right-only conditions, the decoding analysis was per-
formed separately for each hemisphere. The decoding parameters 
were identical to the ROI-decoding analysis. The resulting  
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searchlight maps were subsequently smoothed with a Gaussian 
kernel (full width at half maximum = 6 mm). To investigate how 
well the video stimuli in each condition were represented across 
the whole brain, we used one-sample t tests to compare decoding 
accuracies against chance separately for each condition [Gaussian 
random field (GRF) correction, voxel-level P < 0.005, cluster- 
extent P < 0.05]. To investigate the integration effect in the whole 
brain, we used paired t tests to compare the differences in decoding 
accuracy between coherent and incoherent conditions and per-
formed multiple comparisons correction within the voxels 
showing significant decoding for either coherent or incoherent 
stimuli (GRF correction, voxel-level P < 0.005, cluster-extent P 
< 0.05). 

EEG-fMRI fusion with representational similarity analysis 
To investigate the relationship between the frequency-specific 
effects obtained in the EEG and the spatial mapping obtained in 
the fMRI, we performed EEG-fMRI fusion analysis (22, 23). This 
analysis can be used to compare neural representations of stimuli 
as characterized by EEG and fMRI data to reveal how the represen-
tations correspond across brain space and spectral signatures. Spe-
cifically, we first calculated representational dissimilarity matrices 
(RDMs) using pairwise decoding analysis for EEG and fMRI data, 
respectively. For the EEG power spectra, in each frequency band, we 
decoded between each pair of eight video stimuli using the oscilla-
tory power of the frequencies included in the frequency band, sep-
arately for each condition; for the fMRI data, in each ROI, we 
classified each pair of eight stimuli using the response patterns of 
the region, separately for each condition. Decoding parameters 
were otherwise identical to the eight-way decoding analyses (see 
above). In each condition, we obtained a participant-specific EEG 
RDM (8 stimuli × 8 stimuli) in each frequency band and a partici-
pant-specific fMRI RDM (8 stimuli × 8 stimuli) in each ROI. Next, 
we calculated the similarity between EEG and fMRI RDMs for each 
condition; this was done by correlating all lower off-diagonal entries 
between the EEG and fMRI RDMs (the diagonal was always left 
out). To increase the signal-to-noise ratio, we first averaged fMRI 
RDMs across participants and then calculated the Spearman corre-
lation between the averaged fMRI RDM for each ROI with the par-
ticipant-specific EEG RDM for each frequency. As a result, we 
obtained a 4-condition × 3-frequency × 14-ROI fusion matrix for 
each EEG participant. For the coherent and incoherent conditions, 
the results were averaged across hemispheres, as no condition × 
hemisphere, no condition × region × hemisphere, and no condition 
× frequency × hemisphere interaction effects were found in a 2-con-
dition (coherent and incoherent) × 7-region (V1, V2, V3, hMT, 
OPA, MPA, and PPA) × 2-hemisphere (left and right) × 3-frequen-
cy (alpha, beta, and gamma) four-way ANOVA test. We first used 
one-sample t tests to test the fusion effect in each condition (FDR- 
corrected across regions; Pcorrected < 0.05) and each frequency- 
region combination and then used a 2-condition × 3-frequency × 
7-region three-way ANOVA to compare the frequency-region cor-
respondence between coherent and incoherent conditions. As we
found a significant condition × frequency × region interaction
effect, we further performed a 2-condition × 7-region ANOVA
and paired t tests (FDR-corrected across regions; Pcorrected < 0.05)
to compare frequency-region correspondence between coherent
and incoherent conditions separately for each frequency. For the
right- and left-only conditions, we averaged the fusion results

across two conditions separately for contralateral and ipsilateral pre-
sentations and then compared contralateral and ipsilateral presen-
tations using the same approaches we used for the comparisons of 
coherent and incoherent conditions (see fig. S9). 

