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nt diffusion for pocket-
conditioned de novo ligand generation with multi-
objective guidance via importance sampling†

Julian Cremer, *ac Tuan Le, *ab Frank Noé,bd Djork-Arné Clevert a

and Kristof T. Schütt a

The generation of ligands that both are tailored to a given protein pocket and exhibit a range of desired

chemical properties is a major challenge in structure-based drug design. Here, we propose an in silico

approach for the de novo generation of 3D ligand structures using the equivariant diffusion model

PILOT, combining pocket conditioning with a large-scale pre-training and property guidance. Its multi-

objective trajectory-based importance sampling strategy is designed to direct the model towards

molecules that not only exhibit desired characteristics such as increased binding affinity for a given

protein pocket but also maintains high synthetic accessibility. This ensures the practicality of sampled

molecules, thus maximizing their potential for the drug discovery pipeline. PILOT significantly

outperforms existing methods across various metrics on the common benchmark dataset

CrossDocked2020. Moreover, we employ PILOT to generate novel ligands for unseen protein pockets

from the Kinodata-3D dataset, which encompasses a substantial portion of the human kinome. The

generated structures exhibit predicted IC50 values indicative of potent biological activity, which highlights

the potential of PILOT as a powerful tool for structure-based drug design.
1 Introduction

Structure-based drug discovery (SBDD) has fundamentally
transformed the landscape of drug development by facilitating
the design of molecules that precisely target biological macro-
molecules, such as proteins, which play a critical role in disease
processes. These designed molecules interact with a specic
pocket of a target protein, either activating or inhibiting its
function, thus inuencing the disease pathway. This strategy is
underpinned by a detailed understanding of the 3D structure of
the target, usually acquired through X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy.1,2 By grasping
the structural intricacies of the target protein, researchers are
equipped to create ligands that specically modulate its activity,
offering potential therapeutic benets.

A major challenge in SBDD is the vast chemical space that
must be navigated to discover molecules with desired proper-
ties. Recently, machine learning (ML) has been applied to
SBDD, promising to enable researchers to rapidly pinpoint drug
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candidates, signicantly reducing the reliance on labor-
intensive and costly experimental methods. ML algorithms are
capable of analyzing vast datasets of molecular structures and
properties to discern patterns, predict outcomes and generate
de novo molecules. This might not only accelerate the drug
discovery process but also enhance the efficiency and efficacy of
identifying viable therapeutic agents. Early work by Ragoza
et al.3 used 3D convolutional neural networks (3D-CNNs) in
voxel space and encoded the atomic density grids of protein–
ligand complexes and the protein pockets in two separate latent
spaces, both of which are used to decode 3D ligands with vari-
ational autoencoders (VAEs). A similar approach was applied in
the DeepFrag architecture by Green et al.,4 which focused on
fragment-based ligand optimization. Wang et al.5 also used 3D
CNNs in voxel space on density grids, but instead of using VAEs
that optimize a lower bound on the data probability, they train
generative adversarial networks (GANs) end-to-end. Since vox-
elized grid representations are large and have sparse values
(most voxels are empty), high memory consumption is a disad-
vantage. Treating protein–ligand complexes as atomic point
clouds can circumvent this problem and, in combination with
graph neural networks, enable the generative modeling of
ligands bound to protein pockets. SBDD with autoregressive
models that factorize the data probability were used in combi-
nation with SE(3)-invariant GNNs.6–8 Autoregressive models for
SBDD were further improved by using SE(3) equivariant
networks such as in Pocket2Mol,9 which places individual
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Top: PILOT is first pre-trained unconditionally on an Enamine Real subset from the ZINC database.20 We employ OpenEye's Omega to
create at most five conformers per molecule.21 Afterwards, we fine-tune the model on CrossDocked2020 conditioned on the atoms of the
pocket.22 Middle: Given the binding pocket of a protein, a noisy state of a ligand is sampled from the diffusion forward trajectory (here, t= 300) as
input to the diffusion model during training. The model has to retrieve the ground truth ligand (M0). For training, a composite loss (ld) is used for
continuous (mean squared error) and categorical features (cross-entropy loss), respectively, together with a timestep-dependent loss weighting
(w(t)). Bottom: at inference, a point cloud is sampled from aGaussian prior (t= 500). Given a binding pocket, themodel retrieves a fitting ligand by
following the reverse diffusion trajectory. At pre-specified steps, a property surrogatemodel (green crosses) guides the diffusion process towards
desired regions in chemical space using importance sampling.
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atoms one aer the other during generation, or in FRAME,10

which places fragments from a predened library in successive
steps.

Another innovative machine learning technique increasingly
employed in structure-based drug discovery is the application of
generative diffusion models which generate the entire structure
in one-shot, but allow its renement through successive steps.
Originally utilized in elds like computer vision and natural
language processing, these models also excel in capturing the
complex patterns of 3D molecular structures, particularly when
enhanced with features that reect the symmetry and specic
target-related characteristics of proteins.6,9,11–13 Another line of
research leverages diffusion models as methodology to build
ML based docking models.14,15

The effectiveness of these models hinges on training with
detailed protein structures, which allows for the generation of
ligands that are not only structurally compatible but also
specically designed for the interaction with target proteins.
However, while generated ligands t well in a protein binding
© 2024 The Author(s). Published by the Royal Society of Chemistry
pocket, these methods lack a mechanism to guide the genera-
tive process towards ligands with desired chemical properties
such as binding affinity, stability, or bioavailability. Addition-
ally, 3D generative models oen yield ligands with a high
prevalence of fused rings and low synthetic accessibility.12,13,16–18

