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Abstract

In many neurological diseases, evaluating motor impairments is essential for making

diagnoses, assessing disease severity, monitoring symptoms, and measuring treatment

effects. Accordingly, the further development of tools for the accurate assessment of

motor function is a critical concern in current research. Compared with prevailing clinical

scales, instrumental motion analysis technologies promise a more objective, detailed,

and efficient assessment of motor impairment independent from clinical raters. However,

these technologies have yet to be established as standard tools in research settings and

clinical practice.

In the work presented here, we focused on the use of an RGB-depth camera-based

system for instrumental motion analysis in persons with multiple sclerosis. This

system extracts spatiotemporal motor parameters from recordings of short, standardized

movement tasks. In two projects, we have addressed constructive next steps to improve

the applicability and interpretability of this technology. In the first project, we developed

a quality control process that enables users to review existing data and flag poor-

quality recordings. This allowed us to systematically identify and quantify technical

and performance issues in a large dataset of 4692 recordings from individuals with

multiple sclerosis and healthy controls. How these findings can contribute to the

development of fully automated quality control was then illustrated using a common

performance-related issue. In the second project, we determined normative reference

values for 43 spatiotemporal parameters from 133 healthy adults between 20 and 60. We

reported descriptive statistics for these parameters and provided an approach to model

relationships between parameters and confounding anthropometric and demographic

factors. In addition, we presented a user-friendly z-score-based representation of data

points in the context of the normative data.

The quality control results showed that a systematic cleaning of the respective data

is necessary and can be ensured with the help of the developed process. Some of

the findings can be directly integrated into quality assurance processes. The obtained

normative data help to interpret newly collected datasets and identify altered movement

patterns of diseased individuals at the individual or group level. Overall, the results

enhance utility and promote the application of the system in further research use. At the

same time, they lay a relevant foundation for future broader application in clinical practice.
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Zusammenfassung

Die Erfassung motorischer Beeinträchtigungen ist bei vielen neurologischen

Erkrankungen von entscheidender Bedeutung für die Diagnosestellung, die

Beurteilung der Krankheitsschwere, die Überwachung von Symptomen und die

Messung von Behandlungseffekten. Entsprechend ist die Weiterentwicklung von

Methoden zur präzisen Bewertung der motorischen Funktion ein zentrales Anliegen

aktueller Forschung. Im Vergleich zu gängigen klinischen Skalen versprechen

Technologien zur instrumentellen Bewegungsanalyse eine objektivere, detailliertere und

effizientere Beurteilung motorischer Beeinträchtigungen, die unabhängig von klinischen

Untersuchern erfolgt. Diese Technologien müssen jedoch erst als Standardinstrumente

in der Forschung und klinischen Praxis etabliert werden.

In der hier vorgestellten Arbeit haben wir uns mit der Anwendung eines RGB-

Tiefenkamera Systems zur instrumentellen Bewegungsanalyse bei Personen mit

Multipler Sklerose befasst. Dieses System ermittelt räumlich-zeitliche motorische

Parameter aus Aufnahmen von kurzen, standardisierten Bewegungsaufgaben. In zwei

Projekten haben wir konstruktive nächste Schritte zur Verbesserung der Anwendbarkeit

und Interpretierbarkeit dieser Technologie umgesetzt. Im ersten Projekt haben wir

einen Qualitätskontrollprozess entwickelt, der es Nutzern ermöglicht, vorhandene

Daten zu sichten und Aufnahmen schlechter Qualität zu kennzeichnen. So konnten

wir technische und ausführungsbedingte Probleme in einem großen Datensatz von

4692 Aufnahmen von Personen mit Multipler Sklerose und gesunden Kontrollen

systematisch identifizieren und quantifizieren. Am Beispiel eines häufigen auftretenden

ausführungsbedingten Problems wurde veranschaulicht, wie diese Erkenntnisse zur

Entwicklung einer vollautomatischen Qualitätskontrolle beitragen können. Im zweiten

Projekt haben wir normative Referenzwerte für 43 räumlich-zeitliche Parameter von 133

gesunden Erwachsenen zwischen 20 und 60 Jahren ermittelt. Wir haben deskriptive

Statistiken für diese Parameter bereitgestellt und einen Ansatz für die Modellierung

der Zusammenhänge mit anthropometrischen und demografischen Störfaktoren

erarbeitet. Außerdem haben wir eine nutzerfreundliche z-Score-basierte Darstellung von

Datenpunkten im Kontext der normativen Daten vorgestellt.

Die Ergebnisse der Qualitätskontrolle haben gezeigt, dass eine systematische Säuberung

der jeweiligen Datensätze notwendig ist und mithilfe des entwickelten Prozesses
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sichergestellt werden kann. Die gewonnenen Erkenntnisse können zum Teil direkt in

Qualitätssicherungsprozesse integriert werden. Die normativen Daten helfen bei der

Interpretation von neu erhobenen Datensätzen und bei der Identifikation veränderter

Bewegungsmuster erkrankter Personen auf Individual- oder Gruppenniveau. Insgesamt

steigern die Ergebnisse die Nutzbarkeit und fördern die Anwendung des Systems in

der weiteren Forschung. Zugleich legen sie eine relevante Grundlage für eine breitere

zukünftige Nutzung in der klinischen Praxis.
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1 Introduction

1.1 Motivation

The high prevalence and increasing burden of neurological disorders pose a challenge

for healthcare systems worldwide [1]. The clear mandate for specialized care for

affected individuals and the concurrent shortage of neurologists in many (aging)

societies inevitably lead to a predicament. Leveraging efficient technologies that support

healthcare professionals and caregivers is one way to soften the impact of this increase

in the need for neurological care.

Motor impairments of various manifestations are among the hallmark symptoms

of neurological diseases, such as Parkinson’s disease (PD), stroke, or multiple

sclerosis (MS). The accumulation and progression of motor symptoms often serve as

an indicator of overall disease progression. Observer-based clinical scales, such as

the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease

Rating Scale [2] or the Expanded Disability Status Scale (EDSS) [3] in MS, are the most

widely used tools for assessing disease severity in clinical and research settings. These

scales rely substantially on clinicians’ assessment of the motor behavior of patients or

study subjects. However, these conventional methods often do not adequately reflect

disease progression clinically, e.g., due to limited sensitivity to change [4, 5] or low

inter-rater reliability [6].

The use of instrumental motion analysis systems as an alternative has yet to be

established in this context. Respective systems bear the opportunity to objectively

assess human movement in great detail as well as streamline and automate the

monitoring of motor symptoms, potentially remotely. In increasingly complex treatment

landscapes, such technologies further anticipate simplifying individual clinical decision-

making. As such, motion analysis technologies can improve care and democratize access

to care, especially as physicians’ time becomes an increasingly valuable commodity. In

research, such systems can be used to improve the understanding of motor function

and to measure intervention effects more sensitively and reliably. Remotely applicable

systems also have the advantage of being deployable in decentralized trials.

This thesis addresses aspects of advancing the applicability of an RGB-depth camera-

based instrumental motion analysis system. The use and potential of such systems are
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introduced below using MS as a case example. However, they could be considered

analogously for other neurological diseases.

1.2 Multiple sclerosis

MS is an immune-mediated neurological disease that causes demyelination and

degeneration of axons in the central nervous system. In 2020, an estimated 2.8 million

people worldwide were affected by MS (incidence of 35.9 per 100,000), amounting to a

considerable increase in the last years and decades [7, 8]. The mean age of onset is 32,

with women affected about twice as often as men [7]. There are four main MS phenotypes

generally considered: Manifestations of MS symptoms before a confirmed MS diagnosis

are referred to as clinically isolated syndrome (CIS); after confirmed diagnosis, the

phenotype characterized by acute inflammatory relapses and subsequent remission is

called relapsing-remitting MS; for some, the relapsing-remitting disease course develops

into a progressive disease course, characterized by gradual decline rather than relapses,

which is referred to as secondary progressive MS; lastly, approximately 15% are affected

by a progressive course of the disease without remissions, which is referred to as primary

progressive MS [8]. It has to be noted that these diagnostic distinctions have recently

been challenged by the concept of progress independent of relapse, short PIRA [9].

Kappos et al. found that disability accumulation in persons diagnosed with relapsing-

remitting MS was primarily not associated with relapse events. They argue that MS should

not be dichotomized into the subtypes described above but should be conceptualized as

a continuum that generally follows a progressive disease course that may be associated

with varying degrees of additional disability due to relapses.

In addition to non-motor impairments, including visual, cognitive, and sensory dysfunction,

people with MS are usually affected by a decline in motor function, which can significantly

impact their quality of life [10, 11]. Motor impairments can manifest very differently in each

individual and encompass a wide range of motor symptoms, such as gait disturbances,

spasticity, paresis, ataxia, tremor, fatigue, and fine motor disturbances [12].

Treatment options are multifaceted and include disease-modifying therapies (primarily

licensed for the relapsing-remitting type), treatment of acute relapses, as well as

symptomatic treatment and rehabilitation. As knowledge about the disease increases,
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treatment options become more complex [13]. There is widespread agreement that early,

specialized, and personalized care can improve overall prognosis and delay or prevent

long-term disability [13, 14].

1.2.1 Conventional assessment of motor function in persons with multiple

sclerosis

The clinician-administered EDSS is most frequently used for measuring disease severity

in persons with MS [15]. The EDSS total score (often termed EDSS step) is derived

from eight ordinally scaled subscores considering individual functional brain systems and

the maximum gait distance. In this context, the pyramidal, cerebellar, and maximal gait

distances are subscales associated with motor function. The EDSS has been widely

criticized regarding objectivity, reliability, and sensitivity to (subtle) change as well as its

ordinal non-linear scale characteristics (see reviews from Meyer-Moock et al. [15] and

Inojosa et al. [16] and references therein). Motor assessments via timed functional tests

such as the ones included in the Multiple Sclerosis Functional Composite (MSFC) [17],

that is, the Timed 25-Foot Walk and 9-Hole Peg Test, have the advantage of being on a

continuous scale and expectedly more reliable [18]. Whether the MSFC outperforms the

EDSS regarding its sensitivity to change remains debatable [16, 19]. Instrumental motion

analysis methods, which have gained increasing importance in recent years, promise a

more precise and in-depth analysis of human movements.

1.3 Instrumental motion analysis technologies

Systems for the instrumental analysis of human movement in healthcare settings

include portable inertial measurement units, pressure plates, force plates, instrumented

walkways, and camera systems. These technologies promise accurate descriptions

of motor impairments, surpassing human observational assessments in detail and

objectivity. Sufficiently easy-to-use systems further free up time and cost resources

required for clinician-administered scales. As such, the outcomes of these systems are

hypothetically better suited as the prevailing clinical scales to support diagnostic and

treatment decisions, monitor symptoms and disease progression over time, or even serve

as clinical trial endpoints.
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For motion capture technologies, continuous and task-based point measurements are two

approaches to be distinguished, which may differ in their objectives. In turn, measures

of motor performance, i.e., how people move in their familiar environment, and measures

of motor capacity, i.e., how people can move in a standardized environment, have been

distinguished (see [20]). This distinction coincides with a subdivision between remote

and lab-based measurements, with remote measurements mostly involving continuous

measurements of motor performance. In contrast, lab-based measurements mainly

involve monitoring motor capacity with specific point assessments of standardized motor

tasks (similar to clinical neurological rating procedures). Essential differences between

the two types of assessment have been described. For example, a comparison of the

results of different measurement approaches (in-lab gait vs. community ambulation) for

individuals with MS is presented in Shema-Shiratzky et al. [21]. Of note, remote data

acquisition has also been explored for task-based instrumental motion assessment in

persons with MS, e.g., via the smartphone applications dreaMS [22] or Floodlight Proof-

of-Concept [23].

Arguably, the most commonly assessed movement pattern for persons with MS is gait in

both continuous/remote and task-based/in-lab settings. Examples include the evaluation

of whether daily step counts, measured by a continuously worn accelerometer over

four weeks, can augment disability assessment [24]. Another study by Zanotto et al.

[25] examined gait variability within groups with comparable EDSS scores in a task-

based scenario. They measured parameters such as gait speed, step/stride length,

and time spent in either double or single support during gait cycles with an instrumented

walkway. Beyond gait, instrumented motion analysis systems have been used to assess

other spatiotemporal parameters in persons with MS, such as body sway behavior in

balance/postural control tasks or kinematics of hand-to-mouth movements [26, 27].

To date, instrumental motion analysis systems rarely entered healthcare settings in

research or clinical practice. General limitations of instrumental motion analysis systems

as of today include that there is a plethora of options, configurations, and settings

proposed for each of the many system categories, and there is no clear consensus on best

practices and relevant outcomes, resulting in low comparability among existing evidence

[28, 29, 30]. In addition, the interpretability of the outcomes is often insufficient in the

absence of valid cut-offs with respect to normal motor function or minimally important
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change for individuals with MS. The various devices are mostly not interchangeable, and

often, a tradeoff between system applicability, clinical applicability, and accuracy arises.

For instance, simple activity trackers such as Fitbit (Fitbit Inc, San Francisco, CA, USA)

are comparatively easy to use. However, Feehan et al. found that they do not provide

accurate motion parameters–apart from mere step counts–and should thus not inform

healthcare decisions [31]. On the other hand, camera-based systems often have a limited

sensor range. They can thus only record motor tasks such as gait within a limited space.

Not least, there are regulatory requirements and hurdles regarding the application

of instrumental motion analysis, as described in [32]. For the market approval and

subsequent clinical application of medical devices, a corresponding formal approval

by a regulatory body (e.g., according to the requirements of the Medical Device

Regulation in the European Union or of the Food and Drug Administration in the

USA) is necessary. To this end, the corresponding requirements must first be met,

which are derived from European and German law for the German market. The legal

framework includes, for example, the European Regulation (EU) 2017/745 and the

German Medizinprodukterecht-Durchführungsgesetz. The requirements include that the

product meets basic safety and performance requirements, that a quality management

system is established, and that it is suitable for the intended use. National and

international standards (e.g., ISO 13485 regarding quality management systems for

medical devices) can be used as evidence of compliance. These requirements converge

in the clinical evaluation process, where clinical data is used to demonstrate the product’s

clinical benefit, performance, and safety. In research, instrumental motion analysis

devices aim to provide reliable, meaningful, and generalizable outcomes in mostly group-

based evaluations. As in the clinical context, reliability, accuracy, and suitability are

essential. However, depending on the jurisdiction and context of use, specific device

certification is not always necessary in the research context. Regulatory drug trials

represent an example of more stringent formal requirements. Viceconti et al. illustrate

this by describing the steps toward the qualification of digital mobility outcomes in people

with PD as designated biomarkers [33].

Despite these limitations and roadblocks, experts rightly call for broader application [34,

35] and look for ways to overcome the implementation gap. In addition to the advantages

over rater-based clinical scales, some systems already provide decent usability by



9

optimizing their interfaces to be user-friendly and by providing some guidance on how

to interpret results. Moreover, with technological progress, these systems are becoming

not only more accurate but also more cost-effective. Efforts are underway to validate and

standardize the usage of various systems systematically [36, 37, 38, 39, 40]. Consistent

dissemination of these advances in scientific publications, as well as accessible demos

and training opportunities, can help motivate the scientific and clinical communities to

adopt and ultimately benefit from these newer technologies more widely.