Supplementary Materials 
This PDF !le includes: 
Figs. S1 to S10 
Table S1 
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Fig. S1. 
Still images from the incoherent video stimuli. 
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Fig. S2. 
EEG frequency-resolved decoding analysis on spectral power patterns using sliding 
windows. We decoded between the eight video stimuli at each frequency from 4 to 100 Hz using 
a sliding window approach with a 5-frequency resolution, separately for each condition. The 
incoherent and single video stimuli were decodable from the γ frequency band, whereas coherent 
stimuli were decodable from the α frequency band. Line markers denote significant above-chance 
decoding (p < 0.05; FDR-corrected). 
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Fig. S3. 
EEG time-resolved decoding on evoked response patterns. We performed decoding analysis 
on time-resolved broadband responses across channels to discriminate the eight video stimuli at 
each time from -200 ms to 3,000 ms relative to the onset of the stimulus, separately for each 
condition. The obtained decoding timeseries for each condition were smoothed by the moving 
average algorithm (6 time points). We extracted the peak decoding accuracy for each condition 
and then compared the decoding difference between conditions using paired t-tests. The results 
revealed a sustained representation of the video stimuli across the first 500 ms of processing, with 
stronger peak responses to two video conditions (coherent/incoherent) than to single video 
conditions (right-/left-only), but no differences between the coherent and incoherent conditions. 
Decoding onsets did not differ between the coherent and incoherent video stimuli (permutation 
test, p = 0.176). Error bars represent standard errors. Line markers denote significant above-chance 
decoding (p < 0.05; FDR-corrected). *: p < 0.05. 
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Fig. S4. 
EEG decoding analysis on spectral power patterns separately for the theta (4–7 Hz) and 
high-gamma (71–100 Hz) frequency bands. For each frequency band (theta and high-gamma), 
we extracted the power of the frequencies included in that band across all channels from the power 
spectra, and then used the resulting patterns across channels and frequencies to classify the eight 
video stimuli in each condition. In the theta band, we did not find any significant above-chance 
decoding. In the high-gamma band, we found significant above-chance decoding for both single 
video stimuli and incoherent stimuli, but not for coherent stimuli. As in the 31-70 Hz gamma range, 
the incoherent stimuli were also decoded better than coherent stimuli. *: p < 0.05. 
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Fig. S5. 
EEG time-frequency analysis. We first performed a time-frequency analysis to estimate the 
power at each frequency (4–100 Hz) and each time point (0–3 s) separately for each channel. As 
in the powerspectrum analysis (see Materials and Methods for details), we used single tapers for 
the low frequencies (4–30 Hz), and multitapers for high frequencies (31–100 Hz). A) We 
performed the decoding analysis at each time-frequency combination. We did not find significant 
differences in decoding performance between the coherent and incoherent conditions (p < 0.05; 
FDR-corrected; top two panels). The results suggested that we had insufficient statistical power 
for concurrently resolving the data across time and frequency, given the signal-to-noise ratio of 
our data. B) We transformed the power values to dB relative to the baseline to obtain the event-
related spectral perturbation (ERSP). No significant differences were found in ERSP between the 
coherent and incoherent conditions (p < 0.05; FDR-corrected; bottom two panels). This suggests 
that the shift in representation from gamma to alpha dynamics is not accompanied by large-scale 
changes in the univariate spectral power over visual cortex. 
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Fig. S6. 
fMRI searchlight decoding analysis for right- and left-only conditions. Similar to the ROI 
decoding results, single video stimuli were decodable across the visual cortex in the contralateral 
hemisphere. In the ipsilateral hemisphere, the stimuli were primarily decodable in the parietal lobe 
including hMT. Multiple comparison correction was performed using GRF (voxel-level p < 0.005, 
cluster-extent p < 0.05). 
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Fig. S7. 
EEG and fMRI decoding analyses (grouping stimuli based on motion coherence). For each of 
the coherent and incoherent video stimuli, we first quantified inter-frame motion energy using the 
Motion Energy Analysis (MEA) software (https://psync.ch/mea/) separately for the left and right 
apertures, and then estimated its motion energy coherence by calculating the Pearson correlation 
between the left and right motion energy time-series. We split the stimulus set into two halves 
based on the values of motion energy coherence. Eight stimuli that are more coherent in motion 
energy were grouped into the motion coherent group and the other 8 stimuli were grouped into the 
motion incoherent group. In addition, we also grouped the stimuli based on motion direction 
coherence. For each stimulus, we estimated inter-frame optical flow using the Computer Vision 
Toolbox implemented in MATLAB and estimated its motion direction coherence by calculating 
the Pearson correlation between the mean motion direction time-series of the left and right 
apertures. Equivalent as described above, based on the values of motion direction coherence we 
split half the stimuli into a motion direction coherent and a motion direction incoherent group. A) 
