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ABSTRACT

A model for the motion of slender vortex filaments is extended to include the effect of gravity. The model, initially introduced by Callegari
and Ting [“Motion of a curved vortex filament with decaying vortical core and axial velocity,” SIAM J. Appl. Math. 35, 148–175 (1978)], is
based on a matched asymptotic expansion in which the outer solution, given by the Biot–Savart law, is matched with the inner solution
derived from the Navier–Stokes equations. Building on recent work by Harikrishnan et al. [“On the motion of hairpin filaments in the
atmospheric boundary layer,” Phys. Fluids 35, 076603 (2023)], the Boussinesq approximation is applied such that the density variations only
enter in the gravity term. However, unlike Harikrishnan et al. [“On the motion of hairpin filaments in the atmospheric boundary layer,”
Phys. Fluids 35, 076603 (2023)], the density variation enters at a lower order in the asymptotic expansion and, thus, has a more significant
impact on the self-induced velocity of the vortex filament. In this regime, which corresponds to the regime studied by Chang and Smith
[“The motion of a buoyant vortex filament,” J. Fluid Mech. 857, R1 (2018)], the effect of gravity is given by an alteration of the core constant,
which couples the motion of the filament to the motion within the vortical core, in addition to a change in the compatibility conditions (evo-
lution equations), which determine the leading order azimuthal and tangential velocity fields in the vortex core. The results are used to
explain certain properties of buoyant vortex rings, as well as qualitatively explore the impact of gravity on tornado-type atmospheric vortices.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0205028

I. INTRODUCTION

Vortices are a fundamental part of fluid dynamics, from small-
scale turbulence to large-scale phenomena such as hurricanes. The
study of vortices and vortex motion is not only of theoretical interest
but of extreme practical importance, as vortices like hurricanes and
tornadoes result in untold amounts of damages every year. Tornadoes,
in particular, are difficult to both predict and study due to their gener-
ally sudden appearance and relatively short life span; tornadoes usually
last between a few minutes to an hour depending on the tornado
strength. Hence, there are considerable gaps in our knowledge of the
formation and general motion of vortices of this type; for a relatively
recent review on the current understanding of tornadogenesis within
supercell thunderstorms, we refer the reader to Markowski and
Richardson4 or Davies-Jones.5 Despite the difficulties, considerable
progress has been made in constructing analytical models for describ-
ing specific aspects of a tornado motion; see Lewellen6 or Varaksin7

for a review. Yih8 developed a simple model based on the Bernoulli
equation and used it to demonstrate certain properties of tornado-like

vortices such as funnel broadening and an increase in the azimuthal
velocity as one approaches the ground. Shtern et al.9 used a generalized
model of the planar vortex sink to explain bulge formation in torna-
does, where the tornado funnel suddenly expands at some height
above ground. Loper10 developed a model for turbulent boundary layer
flows beneath a vortex, in an attempt to gain a better understanding of
the mean flow near the ground in tornado-like vortices. The work of
Loper complements earlier work by Oruba et al.,11 where the authors
looked at eye formation in tropical cyclones.

We wish to approach the problem of tornado-type atmospheric
vortices from a slightly different angle, employing the tools developed
for the modeling of slender vortex filaments. While tropical cyclones
can have a diameter of several hundred kilometers, tornadoes are
much narrower; typically on the order of 100 m, which, given that they
can have a height of several kilometers, puts them firmly in the cate-
gory of slender vortex filaments.

The main difficulty in the modeling of such vortices is that the
Biot–Savart law, which gives the induced velocity at any point outside
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of the filament, diverges when the point of evaluation is on the fila-
ment itself. To overcome this difficulty, several approaches have been
proposed, of which the local induction approximation (LIA) is perhaps
the most well-known (e.g., Batchelor12). Another well-known
approach is the cutoff method, in which the singularity is artificially
removed by introducing a lower integration limit.13 Neither of these
methods capture the dynamics of the vortex core, resulting in poten-
tially large modeling and predictive errors.14 In an attempt to over-
come these shortcomings, Moore and Saffman15 developed an
asymptotic method in which the velocity of the flow inside the vortical
core is found using a force balance method, which in turn is combined
with the velocity of the outer flow, given by the desingularized Biot–
Savart law. We note, however, that these authors pre-assumed a spatial
structure of vorticity in the vortex core, which is not consistent with
the Euler and Navier–Stokes equations. This was noted by Callegari
and Ting,1 who proposed a more systematic approach based on a
matched asymptotic expansion, in which the velocity field in the core
is derived from the Navier–Stokes equations. In continuation of this,
Klein and Knio14 succeeded in reproducing the results of Callegari and
Ting,1 by deriving the core velocity from the vorticity equation and
Biot–Savart law directly. It should be noted that in all of the mentioned
approaches, the fluid is assumed to be incompressible, and gravita-
tional forces are excluded. For tornadoes, the Mach number can gener-
ally be assumed to be small,6,7 opening up the possibility of using
different approximation methods for low Mach number flows, such as
the Boussinesq, anelastic, and pseudo-incompressible approximations,
to simplify the problem. See, e.g., Zeytounian,16 Ogura and Phillips,17

and Durran18 for a description of the Boussinesq, anelastic, and
pseudo-incompressible approximations, respectively.

Since tornadoes can have a height of several kilometers, gravity is
expected to have a considerable influence on the motion within the
vortical core. Unfortunately, there are a limited amount of theoretical
studies on buoyant vortices. To the best of our knowledge, the only
attempts at explicitly including the force of gravity in the equations of
motion was presented in Chang and Smith3 and more recently in
Harikrishnan et al.2 Chang and Smith3 used the force balance method
of Moore and Saffman to demonstrate certain properties of buoyant
vortex rings, which had already been experimentally confirmed by
Turner.19 In contrast, Harikrishnan et al.2 extended the asymptotic
approach of Callegari and Ting1 to include the force of gravity, but
only for very weak gravitational forces; in the regime studied by
Harikrishnan et al.,2 gravity only appears at the second order in the
asymptotic expansion of the Navier–Stokes equation and consequently
has very little impact on the self-induced motion of the vortical core.
Harikrishnan et al.2 showed that for closed filaments as well as for fila-
ments that are symmetric in some streamwise direction, the effect of
gravity disappears entirely when gravity only enters at the second
order. We wish to build on the work done by Harikrishnan et al.2 and
further extend the analysis of Callegari and Ting1 to include the force
of gravity at the first order. This corresponds to a regime in which
gravity makes a more significant contribution to the self-induced
motion of the filament and is equivalent to the regime discussed by
Chang and Smith.3 We will refrain from doing the fully compressible
analysis, as was done by Ting et al.,20 but rather focus on the
Boussinesq regime as was also done by Harikrishnan et al.,2 in which
the density variations only enter in the gravity term. For an in-depth
discussion of the Boussinesq approximation and associated recent

advances in the study of buoyancy-driven flows and hydrodynamic
convection, the reader is referred to, e.g., Andreev et al.,21 while for a
discussion of the Boussinesq approximation in the context of vortex
dynamics, we refer to Saffman22 (Sec. 5.8) and Wu et al.23 (Sec. 12.1.2).
We also neglect compressibility effects in the background density and
pressure stratifications in this first approach to the problem. We
emphasize that for vortices with significant vertical span, such as tor-
nadoes, the Boussinesq approximation will not hold, and one should
instead apply the anelastic or pseudo-incompressible approximations
to accurately capture the change in pressure with increasing height.
However, we still consider this the appropriate starting point, as
already at this level of complexity, new and interesting phenomena are
expected to make an appearance. Our primary objective is thus to
reconstruct the results of Chang and Smith3 using a different method
for estimating the flow inside the vortical core. We will restrict our
analysis to finding the leading order filament velocity and refer to
Fukumoto and Miyazaki24 and Margerit and Brancher25 for how to
obtain the first order analysis. Our secondary objective is to shed some
further light on the effect of gravity on the motion of slender vortex fil-
aments, particularly as it relates to vortices of a more destructive
nature, noting that further analysis with different approximation
methods will be necessary for an accurate description of vortices of
this type.

II. OUTER SOLUTION

The vorticity field Xðx; tÞ of the flow to be considered here can
be composed additively from the vorticity of the background flow and
that of the concentrated vortex itself. By the Biot–Savart law, the veloc-
ity vðx; tÞ at any point is then composed of velocityQ1, due to the self-
induced motion of the vortex filament, and velocity Q2, given by the
background flow field. The velocity Q1 at any point x not too close to
the vortex core, is given by the line Biot–Savart law for an infinitely
concentrated vortex,

Q1ðx; tÞ ¼ � C
4p

ð
L

x � Xðs0; tÞð Þ � ŝðs0; tÞ ds0
jx � Xðs0; tÞj3 ; (1)

where L is the vortex centerline, and Xðs; tÞ is the position vector for
any point on L , which is parametrized by the arc length parameter s.
Here, x denotes a point outside of the filament core, C is the total, con-
stant circulation of the filament, and ŝ the unit tangent vector.

For the problem at hand, a curvilinear coordinate system is the
natural choice. The position vector of any point x in curvilinear coor-
dinates, can be associated withXðs; tÞ by the equation

xðx; y; z; tÞ ¼ Xðs; tÞ þ rr̂ðu; s; tÞ: (2)

Here, r denotes the distance from the point x to the filament X, and r̂
is the radial unit vector for curvilinear coordinates. See Fig. 1 for an
illustration of the coordinate system. Note that in this frame, we define
a relative velocityV as v ¼ _Xðs; tÞ þ V.

A careful expansion of the integrand in the Biot–Savart formula
leads to an expression for the behavior of Q1 as the radial distance to
the filament goes to zero,

Q1ðr ! 0;u; s; tÞ ¼ C
2pr

ĥ þ Cjðs; tÞ
4p

ln
1
r

� �� �
b̂

þ Cjðs; tÞ
4p

ðcosuÞĥ þQf þ O r ln rð Þ; (3)
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where jðs; tÞ is the local curvature, ĥ is the unit circumferential vector,
and b̂ is the unit binormal vector, associated with the point s on the
vortex filament Xðs; tÞ. The vector Qf is the part of the Biot–Savart
integral, which has a limit as r ! 0. For the details on the expansion,
including the exact representation of Qf , we refer the reader to Ting,
Klein, and Knio20 (see in particular, Secs. 3.1.2 and 3.3.1). Equation (3)
cannot yield the velocity on the vortex filament itself as the expression
on the right diverges as r ! 0. It means that the replacement of the
slender vortex by its infinitely concentrated vortex outer limit results
in a singular perturbation problem: that is to say, to get a finite velocity
for the slender vortex centerline, we need to account for the small but
finite thickness of the slender vortex. To get this finite velocity, we will
employ a matched asymptotic expansion, closely following Callegari
and Ting,1 where the outer solution limit near the centerline, as given
in (3), is to be matched with the far-field limit of an inner solution
derived from the Navier–Stokes equations with suitable boundary con-
ditions on the centerline. The inner solution takes into account the
finite thickness and the associated vorticity core structure, which was
neglected in the outer solution. We will include the force of gravity,
but employ the Boussinesq approximation so that the density varia-
tions only enter in the gravitational term. For a rigorous derivation of
the Boussinesq equations from the Navier–Stokes equations using
asymptotic analysis, the reader is referred to Zeytounian.26

III. INNER SOLUTION

In this section, we start by presenting the equations of motion for
a Boussinesq fluid in filament attached (curvilinear) coordinates. This
is then followed by the derivation of an equation of motion for the fila-
ment through the method of matched asymptotic expansion. The ini-
tial steps of the derivation are the same as in Callegari and Ting1 and
Harikrishnan et al.2 and are included for the sake of completeness.
Before proceeding, we note the following: let us say, that the core
radius d of the filament is of order l and the other length scales (e.g.,
the radius of curvature) are of the same order L. As we are considering
slender filaments, the ratio l/L is a small dimensionless parameter e. In
the following, we write dimensionless equations based on the following
characteristic dimensional quantities L, C, T0, and q0, respectively, for
length, circulation, temperature, and density. From here on, unless it is
explicitly stated otherwise, all quantities and fields are dimensionless.