1.3.1 RGB-depth camera-based motion analysis systems

This work deals with a subcategory of instrumental motion analysis using camera

systems, explicitly 3D or RGB-depth cameras. The gold standard for 3D camera-based

technologies in terms of accurate tracking of body landmarks are marker-based multi-

camera systems such as Vicon (Vicon Motion Systems, Oxford, UK) [36, 41] or Qualisys

motion capture systems (Qualisys, Gothenburg, Sweden) [42, 43]. For persons with MS,

these were used to study gait patterns and the risk of falling [44, 45, 46]. However, these

systems are resource-intensive as they are comparatively expensive, difficult to operate,

and only deployable in environments specifically suited for them. Furthermore, they are

marker-based, which, in addition to the lab environment, might irritate recorded subjects,

diminish ecological validity, and constitute a potential error source (e.g., incorrect marker

placement). Arguably preferable for large-scale application are thus less accurate but

portable, low-cost, easy-to-use, and markerless single-sensor technologies.

Plenty of consumer RGB-depth cameras on the market can be used to record human

movement in 3D. They include various generations of Intel RealSense cameras (Intel

Corporation, Santa Clara, CA, USA) and modern smartphones. Most prominently used in

the medical research context, however, is the Microsoft Kinect v2 (Microsoft, Redmond,

WA, USA). This camera has been previously validated regarding its reliability, accuracy

[36, 47], acceptability, and usability [48]. Regarding potential clinically relevant outcomes

in MS, it has been used to assess postural control [47] and gait [49, 50] and as a tool in

the context of rehabilitation [51]. Of course, usage of the Kinect v2 is not limited to MS

but extends to research into other diseases such as PD, ataxia, or stroke [49, 52, 53].

The system employed for this thesis was Motognosis Labs (Motognosis GmbH, Berlin,

Germany), which likewise relies on the Kinect v2 as a sensor. It has proven easy to use for
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operators in prior application in different conditions [36, 38, 42, 52, 54, 55, 56, 57, 58, 59].

This system allows the recording of a series of short, standardized motor tasks in standard

clinical situations. From these recordings, a collection of spatiotemporal parameters can

be extracted that objectively quantify various aspects of the recorded movements.

1.4 Research aims

Motognosis Labs has been used for several years in our and other clinical research

groups. It has proven to be feasible in research use, has earlier been shown to be

accurate and reliable [36], and has been tested in previous pilot and proof-of-concept

studies for its ability to represent divergent motion patterns based on spatiotemporal

outcome parameters extracted from Kinect v2 and its predecessor [52, 54, 55, 56, 57].

The now cumulatively large–and growing–body of data allows for more comprehensive

analyses and paves the way for wider use in research and prospectively clinical settings.

In two projects, we have addressed crucial prerequisites in the transition toward broader

application.

Project 1–quality control (P1QC): To conduct high-quality research, an understanding of

what constitutes accurate, clean, and meaningful data within the capabilities of the applied

technology is essential. In our case, however, there were no standardized procedures

for systematic quality control in place that we could have used to verify our data. The

search for relevant literature revealed that quality aspects in this area of research are

generally understudied and largely unreported. In P1QC, we thus developed, employed,

and evaluated a post hoc quality control approach to help identify and address quality

issues efficiently and pave the way for standardized post-processing and data-cleaning.

Project 2–normative data (P2NORM): If instrumental motion analysis measures are to be

used to assess disease manifestation or severity, comprehensive reference data from a

healthy population are an essential prerequisite for interpretability. For this technology,

it was not defined what constitutes “healthy” motor behavior in terms of the outcome

parameters. In P2NORM, we aimed to create a robust normative database to facilitate

the interpretation of spatiotemporal parameter values.

The methods and results presented in this thesis for P1QC and P2NORM are mainly

based on the original publications by Röhling et al [60] and Röhling et al. [61].
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2 Methods

First, the mutual methods and materials for P1QC and P2NORM are described, relating

to the technical configuration of the instrumental motion analysis system and the motor

tasks performed. Then, the different studies and the participants pooled from them are

presented. Finally, the project-specific methods are addressed.

2.1 Instrumental motion analysis via Motognosis Labs

All data used for P1QC and P2NORM were recorded using the Kinect v2 sensor

(Microsoft, Redmond, WA) in combination with Motognosis Labs recording software

(version 1.1, 1.4, 2.0, or 2.1; Motognosis GmbH, Berlin, Germany). In addition to RGB

(color) recordings, this sensor uses time-of-flight infrared technology to measure depth

in a 1.5 to 4.5m distance from the camera (see Figure 1 A) at 30 frames per second

and 512x424 pixels. Microsoft’s associated software development kit was used to extract

three-dimensional time series for 25 anatomical landmarks (see Figure 1 B) from the

depth information with a decision forest-based body tracking approach [62]. While facing

Figure 1: Set-up of Motognosis Labs and illustration of Microsoft Kinect v2 anatomical landmarks.
A: Set-up of motion analysis system Motognosis Labs using Kinect v2 with sensor range as
indicated. B: Dots indicate the positions of 25 anatomical landmarks tracked via the Microsoft
Kinect software development kit. The labeled landmarks correspond to those used to extract
spatiotemporal parameters for this work. The illustrations were adapted and modified from [52]
Figure 1 as well as [63] Figure 4 and were provided courtesy of Motognosis GmbH.

the camera, participants performed short, standardized movement tasks according to
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written standard operating procedures (SOPs). They wore everyday clothes and shoes.

Protocols for included movement tasks differed between studies from which participants

were pooled, i.e., not every motor task was performed in every study (for more information,

see [60, 61]). The tasks analyzed in P2NORM were limited to short comfortable speed

walk (SCSW), short maximum speed walk (SMSW), short line walk (SLW), stepping

in place (SIP), standing up and sitting down (SAS), and postural control (POCO),

which are described in Table 1. For P2NORM, custom (Motognosis GmbH) algorithms

were used to extract spatiotemporal parameters quantifying relevant motor aspects of

these tasks. Respectively utilized landmark movements and extracted parameters are

described in Table 1. For P1QC, dual-task postural control (POCO-DUAL) measurements,

which correspond to POCO measurements and simultaneous performance of a cognitive

task (Serial 3’s subtraction), were additionally included in the analyses. For P1QC,

no spatiotemporal parameters were extracted; however, task and movement signal

descriptions from Table 1 apply likewise. According to the respective SOPs, SCSW,

SMSW, SLW, and SAS were performed three times in a row, whereas the other tasks

were performed once.

2.2 Participants

For P1QC and P2NORM, data from different studies were retrospectively pooled. The

studies are briefly presented below, focusing on their respective use of Motognosis Labs.

The composition of pooled participants per project is listed in Table 2.

AMBOS The study investigated whether arm ergometry can improve gait function in

persons with MS [65]. In addition to the primary clinical endpoint (6-Minute Walk

Test) and secondary outcome measures, including stopwatch-based mobility measures,

Motognosis Labs was exploratively used to measure intervention effects. The study

was conducted at Universitätsklinikum Eppendorf, Hamburg, Germany (ClinicalTrials.gov

Identifier: NCT03147105).

ASD In this study, Motognosis Labs was used to explore differences in motor patterns

between adults with autism spectrum disorder without intellectual impairment and

healthy controls [54]. The study was conducted at the Department of Psychiatry and
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Table 1: Descriptions of short standardized movement tasks, relevant landmark signals, and
respective spatiotemporal outcome parameters. Modified after Röhling et al. [61] Table 2 and
Otte et al. [58] Table 2.

Description Relevant movement signals from Kinect landmarks Spatiotemporal parameters

Short comfortable speed walk (SCSW)

The participant stands just
outside the sensor range and
walks toward the sensor at a
comfortable speed in response
to an auditory cue

Mean speed derived from pelvic center movement in the direction
of walking

Gait speed [m/s]

Mean step length, mean step width, and mean step duration over
all (left and right) detected steps derived from left and right ankle
movement in the direction of walking

Step length [cm]
Step width [cm]
Step duration [s]

Mean gait cadence extrapolated from detected steps and recording
length

Gait cadence [steps/min]

Mean angular arm swing amplitude (averaged over left and right
averages) and absolute symmetry angle [64] (between left and right
mean angular arm swing amplitude) derived from left and right wrist
movement relative to manubrium movement in anterior-posterior
direction

Arm angular amplitude [°]
Arm symmetry angle [n.u.]

Short maximum speed walk (SMSW)

The participant stands just
outside the sensor range and
walks toward the sensor at
maximum speed in response to
an auditory cue

Mean speed derived from pelvic center movement in the direction
of walking

Gait speed [m/s]

Short line walk (SLW)

The participant stands just
outside the sensor range and,
in response to an auditory cue,
walks toward the sensor in
tandem gait, i.e., walks on an
imaginary line with the heels
touching the toes at each step

Mean and coefficient of variation of progression speed derived from
pelvic center movement in the direction of walking

Progression speed [°/s]
Relative progression variability [%]

Standard deviation and speed of upper body sway starting from
pelvic center

Roll sway variability [°]
Roll sway speed [°/s]

Line walk cadence derived from recording length and left and right
ankle movement relative to respective hip movement

Line walk cadence [steps/min]

Standard deviation and speed of arm movement angle (averaged
over left and right) derived from elbow movement relative to
respective shoulder movement in 3D

Arm variability [°]
Arm speed [°/s]

Stepping in place (SIP)

The participant walks on the spot
at a comfortable pace for 40s

Mean knee amplitude, mean step duration, and mean stance
duration (averaged over left and right averages) derived from knee
movement in anterior-posterior direction

Knee amplitude [m]
Step duration [s]
Stance duration [s]

Mean stepping cadence extrapolated from detected steps and
recording length

Stepping cadence [steps/min]

Absolute symmetry angle [64] (between left and right mean knee
amplitude)

Knee symmetry angle [n.u.]

Mean coefficient of variation of left and right “stride times”
measured as time between knee amplitude peaks (i.e., slightly
adapted from [52])

Arrhythmicity [%]

Standing up and sitting down (SAS)

The participant sits on an
armless chair, arms hanging
to the side, stands up after an
auditory cue, and sits down again
after a second auditory cue

Speed of manubrium movement in vertical and anterior-posterior
direction

Transition time (up) [s]
Transition time (down) [s]

Range of manubrium movement in anterior-posterior direction AP deflection range (up) [m]
AP deflection range (down) [m]

Postural control (POCO)

The participant stands in front
of the sensor with closed feet
and open eyes for 20s; after an
auditory cue, the subject closes
their eyes and remains in this
position for another 20s

Angular range and mean speed of the body sway vector between
mean ankle position and pelvic center during eyes closed and eyes
open measurement conditions in pitch, roll, and 3D direction

Pitch/Roll/3D sway range (open eyes) [°]
Pitch/Roll/3D sway speed (open eyes) [°/s]
Pitch/Roll/3D sway range (closed eyes) [°]
Pitch/Roll/3D sway speed (closed eyes) [°/s]

Romberg ratio of sway range and sway speed in pitch, roll, and 3D
direction (i.e., value for closed eyes condition divided by respective
value for open eyes condition)

RR of pitch/roll/3D sway range [n.u.]
RR of pitch/roll/3D sway speed [n.u.]

Abbreviations: AP: anterior-posterior; RR: Romberg ratio.
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Psychotherapy at Charité–Universitätsmedizin Berlin (EA1/392/16).

Chiba In this study, motor patterns were recorded from healthy Japanese adults and

populations with ataxia (for comparisons to data from healthy German adults, see [58]).

The study was conducted at the Division of Rehabilitation Medicine and Department of

Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.

CIS This prospective observational study included recently diagnosed persons with MS

or persons with CIS to investigate disease course and prognosis markers. Among MRI

examinations [66], optical coherence tomography [67], and others, Motognosis Labs was

used to assess motor function in this context. The study was conducted at Charité–

Universitätsmedizin Berlin (EA1/182/10).

OPRIMS This ongoing observational study investigates whether and how the

progression of primary progressive MS can be best assessed and measured. Amongst

various other procedures, such as myelin oligodendrocyte glycoprotein antibody testing

[68] and brain perfusion assessment [69], Motognosis Labs is used to measure

motor aspects exploratively. The study is conducted at Universitätsklinikum Eppendorf,

Hamburg, Germany (PV3961).

Valkinect This ongoing observational study includes subjects with MS, PD, and healthy

controls. It aims to examine whether instrumental motion analysis using a Kinect camera

is a suitable (i.e., accurate, reliable, valid, and responsive) examination method for

motor function impairments in neurological diseases. Drebinger et al. investigated

whether changes in spatiotemporal Motognosis Labs parameters due to motor exertion

are suitable as fatigue markers for persons with MS [59]. The study is conducted at

Charité–Universitätsmedizin Berlin (EA1/339/16).

VIMS This observational study included participants with relapsing-remitting MS,

primary progressive MS, and secondary progressive MS, as well as healthy subjects

between 20 and 69. It aimed to explore the use of optical coherence tomography to

measure changes in the retina that reflect the disease progression in these subjects [67].
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In this context, Motognosis Labs was used exploratively to measure concurrent motor

capacity. The study was conducted at Charité–Universitätsmedizin Berlin (EA1/163/12).

WALKIMS-DA This study examined Kinect measurements along with day-to-day activity

recorded by a physical activity monitor in people with MS and healthy controls. Krüger

et al. report comparisons between measures of the physical activity monitor and a

physical activity questionnaire in this context [70]. The study was conducted at Charité–

Universitätsmedizin Berlin (EA1/321/14).

Table 2: Demographic and anthropometric information subdivided by projects and further
subdivided into studies from which data were pooled. Sample size information is provided as
the number of participants (percentage of female participants; percentage of missing information,
if any); Age, height, weight, and BMI information is provided as mean (standard deviation;
percentage of missing information, if any); Expanded Disability Status Scale (EDSS) score for
persons with multiple sclerosis is provided as median (range; percentage of missing information,
if any). Adapted from Röhling et al. [60] Table S1 in multimedia appendix 1 and Röhling et al. [61]
Table 1.

Study Population Sample size Age [years] Height [cm] Weight [kg] BMI [kg/m2] EDSS

Röhling et al. [60] for project 1–quality control (P1QC)

All HC 162 (51.2; 1.2) 38.3 (12.8; 1.2) 172.0 (9.6; 3.7) 70.4 (14.6; 8.0) 23.8 (3.9; 8.0) /
PwMS 187 (51.9) 45.3 (10.8) 174.1 (8.8; 1.6) 75.0 (14.6; 8.0) 24.7 (4.3; 8.0) 3.0 (0.0-6.5; 2.7)

Ambos PwMS 26 (46.2) 52.5 (5.4) 176.0 (9.5) 77.5 (20.1) 24.8 (5.3) 5.0 (4.0-6.5)
ASD HC 43 (51.2) 33.1 (8.5) 174.0 (9.6) 73.0 (16.2) 24.0 (4.5) /
Chiba HC 30 (36.7; 6.7) 30.9 (7.0; 6.7) 167.1 (8.6; 6.7) 60.7 (9.2; 6.7) 21.7 (2.1; 6.7) /
CIS PwMS 41 (65.9) 37.7 (9.6) 174.8 (8.4) 70.0 (11.8; 22.0) 23.0 (3.7; 22.0) 1.5 (0.0-5.5)
Oprims PwMS 25 (36.0) 52.2 (6.7) 175.0 (9.5; 4.0) 79.5 (11.5; 4.0) 26.0 (3.8; 4.0) 3.0 (0.0-5.5)

Valkinect HC 22 (50.0) 48.4 (16.9) 172.2 (10.3) 70.8 (11.0) 23.8 (2.6) /
PwMS 7 (28.6) 47.4 (10.9) 175.7 (9.7) 82.0 (16.6) 26.7 (6.3) 2.0 (1.0-4.5)

VIMS HC 36 (52.8) 34.7 (11.0) 173.4 (10.8; 5.6) 72.2 (16.4; 25.0) 24.5 (4.7; 25.0) /
PwMS 57 (50.9) 41.0 (11.8) 172.5 (8.5; 3.5) 71.5 (12.1; 8.8) 23.9 (3.2; 8.8) 2.0 (0.0-6.0; 3.5)

WALKIMS-DA HC 31 (64.5) 49.1 (8.7) 171.8 (7.3; 6.5) 73.8 (13.9; 6.5) 24.9 (3.9; 6.5) /
PwMS 31 (58.1) 50.8 (5.1) 173.3 (8.4) 79.1 (15.1) 26.3 (4.7) 4.0 (1.5-6.0; 9.7)

Röhling et al. [61] for project 2–normative data (P2NORM)

All HC 133 (56.4) 36.8 (10.4) 172.9 (9.3) 71.8 (13.9) 23.9 (3.8) /
ASD HC 41 (51.2) 33.9 (8.0) 174.2 (9.7) 73.9 (16.1) 24.2 (4.4) /
Valkinect HC 35 (51.4) 44.7 (11.2) 172.6 (8.5) 70.9 (11.2) 23.8 (3.0) /
VIMS HC 57 (63.2) 34.1 (9.0) 172.2 (9.7) 70.9 (13.7) 23.8 (3.8) /

Further considerations for project 2–normative data (P2NORM)

Valkinect PwMS 19 (42.1) 50.4 (9.4) 175.6 (8.7) 78.4 (15.1) 25.5 (5.1) /

Abbreviations: /: not applicable; EDSS: Expanded Disability Status Scale; HC: healthy controls;
pwMS: persons with multiple sclerosis.