In this study, we introduce PILOT (Pocket-Informed Ligand
OpTimization) – an equivariant diffusion model designed for de
novo ligand generation. As shown in Fig. 1, PILOT operates in
three distinct stages: unconditional diffusion pre-training,
pocket-conditional ne-tuning, and property-guided inference.
During the inference stage, we employ an importance sampling
scheme to replace less desirable intermediate samples with
more favorable ones, thereby re-weighting trajectories during
generation. This strategy enables the use of any pre-trained,
unconditioned diffusion score model for sampling, which is
subsequently enhanced by integrating the capabilities of an
external model, similar to classier guidance.19 However, while
classier guidance may drive the sampling trajectory to adver-
sarial, out-of-distribution structures,19 trajectory re-weighting
Chem. Sci., 2024, 15, 14954–14967 | 14955
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ensures that samples remain within distribution. As trajectory
re-weighting can be conducted in parallel for multiple proper-
ties, we focus on three critical properties for drug discovery:
synthetic accessibility (SA), docking score, and potency (IC50).
Our ndings demonstrate that PILOT generates ligands that not
only exhibit a signicant improvement in synthesizability and
drug-likeness but also achieve favorable docking scores and
predicted inhibition.
2 Results and discussion
2.1 Pre-training of pocket-conditioned 3D diffusion models

Pre-training enables deep neural networks to build efficient
representations by learning the underlying structure of the data.
It proves to be a successful strategy across various elds of
machine learning, particularly in the development of large
language models (LLMs).23,24 The success of these methods
provides a compelling case for applying similar methodologies
in the domain of scientic research, specically in computa-
tional chemistry and drug discovery.25–27 In the context of de
novo molecular diffusion models, pre-training allows the
models to learn fundamental chemical properties and interac-
tions from large datasets of molecular structures. This foun-
dational knowledge includes understanding bond types,
molecular geometries, and basic physicochemical properties,
which are critical for predicting how novel molecules might
interact with biological targets.

Pre-training molecular diffusion models on extensive data-
sets of low-delity 3D molecule data is a benecial strategy for
enhancing de novo molecule generation capabilities. It signi-
cantly enhances the ability of the model to generate structurally
diverse and chemically plausible molecules, when subsequently
ne-tuned on smaller, high-delity datasets.28 In this work, we
train PILOT as illustrated in Fig. 2. For pre-training, we utilize
the Enamine Real Diversity subset present in the ZINC
Fig. 2 Schematical depiction of the PILOT network. Given fixed pocket at
ligands' topology get noised (green) using forward diffusion. Afterwards
ligand atoms (here not shown for better visibility) and the ligand–pocket a
graph for computational feasibility. The task of the model is to retrieve t
(red).
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database20 which we downloaded from the Enamine website. To
prepare the dataset, we employ OpenEye's Omega soware,21

which we use for the creation of up to ve conformers per
molecule with classic default parameters, resulting in
a substantial corpus of approximately 109 million 3D struc-
tures. Additionally, we simplify the molecular representations
by removing all hydrogens.

We study the impact of pre-training on molecules and ne-
tuning on ligand–pocket complexes on model performance
using the CrossDocked2020 dataset6 following the methodolo-
gies described in the EQGAT-diff model by Le et al.28 and
detailed in Section 4. Table 1 shows the results with evaluation
of metrics related to the generatedmolecular structures, such as
molecular validity, the number of connected components, and
the distribution of bond angles and lengths. This includes
a comparison between models trained from scratch and those
that have been pre-trained. The chosen distance cutoff of the
pocket–ligand complex is a critical factor for model perfor-
mance in terms of computational cost and accuracy (see Section
4.4). We nd that pre-training improves our models across all
measured metrics, and the pre-trained model with 7 Å cutoff
achieves state-of-the-art performance for 8 out of the 9 evalu-
ated metrics. In particular, over 98% of molecules sampled by
the model are PoseBusters-valid (compared to 81% by Target-
Diff). We measure PoseBusters-validity by summing over all
non-overlapping evaluations of the “dock” and “mol” congu-
ration in the PoseBusters tool and divide by the number of
evaluations. The PoseBusters test suite validates chemical and
geometric consistency of a ligand including its stereochemistry,
and the physical plausibility of intra- and intermolecular
measurements such as the planarity of aromatic rings, standard
bond lengths, and protein–ligand clashes.29

The model achieves a Wasserstein distance error of 2.39 ±

0.98 for bond angles. This constitutes 4x improvement over
TargetDiff, a recent SOTA baseline, which indicates a markedly
oms (purple), ligand atom coordinates, types, and charges as well as the
, attention-weighted message-passing is done on the fully connected
nd pocket–pocket interactions, which each are obtained using a radius
he ground truth atom coordinates, types, charges, and the bond types

© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 1 Diverse set of evaluation metrics on the CrossDocked2020 test set comprising 100 protein pockets to assess the distribution learning
capability. For each protein pocket, 100 ligands are sampled. We compare metrics including novelty, bond lengthsW1, and bond anglesW1 with
respect to the test set. The results are reported as mean values across all targets and ligands, with the standard deviation noted in the subscript

Model PILOTscratchpocket,5A PILOTpre-trainpocket,5A PILOTscratchpocket,6A PILOTpre-trainpocket,6A PILOTscratchpocket,7A PILOTpre-trainpocket,7A TargetDiff10A

Validity [ 93.40 � 5.11 96.08 � 3.53 93.48 � 5.13 95.47 � 3.91 92.06 � 6.26 96.05 � 3.83 78.91 � 2.45
Pose busters-valid [ 96.93 � 1.91 97.39 � 1.58 97.88 � 1.41 97.49 � 1.72 96.92 � 1.91 98.21 � 1.51 80.53 � 1.21
Connect. comp. [ 95.61 � 4.15 97.44 � 2.66 95.04 � 5.02 97.19 � 3.38 93.96 � 5.99 97.81 � 3.18 88.02 � 2.54
Diversity [ 72.12 � 9.05 72.99 � 9.01 72.03 � 9.48 71.66 � 9.79 70.36 � 9.59 71.52 � 9.84 75.12 � 6.41
QED [ 0.50 � 0.12 0.51 � 0.12 0.51 � 0.14 0.53 � 0.13 0.49 � 0.14 0.53 � 0.12 0.42 � 0.09
SA [ 0.67 � 0.08 0.69 � 0.07 0.66 � 0.09 0.69 � 0.07 0.66 � 0.07 0.69 � 0.06 0.61 � 0.06
Lipinski [ 4.53 � 0.53 4.54 � 0.49 4.54 � 0.61 4.57 � 0.56 4.46 � 0.65 4.60 � 0.51 4.64 � 0.31
Bond angles W1 Y 4.03 � 1.29 3.04 � 1.19 3.47 � 1.02 3.09 � 1.06 4.00 � 1.10 2.39 � 0.98 9.71 � 4.67
Bond lenghts W1 [10

−2] Y 0.27 � 0.01 0.24 � 0.007 0.27 � 0.09 0.23 � 0.08 0.29 � 0.09 0.21 � 0.08 5.12 � 2.05
Ligand size 23.70 � 8.80 24.08 � 8.83 24.56 � 8.81 24.70 � 8.74 24.39 � 8.74 24.85 � 8.94 22.21 � 9.20
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improved ability to learn the underlying data distribution.
Beyond that, all PILOT models outperform TargetDiff in quan-
titative estimates of drug-likeness (QED) and synthetic accessi-
bility (SA) scores, indicating that PILOT not only generates more
structurally accurate molecules but also produces compounds
that are more drug-like and better synthesizable.

