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Modeling short visual events through the
BOLD moments video fMRI dataset and
metadata

Benjamin Lahner 1 , Kshitij Dwivedi 2,3, Polina Iamshchinina 2,
Monika Graumann 2, Alex Lascelles 1, Gemma Roig 3,4,
Alessandro Thomas Gifford 2, Bowen Pan1, SouYoung Jin1,
N. Apurva Ratan Murty 5,6, Kendrick Kay7, Aude Oliva1,8 & Radoslaw Cichy2,8

Studying the neural basis of human dynamic visual perception requires
extensive experimental data to evaluate the large swathes of functionally
diverse brain neural networks driven by perceiving visual events. Here, we
introduce the BOLDMomentsDataset (BMD), a repository ofwhole-brain fMRI
responses to over 1000 short (3 s) naturalistic video clips of visual events
across ten human subjects. We use the videos’ extensive metadata to show
how the brain represents word- and sentence-level descriptions of visual
events and identify correlates of videomemorability scores extending into the
parietal cortex. Furthermore, we reveal a match in hierarchical processing
between cortical regions of interest and video-computable deep neural net-
works, andwe showcase that BMD successfully captures temporal dynamics of
visual events at second resolution. With its rich metadata, BMD offers new
perspectives and accelerates research on the human brain basis of visual event
perception.

Understanding visual events is a hallmark of human intelligence that
engages a distributed and functionally diverse network of cortical
regions. For example, extracting the meaning of even a simple event,
such as a person opening a door, requires at a minimum parsing the
scene into relevant components (a person, door, indoor room)1–6 and
integrating these components over time for accurate action recogni-
tion (the door is being opened, not closed)7–11, including socially rele-
vant cues (is thepersonopening thedoor angryor friendly?)12–14. Part of
the event is also encoded into brainmemory regions for later recall15–19.
Due to the richness of this cortical network, ecologically-valid visual
event understanding is challenging to study with experimental rigor.

To advance empirical evaluation of this network,we introduce the
BOLD Moments Dataset (BMD), a dataset of fMRI responses to 1102

3-second naturalistic videos from ten human adult participants. The
videos span a range of events that humansmaywitness in daily life and
evoke a representative range of neural responses. Each video clip in
BMD is alsohuman-annotatedwith object, scene, action, sentence, and
memorability labels to relate brain activity to meaningful aspects of
visual events.

Short naturalistic videos (3 s long) strike a good balance between
ecological validity and experimental control, making them well suited
for investigating human perception of dynamic visual content. Short
video stimuli supplement work using still images by driving a greater
extent20–24 and different pattern9,11,25,26 of neural responses. Short visual
events also complement work using longform movies by isolating
meaningful actions from long term contextual effects18,27,28.
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Below, we detail BMD’s experimental design and investigate
human dynamic perception using a diverse set of modeling approa-
ches. Aided by BMD’s large number of stimuli and widespread reliable
activity, we use a video-computable deep neural network (DNN)
trained on an action recognition task to predict brain responses
through all cortex, including the dorsal visual and parietal cortices. We
additionally input frame-shuffled videos and the first/last second of
video frames into DNNs to highlight the temporal content captured by
the brain responses: the shuffled video inputs significantly reduce the
DNN’s prediction accuracy in most regions of interest, and the first
(last) second of video frames best explains the early (late) BOLD signal
estimates in early and ventral visual cortex. A representational simi-
larity analysis29 comparing language model embeddings of BMD’s rich
stimuli metadata with multivariate brain activity reveals that the sen-
tence descriptions correlate with ventral and dorsal visual cortex at
nearly twice the amount of the object, scene, and action labels. Finally,
we show the videos’ memorability scores correlate with brain
responses not only in the visual cortex, as seen with images30–32, but
also in the parietal cortex to further reveal how dynamic visual per-
ception and memory interface.

Together, BMD’s 1102 thoroughly sampled short video stimuli
isolate brain responses to ecologically-valid but experimentally con-
trolled dynamic content. This dataset is well-suited to address a range
of scientificquestions: developingmethodologies tomodel rapid event
BOLD signals33–35, characterizing interactions between visual proces-
sing pathways9,11,14,36, and bridging the gap between still image and
longform movie perception37–40 (for further discussion, see Supple-
mentary section The added value of a short video versus a static image
neuroimaging dataset). Crucially, BMD’s shared experimental design
across subjects enables robust and generalizable conclusions, and its
preparation in BIDS format facilitates easy adoption among research-
ers. The range of stimuli and subjects, reliable brain activity, and rich
metadatawill enable awide range of interdisciplinary analyses to reveal
the neural mechanisms underlying visual event understanding.

Results
Sampling brain activity for 1102 distinct visual events
We sampled 1102 naturalistic 3-second videos depicting diverse
dynamic visual events from the Memento10k video memorability
dataset41, which is a subset of the 1million video largeMoments in Time
(MiT) andMulti-Moments in Time (MMiT) datasets42,43 (Fig. 1a). As used
here, the term visual event is a 3-second video depicting someone or
something performing an action in the real world. Understanding a
visual event reflects a viewer’s ability to parse and integrate the video’s
spatiotemporal information to report its relevant happenings, such as
in a sentence description. The 3-second events fromMoments in Time
datasets were typically cropped from a longer in-the-wild video (e.g., a
3-second segment of a dance recital) and selected to contain no
emotionally jarring or inappropriate content. The naturalistic content
engages rich neural processes44–47. The 3-second video, approximately
the duration of human working memory19,48,49, is an ideal duration to
capture brain responses tomeaningful events in context (e.g., opening
a door, cooking BBQ food, playing tennis). Videos shorter than 3 sec-
onds risk capturing incomplete actions (e.g., extending the arm) while
videos longer than 3 seconds risk undesired complexity by capturing a
sequence of actions (e.g., opening a door, then walking into the
kitchen, and finally removing a jacket) that introduce highly correlated
events that are difficult to disentangle from brain responses.

The experimental design has the benefits of both a large stimulus
set and several stimulus repetitions to enable downstream analyses
that depend more strongly on one or the other. We thus divided the
1102 stimuli into two non-overlapping sets, one consisting of
1000 stimuli with three repetitions per subject (the training set) and
the other 102 stimuli with ten repetitions per subject (the testing set).
Together, this amounts to 4020 unique fMRI trials per participant, and

40,200 unique fMRI trials across the entire dataset. The large number
of trials and participants enable direct comparisons of results across
participants and invite potential integration of data across
participants18,50–52.

Functional brain responses were recorded with whole-brain 3 T
fMRI at 2.5 × 2.5 × 2.5mm voxel resolution to densely sample the
widely-distributed cortical responses to video across the whole
cortex24–26,53–56. The fMRI experimentwas split into 5 sessions. Session 1
(Fig. 1b) contained crucial auxiliary brain measurements, interleaving
high-resolution T1- and T2-weighted structural, video-based functional
localizer57, and resting state scans58,59. Sessions 2 to 5 (Fig. 1c) contained
the main experiment and had identical structure. Each video trial was
4 s long, consisting of a 3 s silent video presentation followed by a 1 s
intertrial interval.

Semantic and behavioral metadata on visual events
Revealing how the brain mediates visual event understanding benefits
from detailed, human-labeled descriptions of a visual event. Thus, we
used human crowd-sourced experiments to annotate each clip with
five word-level scene, object, and action labels, five sentence-level text
descriptions, one spoken transcription, one behavioral memorability
score, and one memorability decay rate (Fig. 1a).

Each metadata category was collected in a separate experiment.
The possible scene, object, and action labels were sampled from the
Places36560, THINGS40,61, and Multi-Moments in Time43 datasets,
respectively, for their carefully crafted label coverage and extensive
overlap with other resources available in computer science. Because
most videos clearly contain more than one object, the annotators in
the object label experiment were instructed to label three different
objects for a total of 15 object labels per video. The 1102 BMD stimuli
cover 305 of 365 possible scene labels, 1002 of 1854 possible object
labels, and 261 of 292 possible action labels. The sentence text
descriptions (13.06 mean ±2.800 std words per sentence) were typed
free-form by the annotator to detail salient interactions in the video
and summarize the pertinent content. The spoken transcriptions,
collected through free-form audio recordings and transcribed (audio
not available due to privacy considerations), tend to be more verbose
with additional emotional and linguistic subtleties present in speech
but often not in text (26.72 mean ±17.55 std words per transcription)62.
Finally, to determine how visual event understanding interfaces with
memory, we use a crowd-sourced memory game to behaviorally
measure if participants recognize a visual event at a later time period
(memorability: 0.8422 mean ±0.0888 std) and how this recognition
performance fades over time (memorability decay rate: −0.0014mean
±0.0011 std)41.