2.3 Project-specific data processing and analysis

2.3.1 Project 1–quality control (P1QC)

Quality control pipeline development For P1QC, a post hoc quality control pipeline

for Motognosis Labs was developed and tested [60]. The pipeline comprised a graphical
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user interface, which allowed users to browse through visualizations regarding individual

Motognosis Labs recordings. The visualizations consisted of summarized depth images

(i.e., depth images averaged pixel-wise over time, as well as vertically and horizontally)

and selected relevant movement signals from Kinect landmarks (cf. Table 1). Within

the graphical user interface, users could view the visualizations, access respective depth

videos and operator comments from the time of recording, and document their quality

assessment (“keep,” “undecided,” “discard”) based on predefined quality criteria. Quality

criteria were established using a representative subsample of data and included known

task-specific performance-related issues (e.g., feet open instead of closed during POCO),

technical problems (e.g., step detection issues for gait tasks), as well as “Other,” with the

possibility to leave a free text comment. Figure 2 shows the rating interface, including

a respective exemplary visualization for SIP. The interface and visualizations were

produced using Python (3.7.3) as well as packages tkinter (8.6) and matplotlib (3.1.0).

For a complete list of predefined criteria and more details on the pipeline development,

please refer to [60].

Figure 2: Visualization of a stepping in place (SIP) recording embedded in the graphical user
interface developed for quality ratings in project 1–quality control (P1QC). Modified from Figure 1
in Röhling et al. [60].
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Quality rating analyses Recordings of 4692 recordings (SCSW, SMSW, SLW, SIP,

SAS, POCO, and POCO-DUAL) from 162 healthy controls and 187 persons with MS were

quality controlled with the developed pipeline. They were distributed among eight trained

raters, such that two people examined each recording. The respective frequencies of

“keep,” “discard,” and “undecided” decisions and the corresponding rater concordance

were evaluated for each motor task. Furthermore, we evaluated which categories

were selected how often and which were the most frequent quality problems of the

recordings per different motor tasks. Disease-associated differences in performance-

related quality concerns were assessed by comparing selection frequencies of rating

categories between healthy controls and persons with MS in a subset of data. Finally,

we examined whether the approach to quality control is user-friendly by assessing the

median rating duration per recording and interviewing the participating raters [60].

Subsequent considerations regarding automation Considerations of how the results

from [60] can be used to automate quality control processes were outside the scope of

the paper itself but were addressed for this work. The performance-related quality issue

of subjects standing with open feet instead of closed feet during POCO was used as

an example to illustrate this. The median distance of ankle landmarks for each POCO

recording included in the dataset from Röhling et al. [60] was computed. This distance

was dichotomized using different thresholds and compared to the “ground truth” of

whether feet were actually open (i.e., one or more raters marked open feet as a quality

issue for a recording). With this information, a receiver operating characteristic curve was

generated, and sensitivity (i.e., true positive rate) and specificity (i.e., true negative rate)

were computed for sensible thresholds between 8 and 14cm. These steps were carried

out with Python (3.9.7) using packages matplotlib (3.4.3), scikit-learn (1.2.0), numpy

(1.20.3), and pandas (1.3.4).

2.3.2 Project 2–normative data (P2NORM)

For P2NORM, data from 133 healthy adults were analyzed. We computed descriptive

statistics, including mean, standard deviation, coefficient of variation, as well as 25th and

75th percentiles for 43 spatiotemporal parameters (Table 1). Included data passed the
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quality control mechanisms developed in P1QC and described in [60]. Spatiotemporal

parameters for SCSW, SMSW, SLW, and SAS were averaged over repetitions.

To investigate whether a relevant association between confounders (age, height, weight,

and sex) and the spatiotemporal parameters can be robustly modeled, we chose a

predictive modeling approach. Multiple linear regression models with independent

variables age, height, weight, sex, and study were fitted to each spatiotemporal parameter

individually as a dependent variable, with sex being dummy-coded and study effect-

coded. This was embedded in a repeated (100 times) five-fold-cross-validation approach.

At each repetition and cross-validation fold, predictions regarding parameter values were

made on the respective test set (excluding the regression coefficients for study affiliation).

The R2-values between predicted and true values for the test set were averaged over

each fold and repetition (mean R2
test) and used to indicate whether the model showed a

generalizable association. If the mean R2
test was larger than 0.1, the model was assumed

sensible and fitted on the entire data. Normalization using the regression coefficients then

corresponds to calculating the normative residuals (ϵ) for subject i:

ϵi = xi − (β0 + βAgeAgei + βSexSexi + βHeightHeighti + βWeightWeighti), (1)

with xi being the respective spatiotemporal parameter value, β0 being the intercept,

βAge/Sex/Weight/Height being the regression coefficients for respective confounders, and

Agei, Sexi (female: 0; male: 1), Heighti, Weighti the respective anthropometric and

demographic characteristics of subject i.

We selected a z-score-based approach to visualize values across the different parameter

scales in a readily interpretable manner. The calculation of the z-scores was based on

the raw or, where appropriate, normalized (i.e., normative residuals) parameter values

and was achieved as follows:

zi = zraw,i =
xi − x̄

s
if the mean R2

test ≤ 0.1,

zi = zres,i =
ϵi
sϵ

if the mean R2
test > 0.1,

(2)

with xi being the respective spatiotemporal parameter value, x̄ and s being that

parameter’s mean and standard deviation in the normative sample, and sϵ being the

normative residuals’ standard deviation.
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In [61], recordings from a participant with MS from the Valkinect study were used to

exemplify the z-score normalization and visualizations. For analyses and visualizations in

[61] Python (3.7.3) and packages pandas (1.3.5), numpy (1.21.6), statsmodels (0.13.2),

seaborn (0.11.2), matplotlib (3.1.0), scipy (1.7.3), and scikit-learn (0.21.2) were used.

Here, the data from 19 persons with MS (cf. Table 2 under Further considerations for

project 2–normative data (P2NORM)) from the Valkinect study were used to propose

how this could be illustrated for a group rather than an individual. This boxplot-based

visualization was produced using Python (3.9.7) and packages pandas (1.3.4), numpy

(1.20.3), and matplotlib (3.4.3).
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3 Results

The following sections present the main results from P1QC and P2NORM. They thus

encompass results presented in the respective publications (P1QC: [60]; P2NORM: [61])

and additional project-specific considerations made in the course of this thesis.

3.1 Project 1–quality control (P1QC)

For this project, the tool developed to gather quality information for further analyses, i.e.,

the quality control pipeline, is a result in and of itself. We designed visualizations such that

severe protocol deviations were directly recognizable from summarized depth images.

Task-specific signals were illustrated to identify less evident quality issues. The pipeline

and the GUI allowed users to make quick and informed decisions regarding the quality of

Motognosis Labs recordings and to document them appropriately. The feasibility of the

approach was substantiated by the median evaluation time of 6.3 seconds per recording

and the positive verbal feedback of the participating raters.

Depending on the motor task, rater concordance was between 71.5% and 92.3%.

Unanimous “keep” decisions were made for 39.6% to 85.1% of recordings, whereas

unanimous “discard” decisions were between 5.0% and 26.3% (Table 3).

Table 3: Percentage distribution of the different possible combinations of quality rating decisions
(“keep,” “discard,” or “undecided” ratings from two independent raters) as well as overall rater
concordance. Adapted from Figure 2 in Röhling et al. [60].

SCSW SMSW SLW SIP SAS POCO POCO-DUAL

Rater concordance [%] 92.3 79.5 74.6 85.6 90.4 71.5 72.7
“keep” & “keep” decisions [%] 85.1 73.3 60.5 70.8 62.9 50.3 39.6
“discard” & “discard” decisions [%] 6.5 5.0 9.4 13.1 26.3 13.0 25.3
“undecided” & “undecided” decisions [%] 0.7 1.2 4.7 1.7 1.2 8.2 7.8
“keep” & “undecided” decisions [%] 5.5 8.2 17.9 10.3 5.9 16.4 14.7
“keep” & “discard” decisions [%] 0.8 10.5 2.8 2.7 1.0 3.1 4.9
“discard” & “undecided” decisions [%] 1.4 1.9 4.7 1.4 2.7 9.0 7.8

Abbreviations: POCO: postural control; POCO-DUAL: dual-task postural control; SAS: standing
up and sitting down; SCSW: short comfortable speed walk; SIP: stepping in place; SLW: short line
walk; SMSW: short maximum speed walk.

We grouped quality concerns into technical issues and performance-related issues. The

most prevalent technical issues for this dataset comprised signal disturbances, i.e.,

excessive noise in the background, floor, or clothing (5.8% to 31.9% of recordings

depending on the motor task) as well as incorrect step detection for SCSW, SMSW,
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and SLW (10.9% to 19.7%). The most prevalent performance issues for this

dataset comprised open feet position during POCO and POCO-DUAL (18.4% and

29.4%), unassociated movements during POCO-DUAL (21.2%), and incorrect initial arm

positioning for SAS (26.8%).

Due to a lack of further information, such as systematic operator comments, disease

dependency of performance-related issues could only be estimated based on between-

group differences in selected rating criteria frequencies. These between-group

differences were assessed for recordings from studies Valkinect, VIMS, and WALKIMS-

DA only (cf. Figure 3 in Röhling et al. [60]). We chose this subset to diminish the

effects of study affiliation as a confounder, as these were the studies from which both

people with MS and healthy controls were included. The most frequently occurring

performance-related problems (see above) showed some absolute group differences,

but in each case, healthy controls’ recordings were likewise affected substantially. In

this subset, open feet during POCO were observed in 16.5% (healthy controls) versus

25.0% (people with MS) of recordings; open feet during POCO-DUAL were observed

in 31.0% (healthy controls) versus 36.9% (people with MS) of recordings; unassociated

movements during POCO-DUAL were observed in 29.3% (healthy controls) versus 21.5%

(people with MS) of recordings; and incorrect arm positioning during SAS was observed in

21.1% (healthy controls) versus 25.4% (people with MS) of recordings. Thus, a statement

about disease dependency remains inconclusive; instructional errors appear to have a

more significant impact here. However, we observed between-group differences in less

prevalent performance-related quality problems. Healthy controls barely exhibited the

need to support themselves with a walking aid, the wall, or a chair during SCSW, SMSW,

SLW, SIP, SAS, POCO, and POCO-DUAL (0.0% to 1.7%). In contrast, we found this in

persons with MS to a comparatively higher degree (0.6% to 6.0%). Similarly, we observed

sidesteps for both POCO and SLW in 1.1% and 11.5% of cases for individuals with MS

and in 0.0% and only 1.9% of cases for healthy controls. For a more detailed account

of all predefined quality criteria and distinctions between studies and cohort affiliation,

please refer to the original publication and the associated supplementary material [60].

How rating results from [60] can prospectively serve as “ground truth” for automated

quality control algorithms was exemplified using the issue of open feet positioning during

POCO. In Figure 3, using a receiver operator characteristic, the median distance of the
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ankles of recordings used in [61] was contrasted with the fact that one or both raters

flagged the feet positioning of the corresponding subject as being open. In this example,

Figure 3: Receiver operator characteristic curve illustrating the discriminatory power of the median
ankle landmark distance as an indicator for open feet positioning during postural control (POCO).
Abbreviations: AUC: area under the (receiver operator characteristic) curve; t: threshold for
median ankle distance. [Own representation: Hanna Marie Röhling].

the discriminatory power of the median ankle distance corresponded to an area under the

curve of 0.93. Based on this receiver operator characteristic, different suitable cut-offs

for automated assessment of this performance-related issue were conceivable. Table 4

lists the sensitivity and specificity of some sensible whole-numbered thresholds from t =

8cm to t = 14cm. Which threshold is most suitable depends on the context of use. If

the automatic quality control would only trigger a short reminder in the recording software

during POCO to ask the subjects to close their feet, it could be argued that this is better

done too often than rarely. Thus, a smaller threshold with a higher sensitivity would be

suitable, such that the vast majority of people with this kind of performance issue get a

reminder, but also some people whose feet are already closed. In opposite scenarios,

where false negatives hurt more than false positives, a higher threshold with a higher

specificity is more suitable.
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Table 4: Sensitivity and specificity for different thresholds of the median ankle landmark distance
serving as a binary classifier for predicting the performance-related quality issue of open feet
during postural control (POCO). [Own representation: Hanna Marie Röhling].

Threshold

8cm 9cm 10cm 11cm 12cm 13cm 14cm

Sensitivity 0.95 0.94 0.92 0.88 0.80 0.75 0.66
Specificity 0.45 0.68 0.79 0.88 0.92 0.95 0.97

3.2 Project 2–normative data (P2NORM)

We excluded data of insufficient quality using the quality control pipeline developed in

P1QC. The supplementary material for [61] provides respective “discard” rates and

reasoning. The main results from P2NORM were computed on the cleaned data and

comprised descriptive statistics for 43 spatiotemporal parameters from 133 healthy adults

(Table 5). Table 5 further contains mean R2
test values that indicate whether a normalization

regarding confounding factors age, sex, height, and weight is appropriate in this sample.

This value exceeded the chosen threshold of 0.1 for parameters SCSW step length

and step width. Respective regression coefficients for normalization and the standard

deviations for normative residuals of these parameters are provided in Table 6. An

example of a visualization of z-scores (incorporating normalization of SCSW step length

and SCSW step width; cf. equations 1 and 2 and Table 6) for an individual with MS was

given in Röhling et al. [61]. This example was extended for this work to visualize an

exemplary group instead of an individual’s measurements (Figure 4). The boxplots show

the distribution of spatiotemporal parameters for a group of persons with MS from the

Valkinect cohort and, by using z-scores, contextualize it regarding the normative data.

This way, shared movement patterns across multiple dimensions, such as higher overall

sway ranges and sway speed for POCO but lower overall gait and progression speed

for SCSW, SMSW, and SLW compared to healthy controls, are easily recognized in one

comprehensive display.
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Table 5: Descriptive statistics of normative data for 43 spatiotemporal parameters. Adapted from
Table 3 in Röhling et al. [61].