We extend our evaluation using a range of metrics from
PoseCheck30 to assess their ability to generate ligands that form
appropriate poses within the vicinity of the protein pocket.
However, it is important to clarify that TargetDiff, and PILOT
are not specically designed or trained to produce exact poses,
unlike tools like DiffDock,14 which are explicitly developed and
Fig. 3 The impact of varying dataset cutoffs and employing different t
performance of our model and TargetDiff is analyzed. Top: we compare
min–max normalized to better evaluate the difference in performance.
energies (right). Models with lower clashes and strain energies are consi

© 2024 The Author(s). Published by the Royal Society of Chemistry
trained for docking applications. Still, de novo models should
generate ligand poses without spatial conicts, such as clashing
with the pocket – a common issue highlighted in recent
studies.29,30 Furthermore, strain energy is a crucial metric used
to evaluate ligands; it measures the energy required to alter
a ligand's conformation to t its binding pose. Those with lower
strain energy are generally favorable as they are likely to exhibit
stronger binding with the protein. The strain energy is calcu-
lated as the difference between the internal energy of a relaxed
pose and the created pose. Both the relaxation and energy
ratings are calculated using the Universal Force Field (UFF)31

using RDKit as suggested by Harris et al.30. Fig. 3 shows that our
raining approaches (training from scratch versus pre-training) on the
the sample quality using the PoseCheck metrics, where all values are
Bottom: we present the average clash counts (left) and average strain
dered to perform better and are thus preferred.

Chem. Sci., 2024, 15, 14954–14967 | 14957



Fig. 4 Visualization of the importance sampling algorithm. The shape of the prior (left) and target (right) distribution, where ligands at the target
distribution are highlighted in two different regions based on a property function, which is synthetical accessibility in this case. At t= T (left), noisy
samples are drawn from the prior, and during the reverse trajectory, stochastic paths that lead to promising candidates are selected and de-
noised in state-space to converge to samples from the data distribution at t = 0 (right). Ligands in the green box refer to molecules with high
synthetic accessibility according to SA score, while molecules in the red box refer to rather inaccessible ones.

Chemical Science Edge Article
pre-trained model signicantly excels in terms of reducing
strain energy. Note that the pre-training on molecules without
pocket does not lead to an increase of clashes between ligand
and pocket atoms in the complex. The metrics concerning the
number of hydrogen acceptors, donors, van der Waals contacts,
and hydrophilicity remain consistent across models.

The reduction in strain energy observed in the pre-trained
model might be attributed to two main factors. First, the
diffusion model is exposed to a vast array of conformers during
its pre-training phase, likely featuring low strain energy due to
the conformer generation techniques employed. This results in
the generation of 3D conformers with optimal torsional proles
and minimized torsional strains, contributing to overall lower
energy values in the ligands produced. Second, the enamine
real diversity subset used for pre-training typically includes
a wide variety of stable ring systems. Thus, the model likely
encounters fewer unfavorable ring systems (e.g. 3- or 9-
membered rings), which could contribute to higher strain
energies. These insights further underscore the importance of
the initial pre-training phase to generate relevant and biologi-
cally active ligands, further validating the efficacy of our
approach in advancing the eld of structure-based drug
discovery. Notice that the PILOT architecture closely resembles
EQGAT-diff (see Section 4.5), and thus its superior performance
over TargetDiff, e.g. in terms of molecular validity, arises from
the application of timestep-dependent loss weighting as well as
bond diffusion.28 Higher validity comes from the correct
construction of the bond graph whose atoms maintain the
correct valencies, where EQGAT-diff and PILOT both have the
advantage, unlike TargetDiff, of being able to directly predict
the bond features. The TargetDiff architecture creates the bond
graph in a post-processing step using OpenBabel with the pre-
dicted atom coordinates as input. While EQGAT-diff is pre-
trained on the PubChem3D dataset, we pre-train PILOT on
a subset of Enamine REAL to incorporate a larger and more
diverse set of synthesizable molecules.
14958 | Chem. Sci., 2024, 15, 14954–14967
2.2 Multi-objective de novo generation using importance
sampling

In previous studies utilizing 3D target-aware molecule genera-
tion, a signicant challenge has been the poor synthetic
accessibility (SA) of the generated molecules. These models
oen produce molecules with complex, fused, and uncommon
ring systems, which are difficult to synthesize.12,13,16 This issue
underscores the need for approaches that not only produce
molecules with strong binding affinities but also ensure that
these molecules can be feasibly synthesized. To address this, we
propose a trajectory-based importance sampling method that
utilizes property-specic expert models explained in Section 4.

The evaluation of the importance sampling approach is
performed for both single- and multi-objective optimization
scenarios, focusing on SA and docking score guidance. We refer
to guidance with an SA score model as SA-conditional and using
a docking score model as docking-conditional. When both
objectives are considered, we refer to the model as SA-docking-
conditional. In each case, the unconditional base model is
augmented with the respective property model during the
sampling process.