We performed EEG frequency-resolved decoding analysis between the 8 stimuli in each frequency 
band (alpha, beta, gamma), separately for the newly formed coherent and incoherent groups. For 
the motion energy grouping, we found significant decoding for coherent stimuli in the alpha, beta, 
and gamma frequency bands, and significant decoding for incoherent stimuli in the alpha and beta 
frequency bands. For the motion direction grouping, the incoherent stimuli were decodable in the 
alpha and beta bands. B) We performed fMRI ROI decoding analysis to classify the stimuli in each 
ROI (V1, V2, V3, hMT, OPA, MPA, PPA), separately for the newly formed coherent and 
incoherent groups. For the motion energy grouping, both coherent and incoherent stimuli were 
decodable in all seven ROIs, and the incoherent stimuli were decoded better than coherent stimuli 
in the hMT. For the motion direction grouping, both coherent and incoherent stimuli were 
decodable in all the ROIs, and the incoherent stimuli were more decodable than coherent stimuli 
in V1, V2, and V3. *: p < 0.05 (FDR-corrected). 
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Fig. S8. 
EEG-fMRI fusion analysis while controlling for motion coherence. For each of the coherent 
and incoherent video stimuli, we first quantified the inter-frame motion energy using the Motion 
Energy Analysis (MEA) software (https://psync.ch/mea/) separately for the left and right apertures, 
and then estimated its motion energy coherence by calculating the Pearson correlation between the 
left and right motion energy time-series. To construct the motion representational dissimilarity 
matrices (RDMs), we used the absolute difference in motion energy coherence as the distance 
between stimuli separately for coherent and incoherent conditions. In addition, we also constructed 
a motion RDM based on motion direction coherence. Specifically, for each stimulus, we estimated 
the inter-frame optical flow using the Computer Vision Toolbox (in MATLAB) and estimated its 
motion direction coherence by calculating the Pearson correlation between the mean motion 
direction time-series of the left and right apertures. Next, we constructed a motion direction RDM 
based on the absolute difference in motion direction coherence between stimuli separately for the 
coherent and incoherent conditions. In the EEG-fMRI fusion analysis, we calculated partial 
correlations between the participant-specific EEG RDMs in each frequency band (α, β, γ) and the 
group-averaged fMRI RDMs in each region (V1, V2, V3, hMT, OPA, MPA, PPA) that control for 
the motion energy RDM, motion direction RDM, or both motion RDMs, separately for the 
coherent and incoherent conditions. Similar to the main fusion results, we found that 
representations in the alpha band corresponded more strongly with representations in the early 
visual cortex when the videos were presented coherently, rather than incoherently, in all three 
analyses. Error bars represent standard errors. *: p < 0.05 (FDR-corrected), +: p < 0.05 
(uncorrected). 
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Fig. S9. 
EEG-fMRI fusion analysis separately for each frequency band. For each condition, EEG 
representational dissimilarity matrices (RDMs) for each frequency band (α, β, γ) and fMRI RDMs 
for each region of interest (V1, V2, V3, hMT, OPA, MPA, PPA) were first obtained using pair-
wise decoding analyses. To assess correspondences between spectral and regional representations, 
we calculated Spearman-correlations between the participant-specific EEG RDMs in each 
frequency band and the group-averaged fMRI RDMs in each region, separately for each condition. 
For the right- and left-only conditions, there was no significant correspondence between EEG 
responses in each frequency band and fMRI activations in each region, either for contralateral or 
ipsilateral presentations. For the coherent and incoherent conditions, there were no significant 
correspondences between β/γ responses and fMRI activations. Error bars represent standard errors. 
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Fig. S10. 
Eye-tracking data. Six participants (gender: 2 M/4 F, age: 26.5 ± 1.2 years) took part in the eye-
tracking experiment using the same paradigm and the same stimuli as in the EEG and fMRI 
experiments. Eye movements were recorded monocularly (left eye) with an Eyelink 1000 Tower 
Mount (SR Research Ltd., Mississauga, Ontario, Canada) using the Psychophysics and Eyelink 
Toolbox extensions at 1000 Hz. Eye tracking data were segmented into epochs from -0.5 to 3.5 s 
relative to the onset of the stimulus, downsampled to 200 Hz, and baseline corrected. The data 
were then transformed from their original screen coordinate units (pixels) to visual angle units 
(degrees). A) To check fixation patterns during video presentation, we calculated the mean and 
standard deviation (SD) of the horizontal and vertical eye movement across time (0–3 s) in each 
trial and then averaged the mean and SD values across trials separately for each condition. For all 
participants, we found means of eye movement lower than 0.3 degrees (top two panels), and SDs 
of eye movement lower than 0.2 degrees (middle two panels), indicating stable central fixation. B) 
To determine whether eye movements occurred once the fixation color was detected, we extracted 
eye tracking data from -200 to 600 ms relative to the onset of the target color. We found no 
significant eye movement deviations after the target was presented, indicating that participants did 
not disengage from fixation after the target was presented.  
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Table S1. 
Behavioral accuracy and response time for the color discrimination task in both EEG and 
fMRI experiments. Notes: Means ± standard errors (SE); N.A., not available. 