A. The inner equations

The Navier–Stokes equation in curvilinear coordinates is

€X þ w
h3

� r
h3

r̂t � ŝ
� �

_X s þ dV
dt

¼ �rP
q

þ 1
Re

1
qh3

1
h3

_X s

� �
s

þ 1
q
DV

 !
� 1
Fr2

ẑ; (4)

where w is the tangential component of the relative velocity vector V;
and Re and Fr, respectively, denote the Reynolds number and Froude
number; and�ẑ is the unit gravity vector; g ¼ �gẑ is the dimensional
gravity vector, with g denoting the gravitational acceleration. The
material derivative of V in curvilinear coordinates is given by

dV
dt

¼ @V
@t

þ V� r
@r̂
@t

� �
� rV; (5)

while the tangential stretching parameter, h3, is

h3 ¼ r 1� jr cosu½ � ¼ r 1� jr cosðhþ h0Þ½ �; (6)

where r ¼ jXsj. Here, u ¼ hþ h0ðs; tÞ gives the angle between the
normal and radial unit vectors n̂ and r̂, where h0 is included to
account for the torsion T o and, thus, makes the coordinate system
orthogonal. It is easier to first derive the form of the differential opera-
tors in the ðr; h; s; tÞ coordinates, where the variables are orthogonal,
and then obtain the form in ðr;u; s; tÞ coordinates through the follow-
ing transformation:

@

@s

� �
h
¼ @

@s

� �
u
� rT o

@

@u
: (7)

In regard to the asymptotic expansion, it is simpler to use the
ðr;u; s; tÞ coordinates, as it avoids having to expand expressions of the
form sinu and cosu where it is difficult to determine the higher order
terms. A complete description of the coordinate system including the
derivation of (4), excluding gravitational forces, is given in Callegari
and Ting1 (see, in particular, Appendixes A and B), while the expan-
sion in terms of the ðr;u; s; tÞ coordinates is discussed in
Margerit.27,28 In the Boussinesq approximation, the density variation
only enters in the buoyancy term, qĝ, and can be neglected in the rest
of the equation. This yields

€X þ w
h3

� r
h3

r̂t � ŝ
� �

_X s þ dV
dt

 !

¼ �rP þ 1
Re

1
h3

1
h3

_X s

� �
s

þ DV

 !
� q
Fr2

ẑ; (8)

where the temperature- and pressure-dependent density, q, has been
replaced by a constant density, except in the buoyancy term.

At this stage, we note that for the case of a tornado-type vortex,
one would, at the very least, need to allow the background density to
depend on the vertical coordinate z in accordance with the anelastic
approximation. This would, however, introduce further complications;
thus, we leave this analysis for later work.

The buoyancy term can be written as

1þ q0; (9)

where q0 ¼ q� 1 represents the density variation with respect to a ref-
erence density and is assumed to be exclusively temperature and not
pressure dependent.

FIG. 1. A sketch of the coordinate system.
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This can be further rewritten by noting that the variation in den-
sity will be exclusively due to temperature variations, and not pressure
variations, yielding

q� 1 ¼ �bT0ðT � 1Þ; (10)

where T0 denotes the reference temperature, and b is the coefficient of
thermal expansion, which in the case of an ideal gas, and is equal to
1=T0.

We will analyze the system in the regime

Re�1=2 ¼ �=Cð Þ1=2 ¼ ��1=2e; (11)

where e is a small, dimensionless parameter and �� ¼ Oð1Þ as e ! 0.
Additionally, we make the assumption that

Fr2 ¼ C2=ðgL3Þ ¼ �k
2
e2; (12)

where �k ¼ Oð1Þ, and thus assume that the acceleration due to gravity
is constant, which is a reasonable assumption for the lower atmo-
sphere.29 Given this distinguished limit, (8) can be written as

€X þ w
h3

� r
h3

r̂t � ŝ
� �

_X s þ dV
dt

 !

¼ �rP þ e2��
1
h3

1
h3

_X s

� �
s

þ DV

 !
� e�2aðT � 1Þẑ; (13)

where we have defined the dimensionless number

a ¼ �ðbT0Þ=�k2; (14)

and integrated the constant buoyancy term �ẑ=ðe2�k2Þ in �rP, as it
derives from a potential. In the Boussinesq approximation, the conti-
nuity equation simplifies to its in-compressible form, which in curvi-
linear coordinates ðr; h; s; tÞ is given by

rh3uð Þr þ h3vð Þh þ r ws þ _X s � ŝ
� �h i

¼ 0; (15)

and which in ðr;u; s; tÞ coordinates become

rh3uð Þr þ h3vð Þu þ r ws � rT owu þ _X s � ŝ
� �h i

¼ 0; (16)

where we note that (16) corresponds to Eq. (2) in Margerit.27

Since we have introduced a density variation to the flow, we also
need an energy equation to close the system. The energy equation for a
Boussinesq fluid in curvilinear coordinates, given in terms of the tem-
perature T, is

@T
@t

þ V� r
@r̂
@t

� �
� rT ¼ e2�gDT; (17)

where �g ¼ ��=�l and �l ¼ Oð1Þ is the Prandtl number. Note that we
have made the assumption that the thermal conductivity is constant
(temperature independent); the generalized case with temperature-
dependent thermal conductivity has been explored in, e.g., Lorca and
Boldrini30,31 and Fr€olich et al.,32 albeit not in the context of slender
vortex dynamics.

Next, we introduce stretched radial coordinates

�r ¼ r=e (18)

and expand the dynamical variables in terms of e as follows:

uð�r ;u; s; t; eÞ ¼ uð1Þð�r ;u; s; tÞ þ euð2Þð�r ;u; s; tÞ þ � � � ; (19)

vð�r ;u; s; t; eÞ ¼ e�1vð0Þð�r ;u; s; tÞ þ vð1Þð�r ;u; s; tÞ þ � � � ; (20)

wð�r ;u; s; t; eÞ ¼ e�1wð0Þð�r ;u; s; tÞ þ wð1Þð�r ;u; s; tÞ þ � � � ; (21)

Xðs; t; eÞ ¼ Xð0Þðs; tÞ þ eXð1Þðs; tÞ þ � � � : (22)

Here u, v, and w denote the radial, circumferential, and tangential
components of the velocity vector V, respectively. Furthermore, to
obtain non-trivial velocities vð0Þ and wð0Þ, we must have the following:

Pð�r ;u; s; t; eÞ ¼ e�2Pð0Þð�r ;u; s; tÞ þ e�1Pð1Þð�r ;u; s; tÞ þ � � � : (23)

The perturbation temperature ~T ¼ T � 1 is expanded in an asymp-
totic series as follows:

~T ð�r ;u; s; t; eÞ ¼ ~T
ð0Þð�r ;u; s; tÞ þ e~T

ð1Þð�r ;u; s; tÞ þ � � � : (24)

In addition, we require that
_X � ŝ ¼ 0; (25)

so that the filament centerlineL forms a material curve.
The geometric parameters r, j, and h3 are, through the Serret–

Frenet formulas [see (A1) in Appendix A of Callegari and Ting1], func-
tions of Xðs; tÞ, and are thus expanded as follows:

rðs; t; eÞ ¼ rð0Þðs; tÞ þ erð1Þðs; tÞ þ � � �

¼ jXð0Þ
s j þ e

Xð0Þ
s � Xð1Þ

s

jXð0Þ
s j þ � � � ; (26)

jðs; t; eÞ ¼ jð0Þðs; tÞ þ ejð1Þðs; tÞ þ � � � ; (27)

T oðs; t; eÞ ¼ T ð0Þ
o ðs; tÞ þ eT ð1Þ

o ðs; tÞ þ � � � ; (28)

h3ð�r ;u; s; t; eÞ ¼ rð0Þðs; tÞ þ ehð1Þ3 ð�r ;u; s; t; eÞ þ � � �
¼ rð0Þ þ e rð1Þ � rð0Þjð0Þ�r cosu

� 	
þ � � � :

(29)

Let zr, zh, and zt denote the radial, circumferential, and tangential com-
ponents of the constant vector ẑ, such that ẑ ¼ zr r̂ þ zhĥ þ ztŝ.
Equivalently, we can define ẑ ¼ ztŝ þ znn̂ þ zbb̂. The expansion of
the components of ẑ is thus given as

zrðu; s; t; eÞ ¼ zð0Þr ðu; s; tÞ þ ezð1Þr ðu; s; tÞ þ � � � ;
zhðu; s; t; eÞ ¼ zð0Þh ðu; s; tÞ þ ezð1Þh ðu; s; tÞ þ � � � ;

ztðs; t; eÞ ¼ zð0Þt ðs; tÞ þ ezð1Þt ðs; tÞ þ � � � ;
znðs; t; eÞ ¼ zð0Þn ðs; tÞ þ ezð1Þn ðs; tÞ þ � � � ;
zbðs; t; eÞ ¼ zð0Þb ðs; tÞ þ ezð1Þb ðs; tÞ þ � � � :

Given our choice of e, the viscosity terms will only enter at the second
order. One can show that the term

1
h3

1
h3

_X s

� �
s

 !
(30)

isOð1Þ, so this term only enters much later in the expansion.
Given this, the leading order momentum equations in the

Boussinesq regime are

wð0Þ
u vð0Þ

�r
¼ 0; (31a)
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vð0Þvð0Þu

�r
¼ � 1

�r
Pð0Þ
u ; (31b)

vð0Þð Þ2
�r

¼ Pð0Þ
�r ; (31c)

while the leading order continuity and temperature equations are

vð0Þu ¼ 0 (32)

and

Tð0Þ
u ¼ 0: (33)

Combining (31a), (31b), (32), and (33), we conclude that all the lead-
ing order field components are independent of u.

Thus, dropping all the terms containing leading order u-deriva-
tives, the first order momentum equations are

uð1Þwð0Þ
�r þ wð1Þ

u

�r
vð0Þ þ wð0Þwð0Þ

s

rð0Þ
þ wð0Þjð0Þvð0Þ sinu

 !