Fig. 5 shows the correlation matrix of the CrossDocked2020
dataset. The SA scores exhibit a negative correlation with ligand
size, i.e., larger molecules tend to be less synthetically accessible
on average. Conversely, the positive correlation between SA
scores and QED suggests that molecules with higher QED are
generally more synthetically accessible. Docking scores show
a strong negative correlation with both the number of rings and
the number of atoms. This implies that models driven by
docking scores tend to generate larger molecules with more
(fused) rings. However, such molecular characteristics typically
result in decreased SA scores and QED, presenting a trade-off
between optimizing for docking score and maintaining
synthetic feasibility. By incorporating these insights into our
modeling approach, we aim to balance the dual objectives of
binding efficacy and synthetic accessibility, thereby enhancing
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 2 Performance comparison among unconditional sampling, SA-conditional, docking-conditional, and SA-docking-conditional sampling
using the CrossDocked test set, which includes 100 targets. For each target, 100 valid ligands were sampled. We assessed the performance based
on several criteria: mean docking scores obtained from QVina2 re-docking, the top-10 mean docking scores per target, drug-likeness (QED),
synthetic accessibility score (SA), compliance with Lipinski's Rule of Five (Lipinski), and mean diversity (Diversity) across targets and ligands

Model QVina2 (all) Y QVina2 (Top-10%) Y QED [ SA [ Lipinski [ Diversity [

Training set −7.57 � 2.09 — 0.53 � 0.20 0.75 � 0.10 4.57 � 0.91 —
Test set −6.88 � 2.33 — 0.47 � 0.20 0.72 � 0.13 4.34 � 1.14 —
TargetDiff −7.32 � 2.47 −9.67 � 2.55 0.48 � 0.20 0.58 � 0.13 4.59 � 0.83 0.75 � 0.09
Unconditional −7.33 � 2.19 −9.28 � 2.26 0.49 � 0.22 0.64 � 0.13 4.40 � 1.05 0.69 � 0.07
SA-conditional −7.32 � 2.25 −8.91 � 2.29 0.58 � 0.19 0.77 � 0.10 4.82 � 0.54 0.73 � 0.08
Docking-conditional −9.17 � 2.48 −10.94 � 2.51 0.54 � 0.13 0.62 � 0.08 4.70 � 0.41 0.57 � 0.10
SA-docking-conditional −8.35 � 2.75 −10.36 � 2.62 0.58 � 0.17 0.72 � 0.12 4.88 � 0.44 0.68 � 0.09
SA-docking-conditional (norm) −7.92 � 2.44 −9.85 � 2.33 0.56 � 0.19 0.78 � 0.11 4.84 � 0.47 0.75 � 0.13

Fig. 5 Correlation matrix that includes the number of rings, number of atoms, docking scores, quantitative estimate of drug-likeness (QED), and
synthetic accessibility (SA) scores using the CrossDocked2020 training set.

Edge Article Chemical Science
the practical utility of the generated molecules in drug
discovery.

Table 2 shows that our model reproduces the observed
correlations of the dataset. When guiding the unconditional
model with the SA score, we notice a signicant enhancement
not only in the SA score, which increases to 0.77, but also
improvements in QED and Lipinski's rule of ve compliance.
The mean docking scores remain consistent with those of the
unconditional model. However, there is a notable reduction of
docking performance in the top-10 ligands, consistent with the
correlations observed in the dataset. Conversely, applying
docking score guidance exclusively results in diminished SA
scores and QED, while the docking scores themselves increase
considerably. This reects the trade-offs involved in optimizing
for docking efficacy at the expense of synthetic accessibility and
drug-likeness. When applying both SA and docking score
guidance, the model achieves comparably high values for SA,
QED, and Lipinski, while signicantly improving docking
scores and outperforming TargetDiff by a large margin.

To mitigate the adverse impact on SA scores and drug-
likeness typically associated with high docking scores of
larger molecules, we introduce a normalization strategy where
docking scores are adjusted by the square root of the number of
atoms per ligand. The results of this adjustedmodel, denoted as
SA-docking-conditional (norm), are presented in the last row of
Table 2. Here, we observe a signicant increase in docking
scores compared to the unconditional model, while the SA
scores improve to 0.78, compared to 0.77 in the SA-conditional
© 2024 The Author(s). Published by the Royal Society of Chemistry
model. This illustrates how our multi-objective optimization
strategy balances different property demands. Such balanced
outcomes are critical for advancing the practical utility of
generated molecules in drug discovery, ensuring that they not
only bind effectively but are also feasible for synthesis.

We investigate how various molecular properties are affected
by the application of guidance to further study the impact of
importance sampling guidance on molecular design. Fig. 6
shows molecular characteristics such as ligand sizes, number of
rings, number of rotatable bonds, and logP values across
different models. Based on previous observations (Fig. 5), we
expect SA guidance to result in smaller ligands with fewer rings,
contrasting with the effect of docking guidance. First, we
determine the most likely ligand size given a target from the
training distribution and allow for the addition of up to ten
atoms during inference. Fig. 6 (top) shows that ligands indeed
tend to be smaller and possess fewer rings under SA guidance.
The SA-docking-conditional model, which integrates both SA
and docking objectives, represents a balanced compromise
between these extremes.

Lipinski's rule of ve is an important measure for assessing
drug-likeness, including criteria such as the number of rotat-
able bonds and logP values. The number of rotatable bonds
exhibits a strong positive correlation with the number of atoms
mitigating the slight negative correlation with both SA and
docking scores, while logP shows a positive correlation with SA-
and docking scores. Fig. 6 (bottom) illustrates effective condi-
tioning as both the SA- and docking-conditional models
Chem. Sci., 2024, 15, 14954–14967 | 14959



Fig. 6 Analysis of the distribution of certain ligand characteristics, including size, number of rings, number of rotatable bonds, and logP values,
across three sampling methods to show the effect on physicochemical properties: unconditional sampling, SA-conditional, and SA-docking-
conditioned sampling.

Chemical Science Edge Article
generally result in a lower average number of rotatable bonds
compared to the unconditional model. In contrast, the partition
coefficient logP tends to increase under both conditions.

Fig. 7 illustrates the evolution of the sample space across the
unconditional, SA-conditional, docking-conditional, and SA-
docking-conditional models. Each plot in this gure includes
a red rectangle that identies the regions where samples exceed
the respective means of the test set, indicating improved
Fig. 7 Scatter plots with Gaussian kernel density estimation (KDE) were
sampled ligands across test targets for different sampling methods: u
conditional sampling. Red rectangles within these plots highlight region
scores compared to the test set. Upper row: relationship between QED a
scores.