Left-only Right-only Coherent Incoherent 

Accuracy (EEG) 93.27 ± 1.70% 93.27 ± 1.58% 93.13 ± 1.66% 93.45 ± 1.71% 

Accuracy (fMRI) 91.58 ± 1.18% 91.09 ± 1.19% 91.58 ± 1.24% 91.51 ± 1.21% 

Response Time (EEG) N.A. N.A. N.A. N.A. 

Response Time (fMRI) 521.9 ± 19.3 ms 521.7 ± 18.6 ms 525.2 ± 19.4 ms 526.8 ± 18.5 ms 
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Sensory Processing

Coherent categorical information triggers integration-related alpha dynamics
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Abstract

To create coherent visual experiences, the brain spatially integrates the complex and dynamic information it receives from the
environment. We previously demonstrated that feedback-related alpha activity carries stimulus-specific information when two
spatially and temporally coherent naturalistic inputs can be integrated into a unified percept. In this study, we sought to deter-
mine whether such integration-related alpha dynamics are triggered by categorical coherence in visual inputs. In an EEG experi-
ment, we manipulated the degree of coherence by presenting pairs of videos from the same or different categories through two
apertures in the left and right visual hemifields. Critically, video pairs could be video-level coherent (i.e., stem from the same
video), coherent in their basic-level category, coherent in their superordinate category, or incoherent (i.e., stem from videos from
two entirely different categories). We conducted multivariate classification analyses on rhythmic EEG responses to decode
between the video stimuli in each condition. As the key result, we significantly decoded the video-level coherent and basic-level
coherent stimuli, but not the superordinate coherent and incoherent stimuli, from cortical alpha rhythms. This suggests that alpha
dynamics play a critical role in integrating information across space, and that cortical integration processes are flexible enough
to accommodate information from different exemplars of the same basic-level category.

NEW & NOTEWORTHY Our brain integrates dynamic inputs across the visual field to create coherent visual experiences. Such
integration processes have previously been linked to cortical alpha dynamics. In this study, the integration-related alpha activity
was observed not only when snippets from the same video were presented, but also when different video snippets from the
same basic-level category were presented, highlighting the flexibility of neural integration processes.

alpha rhythms; cortical feedback; multivariate pattern analysis; natural scenes; spatiotemporal coherence

INTRODUCTION

During everyday life, our visual system continuously
receives intricate and dynamic information from our sur-
roundings. To derive meaningful interpretations from these
stimuli, the brain integrates dynamic sensory inputs across
the visual field, culminating in a seamlessly unified, behav-
iorally adaptive percept of the world (1, 2).

Classic theories of vision conceptualize visual processing as
a feedforward hierarchy, along which stimuli are recon-
structed through hierarchical feature integration (3, 4). Under
such theories, visual integration is solved along the feedfor-
ward cascade. Feedforward theories of vision, however, are
challenged by the abundance of recurrent and feedback con-
nections in the visual system (5), as well as the pivotal role of

attentional feedback processes in constructing visual percepts
(6). Our recent study (7) indeed revealed that feedback proc-
esses are critical for spatial integration when stimuli are spa-
tiotemporally coherent and afford integration. Such feedback
is evident from stimulus-specific representations in neural
alpha dynamics, which can be spatially localized to early vis-
ual cortex. This result suggests that integration-related feed-
back traverses the hierarchy in alpha rhythms from high-level
visual cortex all the way to retinotopic early visual cortex. Our
findings align well with theories that posit a multiplexing of
information, where feedback is specifically routed via low-fre-
quency alpha or beta rhythms (8–11).

However, our previous study used stimuli that were either
coherent at the level of the individual video (i.e., two parts of
the same video played in the left and right hemifields) or
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highly incoherent (i.e., two entirely different videos in the
two hemifields). We thus could not address what level of spa-
tiotemporal coherence in the stimuli is needed to trigger
integration-related alpha dynamics.

In this study, we address this question in an EEG experi-
ment. We manipulated the degree of spatiotemporal coher-
ence by presenting videos from the same or different
categories through two apertures left and right of the central
fixation. Our findings showed that stimuli coherent at the
level of individual videos are coded in cortical alpha dynam-
ics. Critically, similar representations in alpha rhythms were
also observed when different videos from the same basic-
level category were presented, but not when the videos were
from the same superordinate category or from different
superordinate categories. This suggests that neural integra-
tion exhibits some flexibility, so that broadly consistent vid-
eos from the same category can trigger alpha dynamics
linked to integration.

MATERIALS AND METHODS
Participants

Twenty-five healthy participants (14 females, mean age:
24.1±3.9 yr), with normal or corrected-to-normal vision, par-
ticipated in the experiment. A minimum sample size of 24
was determined using G!Power (12), with an effect size of 0.25
(comparison of decoding performance between the coherent
and incoherent conditions in the alpha frequency band in the
EEG study) as derived from our previous study (7), a signifi-
cance level of 0.05, and a power of 0.8. All participants pro-
vided written informed consent before taking part in the
experiment and they received either course credit or mone-
tary reimbursement for their participation. The experiment
was approved by the ethical committee of the Department of
Education and Psychology at Freie Universit€at Berlin and was
conducted following the Declaration of Helsinki.

Stimuli and Design

We selected sixteen 3-s videos (30 Hz) depicting various
everyday events for the experiment. The videos were from
four categories (4 exemplars for each category): birds flying,
camels walking, cars running, and trains moving (Fig. 1A).
We presented videos through two apertures left and right of
the central fixation (7). The apertures had a diameter of 6"

visual angle, and the closest distance between the aperture
and the central fixation point was 2.64" visual angle. The
central fixation dot was displayed at a visual angle of 0.44".