These metadata allow the use of grouping, subdivision, or other
transforms of these measures to investigate additional perceptual and
cognitive processes related to visual event understanding (see Sup-
plementary Fig. 8 for metadata distributions between train and test
splits). We provide first example analyses on this basis in the following
sections.

(f)MRI data processing, response modeling, and ROI definition
Weprovide raw aswell as preprocessed versions of theMRI data in the
community-backed and standardized BIDS format63 to ensure trans-
parent quality assessment, reproducible preprocessing, and easy-to-
share results. The raw data gives researchers control over preproces-
sing to pursue research questions at any stage of the analysis pipeline.
The preprocessed data allows for analyses into the spatial and tem-
poral neural dynamics underlying visual event understanding, at both
the group and single-participant level.

We processed the data using fMRIPrep64 to achieve reproducible
and transparent results. During acquisition, we sampled fMRI data at a
TR of 1.75 s to achieve a densely sampled time course with respect to
the onset of the stimulus65; since 1.75 does not evenly divide into the
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4 second trial length, the BOLD response to a single video across three
repetitions might be sampled at onset delays of [0.5, 2.25, 4, 5.75,…],
[0, 1.75, 3.5, 5.25,…], and [1, 2.75, 4.5, 6.25,…] seconds for the three (or
ten) repetitions. In the preprocessing we then temporally resampled
the data from a TR of 1.75 s to a TR of 1 s in order to acquire BOLD
responses exactly time-locked to the onset of each trial (stimulus

presentation happens every 4 s, i.e., amultiple of 1 s, but not 1.75 s).We
used Finite Impulse Response (FIR) basis functions to accommodate
variability in the hemodynamic responses at different locations in
cortex, to resolve the temporal structure of the stimuli, and to address
response overlap from the rapid event-relateddesign.Wemodeled the
hemodynamic response to visual events using data from 1-9 s after
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stimulus onset (to account for the hemodynamic lag) in 1 s steps (i.e., 9
bins of 1 s length each) for each trial separately. The FIR model’s flex-
ible BOLD estimates, randomization of stimulus presentations across
runs and sessions, and ability to average over multiple repetitions
reduce potential unwanted memory effects.

To guide analysis in a region-specific manner, we used the
auxiliary functional localizer data from session 1 to define a set of
22 regions of interest (ROIs) previously reported to be involved in
visual perception of natural images, natural video, or motion
(Fig. 1d)5,55,56,66–68. The set includes early visual, category-selective
ventral visual, dorsal visual, and parietal regions.

This preprocessing suite ensures a low threshold for researchers
to interact with the brain data at their desired processing level. All
results presented here in themain text use version Aof the dataset.We
provide another preprocessed version of BMD (version B) available in
more output spaces (version B is detailed in Supplementary section
Version B preprocessing pipeline).

(f)MRI image scans of high quality across subjects and task
To assess the quality of the raw and preprocessed MRI data, we used
the open-source and community-based MRIQC analysis package69.
This yielded a comprehensive set of 44 functional and 68 structural
image quality metrics (IQMs) (full report available), of which we pre-
sent a representative set of six structural (Fig. 2a) and six functional
MRImetrics (Fig. 2b) (formore details on the IQMs, see Supplementary
section Structural and functional scan quality assessment). Because no
singlemetric can completely describe data quality, the selection of the
IQMs to display here considered metrics especially relevant to func-
tional or structural scans (e.g., Temporal SNR for functional scans and
Contrast to Noise ratio for structural scans), metrics shared between
functional and structural scans for a more cohesive set (e.g., SNR and
Full-Width Half Maximum Smoothness), and metrics common across
other literature and analysis packages to increase familiarity with
readers (e.g., SNR, Framewise Displacement, AFNI Outlier Ratio, AFNI
Quality Index). Since most quality metrics do not have a ground-truth
reference value to compare against, we contextualize our values
against the values of hundreds of anonymized studies with similar
scanner parameters (1 < Tesla < 3, 1 < = TR< 3; aggregated with the
MRIQCeption API).

These measures show that both the structural and functional
BMD scans are of excellent quality. The distribution of all but one
IQM for each subject falls within or is noticeably better than the
distribution seen in similar fMRI studies (Fig. 2, green). The strong
results of the IQMs tSNR (a measure of SNR over time), aor (an
indicator of the number of outliers per fMRI volume), and aqi (a
correlational measure of quality per volume) assure satisfactory
functional SNR quality in light of the below-typical per volume SNR
IQM. We highlight that within each participant, the range of quality
metric values was especially consistent between the training and

testing sets (Fig. 2, blue and orange boxplots). This shows that the
training and testing sets are of comparable data quality, facilitating
analyses that depend on this split. Further, none of the 10 partici-
pants were outliers as indicated by consistently lower within- than
between-participant variability, encouraging group result inference
(see Supplementary Fig. 1 for results on the resting state and func-
tional localizer scans).

Reliable univariate and multivariate fMRI response profiles
We provide both univariate and multivariate metrics to evaluate the
reliability of BMD relevant to the two main fMRI analysis traditions
today: the univariate framework that focuses on local information at
a single voxel scale70–74, and the multivariate analysis framework that
emphasizes the distributed nature of information in population
codes29,75,76. Neural encoding and decoding analyses often use single-
voxel responses to measure information content in an ROI72, and
hypothesis models of neural representations derived from compu-
tational or behavioral models can be easily compared to the brain in
multivariate analysis frameworks77. These reliability measures pro-
vide intuition on data quality and can used at the discretion of the
researcher to normalize results with respect to the noise in
BMD’s data.

To assess univariate reliability, we identify voxels whose beta
value estimates satisfy a Spearman-Brown (SB) split-half reliability
criterion (mean reliability of all combinations of 5-trial averaged splits
from the 10-trial testing set) of p <0.05 (assessed by stimulus label
permutation):

SB = ð2ρ=ð1 + ρÞÞ ð1Þ

Where ρ is the Pearson correlation between the 5-trialed averaged
splits.

To assess multivariate reliability, we perform representational
similarity analysis (RSA) in a searchlight approach78 to determine the
upper (subject-to-group RDM correlation per voxel) and lower
(leave-one-out RDM correlation per voxel) estimate of the noise
ceilings. We report the univariate and multivariate reliability
results across the whole brain (Fig. 3a, b for a representative subject,
see Supplementary Figs. 2 and 3 for all subjects) and in ROIs
(Fig. 3c, d).

In both the whole-brain univariate and multivariate reliability
analyses,we observe statistically significant reliability values across the
occipital, temporal, and parietal cortices, even extending into the
frontal lobe. These ROI analyses show high explainable variance in a
functionally diverse set of ROIs responsible for visual event under-
standing. This demonstrates that BMD is well suited for comprehen-
sive and advanced analysis at both the single- and multi-voxel
spatial scale.

