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BACKGROUND/OBJECTIVES: Sleeping behavior and individual prospensity in sleep timing during a 24 h period, known as
chronotypes, are underestimated factors, which may favor the development of obesity and metabolic diseases. Furthermore,
melatonin is known to play an important role in circadian rhythm, but was also suggested to directly influence metabolism and
bodyweight regulation. Since disturbed and shifted sleep rhythms have been observed in adolescents with obesity, this study
aimed to investigate potential interactions between melatonin secretion, chronobiology, and metabolism. In addition, the influence
of artificial light especially emitted by electronic devices on these parameters was of further interest.
SUBJECTS/METHODS: We performed a cross-sectional study including 149 adolescents (mean age 14.7 ± 2.1 years) with obesity.
Metabolic blood parameters (e.g., cholesterol, triglycerides, uric acid, and insulin) were obtained from patients and correlated with
nocturnal melatonin secretion. Melatonin secretion was determined by measuring 6-sulfatoxymelatonin (MT6s), the major
metabolite of melatonin in the first-morning urine, and normalized to urinary creatinine levels to account for the urinary
concentration. Chronobiologic parameters were further assessed using the Munich ChronoType Questionnaire.
RESULTS: Subjects with insulin resistance (n= 101) showed significantly lower nocturnal melatonin levels compared to those with
unimpaired insulin secretion (p= 0.006). Furthermore, triglyceride (p= 0.012) and elevated uric acid levels (p= 0.029) showed
significant associations with melatonin secretion. Patients with late chronotype showed a higher incidence of insulin resistance
(p= 0.018). Moreover, late chronotype and social jetlag were associated with the time and duration of media consumption.
CONCLUSION:We identified an association of impaired energy metabolism and lower nocturnal melatonin secretion in addition to
late chronotype and increased social jetlag (misalignment of biological and social clocks) in adolescents with obesity. This might
point towards a crucial role of chronotype and melatonin secretion as risk factors for the development of pediatric and adolescent
obesity.
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INTRODUCTION
Obesity has a multifactorial etiology and is affected by genetic
background, lifestyle, and environmental factors. Besides reduced
physical activity and high amounts of energy-dense food,
insufficient sleeping behavior has been identified to favor the
development of obesity in adults and adolescents [1, 2].
The pineal hormone melatonin plays a crucial role in the

regulation of the biological clock and therefore in the sleep-wake
rhythm. Its secretion is controlled by the master circadian clock
located in the suprachiasmatic nucleus of the hypothalamus and
follows a diurnal pattern with its main secretion during darkness
[3]. While the highest concentrations of melatonin are observed
during childhood, the secretion decreases during puberty and
further with increasing age [4]. A failure of the pineal gland to
grow and a tendency to calcify have been discussed as factors

leading to a downregulation of pineal activity and to a loss of
circadian rhythm with age [5, 6]. The modified secretion of
melatonin during adolescence plays among other hormonal,
genetic, and environmental (e.g., light exposure) factors an
important role in regulating the individual timing of sleeping
behavior, known as chronotypes [7]. During pubertal develop-
ment, the sleep-wake behavior is physiologically shifted towards
later chronotypes, which can lead to a misalignment of biological
and social clocks in this age cohort [8, 9]. This phenomenon has
been termed social jetlag [7, 10] and has been associated with
increased risk for the development of obesity, metabolic disorders,
and impaired mental health [11, 12].
One molecular link between sleep deficiency and metabolic

diseases could be melatonin, which seems to have specific effects
on metabolism and bodyweight regulation [13]. Further evidence
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regarding interaction between melatonin and glucose metabolism
derives from genome-wide association studies: polymorphisms in
the melatonin receptor 1B gene (MTNR1B) are associated with
glucose intolerance, reduced β-cell function, and a higher risk for
diabetes mellitus type 2 [14]. Additionally, McMullan et al.
observed that nocturnal melatonin secretion was independently
and inversely associated with insulin levels in a large women
cohort without diabetes mellitus type 2, hypertension, or
malignancy [15]. The same authors identified lower nocturnal
melatonin secretion as an independent risk factor for the
development of diabetes mellitus type 2 [16]. Furthermore, there
is growing evidence that melatonin may significantly lower arterial
systolic blood pressure and improve the lipid profile (decrease of
LDL cholesterol and increase of HDL cholesterol) of animals and
humans [17, 18].
The influence of media consumption on chronotype, melatonin