We designed four different conditions by showing parts
from the same video or different videos (Fig. 1B). In the
video-level coherent condition, we displayed two parts of the
same video through the apertures. In the basic-level coher-
ent condition, the two parts were from two different videos
belonging to the same category (e.g., bird video 1 and bird
video 2). In the superordinate coherent condition, the two
parts were from two different videos belonging to the same
superordinate category (e.g., bird video 1 and camel video 1).
In the incoherent condition, the two parts were from videos
belonging to different superordinate categories (e.g., bird
video 1 and car video 1). In the basic-level coherent condi-
tion, the videos of each category were presented in fixed

pairs (e.g., bird video 1 and bird video 2, bird video 3 and bird
video 4). We similarly paired the videos for the superordi-
nate coherent (e.g., bird video 1 and camel video 1, bird video
2 and camel video 2) and incoherent conditions (e.g., bird
video 1 and car video 1, bird video 2 and car video 2).
Therefore, there were a total of 64 unique video stimuli (16
stimuli for each of the 4 conditions).

Participants were comfortably seated at a distance of 60
cm from a monitor with a resolution of 1,680# 1,050 pixels
and a refresh rate of 60 Hz. The presentation of stimuli and
recording of participants’ behavioral responses were con-
trolled using MATLAB and the Psychophysics Toolbox (13,
14). Each trial began with a 0.5-s fixation dot. Subsequently,
a unique video stimulus was shown for 3 s, during which the
color of the fixation changed periodically (every 200 ms) and
turned either green or yellow at a single random point in the
sequence (but not the first or last point). After the video, par-
ticipants were presented with a response screen, prompting
them to indicate whether a green or yellow fixation dot had
appeared in the sequence. The next trial would not start until
the participant’s response was received. Participants were
instructed to keep central fixation during the video presenta-
tion to ensure that the two videos presented stimulated dif-
ferent visual fields. An example trial for the basic-level
coherent condition is shown in Fig. 1C. In the experiment,
participants performed the color discrimination task on
fixation with very high accuracy (video-level coherent:
95.8 ±2.9%, basic-level coherent: 96.2±3.0%, superordinate
coherent: 96.3 ±3.1%, incoherent: 96.0± 2.9%), indicating
reliable fixation control. In the experiment, each of the 64
unique stimuli was shown 12 times. A total of 768 trials were
presented in random order.

EEG Recording and Preprocessing

EEG data were acquired at a sampling rate of 1,000 Hz
using an EASYCAP 64-electrode system with a Brainvision
actiCHamp amplifier. Electrodes were arranged according to
the 10-10 system. All electrodes were referenced online to
the FCz.

We preprocessed the data using Fieldtrip (15). We first fil-
tered the data at 1–100 Hz and epoched the data from $0.5
to 3.5 s relative to the onset of the stimulus. Then, we per-
formed baseline correction by subtracting themean signal in
the prestimulus window ($0.5 to 0 s), after which we down-
sampled the data to 200 Hz. Next, we conducted visual
inspection to exclude noisy trials and channels, and then
interpolated the removed channels (2.6± 1.2 channels) using
their neighboring channels. Finally, we used independent
component analysis (ICA) to identify and remove artifacts
associated with blinks and eyemovements.

EEG Spectral Analysis

We performed spectral analysis on the preprocessed EEG
data using FieldTrip, in the same way as in our previous
study (7). For each trial, we estimated power spectra sepa-
rately for each channel within the alpha (8–12 Hz), beta (13–
30 Hz), and gamma (31–70 Hz) frequency bands. The analy-
sis was done for the whole period of stimulus presentation
(0–3 s). For the low frequency of 8–30Hz, we applied a single
taper with a Hanning window, with a step size of 1 Hz for the
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alpha band and 2 Hz for the beta band. For the gamma band,
we used the discrete prolate spheroidal sequences (DPSS)
multitapermethod with ±8 Hz smoothing (in steps of 2 Hz).

Multivariate Decoding Analysis

We performedmultivariate decoding analysis to investigate
the frequency-specific representations of video stimuli using
CoSMoMVPA (16) and LIBSVM (17). Given that integration-
related alpha dynamics originate from retinotopic visual cor-
tex (7), we selected 17 parietal and occipital (PO) channels (Oz,
O1, O2, POz, PO3, PO4, PO7, PO8, Pz, P1, P2, P3, P4, P5, P6, P7,
P8) over visual cortex (18) for our analysis. From these chan-
nels, we extracted the patterns of spectral power across these
channels to classify the four video pairings within each condi-
tion (video-level coherent, basic-level coherent, superordinate
coherent, incoherent), separately for the alpha, beta, and
gamma frequency bands. We conducted the classification
using the linear support vector machine (SVM) with leave-
one-trial-out cross-validation. One trial was assigned to the
test set, whereas the remaining n $ 1 trials were used to train
the classifier. We conducted the classification repeatedly until
every trial was left out once, and averaged the resulting accu-
racies across trials. In each classification, we balanced the
number of trials across categories, resulting in a maximum of
188 trials for the training set (47 for each category). To reduce
the dimensionality of the data, we applied principal compo-
nent analysis (PCA) to the data before classification (19). We
performed PCA on the training data, and then projected the
resulting PCA solution onto the testing data. We selected a sub-
set of components that explained 99% of the variance of the
training data. As a result, we obtained decoding accuracy for
each frequency band and each condition, indicating the degree
to which the video stimuli were accurately represented in dif-
ferent frequency bands. We performed a one-sample t test to
compare the decoding performance against chance level (25%)
for testing whether the stimuli could be represented in each
frequency band [false discovery rate (FDR)-correction, P <
0.05]. Furthermore, to investigate whether the frequency-spe-
cific representations weremodulated by the degree of stimulus