14960 | Chem. Sci., 2024, 15, 14954–14967
property scores. The rst row of Fig. 7 compares the drug-
likeness (QED) of sampled ligands with their synthetic acces-
sibility (SA) scores. The SA-conditional model shows a notable
shi with most of the sample mass residing within the red
rectangle. Thus, it successfully generates samples with notably
higher SA scores compared to both the unconditional model
and the test set ligands, while largely preserving docking scores.
In contrast, the docking-conditional model exhibits lower
used to illustrate the evolution of QED, SA, and docking scores for all
nconditional, SA-conditional, docking-conditional, and SA-docking-
s where sampled ligands demonstrate superior QED, SA, and docking
nd SA scores. Lower row relationship between docking scores and SA

© 2024 The Author(s). Published by the Royal Society of Chemistry
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docking scores on average at the expense of the SA scores. The
SA-docking-conditional model demonstrates a good balance,
transitioning towards both high SA scores and low docking
scores. Remarkably, most of the sampled ligands from this
model not only fall within the red rectangle but also signi-
cantly surpass the test set ligands in terms of docking scores
with equal SA scores as listed in Table 2, while the model with
normalization improves in both metrics.

We compare our importance sampling approach against the
classier guidancemethod19 using the ne-tunedmodel trained
on the CrossDocked dataset with 5 Å cutoff. For classier
guidance, we calculate the gradients with respect to atomic
coordinates by using the autograd engine for the outputs of the
surrogate models during the reverse sampling trajectory.
Guided by maximizing SA and minimizing docking scores, we
nd that the mean run time per protein pocket in the test set
using classier guidance is approximately 4.3 times slower than
importance sampling, largely due to the gradient calculations
(see Section C.1 in the ESI†). Notice that for classier guidance
the batch size has to be reduced in order to avoid out of memory
issues which are caused by the autograd engine. The impor-
tance sampling approach does not require gradients and
enables practitioners to maintain a signicantly larger batch-
size. The molecular validity for our proposed importance
sampling method is also signicantly higher at 93.40%
compared to classier guidance, which achieves a validity of
77.17% for 10 000 generated ligands. This shows that sampling
a given set of valid molecules takes even longer, as classier
guidance results in a signicant increase in adversarial struc-
tures. Nevertheless, we nd that the mean SA and docking
scores of 0.82 and −8.43, respectively, are better than those for
importance sampling (0.75 and −7.7). However, if we perform
classier guidance with the same number of update steps as the
importance sampling, the validity increases to 93.18% similarly
to importance sampling, but the SA and docking scores are
signicantly less optimized, reaching 0.72 and −7.15, respec-
tively. Additionally, we measure the effect of importance
sampling and classier guidance on the uniqueness rate
(number of unique molecules per 100 sampled ligands). The
unconditional model achieves a uniqueness rate of 0.83, which
diminishes slightly to 0.75 when using importance sampling
and more signicantly to 0.65 using classier guidance.

Overall, our ndings demonstrate that using importance
sampling as a guidance mechanism in the diffusion model is
a potent strategy for steering the generation of molecules
towards desired regions of chemical space while being
Table 3 Performance comparison among unconditional and pIC50-co
targets. For each target, 100 ligands were sampled. We assessed the perfo
QVina2 re-docking, the top-10 mean docking scores per target, (pred
compliance with Lipinski's Rule of Five (Lipinski), and mean diversity (Div

Model Vina (all) Y Vina (top-10%) Y pIC50 [

Training set −9.20 � 1.13 — 7.05 � 1
Test set −8.78 � 1.13 — 6.41 � 1
Unconditional −8.49 � 1.05 −9.79 � 0.87 6.28 � 0
pIC50-conditional −8.60 � 0.98 −9.75 � 0.86 7.65 � 0

© 2024 The Author(s). Published by the Royal Society of Chemistry
computationally several times cheaper compared to classier
guidance. The method effectively modies molecular properties
in line with desired multi-objective property proles, albeit
within the constraints set by the data distribution used for
training. Unlike classier-guidance, our approach does not
require (prohibitively) expensive backpropagation. Instead, we
achieve the aforementioned results using only a few importance
sampling steps (forward calls to the surrogate models).

2.2.1 Kinodata-3D. We leverage the Kinodata-3D dataset,
annotated with experimental pIC50 values, to train PILOT on
ligand–kinase complexes. Simultaneously, we train a property
model predicting pIC50, to guide the diffusion model with the
proposed importance sampling towards ligands that are more
likely to be potent inhibitors. All models are trained from
scratch because the pre-trained Enamine model does not
contain all atom types present in the Kinodata-3D dataset. We
leave the evaluation with a pre-trained model to future work.

We evaluate the models on a hold-out test set comprising ten
kinase targets that were not included in either the training or
validation datasets. The performance of our pIC50-conditional
model is summarized in Table 3. The pIC50-conditional model
shows a signicant improvement in predicted mean pIC50

values of 7.65 ± 0.78 compared to the test set ligands (6.41 ±

1.56). At the same time, it maintains robust performance
metrics in terms of docking scores and other critical properties
such as QED and compliance with Lipinski's rule of ve.

Fig. 8 provides a visual comparison of the sample spaces
generated by the unconditional and the pIC50-conditional
model. We observe a signicant shi in the overall density of
samples towards higher predicted pIC50 when using the
importance sampling guidance (le panel). Fig. 8 (right) illus-
trates the relationship between docking scores and pIC50. While
the pIC50-conditional model yields samples with higher pIC50

on average, the ligands maintain competitive docking scores.
This suggests that the model does not compromise docking
efficacy for higher expected pIC50.