Spatiotemporal parameter Mean SD CoV Q1 Q3 Mean R2
test

Short comfortable speed walk (SCSW); n=126

Gait speed [m/s] 1.16 0.17 0.15 1.06 1.28 −0.05
Step length [cm] 69.35 7.69 0.11 64.85 74.38 0.14
Step width [cm] 10.19 2.72 0.27 8.24 11.77 0.13
Step duration [s] 0.52 0.05 0.10 0.48 0.56 −0.03
Gait cadence [steps/min] 112.07 10.55 0.09 103.97 120.04 −0.04
Arm angular amplitude [°] 26.48 10.81 0.41 18.19 32.45 −0.14
Arm symmetry angle [n.u.] 0.23 0.16 0.72 0.11 0.30 −0.10

Short maximum speed walk (SMSW); n=90

Gait speed [m/s] 1.66 0.18 0.11 1.53 1.77 −0.08

Short line walk (SLW); n=128

Progression speed [m/s] 0.35 0.10 0.28 0.29 0.39 −0.07
Relative progression variability [%] 0.33 0.08 0.24 0.27 0.38 −0.09
Roll sway variability [°] 1.80 0.76 0.42 1.21 2.16 −0.12
Roll sway speed [°/s] 5.58 1.90 0.34 4.37 6.47 −0.14
Line walk cadence [steps/min] 71.78 16.35 0.23 60.50 81.39 −0.07
Arm variability [°] 5.32 3.27 0.62 2.94 6.47 −0.12
Arm speed [°/s] 18.20 7.54 0.41 13.24 20.74 −0.06

Stepping in place (SIP); n=121

Knee amplitude [m] 0.18 0.06 0.31 0.15 0.23 −0.15
Step duration [s] 0.83 0.11 0.13 0.74 0.88 −0.11
Stance duration [s] 0.39 0.15 0.38 0.28 0.47 0.01
Stepping cadence [steps/min] 98.29 16.13 0.16 87.07 111.00 −0.06
Knee symmetry angle [n.u.] 0.06 0.05 0.87 0.02 0.09 −0.14
Arrhythmicity [%] 6.00 0.84 0.14 5.37 6.50 −0.08

Standing up and sitting down (SAS); n=90

Transition time (up) [s] 1.53 0.19 0.12 1.39 1.63 −0.16
Transition time (down) [s] 1.66 0.22 0.13 1.48 1.80 −0.09
AP deflection range (up) [m] 0.37 0.07 0.19 0.32 0.41 −0.11
AP deflection range (down) [m] 0.40 0.08 0.20 0.34 0.46 −0.11

Postural control (POCO); n=113

Pitch sway range (open eyes) [°] 0.91 0.43 0.48 0.59 1.15 −0.13
Roll sway range (open eyes) [°] 0.89 0.37 0.42 0.64 1.09 −0.11
3D sway range (open eyes) [°] 0.92 0.41 0.44 0.67 1.10 −0.14
Pitch sway speed (open eyes) [°/s] 0.14 0.05 0.39 0.10 0.16 −0.10
Roll sway speed (open eyes) [°/s] 0.15 0.06 0.37 0.10 0.18 −0.11
3D sway speed (open eyes) [°/s] 0.22 0.07 0.34 0.17 0.26 −0.10
Pitch sway range (closed eyes) [°] 1.12 0.50 0.45 0.74 1.40 −0.16
Roll sway range (closed eyes) [°] 1.03 0.43 0.41 0.73 1.27 −0.10
3D sway range (closed eyes) [°] 1.09 0.50 0.46 0.71 1.41 −0.15
Pitch sway speed (closed eyes) [°/s] 0.18 0.06 0.36 0.14 0.22 −0.08
Roll sway speed (closed eyes) [°/s] 0.20 0.08 0.39 0.14 0.25 −0.07
3D sway speed (closed eyes) [°/s] 0.30 0.10 0.33 0.21 0.34 −0.06
RR of pitch sway range [n.u.] 1.42 0.75 0.53 0.94 1.75 −0.13
RR of roll sway range [n.u.] 1.29 0.62 0.49 0.84 1.64 −0.13
RR of 3D sway range [n.u.] 1.33 0.69 0.52 0.87 1.65 −0.14
RR of pitch sway speed [n.u.] 1.46 0.62 0.43 1.03 1.77 −0.14
RR of roll sway speed [n.u.] 1.43 0.62 0.43 0.90 1.89 −0.15
RR of 3D sway speed [n.u.] 1.41 0.51 0.36 0.99 1.64 −0.13

Abbreviations: AP: anterior-posterior; CoV: coefficient of variation; Mean R2
test: mean R2 value for

test sets over all folds and repetitions of cross-validation; Q1: 25th percentile; Q3: 75th percentile;
RR: Romberg ratio; SD: standard deviation
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Table 6: Multiple linear regression model coefficients and standard deviation for normative
residuals (sϵ) for two spatiotemporal short comfortable speed walk (SCSW) parameters for
normalization regarding age, sex, height, and weight. Coefficients are provided as β-value (p-
value; 95% confidence interval). Adapted from Röhling et al. [61] Table 4.

SCSW step length SCSW step width

β0 −2.176 (0.882; [−31.187, 26.835]) 6.164 (0.274; [−4.953, 17.281])
βAge −0.073 (0.234; [−0.193, 0.048]) 0.038 (0.107; [−0.008, 0.084])
βSex −0.913 (0.567; [−4.062, 2.236]) 1.301 (<0.05; [0.094, 2.507])
βHeight 0.510 (<0.001; [0.331, 0.689]) −0.020 (0.561; [−0.089, 0.048])
βWeight −0.181 (<0.001; [−0.281, −0.080]) 0.076 (<0.001; [0.038, 0.115])
sϵ 6.005 2.301

Figure 4: Boxplots showing the distribution of 43 z-score normalized spatiotemporal parameters
for a group of 19 persons with multiple sclerosis in the context of normative data. Abbreviations:
AP: anterior-posterior; RR: Romberg ratio. [Own representation: Hanna Marie Röhling].
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4 Discussion

The starting point for this thesis was the previous development and increasing use of

an RGB-depth camera-based motion analysis system, yielding a comparatively large

database of recordings. For these recordings, feasible and efficient quality control

procedures and extended data from healthy subjects for interpretation were needed. This

work addressed these appropriate next steps toward improved applicability of this system

in two projects with respective publications (P1QC: [60], P2NORM: [61]).

4.1 Project 1–quality control (P1QC)

In Röhling et al. [60], we presented a post hoc QC pipeline with which we identified

the nature and frequency of data quality issues for the system and movement protocol

in use. The pipeline proved feasible for users to rate large amounts of Motognosis

Labs recordings efficiently. A significant proportion of the tested data was subject to

quality problems, which we have divided into categories of technical and performance-

related issues. A key finding was the frequency of specific performance-related problems

(e.g., open feet positioning during POCO and POCO-DUAL) that cannot be attributed to

disease-related problems in the execution of the motor task but to non-compliance with

SOPs and inadequate operator control. With 71.5% to 92.3%, rater concordance ranged

from generally acceptable to good.

For the application of the system and the field of instrumental motion analysis, this implies

that the human factor is still present in supposedly objective technologies. Accordingly,

there is a need for iterative checking and improvement of motion analysis technologies

and the entire application workflow, including operator training and SOPs definitions.

Respective results pave the way for improved automation of data selection for analysis.

An example of post hoc automated assessment for one observed performance-related

quality concern–feet positioning during POCO–was introduced in this thesis. Here, a

straightforward thresholding approach on the median ankle landmark distance already

showed good accuracy regarding the detection of open feet. However, it cannot be

assumed that all observed qualitative issues can easily be modeled using the landmark

signals alone. Once developed and tested, automated checks could be included in

the post hoc analyses or the recording software. Arguably, complete quality control
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automation for Motognosis Labs is not required as long as it is not widely rolled out

and is still in the research stage. The more manual approach presented in [60] has the

advantage of promoting a better understanding of the system and fosters the agency of

scientific users. Furthermore, previously unseen quality issues could arise when testing

the system in new contexts, such as in a different environment or with a diseased cohort

with specific motor limitations. Manual screening of recordings, as opposed to automated

quality screening, could facilitate identifying such unknown quality issues. However, a

higher degree of automation is undoubtedly desirable for prospective clinical usage.

The rater concordance shows that not only recording quality but also the rating thereof

is affected by human factors, which is arguably a limitation of this work. We did expect

some inherent ambiguity in the rating process, so we included the “undecided” rating

category. One prominent example of this ambiguity is that qualitative problems do not

affect every spatiotemporal parameter equally. For example, poorly recognized steps

in SCSW are a reason not to trust respective step length estimations, but they do

not necessarily indicate poor gait speed estimations. In this sense, we expect higher

concordance with more informative and nuanced rater instructions. Limitations of this

work further include limited transferability to other instrumental motion analysis systems

regarding the employed visualizations. These can perhaps be adopted for other camera-

based methods but must be adapted for other technological categories. An example

of how such visualizations can be used for inertial measurement units was illustrated

by Kroneberg et al. [71]. They used simple visualizations of step time series to quality

control the correct detection of turns during gait. The transferability of the observed quality

criteria and respective frequencies might also be limited. Technical quality aspects should

be partially transferable to other RGB-depth camera systems but not necessarily to other

technology families. Performance-related quality concerns should be more transferable

when the same or similar motor tasks are employed. However, other performance-related

issues might emerge in differently affected clinical populations or during at-home use of

similar systems as more heterogeneous performance-related and environment-related

deviations are likely.

P1QC directly impacts the work with the system in the research context and will impact

future clinical use. Systematic post hoc quality control leads to cleaner and more

sustainable databases and, thus, to more robust and valid research results. In addition,



28

detected quality problems can prompt the adaptation of the custom algorithms that

generate the spatiotemporal parameters. In cases where this is possible, qualitative

problems can be proactively addressed and not only detected. Furthermore, the quality

control approach can lead to a better understanding of the data as the clinical and

scientific users gain more data literacy and agency instead of working with "black box"

technology. Clear and detailed reports concerning data quality inform experimental

planning (e.g., number of motor task repetitions or avoidance of known noise sources)

and thus make for more efficient use of respective systems. Lastly, we argue that

recording quality and data selection for analysis should be monitored and reported more

consistently in the entire field. This might foster further discussion and cooperation

regarding necessary quality control mechanisms and better standardization between

manufacturers, researchers, and clinical users.

4.2 Project 2–normative data (P2NORM)

In [61], we provided normative data from 133 healthy adults for 43 spatiotemporal

parameters measured for assessments SCSW, SMSW, SLW, SIP, SAS, and POCO

using a Kinect v2 and the Motognosis Labs system. We further proposed an approach

for robust modeling of associations with anthropometric and demographic factors (age,

sex, height, and weight). Using this approach, we provided normalization formulas for

two SCSW parameters. Lastly, we exemplified how to effectively use z-scores to visualize

spatiotemporal parameter values in relation to normative data.

To model associations with age, sex, height, and weight, we opted for a predictive

multivariate cross-validation approach rather than report mere bivariate statistics such

as correlations. We intended to present an approach that–as far as possible with

this limited data set–models generalizable relationships. In our case, this implies that

there are indeed significant simple bivariate correlations with more than the two given

spatiotemporal parameters in our dataset (see Röhling et al. supplemental material [61]).

However, these associations did not lead to a robust model in the context of our approach

and our data. It should be explicitly noted here that the associations were modeled for

healthy controls. The corresponding regression models for diseased populations may

differ considerably.

We provided an in-depth comparison regarding normative values for spatiotemporal
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parameters from the literature in [61]. In summary, few large normative datasets for

instrumental motion analysis outcomes are mentioned in the literature. In the specific

Kinect v2 literature, only the work of Latorre et al. [49] regarding spatiotemporal gait

parameters stood out. Direct comparisons of our specific parameter values with values

from other instrumented motion analysis systems–especially systems not based on RGB-

depth cameras–are often inconclusive because the measurement systems, motor tasks,

measurement protocols, and evaluation algorithms differ considerably. This underlines

the need to establish normative data anew for each technology applied–even if it can be

assumed that normative ranges are similar between systems if applied under comparable

conditions or simultaneously [36, 72].

Despite efforts to obtain a diverse sample, our data set was limited to a group of

comparatively young and fit people in urban Germany. Therefore, transferability to, for

example, people over 60 should not be assumed. This makes this normative dataset

unsuitable for neurological diseases such as PD, as the age of onset is usually later in

life for those affected. The literature also reports cultural and socioeconomic differences

in physical activity patterns [58, 73]. Thus, diversifying the data by expanding the

age range or including relevant socioeconomic factors could lead to new insights in

the context of the proposed regression models. Other limitations include using the z-

score transformation, which is less interpretable in the case of non-normally distributed

spatiotemporal parameters such as the knee symmetry angle for SIP or arm variability

for SLW (cf. Figure 2 in Röhling et al. [61]). In this case, other transformations may be

preferable (e.g., percentiles). However, the use in this thesis and in Röhling et al. [61]

was exemplary and can be easily adapted. In addition, we found statistically significant

differences for 25 spatiotemporal parameters regarding study affiliation (one-way ANOVA;

p < 0.05), which we reported in the supplementary material of [61] but did not analyze in

detail. Such biases are essential to understand measurement variability better and should

be further explored in future studies.

This reference data gives current and future users of this and similar systems an estimate

of what spatiotemporal parameter values to expect from a healthy adult cohort. For clinical

groups of interest, the normative data and z-scores can thus be used to hypothesize

cutoffs for pathology and define abnormal movement patterns, as illustrated using the

example of persons with MS from the Valkinect cohort. Importantly, this can also
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be applied at the individual level and may contribute to the monitoring of individual

symptom progression and definitions of relapse onset or remission.In analyses between

different systems, clinics, or laboratories, normative data can help reveal systematic

differences that may indicate, for example, deviations in respective SOPs. Ultimately,

this work improves the interpretability and further analyzability of outcome parameters for

researchers and potential clinical users.

4.3 Outlook

Next steps in building evidence for this technology are studies of the intraindividual

variability of spatiotemporal parameters to quantify the naturally occurring measurement

noise in healthy controls and individuals with MS. Another sensible step is to test

the clinical applicability of the spatiotemporal parameters in comparison to established

scores or rating systems such as the EDSS or the MSFC. This includes comparing

their respective reliability and sensitivity to change as well as investigating whether and

which spatiotemporal parameters can be used as study endpoints for demonstrating

intervention effects. In this context, the study of the relationship between measured

abnormal movement patterns and patients’ perceived functional limitation or improvement

is of paramount importance. In addition, for clinical use of the parameters in MS, it is

essential to investigate whether they have predictive power for the onset of relapses,

events of disease progression, or treatment success. At this point, it should be reiterated

that the considerations in the context of this work are made for MS but are analogously

transferable to other diseases.

A curse and blessing of instrumental motion analysis technologies is their progressive

evolution. Human motion capture continues to become more accurate as a result of

new camera generations with higher temporal and spatial resolution and more powerful

pose estimation techniques. Furthermore, an increasing number of modern smartphones

are equipped with a depth sensor. On the other hand, systems that have reached a

certain level of evidence and clinical suitability may become technically obsolete if their

algorithms and signal processing cannot be transferred to these advancing technologies.

This already applies here; the production of the Kinect v2, which still enjoys scientific

popularity, was discontinued in 2017. Only systems that are reasonably robust to

such changes can persist in the long term. Thus, for the system used in this work,
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transferability is tested for the new Microsoft sensor generation called Azure Kinect [42].

In our research group, this sensor is currently being explored for self-measurements by

patients in their homes as part of the HOPE-MS study (German Clinical Trials Register

ID: DRKS00027042).

4.4 Conclusion

RGB-depth camera-based instrumental motion analysis promises comprehensive,

objective, and reliable assessment of motor impairments in patients and study subjects.