¼ � Pð0Þ
s

rð0Þ
� a~T

ð0Þ
zð0Þt ; (34a)

uð1Þvð0Þ�r þ vð0Þvð1Þu

�r
þ vð0Þuð1Þ

�r
þ wð0Þvð0Þs

rð0Þ
� wð0Þð Þ2jð0Þ sinu

 !

¼ � Pð1Þ
u

�r
� a~T

ð0Þ
zð0Þh ;

(34b)

vð0Þ

�r
uð1Þu � 2vð0Þvð1Þ

�r
þ wð0Þð Þ2jð0Þ cosu

� �
¼ �Pð1Þ

�r � a~T
ð0Þ
zð0Þr ;

(34c)

where

zð0Þr ¼ zð0Þn cosuþ zð0Þb sinu; (35)

zð0Þh ¼ zð0Þb cosu� zð0Þn sinu: (36)

For the first order continuity equation, we get

rð0Þ vð1Þu þ �ruð1Þð Þ�r

 �

þ �rwð0Þ
s þ �rjð0Þrð0Þ sinu vð0Þ ¼ 0; (37)

while the first order temperature equation is

vð0Þ

�r
Tð1Þ
u þ uð1ÞTð0Þ

�r þ wð0Þ

rð0Þ
Tð0Þ
s ¼ 0: (38)

Note that the right-hand side of (17) is Oð1Þ and, thus, has no impact
on the two first order temperature equations. Similarly, the torsion
term appearing in (16) is OðeÞ and, thus, only enters in the second
order equations.

For the inner solution, we additionally have

vðiÞ ¼ 0; uðiÞ ¼ 0; i ¼ 0; 1; 2;… at�r ¼ 0; (39)

which comes directly from the definition of the relative velocityV.

B. The evolution equations for the filament

To leading order, the outer flow equation is axially symmetric
(i.e., independent of s). Consequently, it would make sense to make a

similar requirement for the inner solution, as was indeed done by
Callegari and Ting1 and Harikrishnan et al.2 In particular, this would
mean making the assumption that vð0Þs ¼ 0. However, by averaging
(34a) with respect to u, we get

uð1Þc wð0Þ
�r þ wð0Þwð0Þ

s

rð0Þ
¼ � Pð0Þ

s

rð0Þ
� a~T

ð0Þ
zð0Þt ; (40)

where

fc ¼ 1
2p

ð2p
0
f ðuÞ du (41)

denotes the average with respect to u, or equivalently the symmetric
part, of the function f. Applying the same averaging procedure to (34b)
and (37) yields

1
�r

�rvð0Þð Þ�r uð1Þc þ wð0Þvð0Þs

rð0Þ
¼ 0; (42)

rð0Þ �ruð1Þc


 �
�r
þ �rwð0Þ

s ¼ 0: (43)

Hence, if vð0Þs ¼ 0, we must have

uð1Þc ¼ 0 and wð0Þ
s ¼ 0; (44)

but we cannot, from this, conclude that Pð0Þ
s ¼ 0, due to the buoyancy

term appearing in (40). Unless the buoyancy term vanishes, this leads to
a contradiction as (31c) relates Pð0Þ directly to vð0Þ. Thus, we necessarily
must require that the leading order components are all axially depen-
dent. The case of vortex filaments with leading order axial dependence
was treated by Klein and Ting,33 again excluding the force of gravity.
We extend here their one-time scale analysis to include gravity, and do
not address the associated two-time scale analysis in this paper. For a
more complete discussion of axisymmetric axial variations on vortices,
and two-time scale analysis, the reader is referred to, e.g., Childress and
Gilbert,34 Ting et al.20 (Secs. 3.3.3 and 3.3.7), and Margerit.27

Since the first order equations are linear with respect to the first
order field components, uð1Þ; vð1Þ;wð1Þ; ~T

ð1Þ
, and Pð1Þ, we can decom-

pose the solution into symmetric and asymmetric parts, i.e.,

f ðuÞ ¼ fc þ faðuÞ;
with fc given by (41). It is interesting to note that when splitting (34)
between its symmetric and asymmetric parts, the added buoyancy
term in (34a) will impact only the symmetric part of the equations. On
the contrary, the added buoyancy term in (34b) and (34c) will impact
only the asymmetric part of the equations. Thus, the asymmetric first
order momentum equations are

uð1Þa wð0Þ
�r þ vð0Þ

wð1Þ
a

� �
u

�r
þ wð0Þjð0Þvð0Þ sinu ¼ 0; (45a)

uð1Þa vð0Þ�r þ vð0Þ vð1Þa

� �
u

�r
þ vð0Þuð1Þa

�r
� wð0Þð Þ2jð0Þ sinu

¼ � Pð1Þ
a

� �
u

�r
� a~T

ð0Þ
zð0Þh ; (45b)

vð0Þ

�r
uð1Þa


 �
u
� 2vð0Þvð1Þa

�r
þ wð0Þð Þ2jð0Þ cosu ¼ � Pð1Þ

a


 �
�r
� a~T

ð0Þ
zð0Þr :

(45c)
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Hence, we conclude that since the s-derivatives appear exclusively in
the symmetric terms, these terms do not appear in the asymmetric first
order equations, from which we will derive the filament equation of
motion and the associated core constant. As a final remark on the topic
of the gravity induced axial asymmetry, we note that if the vortex fila-
ment is placed horizontally such that the term proportional to zð0Þt
vanishes, one would again be permitted to assume axial independence
of the leading order velocity components. Thus, it is only for filaments
that are tilted with respect to the vertical for which the axial depen-
dence necessarily enters.

We continue by first noting that (45a) decouples from the other
first order momentum equations, by which we mean that the first
order tangential velocity component wð1Þ only appears in this equation
and not in the other two. Furthermore, we can eliminate Pð1Þ

c from
(45b) and (45c) through cross differentiation. Through introduction of
the asymmetric stream function wð1Þ,

uð1Þa ¼ 1
�r
wð1Þ
u ; vð1Þa ¼ �wð1Þ

�r þ �rjð0Þvð0Þ cosu; (46)

and the leading order axial vorticity, fð0Þ,

fð0Þ ¼ 1
�r

�rvð0Þð Þ
�r ; (47)

the two first order momentum equations, (45b) and (45c), are trans-
formed into one differential equation for the stream function wð1Þ,

vð0ÞDwð1Þ
u � fð0Þ�r wð1Þ

u ¼ �jð0Þ sinuHð�r ; s; tÞ þ aBð�r ; s; tÞzð0Þh ; (48)

where D denotes the Laplacian of �r and u defined as

D ¼ 1
�r
@

@�r
�r
@

@�r

� �
þ 1
�r2

@2

@u2

and

Hð�r ; s; tÞ ¼ 2�rfð0Þvð0Þ þ vð0Þð Þ2 þ 2�rwð0Þwð0Þ
�r ; (49)

Bð�r ; s; tÞ ¼ �r ~T
ð0Þ
�r : (50)

We expand wð1Þ in a Fourier series as follows:

wð1Þ ¼
X1
n¼1

wð1Þ
n1 cos nuþ wð1Þ

n2 sin nu

 �

: (51)

By using (51) in (48) and identifying all Fourier modes in the equation,
we get an equation for each mode. This set of equations can be written
in the following compact form:

vð0Þ
1
�r
@

@�r
þ @2

@�r2
� n2

�r2
þ fð0Þ�r

vð0Þ

 !" #
wð1Þ
nj ¼ !ð0Þ

nj ; (52)

where

!ð0Þ
nj ¼ jð0ÞH þ azð0Þn B

h i
dn1dj1 þ azð0Þb Bdn1dj2: (53)

The boundary conditions for (52) are given by (39) and the farfield
conditions. The latter are found by comparing the inner expansion of
the circumferential and tangential velocity components (20) and (21),
with the outer expansion (3). For the leading order velocity compo-
nents, we get

vð0Þ � 1
2p�r

as�r ! 1; (54a)

wð0Þ � oð�r�nÞ for all n as�r ! 1; (54b)

while for the first order components, we get

vð1Þ ! jð0Þ

4p
cosu ln

1
e�r

þ 1

� �
þ Q0 � _X

ð0Þ

 �

� ĥð0Þ; (55a)

uð1Þ ! jð0Þ

4p
sinu ln

1
e�r

þ Q0 � _X
ð0Þ


 �
� r̂ð0Þ; (55b)

wð1Þ ! Q0 � ŝð0Þ; (55c)

as �r ! 1. Here, Q0 ¼ ðQf þQ2ðr ¼ 0ÞÞ. Note that we have written
the matching conditions, (54a)–(55c), in dimensionless form, which is
achieved by dividing the dimensional equations by C=L. Given this,
(52) implies that

wð1Þ
n1 ¼ 0; wð1Þ

n2 ¼ 0; for n 6¼ 1:

The inhomogeneous solutions to (52), for n¼ 1, that satisfies the
boundary condition at �r ¼ 0 is given by

wð1Þ
1j ¼ vð0Þ

ð�r
0

1

zðvð0ÞÞ2
ðz
0
n!ð0Þ

nj ðn; s; tÞ dn
� �

dz: (56)

To confirm this assertion, observe that both vð0Þ and vð0Þ
Ð �r
0

1
zðvð0ÞÞ2 dz

are solutions to the homogeneous version of (52). This provides the

wð1Þ
1j functions

wð1Þ
11 ¼ jð0Þvð0ÞJ þ azð0Þn vð0ÞI (57a)

and

wð1Þ
12 ¼ azð0Þb vð0ÞI; (57b)

where

J ¼
ð�r
0

1

zðvð0ÞÞ2
ðz
0
nHðn; s; tÞ dn

� �
dz (58a)

and

I ¼
ð�r
0

1

zðvð0ÞÞ2
ðz
0
n2~T

ð0Þ
n dn

� �
dz; (58b)

as Bðn; s; tÞ ¼ n~T
ð0Þ
n .

It remains to determine the correct scaling for the leading order
temperature difference ~T

ð0Þ
. The temperature satisfies the parabolic-

transport equation. Thus, since ~T
ð0Þ

is concentrated on the vortex
initially, we can conclude that the temperature should decay exponen-
tially as �r goes to infinity for all later time t. In other words,

~T
ð0Þ � oð�r�nÞ for all n as�r ! 1: (59)

For completeness, we note that in the more realistic case of non-zero
Mach number, the temperature also depends on the pressure, which
would yield a different scaling for the leading order temperature differ-
ence; see Ting et al.20 for a description of fully compressible vortex
flows, excluding the force of gravity.

Inserting (54a), (54b), and (59) into (53) yields

!ð0Þ
nj � jð0Þ

2p�r
; (60)
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as �r ! 1. By integrating (52) for large �r twice, we get

wð1Þ
11 � jð0Þ

4p
�r ln�r þ C1�r ; (61a)

wð1Þ
12 � C2�r ; (61b)

where C1 and C2 are integration constants, which together are referred
to as the core constant. As will be demonstrated shortly, C1 and C2 cor-
respond to the binormal and normal parts of the core constant and
couple the velocity of the filament to the motion inside the filament
core.