secretion, and metabolism is of further interest. Studies showed
that optical radiation at short wavelengths, which is emitted by
devices, such as tablets, computers, or smartphones suppresses
melatonin secretion, especially if used in the evening hours,
leading to an altered sleeping behavior [19, 20]. This again may
result in impaired physical and psychological health [20].
Most of the existing studies on that matter, only focus on partial

aspects, are based on animal models, or were mainly conducted in
adult cohorts. Especially, studies in children and adolescents are
rare and inconclusive [21–24].
Therefore, the aim of the present study was to examine the

interaction of chronobiologic parameters, melatonin secretion,
and metabolism in a well-characterized adolescent cohort with
obesity. We further wanted to assess the influence of time and
duration of media consumption on these parameters.

SUBJECTS AND METHODS
Subjects
In this cross-sectional study, n= 149 adolescents with obesity between 10
and 17 years were recruited from the pediatric obesity outpatient clinic of
Charité Universitätsmedizin Berlin (Germany) between August and
December 2014. Inclusion criteria consisted of obesity (Body Mass Index
(BMI) > 97th percentile) and age 10–17 years. Exclusion criteria included
intake of melatonin or medication that is known to affect melatonin
secretion (beta-blocker, antidepressants, NSAIDs, diuretics) or weight (e.g.,
corticosteroids) and concurring diseases affecting weight (Cushing´s
syndrome, hypo-/hyperthyroidism). The study was approved by the
Research Ethics Committee of Charité Universitätsmedizin Berlin (EA2/
079/14) and informed consent was obtained from all parents/guardians.
Bodyweight was measured with a digital scale (Soehnle, Nassau, Germany).
Height was measured using a wall-mounted stadiometer (Keller, Leipzig,
Germany). BMI was calculated (weight in kilograms divided by the square
of the height in meters). Obesity was defined as BMI > 97th percentile
according to German reference data. The degree of obesity was expressed
as the standard deviation of the BMI (BMI-SDS). The general medical
examination was performed and arterial blood pressure was measured in a
supine position after 5 min rest using a Dinamap model V100 (GE
Healthcare, Illinois, Chicago, USA). Results were interpreted using age-
specific and sex-specific percentiles. Pubertal status was assessed
according to Tanner’s criteria.

Biochemical analyses and calculations
Blood sampling was performed after overnight fasting between 8 and 10
am. Fasting glucose, insulin level, uric acid, lipid state (total cholesterol;
low-density lipoprotein (LDL); high-density lipoprotein (HDL); triglycerides),
and kidney function parameters were measured by commercially available
test kits in a certified laboratory (Labor Berlin Charité Vivantes GmbH,
Berlin, Germany).
Insulin resistance was estimated by using the homeostasis model

assessment of insulin resistance (HOMA-IR), according to Matthews et al.
[25]: insulin (mIU/L) x glucose (mg/dl)/405. HOMA-IR was shown to
correlate well with insulin resistance using the euglycemic-
hyperinsulinemic clamp technique in obese as well as non-obese children
and adults [26]. Insulin resistance was defined as sex- and age-adjusted

HOMA-IR > 95th percentile, according to pediatric standard values by
Allard et al. [27]. Metabolic syndrome was defined as proposed by the
world health organization (WHO) for childhood [28]: obesity (BMI > 97th
percentile) + (insulin resistance or impaired fasting glucose or impaired
glucose tolerance) + (triglycerides > 150mg/dl and/or HDL cholesterol
<35mg/dl and/or systolic and/or diastolic blood pressure ≥95th percen-
tile). Hyperuricemia was defined as >5.9 mg/dl for female and >7.0mg/dl
for male adolescents.

Melatonin measurement
To estimate the cumulative overnight melatonin secretion,
6-sulfatoxymelatonin (MT6s), the major metabolite of melatonin was
measured in the first-morning urine and normalized to urinary creatinine
levels to account for the urinary concentration. Several studies demon-
strated that MT6s to creatinine ratio (MT6s:Cr) ratio correlates well with the
cumulative nocturnal melatonin secretion [15, 16, 29]. Therefore, subjects
were asked to bring a sample from the first-morning urine (between 06.30
and 07.00 am) on the day of examination, which was a regular school day.
Samples were aliquoted, frozen, and stored at −80 °C. MT6s levels were
measured in duplicates in the laboratory of pediatric endocrinology of
Charité Universitätsmedizin Berlin using an enzyme-linked immunosorbent
assay (ELISA) (BÜHLMANN laboratories AG, Schönenbuch, Switzerland).
Urinary creatinine was measured in a certified laboratory (Labor Berlin
Charité Vivantes GmbH, Berlin, Germany).