coherence, we conducted a two-way ANOVA (4 conditions # 3
frequencies) and post hoc paired t tests to compare the decod-
ing performance between conditions separately for each fre-
quency band (FDR-correction, P< 0.05).

It is worth noting that, although in some conditions differ-
ent categories were shown in both hemifields, decoding
between the different videos should still be possible in prin-
ciple: as the left and right side of the display are analyzed in
the right and left hemisphere, respectively, each hemisphere
offers information about the category presented in its con-
tralateral hemifield.

To investigate where the effects are localized and whether
the effects are maximum over visual cortex, we performed
searchlight decoding analysis. For each channel, we defined a
searchlight including itself and its 10 nearest neighboring
channels and then used the spectral power patterns across
these channels to decode between the four video pairings
within each condition, separately for each frequency band
(alpha, beta, and gamma). Identically to the decoding analysis
using PO channels, we used leave-one-trial-out cross-valida-
tion and applied principal component analysis (PCA) for the
classification. The whole classification process was iterated
over all channels. As a result, we obtained decoding accuracy
in each channel separately for each frequency band and each
condition. To localize the significant decoding for each condi-
tion, we used a one-sample permutation test (10,000 itera-
tions), comparing the decoding accuracy against the chance
level (25%) in each channel and then performing cluster-
basedmultiple comparison corrections (P< 0.05).

To investigate the representation of stimuli in time-locked
broadband responses, we performed time-resolved decoding
analysis. We classified between the four video pairings
within each condition using broadband responses across PO
channels at each time point from$0.1 to 1 s relative to stimu-
lus onset (decoding already approached chances level well
before 1 s). The decoding parameters were identical to the
frequency-resolved decoding analysis using PO channels.
The resulting decoding timeseries were smoothed with a
moving average of five time points. Separately for each time

Figure 1. Stimuli and experimental design. A: snapshots from the video stimulus set. B: in the experiment, videos were presented through two apertures
left and right of the central fixation, manipulated in four conditions: video-level coherent, coherent in the basic-level category, coherent in the superordi-
nate category, and incoherent. C: during video presentation, the color of the central dot changed periodically (every 200 ms) and participants were
asked to report whether there was a green or yellow fixation dot included in the sequence.
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point, we used a one-sample t test to compare decoding
against chance and paired t tests to compare the difference
between conditions. Multiple comparison corrections were
conducted using FDR (P < 0.05), and only clusters of at least
five consecutive significant time points were considered (19).

Following our previous study (7), we primarily investi-
gated integration-related effects in spectral EEG power.
However, in principle, such effects may also be represented
in the phase of neural rhythms (e.g., resulting from the dif-
ferent temporal dynamics of the videos). We performed the
Fourier transform on the EEG preprocessed data and
extracted the phase angles from the obtained complex
Fourier spectrum. We then decoded the four video pairings
within each condition using patterns of spectral phase across
PO channels separately for alpha, beta, and gamma bands.
Here, we performed the decoding analysis and statistical
comparisons using the same approaches as in the frequency-
resolved decoding analysis on spectral power.

Eye Tracking Recording and Processing

Eye movements were recorded monocularly (right eye) at
1,000 Hz with an Eyelink 1000 Tower Mount (SR Research
Ltd., Mississauga, ON, Canada) using the Psychophysics and
Eyelink Toolbox extensions (20). At the beginning of the
experiment, we used a standard 9-point calibration to cali-
brate eye position.

We preprocessed eye-tracking data using Fieldtrip. Speci-
fically, we segmented the data into epochs from $0.5 to 3.5 s
relative to stimulus onset and downsampled the data to a
sampling rate of 200 Hz. The preprocessed data were trans-
formed from their original screen coordinate units (pixels) to
visual angle units (degrees). We next excluded the trials that
were removed in the EEG analysis. To check the fixation sta-
bility, we calculated the mean and standard deviation (SD)
of the horizontal and vertical eye movements during video
presentation (0–3 s) in each trial and then averaged the mean
and SD values across trials separately for each condition. We
found no significant differences in both horizontal [compari-
sons of mean: F(3,72) ¼ 0.74, P ¼ 0.53; comparisons of SD:
F(3,72) ¼ 0.56, P ¼ 0.64] and vertical eye movements [com-
parisons of mean: F(3,72) ¼ 0.71, P ¼ 0.55; comparisons of
SD: F(3,72) ¼ 0.97, P ¼ 0.41] between the four conditions.