Comparing (57a) and (61a), we find that

C1ðs; tÞ ¼ lim
�r!1 wð1Þ

11 � jð0Þ

4p
�r ln�r

� �
=�r

¼ 1
4p

jð0Þ lim
�r!1ðJ � h ln�rÞ=hþ azð0Þn lim

�r!1 I=h
h i

; (62)

where h ¼ 1
4p�r=v

ð0Þ, and hð1Þ ¼ �r2=2. Similarly, by comparing (57b)
and (61b), we get

C2ðs; tÞ ¼ lim
�r!1ðw

ð1Þ
12 =�rÞ ¼

1
4p

azð0Þb lim
�r!1 I=h: (63)

The Hopital’s rule is applied to those limits: having f(x) and g(x) that
goes to infinity at x ¼ 1, if fx=gxð1Þ ¼ l, then f =gð1Þ ¼ l. Hence,
we get

lim
�r!1ðJ � h ln�rÞ=h ¼ Cvðs; tÞ þ Cwðs; tÞ; (64)

where

Cvðs; tÞ ¼ lim
�r!1 4p2

ð�r
0
n vð0Þð Þ2 dn� ln�r

 !
þ 1
2
; (65)

Cwðs; tÞ ¼ �8p2
ð1
0
n wð0Þð Þ2 dn: (66)

The details of this calculation are included in Appendix A. Let us
define

CTðs; tÞ ¼ lim
�r!1 I=h:

We get

CTðs; tÞ ¼ 4p2 lim
�r!1

ð�r
0
n2~T

ð0Þ
n dn

¼ �8p2
ð1
0
n~T

ð0Þ
dn; (67)

where we have used the asymptotic behavior of the temperature per-
turbation, as stated in (59), to establish that the integral in (67) con-
verges at infinity. So, we get for the core constants C1ðs; tÞ and
C2ðs; tÞ,

C1ðs; tÞ ¼ 1
4p

jð0ÞðCvðs; tÞ þ Cwðs; tÞÞ þ azð0Þn CTðs; tÞ
h i

; (68a)

C2ðs; tÞ ¼ 1
4p

azð0Þb CTðs; tÞ: (68b)

To arrive at an equation of motion for the filament, we need a match-
ing condition for wð1Þ to which (61a) and (61b) can be compared.

This condition is given by the matching conditions for the leading
order velocity field components, (55a)–(55c). We get

wð1Þ � � jð0Þ

4p
cosu�r ln

1
e�r

� �

þ �r
h


Q0 � _X
ð0Þ� � 
n̂ð0Þ sinu� b̂

ð0Þ
cosu

�i
: (69)

Comparing (61a), (61b), and (69), using (51), yields C1ðs; tÞ and
C2ðs; tÞ in terms of the filament velocity, from which we write

_X
ð0Þ ¼ Q?

0 þ jð0Þ

4p
ln

1
e
þ C1ðs; tÞ

� �
b̂
ð0Þ � C2ðs; tÞn̂ð0Þ: (70)

where Q?
0 ¼ Q0 �Q0 � ŝð0Þŝð0Þ denotes the part of Q0, which is per-

pendicular to ŝ. Then, inserting the previously found expressions for
C1ðs; tÞ and C2ðs; tÞ, given by (68a) and (68b), into (70) gives the equa-
tion of motion,

_X
ð0Þ ¼ Q?

0 þ jð0Þ

4p
ln

1
e
þ Cvðs; tÞ þ Cwðs; tÞ

� �
b̂
ð0Þ

� 1
4p

aCTðs; tÞẑ � ŝð0Þ; (71)

where we used ẑ � ŝð0Þ ¼ ẑ � ðn̂ð0Þ � b̂
ð0ÞÞ ¼ n̂ð0Þzð0Þb � b̂

ð0Þ
zð0Þn . To

close the system, we need equations describing the temporal and spa-
tial evolution of wð0Þ; vð0Þ; Pð0Þ, and Tð0Þ; these equations will be
derived in Sec. IV.

We conclude this section with a discussion of the implications of
the inclusion of buoyancy for the filament equation of motion. First,
we note that the binormal part of the buoyancy term appearing in (71)
is maximal for a horizontally aligned filament and vanishes for a fila-
ment aligned in the vertical direction. Assuming the density of the core
is smaller than the density of the surrounding fluid, such that ~T

ð0Þ
is

negative and CT positive, this term is negative whenever the angle
between the normal and vertical unit vectors, n̂ and ẑ, is between 0
and p=2, and positive whenever the angle is between p=2 and p. Thus,
this term is responsible for the tendency of buoyant vortex rings to
align themselves in the horizontal plane, as noted by Chang and
Smith.3 A schematic illustration of this phenomenon is shown in
Fig. 2(a). Second, for a circular, horizontally aligned filament, as shown
in Fig. 2(b), the normal part of the buoyancy term appearing in (71)
yields, provided ~T

ð0Þ
is negative, a negative contribution to the normal

component of the filament velocity. This, in turn, will cause the ring to
expand, with the rate of expansion being determined by the density
difference between the filament and the surrounding fluid. Next, for a
very long vertically aligned filament, we would expect there to be a
considerable density difference between the top and the bottom of the
filament. If such a filament were to be slightly tilted in such a way that
either zð0Þb or zð0Þn is no longer identically zero, one would see a poten-
tially significant difference in the normal or binormal velocity compo-
nent arising from the core constant, depending on the height above
ground. In that case, the lower, and presumed denser, part of the fila-
ment would have a smaller velocity than the parts further up, causing
the filament to tilt further. However, this effect would be competing
with the effect of the tangential leading order velocity, which has been
found to reduce the velocity in the binormal direction1 an effect that,
as we shall see in Sec. IV, is potentially enhanced by the presence of
gravity, depending on the direction of the axial flow. Furthermore, we
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note that if one were to employ the anelastic approximation and,
thus, properly account for the stratification of the external flow field,
it is conceivable that the difference in ~T

ð0Þ
between the lower and

upper parts of the filament would be reduced as the background den-
sity is no longer a constant. Finally, we would like to highlight the
similarity between the gravitational terms as they appear in (68a) and
(68b), and (2.24) in Chang and Smith.3 The only difference is that in
the latter case, the density within the core is assumed to be constant,
while we allow the density of the core to continuously approach the
density of the surrounding fluid as one approaches the outer bound-
ary. Thus, we have succeeded in reproducing the results of Chang
and Smith3 using a different approach to estimate the velocity of the
vortical core. It should be noted that we have limited our analysis to
finding the leading order contribution to the filament velocity, i.e.,

_X
ð0Þ
, and one could in principle continue the analysis to the first

order following the method outlined in Fukumoto and Miyazaki24

and Margerit and Brancher.25 This should lead to terms correspond-
ing to the last three terms in (2.24) in Chang and Smith.3 For com-
pleteness, we note that one could derive (68a) and (68b) directly
from the Biot–Savart law and vorticity equation, following the proce-
dure outlined in Klein and Knio.14

IV. EVOLUTION EQUATIONS FOR THE LEADING ORDER
VELOCITY COMPONENTS AND TEMPERATURE

The evolution equations for the dynamic variables vð0Þ; wð0Þ;
Pð0Þ, and Tð0Þ are derived from the first and second order symmetric
density, momentum, and temperature equations. As already men-
tioned, due to the gravity term appearing (34a), we cannot assume
that all of the leading order field components are independent of the
axial coordinate s. However, we could, thus far, seemingly ignore this
issue, since at the first order, the s-derivative terms only appear in the
symmetric terms, whereas the velocity depends on the first order
Fourier modes (see Klein and Ting33). Since the compatibility condi-
tions, from which we get the evolution equations for the leading order
field components, are given by the symmetric equations, we will now
see the appearance of terms containing leading order axial derivatives.
For this reason, we cannot derive the compatibility conditions the way
outlined in Callegari and Ting,1 but we will instead follow the proce-
dure outlined in Klein and Ting,33 in which the dynamic variables
were assumed to have leading order axial variation. The key observa-
tion is that along stream lines in the r-s-plane, the leading order circu-
lation and leading order total head (as will be defined in Sec. IVB) are
conserved quantities. It should be noted, however, that in defining the
s-derivate along a streamline, the assumption is made that the leading
order axial velocity wð0Þ does not vanish at any point. A discussion of
the case of vanishing axial velocity is left to Appendix C.

In broad strokes, the derivation of the evolution equations is pre-
sented as follows: first, we provide the relevant leading and first order
symmetric temperature and momentum equations. Next, the defini-
tion of the new dynamic variables, namely circulation and total head,
is given, and the kinetic energy equation, derived by contracting (13)
with ð _X þ VÞ, is introduced, before we present the coordinate trans-
formation, which defines the s-derivative along a streamline and the
associated inverse operator or integral. Finally, by combining the first
and second order symmetric equations, we derive the temporal evolu-
tion equations for the dynamic variables vð0Þ; wð0Þ; Pð0Þ, and Tð0Þ,
with the assumption that the filament remains symmetric in some
stream-wise direction.

In preparation for this derivation, we recall that we can write the
leading order field components as follows:

f ð1Þ ¼ f ð1Þc þ f ð1Þ11 cosuþ f ð1Þ12 sinu: (72)

Here, f stand for the variables u;w; v, or T, and f11 and f12 are the

Fourier coefficients, which are known functions of wð1Þ
11 and wð1Þ

12 . From
(46), we immediately obtain

uð1Þ11 ¼ 1
�r
wð1Þ
12 ; (73)

uð1Þ12 ¼ � 1
�r
wð1Þ
11 ; (74)

vð1Þ11 ¼ � wð1Þ
11


 �
�r
þ �rjð0Þvð0Þ; (75)

FIG. 2. An illustration of the impact of gravity on a vortex ring assuming that
CT ðs; tÞ > 0 for all s and t. This would, e.g., be the case if the density of the filament

is everywhere lower than the density of the surrounding fluid such that ~T
ð0Þ

< 0 for
all s, t, and �r . In this simple example, gravity acts both to align the vortex ring with
the horizontal plane (a) and causes the ring to expand as it rises (b).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 056604 (2024); doi: 10.1063/5.0205028 36, 056604-8

VC Author(s) 2024

 26 Septem
ber 2024 13:32:12

pubs.aip.org/aip/phf


vð1Þ12 ¼ � wð1Þ
12


 �
�r
; (76)

while by combining (46), (38), and (45a), we get

Tð1Þ
11 ¼ �wð1Þ

11
Tð0Þ
�r

vð0Þ
; (77)

Tð1Þ
12 ¼ �wð1Þ

12
Tð0Þ
�r

vð0Þ
; (78)

wð1Þ
12 ¼ �wð1Þ

12 w
ð0Þ
�r

vð0Þ
; (79)

wð1Þ
11 ¼ �wð1Þ

11 w
ð0Þ
�r

vð0Þ
þ �rwð0Þjð0Þ: (80)

These relations are needed when deriving the symmetric second order
momentum and temperature equations.