Respective systems might augment or, to some extent, replace ubiquitous rater-based

scales such as the EDSS as study endpoints and for disease monitoring in clinical

care. Thus, they hold the potential to improve the quality of intervention studies and

the description of disease progression, which can ultimately contribute to better treatment

and prognosis for patients. With this work, we improved the applicability of an RGB-

depth camera-based motion analysis system by developing a systematic quality control

approach and providing normative reference values. These necessary next steps toward

more widespread and efficient use of this technology have since been successfully

implemented in data analysis and interpretation. Overall, the results of this work facilitate

the handling and interpretation of data from this and similar technologies in both research

and future clinical settings.
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Abstract

Background: Instrumented assessment of motor symptoms has emerged as a promising extension to the clinical assessment of
several movement disorders. The use of mobile and inexpensive technologies such as some markerless motion capture technologies
is especially promising for large-scale application but has not transitioned into clinical routine to date. A crucial step on this path
is to implement standardized, clinically applicable tools that identify and control for quality concerns.
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Objective: The main goal of this study comprises the development of a systematic quality control (QC) procedure for data
collected with markerless motion capture technology and its experimental implementation to identify specific quality concerns
and thereby rate the usability of recordings.

Methods: We developed a post hoc QC pipeline that was evaluated using a large set of short motor task recordings of healthy
controls (2010 recordings from 162 subjects) and people with multiple sclerosis (2682 recordings from 187 subjects). For each
of these recordings, 2 raters independently applied the pipeline. They provided overall usability decisions and identified technical
and performance-related quality concerns, which yielded respective proportions of their occurrence as a main result.

Results: The approach developed here has proven user-friendly and applicable on a large scale. Raters’ decisions on recording
usability were concordant in 71.5%-92.3% of cases, depending on the motor task. Furthermore, 39.6%-85.1% of recordings were
concordantly rated as being of satisfactory quality whereas in 5.0%-26.3%, both raters agreed to discard the recording.

Conclusions: We present a QC pipeline that seems feasible and useful for instant quality screening in the clinical setting. Results
confirm the need of QC despite using standard test setups, testing protocols, and operator training for the employed system and
by extension, for other task-based motor assessment technologies. Results of the QC process can be used to clean existing data
sets, optimize quality assurance measures, as well as foster the development of automated QC approaches and therefore improve
the overall reliability of kinematic data sets.

(JMIR Hum Factors 2022;9(2):e26825) doi: 10.2196/26825

KEYWORDS

instrumented motion analysis; markerless motion capture; visual perceptive computing; quality control; quality reporting; gait
analysis

Introduction

With technology rapidly advancing, instrumented motion
analysis (IMA) has emerged as an auspicious tool to augment
clinical decision-making in persons with motor impairments
[1-5]. Applications range from complex gait laboratory
equipment to consumer grade health apps, which quantify what
a person can do in a standardized setting (motor capacity) or
what a person does in everyday life (motor performance) [6].
Regarding motor capacity, marker-based optoelectronic motion
analysis systems serve as the gold standard for other
technologies [7,8] and are, for instance, successfully used in
treatment planning for children with cerebral palsy [9].
However, their high cost and complexity of analysis comprise
significant disadvantages for clinical use. Thus, technologies
that are portable, affordable, and easy to use are more promising
for large-scale application. Respective devices developed for
clinical use include pressure-sensitive walkways, inertial sensors
(“wearables”), and markerless motion capture systems based
on consumer depth cameras [2,10]. In the following, the term
IMA will be used for this more versatile subcategory of motion
analysis systems.

Despite favorable properties, IMA has not been successfully
integrated into wide clinical routine yet [11,12]. Although
regulatory requirements for medical products address safety
and accuracy within the context of use (eg, for application in
specific diseases) [13-15], successful implementation of IMA
further depends on acceptance from patients and clinicians.
Thus, technical usability, interpretability of outcomes, and
quantifiable clinical benefits play a major role in this
development. Standardized and efficient quality control (QC)
procedures, not only during initial development but also during
advancement and application of a system, could facilitate this
technological maturation process. We found such QC aspects
to be largely understudied and underreported.

QC can be applied at three levels: preventive, ad hoc, and post
hoc. Preventive QC is applied before data acquisition.
Manufacturers or developing groups generate initial results on
data quality and publish them in proof-of-concept studies,
including small samples of healthy subjects and target groups
for clinical application [7,8,16,17]. Such studies can identify
major pitfalls and elaborate on correct usage of these systems.
For technology that is already in use with a substantial number
of researchers or clinicians, expert consensus can further yield
guidelines to improve preventive QC [18]. Ad hoc QC is
pertained during measurements. Depending on the system,
operators can decide to discard, reinstruct, and rerecord upon
observing deviations from standard operating procedures (SOPs)
or receiving error messages. Lastly, post hoc QC is employed
at the data analysis stage. One option in this context is univariate
or multivariate outlier analysis based on the kinematic
parameters [19-21]. However, these approaches are highly
data-dependent, inept to uncover systematic errors or “false
normal” parameter values, and do not provide information
regarding underlying causes of data deviation. Additional post
hoc QC measures constitute postprocessing tools and successive
recalculation of kinematic parameters [22,23] as well as
plausibility checks based on raw data [24-26]. To date, such
processes have only been performed on comparatively small
data sets.

In this study, we used data acquired with the emerging
Motognosis Labs system (Motognosis GmbH) that extracts
kinematic parameters from depth camera recordings. In recent
years, this system was extensively used in a research context at
our site and our cooperating sites [24-29] with a standardized
protocol for short motor tasks specifically designed to assess
motor capacities of people with multiple sclerosis (MS) [7,30].
Regarding preventive QC, previously established SOPs for
system operators and patient instructions were used for all data
analyzed herein. With respect to ad hoc QC, the software
provides visual feedback regarding general subject positioning
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in the volume of acquisition and real-time tracking of the whole
body as well as individual body parts. Regarding post hoc QC,
we found previously employed approaches to be either
insufficient, incomplete, or not feasible to reliably examine
large amounts of data [19-21,24-26]. Likewise, review of IMA
literature did not yield any standards or generalizable concepts.
Thus, we propose an approach for systematic post hoc QC,
enabling clinical users to prevent, detect, and eliminate data of
inferior quality.

For the quality concerns considered here, we distinguish
technical and performance issues. Technical issues comprise
system-specific malfunctioning of hardware and software as
well as artifacts specific to the recording technique, such as
signal interference due to subjects’ clothing or the recording
environment in the case of depth sensing technology.
Performance issues can be considered less technology-specific
and can be attributed either to the operator (eg, by providing
faulty instructions) or to noncompliance of the recorded subject.
If the latter is unrelated to the disease, it should lead to trial
exclusion; however, impairment-related inability can be
considered a feature of interest.

The main objectives of this study were to (1) build a post hoc
QC pipeline that is efficient, user-friendly, and adaptable,
enabling clinical users to make standardized and robust decisions
concerning usability of individual recordings; (2) perform QC
for a large number of recordings acquired at different study sites
and thus investigate the types and frequencies of quality issues;
and (3) analyze the feasibility of the approach.

Methods

Data Set
Our study was based on recordings of short, structured motor
tasks captured with the Motognosis Labs system. This system
relies on a consumer depth camera (Microsoft KinectV2,
Microsoft Corporation) and visual perceptive computing. More
precisely, the software development kit associated with the
camera allows for the markerless tracking of 3D time series
from 25 artificial anatomical landmarks for subjects located at
1.5 to 4.5 m from the camera. Custom Motognosis Labs
algorithms employ these time series to extract kinematic
parameters to quantify various aspects of motor capacity.

Data were pooled from 8 monocentric studies at 3 study sites
that used software versions 1.1, 1.4, 2.0, or 2.1 as part of their

protocols. These studies will be referred to using the following
identifiers: ASD, CIS, Valkinect, VIMS, and WALKIMS-DA
(conducted at Charité – Universitätsmedizin Berlin, Berlin,
Germany); Ambos and Oprims (conducted at
Universitätsklinikum Eppendorf, Hamburg, Germany); and
Chiba (conducted at Chiba University, Chiba, Japan). These
studies were approved by the respective institutional review
boards and all subjects provided written informed consent. The
data set comprised recordings from 187 persons with MS and
162 healthy controls. VIMS, Valkinect, and WALKIMS-DA
included both groups, whereas the other studies contributed
subjects from 1 group only. Descriptive statistics include
information on gender, age, anthropometry, and disease severity
in case of people with MS, as measured by the Expanded
Disability Status Scale [31] (Table 1 and study-specific
information in Table S1 in Multimedia Appendix 1).

All subjects performed the Perceptive Assessment in Multiple
Sclerosis (PASS-MS) protocol or parts of it between December
2014 and April 2019. PASS-MS consists of 10 structured motor
tasks: Postural Control (POCO), Postural Control with Dual
Task (POCO-DUAL), Stepping in Place (SIP), Stand Up and
Sit Down (SAS), Short Line Walk (SLW), Short Comfortable
Speed Walk (SCSW), Short Maximum Speed Walk (SMSW),
Pronator Drift Test, Finger-Nose Test, and Finger Tapping. The
latter 3 tasks were excluded from this study, as evaluation
algorithms were still in an explorative stage at the time, yielding
premature claims regarding data quality. A description of the
remaining tasks except POCO-DUAL can be found in Otte et
al [7,30]. POCO-DUAL equates to POCO with the addition of
a cognitive task (Serial 3’s subtraction). System operators had
received in-depth training on how to use Motognosis Labs
according to written SOPs. System SOPs included specifications
of the setup, subject instructions, and rejection guidelines for
recordings affected by performance and technical issues.
According to the protocol, SAS, SLW, SCSW, and SMSW are
recorded thrice consecutively, whereas POCO, POCO-DUAL,
and SIP are recorded once. Deviations from SOPs occurred
when single tasks or task repetitions were omitted, or operators
decided to produce additional recordings (all of which should
prompt an operator comment that is stored along with raw data
of each recording). Such deviations explain incongruencies in
the numbers of recordings per task (Table 1 and study-specific
information in Table S2 in Multimedia Appendix 1), as all
available recordings were included in this post hoc QC initiative.

JMIR Hum Factors 2022 | vol. 9 | iss. 2 | e26825 | p. 3https://humanfactors.jmir.org/2022/2/e26825
(page number not for citation purposes)

Röhling et alJMIR HUMAN FACTORS

XSL•FO
RenderX



Table 1. Demographic information about study subjects with missing data indicated as percentages and number of recordings per Perceptive Assessment
in Multiple Sclerosis task subdivided by disease status.

PwMSbHCaAllSubject characteristics

Demographics

187 (51.9; 0)162 (51.2; 1.2)349 (51.6; 0.6)N (% female; % —c)

45.3 (10.8; 0)38.3 (12.8; 1.2)42.0 (12.2; 0.6)Age (years), mean (SD; % —)

174.1 (8.8; 1.6)172.0 (9.6; 3.7)173.1 (9.2; 2.6)Height (cm), mean (SD; % —)

75.0 (14.6; 8.0)70.4 (14.6; 8.0)72.9 (14.8; 8.0)Weight (kg), mean (SD; % —)

24.7 (4.3; 8.0)23.8 (3.9; 8.0)24.3 (4.1; 8.0)BMI (kg/m2), mean (SD; % —)

3.0 (0.0-6.5; 2.7)N/AN/AeEDSSd median (range; % —)

# of recordings per PASS-MSf task

268220104692All

189165354POCOg

15788245POCO-DUALh

5544891043SCSWi

546361907SMSWj

529428957SLWk

160131291SIPl

547348895SASm

aHC: healthy controls.
bPwMS: people with multiple sclerosis.
c—: not available.
dEDSS: Expanded Disability Status Scale.
eN/A: not applicable.
fPASS-MS: Perceptive Assessment in Multiple Sclerosis.
gPOCO: Postural Control.
hPOCO-DUAL: Postural Control with Dual Task.
iSCSW: Short Comfortable Speed Walk.
jSMSW: Short Maximum Speed Walk.
kSLW: Short Line Walk.
lSIP: Stepping in Place.
mSAS: Stand Up and Sit Down.

QC Pipeline Development
The QC pipeline development comprised 2 key components.
First, we implemented informative visualizations enabling raters
to classify the quality of raw data from PASS-MS recordings
and hence implicitly assess the reliability of associated kinematic
parameters. Second, we developed an efficient rating strategy
for large numbers of recordings.

For the creation of informative visualizations, videos from raw
depth streams were generated to enable review of each recorded
task. The depth information was further used to produce a
condensed representation of each recording in the form of 3
images that are hereafter referred to as motion profiles. They
comprise images of depth data averaged over time, over the
vertical direction, and over the horizontal direction. As
PASS-MS tasks are short and highly standardized, we assumed

that major protocol deviations and technical issues would be
easily identifiable from motion profiles. To allow for the
detection of more subtle quality issues, we also illustrated
characteristic signals that are used to calculate kinematic
parameters with Motognosis Labs. Visualizations were generated
using Python (version 3.7.3) and the matplotlib package (version
3.1.0). A stratified random sample from 15 people with MS and
14 healthy controls was used to test and update visualizations
and determine the main rating criteria per task.

We then built a graphical user interface (GUI), which includes
a rating window containing visualizations, an overall usability
decision checkbox (keep, discard, undecided), and task-specific
multiselect checkboxes containing the main rating criteria.
Furthermore, on-demand viewers for depth videos and operator
comments were integrated. The GUI was programmed in Python
(version 3.7.3) using the tkinter package (version 8.6). We
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prepared detailed rating manuals as well as oral instructions
(~45 minutes) to familiarize raters with the GUI. The entire data
set (see Table 1) was subjected to ratings, such that each
recording was investigated by 2 independent raters. In this step,
8 raters evaluated a total of 4692 recordings from 162 healthy
controls and 187 people with MS. Raters comprised medical
students, clinician scientists or researchers in other professions,
and trained neurologists, all from Charité, Berlin. Among them,
6 raters had operated Motognosis Labs before, whereas 2 were
new to the system. Moreover, 2 raters had been actively involved
in the development of the QC pipeline, whereas 6 were new to
any systematic QC of the data. After in-depth instructions,
ratings were conducted individually by the raters at a
self-selected speed.

Statistical Analysis
Statistical analyses included the extraction of frequencies for
overall usability decisions, rater concordance and discordance,
and selected rating criteria. The former 2 were illustrated as

confusion matrices. Furthermore, the median rating duration
per recording was extracted from the GUI log files. Figures
were produced with Python (version 3.7.3) using the matplotlib
package (version 3.1.0).

Results

QC Pipeline Usage and Feasibility
After generating visualizations, the implemented GUI can be
opened to progressively rate motor task recordings. Intermediate
results can be saved in an underlying Excel file, such that raters
can flexibly organize their workload. An example of the rating
window including respective visualizations, checkboxes, and
buttons is shown in Figure 1.

Oral feedback from raters upon completion confirmed that the
GUI and the QC pipeline behind it were easy to use and
effective. The median rating duration per recording amounted
to 6.3 seconds.
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Figure 1. Rating window screenshots for an exemplary Stepping in Place recording. Upper left: motion profiles generated by summation of frontally
recorded depth data over time, along horizontal and vertical directions and signal curves characteristic of the task (here: knee amplitudes, arm sway,
and overall subject positioning over time). Upper right: checkboxes for usability decisions and main criteria including an option for free-text comments.
Lower left: on-demand depth video viewer. Lower right: on-demand operator comment viewer.

Rater Concordance and Usability of Recordings
Concerning keep, discard, or undecided decisions, raters
concurred on more than 70% of recordings for each task (POCO:
71.5%, POCO-DUAL: 72.7%, SCSW: 92.3%, SMSW: 79.5%,
SLW: 74.6%, SIP: 85.6%, and SAS: 90.4%) (Figure 2).
Consequently, we observed discordance for up to 28.5% of

recordings, which points to task-specific difficulties in using
the rating criteria. However, such discordance was mostly due
to 1 rater’s undecided decision. Instances of strictly opposing
usability, meaning that 1 rater voted keep and the other discard,
were uncommon (between 0.8% and 4.9%), except for SMSW
(10.5%).
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Figure 2. Synopsis of usability decisions by 2 raters per recording per Perceptive Assessment in Multiple Sclerosis task. Rater agreement on usability
decisions keep, discard, and undecided are framed. POCO: Postural Control; POCO-DUAL: Postural Control with Dual Task; SAS: Stand Up and Sit
Down; SCSW: Short Comfortable Speed Walk; SIP: Stepping in Place; SLW: short line walk; SMSW: Short Maximum Speed Walk.

