Entwicklung eines Tieftemperaturmeßplatzes für hochaufgelöste Röntgenbeugungsexperimente bei 20K mittels CCD-Flächendetektion – Ergebnisse experimenteller Elektronendichtebestimmungen von Strychnin, einem [1.1.1]-Propellan-Derivat, Adenosinmonophosphat und einem Zink-Dithiolat

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

> vorgelegt von Marc Messerschmidt aus Potsdam

November 2004

meinen Kindern

- 1. Gutachter: Prof. Dr. Peter Luger
- 2. Gutachter: Dr. Dieter Lentz

Disputation am: 13.12.2004

Danksagung

Ich möchte mich bei Herrn Prof. Peter Luger für die Aufnahme in seine Arbeitsgruppe bedanken.

Meinen Kollegen Dr. Dieter Zobel, Dr. Armin Wagner, Dr. Ralf Flaig und Stephan Scheins danke ich für ihre ständige Hilfsbereitschaft.

Den Firmen Bruker-AXS und Oxford Diffraction danke ich für die Messung von Strychnin-Einkristallen. Dr. Ansgar Bach bin ich für die Überlassung des 100K Adenosinmonophosphat-Datensatzes dankbar.

Außerdem war die Hilfe von Prof. Tibor Koritsansky, Dr. Dieter Lentz, Dr. Wolfgang Dreissig, Irene Brüdgam, Bernd Heller und allen beteiligten Mechanikern bei verschiedensten Fragestellungen sehr hilfreich.

Auch den Meßplatzbetreuern am Hasylab (Desy-Hamburg), insbesondere Dr. Carsten Paulmann und Dr. Wolfgang Morgenroth, bin ich für ihre Unterstützung dankbar.

Die Kristalle des [1.1.1]-Propellan-Derivats sind mir im Rahmen einer Kooperation mit Prof. Szeimies, Dr. Pätzel und Dr. Grubert freundlicherweise zur Verfügung gestellt worden. Ebenso danke ich für die Kristalle und Neutronendaten des Zink-Komplexes, die aus einer Kooperation mit Prof. Tiekink und Dr. Kloosters stammen.

Der DFG (Projekt Lu 222/24-1 und 24-3) danke ich für die Bereitstellung finanzieller Mittel, welche die Konstruktion des neuen CCD-Meßplatzes ermöglicht haben.

Auch die Bereitstellung von Kaptonfolie durch die Firma DuPont war sehr hilfreich.

Inhaltsverzeichnis

Ι	Grundlagen	1		
1	Einleitung und Aufgabenstellung			
2	Röntgenstrukturanalyse2.1Deformationselektronendichte2.2Multipolmodell	5 8 9		
3	Quantenchemische Rechnungen3.1Berechnungen für isolierte Moleküle3.2Berechnungen für periodische Systeme	11 11 13		
4	Interpretation der Gesamtelektronendichte4.1Topologische Analyse der Elektronendichte	 15 16 17 18 18 19 		
II	Experimenteller Aufbau	21		
5	Motivation	23		
6	Tieftemperaturmeßplatz 6.1 Aufbau	25 25 25 28		
II	I Experimentelle Elektronendichtebestimmungen	31		
7	Strychnin - Ein Vergleich von vier Datensätzen7.1Multipolverfeinerung7.2Restdichte	33 36 37		

	7.3	Deformationsdichte	38
	7.4	Laplacefunktion von Strychnin	38
	7.5	Topologische Eigenschaften	40
	7.6	Elektrostatisches Potential	42
	7.7	Diskussion	44
8	Ein	[1.1.1]-Propellan-Derivat	45
	8.1	Kristallstruktur	46
	8.2	Multipolverfeinerung und Restdichte	47
	8.3	Theoretische Rechnungen	48
	8.4	Deformationsdichte und Laplacefunktion	48
	8.5	Topologische und atomare Eigenschaften	50
	8.6	Diskussion	50
9	Ade	nosinmonophosphat	51
	9.1	Kristallstruktur	51
	9.2	Multipolmodell	53
	9.3	Theoretische Rechnungen	55
	9.4	Deformationsdichte	55
	9.5	Topologische Analyse	56
	9.6	Diskussion	59
10	Ein	zweikerniger Zink-Dithiolat-Komplex	61
	10.1	Kristallstruktur	62
	10.2	Multipolverfeinerung und Deformationsdichte	65
	10.3	Theoretische Rechnungen	67
	10.4	Topologische Eigenschaften	68
	10.5	Diskussion	69
	Zus	ammenfassung	71
	Sun	nmary	73
	Lite	raturverzeichnis	75
	Pub	likationen	78

Tabellenverzeichnis

4.1	Klassifizierung von kritischen Punkten der Elektronendichte	18
6.1	Meßstrategie einer hochaufgelösten Messung	29
$7.1 \\ 7.2 \\ 7.3$	Kristallographische Daten der Strychnin Datensätze	35 37 41
8.1 8.2	Kristallographische Daten des [1.1.1]-Propellans	46 50
9.1 9.2 9.3 9.4	Kristallographische Daten von Adenosinmonophosphat	52 53 54 57
$10.1 \\ 10.2 \\ 10.3$	Kristallographische Daten des Zink-Komplexes	63 66 68

Abbildungsverzeichnis

$2.1 \\ 2.2$	Strychnin - sphärische Verfeinerung bei 25K	$6 \\ 9$
$4.1 \\ 4.2$	Gradientenvektorfeld von SO $_2$	16 20
$ \begin{array}{l} 6.1 \\ 6.2 \\ 6.3 \end{array} $	Diffraktometeraufbau	26 27 28
$7.1 \\ 7.2$	Ortep Plots von Strychnin bei 100K und 15K Einfluß der Meßtemperatur auf thermische Bewegung und Intensitätsver-	34
7.3 7.4 7.5 7.6	teilung	36 38 39 40 43
8.1 8.2 8.3 8.4 8.5	Aufbaus eines [1.1.1]-Propellans und des Bizyclopentanderivates	45 47 48 49 49
9.1 9.2 9.3 9.4	Ortep Plot von AMP bei 25K	51 55 56 58
10.1 10.2 10.3 10.4	Ortep Plot des Zink-Dithiolat-Komplexes	61 64 65 67