A. The first and second order symmetric momentum
and temperature equations

The symmetric first order continuity and temperature equations
are

rð0Þ �ruð1Þc


 �
�r
þ �rwð0Þ

s ¼ 0; (81a)

uð1Þc Tð0Þ
�r þ wð0Þ

rð0Þ
Tð0Þ
s ¼ 0; (81b)

while the symmetric first order momentum equations are given by

uð1Þc wð0Þ
�r þ wð0Þwð0Þ

s

rð0Þ
¼ � Pð0Þ

s

rð0Þ
� a~T

ð0Þ
zð0Þt ; (82a)

uð1Þc vð0Þ�r þ vð0Þuð1Þc

�r
þ wð0Þ

rð0Þ
vð0Þs ¼ 0; (82b)

2vð0Þvð1Þc

�r
¼ Pð1Þ

c


 �
�r
: (82c)

The symmetric part of the second order circumferential momentum
equation is

vð0Þt þ uð1Þc vð1Þc


 �
�r
þ vð0Þ

�r
uð2Þc þ uð2Þc vð0Þ�r þ vð1Þc uð1Þc

�r

þ wð0Þ

rð0Þ
vð1Þc


 �
s
þ wð1Þ

c vð0Þs

rð0Þ
� wð0Þvð0Þs rð1Þ

rð0Þð Þ2 � jð0Þwð0Þwð1Þ
12

þ 1
2
uð1Þ11 vð1Þ11


 �
�r
þ 1
2
uð1Þ12 vð1Þ12


 �
�r
þ vð1Þ11 u

ð1Þ
11

2�r
þ vð1Þ12 u

ð1Þ
12

2�r

¼ ��

�r
�rvð0Þ�r


 �
�r
� ��

�r2
vð0Þ � 1

2
að~T ð1Þ

11 z
ð0Þ
b � ~T

ð1Þ
12 z

ð0Þ
n Þ; (83)

which upon introduction of (73)–(80), using (48) and (57a), simplifies
to

vð0Þt þ uð1Þc vð1Þc


 �
�r
þ vð0Þ

�r
uð2Þc þ uð2Þc vð0Þ�r þ vð1Þc uð1Þc

�r

þ wð0Þ

rð0Þ
vð1Þc


 �
s
þ wð1Þ

c vð0Þs

rð0Þ
� wð0Þvð0Þs rð1Þ

rð0Þð Þ2

¼ ��

�r
�rvð0Þ�r


 �
�r
� ��

�r2
vð0Þ þ a

2
jð0Þzð0Þb vð0ÞIfð0Þ; (84)

where I is given by (58b).
Next, the symmetric part of the second order tangential momen-

tum equation is

wð0Þ
t þ uð2Þc wð0Þ

�r þ uð1Þc wð1Þ
c


 �
�r
þwð0Þ

rð0Þ
wð1Þ
c


 �
s
þwð1Þ

c wð0Þ
s

rð0Þ

� rð1Þwð0Þwð0Þ
s

rð0Þð Þ2 þ ŝð0Þ � _Xð0Þ
s

wð0Þ

rð0Þ

¼ � 1

rð0Þ
Pð1Þ
c


 �
s
þ rð1ÞPð0Þ

s

rð0Þð Þ2 þ ��

�r
�rwð0Þ

�r


 �
�r
� a~T

ð1Þ
c zð0Þt � a~T

ð0Þ
zð1Þt

þwð0Þjð0Þ

2
uð1Þ11 � vð1Þ12


 �
� 1
2�r

vð1Þ11 w
ð1Þ
12 � vð1Þ12 w

ð1Þ
11


 �

� jð0Þvð0Þ

2
wð1Þ
12 � 1

2
uð1Þ11 wð1Þ

11


 �
�r
þ uð1Þ12 wð1Þ

12


 �
�r

� �
; (85)

which, when introducing (73)–(80), using (57a), simplifies to

wð0Þ
t þ uð2Þc wð0Þ

�r þ uð1Þc wð1Þ
c


 �
�r
þ wð0Þ

rð0Þ
wð1Þ
c


 �
s
þ wð1Þ

c wð0Þ
s

rð0Þ

� rð1Þwð0Þwð0Þ
s

rð0Þð Þ2 þ ŝð0Þ � _Xð0Þ
s

wð0Þ

rð0Þ

¼ � 1

rð0Þ
Pð1Þ
c


 �
s
þ ��

�r
�rwð0Þ

�r


 �
�r
� a~T

ð1Þ
c zð0Þt � a~T

ð0Þ
zð1Þt

þ 1
2
jð0Þazð0Þb vð0ÞI wð0Þ

�r : (86)

Finally, the symmetric second order temperature equation is

Tð0Þ
t þwð0Þ

rð0Þ
Tð1Þ
c


 �
s
þuð1Þc Tð1Þ

c


 �
�r
�rð1Þwð0Þ

rð0Þð Þ2 T
ð0Þ
s þuð2Þc Tð0Þ

�r þwð1Þ
c

rð0Þ
Tð0Þ
s

¼ �g
�r

�rTð0Þ
�r


 �
�r
�1
2

uð1Þ11 Tð1Þ
11


 �
�r
þuð1Þ12 Tð1Þ

12


 �
�r

� �

� 1
2�r

vð1Þ11 T
ð1Þ
12 �vð1Þ12 T

ð1Þ
11


 �
; (87)

which simplifies to

Tð0Þ
t þwð0Þ

rð0Þ
Tð1Þ
c


 �
s
þuð1Þc Tð1Þ

c


 �
�r
�rð1Þwð0Þ

rð0Þð Þ2 T
ð0Þ
s þuð2Þc Tð0Þ

�r þwð1Þ
c

rð0Þ
Tð0Þ
s

¼ �g
�r

�rTð0Þ
�r


 �
�r
þ1
2
jð0Þazð0Þb vð0ÞITð0Þ

�r : (88)

B. Change of variables and coordinate transformation

The circulation around the boundary of a disk of radius �r is given
by

~Cð�r ;u; s; t; eÞ ¼ 2p
ð�r
0
�rf d�r ; (89)

¼ 2pG ð�r ;u; s; t; eÞ; (90)

where we have defined G ð�r ;u; s; t; eÞ ¼ �rv. At leading and first order,
we have, respectively,

G ð0Þ ¼ �rvð0Þ; (91)
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G ð1Þ ¼ �rvð1Þ: (92)

Using (47) and (82b), Eq. (84) can be now written in terms of G ð0Þ and
G ð1Þ as

rð0Þuð1Þc G ð1Þ
c


 �
�r
þ rð1Þuð1Þc þrð0Þuð2Þc


 �
G

ð0Þ
�r þwð0Þ G ð1Þ

c


 �
s
þwð1Þ

c G ð0Þ
s

¼�rð0ÞG ð0Þ
t þrð0Þ�� G

ð0Þ
�r�r �G

ð0Þ
�r

�r

 !
þrð0Þjð0Þ

2�r
azð0Þb IG ð0ÞG ð0Þ

�r :

(93)

As will be shown in Sec. IVC, (93) yields the first of the required evo-
lution equations for the field component vð0Þ.

Adding gravity to the total head,H (see Klein and Ting33 for the
definition of the total head excluding gravitational forces), given the
Boussinesq approximation, yields the following definition:

H ¼ P þ _X þ Vð Þ2=2þ ae�2~T ~Z ð�r ;u; s; t; eÞ; (94)

where ~Z is the height of the point xðx; y; z; tÞ ¼ xðr;u; s; tÞ in curvi-
linear coordinates, defined through

ðZ � Z0Þðx; y; zÞ ¼ z � z0

¼ ~Z ð�r ;u; s; t; eÞ
¼ Xðs; t; eÞ þ e�r r̂ � Xð0; t; eÞ½ � � ẑ:

Here, Z � Z0 denotes the height of any point (x, y, z) with respect to
the point Z0ðx; y; zÞ ¼ z0 in Cartesian coordinates. The symmetric
part of ~Z is, thus,

~Z cðs; t; eÞ ¼ ẑ � Xðs; t; eÞ � Xð0; t; eÞ½ � (95)

¼
ðs
0
rðs0; t; eÞztðs0; t; eÞds0; (96)

which at the leading and first order gives

~Z
ð0Þ
c ðs; tÞ ¼ ẑ � Xð0Þðs; tÞ � Xð0Þð0; tÞ

h i
¼
ðs
0
rð0Þðs0; tÞzð0Þt ðs0; tÞds0;

~Z
ð1Þ
c ðs; tÞ ¼ ẑ � Xð1Þðs; tÞ � Xð1Þð0; tÞ

h i
¼
ðs
0
ðrð1Þðs0; tÞzð0Þt ðs0; tÞ þ rð0Þðs0; tÞzð1Þt ðs0; tÞÞds0:

At the leading and first order, the symmetric total head is then,
respectively,

H ð0Þ ¼ pð0Þ þ vð0Þ2 þ wð0Þ2

2
þ a~T

ð0Þ ~Z
ð0Þ
c ; (97)

H ð1Þ
c ¼ pð1Þc þ vð0Þvð1Þc þ wð0Þwð1Þ

c

� 	
þ a ~T

ð1Þ
c

~Z
ð0Þ
c þ ~T

ð0Þ
c

~Z
ð1Þ
c

h i
:

(98)

While not explicitly written in (97) and (98), the reader should take
note that while H ðiÞ

c ; pðiÞc ; vðiÞc ;wðiÞ
c , and ~T

ðiÞ
c are functions of

ð�r ; s; tÞ; ~Z
ðiÞ
c only depends on (s, t).

Thus, we see that the effect of the axial component of the gravita-
tional force, which does not enter in the core constant derived in

Sec. III B, is exclusively to alter the total head, or equivalently the
kinetic energy, in the moving frame. For a discussion on the Bernoulli
equation, and by extension the total head, in the context of concen-
trated vortices, the reader is referred to, e.g., Saffman22 (Sec. 1.9),
Alekseenko et al.35 (Sec. 1.2.3), and Ting et al.20 (Secs. 3.3.7 and 3.4.5).

By contracting (13) with _XþV, we get an equation for the kinetic
energy, which in terms of the total head can be written as

H t þ vR � rH ¼ Pt � vE � rP þ e�2a~TZ t

þ e2�� _X þ Vð Þ � D _X þ Vð Þ
� e�2a~TvE � rZ þ a��Z D~T ; (99)

where we have introduced

vR ¼ V� e�r
@r̂
@t

; (100)

vE ¼ _X þ e�r
@r̂
@t

(101)

for notational convenience. The derivation of (99) can be found in
Appendix B.

The symmetric first and second order kinetic energy equations
are, respectively,

wð0Þ

rð0Þ
H ð0Þ

s þ uð1Þc H
ð0Þ
�r ¼ 0; (102)

and

uð2Þc H
ð0Þ
�r þ uð1Þc H ð1Þ

c


 �
�r
þ wð0Þ

rð0Þ
H ð1Þ

c


 �
s

þ rð1Þ

rð0Þ
uð1Þc H

ð0Þ
�r þ wð1Þ

c

rð0Þ
H ð0Þ

s

¼ �H
ð0Þ
t þ Pð0Þ

t þ aTð0Þ ~Z
ð0Þ
t � _X

ð0Þ
s � ŝð0Þ

h i
wð0Þð Þ2
rð0Þ

þ ��

�r
�rwð0Þ

�r


 �
�r
wð0Þ þ ��G ð0Þ

�r2
G

ð0Þ
�r�r � G

ð0Þ
�r

�r

 !