Fig. 1 | Experimental design and data acquisition. a Stimuli and metadata: The
1,102 3-second video stimuli are sampled from the Moments in Time dataset42,43 and
annotated with: 15 object labels, 5 scene labels, 5 action labels, 5 sentence descrip-
tions, 1 spoken transcription, 1 memorability score, and 1 memorability decay rate.
Due to licensing restrictions, the video frames shown here are sourced from a
representative video by NaIzletuSi ™ and cropped (YouTube: https://www.youtube.
com/watch?v =QT0o0fTfZKE, CC BY 3.0 license: https://creativecommons.org/
licenses/by/3.0/legalcode). b fMRI session 1: Subjects underwent T1- and T2-
weighted structural runs interspersedwith resting state and functional localizer runs
to define various category selective regions. c fMRI sessions 2-5: Sessions were
identical in design and consisted of a fieldmap run followed by thirteen runs (ten
training runs and three testing runs) in random order. The 3-second videos were
presented on a gray background at five degrees of visual angle overlaid with a red
fixation cross. Stimuli presentation was followed by a 1-second intertrial interval
composed of a red fixation cross on a gray background. Participants reported

luminance changes of the fixation cross occurring irregularly between videos with a
button press and did so reliably (hit rate 0.964 ±0.014 (mean ± SD)). Video frames
are cropped from a representative video by NaIzletuSi ™ (YouTube: https://www.
youtube.com/watch?v =QT0o0fTfZKE, CCBY 3.0 license: https://creativecommons.
org/licenses/by/3.0/legalcode). d Region of Interest Definitions: Regions of interest
for a representative subject (subject 1), functionally (from session 1) and anatomi-
cally defined. TheROI abbreviations are as follows: V1v—first visual area ventral; V1d—
first visual area dorsal; V2v—second visual area ventral; V2d—second visual area
dorsal; V3v—third visual area ventral; V3d—third visual area dorsal; hV4—human
visual area 4; EBA—extrastriate body area; STS—superior temporal sulcus; RSC—
retrosplenial cortex; FFA—fusiform face area; OFA—occipital face area; LOC—lateral
occipital complex; PPA—parahippocampal place area; TOS—transverse occipital
sulcus; V3ab—visual area 3a and visual area 3b; IPS0—intraparietal sulcus 0; IPS1-2-3—
intraparietal sulcus 1, 2, and 3; 7AL—lateral area 7; BA2—Brodmann area 2; PFt—
parietal area F, part t; PFop—parietal area F, part operculum.
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Modeling visual event understanding with a video-computable
deep neural network for action recognition
A major goal in explaining brain responses is providing explicit quan-
titative models that predict the underlying computations and their
cortical organizations79. Deep Neural Network (DNN)-based modeling

has emerged as a dominant form of scientific modeling in visual neu-
roscience, due to their image-computable design, biologically-inspired
architecture, and high neural prediction performance38,74,80–83.

However, modeling visual events has been limited by the lack
of a suitable dataset that accounts for complex distributed
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Panels compare boxplots of IQM values for each subject for the training (blue) and
testing (orange) functional runs in the BMD dataset (per subject: training, n = 40;
testing, n = 12) with other anonymous BOLD data from the MRIQCeption API
(green) (BOLD, n = 624).
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processes across the whole brain24, drastic differences to image
understanding9,11,23,25,26,84–86, and the temporal boundaries of a visual
event8,37,87,88. BMD helps with its large number of short video stimuli
and whole-brain responses.

Towards the goal of modeling visual events, we used a video-
computable DNN following biological constraints. The DNN uses a
recurrent ResNet50 backbone89 that mimics the biological recurrent
computations essential for human motion perception and
categorization90–94 and builds on the ResNet family’s strong neural
predictivity performance seen for still images82,95. The ResNet50’s four
recurrent blocks are connectedusing a Temporal ShiftModule96 (TSM)
designed to process video input in the natural, uni-directional

temporal order.We train themodel on anaction recognition taskusing
the same dataset from which the BMD stimuli were sampled, the
Moments in Time dataset42,43 (BMD stimuli were excluded frommodel
training; for training details, see Methods section Action recognition
TSM ResNet50 model training). We release this model to aid investi-
gations of visual event understanding (model available at: https://
github.com/pbw-Berwin/M4-pretrained).

We queried the relationship between each of the model’s blocks
and BMD. Using a voxelwise encoding model approach72 (Fig. 4a), we
observe a correspondence between DNN block depth and predictivity
performance along the visual processing hierarchy and beyond (for
encoding model details, see Methods section DNN block to cortex
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Fig. 3 | Whole-brain and ROI reliability after response modeling. aWhole-brain
single-subject split-half reliability analysis: We perform a voxelwise split-half relia-
bility analysis and present the voxels with Spearman-Brown corrected values that
pass the reliability criteria (p < 0.05, permutation-based, one-sided) for subject 1.
b Whole brain searchlight noise-ceiling analysis: We estimate the upper and lower
noise-ceilings across the whole brain for a representative subject (subject 1) from a
searchlight representational dissimilarity analysis (RSA). c ROI-based group split-
half reliability: For each of the 22 ROIs, we present the mean split-half reliability
across participants from the voxels passing the reliability criteria. Source data are
provided as a Source Data file. d ROI-based group searchlight noise ceilings: For

each of the 22 ROIs, we calculate the upper (orange) and lower (blue) noise ceilings
across participants. Source data are provided as a Source Data file. The box plots
encompass the first and third data quartiles and the median (horizontal line).
The whiskers extend to the minimum and maximum values within 1.5 times the
interquartile range, and values falling outside that range are considered outliers
(denoted by a diamond). The overlaid points show the value at each observation
(n = 10 for all ROIs except transverse occipital sulcus (TOS, n = 8) and retrosplenial
cortex (RSC, n = 9)). The brain responses used for the reliability analyses are the
beta values averaged over TRs 5-9 (the peak of the BOLD signal) from the
testing set.
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correspondenceprocedure). Thepredictivity of eachof theDNN’s four
blocks progressively spreads across the brain from posterior to ante-
rior (Fig. 4b). As a proxy for low-level and high-level features, we
extract the video features at early (Block 1) and late (Block 4) blocks of

the DNN, respectively83,95,97,98. We then estimate the dominance of low-
level and high-level feature processing across ROIs by computing the
difference in predictivity between DNN Block 1 and DNN Block 4. We
observe that predictivity of DNN Block 4 becomes significantly greater
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Fig. 4 | Evaluation of biologically-similar video-based encoding model.
a Voxelwise encoding model procedure: All videos are shown to both a TSM
ResNet50 DNN and a human. Training set video embeddings are extracted from a
block b of the DNN and used to learn a voxelwise mapping function to the human
responses. This mapping is then applied to the testing set video embeddings to
predict the brain response at each voxel. b Whole-brain encoding accuracy across
blocks:Weuse the encodingmodelprocedurewith eachof the four blocks of aTSM
ResNet50 model trained to recognize actions in videos to predict the neural
response at each voxel in the whole brain. The brain figures show the subject-
average noise-normalized predictive correlation (divided by the voxel’s upper
noise ceiling) at each voxel. c ROI-based encoding accuracy difference: Difference
in predictive performance between block 1 and block 4 at each of the 22 ROIs.

Predictive performance at each voxel is measured as the noise-normalized corre-
lation between the brain responses and the predicted responses, averaged over all
reliable voxels in eachROI. Significant ROIs are denotedwith an asterisk and a color
(blue for Block 1, red for Block 4, gray is not significant) corresponding to the
significant layer (p <0.05, one sample two-sided t-test against a populationmeanof
0, Bonferroni corrected across n = 22 ROIs). Source data are provided as a Source
Data file. The box plot encompasses the first and third data quartiles and the
median (horizontal line). The whiskers extend to the minimum and maximum
values within 1.5 times the interquartile range, and values falling outside that range
are considered outliers (denotedby adiamond). The overlaid points show the value
at each observation (n = 10 for all ROIs except transverse occipital sulcus (TOS,
n = 8) and retrosplenial cortex (RSC, n = 9)).
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than DNN Block 1 beginning in the ventral visual cortex and extending
into dorsal visual cortex and parietal cortex (Fig. 4c), reflecting the
increase of feature complexity in the representations across the visual
processing hierarchy. We repeat this encoding analysis with different
architectures and training diets to see how this result generalizes
across models. Specifically, we extract features from a TSM
MobileNetV296,99 and a TimeSformer100 architectures trained on
Kinetics-400101 and HowTo100M102 datasets, respectively. We find that
both are good predictors of dorsal visual and parietal regions, but the
TSM MobileNetV2 does not show increasing dominance of high-level
model features along the cortical hierarchy (see Supplementary Fig. 7
for results on all architectures and blocks).

This result extends previous research demonstrating a hierarchical
correspondence between DNNs and brains from still image
stimuli95,98,103–105 to dynamic video stimuli, a non-trivial outcome given
thatmany cortical regions in the ventral visual and temporal cortex and
beyond respond to stimulus features uniquely present in videos and
not images (e.g., movement kinematics, temporal interactions)9,11,13,106.
The finding that a transformer-based TimeSformer model follows a
similar pattern to the TSM ResNet50 while the TSMMobileNetV2 does
not invites further inquiry into the effect of training diet, parameter
count, and architecture on visual event understanding. Finally, these
results also help clarify previously conflicting results about whether or
not DNNs trained on action recognition tasks accurately predict dorsal
stream regions36,107,108, showing that all three architectures accurately
predict responses not only in the dorsal visual stream but also in the
parietal cortex.

fMRI responses capture temporal event structure
A real world event unfolds in a systematic, spatiotemporal sequence. Is
the temporal structure of such an event important for its cortical
representation? Shuffling the frames of a video effectively destroys its
meaningful temporal structure. We reasoned that if a voxel captured
an event’s spatiotemporal relationships, unshuffled (meaningfully
ordered) video input would correspond better to the brain responses
than shuffled video input. The shuffled and unshuffled video inputs are
both temporally dynamic and contain identical frame-averaged spatial
content, thereby isolating the effects of the encoding of ordered
temporal content.