Chronobiology
The chronobiological parameters were determined using the Munich
ChronoType Questionnaire (MCTQ), which is the central instrument of an
internet-based investigation of sleep behavior, chronotype, and social
timing (https://www.thewep.org/documentations/mctq) and was shown to
be a valid predictor of chronotype [30, 31]. For chronotype determination,
the midpoint of sleep on workdays (MSW) and the midpoint of sleep on
free days (MSF) were calculated [11]. Chronotype (MSFsc) was defined as
MSF corrected for sleep deficit acquired during workdays. The discrepancy
between biological and social timing, the social jetlag (SJL) was defined as
the time difference between midsleep on free days (MSF) and midsleep on
working days (MSW) [11]. Weekly average sleep duration was calculated as
sleep duration during the week and during the weekend considering the
number of free and working days ((SDw ×WD+ SDf × (7−WD))/7).
Regular physical activity other than school sport was reported as well as

daily electronic media consumption (television, computer, tablet or
smartphone). Duration and daytime of overall media consumption
including computer use for school were assessed by the questionnaire.

Statistical methods
Statistical analyses were performed using SPSS (SPSS Inc., Chicago, Illinois,
USA, version 27.0). Data are presented as mean ± standard deviation (SD)
or median with 1st and 3rd quartile, depending on the distribution of
continuous variables. Frequency is given in percentage (%) for categorical
variables. Normality was tested by Kolmogorow–Smirnow test. Differences
in medians were tested using nonparametric tests (Mann–Whitney U test
for two independent variables, Kruskal–Wallis for more than two
independent variables). To explore differences in multiple groups, post-
hoc tests were performed (Bonferroni correction in case of variance
homogeneity and Games–Howell post-hoc test in case of variance
inhomogeneity).
To analyze the influence of the independent variables sex, age, and

pubertal status, multiple linear regression analysis (enter model) was
performed. The square root of MT6s:Cr ratio and the logarithm of
triglyceride levels was applied in the regression models and correlations to
ensure normal distribution. All analyses were explorative and p-values are
interpreted as such.

RESULTS
Baseline characteristics
The mean age of participants (n= 149) was 14.5 ± 2.1 years while
48% were boys. Insulin resistance was observed in 101 subjects
(69%). In addition, metabolic syndrome according to the WHO
criteria was identified in 53% of all subjects. Further baseline
characteristics stratified to patients with and without insulin
resistance are outlined in Table 1.
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The majority of patients (55%) reported no further weekly
physical activity in addition to physical education at school. 33%
declared to use electronic media less than 3 h per day, 48%
between 3 and 6 h and media consumption of more than 6 h
per day was identified in 19% of all subjects. Leisure time in front
of a screen after 10 pm was seen in 46%.

Overnight melatonin secretion, patient characteristics, and
metabolic parameters
Overnight melatonin secretion defined as MT6s:Cr ratio was
significantly higher in girls (28.0 ng/mg; 1st quartile: 19.0 ng/mg;
3rd quartile: 40.2 ng/mg) compared to boys (24.3 ng/mg; 1st
quartile: 15.0 ng/mg; 3rd quartile: 31.6 ng/mg; p= 0.010) (Fig. 1A).
Older age was correlated with significantly lower MT6s:Cr ratio
(Spearman’s r: −450; p < 0.001) while prepubertal children showed
higher melatonin secretion compared to postpubertal adoles-
cents: 34.1 ng/mg (1st quartile: 27.1 ng/mg; 3rd quartile: 58.3
ng/mg versus 21.8 ng/mg (1st quartile: 13.4 ng/mg; 3rd quartile:
33.3 ng/mg; p= 0.005) (Fig. 1B). Increased melatonin concentra-
tion was also observed in pubertal subjects (27.1 ng/mg; 1st
quartile: 20.2 ng/mg; 3rd quartile: 41.7 ng/mg) compared to
postpubertal adolescents (21.8 ng/mg; p= 0.045) while no sig-
nificant differences were seen between prepubertal and pubertal
subjects (34.1 ng/mg vs. 27.1 ng/mg; p= 0.699).
After adjustment for age, sex, and pubertal status, there was no

significant association between MT6s:Cr ratio and BMI-SDS (p=
0.065).
Nocturnal melatonin secretion was significantly decreased in

patients with insulin resistance (Fig. 1C). The median MT6s:Cr ratio
was 24.3 ng/mg (1st quartile: 15.7 ng/mg; 3rd quartile: 33.0 ng/mg)
among subjects with insulin resistance vs. 32.2 ng/mg (1st quartile:

22.7 ng/mg; 3rd quartile: 41.9 ng/mg) among those without insulin
resistance (p= 0.006). After adjustment for age, sex, pubertal
status this effect remained significant (p= 0.008).
Nocturnal melatonin secretion negatively correlated with uric

acid levels (Pearson’s r: −0.247; p= 0.003), but not with lipid levels
(triglycerides, total cholesterol; LDL; HDL). Performing a regression
analysis, we identified that elevated uric acid levels (p= 0.029) and
triglyceride levels (p= 0.012) showed associations with melatonin
secretion (Table 2) after adjustment for sex, age, and Tanner
stages. However, the presence of a metabolic syndrome did not
seem to influence the melatonin secretion (p= 0.100; Table 2).

Chronotype, metabolism, and media consumption
Significant negative correlations between nocturnal melatonin
secretion and chronotype (Pearson’s r: −0.260; p= 0.002) as well
as between melatonin secretion and social jetlag were observed
(Pearson’s r: −0.248; p= 0.003).
Furthermore, increased age correlated with delayed chronotype

(Spearman’s r: 0.369; p < 0.01) and increased social jetlag (Spear-
man’s r: 0.292; p < 0.01), while there were no differences between
boys and girls regarding both chronotype and social jetlag. (Fig.
2A and B).
Patients with higher Tanner stages showed delayed chron-

otypes (p= 0.002; Fig. 2C). Differences were observed between
prepubertal (3.0 h; 1st quartile: 2.7 h; 3rd quartile: 4.6 h) and
postpubertal patients (4.5 h; 1st quartile: 3.6 h; 3rd quartile: 5.5 h;
p= 0.014) as well as between pubertal (3.7 h; 1st quartile: 3.0 h;
3rd quartile: 4.6 h) and postpubertal patients (p= 0.023), while no
differences were observed between prepubertal and pubertal
patients (p= 0.999). Furthermore, patients with higher Tanner
stages had increased social jetlag (p= 0.003) (see Fig. 2D).

Table 1. Patients’ characteristics.

All (n= 149) Without IR (n= 46) With IRd (n= 101) p-value

Clinical characteristics

Sex (n; %)

Male 71 (48%) 21 (46%) 48 (48%) 0.833e

Female 78 (52%) 25 (54%) 53 (52%)

Age (years)b 14.7(12.8–16.3) 14.5 (12.1–16.1) 15.1 (13.3–16.3) 0.415e

Pubertal stage (n; %)c

Prepubertal (I) 13 (10%) 6 (15%) 6 (6%) 0.293e

Pubertal (II,III) 27 (20%) 8 (20%) 19 (21%)

Postpubertal (IV,V) 94 (70%) 26 (65%) 67 (73%)