þ a�g
�r

�r ~T
ð0Þ
�r


 �
�r
~Z

ð0Þ
c þ a

2�r
jð0Þzð0Þb G ð0ÞIH ð0Þ

�r : (103)

In Sec. IVC, we will see that Eq. (103), together with (88) and (31a),
yields the required evolution equations for wð0Þ; Pð0Þ, and Tð0Þ.

Through the introduction of the symmetrical stream function
�M ¼ M ð�r ; s; tÞ, we make the following coordinate transformations:

M ; idð Þ : R3 ! R3; (104)

ð�r ; s; tÞ7!ð �M ; s; tÞ; (105)

fcð�r ; s; tÞ ¼ �f cð �M ; s; tÞ ¼ fcðM ð�r ; s; tÞ; s; tÞ; (106)

where fc denotes any of the symmetrical field components; the varia-
bles ð �M ; s; tÞ are known as the von Mises variables. The inverse trans-
formation is given by

R; idð Þ : R3 ! R3; (107)

ð �M ; s; tÞ7!ð�r ; s; tÞ; (108)
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where R ¼ M�1. Note that R only exists at regular points xð�r ; s; tÞ
where

�
@M
@�r

�ðxÞ 6¼ 0.

We define

Mð�r ;u; s; t; eÞ ¼ 2p
ð�r
0
wð�r ;u; s; t; eÞ�r d�r (109)

¼ 2pM ð�r ;u; s; t; eÞ (110)

as the axial mass flux through a circular disk of radius �r . To see that
M is indeed a stream function, observe that Eq. (81a) relates the lead-
ing order axial mass flux, M ð0Þ, to the u-averaged first order radial
velocity, uð1Þc , via the relations

M ð0Þð�r ; s; tÞ ¼
ð�r
0
wð0Þr0 dr0 ¼ �M ; (111a)

rð0Þ�ruð1Þc ¼ �@sM
ð0Þ: (111b)

Similarly, the symmetric second order continuity equation is satisfied
by the introduction of the first order axial mass flux,M ð1Þ,

rð0Þ�ruð2Þc þ rð1Þ�ruð1Þc þ �r2

2
_X
ð0Þ
s � ŝð0Þ


 �
� rð0Þjð0Þ

2
azð0Þb G ð0ÞI ¼ � M ð1Þ

c


 �
s
;

(112a)

�rwð1Þ
c ¼ M ð1Þ

c


 �
�r
: (112b)

We can thus define the s-derivative along a streamline, �r ¼ Rð �M ; s; tÞ,
at instant t by Ds ¼ @s þ Rs@�r , where Rs ¼ �M ð0Þ

s =M
ð0Þ
�r

¼ rð0Þuð1Þc =wð0Þ, and it is assumed that wð0Þ 6¼ 0. We additionally

define the inverse operation
Ð ½0;s�
S , as an integration operator where �M

is held fixed. Consequently, the integration gð �M ; sÞ ¼ Ð ½0;s�S f ð �M ; s0Þ ds0
is the solution of DsðgÞð �M ; sÞ ¼ f ð �M ; sÞ.

C. Derivation of the evolution equations

Using the symmetric first order circumferential momentum
equation, and the first order kinetic energy equation, one can show
that

DsG
ð0Þ ¼ 0 and DsH

ð0Þ ¼ 0: (113)

Hence, given in terms of the von Mises variables, the leading order cir-
culation and total head are s-independent, and we have

G ð0Þð �M ; s; tÞ ¼ G ð0Þð �M ; tÞ ¼ G ð0Þð �Mð�r ; s; tÞ; tÞ; (114)

H ð0Þð �M ; s; tÞ ¼ H ð0Þð �M ; tÞ ¼ H ð0Þð �Mð�r ; s; tÞ; tÞ: (115)

In addition, from the symmetric first order temperature equation, we
immediately have

DsT
ð0Þ ¼ 0; (116)

and, consequently,

Tð0Þð �M ; s; tÞ ¼ Tð0Þð �M ; tÞ ¼ Tð0Þð �Mð�r ; s; tÞ; tÞ: (117)

We still need equations for the temporal evolution of G ð0Þ; H ð0Þ, and
Tð0Þ, which are derived from the symmetric second order equations.

Using (111)–(113), we can write the left-hand side of (93) as

wð0ÞDs G ð1Þ
c � G

ð0Þ
M ð0ÞM

ð1Þ
c

h i
� �r
2
G

ð0Þ
�r

_X
ð0Þ
s � ŝð0Þ


 �

þ rð0Þjð0Þ

2�r
azð0Þb I G ð0ÞG ð0Þ

�r : (118)

Hence, we can eliminate the first order circulation, G ð1Þ
c , by integrating

(93) along a streamline. In the case of an open filament, there will still

be remaining boundary terms for G ð1Þ
c ; M ð1Þ

c , and G
ð0Þ
M ð0Þ . Concretely,

this amounts to specifying the leading and first order velocity field
components as well as the first order axial mass flux at the boundary.
In the case of either a closed filament or an open filament, which is
symmetric along the streamline (as in Klein and Ting33), we get the fol-

lowing evolution equation for the leading order circulation G ð0Þ:

ð 0;s½ �

S
�G

ð0Þ
t þ �r

2rð0Þ
G

ð0Þ
�r

_X
ð0Þ
s � ŝð0Þ


 �
þ �� G

ð0Þ
�r�r �G

ð0Þ
�r

�r

 !" #
rð0Þds0

wð0Þ ¼ 0;

(119)

whereS denotes the integral over a streamline.
Note that the terms containing I zð0Þb (or equivalently wð1Þ

12 ), which
came from the Fourier component containing terms appearing in Eq.
(84), have canceled out.

The temporal evolution equation for the leading order total head,
H ð0Þ, is given by (103). The left-hand side of (103) equation has the
same structure as the left-hand side of (93); hence, we can employ the
same trick and write the right-hand side as

wð0Þ

rð0Þ
Ds H ð1Þ

c �H
ð0Þ
M ð0ÞM

ð1Þ
c

h i
� �r

2rð0Þ
H

ð0Þ
�r

_X
ð0Þ
s � ŝð0Þ


 �

þ jð0Þ

2�r
azð0Þb I G ð0ÞH ð0Þ

�r : (120)

Thus, by integrating along a streamline, assuming an axially symmetric
filament, we get an equation for the leading order total head, H ð0Þ as
follows:36

ð 0;s½ �

S
�H

ð0Þ
t þ Pð0Þ

t þ a~T
ð0Þ ~Z

ð0Þ
c


 �
t
þ �rH ð0Þ

�r

2rð0Þ
� wð0Þð Þ2

rð0Þ

" #
_rð0Þ

"

þ ��

�r
�rwð0Þ

�r


 �
�r
wð0Þ þ ��G ð0Þ

�r2
G

ð0Þ
�r�r � G

ð0Þ
�r

�r

 !
þ a�g

�r
�r ~T

ð0Þ
�r

~Z
ð0Þ
c


 �
�r

3
5

� rð0Þds0

wð0Þ ¼ 0: (121)

Again, we note that for an open filament, which is not symmetric in
some stream-wise direction, the boundary terms have to be specified.
In particular, to fix the leading order total head at the boundary, in
addition to specifying the leading and first order velocity components,
the leading order pressure and temperature components in addition to
the potential differential between the end points, as determined by the
integration over the streamline denoted byS , must be specified.

The introduction of gravitational forces leads to a modification of
the equations determining the leading order field components, in par-
ticular, the leading order tangential velocity component, wð0Þ. For the
incompressible case analyzed by Callegari and Ting,1 the authors were
able to conclude that the effect of the tangential velocity is to reduce
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the velocity of the filament in the binormal direction. Thus, we would
expect, depending on the sign of ~T

ð0Þ
and zð0Þt , that the presence of

gravity either enhances or reduces this effect.
To close the system, we need a third compatibility condition,

namely a condition for the leading order temperature, Tð0Þ. Using the
first and second order symmetric temperature equations, we can
rewrite (88) as follows:

rð0Þuð1Þc Tð1Þ
c


 �
�r
þ wð0Þ Tð1Þ

c


 �
s
þ wð1ÞTð0Þ

s þ uð2Þc Tð0Þ
�r þ rð1Þuð1Þc Tð0Þ

�r

¼ �rð0ÞTð0Þ
t þ rð0Þ�g

�r
�rTð0Þ

�r


 �
�r
þ rð0Þjð0Þ

2�r
azð0Þb G ð0ÞI Tð0Þ

�r :

(122)

Thus, it becomes clear that the left-hand side can be written as

wð0ÞDs Tð1Þ
c �Tð0Þ

M ð0ÞM
ð1Þ
c

h i
��r
2
Tð0Þ
�r

_X
ð0Þ
s � ŝþrð0Þjð0Þ

2�r
azð0Þb G ð0Þ I Tð0Þ

�r ;

(123)

eventually yieldingð 0;s½ �

S
�Tð0Þ

t þ �g
�r

�rTð0Þ
�r


 �
�r
þ �r

2rð0Þ
Tð0Þ
�r

_X
ð0Þ
s � ŝð0Þ

� �
rð0Þds0

wð0Þ ¼ 0

(124)

upon integration over a streamlineS , and assuming that the filament
satisfies the symmetry condition.

Thus, we have a complete set of equations for the motion of a
buoyant vortex filament, namely (68a) and (68b), together with the
compatibility Eqs. (119), (124), and (121).

Currently, the variables in (124), (121), and (119) are still given in
terms of ðt;�r ; sÞ. We wish to write them in terms of the von Mises var-
iables ðt; �M ; sÞ, in which G ð0Þ; H ð0Þ, and Tð0Þ are s independent. We
can replace G ð0Þ

t by �G t þ G �M
�Mt and the integral of the first term in

(119) by

�G t

ð 0;s½ �

S

rð0Þ

wð0Þ ds
0 þ �G �M

ð 0;s½ �

S
M

ð0Þ
t

rð0Þ

wð0Þ ds
0 (125)

to arrive at a differential equation for �G . Here, we have defined �f as
f ð�r ; s; tÞ ¼ �f ðM ð0Þð�r ; s; tÞ; s; tÞ to distinguish ft from Dtðf Þ ¼ �f t . We
write �G �M as mentioned earlier, even if there is no ambiguity for this
derivative. We should note that in the case of horizontally placed fila-
ments, the gravity terms drop out, and (119) and (121) reduce to those
of Klein and Ting.33 Furthermore, in this case, one would be permitted
to assume axial independence of the leading order field components,
which would result in (119) and (121), reducing to those of Callegari
and Ting.1

V. CONCLUSIONS

In summary, the equation of motion, valid to the first order, is

_X
ð0Þ ¼ Q?

0 þ jð0Þ

4p
ln

1
e
þ Cvðs; tÞ þ Cwðs; tÞ

� �
b̂
ð0Þ

� 1
4p

aCTðs; tÞẑ � ŝð0Þ; (126)

where Cvðs; tÞ; Cwðs; tÞ, and CTðs; tÞ are given by (65)–(67), while

a ¼ �bT0=�k
2
with b and T0 defined in (10). Coming back to dimen-

sional variables, using provided definitions of e, a, Re, and Fr, yields

_X
ð0Þ ¼ Q?