To investigate, we measured the neural prediction performance
of the DNN model introduced above when given unshuffled video
input and shuffled video input (Fig. 5a). Since thisDNN is engineered to
process video input in a unidirectional temporal order, we know that
shuffling the video frames will affect the DNN activation in at least one
of the four blocks. By using the shuffled and unshuffled activations
from these blocks to predict the brain responses, we can assess the
effect of correct temporal ordering on our BMD brain responses (for
details, see Methods section Shuffling analysis to determine impor-
tance of temporal order).

Our results show the frame-shuffled input decreased DNN pre-
diction accuracy across most of the visual system. The whole-brain
analysis (Fig. 5b) shows that this decrease in DNN prediction accuracy
is most pronounced in both magnitude and coverage with increasing
DNN blocks. The ROI analysis (Fig. 5c) reveals that early visual ROIs
were sensitive todifferences in all DNNblocks,while ventral anddorsal
ROIs were most affected by differences in DNN blocks 3 and 4. These
results suggest cortical regions have functionally-specific sensitivities
to shuffled input in line with known feature preferences in the visual
system and DNN computations5,95,109.

In order to further elucidate the type of temporal dynamics in the
brain that this frame shuffling analysis is affecting, we perform an
additional small-scale experiment comparing the difference in pre-
diction accuracy between a Temporal Shift Module (TSM) ResNet5096

and a Temporal Segment Network (TSN)110 ResNet50. Since the only
difference between the two models is how spatial information is

shared between frames, this analysis effectively isolates temporal
integration. We find that implementation of TSM significantly
improves encoding accuracy in early visual ROIs primarily from DNN
blocks 3 and 4 (see Supplementary Fig. 9 for results). This pattern is
different from the one observed from the frame shuffling analysis
(Fig. 5c), suggesting that the brain activity is capturing various formsof
temporal dynamics.

Lastly, we repeat this frame shuffling analysis on a TSM
MobileNetV296,99 and TimeSformer100 architecture trained on Kinetics-
400101 and HowTo100M102 datasets, respectively, to see if the frame-
shuffling results generalize tomodels of varying architectures, training
diets, parameter counts, and task performance. We find that the TSM
ResNet50 is theonlymodel of the three that sees robust effects inmost
ROIs and DNN blocks (see Supplementary Fig. 10 for all results),
implying that model architecture and the level of temporal informa-
tion in themodel training datasets may be closely tied to the effects of
frame shuffling.

Together this battery of analyses demonstrates that most visual
regions captured meaningful temporal structure of the video stimuli,
providing the necessary background for investigations into the pro-
cessing of high-level dynamic concepts, such as event categories
and actions. The use of video-computable DNN models allows the
extraction of feature spaces at specific stages of video processing,
inviting precise inquiry into an ROI’s function in visual event
understanding.

BMD tracks the temporal dynamics unfolding within events
Does the temporally sluggish BOLD signal track temporal information
within events? One possibility is that the BOLD signal only captures a
global representationof the event thathasno temporal structure itself,
akin to a time-less semantic label (e.g., a person opens a door). Another
possibility is that the BOLD signal captures delayed but temporally-
resolved information, where different time points of the BOLD signal
capture local snapshots of the changing event (Fig. 6a).

To test the latter hypothesis, we extracted two sets of activa-
tions from a DNN, one set using only the first second (first epoch) of
the videos and the other set using only the last second (third epoch)
of the videos (Fig. 6b). We utilized an encoding model procedure to
measure the two sets’ predictive performance at each of the first
9 seconds (corresponding to TRs in acquisition) (Fig. 6a). This was
done with a feed-forward DNN trained on object categorization from
still images to avoid any confounds from temporal integration. We
expected that if a voxel captures snapshots of the changing event,
the best prediction accuracy of the first video epoch encodingmodel
is at least one TR (one TR = 1 s) earlier than the best prediction
accuracy of the third video epoch encodingmodel. We used variance
partitioning to identify the unique contribution of the first and third
video epochs’ predictions to the real fMRI responses (Fig. 6c) (for
details, see Methods section Encoding and variance partitioning
analysis procedure).

A whole-brain voxel-wise analysis (Fig. 6d) revealed the per-
centage of subjects at each voxel that show a significant 1–3 s delay
between the best predicted time point (TR) using a video’s first
epoch and using a video’s third epoch (only significant voxels are
plotted). Results highlight significant temporal delays most pro-
nounced in the early visual cortex. Equivalent ROI-based analysis
(Fig. 6e upper ROI panels and main panel, see Supplementary Fig. 6
for all ROIs) yielded a similar result pattern. ROIs in the early and
ventral visual brain (14 of the 22 total) showed a significant timing
difference (black asterisks) between the time points at which fMRI
responses are most related to the contents of the first and the third
epoch of video with tighter confidence intervals in early visual
regions (See Source Data).

Together, these results support the hypothesis that early and late
TRs of the BOLD signal better encode temporally distinct early and late
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Fig. 5 | Importance of temporal order in predicting fMRI responses. a Frame
shuffling procedure: We predict the real fMRI responses using both the DNN acti-
vations of the original (unshuffled) frame order and the DNN activations of the
randomly shuffled frame order. A difference in prediction accuracy between the
DNNactivations of the unshuffled and shuffled frames indicates the preservationof
correct temporal order in the fMRI response. Video frames are cropped from a
representative video by NaIzletuSi ™ (YouTube: https://www.youtube.com/watch?
v =QT0o0fTfZKE, CCBY3.0 license: https://creativecommons.org/licenses/by/3.0/
legalcode). b Whole-brain prediction difference: Difference in the correlation
averaged over participants between the shuffled framed prediction accuracy and
unshuffled frame prediction accuracy across the whole brain at different DNN
layers (TSM model). c ROI-based prediction difference: Difference in the correla-
tion between the shuffled frame prediction accuracy and unshuffled frame

prediction accuracy at different ROIs and DNN layers (TSM model). A colored
asterisk along the x-axis indicates significant differencebetween the unshuffledand
shuffled prediction accuracy at that DNN block (p < 0.05, one sample two-sided t-
test against a population mean of 0, FDR correction across 22 ROIs x 4 blocks=88
comparisons). Source data are provided as a Source Data file. The box plot and
asterisks are colored blue, orange, green, and red for blocks 1 – 4, respectively. The
box plot encompasses the first and third data quartiles and the median (horizontal
line). The whiskers extend to the minimum and maximum values within 1.5 times
the interquartile range, and values falling outside that range are considered outliers
(denoted by a diamond). The overlaid points show the value at each observation
(n = 10 for all ROIs except transverse occipital sulcus (TOS, n = 8) and retrosplenial
cortex (RSC, n = 9)).
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video snapshots respectively. Previous work showed that the content
and sequenceorder of distinct imagespresented inunder a secondcan
be reliably decoded in the BOLD signal35. Here we additionally
demonstrate that BMD can differentiate between two visually and
conceptually similar snapshots of one second duration (i.e., first and
third video second) separated by another highly similar snapshot of

one second duration (the second video second) with the most pro-
nounced effects in the early visual cortex7,111. This invites future
research to use BMD’s temporally well-defined stimuli to explore how
visual event information is integrated over shorter time periods,
bridging an important gap to temporal integration studies of longform
movies and BOLD encoding of rapidly presented stimuli.
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Semantic metadata reveal strong similarity between sentence-
level descriptions and visual brain activity
Varying levels of semantic information content, from static objects and
scenes (e.g., duck, water) to temporal actions (e.g., swimming) to
complex relations between parts (e.g., the duck is swimming on the
water), can describe a visual event. It is unclearhow these varying levels
of complexity and content are reflected in ROIs while viewing visual
events, especially given that regions throughout the ventral visual,
dorsal visual, and parietal cortices have all been implicated in proces-
sing temporal aspects of videos9,11,21,25,67 but also diverse feature
preferences21,25,57,73,112,113. We leverage our metadata labels to construct
five semantic video descriptions—objects, scenes, actions, objects
+scenes+actions, and sentence text descriptions—to explore how
semantics of varying information content and granularity are repre-
sented across brain regions during visual event perception. The word-
level object, scene, and action labels provide low information
descriptions of the video’s static (object and scene) and temporal
(action) content. The sentence text descriptions not only describe
the video’s object, scene, and temporal content but also how they
relate. The combined objects+scenes+actions description con-
catenates the individual object, scene, and action label information to
serve as an intermediate between the word-level and sentence-level
descriptions (for details on the metadata collection, see Methods sec-
tion Metadata).