RESULTS
To study the frequency-specific representations of video

stimuli, we decoded between video stimuli within each con-
dition (video-level coherent, basic-level coherent, superordi-
nate coherent, and incoherent) using patterns of spectral
power across channels separately for each frequency band
(alpha, beta, gamma). In this analysis, we found significant
above-chance decoding only in the alpha band and for the
video-level coherent and basic-level coherent stimuli (Fig.
2A). Using a 4-condition # 3-frequency two-way ANOVA, we
identified a significant interaction effect between condition
and frequency [F(6,144) ¼ 3.75, P ¼ 0.002]. Subsequently, we
conducted post hoc t tests to examine differences between
conditions in each frequency band.

In the alpha band, we observed a decrease in decoding ac-
curacy as the spatial coherence of stimuli reduced, indicat-
ing that integration-related alpha activity is modulated by

the coherence of the stimuli. Specifically, the video-level
coherent stimuli were decoded better than the superordinate
coherent stimuli [t(24) ¼ 3.90, P < 0.001; Fig. 2A] as well as
better than the incoherent stimuli [t(24) ¼ 4.37, P < 0.001;
Fig. 2A]. Similarly, basic-level coherent stimuli were also
more decodable than both the superordinate coherent stim-
uli [t(24) ¼ 3.317, P ¼ 0.004; Fig. 2A] and incoherent stimuli
[t(24) ¼ 3.083, P ¼ 0.005; Fig. 2A]. We found no significant
difference between the video-level coherent and the basic-
level coherent conditions [t(24) ¼ 1.290, P ¼ 0.314].
Importantly, the difference in alpha decoding across condi-
tions was not related to an absence of stimulus representa-
tion in the more incoherent conditions in the first place:
When decoding from time-locked broadband responses, we
found significant decoding for all conditions within the first
500 ms of processing that leveled off toward chance level
during the first second (Fig. 2B). However, there was no sig-
nificant between-condition difference in decoding from the
time-locked responses (Fig. 2B), consistent with our previous
results (7). In addition, we found no significant effects in the
beta and gamma frequency bands (all P> 0.05).

Given that these analyses were only conducted on rhyth-
mic patterns in the PO channels (see MATERIALS AND METHODS),
we aimed to confirm that these effects indeed originate over
visual cortex in a channel-space searchlight analysis (21). In
this analysis, we observed significant decoding only in the
alpha band, primarily in the PO channels, and only for the
video-level coherent and basic-level coherent stimuli (Fig.
2C). We found no effects for the other two, more incoherent
conditions. Together, these results suggest that alpha activity
plays a key role in the integration of visual information across
space. They further highlight that integration-related alpha
dynamics are not only triggered when stimuli are video-level
coherent (i.e., when the same video was shown through the
apertures), but that integration processes are flexible enough
to accommodate information that comes from videos belong-
ing to the same basic-level category.

To investigate whether the integration-related effects
were also represented in the phase of neural rhythms, we
used the spectral phase to decode between stimuli. Although
the basic-level coherent stimuli were decodable in the alpha
band and incoherent stimuli were decodable in the beta
band (Fig. 2D), we did not find reliable differences between
conditions (all P > 0.05, FDR-corrected; Fig. 2D). This sug-
gests that integration-related stimulus information is coded
in the power of cortical alpha dynamics.

DISCUSSION
In this study, we investigated the involvement of alpha dy-

namics in the integration of visual information. We specifi-
cally asked whether integration-related alpha dynamics are
also observed when videos are broadly consistent in cate-
gory. Utilizing multivariate decoding analysis on spectrally
resolved EEG data, we show that both video-level coherent
and basic-level coherent stimuli were decodable from alpha-
band EEG activity. In contrast, we found no alpha-band
decoding for the superordinate coherent and incoherent
stimuli. Our results suggest that categorical coherence of
natural videos modulates the involvement of alpha-fre-
quency activity: Alpha-related integration is triggered not
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only when visual stimuli are entirely coherent but also when
these stimuli share common attributes resulting from their
basic-level category membership.

Our results support our previous finding (7) that alpha dy-
namics play a key role in the integration of visual information
across space. Together with a significant correspondence
between alpha activity and V1 response in our previous study,
we interpret the coding of stimulus-specific information in
alpha as integration-related feedback. This interpretation is in
line with a series of studies demonstrating that alpha rhythms
carry cortical feedback from higher-order brain regions (11, 22,
23), and also encode stimulus-specific information (24, 25).

This perspective highlights the dynamic and active role that
alpha rhythms may play in cognitive processes, in contrast to
the passive or inhibitory roles often ascribed to them (26–30).
As proposed in our previous study (7), the observed integration
processes likely originate from the adaptive comparison of con-
tralateral feedforward information with ipsilateral feedback in-
formation obtained through interhemispheric connections
among regions in high-level visual cortex. This comparison
then triggers rhythmic feedback processes that aid the analysis
of inputs at lower levels of the hierarchy, for instance by pre-
dicting upcoming inputs from the spatiotemporal structure of
the previous input.