0 þ Cjð0Þ

4p
ln

1
e
þ ~Cvðs; tÞ þ ~Cwðs; tÞ

� �
b̂
ð0Þ

þ 1
4p

g
C
bCTðs; tÞẑ � ŝð0Þ; (127)

where

CTðs; tÞ ¼ �8p2
ð1
0
n~T

ð0Þ
dn;

and where we have written

~Cvðs; tÞ ¼ lim
�r!1

4p2

C2

ð�r
0
n vð0Þð Þ2 dn� ln�r

 !
þ 1
2
; (128)

~Cwðs; tÞ ¼ � 8p2

C2

ð1
0
n wð0Þð Þ2 dn (129)

to be in accordance with the notation of Callegari and Ting,1 and to
indicate that all of the field components are now dimensional quanti-
ties. To check the dimensions of the buoyancy term, we may note that
since b is the inverse of a temperature, this term has the dimension of
gl2=C, which is a velocity. The filament equation of motion, (126), or
equivalently (127), couples to the compatibility conditions (119),
(121), and (124) to form a complete set of equations for the motion of
a buoyant vortex filament assuming non-vanishing leading order axial
velocity. Equation (126) is equivalent to the equation obtained by
Chang and Smith3 for a filament with continuous density variation
within the core, excluding higher order terms. A comparison to the
results of Saffman22 for buoyant circular vortex rings is given in
Appendix D. The perhaps most interesting feature of (126) is that it
now contains a contribution in the normal direction arising from the
motion inside the core. It is this term, that results in the expansion of
buoyant vortex rings as they rise, as was demonstrated by Chang and
Smith.3 The binormal part of the additional buoyancy term appearing
in (126) is responsible for the tendency of buoyant vortex rings to align
themselves in the horizontal plane. Once aligned in the horizontal
plane,, based on compatibility conditions, gravity ceases to have an
effect on the leading order total head, and it only enters directly in the
core constant. Furthermore, the introduction of gravity at the first
order necessarily imposes the condition of axial dependence on the
leading order field components. For a nearly straight, vertically aligned
vortex filament, the influence of gravity will largely be indirectly
through the compatibility conditions, in particular, through its influ-
ence on the leading order tangential velocity component. However,
once it is slightly tilted, it will also necessarily have another contribu-
tion coming from the core constant. This contribution would become
more significant the greater the tilt. Both of these contributions would,
in addition, have to compete with the logarithmic term in (126), which,
for truly thin filaments, can be much larger. Note, however, that for
say, e ¼ 0:1, for which the asymptotic predictions are relatively accu-
rate according to Klein and Knio,14 we have ln ð1=eÞ � 2, so that the
logarithmic term does not clearly dominate the terms of order unity.

The next step would be to allow the background density to vary
with height z, following the anelastic approximation. One could also
go one step further and employ the pseudo-incompressible approxi-
mation for lowMach number flows. We are certain that such an analy-
sis would yield new and interesting results, bringing the theory closer
to an accurate description of the dynamics of tornado-like vortices.
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APPENDIX A: COMPUTATION OF CORE CONSTANT
INTEGRAL

We wish to simplify the integral

C0ðs; tÞ ¼ lim
�r!1

vð0Þjð0Þ

�r

ð�r
0

1

2 vð0Þð Þ2
ðz
0
nvð0ÞHðn; tÞdn
h i

dz � 1
4p

ln�r

" #
;

(A1)

where

Hðn; tÞ ¼ 2nfð0Þ þ vð0Þ þ 2nwð0Þwð0Þ
�r

vð0Þ
; (A2)

and the asymptotic behavior of vð0Þ; fð0Þ, and wð0Þ are given by
(54a), (54b), and (47). We note that this calculation was first carried
out by Callegari and Ting,1 but as these authors did not explicitly
include all the details of the calculation, we are including them here
to avoid any potential confusion.

To simplify, we write

C0ðs; tÞ ¼ jð0Þ lim
�r!1

vð0Þ

�r
hð�r ; tÞ � 1

4p
ln�r

� �
; (A3)

where we have defined

hð�r ; tÞ ¼
ð�r
0

1

z vð0Þð Þ2
ðz
0
nvð0ÞHðn; tÞdn
h i

dz: (A4)

Consequently, we get

C0ðs; tÞ ¼ jð0Þ lim
�r!1

vð0Þ�r
�r2

hð�r ; tÞ � 1
4p

ln�r

� �
(A5)

¼ jð0Þ lim
�r!1

1
2p�r2

hð�r ; tÞ � 1
4p

ln�r

� �
(A6)

¼ 1
2p

jð0Þ lim
�r!1

hð�r ; tÞ � �r2

2
ln�r

�r2

2
4

3
5
: (A7)

Application of the L’Hopital’s rule yields

C0ðs; tÞ ¼ 1
2p

jð0Þ lim
�r!1

h� �r2

2
ln�r

� �0

�r2ð Þ0

2
64

3
75

¼ 1
2p

jð0Þ lim
�r!1

1

�r vð0Þð Þ2
ð�r
0
nvð0ÞHðn; tÞdn
h i

� �r
2
� �r ln�r

2�r

2
64

3
75

¼ 1
4p

jð0Þ lim
�r!1

4p2

12

ð�r
0
nvð0ÞHðn; tÞdn� 1

2
� ln�r

" #

¼ 1
4p

jð0Þ lim
�r!1

ð�r
0
nvð0ÞHðn; tÞdn� 1

2
� ln�r

" #
:

Next, we note that

lim
�r!1

ð�r
0
nvð0Þ

2nwð0Þwð0Þ
�r

vð0Þ

 !
dn (A8)

¼ lim
�r!1 2

ð�r
0
n2wð0Þwð0Þ

�r dn (A9)

¼ lim
�r!1

ð�r
0
n2

@

@n
wð0Þð Þ2dn (A10)

¼ n2 wð0Þð Þ2
h i1

0
�
ð1
0

wð0Þð Þ22ndn (A11)

¼ �2
ð1
0

wð0Þð Þ2ndn : (A12)

Similarly, we have

ð�r
0
2n2vð0Þfð0Þdn ¼

ð�r
0
2nvð0Þ nvð0Þ

� �
ndn (A13)

¼
ð�r
0

@

@n
nvð0Þ
� �2

dn (A14)

¼ nvð0Þ
� �2h i�r

0
(A15)

¼ �rvð0Þð Þ2; (A16)
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and, thus,

lim
�r!1 4p2

ð�r
0
2n2vð0Þfð0Þdn

 !
¼ lim

�r!1 4p2 �rvð0Þð Þ2

¼ 4p2
1
2p

� �2

¼ 1:

Consequently, Eq. (A3) can be written as

C0ðs; tÞ ¼ 1
4p

jð0Þ lim
�r!1 4p2

ð�r
0
n vð0Þð Þ2dn� ln�r

 !"

þ 1
2
� 8p2

ð1
0

wð0Þð Þ2ndn
�
: (A17)

APPENDIX B: THE KINETIC ENERGY EQUATION

The Navier–Stokes equation in Cartesian coordinates given the
Boussinesq approximation is

@v
@t

� �
xyz

þ v � rxyzv ¼ �rxyzP þ ��e2Dxyzv � e�2a~T ẑ; (B1)

where we use the subscript xyz to indicate that these are derivatives
with respect to the Cartesian coordinate system.

The kinetic energy equation is obtained by contracting both
sides with v, yielding

@ðv2=2Þ
@t


 �
xyz

¼ �v � rxyz v2=2þ P
� 	þ ��e2v � Dxyzv

�e�2a~Tv � ẑ;
(B2)

where we have used

rxyzðv2=2Þ ¼ v � rxyzv þ v � w (B3)

and
v � v � wð Þ ¼ 0: (B4)

We can write (B2) in terms of the total head, H , in Cartesian coor-
dinates, as follows:

@H

@t

� �
xyz

þ v � rxyzH ¼ @P
@t

� �
xyz

þ e2��v � Dxyzv

þ e�2a~T
@Z

@t

� �
xyz

þ a�gZ Dxyz ~T ;

(B5)

where

H ¼ P þ v2=2þ e�2a~TZ : (B6)

Z ¼ z � z0 is the height, and

rxyzZ ¼ ẑ: (B7)

In deriving (B5), we have used the temperature equation, which in
Cartesian coordinates is

@T
@t

� �
xyz

þ v � rxyzT ¼ e2�gDxyzT; (B8)

to remove the time derivatives of the temperature T. In curvilinear
coordinates, (B5) becomes

@H

@t

� �
rus

þ vR � rrusH

¼ @P
@t

� �
rus

� vE � rrusP þ e2�� _Xðs; tÞ þ V
� 	

� Drus _Xðs; tÞ þ V
� 	

þ a�gZ DrusT þ e�2a~T
@Z

@t

� �
rus

� e�2a~TvE � rrusZ ; (B9)

where

vR ¼ V� r
@r̂
@t

� �
rus

; (B10)

vE ¼ _X þ r
@r̂
@t

� �
rus

; (B11)

and

H ¼ P þ _Xðs; tÞ þ V
� �2

=2þ e�2a~TZ ; (B12)

Z ð�r ;u; s; tÞ ¼ Xðs; tÞ þ rr̂ � Xð0; tÞ½ � � ẑ: (B13)

To transform Eq. (B2), we have used

@H

@t

� �
xyz

þ v � rxyzH ¼ @H

@t

� �
rus

þ vR � rrusH ; (B14)

@P
@t

� �
xyz

¼ @P
@t

� �
rus

� vE � rrusP; (B15)

@Z

@t

� �
xyz

¼ @Z

@t

� �
rus

� vE � rrusZ : (B16)

Here, rrusZ ¼ ẑ. More details on the coordinate transformation
can be found in Callegari and Ting,1 Appendixes A and B.