We compute a neural representational dissimilarity matrix (RDM)
at each voxel by computing the pairwise distances between vector
embeddings obtained from a searchlight procedure (four voxel
radius)78 (Fig. 7a). We compute one RDM for each metadata category
by calculating the pairwise distances between vector embeddings
obtained by feeding the text-based labels through natural language
processing models (FastText114 for the single-word object, scene, and
action labels, and Sentence-BERT115 for sentence-level text descrip-
tions) (Fig. 7b). We use representational similarity analysis (RSA)29 to
correlate the metadata representations (Fig. 7c) with neural repre-
sentations to measure how similarly the different metadata descrip-
tions are reflected in brain activity of dynamic videos (for details, see
Methods section Metadata RSA analysis procedure).

Whole-brain results show the metadata labels differ in strength
and pattern of similarity with brain activity (Fig. 7c). ROI results
(Fig. 7d) compare the correlational strength between the five meta-
data descriptions at each ROI and depict a clear dominance of sen-
tence text descriptions throughout cortex (purple bar). Taken
individually, the object (green) and scene (red) description correla-
tions are highest in their respective category-selective regions (LOC,
EBA, FFA, OFA for object labels and PPA, RSC, and TOS for scene
labels) as expected112,113,116–118 (note that the object metadata can and
often does describe people and animals present in the videos).
Action labels (blue) correlate with ventral and dorsal visual
regions9,106 more strongly than parietal regions119. In all ROIs, the

combined object+scene+action description (yellow) correlated with
each ROI at a level between or equal to individual object, scene, and
action descriptions and the text description.

Overall, the sentence text description results in stronger (or
equally strong) correlation values than the other four semantic
descriptions in all ROIs. Additionally, the three concatenated single-
word labels (object+scene+action) results in stronger (or equally
strong) correlation values than the individual single-word labels across
all regions, even in category-selective regions. Both of these results are
consistent with the idea that complex scene analysis, rather than
simpler tasks such as object recognition, is the objective of the visual
brain120. One might suspect that the category-selective ventral regions
would best correlate with their respective metadata (e.g., PPA, RSC,
and TOS for scene metadata), reasoning that the text description and
object+scene+action labels, while including the pertinent category
information, contain mostly irrelevant and distracting extra-category
content73,121 (see Ref. 122).

Lastly, we assess if a representation of single frame text descrip-
tions (generated by GIT123) would correlate just as strongly as a repre-
sentation of our full video text descriptions (Supplementary Fig. 11).
Although both sets of captions use sentences to describe the core ele-
ments of the video, the representationof the full video text descriptions
correlates with the neural representations significantly better primarily
throughout ventral visual cortex (V3v, hV4, EBA, FFA, OFA, STS,
LOC, PPA, and V3ab). These results strongly suggest that BMD’s
brain responses are not only capturing dynamic information content,
but also this information content is reflected in the full video text
descriptions.

These analyses demonstrate that BMD can reveal visuo-semantic
representations throughout cortex to better inform theories of the
visual system’s objective and action encoding. This methodology can
also be extended to externally collectedmetadata to interrogate other
facets of visual event understanding.

Video memorability is reflected in high-level visual and parietal
cortices
Some images and videos are inherently more memorable than
others17,41,124–126. However, fMRI studies have mostly focused on the
memorability of still images (but see17). Next, we evaluate the likely
locus of video memorability in the brain to give insights into the
relation between perception and memory15,16.

Under the hypothesis that stimuli with higher memorability
scores elicit a greater magnitude of brain response30,31,127, we correlate
a vector of video memorability scores with a vector of each voxel’s
corresponding brain responses (beta values) (Fig. 8a) (for details, see
Methods section Memorability analysis procedure). Whole-brain
(Fig. 8b) and ROI-based (Fig. 8c) analyses converged in revealing sig-
nificant correlations in ventral visual, dorsal visual, and parietal cortex,
all regions involved in video perception (green colored bars in Fig. 8c).

Fig. 6 | Encoding the temporaldynamicsof theBOLDsignal. aTRestimated fMRI
responses: We estimate the video-evoked brain response (beta values) of the first 9
TRs of the BOLD signal. Video frames are cropped from a representative video by
NaIzletuSi™ (YouTube: https://www.youtube.com/watch?v =QT0o0fTfZKE, CC BY
3.0 license: https://creativecommons.org/licenses/by/3.0/legalcode). b DNN pre-
dicted fMRI responses: We use an encodingmodel to extract DNN activations from
the first video second (first epoch, blue) and third video second (third epoch,
orange), then predict fMRI responses. Video frames are cropped from a repre-
sentative video by NaIzletuSi ™ (YouTube: https://www.youtube.com/watch?v =
QT0o0fTfZKE, CC BY 3.0 license: https://creativecommons.org/licenses/by/3.0/
legalcode). c Variance partitioning analysis: We calculate the unique variance
explained by the first and third video epochs’ predicted fMRI responses at each TR.
dWhole brain analysis: Each voxel shows the percentage of subjects with a TRpeak
difference of 1 to 3 TRs. Only significant voxels are plotted (p <0.05, one-sided
binomial test, FDR corrected). e ROI analysis: Upper ROI panels: We show the

unique variance explained by the predicted fMRI responses of the first (blue) and
third (orange) video epoch at TRs 1-9 in representative ROIs first visual area ventral
(V1v) and occipital face area (OFA). Red asterisks indicate significance greater than
0 (p <0.05, one-sample one-side t-test, FDR corrected across 9 TRs x 2 video
epochs=18 comparisons). Blue/orange stars indicate the TR with the maximum
subject averaged unique variance for the first/third video epochs, respectively.
Source data are provided as a Source Data file. Main ROI Panel: We compute each
subject’s TR peak difference by subtracting the first video epoch’s maximum TR
from the third video epoch’s maximum TR at each ROI. Green bars with asterisks
indicate significant differences greater than 0 (p < 0.05, one-sample two-sided t-
test). Source data are provided as a Source Data file. The box plot shows the first
and third quartiles, median (horizontal line), and whiskers extending to 1.5 times
the interquartile range. Outliers (diamonds) and individual observations are also
shown (n = 10 for all ROIs except transverse occipital sulcus (TOS, n = 8) and ret-
rosplenial cortex (RSC, n = 9)).
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Fig. 7 | Metadata-driven analysis of the semantics of visual event encoding.
a Searchlight RDMmethodology: The video-evoked brain responses to the 102 test
set videos were extracted within a spherical searchlight to produce a vector
embedding at each voxel. The correlation distance (1-Pearson’s R) between the
searchlight brain embeddings were computed to create a representational dissim-
ilarity matrix (RDM) at each voxel in the brain. b RSA with metadata methodology:
Video metadata were fed into a language model to produce a vector embedding.
Similar to the searchlight RDM computation, the pairwise distance (cosine distance)
between themetadata embeddings were calculated to create an RDM for the object
(green), scene (red), action (blue), object+scene+action (yellow), and text descrip-
tion metadata (purple). c Whole-brain correlation of metadata RDMs with
searchlight-based RDMs: The metadata RDM was correlated (Spearman’s R) with
each searchlight-based RDM at each voxel in each subject. After statistical analysis
(one-sample, two-sided t-test against 0 correlation, FDR correction with q=0.05),
dividing each voxel by the subject’s upper noise ceiling, and averaging across

subjects, the results were plotted in a glass brain to show each metadata’s different
pattern andmagnitude of whole-brain responses. Only significant voxels are shown.
d ROI-based correlation: The mean noise-normalized correlations are shown within
each subject’s ROI. At each ROI, a one-way ANOVA test compared the mean noise
normalized correlation between the 5 conditions: objects (green), scenes (red),
actions (blue), objects+scenes+actions (yellow), text descriptions (purple) (p <0.05,
Bonferroni correctedwith n = 22 ROIs). If the ANOVA test was significant at an ROI, a
Tukey’s Honestly Significant Difference test determined pairwise significance
(FWER=0.05; significance of pairs denoted by the dual-colored bars under each
ROI). Source data are provided as a Source Data file. The box plot encompasses the
first and third data quartiles and the median (horizontal line). The whiskers extend
to the minimum and maximum values within 1.5 times the interquartile range, and
values falling outside that range are considered outliers (denoted by a diamond).
The overlaid points show the value at each observation (n = 10 for all ROIs except
transverse occipital sulcus (TOS, n = 8) and retrosplenial cortex (RSC, n = 9)).
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This result contrasts with previous work using images, where the
effects were largely relegated to the ventral visual cortex associated
with image perception30–32,127,128.