Note, that the current approach is limited as pIC50 values are
inherently noisy, in particular when collected across various
data sources.32 Thus, the predicted binding affinities should be
interpreted cautiously. To alleviate this problem, we propose to
adopt ensemble modeling techniques to enhance the mean-
ingfulness of predictions in the importance sampling pipeline.
Similar approaches are, for example, commonly used for
stabilizing machine learning force elds.33

Fig. 9 (top) demonstrates how ensemble techniques signi-
cantly improve the robustness of pIC50 predictions. We employ an
nditional sampling using the Kinodata-3D test set, which includes 10
rmance based on several criteria: mean docking scores obtained from
icted) pIC50, drug-likeness (QED), synthetic accessibility score (SA),
ersity) across targets and ligands

QED [ SA [ Lipinski [ Diversity [

.28 0.49 � 0.16 0.75 � 0.07 4.73 � 0.52 —

.56 0.61 � 0.14 0.79 � 0.05 4.96 � 0.22 —

.68 0.63 � 0.14 0.75 � 0.13 4.95 � 0.25 0.65 � 0.06

.78 0.62 � 0.16 0.67 � 0.09 4.94 � 0.28 0.57 � 0.06
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Fig. 8 Left: density plot comparing unconditional with pIC50-conditional sampling. Right: scatter heatmap overlap of unconditional and pIC50-
conditional samples comparing docking scores and (predicted) pIC50 values.

Fig. 9 A violin plot is used to display the distribution of predicted pIC50 values for 100 sampled ligands across ten test set targets, guided either by
a single model or an ensemble approach. Upper panel: ligands generated under single model guidance, where the base model guides itself, or
ensemble guidance that includes seed models 500 and 1000. All other models are utilized for evaluating the respective samples. Lower panel:
here, the ensemble guidance for the base model is extended by incorporating an additional model, specifically seed800. This is referred to as
“Ensemble guidance (+1)”.

Chemical Science Edge Article
ensemble of property models for importance sampling guidance.
Each propertymodel, denoted as seed1, seed2, etc., is trained with
a different global seed. The base model is used to sample 100
ligands per test target, both with and without ensemble guidance.
The term single model guidance refers to the base model guiding
itself. We observe that single model guidance results in a notable
offset between the predictions of the base model and those of all
other property models, indicating poor generalization perfor-
mance. That is, self-guidance exploits the predicted pIC50 value
toomuch, as it was trained on. However, with ensemble guidance,
14962 | Chem. Sci., 2024, 15, 14954–14967
even just two additional seedmodels (seed500 and seed1000) lead
to greater improvement in generality. This enhancement is
evident in the pIC50 predictions of all seedmodels not included in
the ensemble guidance (i.e., seed1, seed2, seed15, and seed800).
As shown in Fig. 9 (bottom), further increasing the ensemble size,
such as by adding another model, here seed800, leads to addi-
tional renement in predictions and consequently, increased
generality of pIC50 predictions.

We observe improved generalization performance for the
ensemble compared to the single models. We evaluate the ve
© 2024 The Author(s). Published by the Royal Society of Chemistry
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models on the Kinodata-3D test set, which achieve an average
mean squared error of 1.34. In contrast, the ensemble built
from these ve models achieves a lower error of 1.23.

3 Conclusions

We have introduced PILOT, a novel equivariant diffusion-based
model tailored for de novo ligand generation conditioned on
protein pockets in three-dimensional space. Our research
demonstrates the superior performance of PILOT compared to
existing state-of-the-art models in this domain, as evidenced by
a comprehensive evaluation across a spectrum of metrics crit-
ical in medicinal chemistry and drug design.

A signicant nding of our study is the substantial
enhancement in downstream performance achieved by pre-
training our model on a vast dataset of molecular conformers.
This underscores the pivotal role of pre-training in the
structure-based drug discovery pipeline, demonstrating its
efficacy in improving the quality of generated ligands. Beyond
that, we have proposed a trajectory-based importance sampling
strategy, which enables targeted steering of ligand generation
towards desired chemical properties. This technique guides the
generation process towards ligands with desired properties
such as synthetic accessibility, drug-likeness, docking scores,
and predicted binding affinities by using surrogate models
trained on experimental data. This strategy represents an
important advancement in structure-based drug discovery,
offering researchers a powerful tool to design molecules with
tailored properties using 3D equivariant diffusion models.

The dependency on the availability and quality of training
data remains a critical challenge for deploying AI models like
PILOT in drug discovery pipelines. In the domain of structure-
based drug design, data can oen be sparse, noisy, and of
varying quality, which signicantly impacts the learning and
predictive capabilities of ML models. While our method heavily
relies on surrogate models and proxies such as the RDKit
synthetic accessibility (SA) scores to estimate the synthesiz-
ability of generated ligands, these scores may not fully capture
the complexities and practical challenges of medicinal chem-
istry. Addressing these challenges will require a concerted effort
to enhance data collection practices, improve data quality, and
expand the variety of data sources.

Moving forward, we see potential applications of PILOT in
the drug discovery pipeline by integrating this model with other
AI-driven tools and technologies, such as automated synthesis
platforms and high-throughput screening to accelerate drug
design. Furthermore, the scope of our model may be extended
from small molecule drugs to biologic therapeutics involving
for example peptides or antibodies.

4 Methods
4.1 Pocket conditioned 3D diffusion models

We aim to generate novel molecules M de novo, conditioned on
a protein pocket P while optimizing multiple objectives c, such
as synthetic accessibility, docking score, and predicted half-
maximal inhibitory concentration (IC50). Recent developments
© 2024 The Author(s). Published by the Royal Society of Chemistry
have utilized 3D diffusion models to implement pq(MjP), where
the task of the model is to denoise an initially random ligand
structure, while maintaining the protein pocket as a xed
condition.12,13,28 This is achieved by following a stochastic path
that targets the distribution of training data, iteratively moving
towards more dened structures pq(Mt−1jMt, P) as illustrated in
Fig. 1.