The leading and second order equations of (B9) are,
respectively,

uð1ÞH ð0Þ
�r þ vð0Þ

�r
H ð1Þ

u þ xð0Þ

rð0Þ
H ð0Þ

s ¼ � _X
ð0Þ � r̂ð0ÞPð0Þ

�r ; (B17)

and

H
ð0Þ
t þ uð2ÞH ð0Þ

�r þ uð1ÞH ð1Þ
�r þ vð1Þ

�r
H ð1Þ

u

þ wð1Þ

rð0Þ
H ð0Þ

s þ vð0Þ

�r
H ð2Þ

u þ wð0Þ

rð0Þ
H ð1Þ

s � wð0Þrð1Þ

rð0Þð Þ2 H ð0Þ
s

¼ Pð0Þ
t � _X � r̂ð Þð1ÞPð0Þ

�r � _X
ð0Þ � r̂ð0ÞPð1Þ

�r

� 1
�r
_X
ð0Þ � ĥð0ÞPð1Þ

u þ a~T
ð0Þ
Z

ð0Þ
t þ ��Vð0ÞDVð0Þ

� a~T
ð0Þ
vð0ÞE � ẑþa�gZ ð0ÞD~T

ð0Þ
; (B18)

where we have dropped the subscript (�rus) for notational conve-
nience. Averaging with respect to u yields the leading and first
order symmetric equations as follows:

wð0Þ

rð0Þ
H ð0Þ

s þ uð1Þc H
ð0Þ
�r ¼ 0 (B19)
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and

H
ð0Þ
t þ uð2Þc H

ð0Þ
�r þ uð1Þc H ð1Þ

c


 �
�r
þ wð1Þ

c

rð0Þ
H ð0Þ

s

þ wð0Þ

rð0Þ
H ð1Þ

c


 �
s
� wð0Þrð1Þ

rð0Þð Þ2 H ð0Þ
s þ 1

2
H

ð0Þ
11


 �
uð1Þ11

þ 1
2

H
ð1Þ
12


 �
�r
uð1Þ12 � 1

2�r
H

ð1Þ
11 v

ð1Þ
12 þ 1

2�r
H

ð1Þ
12 v

ð1Þ
11

¼ Pð0Þ
t � 1

2
_X
ð0Þ � n̂ð0Þ Pð1Þ

11


 �
�r
� 1
2
_X
ð0Þ � b̂ð0Þ

Pð1Þ
12


 �
�r

� 1
2�r

_X
ð0Þ � b̂ð0Þ

Pð1Þ
12 � 1

2�r
_X
ð0Þ � n̂ð0ÞPð1Þ

11 � a~T
ð0Þ _X

ð0Þ � ẑ

þ a~T
ð0Þ

Z ð0Þ
c


 �
t
þ ��Vð0Þ � DVð0Þ þ a�gZ ð0Þ

c D~T
ð0Þ
: (B20)

Here, we have written the asymmetric part ofH ð1Þ as

H ð1Þ
a ¼ H

ð1Þ
11 cosuþH

ð1Þ
12 sinu; (B21)

where

H
ð1Þ
11 ¼ Pð1Þ

11 þ vð0Þvð1Þ11 þ wð0Þwð1Þ
11

þ aZ ð0Þ
c Tð1Þ

11 þ a�r ~T
ð0Þ
zð0Þn þ vð0Þ _X

ð0Þ � b̂ð0Þ
; (B22)

H
ð1Þ
12 ¼ Pð1Þ

12 þ vð0Þvð1Þ12 þ wð0Þwð1Þ
12

þ aZ ð0Þ
c Tð1Þ

12 þ a�r ~T
ð0Þ
zð0Þb þ vð0Þ _X

ð0Þ � b̂ð0Þ
: (B23)

We additionally note that, using (45b), we can write Pð1Þ
11 and Pð1Þ

12 as

Pð1Þ
11 ¼ uð1Þ12 �rv

ð0Þ
�r � vð0Þvð1Þ11 þ vð0Þuð1Þ12

� wð0Þð Þ2jð0Þ � a�r ~T
ð0Þ
zð0Þn ; (B24)

Pð1Þ
12 ¼ �uð1Þ11 �rv

ð0Þ
�r � vð0Þuð1Þ11 � vð0Þvð1Þ12 � a�r ~T

ð0Þ
zð0Þb : (B25)

Using these relations, (B23) can be rewritten to eventually yield
(103).

APPENDIX C: THE CASE WITH NO LEADING ORDER
AXIAL VELOCITY

When deriving the evolution equations in Sec. IV, the assump-
tion was made that wð0Þ 6¼ 0 at any point in the vortex core. This
allowed us to introduce the s-derivative along stream lines and,
thus, conclude that along stream lines, the leading order circulation,
total head, and temperature are all s-independent of these curves.
However, the case when wð0Þ ¼ 0 at any point in the vortex core
requires special attention, which we will briefly cover in this section.
We will not treat here the special case of a stagnation point where
wð0Þ ¼ 0 at a single point.

Whenever wð0Þ ¼ 0, we get, from (45a), (81a), and (39),

wð1Þ
a ¼ 0 and uð1Þc ¼ 0: (C1)

Using this in (82a) and (86) yields

Pð0Þ
s ¼ �arð0Þ~T

ð0Þ
zð0Þt ; (C2)

Pð1Þ
s ¼ �arð0Þ ~T

ð1Þ
c zð0Þt þ ~T

ð0Þ
zð1Þt þ rð1Þ

rð0Þ
~T
ð0Þ
zð0Þt

� �
: (C3)

Thus, if Pð0Þ
s ¼ 0, then we must necessarily have ~T

ð0Þ ¼ 0, and we
revert back to the case described by Callegari and Ting,1 with no
gravitational force and no leading order axial variation.

Assuming wð0Þ ¼ 0 and Pð0Þ
s 6¼ 0, the symmetric second order

circumferential momentum and temperature equations are,
respectively,

vð0Þt þ uð2Þc
1
�r
ð�rvð0ÞÞ�r þ

wð1Þ
c vð0Þs

rð0Þ

¼ ��

�r
�rvð0Þ�r


 �
�r
� ��

�r
vð0Þ þ a

2
jð0Þzð0Þb vð0ÞIfð0Þ; (C4)

and

Tð0Þ
t þ uð2Þc Tð0Þ

�r þ wð1Þ
c

rð0Þ
Tð0Þ
s ¼ �g

�r
�rTð0Þ

�r


 �
�r
þ a

2
jð0Þzð0Þb vð0ÞITð0Þ

�r :

(C5)

From the second order continuity equation, we additionally have

uð2Þc ¼ � �r

2rð0Þ
_X
ð0Þ
s � ŝð0Þ


 �
þ jð0Þ

2
azð0Þb vð0ÞI � 1

�rrð0Þ

ð�r
0
r0 wð1Þ

c


 �
s
dr0:

(C6)

Contrary to the case without axial variation, here wð1Þ
c appears in

those leading order equation for the core structure dynamical evolu-
tion, which means that an equation for wð1Þ

c is needed to close the
equations. The third order symmetric tangential momentum equa-
tion yields the temporal evolution equation for wð1Þ

c :

ðwð1Þ
c Þt þ gð3Þ4 wð1Þ

c þ uð2Þc wð1Þ
c


 �
�r
þ wð1Þ

c

rð0Þ
wð1Þ
c


 �
s

¼ � Pð2Þ
c

� �
s

rð0Þ
þ rð1Þ

rð0Þð Þ2 Pð1Þ
c


 �
s
þ ��

�r
�r wð1Þ

c


 �
�r

� �
�r

� a ~T
ð2Þ
c zð0Þt þ ~T

ð1Þ
c zð1Þt þ ~T

ð0Þ
zð2Þt


 �
þ sð3Þ4 ; (C7)

where we have defined

gð3Þ4 ¼
_X
ð0Þ
s � ŝð0Þ
rð0Þ

� jð0Þ

2
uð1Þ11 � vð1Þ12


 �
; (C8)

and

sð3Þ4 ¼ �€Xð0Þ � ŝð0Þ � jð0Þvð0Þhwð2Þ
a sinui � jð0Þ�r

2rð0Þ
Pð1Þ
11


 �
s

� 1
2
@n̂ð0Þ

@t
� ŝð0Þ uð1Þ11 � vð1Þ12


 �
� 1
�r

vð1Þa wð2Þ
a


 �
u

� 


� 1
2
@b̂

ð0Þ

@t
� ŝð0Þ uð1Þ12 þ vð1Þ11 � vð0Þjð0Þ�r


 �
� uð1Þa wð2Þ

a


 �
�r

D E

þ
rð2Þrð0Þ � rð1Þð Þ2 � 1

2
jð0Þrð0Þ�rð Þ2

rð0Þð Þ3 Pð0Þ
s � �rjð0ÞT ð0Þ

o

2
Pð1Þ
12 :

(C9)

Here, we have introduced the notation h…i to indicate averaging
with respect to u. The Pð2Þ

c -term in (C7) can be removed by averag-
ing over s, while wð2Þ

a can be found from the asymmetric part of the
second order tangential momentum equation (not shown).
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However, Pð1Þ
c is related to vð1Þc through (82c), and thus a fourth evo-

lution equation, for vð1Þc , is required. This equation is given by the
symmetric third order circumferential momentum equation (not
shown). The complete derivation lies outside the scope of this work,
as it will require the higher order analysis (i.e., derivation of expres-
sions for uð2Þa ; vð2Þa , and _X

ð1Þ
). However, in principle, the derivation

would proceed analogously to the case presented in Sec. IV, with
introduction of appropriate derivatives along stream lines defined
by the second order continuity equation. Concretely, if wð1Þ

c 6¼ 0, we
can introduce the s-derivative along stream lines defined by the
leading order axial mass flux, M ð1Þ

c . This derivative is given as

Dð1Þ
s ¼ @s � M ð1Þ

c


 �
s
= M ð1Þ

c


 �
�r
@�r

¼ @s þ rð0Þ�ruð2Þc

wð1Þ
c

þ �r
2

_X
ð0Þ
s � ŝð0Þ


 �
wð1Þ
c

� rð0Þjð0Þ

2wð1Þ
c

azð0Þb vð0ÞI

0
@

1
A
@�r ;

(C10)

where we have used the superscript (1) to distinguish this derivative
from the Ds derivative introduced in Sec. IV.

This brief discussion highlights the importance of distinguish-
ing between the three distinct cases of (1) non-vanishing leading
order axial velocity (wð0Þ 6¼ 0), (2) vanishing leading and first order
axial velocity (wð0Þ ¼ 0 and wð1Þ ¼ 0), and (3) the intermediate case
of vanishing leading order axial velocity (wð0Þ ¼ 0 and wð1Þ 6¼ 0).

APPENDIX D: IMPULSE EQUATION FOR A HORIZONTAL
CIRCULAR VORTEX RING

Consider the case of a horizontally placed circular vortex ring
of radius R and core radius d [as in Fig. 2(b)] with constant density
and temperature within the core. We get

CTðs; tÞ ¼ �8p2
ð1
0
n~T dn ¼ �8p2

ðd
0
n~T dn

¼ �8Tp2
ðd
0
n dn ¼ �4~Tp2d2: (D1)

So the part of the filament velocity resulting from the gravitational
term, which we denote as _X

ð0Þ
g , is

_X
ð0Þ
g ¼ 1

4p
g
C
bCTðs; tÞn̂ð0Þ

¼ � 1
4p

g
C
b4~Tp2d2n̂ð0Þ

¼ � g
C
b~Tpd2n̂ð0Þ

¼ � pd2

C
b~Tgn̂ð0Þ: (D2)

So for a light ring propagating upward—that is Cb~T > 0—the ring
radius increases with time, and the ring slows down. The absolute
value of (D2) yields the rate of change of the vortex ring radius R.
For such a vortex ring, Saffman22 (Sec. 5.8) gives the hydrodynamic
impulse I ¼ q0CR

2 and the buoyancy force Fb ¼ ðq0 � q1Þ2pgRd2,
yielding the equilibrium equation

dI
dt

¼ 2q0CR
dR
dt

¼ Fb;

giving the rate of change of the vortex ring radius R, just as in (D2).
Inserting ð1� q1=q0Þ ¼ b~T results in the same expression as that
given in (D2).
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