A task-wise visualization of rater decisions regarding usability
of recordings is depicted in Figure 2. Unobjectionable usability,
defined as a unanimous keep decision, was obtained for 85.1%
of SCSW, more than 70% of SMSW and SIP (73.3% and 70.8%,
respectively), more than 60% for SAS and SLW (62.9% and
60.5%, respectively) and less than or close to half for POCO
and POCO-DUAL recordings (50.3% and 39.6%, respectively).
The highest rates for unanimous discard decisions were observed
for SAS (26.3%), followed by POCO-DUAL (25.3%), and
POCO and SIP (13.0% and 13.1%, respectively). The respective
rates were low for gait tasks including SLW, SCSW, and SMSW
(9.4%, 6.5%, and 5.0%, respectively). Rater concordance as
well as proportions of unanimous keep and discard decisions
subdivided for all studies can be found in Table S3 in
Multimedia Appendix 1.

Main Quality Concerns
The main rating criteria compiled during QC pipeline
development are listed below, with the respective tasks indicated
in parentheses.

• Disturbances, technical issue: Signal disturbances including
noisy background, floor, and technical issues with tracking
clothing (all tasks)

• Duration, technical issue: Recording duration substantially
deviating from 40 seconds, namely a deviation of more than
1 second (POCO, POCO-DUAL, and SIP)

• Step Detection, technical issue: Incorrect Step Detection
(SCSW, SMSW, SIP, and SLW)

• Up/Down Phase, technical issue: Incomplete or incorrectly
detected standing-up or sitting-down phase (SAS)

• Arms, performance issue: Arms not hanging loosely down
at the beginning of the recording (SAS)

• Backward, performance issue: Subject walking backward
by more than 50 cm or exhibiting a deliberate backward
correction (SIP)

• Feet, performance issue: Deviation from closed feet
position, namely if the feet are in an open or a V-shaped
position (POCO and POCO-DUAL)

• Forward, performance issue: Subject moving forward by
more than 50 cm (SIP)

• Movements, performance issue: Task-unassociated
movements such as scratching or gesturing (POCO,
POCO-DUAL, SLW, SIP, and SAS)

• Sidestep, performance issue: 1 or multiple sidesteps (POCO,
POCO-DUAL, and SLW)

• Support, performance issue: Subject needing support from
a walking stick, walls, rollator, or the like (all tasks)

• Other, technical or performance issue: Other/unlisted
criterion (all tasks)

Respective selection frequencies (multiple selections were
possible) are illustrated in Figure 3. Possible disease-associated
differences in data quality can be estimated from the 3 studies
featuring healthy controls and people with MS, namely VIMS,
Valkinect, and WALKIMS-DA.
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Figure 3. Selection frequencies of technical and performance-related rating criteria for all subjects as well as split by group for the 3 studies featuring
healthy controls and people with multiple sclerosis. HC: healthy controls; POCO: Postural Control; POCO-DUAL: Postural Control with Dual Task;
PwMS: people with multiple sclerosis; SAS: Stand Up and Sit Down; SCSW: Short Comfortable Speed Walk; SIP: Stepping in Place; SLW: Short Line
Walk; SMSW: Short Maximum Speed Walk.

The most prevalent quality concerns comprised Feet,
Disturbances, and Other for POCO and additionally Movements
for POCO-DUAL. An example of a POCO recording that was
discarded due to incorrect Feet positioning as well as
unassociated Movements, namely the most frequent
performance-associated quality concerns, can be found in Figure
4. For POCO-DUAL, supposedly task-unassociated movements
were tagged with Movements and Other by the raters. However,

these hand and arm movements often seemed to result from
cognitive efforts made during mental arithmetic. In this case,
no clear distinction between task-associated and
task-unassociated movements can be made. Regarding technical
quality concerns, raters’ comments suggested that recordings
tagged with Disturbances or Other most often exhibited noisy
or corrupt leg, feet, or floor signals.

JMIR Hum Factors 2022 | vol. 9 | iss. 2 | e26825 | p. 8https://humanfactors.jmir.org/2022/2/e26825
(page number not for citation purposes)

Röhling et alJMIR HUMAN FACTORS

XSL•FO
RenderX



Figure 4. Left: quality control pipeline visualization screenshot of a high-quality Postural Control recording. Right: quality control pipeline visualization
screenshot of a Postural Control recording featuring 2 frequently observed performance-related quality concerns, incorrect Feet positioning (according
to standard operating procedures, the forefoot and heel should be closed) and unassociated hand Movements around second 22.

Prevalent quality concerns for gait tasks were Disturbances and
Step Detection in SLW and— less frequently—SCSW and
SMSW. A cross-dependency between the 2 criteria was often
observed when unsuitable clothing led to noisy signals (noted
as Disturbances by the raters), which in turn leads to issues

concerning Step Detection. An example of this issue for an
SCSW recording is depicted in Figure 5. Other Disturbances
related to floor reflections were not associated with Step
Detection issues as often.

Figure 5. Left: quality control pipeline visualization screenshot of a high-quality short comfortable speed walk recording. Right: quality control pipeline
visualization screenshot of a Short Comfortable Speed Walk recording featuring a frequently observed technical quality concern, unsuitable clothing
causing Disturbances and thus Step Detection issues. Abbreviation temp. represents temporal and indicates the detected stance phases used for temporal
rather than spatial parameters.

Excessive forward locomotion (Forward) was the most frequent
quality concern for SIP recordings. However, from our
experience, the chosen threshold of 50 cm forward motion is
rather conservative and distances up to 80-100 cm might be
tolerable.

The most prominent problem for SAS was incorrect arm
positioning (Arms) at the beginning of a recording. Such
incorrect arm positioning was not easily discernible from the
motion profile alone and raters usually consulted the provided
depth videos to confirm this specific quality concern.
Furthermore, a mistake in signal plot generation for
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SAS—affecting 3.8% of SAS plots—led to an overestimation
of recordings affected by the Up/Down Phase criterion. Figure
3 provides raw ratings, and the represented numbers hence
reflect this overestimation.

Disparities between people with MS and healthy controls for
performance-related quality aspects were apparent for the
generally less often observed Support (all tasks) and Sidestep
(POCO, POCO-DUAL, and SLW) issues. This can be
interpreted as a disease-related difficulty or the inability to
follow task instructions. Results regarding incorrect Feet
positioning during POCO and POCO-DUAL did not allow for
the interpretation of this criterion as a mainly disease-related
one. This criterion as well as Forward and Backward motion
during SIP and the incorrect starting position of the Arms during
SAS were present in both groups, though slightly more frequent
in people with MS. Frequencies of the observed quality criteria
further subdivided for all studies can be found in Table S4 in
Multimedia Appendix 1.

Discussion

This study presents a post hoc QC pipeline for clinical users of
an IMA system. Its core consists of an interface, which enables
an intuitive usability decision for individual recordings based
on an extendable set of quality criteria. The pipeline proved
highly feasible for users—including raters less acquainted with
the IMA system itself—and yielded acceptable rater
concordance. Its application in a large set of recordings from
healthy controls and people with MS demonstrated the utility
and necessity of post hoc QC to ensure reliable data and avoid
misinterpretation of IMA results. It further identified points for
improvement in preventive and ad hoc QC. To our knowledge,
this is the first study to systematically investigate QC aspects
and propose a clinically applicable QC pipeline for visual
perceptive computing.

In the following, we will discuss 2 main aspects of our results.
First, the rater concordance, which indicates the feasibility and
limitations of our QC approach, and second, the usability
decisions themselves, which indicate the quality and limitations
of our data.

Rater concordance between 71.5% to 92.3% was generally
acceptable. Only for SMSW, strictly opposed keep/discard
decisions occurred to a relevant extent (10.5%). This was mostly
caused by 1 rater’s discard decisions because no full gait cycle
was captured. Due to the limited recording range of the depth
camera, this is a frequent observation for SMSW and cannot be
directly attributed to technical or performance issues. Generally,
discordance may reflect ambiguity regarding rating criteria,
difficulties in the evaluation of individual cases, or rater
oversight. Probably only 1 rater, most likely the operator of the
system, will apply post hoc QC in future clinical applications.
Thus, possible reasons for rater discordance should be carefully
addressed in further development of the QC pipeline, for
instance, by specifying the rating criteria, as well as conducting
more targeted rater trainings. However, as with other clinical
judgments, QC decisions will remain informed, but ultimately
intuitive decisions.

Usability decisions were interpreted as follows. Recordings
receiving a unanimous keep or discard decision from the
corresponding 2 raters were regarded as having assessable and
satisfactory or unsatisfactory quality, respectively. Remaining
recordings with discordant or undecided usability decisions
were classified as needing further investigation, thus being less
assessable and with potentially objectionable quality. The
proportion of unanimous keep decisions varied substantially
between tasks (39.6%-85.1%). In this respect, the SCSW task
had the most favorable results with the highest rater concordance
(92.3%) and the highest proportion of keep decisions among
all tasks. At the other end of the spectrum were POCO and
POCO-DUAL with rather moderate rater concordance (71.5%
and 72.7%, respectively) and comparatively less unanimous
keep decisions (50.3% and 39.6%, respectively). This partial
ambiguity supports our inclusion of undecided as an option to
avoid forced decisions as well as free text comments to enable
marking of unexpected quality concerns.

Regarding technical quality issues, the short walk tasks SCSW,
SMSW, and SLW suffered the most from unfavorable properties
of clothing that hampered infrared light reflection [32]. POCO
and POCO-DUAL often exhibited noisy and cutoff feet signals,
attributable to a limited differentiation of feet and ground leading
to unstable landmark estimations, as reported earlier [7].
Countermeasures include general recommendations toward
subjects’ clothing and flooring at the measurement site.

We expected performance-related quality concerns to be
associated with physical limitations and thus the disease status
to some extent. This seemed to apply to rating criteria Sidestep
and Support. However, the more commonly observed
performance-related issues (eg, Feet and Movements for POCO
and POCO-DUAL, Arms for SAS, and Forward for SIP)
occurred in healthy subjects as well. This implies that mistakes
in task instruction or ad hoc QC occurred to a relevant degree,
despite detailed SOPs and operator training. Even higher
proportions of performance-related issues may be expected with
wider clinical use or in unsupervised telemedical applications.
Thus, further IMA development should aim to implement
technical measures for automated real-time detection of
performance issues and respective response plans (eg,
reinstruction and repetition). Performance-related quality
concerns may specifically apply to the assessment of motor
capacity in a lab setting or in task-based assessments as opposed
to the recently proposed IMA systems for continuous assessment
of motor performance [4,5,15].

In the literature, we found generally sparse reporting of QC
aspects for IMA. This includes reporting of unobjectionable
data quality, which we assume to be unlikely. As an indicator
of technical IMA system performance, some authors reported
exclusion of IMA recordings due to seemingly blatant technical
failures, with rates ranging from a few corrupted examples to
recordings of 48.8% of the participants [21,22,33,34].
Unfortunately, respective proportions could not be provided for
our data set, as we did not track recordings discarded ad hoc.
Regarding data exclusion in postprocessing, outlier detection
was the most frequent approach. For univariate outlier detection
on normative gait and balance parameters in children, exclusion
rates of 2.5% and 6% were reported [20,35]. A multivariate
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outlier detection approach on kinematic gait data with successive
expert evaluation identified erroneous Step Detection in 3.4%
of the subjects [21], whereas a custom post hoc QC procedure
applied on SMSW data obtained using Motognosis Labs led to
exclusion of 6.7% of the recordings [24]. We consider the QC
approach presented here to be rather conservative when
compared to outlier detection. It is highly possible that
significant quality concerns identified at the raw data level
would not be detected by outlier analysis at the kinematic
parameter level. For example, failure to stand with closed feet
during POCO most likely results in reduced postural sway,
which would be mistaken for higher postural stability in the
respective subject at the kinematic outcome level.

Lastly, reporting of manual postprocessing, for example, using
the GAITRite footfall labeling tool, is often limited to whether
it was employed at all [22,36], and respective proportions are
only seldom addressed [37].

Beyond IMA, the need for QC has been recognized for other
technical procedures. In the context of MS research, magnetic
resonance imaging and optical coherence tomography serve as
examples for which recommendations have been made regarding
standardized protocols, QC, and harmonious reporting thereof
[38-42]. Therefore, we propose standardized reporting of IMA
results to include information regarding the following: (1)
number of recording failures during data acquisition; (2) type
and amount of applied postprocessing, both technical and
manual; (3) fraction of recordings undergoing QC; (4) fraction
of recordings ultimately excluded from analysis (mention of
respective causes would be highly valuable for future users)

Limitations of this study may include the decision to have each
recording viewed by 2 out of 8 available raters; this limits formal
interrater reliability analyses and does not assess individual

rater bias. However, we did not aim to establish interrater
reliability but focused on obtaining generalizable estimates of
rater concordance and determining the feasibility of the approach
with a reasonably diverse set of raters. Further, other possible
factors influencing usability of the recordings were not
specifically analyzed. These include effect of the study site,
population, system operators, as well as subjects’ age, height,
and weight. However, we consider QC results generalizable to
and representative of routine applications because of the large
size and heterogeneity of our sample. Differences in hardware
were not tracked in this study (Kinect 2 sensors and laptops).
Likewise, differences in software versions were disregarded
because they were considered not substantial. However,
recommendations regarding hardware and software may
prospectively play a role in preventive QC in large-scale
applications.

Regarding transferability, the visualizations employed here were
specific to Motognosis Labs. However, appropriate
visualizations have been implemented for other IMA systems
as well. Examples include footprint depictions from
pressure-sensitive walkways or acceleration illustrations from
inertial sensors. Thus, we expect the general QC approach
presented in this study to be transferable to other IMA systems.
As for the observed quality concerns, technical issues are mostly
or partially transferable to other depth camera– or visual
sensor–based systems, respectively. The performance issues
observed here are even more generalizable and thus highly
informative for all researchers and clinicians using lab- or
task-based IMA. The results of this study clearly support the
need for QC of IMA data to ensure objectivity and enhance
acceptance by clinical users and regulators alike. As a first step,
this approach can advance consensus on the QC standards of
different IMA systems and ultimately improve data quality.
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GUI: graphical user interface
IMA: instrumented motion analysis
MS: multiple sclerosis
PASS-MS: Perceptive Assessment in Multiple Sclerosis (ie, name of short motor assessment battery recorded
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POCO: Postural Control
POCO-DUAL: Postural Control with Dual Task
QC: quality control
SAS: Stand Up and Sit Down
SCSW: Short Comfortable Speed Walk
SIP: Stepping in Place
SLW: Short Line Walk
SMSW: Short Maximum Speed Walk
SOP: standard operating procedure
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Abstract: Background: Instrumental motion analysis constitutes a promising development in the
assessment of motor function in clinical populations affected by movement disorders. To foster
implementation and facilitate interpretation of respective outcomes, we aimed to establish normative
data of healthy subjects for a markerless RGB-Depth camera-based motion analysis system and to
illustrate their use. Methods: We recorded 133 healthy adults (56% female) aged 20 to 60 years
with an RGB-Depth camera-based motion analysis system. Forty-three spatiotemporal parameters
were extracted from six short, standardized motor tasks—including three gait tasks, stepping in
place, standing-up and sitting down, and a postural control task. Associations with confounding
factors, height, weight, age, and sex were modelled using a predictive linear regression approach. A
z-score normalization approach was provided to improve usability of the data. Results: We reported
descriptive statistics for each spatiotemporal parameter (mean, standard deviation, coefficient of
variation, quartiles). Robust confounding associations emerged for step length and step width in
comfortable speed gait only. Accessible normative data usage was lastly exemplified with recordings
from one randomly selected individual with multiple sclerosis. Conclusion: We provided normative
data for an RGB depth camera-based motion analysis system covering broad aspects of motor capacity.