BMI (kg/m²)b 31.9 (29.5–37.2) 29.2 (27.7–32.0) 34.6 (30.7–38.9) <0.001

BMI-SDSa 2.7 ± 0.6 2.4 ± 0.5 2.9 ± 0.5 <0.001

Systolic RR (mmHg)b 132 (122–141) 129 (120–138) 133 (126–142) 0.094

Diastolic RR (mmHg)b 68 (63–73) 68 (62–72) 68 (64–73) 0.684

Chemical analysis

Triglycerides (mg/dl)b 93 (69–129) 69 (58–96) 102 (77–144) <0.001

Total cholesterol (mg/dl)b 162 (147–184) 160 (138–179) 163 (152–186) 0.087

HDL cholesterol (mg/dl)b 48 (40–55) 53 (43–61) 46 (39–53) 0.001

LDL cholesterol (mg/dl)b 98 (85–117) 93 (73–111) 99 (86–119) 0.044

Uric Acid (mg/dl)b 5.5 (4.8–6.7) 5.2 (4.2–6.7) 5.7 (4.9–6.7) 0.050

MT6s:Cr ratiob 27.4 (17.2–37.4) 32.6 (23.0–44.0) 26.4 (15.8–35.0) 0.006

Bold values identify statistical significance p < 0.05.
BMI body mass index, BMI-SDS BMI standard deviation score, HDL high-density lipoprotein, IR insulin resistance, LDL low-density lipoprotein, RR Riva-Rocci
blood pressure, MT6s 6-sulfatoxymelatonin, Cr creatinine.
aData shown as mean ± SD.
bData shown as median (25.–75.percentile).
cPubertal stages (Tanner), n= 15 missing.
ddefined as HOMA-IR > 95th percentile: according to Allard et al. [40]; n= 2 missing.
eχ2-Test.
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Differences were especially observed between prepubertal (1.5 h;
1st quartile: 0.8 h; 3rd quartile: 2.5 h) and postpubertal patients
(2.7 h; 1st quartile: 1.9 h; 3rd quartile: 3.5 h) (p= 0.011) while
differences between pubertal (2.2 h; 1st quartile: 1.5 h; 3rd quartile:
3.6 h) and postpubertal (p= 0.094) as well as between prepubertal
and pubertal (p= 0.674) did not reach significance after Bonfer-
roni correction.
The association between chronotype and insulin resistance is

shown in Fig. 2E. After adjustment for sex, age and Tanner stages
median MSF was 4.5 h (1st quartile: 3.6 h; 3rd quartile: 5.4 h)
among subjects with IR versus 3.9 h (1st quartile: 3.1 h; 3rd
quartile: 4.8 h) among those with unimpaired insulin secretion
(p= 0.018). Therefore, patients with insulin resistance had a
delayed chronotype for 38minutes. In addition, social jetlag was
increased in patients with insulin resistance (2.7 h; 1st quartile:
1.7 h; 3rd quartile: 3.3 h) compared to patients without insulin
resistance (2.0 h; 1st quartile: 1.5 h; 3rd quartile: 2.8 h; Fig. 2F).
However, this effect did not remain significant after adjusting for
sex, age, and Tanner stages (p= 0.097).
Adjusted for sex, age and pubertal status no significant

differences were observed between chronotype and BMI-SDS
(p= 0.085), melatonin secretion (p= 0.212) or metabolic syn-
drome (p= 0.729).
In the next step, we examined a potential association between

individual chronotype and media consumption. We identified
significant associations of media consumption in the late evening
(after 10 pm) and the duration of media consumption with
chronotype and social jetlag (see Table 2). However, melatonin
secretion showed no association with the daytime or duration of
media consumption.

A B

C

* **
*

**

Fig. 1 Melatonin secretion in regards to patients’ characteristics. A Shows differences of melatonin secretion in boys and girls. B Shows
melatonin secretion in regards to different pubertal stages. Comparison of nocturnal melatonin secretion in patients without and with insulin
resistance (C). Data are presented as boxplots. For statistical analysis Mann–Whitney U Test (A, C) and Kruskal–Wallis-Test (B) with Bonferroni
correction was performed *p < 0.05; **p < 0.01.

Table 2. Association of media consumption with chronobiology
(MSFst and social jetlag) and melatonin secretion.

B coefficient p-
value

Chronotype (MSFst)

Media consumption after 10 pm 0.993 0.001

Duration of media consumption 1.070 0.002

3–6 h vs. <3 h 0.789 0.004

>6 h vs. <3 h 1.138 0.001

Social jetlag

Media consumption after 10 pm 0.842 0.004

Duration of media consumption 1.057 0.002

3–6 h vs. <3 h 0.4034 0.131

>6 h vs. <3 h 1.072 0.002

Melatonin secretion

Media consumption after 10 pm

Duration of media consumption: 0.122 0.652

3–6 h vs. <3 h −0.324 0.210

>6 h vs. <3 h −0.486 0.145

Bold values identify statistical significance p < 0.05.
Regression analysis: Sex, age, and pubertal status were introduced as
cofactors; n= 149. Linear regression model. B= unstandardized regression
coefficient.
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DISCUSSION
Several studies described a close relationship between melatonin
secretion, obesity, and metabolic disorders in adults [13, 32, 33].
The purpose of this study was to assess the relationship between
nocturnal melatonin concentration, chronotype, and metabolic
parameters in obese adolescents with and without insulin
resistance.
We identified that melatonin was negatively correlated with