BMD allows the study of the neural correlates ofmemorability into
the video domain, inviting further work into how visual perception and
memory formation share computational resources129–134 and bridging
the study of static image memory with longformmovie memory18,135,136.

Discussion
Disentangling the intricacies of human visual perception requires
datasets varying in stimuli type80,137,138, experimental design37,88,139, and

neuroimaging acquisition efforts38,39,61 (see Supplementary Table 1 for
a detailed comparison between currently available large-scale visual
fMRI datasets). Here, we contribute the BOLD Moments Dataset
(BMD), a resource of human fMRI brain responses to 1102 annotated
short videos to model human dynamic visual perception. The 3 sec-
ond, naturalistic video stimuli balance the ecological validity of long-
form movies with the experimental control of still images to better
model discrete events. BMD’s ten subjects, high-repetition subset, and
rich stimuli metadata accommodate uni- or multi-variate and single-
subject or group-level modeling approaches, and its auxiliary resting
state and dynamic functional localizer scans supplement insights into
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Fig. 8 | Correlates of video memorability in cortex. a Memorability analysis
procedure: For every video, we collect a memorability score (values between 0-1,
collected via a behavioralmemory game in an independent study byNewman et al.,
2020) and brain response (beta value averaged across repetitions). We then cor-
relate (Spearman’s R) the stimulus memorability scores with the stimulus-evoked
beta values at each voxel to obtain a correlation coefficient. b Whole-brain mem-
orability correlation results: We show significant whole brain voxel-wise correla-
tions (Spearman’s R) between brain activity and memorability scores. Significant
voxels are determined by a t-test across subjects (one-sample, one-sided) and FDR
correction (q = 0.05, positive correlation assumption). c ROI memorability corre-
lation results: We show the Spearman correlation value between brain activity and

memorability scores for each ROI. Significance is determined by a t-test against a
null population mean correlation of 0 (p < 0.05, one-sample one-sided, Bonferroni
corrected across n = 22 ROIs). Significant ROIs are denoted with a green box and
black asterisk. Source data are provided as a Source Data file. The box plot
encompasses the first and third data quartiles and themedian (horizontal line). The
whiskers extend to the minimum and maximum values within 1.5 times the inter-
quartile range, and values falling outside that range are considered outliers
(denoted by a diamond). The overlaid points show the value at each observation
(n = 10 for all ROIs except transverse occipital sulcus (TOS, n = 8) and retrosplenial
cortex (RSC, n = 9)).

Article https://doi.org/10.1038/s41467-024-50310-3

Nature Communications |         (2024) 15:6241 13



cortical activity. Together, BMD invites a uniquely comprehensive set
of analyses into human dynamic visual perception. BMD can help
bridge the research communities of computer science and computa-
tional neuroscience and reveal how perceptual and cognitive brain
systems extract information from complex visual inputs.

For example, we perturb various temporal properties of the
videos and use DNNs to predict the corresponding brain activity. We
observe how frame shuffling, by interrupting (at least) the video’s
temporal continuity and motion direction, affected a mix of early
visual, ventral visual, and parietal cortex ROIs (Fig. 5). Comparing the
brain prediction performance between the Temporal Shift Module
(TSM) architecture and the Temporal Segment Network (TSN) archi-
tecture (Supplementary Fig. 9) isolates the effect of sharing informa-
tion across frames and shows significant differences predominantly in
early visual ROIs. Our encoding model optimized with a temporally-
based objective function (action classification) demonstrates a corre-
spondence in processing stages between video-computable DNN
model blocks and cortical depth (Fig. 4), thereby both extending
previous studies that analyzed responses to still images82,83,95 and
showing we can accurately predict brain activity in the dorsal visual
and parietal regions that are largely driven by a stimulus’s dynamic
properties21,55,140–142. Critically, we demonstrate that the sluggish BOLD
response tracks visual information over seconds (Fig. 6)8,10,50,111,143,144.
These analyses consistently demonstrate BMD’s temporal content and
thus present a unique opportunity to leverage existing computational
methods of social expressions145–147, action recognition43,148,149, inte-
gration of temporal features100,150,151, and object detection152,153 to study
brain function.

We have shownhow our providedmetadata can link brain activity
to meaningful and interpretable features of a visual event to yield
theoretically relevant insights. For example, the higher correlations
between brain activity and complex sentence descriptions over word-
level labels (see Fig. 7 and Supplementary Fig. 11) suggest that the
function of these brain regions extends beyond object recognition120.
Additionally, the significant correlations between the crowd-sourced
behavioral data on memorability and brain activity distributed in
ventral visual, dorsal visual, and parietal regions (see Fig. 8) imply the
memorability effect occurs in regions implicated in perception.

BMD’s unique combination of stimuli type (short dynamic
videos), experimental design (single-trial event related), and rich
metadata make it well-suited for a diverse set of analyses extending
beyond those demonstrated here, such as video reconstruction87,154,155,
video synthesis for cortical discovery156,157, encoding and decoding
models72,158, spatio-temporal integration7,145, and action observation
networks54,159–161. BMD is thus well positioned to probe the functionally
diverse and widespread cortical network recruited during dynamic
visual perception.

Methods
Participants
Ten healthy volunteers (6 female, mean age ± SD= 27.01 ± 3.96 years,
sex self-reported) with normal or corrected-to-normal vision partici-
pated in the experiment. All participants gave informed consent and
were screened forMRI safety. Theywere compensated for their time at
a rate of $90 USD per session (5 sessions total, each session lasted
approximately 2.5 h). The experiment was conducted in accordance
with the Declaration of Helsinki and approved by the local ethics
committee (Institutional Review Board of Massachusetts Institute of
Technology, approval code: 1510287948).

Stimuli
The stimulus set consisted of 1102 videos in total. The videos were
sampled from the Memento10k dataset41, which is a subset of the
Moments in Time dataset42 and Multi-Moments in Time dataset43.
Each video was square-cropped and resized to 268×268 pixels.

Videos had a duration of 3 s and frame rates ranging from 15 to
30 frames per second (mean = 28.3). The 1102 videos were manually
selected from the Memento10k dataset by two human observers to
encompass videos that contained movement (i.e., no static content),
were filmed in a natural context, and represented a wide
selection of possible events a human might witness. Additional cri-
teria were to be free of post-processing effects, textual overlays,
excessive camera movements, blur, and objectionable or inap-
propriate content.

The 1102 videos selected for themain experiment were split into a
training and a testing set; 102 videos were chosen for the testing set,
and the remaining 1000 videos formed the training set. Specifically,
the testing set videoswere chosen randomly from the 1102 videos, and
then checked manually to ensure no semantic overlap, in terms of
objects plus actions, occurred between any pair of testing set videos. If
semantic overlapwas found between a pair of videos as determined by
an author, one of these videos was swapped with a video randomly
selected from the pool of remaining videos and incorporated into the
testing set. This was repeated until a semantically-diverse testing set
was formed. The training and testing sets are only intended to differ in
the number of repetitions shown to the participant. In this way, the
BMD dataset contains a low repetition (3 repetitions) training set of
1000 videos and a high repetition (10 repetitions) testing set of 102
videos to facilitate analyses dependent on either large number of sti-
muli or large number of repetitions. The training and testing sets are
additionally intended to mirror training and testing sets common in
machine learning applications, reflecting its potential use for model
building and evaluation.