Keywords: instrumental motion analysis; normative data; RGB-Depth camera; Microsoft Kinect v2;
gait analysis; tandem gait; postural control; stepping in place; standing up and sitting down

1. Introduction

Identification and monitoring of motor impairments are key elements in the manage-
ment of diseases impacting motor function. The instrumental task-based assessment of
motor capacity provides an alternative to observation and assessment by clinical experts
and analog standardized tests, such as the Timed Up and Go Test [1] or Timed 25-Foot
Walk [2]. Due to anticipated time and cost efficiency as well as outcome objectivity, instru-
mental motion analysis has drawn increasing attention in recent years. Telemedical use of
such technologies from patients’ homes can further protect vulnerable groups and provide
relief for overburdened healthcare systems.
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Interpretability of outcomes from instrumental motion analysis is, however, still
limited. Heterogeneous usage of different technologies, movement protocols, extracted pa-
rameters and respective algorithms rarely allows for robust between-system compatibility.
Reliable normative data for the system in use thus comprises a crucial prerequisite for the
interpretation of outcomes. Respective values can help to define meaningful thresholds for
assumed pathology, expected variability, as well as dependencies on anthropometric and
demographic features. Normative datasets can further aid in improving harmonization by
revealing systematic biases between system outputs.

Large normative datasets of gait parameters ranging from gait speed to arm swing
asymmetry continue to be of high interest to the scientific community and are comparatively
prevalent [3–7]. Few larger databases exist for other motor tasks, such as tandem gait
and postural control [8–10]. However, most reported parameter values from healthy
controls stem from small case-control or proof-of-concept studies and comprise around
30 healthy subjects or less [11–21]. For this study, a motion analysis system based on
the use of a single RGB-Depth camera (Microsoft Kinect v2) was employed, which has
been evaluated for accuracy and reliability [11,22] and has been used in various clinical
populations [5,23,24]. Previous related works from our groups include outcome parameters
from healthy controls [23,25–29], but these do not represent a robust normative database
by themselves due to likewise limited sample sizes, restriction to single motor tasks, or
general study design.

In this study, we thus aimed to provide elaborate normative values for spatiotemporal
parameters of an RGB-Depth camera-based motion analysis system for six different motor
tasks. We further assessed associations of the parameters with confounding demographic
and anthropometric factors and illustrated usage of the normative data.

2. Materials and Methods
2.1. Participants

One-hundred-thirty-three participants were pooled from control groups of two multi-
ple sclerosis studies (acronyms: Valkinect, VIMS) and one autism spectrum disorder study
(acronym ASD) at Charité—Universitätsmedizin Berlin, Berlin, Germany. Participants
were recruited via social media posts, institutional databases, intranet, and by approaching
accompanying persons from respective case cohorts.

Exclusion criteria were psychiatric disorders, chronic neurological diseases, or acute
motor impairments. Adapted from norm data specifications for another commercially
available system [30,31], we used five persons per sex and age decade as a lower limit
in sample size planning. We focused on adult, decidedly non-geriatric, individuals and
thus included participants within the ages of 20 and 60, representing an adequate control
group for common neuroimmunological conditions. All included participants received
instrumental motion analysis and had complete information regarding age, sex, height,
and weight (Table 1, visualized in Supplementary Figure S1).

Table 1. Anthropometric and demographic subject characteristics overall and subdivided by study.
Abbreviations: SD: standard deviation.

Study Sample Size
(% Female)

Age Mean (SD;
Range) [Years]

Height Mean (SD;
Range) [cm]

Weight Mean (SD;
Range) [kg]

BMI Mean (SD; Range)
[kg/m2]

All 133 (56%) 36.83 (10.44; 20–60) 172.89 (9.34; 153–194) 71.80 (13.86; 46–115) 23.94 (3.79; 17.75–34.33)
ASD 41 (51%) 33.88 (7.99; 20–49) 174.17 (9.65; 155–194) 73.85 (16.06; 46–115) 24.24 (4.41; 17.75–33.90)
VIMS 57 (63%) 34.14 (9.06; 20–60) 172.16 (9.66; 153–193) 70.86 (13.69; 47–110) 23.83 (3.79; 18.29–34.33)
Valkinect 35 (51%) 44.69 (11.23; 22–60) 172.60 (8.52; 157–190) 70.91 (11.24; 53–97) 23.76 (3.01; 18.93–32.04)

Data from one randomly selected Valkinect participant with multiple sclerosis was used to exemplify usage of the
normative data (male, 53 years, 183 cm, 73 kg).
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2.2. Instrumental Motion Analysis

Labs (Motognosis GmbH, Berlin, Germany; versions 1.4.0.2, 1.4.0.3, 2.0.1.0, 2.1.2.0), and
a markerless motion analysis system based on a single RGB-Depth consumer camera (Mi-
crosoft Kinect v2; Microsoft cooperation, Redmond, WA, USA), were used to record short
movement tasks from participants wearing standard clothing and comfortable footwear
in a 1.5–4.5 m distance from the sensor (Figure 1). The Kinect v2 sensor was positioned
at a height of 1.4 m and tilted in a pitch direction of roughly −8◦ to −9◦. Scientific staff
operated the system following written standard operating procedures for technical setup
and task instruction.
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Figure 1. Technical set-up of the Motognosis Labs motion analysis system with a single Microsoft
Kinect v2 sensor with exemplary sketch of a gait task. The illustration was included by courtesy of
Motognosis GmbH.

We included data for six tasks: short comfortable speed walk (SCSW), short maximum
speed walk (SMSW; VIMS and Valkinect only as this task was not included in the ASD
measurement protocol), tandem gait referred to as short line walk (SLW), stepping in place
(SIP), standing up and sitting down (SAS; VIMS and Valkinect only as this task was not
included in the ASD measurement protocol), and postural control (POCO). Within each
session SCSW, SMSW, SLW, and SAS were recorded three consecutive times, SIP and POCO
were recorded once.

The Microsoft Kinect SDK (version 2.0.14) enables extraction of 25 three-dimensional
time series of body landmarks from these recordings, which were used to extract spatiotem-
poral parameters with custom algorithms. Here, we extracted 43 parameters (Table 2),
most of which have been previously introduced [22,23,25–28]. Others were carefully vet-
ted in terms of clinical interest and statistical properties when tested in an independent
dataset [22].

Table 2. Motor task descriptions, information on respectively extracted movement signals and
spatiotemporal parameters as well as parameter names. Abbreviations: AP: anterior-posterior;
n.u.: unitless; RR: Romberg ratio.

Task Description Movement Signal and Spatiotemporal Parameter Description Parameter Names

Short comfortable speed walk (SCSW)

The participant stands just outside the
sensor range and walks towards the
sensor at comfortable speed in
response to an auditory cue

Mean speed derived from pelvic center landmark movement in walk direction Gait speed [m/s]
Mean step length, mean step width, and mean step duration over all (left and
right) detected steps derived from left and right ankle landmark movement in
walk direction

Step length [cm]; Step width [cm];
Step duration [s]

Mean gait cadence extrapolated from detected steps and recording length Gait cadence [steps/min]
Mean angular arm swing amplitude (averaged over left and right averages) and
absolute symmetry angle [32] (between left and right mean angular arm swing
amplitude) derived from left and right wrist landmarks relative to manubrium
landmark movement in anterior-posterior direction

Arm angular amplitude [◦]; Arm
symmetry angle [n.u.]
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Table 2. Cont.

Task Description Movement Signal and Spatiotemporal Parameter Description Parameter Names

Short maximum speed walk (SMSW)

The participant stands just outside the
sensor range and walks towards the
sensor at maximum speed in response
to an auditory cue

Mean speed derived from pelvic center landmark movement in walk direction Gait speed [m/s]

Short line walk (SLW)

The participant stands just outside the
sensor area and, in response to an
auditory cue, walks towards the
sensor in tandem gait, i.e., walks on an
imaginary line with the heels touching
the toes at each step

Mean and coefficient of variation of progression speed derived from pelvic
center landmark movement in walk direction

Progression speed [◦/s]; Relative
progression variability [%]

Angular standard deviation and speed of upper body sway starting from pelvic
center landmark

Roll sway variability [◦]; Roll sway
speed [◦/s]

Line walk cadence derived from recording length and peaks of left and right
ankle landmark movement relative to respective hip landmarks Line walk cadence [steps/min]

Angular standard deviation and speed of arm movement angle (averaged over
left and right) derived from elbow landmarks relative to respective shoulder
landmarks movement in 3D

Arm variability [◦]; Arm speed [◦/s]

Stepping in place (SIP)

The participant walks on the spot at
comfortable pace for 40 s

Mean knee amplitude, mean step duration, and mean stance duration (averaged
over left and right averages) derived from knee landmark movement in
anterior-posterior direction

Knee amplitude [m]; Step duration [s];
Stance duration [s]

Mean stepping cadence extrapolated from detected steps and recording length Stepping cadence [steps/min]
Absolute symmetry angle [32] (between left and right mean knee amplitudes) Knee symmetry angle [n.u.]
Mean coefficient of variation of left and right “stride times” measured as time
between knee amplitude peaks (i.e., slightly adapted from [23]) Arrhythmicity [%]

Standing up and sitting down (SAS)

The participant sits on an armless
chair, arms hanging to the side, stands
up after an auditory cue and sits down
again after a second auditory cue

Speed of manubrium landmark movement in vertical and
anterior-posterior direction

Transition time (up) [s]; Transition
time (down) [s]

Range of manubrium landmark movement in anterior-posterior direction AP deflection range (up) [m]; AP
deflection range (down) [m]

Postural control (POCO)

The participant stands with closed feet
and open eyes facing the sensor for
20 s; after an auditory cue subject
closes eyes and remains in this
position for another 20 s

Angular range and mean speed of the body sway vector between mean ankle
landmark position and pelvic center landmark during eyes closed and eyes open
measurement conditions in pitch, roll, and 3D direction

Pitch/Roll/3D sway range (open eyes)
[◦]; Pitch/Roll/3D sway speed (open
eyes) [◦/s]; Pitch/Roll/3D sway range
(closed eyes) [◦]; Pitch/Roll/3D sway
speed (closed eyes) [◦/s]

Romberg ratio of sway range and sway speed in pitch, roll, and 3D
direction—i.e., value for closed eyes condition divided by respective value for
open eyes condition

RR of pitch/roll/3D sway range [n.u.];
RR of pitch/roll/3D sway speed [n.u.]

2.3. Data Analysis

Recordings with gross performance deviations (e.g., wrong feet position for POCO)
or technical errors were identified using a previously described post hoc quality control
pipeline [33] and discarded. Statistical analyses were performed, and visualizations were
generated using Python 3.7.3 (packages pandas 1.3.5, numpy 1.21.6, statsmodels 0.13.2,
seaborn 0.11.2, matplotlib 3.1.0, scipy 1.7.3, scikit-learn 0.21.2). For SCSW, SMSW, SLW
and SAS, the extracted spatiotemporal parameters were averaged per participant over all
remaining repetitions. Data are presented as group mean, standard deviation, coefficient of
variation, and quartiles and distributions are visualized.

To model and address the influence of potential confounders in a generalizable way,
we fitted ordinary least squares regression models—parameter ~ age + sex + height + weight +
study—where sex was dummy-coded (female: 0; male: 1), and the study was used as an
effect-coded control variable. Models were first fitted in a repeated (100 times) five-fold
cross-validation procedure, using the R2-value (R2

test) between true and predicted param-
eter values of respective test sets at each fold, and repetition as a performance indicator.
Predicted parameter values were calculated using derived β-values from respective training
sets, omitting the study to simulate assessing model performance on external data. For an
averaged R2

test > 0.1, models were assumed to describe generalizable associations. For these
models β-values, corresponding 95% confidence intervals and p-values for the independent
variables were extracted after fitting them on the full dataset.

For supplementary information, we extracted bivariate statistics (Pearson’s correlation
coefficient, independent samples t-test, one-way ANOVA) regarding associations between
spatiotemporal parameters and potential confounders.
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To better interpret individual behavior in comparison to normative data and across
different parameter scales, we applied z-score normalization. The z-score of a value refers
to its relative distance to the mean measured in numbers of standard deviations:

zraw, i =
xi − x

s
, (1)

with xi being the raw value for a given parameter and subject i, and x and s being the raw
normative data’s sample mean and standard deviation. For spatiotemporal parameters with
previously detected confounding associations with age, sex, height and weight, respectively
standardized residuals of the linear models were favored over zraw:

zres,i =
εi
sε

, (2)

with sε being the standard deviation of the normative residuals and

εi = xi − (β0 + βAgexi,Age + βSexxi,Sex + βHeightxi,Height + βWeightxi,Weight

)
. (3)

3. Results
3.1. Normative Values

Distributions and statistics presented in this section were produced using only data
that passed quality control, performed by one trained researcher. Discard rates (3.2–15.0%
depending on task) and reasons for exclusion are provided in supplementary Table S1. The
normative values are distributed highly variable (Figure 2): SCSW gait speed, for instance,
is approximately normally distributed, while other parameters such as SLW roll sway
speed are highly skewed or feature outliers. Respective descriptive statistics are provided
in Table 3.

Table 3. Descriptive statistics of spatiotemporal parameters and generalizability estimates regarding
linear models describing associations with confounders age, sex, height, and weight. Abbreviations:
AP: anterior-posterior; CV: cross-validation; CoV: coefficient of variation; n.u.: unitless; Q1: 25th
percentile; Q3: 75th percentile; RR: Romberg ratio; SD: standard deviation.

Spatiotemporal Parameter Mean SD CoV Q1 Q3
Mean R2

test for
Repeated (100×)
5-Fold CV

Short comfortable speed walk (SCSW); n = 126

Gait speed [m/s] 1.16 0.17 0.15 1.06 1.28 −0.05
Step length [cm] 69.35 7.69 0.11 64.85 74.38 0.14
Step width [cm] 10.19 2.72 0.27 8.24 11.77 0.13
Step duration [s] 0.52 0.05 0.10 0.48 0.56 −0.03
Gait cadence [steps/min] 112.07 10.55 0.09 103.97 120.04 −0.04
Arm angular amplitude [◦] 26.48 10.81 0.41 18.19 32.45 −0.14
Arm symmetry angle [n.u.] 0.23 0.16 0.72 0.11 0.30 −0.10

Short maximum speed walk (SMSW); n = 90

Gait speed [m/s] 1.66 0.18 0.11 1.53 1.77 −0.08

Short line walk (SLW); n = 128

Progression speed [m/s] 0.35 0.10 0.28 0.29 0.39 −0.07
Relative progression variability [%] 0.33 0.08 0.24 0.27 0.38 −0.09
Roll sway variability [◦] 1.80 0.76 0.42 1.21 2.16 −0.12
Roll sway speed [◦/s] 5.58 1.90 0.34 4.37 6.47 −0.14
Line walk cadence [steps/min] 71.78 16.35 0.23 60.50 81.39 −0.07
Arm variability [◦] 5.32 3.27 0.62 2.94 6.47 −0.12
Arm speed [◦/s] 18.20 7.54 0.41 13.24 20.74 −0.06
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Table 3. Cont.