higher age and Tanner stages and that girls showed higher
melatonin secretion compared to boys, which is in line with
previous studies [34, 35]. Overall, our cohort showed a large

inter-individual range in nocturnal melatonin secretion, which
might be due to its complex secretion and interfering factors like
season, chronotype, and the use of artificial light [15, 16, 36].
Here, obese patients with insulin resistance had lower nocturnal

melatonin secretion. This effect remained significant after adjust-
ing for pubertal status and is therefore most likely no reflection of
an increase of insulin resistance during puberty as described by
Moran et al. [37]. These results are further consistent with
experimental and clinical data in adults that showed a strong
association of melatonin and impaired insulin/glucose metabolism
[13, 15, 16, 33, 38]. One of the underlying mechanisms could be

A B

C D

E F

*
*

*

*

Fig. 2 Comparison of chronobiologic parameters in males and females. A Differences of chronotype in males and females. B Differences of
social jetlag in males and females. Data are presented as boxplots. For statistical analysis Mann–Whitney U Test was performed. Comparison of
chronobiologic parameters stratified to pubertal stages. C Differences of chronotype. D Differences of social jetlag. Comparison of chronotype
(E) and social jetlag (F) in patients with and without insulin resistance. Data are presented as boxplots. For statistical analysis Mann–Whitney U
Test (A, B) and Kruskal–Wallis Test (C–F) was performed. Post-hoc tests are Bonferroni corrected. *p < 0.05.
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polymorphisms of the melatonin receptor (MTNR1B) that are
associated with a higher risk of glucose intolerance in children and
adolescents [39]. Melatonin receptors (MT1 and MT2) are
expressed in pancreatic β-cells where an inhibitory effect of
melatonin on insulin secretion via cAMP and cGMP pathways has
been described [33, 40–42]. Furthermore, melatonin also seems to
have a direct impact on the synthesis, action, and secretion of
insulin via regulating the expression and triggering of GLUT4
receptors [13]. A study in adolescent girls showed an association
of later melatonin offset, insulin resistance, and polycystic ovarian
syndrome [21] while no correlation was found between urinary
MT6s and HOMA-IR in a group of South-Korean girls (6.3–12.4
years). However, this might be due to the age range and the fact
that only a small number of patients showed relevant metabolic
disorders [22].
Regression analysis further identified a significant association of

triglyceride levels and melatonin secretion which was in line with
several studies that described a hypolipidemic effect of melatonin
in adult patients with diabetes mellitus type 2 [17, 18, 43].
Furthermore, patients with elevated uric acid levels showed lower
melatonin secretion, which is also in accordance with adult studies
[15]. As elevated uric acid levels are also known to be an
independent risk factor for cardiovascular diseases [44], alterations
of melatonin secretion may represent a possible link: a study by
Mayo et al. indicated that melatonin is able to lower systemic
inflammation caused by elevated uric acids levels via inhibition of
cyclooxygenase 2, which may reduce mitochondrial dysfunction
[45]. Interestingly, we only found relevant associations of
individual components of the metabolic syndrome (insulin
resistance, hypertriglyceridemia, and hyperuricemia) but not with
the complete metabolic syndrome, which is in contrast to several
studies in adults [17, 46]. Moreover, no significant correlation
between obesity and melatonin secretion was observed, possibly
due to the small range of BMI-SDS. However, strong evidence from
experimental data exists that melatonin is involved in energy
metabolism and body fat regulation [47, 48]. For instance, in
experimental studies in rats, pinealectomies led to increased
bodyweight, impaired glucose tolerance, and elevated insulin
levels [49], whereas melatonin substitution in diabetes-prone rats
prevented the development of diabetes and was even able to
reduce bodyweight [47]. However, whether melatonin concentra-
tions are affecting bodyweight and development of obesity
directly and by which mechanism is discussed controversially
[22, 35].
In several studies in adults, treatment with melatonin was able

to show a significant reduction of bodyweight and oxidative stress
as well as an improvement of lipid profile, insulin sensitivity, and
hepatic parameters [17, 50]. Most of these studies used melatonin
as an adjuvant, suggesting that it is most effective when
combined with a multimodal lifestyle therapy [50]. However,
other studies were not able to reproduce the beneficial effects of
melatonin supplementation or questioned the longevity of these
effects. It is also not clear if all patients or only those with the
particularly low secretion of melatonin could benefit from a
supplementation [50].
Our results further demonstrated that higher age and Tanner