(f)MRI experimental design
The fMRI data collection procedurewas as follows: subjects completed
a total of 5 separate fMRI sessions on separate days. Session 1 consisted
of structural scans, functional localizer runs, and functional resting
state scans all interspersed (Fig. 1b). Sessions 2–5 consisted of themain
functional experimental runs where the subjects viewed the training
and testing set videos (Fig. 1c). Throughout thewhole experiment for a
given subject, each training set video was shown a total of 3 times and
each testing set video was shown a total of 10 times, resulting in 3000
and 1020 trials in training and testing sets, respectively. We organized
trials into experimental runs such that they either only contained
testing set videos (test runs) or only contained training set videos
(training runs). Stimuli were presented using Psychtoolbox-3 (http://
psychtoolbox.org/) with MATLAB version 2017.

Session 1
Functional localizers. Subjects completed five functional localizer
runs (Fig. 1b). Subjects freely viewed colored, naturalistic videos (18 s
length, composed of 6 3-second videos) corresponding to one of five
categories (faces, bodies, scenes, objects, and scrambled objects) in
order to functionally localize each subject’s category selective
regions13,57,73,162. Subjects viewed the videos freely and performed a
one-back vigilance task to ensure attention to the task (videos are
available with the dataset release). Each stimulus category included 48
individual stimuli. Each run consisted of 5 blocks of fixation baseline
(null) and 20 blocks of stimulus presentation for a total of 25 blocks.
Baseline blocks occurred every sixth block, with 5 stimulus blocks of
each category presented in between baseline blocks in a randomized
order. The duration of each video was 3 seconds, with each block
lasting 18 seconds. Each category stimulus block included 5 unique
videos chosen randomly from the 48 stimuli plus one one-back sti-
mulus repetition. Subject accuracy on the one-back task was
0.941 ± 0.011 (mean± SD). Each run began and ended with an 18 sec-
ond fixation (null) block. The end of the run contained an additional
19 seconds of gray screen (not modeled in the GLM) for a total dura-
tion of 268 volumes.
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Resting state. Resting state data was obtained across 5 runs (Fig. 1b).
Within each run, participantswere instructed to keep their eyes closed,
to not think of anything specific, but to remain awake. The duration of
resting state runs is 212 volumes.

Session 2–5. Each of the 4 sessions after session 1 had identical
structure. Since fixation against a dynamic video background is diffi-
cult, each session began with a 2.5minute fixation training outside the
scanner to provide the subjects with real-time feedback of any eye
movements, voluntary or involuntary163. In this fixation training, sub-
jects viewed a black-and-white random dot display flickering in coun-
ter phase. With fixation, this display evoked the illusion of a uniform
gray display. Breaking fixation with eye movements disrupts this illu-
sion, and a vivid black-and-white random dot display is perceived.
Subjects were instructed to keep their eyes fixated as to minimize the
disruption of the illusion.

Main experiment:. Inside the scanner, videos were presented at the
center of the screen subtending 5 degrees of visual angle and overlaid
with a central red fixation cross (0.52 degrees of visual angle). Subjects
were instructed to focus on the fixation cross for the duration of the
main experiment. The experiment consisted of both video presenta-
tion trials (occurring 75% of the time) and null trials (occurring 25% of
the time). Both trial types were 4 s long. The video presentation trial
consisted of a 3 s videopresentation followedby a 1 s intertrial interval.
The videos were presented in random order with the constraint of no
consecutive repetition. The null trial consisted of the presentation
of a gray screen. During the null trial the fixation cross turned darker
for 1000 milliseconds and participants reported the change with a
button press. Participant accuracy in this task was 0.964 ± 0.014
(mean± SD).

The testing and training set videos were presented within testing
and training runs, respectively, where each test run consisted of 113 trials
and each train run consisted of 100 trials. The order of these runs was
randomized except for the constraint that two testing runs cannot be
shown back-to-back in the same session in order to reduce potential
memory effects caused by the same stimulus being presented within a
short period of time. Each session contained 3 test runs and 10 training
runs and lasted approximately 100minutes. Naturally, some testing set
videos were repeated within a session (255 testing video presentations
for only 102 possible testing videos), but no training set videos were
repeatedwithin a session. Each run began with 4 seconds of fixation and
ended with 13 seconds (testing runs) or 12.5 seconds (training runs) of
fixation. The 0.5 second difference of the duration of the ending fixation
period between the testing and training runs is due to their different
number of trials (113 and 100) and the acquisition TR of 1.75 seconds not
being an even factor the 4 second trial length. In total, testing and
training runs consisted of 268 and 238 volumes, respectively.

Metadata
Visual events consist of complex combinations of objects, locations,
actions, and more. To capture the many dimensions of visual events,
we characterized each video with a set of seven metadata categories:
object labels, scene labels, action labels, text descriptions, a spoken
transcription, a memorability score, and an index of memorability
decay rate (Fig. 1a). Five object, scene, action, and text description
labels were collected for each stimulus to ensure comprehensive
coverage (the five annotators’ labels reflect their unique interpreta-
tions) and form a group consensus (the five annotators’ labels can be
used to converge on a single label). Labels for eachmetadata category
were collected in different human crowd-sourced experiments. An
annotator was allowed to label up to 20 different videos but no more
than one label per video to encourage a diverse sampling of human
annotators within videos and throughout the stimulus set. While
crowd-source workers were not restricted from participating in

multiple metadata experiments, this was unlikely due to the experi-
ments being collected at different times and the large population pool
from which the crowd-source workers were drawn.

Object labels. For each video,we obtained at least 5 sets of up to three
different object labels in a human crowd-sourced experiment on Pro-
lific. Each annotator was instructed to select up to three different
object labels visible in the video. They selected at least oneobject label,
and if they believed no more objects were present in the video, they
were allowed to select, up to two times, an option labeled No more
objects in the video. This option thus encouraged accurate labels and
carried information on the density of objects in the video. Each object
label was one of 1854 possible labels from the THINGS dataset61 to
encourage overlap with computational neuroscience work and lever-
age the additional THINGSmetadata on each label (e.g., animacy, size,
indoor/outdoor). The object label selections can be different or the
same across annotators. One author manually reviewed the labels to
ensure the labels assigned to the video were sensical (i.e., participants
were not choosing labels at random).

Scene labels. For each video, we obtained at least 5 scene labels using
a human crowd-sourced experiment on Prolific. Each of the five dif-
ferent annotators were instructed to select a scene label that best
describes the scene of the video. All scene labels came from the Pla-
ces365 dataset60 for its broad scene coverage and overlap with com-
puter vision resources. The scene label selections can be different or
the same across videos. One author manually reviewed the labels to
ensure the labels assigned to the video were sensical (i.e., participants
were not choosing labels at random).

Action labels. The 5 action labels were selected by workers on the
crowd-sourcing platform Prolific. We restricted the possible action
labels to be from one of 292 possible action labels that broadly
encompass meaningful human actions43. The participant viewed these
292 possible action labels, watched the video, and selected one action
label that best described the video. Each of the 5 action labels per video
were produced by different participants. Given that an action, by defi-
nition, unfolds across time and the BMD stimuli have a short 3 second
duration, the majority of the videos contain one primary action. Addi-
tionally, the limited number of stimulus repetitions and the central
fixation further limits the fMRI scanner participant’s ability to perceive a
video’s small, inconsequential actions if they are present. In the edge
case that a complex video captures multiple salient actions, the five
annotations can capture these multiple actions. Note that annotators
labeled up to 3 objects in a video (described above) because objects,
unlike actions, have clear visual boundaries, often occur in multiple
instances in a video, and have no temporal dimension. Two authors
manually reviewed the labels to ensure the labels assigned to the video
were sensical (i.e., participants were not choosing labels at random).

Text descriptions. We obtained five high-level descriptions of the
content of each video in the form of written descriptions. The five text
descriptions were human-generated from participants on the crowd-
sourcing platform Amazon Mechanical Turk (AMT). Their task was to
watch the video and type a 10–15 word caption in complete English
sentences. This instructionwas not used as acceptance criteria. Eachof
the 5 text descriptions were produced by a different human partici-
pant, and each participant was allowed to annotate multiple videos.
The authorsmanually checked the text descriptions to ensure the text
descriptions pertained to the video (i.e., participants followed
instructions) and to correct obvious typos.