During training, the reverse distribution pq(Mt−1jMt, P) is
parameterized using the approach as proposed by Le et al.28.
That is, a noisy ligand Mt = (Xt, Ht, Et) at time step t is repre-
sented by perturbed atomic coordinates Xt, element types Ht,
and bond features Et, while the diffusion model pq is tasked in
predicting the noise-free structure M̂0=(X̂0,Ĥ0,Ê0), acting as
denoiser with the inherent goal to iteratively attain a cleaner
structure. We optimize the variational lower bound of the log-
likelihood log p(M0jP) and minimize the timestep-dependent
diffusion loss

Lt ¼ 1

2
ðwðtÞ � ldðM0; pqðMt; t;PÞÞ (1)

where ld : M�M/ℝþ reveals as mean-squared-error loss for
3D coordinates, and cross-entropy loss for discrete-valued data
types like atom, bond, and charge-types.28 To obtain the noisy
ligand Mt, we apply the forward noising process with Gaussian
diffusion for continuous valued coordinates, while discrete
valued data like atom, bond- and charge-types are perturbed
using categorical diffusion which both reads

qðXtjX0Þ ¼ N
�
Xt

��� ffiffiffiffiffi
at

p
X0; ð1� atÞI

�
(2)

qðCtjC0Þ ¼ C
�
CtjatC0 þ ð1� atÞ ~C

�
; (3)

where at ¼
Yt
k¼1

ð1� bkÞ˛ð0; 1Þ determines a variance-preserving

(VP) adaptive noise scheduler with empirical distribution ~C
estimated from the training set for categorical data (H, E).34
4.2 Multi-objective importance sampling

To sample ligands from the distribution pq(MjP, c), we utilize
Bayes' theorem to decompose the probability density into
pq(MjP, c) f pd(cjM, P)pq(MjP). We further assume that multiple
properties c = (c1, c2, ., ck) are conditionally independent,

leading to the factorization pdðcjM; PÞ ¼
Yk
l¼1

pdlðcljM; PÞ, where

each pdl(cljM, P) can be interpreted as an expert surrogate model
for a specic property. These surrogate models must be able to
predict the properties of interest at any step of the diffusion
trajectory, similar to classier-guidance.19 While classier-
guidance requires backpropagation at every step, making it
quickly unfeasible for ligand–pocket complexes with several
hundred atoms, our proposed importance sampling approach
eliminates the need for backpropagation. Moreover, far fewer
steps are needed to update the diffusion model compared to
classier-guidance, which also oen tends to steer the model
towards adversarial structures.19
Chem. Sci., 2024, 15, 14954–14967 | 14963
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As properties such as synthetic accessibility are determined
solely based on the ligand, whereas others, like docking scores,
depend on the interaction between the ligand and the protein
pocket, suitable property predictors pdi may be dened as
required. During the sampling process of a set of K noisy
ligands {M1, M2, ., MK}, we use importance weights derived
from pd(cjM, P) to rank each intermediate noisy sample at its
current position in the state space, as described in Algorithm 1.
Our goal is to generate samples from pq(Mjc, P) f pd(cjM, P)
pq(MjP) under the condition c, which species the property that
the ligand M must achieve. For continuous properties, we
choose a Gaussian distribution with a standard deviation of 1 to
model p(cjM, P). Specically, this takes the form

pdðcjM; PÞ ¼ 1ffiffiffiffiffiffi
2p

p exp
�
� 1

2
ðc� fdðM; PÞÞ2

�
. This formulation

also establishes a natural connection to maximum-likelihood
training for the property predictor fd. Since the reverse diffu-
sion trajectory is inherently stochastic, our goal is to preferen-
tially select samples that are most likely to follow a path
resulting in ligands meeting the specied conditions c. This
process is schematically depicted in Fig. 4. To accurately predict
these conditions, we train pd(cjM, P) as pd(cjMt, P, t) along the
forward noising diffusion trajectory, where Mt represents the
state of the ligand at time step t. The property model pd is
trained using the mean squared error and cross-entropy loss for
continuous and discrete properties, respectively. The rationale
behind this training approach is that denoising steps closer to
the original data distribution retain a clearer signal of the input
ligand, making them highly informative. In contrast, steps
closer to the prior noise distribution, although less informative,
can still provide valuable discriminative insights for pd. This
strategy leverages the nuanced progression of information
14964 | Chem. Sci., 2024, 15, 14954–14967
degradation during the diffusion process to efficiently guide the
generation of desired ligands without mode collapse.

The algorithm is inspired by the Sequential Monte Carlo
(SMC) method.35,36 A similar replacement strategy has previ-
ously been applied by Trippe et al.37 and Wu et al.38 in the
context of diffusion models for protein backbone modeling and
motif scaffolding. In Algorithm 1, we focus on maximizing
property values by scoring each predicted property value among
the samples in the population. To achieve this, we employ
somax normalization on the predicted property values fd(Mk,
P) for maximization. If the goal is to minimize a certain prop-
erty, the predicted property values must be multiplied by −1 to
compute the importance weights before applying the somax
operation. These importance weights represent the probability
of selecting samples from the nite population set for the next
iteration. When specic property values c are desired, instead of
relying solely on the predicted property values ck = fd(Mk, P), we
compute the probability using a Gaussian kernel as described
earlier. Notice that we additionally need to employ another
normalization scheme to rank each unique probability value.
For simplicity, we choose to use somax normalization again.
On CrossDocked, we employ the importance sampling every N
= 10 steps and rst lter for trajectories with highly synthetic
accessible samples in timesteps 100–250, while ligands with
better docking scores are weighted in steps 300–400 during the
reverse trajectory which involves 500 steps. Both importance
ltering steps are applied with temperature s = 0.1. We refer to
the ESI section C† for more details.

4.2.1 Classier guidance. We leverage the SA- and docking
score predictions of fd1,d2 to compute gradients with respect to
atomic coordinates that describe the direction to maximize/
minimize the corresponding properties. Given a single mole-
cule with n atoms, classier guidance for SA and docking score
optimization is described via the coordinate update equations

~Xt�1 � pqðXt�1jMt;PÞ
Xt�1 ¼ ~Xt�1 þ l1VXþfd1ðMt;PÞ � l2VXt

fd2ðMt;PÞ; (4)

where Xt�1˛ℝn�3 and the rst equation samples the atomic
coordinates with respect to the current noisy molecule and
protein pocket disregarding the SA and docking scores property.
The second equation applies the gradient guidance with scales
l1, l2 > 0 to maximize SA and minimize docking scores. In our
experiments we set l1 = l2 = 0.1.
4.3 Datasets

4.3.1 Enamine. We use the Enamine REAL drug-like
Diversity subset comprising 48.2 M compounds represented
as SMILES string representations. To process the 3D dataset, we
attempt to generate up to ve conformers per SMILES string
using OpenEye Omega (version 2022.1.2) classic with default
parameters without hydrogens.

4.3.2 CrossDocked. We use the CrossDocked2020 dataset
introduced in Francoeur et al.39 and follow the same ltering
and splitting strategies as in previous works, which utilized
a protein sequence identity splitting.6,9 This results in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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approximately 100 000 protein–ligand complexes for the
training set and 100 for the test set.