stages were associated with later chronotype and increased social
jetlag, which was also observed in previous studies in this age
cohort [7, 8]. While we did not observe any sex-related differences,
we identified a significant correlation between delayed chron-
otype and insulin resistance. These results support studies in
adults, which provided evidence that sleep disturbances are
associated with abnormal glucose metabolism [51]. A large Finnish
study (25–74 years) detected that subjects with late chronotypes
had a 2.5-fold increased risk for diabetes mellitus type 2 compared
to individuals with an earlier chronotype [52]. Additionally,
Reutrakul et al. identified that late chronotype is associated with
poorer glycemic control in patients with diabetes mellitus type 2

independent of sleep quality or duration [53]. These results
suggest that the biological clock is playing a role in metabolic
regulation [53]. Studies conducted in shift workers, provide
additional evidence for a link between circadian misalignment
and metabolic disorders as they found that shift work is associated
with a significantly higher risk of developing diabetes mellitus
type 2 and other metabolic diseases [54]. One potential molecular
link between sleep disturbance and metabolic diseases is
melatonin as we observed an association between overnight
melatonin secretion and the presence of insulin resistance. We
further identified negative correlations between nocturnal mela-
tonin secretion and individual chronotype as well as social jetlag.
However, other hormones (e.g., cortisol, glucagon, leptin, ghrelin,
adiponectin, growth hormone) that also underlie a circadian
rhythm [32] may additionally play a role in that: for example,
studies showed that chronic sleep loss leads to an increase of
ghrelin and a decrease of leptin possibly resulting in an increase of
appetite and a decrease of satiety [55].
One common underlying cause of induced altered sleeping

behavior and low melatonin secretion is the use of artificial light.
In our patient cohort, late chronotype and social jetlag were
associated with higher and later (after 10 pm) media consumption,
which was consistent with previous studies [19]. This delay of the
individual circadian rhythm may result in sleep disorders like
insomnia or daytime sleepiness with related physical and
psychological disorders [20]. Furthermore, worse academic
performance [56] and higher incidences of traffic accidents [57]
have been observed in this age group which is why the American
Academy of Pediatrics even suggested postponing the daily start
of school for adolescents [58].

Limitations and conclusion
In the present study, we identified an association between
melatonin secretion and insulin resistance, but the data do not
allow any conclusion about the direction. However, genetic
studies examining melatonin receptor alterations rather suggest
an influence of melatonin on insulin resistance and ß-cell function
than vice versa [59].
Furthermore, assessing melatonin secretion by measuring its

main metabolite MT6s in morning urine samples and normalizing
it to urine creatinine levels does not allow any information on
timing or amplitudes of secretion. However, after many years of
experience with 24 h urine samples in a pediatric outpatient
setting, we believe that the applied method is the most robust
and accurate available method for this group of adolescent
patients as is it easy to use and non-invasive. The small range of
BMI-SDS and the lack of a normal weight control group may have
affected the power to detect associations between nocturnal
melatonin secretion and obesity as well as between chronotype
and obesity. In addition, conclusions regarding different Tanner
stages are limited since prepubertal and pubertal subjects were
underrepresented in our patient cohort. Furthermore, we did not
take seasonality into account. Although there is evidence that
MT6s output is not affected by season [36], a bias due to different
lengths of days during data collection cannot be fully excluded.
In conclusion, this is the first study that identified associations of

lower nocturnal melatonin secretion, late chronotype, and insulin
resistance in adolescents with obesity. These findings support the
growing evidence for a substantial interaction of melatonin
secretion and chronotype with metabolism. Interestingly, we did
not observe a correlation between BMI-SDS and nocturnal
melatonin levels. This might argue for a bodyweight independent
impact of melatonin on metabolic function, specifically in regard
to the risk of developing insulin resistance. Based on the
knowledge about the relationship between melatonin secretion,
chronotype, and social jetlag, it might be of importance to
integrate strategies to reduce social jetlag by adapting sleeping
behavior with the individual chronotype into multimodal lifestyle
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therapy of adolescents with obesity. This implies changes in media
consumption time especially in the evening, exposure to daylight,
and alignment of environmental factors like daily school start time
with the age-dependent chronotype.
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