Spatiotemporal Parameter Mean SD CoV Q1 Q3
Mean R2

test for
Repeated (100×)
5-Fold CV

Stepping in place (SIP); n = 121

Knee amplitude [m] 0.18 0.06 0.31 0.15 0.23 −0.15
Step duration [s] 0.83 0.11 0.13 0.74 0.88 −0.11
Stance duration [s] 0.39 0.15 0.38 0.28 0.47 0.01
Stepping cadence [steps/min] 98.29 16.13 0.16 87.07 111.00 −0.06
Knee symmetry angle [n.u.] 0.06 0.05 0.87 0.02 0.09 −0.14
Arrhythmicity [%] 6.00 0.84 0.14 5.37 6.50 −0.08

Standing up and sitting down (SAS); n = 90

Transition time (up) [s] 1.53 0.19 0.12 1.39 1.63 −0.16
Transition time (down) [s] 1.66 0.22 0.13 1.48 1.80 −0.09
AP deflection range (up) [m] 0.37 0.07 0.19 0.32 0.41 −0.11
AP deflection range (down) [m] 0.40 0.08 0.20 0.34 0.46 −0.11

Postural control (POCO); n = 113

Pitch sway range (open eyes) [◦] 0.91 0.43 0.48 0.59 1.15 −0.13
Roll sway range (open eyes) [◦] 0.89 0.37 0.42 0.64 1.09 −0.11
3D sway range (open eyes) [◦] 0.92 0.41 0.44 0.67 1.10 −0.14
Pitch sway speed (open eyes) [◦/s] 0.14 0.05 0.39 0.10 0.16 −0.10
Roll sway speed (open eyes) [◦/s] 0.15 0.06 0.37 0.10 0.18 −0.11
3D sway speed (open eyes) [◦/s] 0.22 0.07 0.34 0.17 0.26 −0.10
Pitch sway range (closed eyes) [◦] 1.12 0.50 0.45 0.74 1.40 −0.16
Roll sway range (closed eyes) [◦] 1.03 0.43 0.41 0.73 1.27 −0.10
3D sway range (closed eyes) [◦] 1.09 0.50 0.46 0.71 1.41 −0.15
Pitch sway speed (closed eyes) [◦/s] 0.18 0.06 0.36 0.14 0.22 −0.08
Roll sway speed (closed eyes) [◦/s] 0.20 0.08 0.39 0.14 0.25 −0.07
3D sway speed (closed eyes) [◦/s] 0.30 0.10 0.33 0.21 0.34 −0.06
RR of pitch sway range [n.u.] 1.42 0.75 0.53 0.94 1.75 −0.13
RR of roll sway range [n.u.] 1.29 0.62 0.49 0.84 1.64 −0.13
RR of 3D sway range [n.u.] 1.33 0.69 0.52 0.87 1.65 −0.14
RR of pitch sway speed [n.u.] 1.46 0.62 0.43 1.03 1.77 −0.14
RR of roll sway speed [n.u.] 1.43 0.62 0.43 0.90 1.89 −0.15
RR of 3D sway speed [n.u.] 1.41 0.51 0.36 0.99 1.64 −0.13

3.2. Associations with Age, Sex, Height, and Weight

Negative and low mean R2
test values (Table 3) indicated that most fitted models did not

generalize well when presented with the new data and modelled confounding associations
were not sustainable for this dataset. R2

test values greater than 0.1 were only observed for
SCSW step length and step width. For these parameters, linear models fitted using the full
dataset showed an association of increased step length in taller, lighter individuals and
increased step width in heavier, male individuals (Table 4). We thus suggest normalizing
new datapoints for these spatiotemporal parameters using the provided models (Table 4)
and (3). Resulting residuals should then be compared to residuals of the normative data
using (2). Bivariate statistics regarding associations between spatiotemporal factors age,
sex, height, weight, and study are provided in Supplementary Table S2.
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and sitting down; SCSW: short comfortable speed walk; SIP: stepping in place; SLW: short line walk;
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Table 4. Linear model coefficients describing associations with confounders age, sex, height, and
weight. Abbreviations: CI: confidence interval; SCSW: short comfortable speed walk; sε: standard
deviation of residuals.

Spatiotemporal
Parameter β0

β0 p-Value;
95% CI βAge

βAge p-Value;
95% CI βSex

βSex p-Value;
95% CI βHeight

βHeight p-Value;
95% CI βWeight

βWeight p-Value;
95% CI sε

SCSW step
length [cm] −2.176 0.882;

[−31.187, 26.835] −0.073 0.234;
[−0.193, 0.048] −0.913 0.567;

[−4.062, 2.236] 0.510 <0.001;
[0.331, 0.689] −0.181 <0.001;

[−0.281, −0.080] 6.005

SCSW step
width [cm] 6.164 0.274;

[−4.953, 17.281] 0.038 0.107;
[−0.008, 0.084] 1.301 <0.05;

[0.094, 2.507] −0.020 0.561;
[−0.089, 0.048] 0.076 <0.001;

[0.038, 0.115] 2.301

3.3. Usage of Normative Values

Usage of the provided normative data was exemplified for data from a person with multiple
sclerosis (Figure 3). The illustration of z-score transformed values allows for straightforward
overview of individual patterns, and cross-checking whether findings from the literature apply
for the individual at hand. For instance, the person in Figure 3 shows above (healthy) average
POCO pitch/roll/3D sway speed with closed eyes and below average SMSW gait speed, which
has been likewise found at group level in pilot studies using Motognosis Labs and the Kinect v1
(healthy participant overlap with Valkinect and VIMS: n = 9) [26,27].
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For SCSW step length and step width, we suggest using zres over zraw in visualizations
and further analysis. In Figure 3, both are depicted to illustrate effects of regression-based
normalization for identified confounding associations. The patient shows below aver-
age SCSW step length and step width when looking at raw data (54.86 cm and 7.65 cm;
zraw = −1.88 and −0.93). These values deviate further from the healthy mean when control-
ling for age, sex, height, and weight (zres = −2.70 and −1.60).

4. Discussion

In this study, we provided normative data for 43 spatiotemporal parameters of six
short motor tasks recorded from 20- to 60-year-old healthy adults using an inexpensive and
easy-to-use RGB depth camera system. The necessity for regression-based normalization
regarding demographic and anthropometric confounders was found mostly negligible
for this sample except for two gait parameters. Further use of the raw and normalized
normative parameters was exemplified by means of z-score visualizations.

The presented values will aid interpretation of outcomes for clinical users and re-
searchers employing instrumental motion analysis—especially RGB-Depth camera systems.
At group level, the results can serve for hypothesis generation about populations of interest,
even without a sufficiently matched control group. Observed patterns may define univari-
ate or multivariate “motor biomarkers” indicating pathology. For longitudinal studies,
cross-sectional normative data is arguably less relevant, as subjects provide their own
baseline data. However, it can still aid overall interpretation of intraindividual changes.
For instance, changes of a similar magnitude might be clinically more meaningful if they
exceed certain normative thresholds.

4.1. Short Comfortable and Maximum Speed Walk (SCSW and SMSW)

Gait speed measurement highly depends on start protocol (static or dynamic), path
length, and speed instructions. Our means (SCSW: 1.16 m/s; SMSW: 1.66 m/s) are con-
sistent with values for adults under 60 recorded with a stopwatch (4 m gait, static start;
SCSW: 1.11–1.21 m/s; SMSW: 1.57–1.88 m/s) [3] and a Kinect v2 study by Latorre et al.
(measurements starting at 6 m from the sensor; SCSW: 1.16–1.19 m/s) [5]. However, SMSW
gait speed in Motognosis Labs studies with the Kinect v1 (healthy participant overlap with
Valkinect and VIMS: n = 9) substantially exceeded our results (1.83 and 1.85 m/s) [27,28],
likely because of a more dynamic starting protocol. The limited sensor range of the Kinect
v2 only allows for few SMSW gait cycles to be recorded. Thus, parameters other than speed
lack robustness [33] and were not reported here.

Latorre et al. further report comparable SCSW cadence (107.43–112.37 steps/min ver-
sus our 112.07 steps/min), but divergent step lengths and widths (62–67 cm and 11–12 cm
versus our 69.35 cm and 10.19 cm) [5], which may result from a differing set-up and
algorithmic step definition.

In line with our findings, mean arm angular amplitudes of 25.0–26.2◦ were measured
during 4 km/h treadmill walking with an ultrasound motion capture system [7]. During
1-min walking at preferred speed in adults younger than 60, Mirelman et al. measured con-
siderably higher arm swing amplitudes (42.0–53.4◦) but lower asymmetry (corresponding
to an arm symmetry angle of 0.164–0.202) [6]. A comparison with other asymmetry data
from the literature was mostly inconclusive because of different metrics, e.g., in [7].

Despite clinically well-established effects, age did not emerge as a relevant confounder
for gait parameters—possibly because of our comparatively young cohort. This is consistent
with findings that gait speed does not change significantly under the age of 60 [3,4]. We
expected to find associations with height, as respective gait parameter normalization
approaches have long been proposed and comprise for example scaling as a function of leg
length [34] or body height [35]. The extent to which size differences explain sex or weight
differences and vice versa cannot be reliably determined using our statistical approach.
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4.2. Short Line Walk (SLW)

Test performance of SLW can reveal subtle balance deficits and depends highly on
instructions and individual implementation strategies. Conventionally reported SLW
parameters include time-to-complete (stopwatch measure) and number of missteps (obser-
vational measure) [36], only few studies regarding instrumental motion analysis of SLW
are available.

Velázquez-Pérez et al. derived trunk, lumbar and arm ranges of motion using wear-
ables, which are kindred parameters to SLW arm or roll sway variability and speed, but
not directly comparable [37]. Grinberg et al. focused on lower limb gait parameters during
3 m tandem gait at self-selected speed and found a substantially higher line walk cadence
compared to our results (84.5 steps/min vs. 71.78 steps/min) [21]. Ganz et al., on the other
hand, provide rather synoptic parameters derived from a single wearable that describe
postural corrections, overall movement, as well as regularity and complexity. They reported
composite factors of these parameters to be associated with age, sex, and BMI in older
adults [8]. However, time-to-complete was reported not to be associated with age, sex, or
BMI [36], which is more in line with our results that yielded no robust model describing
associations between spatiotemporal parameters and respective confounders.

4.3. Stepping in Place (SIP)

The observed mean stepping cadence of 98.29 steps/min compared well to the
99 steps/min reported by Garcia et al. Interestingly, they found similar cadences for
SIP and SCSW in their samples [14], while SIP stepping cadence was substantially lower
than SCSW gait cadence here. Other authors implicitly report higher mean cadence
(104.35–112.15 steps/min; extrapolated from reported cycle durations) and lower arrhyth-
micity (2.63–3.89) [13,15]. Substantially higher arrhythmicity (slightly adapted algorithm)
was measured in persons with Parkinson’s disease using Motognosis Labs [23], yielding
the parameter as a potential gait variability substitute. In [23] further parameters, such as
longest stance time, were extracted to assess festination or freezing of gait behavior. This
was omitted here, as no such behavior was expected in healthy adults.

4.4. Standing up and Sitting down (SAS)

Although sit-to-stand transitions are widely used in clinical ratings or timed assess-
ments of various disorders (e.g., as part of the Timed Up and Go Test), heterogeneous
transition phase definitions, phase segmentation procedures and outcome parameters
obstruct direct comparisons to our data.

For instance, Weiss et al. [17,18] reported comparatively short mean durations for Sit-
to-Stand (0.5 s and 0.56 s) and Stand-to-Sit transitions (0.7 s and 0.85 s) during performance
of the Timed Up and Go Test.

However, they took the extrema of accelerometer-derived anterior-posterior acceler-
ation for phase segmentation, which systematically underestimates these phases, when
considering respective formal definitions [19]. Definitions from van Lummel et al. are more
consistent with our approach and yielded slightly lower values (1.45 s and 1.47 s) during
five times Sit-To-Stand at self-selected speed in young adults [16].

While we found low inter-individual variability and negligible confounding for transi-
tion times in our sample, differences in transition times were previously described between
age-groups 25 and younger and 70 and older [16,20]. Furthermore, possible cultural bias
has been observed for this task [25].

4.5. Postural Control (POCO)

Direct comparison to data from the literature is futile due to major differences in
measurement technologies (e.g., force plates, pressure plates, and accelerometers), motor
tasks (e.g., reaching, single-legged, and open stance tasks) and outcome measures (e.g., path
lengths and displacement of center of pressure) [9–12].
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Previously published values from healthy adults using Motognosis Labs with a Mi-
crosoft Kinect v1 (healthy participant overlap with Valkinect and VIMS: n = 9) feature
slightly lower sway speed values and slightly higher respective Romberg ratios. They
propose using the 95th percentile of 3D sway speed (closed eyes) in healthy controls as a
threshold for abnormal sway in persons with multiple sclerosis, which amounts to 0.50◦/s
and compares well to our data (95th percentile = 0.47◦/s; not explicitly reported here). Con-
sistent with our findings, they reported no associations with age, sex, height, or BMI [26].
In studies with a broader age range, increased center of pressure sway paths in balance
tasks were, however, reported to be associated with older age and male sex [9,10].

4.6. Z-Score Transformation and Visualization

Comprehensible data visualization greatly increases interpretability and usability
of outcomes for experienced and technology-naïve users alike. Z-score transformations
are well established considering, e.g., neuropsychological testing [38], and relate to visu-
alizations used in the usual lab report format, which is highly familiar to clinical users.
In instrumental motion analysis, such transformations and visualizations are used less
frequently. Notably, however, z-scores are visualized alongside metric value and per-
centile representations for the commercially available Mobility Lab v2 system (APDM Inc.,
Portland, OR, USA) [30].

4.7. Limitations

Our sample is biased demographically towards a German, Caucasian, and urban
population, which potentially influences motor behavior [25,39,40]. However, such biases
can be counteracted by comparing our results with databases from other study sites, social
or cultural groups [25].

Expanding the data set may generally lead to more stable estimates of normative
values and associations with confounders. For expansion, more demographically and an-
thropometrically extreme data should be used where appropriate, e.g., from older subjects
when investigating neurodegenerative diseases such as Parkinson’s disease.

In terms of analysis, we restricted our modelling of confounding effects to linear
associations. Further, advantages of z-scores are limited for non-normally distributed
parameters, e.g., direct conversion into percentiles is not possible. They still serve the
general purpose of normalization, but, depending on use case, other transformations could
be explored. Lastly, the participant used for exemplification of the z-score visualizations
was chosen at random and does not necessarily show representative motor behavior.

5. Conclusions

The reported normative values fill existing gaps in the literature of motion capture
for various tasks assessing motor capacity as well as generally RGB-Depth camera-based
motion analysis. The results will inform clinicians and researchers on how to effectively
use and interpret the outcomes of this technology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph192416989/s1, Figure S1. Histograms depicting distributions
of age, height, weight, and BMI subdivided by sex. A: Distributions from all studies for motor tasks
postural control (POCO), stepping in place (SIP), short comfortable speed walk (SCSW), and short line
walk (SLW). B: Distributions from studies Valkinect and VIMS for motor tasks short maximum speed
walk (SMSW), standing up and sitting down (SAS); Table S1. Overview of discard rates and exclusion
reasons for recordings from studies ASD, Valkinect, and VIMS. Abbreviations: POCO: postural
control; rec/s: recording/s; RR: Romberg ratio; SAS: standing up and sitting down; SCSW: short
comfortable speed walk; SIP: stepping in place; SLW: short line walk; SMSW: short maximum speed
walk; Table S2. Associations of spatiotemporal parameters with factors age, height, weight, sex and
study, assessed with Pearson’s correlation coefficients (r), independent samples t-tests or one-way
ANOVA respectively. Statistics with respective p-values smaller than 0.05 are highlighted in bold
face. Abbreviations: AP: anterior-posterior; n.u.: unitless; RR: Romberg ratio.
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