4.3.3 Kinodata-3D. We use the Kinodata-3D dataset,40

a collection of kinase complexes curated and processed in silico
using cross-docking data. To facilitate training of machine
learning models for structural protein–ligand complexes, asso-
ciated experimental binding affinity labels are included. The
dataset builds on the cross-docking benchmark established by
Schaller et al.,41 adopting a template-based approach. For more
details we refer to Backenköhler et al.40. We use approximately
105 000 pocket-ligand complexes for training, and save 310 and
136 complexes for validation and testing, respectively.

4.4 Choosing the cutoff for protein–ligand complex creation

The CrossDocked2020 dataset implements a pre-dened cutoff
surrounding the bound ligands to cut out the protein pockets.
Based on this, TargetDiff12 uses a cutoff region of 10 Å with the
centers of mass (CoM) of the residues acting as reference points
for measuring distances to ligand atoms. Residues whose CoM
are within or equal to the cutoff distance are included in the
Protein–Ligand (PL) complex. Conversely, DiffSBDD includes
the entire residue in the PL complex if any atom within that
residue falls inside the cutoff region.13 Our work adopts the
latter approach as it offers a more physically plausible repre-
sentation of the interaction space. We ablate different cutoff
values {5,6,7}Å on the CrossDocked2020 dataset and observe
that the model trained on the 7 Å cutoff performs best as
illustrated in Table 1 for the pre-trained model. We hypothesize
that the trade-off between smaller cutoff and model perfor-
mance is caused by the complexity and tendency to overt on
smaller complexes. Note that a smaller cutoff leads to PL
complexes with fewer atoms as shown in Figure and Table B1 in
the ESI.†

4.5 Model architecture

The PILOT architecture is an extension of EQGAT-diff28 with
minor changes to handle protein–ligand (PL) complexes. To
perform message-passing, we calculate the interactions in the
protein–ligand and protein–protein graphs using a radius graph
with a cutoff of 5 Å. We perform fully-connected message-
passing for all ligand–ligand interactions. Unlike the EQGAT-
diff architecture, we also incorporate a residual connection of
the transformed initial ligand–ligand edge encodings into the
PILOT architecture. Assuming that the small molecule consists
of n atoms, the initial one-hot encoded edge features E˛ℝn�n�5

categorize the presence of none, single, double, triple and
aromatic bonds. We further calculate the distance matrix of
D˛ℝn�n and compute an initial edge-feature between atom i and
j as e*ij ¼ eij5grbfðdijÞ˛ℝ5�20, which computes an outer product
between the one-hot encoding of the bond feature with an
exponential radial basis function with 20 channels. The
embedding e*ij is vectorized into shape ℝ100 and linearly trans-
formed to obtain the hidden edge embedding eð0Þij ˛ℝ128 prior to
the message passing. Aer L = 12 rounds of message-passing,
we use separate prediction heads for predicting coordinates,
atoms, charges, and bond types, as suggested in the initial
© 2024 The Author(s). Published by the Royal Society of Chemistry
EQGAT-diff architecture. We use 256 scalar and vector channels
and 128 edge channels across the network. We observe
improved model performance when including the initial
embedding of edge features through a residual connection aer
each message-passing layer. We hypothesize that this infor-
mation enables better 3D coordinates as well as bond predic-
tions by the diffusion model because the dependency between
bonds and atomic coordinates is included in each message-
passing layer.
4.6 Training details

We train PILOT with T = 500 diffusion timesteps (in contrast to
TargetDiff, which uses T = 1000). For training, we draw
a random batch of protein–ligand complexes and uniformly
sample timesteps t ˛ U(1, 500). The diffusion loss Lt is opti-
mized for each sample, which under the data prediction
parameterization means a mean-squared-error (MSE) loss for
atomic coordinates and cross-entropy (CE) loss for discrete-
valued modalities including atom- and bond types of the
ligand molecule. For more details we refer to Le et al.28. The
Enamine model was pre-trained for 10 epochs with the goal of
learning a broad chemical space of molecules not limited to
pocket–ligand complex data. We trained the models for 300
epochs from scratch on the CrossDocked2020 and Kinodata 3D
dataset. When leveraging the pre-trained Enamine model as
a starting point, we only ne-tuned for 100 epochs on the
CrossDocked2020 dataset. In all (pre-)trainings we use the
AdamW optimizer with AMSGrad and a learning rate of 2 ×

10−4, weight-decay of 1 × 10−12, and gradient clipping for
values higher than 10 throughout all experiments.

4.6.1 Property training. In this work, we utilize a joint
training strategy for both the diffusion and property models
within a single neural network architecture. Since both models
take a noisy ligand Mt = (Xt, Ht, Et) as input, the joint model
predicts both the clean molecule and the ground-truth property
of the input sample, such as synthetic accessibility and/or
docking score (M̂0 and ĉ, respectively). This is achieved by
including additional prediction heads, e.g. MLPs, operating on
the node/edge embeddings of the nal message-passing layer.
As the synthetic accessibility (SA) score only depends on the
ligand we also pre-train the Enamine model to jointly predict
the SA score in addition to the denoising task. When ne-tuning
on CrossDocked, we load the model weights from Enamine and
add an extra head for docking score prediction. However,
importance sampling can be performed using any external
model trained on a diffusion trajectory, as long as it uses the
same transition kernels as the diffusion model. In preliminary
studies, we experimented with separately trained models and
found that they also worked. However, for simplicity, we used
joint training in this work. We adapt the timestep dependent
loss weighting as in Le et al.,28 such that the gradient signal for
larger timesteps is damped, following the property loss

Lp,t = w(t)‖c0 − pq,d(Mt, t, P)‖
2. (5)
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Data availability

The processed CrossDocked2020 dataset can be downloaded
from https://github.com/pengxingang/Pocket2Mol/tree/main/
data. The Kinodata-3D dataset can be downloaded from
https://volkamerlab.org/projects/kinodata-3d. The Enamine
REAL data used in this study for pre-training the model is
licensed and thus cannot be made available. However, we
provide all information needed to reproduce the dataset.
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