Figure 2. EEG decoding analysis. A: EEG frequency-resolved decoding analysis on spectral power. In each condition, we classified the four video pairings
within each condition (video-level coherent, basic-level coherent, superordinate coherent, and incoherent) using patterns of spectral power across 17 pari-
etal and occipital (PO) channels, separately for each frequency band (alpha, beta, gamma). We found significant decoding only in the alpha band and only
for the video-level coherent and basic-level coherent stimuli (indicated by asterisks color-coded as result dots). In addition, the stimuli in the video-level
coherent and basic-level coherent conditions were decoded better than the stimuli in the superordinate coherent and incoherent conditions (indicated by
black asterisks over lines connecting compared data points). These results suggest that integration-related alpha dynamics are not only observed when
videos are video-level coherent, but also when similar videos are from the same basic-level category. Error bars represent standard errors. !P < 0.05
(FDR-corrected). B: EEG time-resolved decoding analysis. We decoded between the four video pairings within each condition using time-resolved broad-
band responses across 17 PO channels at each time point from$0.1 to 1 s relative to the onset of the stimulus. We found significant decoding for all condi-
tions within the first 500 ms of processing but no significant differences between conditions. Line markers denote significant above-chance decoding
color-coded as result curves (P < 0.05, FDR-corrected). C: EEG searchlight decoding analysis. For each channel, we defined a searchlight including itself
and its 10 nearest neighboring channels, and then used the patterns of alpha power across these 11 channels to decode between the four video pairings
within each condition. We found significant decoding only for the video-level coherent and basic-level coherent stimuli primarily in PO channels (circles
reflect significant channel locations). D: EEG frequency-resolved decoding analysis on spectral phase. We classified the four video pairings within each
condition using patterns of spectral phase across 17 PO channels, separately for alpha, beta, and gamma frequency bands. We found no significant differ-
ences between conditions. Error bars represent standard errors. !P< 0.05 (FDR-corrected). FDR, false discovery rate.
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Our results indicate that integration-related alpha dy-
namics can be triggered not only by the presentation of
video snippets from the same video, but also by the pre-
sentation of different videos from the same basic-level
category. This suggests a spectral signature of the cate-
gory-level nature of feedback information used for visual
integration. The basic level is defined as the level that has
the highest degree of cue validity (31). Basic level catego-
ries maximize the number of attributes shared by mem-
bers of the category while minimizing the number of
attributes shared with other categories. This sweet spot
might be the one also used by the brain when implement-
ing integration. However, our study cannot entirely clarify
whether the integration-related alpha activity is indeed
triggered by a more abstract coherence in basic-level cate-
gory, presumably coded in high-level visual cortex (32, 33)
or by the spatiotemporal coherence of visual features
associated with a category (34–36). Establishing a special
role of the basic level in integration would require a sys-
tematic comparison of integration not only on the basic
and superordinate levels but also on the subordinate level.
Another interesting open question concerns whether dif-
ferent task demands (e.g., tasks requiring perceptual deci-
sions on the stimuli themselves) modulate the neural
correlated integration. For instance, the integration-related
brain responses could vary as a function of the task requiring
global versus local perception.

In our previous study, we found that gamma rhythms, pre-
viously associated with feedforward processing in visual cor-
tex (8–11), carried more information about incoherent than
about coherent inputs, suggesting that feedforward process-
ing is to some degree dominated by integration-related feed-
back (7). By contrast, we were not able to decode between the
videos from gamma rhythms across all four conditions in
the current study. Several factors may explain this differ-
ence. First, a different group of participants were scanned
with a different EEG system for the current study. As gamma
activity can be weak and unreliable in EEG recordings, it
may not be systematically observed in each experiment (37).
Second, we used different stimuli than in our previous
report. In the previous study, we tried to maximize incoher-
ence by picking very different videos (featuring different col-
ors, movements, etc.). Here we designed the experiment
without focusing on maximizing such differences. However,
suchmore drastic incoherencemay be needed to induce reli-
able gamma activity: Given the extended presentation dura-
tion of the video stimuli (3 s) and the absence of rapid or
unexpected visual events, reliable predictions may explain
away feedforward inputs carried by gamma rhythms when
the videos are similar enough on some dimensions. Further
studies are needed to clarify the role of gamma dynamics in
coding feedforward information propagation in similar
paradigms.

Taken together, our findings emphasize the key role of
alpha dynamics in the construction of coherent and uni-
fied visual percepts during naturalistic vision. They fur-
ther suggest that integration-related alpha dynamics does
not operate in an all-or-none fashion, but that the coarse
coherence between inputs stemming from the same basic-
level category can effectively trigger neural correlates of
integration.
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