Spoken transcriptions. We obtained one spoken description per
video to capture emotional and descriptive nuances typically con-
veyed in speech but not present in typing. The spoken description was
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collected via human participants on AMT, as in Monfort and
colleagues62. Participants were instructed to watch the video and
verbally describe it. They were given no instructions pertaining to the
length of the description. We record the audio file and use Google’s
speech-to-text transcription to generate a text transcription. The
transcription wasmanually checked to ensure it pertained to the video
(i.e., participants followed instructions) and to correct obvious typos.
We release the text transcription but not the original audio file for
privacy purposes.

Memorability score and decay rate. The memorability score and
decay rate were measured by Newman and colleagues41, where AMT
human participants played a videomemory game. The game consisted
of a continuous video stream where the participant pressed the
spacebar upon seeing a repeated video. Repeated videos were pre-
sented at various delays, from 30 seconds to ten minutes. The parti-
cipant’s responses were then used to calculate a video’s memorability
score from 0 (no recall) to 1 (perfect recall) and memorability decay
rate from 0 (no decay) to -inf (instantaneous decay). Specifically, a
video’s memorability score is the fraction of correct identifications in
the memory game normalized to a lag of 80 videos in between con-
secutive presentations. A video’s memorability decay rate describes
how a video’s memorability score changes over different lags. The
memorability decay rate was regressed from the output of
SemanticMemNet41, an Inflated 3D (I3D)ConvolutionalNeural Network
trained to predict a video’s memorability score and text caption from
the video frames and optical flow. A video’s memorability score (m)
and decay rate (α) can be used to predict its memorability at any time
lag t (the number of videos in between the first and second pre-
sentation) according to the following equation41:

mt =mT +αðt � TÞ ð2Þ

where T is a set lag of 80. Thememorability scores given in the stimuli
metadata were computed at a lag of t = 80.

Note that Newman and colleagues41 experimentally observed
memorability decay rates above0. Since apositivememorability decay
rate may reflect a currently unknown stimulus or cognitive feature, we
preserve them in BMD’s stimuli metadata. One may wish to clip them
to a maximum value of 0 depending on the analysis.

Motion energy features. We provide video-computable motion fea-
tures of each video using a motion energy model87,164,165. The motion
energymodel uses a set of spatial and temporal Gabor filters to extract
a video’s motion and direction. We use these features to predict brain
activity inmotion-selective regions ofMT166,167, hV4168,169, V3AB21,170, and
IPS021. This analysis uses version B of the dataset and is detailed in
Supplementary section Motion energy features computation and
encoding model.

fMRI data preprocessing and analysis
fMRI data acquisition. The MRI data were acquired with a 3 T Trio
Siemens scanner using a 32-channel head coil. During the experi-
mental runs, T2*-weighted gradient-echo echo-planar images (EPI)
were collected (TR = 1750ms, TE = 30ms, flip angle = 71°, FOV
read = 190mm, FOV phase = 100%, bandwidth = 2268Hz/Px, resolu-
tion = 2.5 × 2.5 × 2.5mm, slice gap = 10%, slices = 54, multi-band
acceleration factor = 2, ascending interleaved acquisition). Addi-
tionally, a T1-weighted image (TR = 1900 ms, TE = 2.52ms, flip
angle = 9°, FOV read = 256mm, FOV phase = 100%, bandwidth =
170Hz/px, resolution = 1.0 × 1.0 × 1.0mm, slices = 176 sagittal slices,
multi-slice mode = single shot, ascending) and T2-weighted image
(TR = 7970ms, TE = 120ms, flip angle = 90°, FOV read = 256mm, FOV
phase = 100%, bandwidth = 362Hz/Px, resolution = 1.0 × 1.0 × 1.1mm,
slice gap = 10%, slices = 128, multi-slice mode = interleaved,

ascending) were obtained as high-resolution anatomical references.
We acquired resting state and functional localizer data using acqui-
sition parameters identical to the main experimental runs. Dual echo
fieldmaps (TR = 636ms, TE1 = 5.72ms, TE2 = 8.18ms, flip angle = 60°,
FOV read = 190mm, FOV phase = 100%, bandwidth = 260Hz/Px,
resolution = 2.5 × 2.5 × 2.5mm, slice gap = 10%, slices = 54, ascending
interleaved acquisition) were acquired at the beginning of every
session to post-hoc correct for spatial distortion of functional scans
induced by magnetic field inhomogeneities.

Preprocessing. All MRI data was first converted to BIDS format63, and
the T1-weighted structural scans were anonymized using PyDeface
(https://github.com/poldracklab/pydeface) before public release.
All data from all sessions was then preprocessed using the standar-
dized fMRIPrep preprocessing pipeline (version 20.2.1). Preprocessing
and analysis used both the SPM12 toolkit (https://www.fil.ion.ucl.ac.
uk/spm/software/spm12/) in MATLAB (version 2017) and Python3
(https://www.python.org/). For all results unless stated otherwise, we
use the standard MNI152NLin2009cAsym volumetric space for its
frequent use in other work and preservation of natural left-right
asymmetries in the brain. As recommended by fMRIPrep to increase
transparency and reproducibility in MRI preprocessing, we copy their
generated preprocessing text in its entirety below:

Results included in this manuscript come from preprocessing
performed using fMRIPrep 20.2.1 (64,171; RRID:SCR_016216), which is
based on Nipype 1.5.1 (172,173 RRID:SCR_002502).

Anatomical data preprocessing. A total of 1 T1-weighted (T1w) ima-
ges were found within the input BIDS dataset. The T1-weighted (T1w)
image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection174, distributed with ANTs 2.3.3 (175;
RRID:SCR_004757), and used as T1w-reference throughout the work-
flow. The T1w-reference was then skull-stripped with a Nipype imple-
mentation of the antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Brain tissue segmentation of cere-
brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast (FSL 5.0.9,
RRID:SCR_002823176,). Brain surfaces were reconstructed using recon-
all (FreeSurfer 6.0.1, RRID:SCR_001847177,), and the brain mask esti-
mated previously was refinedwith a customvariationof themethod to
reconcile ANTs-derived and FreeSurfer-derived segmentations of the
cortical gray-matter of Mindboggle (RRID:SCR_002438178,). Volume-
based spatial normalization to one standard space (MNI152N-
Lin2009cAsym) was performed through nonlinear registration with
antsRegistration (ANTs 2.3.3), using brain-extracted versions of both
T1w reference and the T1w template. The following template was
selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical
template version 2009c [179, RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym].

Functional data preprocessing. For each of the 62 BOLD runs found
per subject (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. A B0-
nonuniformity map (or fieldmap) was estimated based on a phase-
difference map calculated with a dual-echo GRE (gradient-recall echo)
sequence, processed with a custom workflow of SDCFlows inspired by
the epidewarp.fsl script and further improvements in HCP Pipelines180.
The fieldmap was then co-registered to the target EPI (echo-planar
imaging) reference run and converted to a displacements field map
(amenable to registration tools such as ANTs) with FSL’s fugue and
other SDCflows tools. Based on the estimated susceptibility distortion,
a corrected EPI (echo-planar imaging) reference was calculated for a
more accurate co-registration with the anatomical reference. The
BOLD reference was then co-registered to the T1w reference using
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bbregister (FreeSurfer) which implements boundary-based
registration181. Co-registration was configured with six degrees of
freedom.Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and trans-
lation parameters) are estimated before any spatiotemporal filtering
using mcflirt (FSL 5.0.9182,). BOLD runs were slice-time corrected using
3dTshift from AFNI 20160207 (183, RRID:SCR_005927). The BOLD time-
series (including slice-timing correction when applied) were resam-
pled onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions.
These resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or just preprocessed BOLD. The BOLD time-
series were resampled into standard space, generating a preprocessed
BOLD run in MNI152NLin2009cAsym space. First, a reference volume
and its skull-stripped version were generated using a custom metho-
dology of fMRIPrep. Several confounding time-series were calculated
based on the preprocessed BOLD: framewise displacement (FD), DVARS
and three region-wise global signals. FD was computed using two
formulations following Power (absolute sum of relative motions184,)
and Jenkinson (relative root mean square displacement between
affines182,). FD and DVARS are calculated for each functional run, both
using their implementations in Nipype (following the definitions by184).
The three global signals are extracted within the CSF, the WM, and
the whole-brain masks. Additionally, a set of physiological regressors
were extracted to allow for component-based noise correction
(CompCor185,). Principal components are estimated after high-pass fil-
tering the preprocessed BOLD time-series (using a discrete cosine filter
with 128 s cut-off) for the twoCompCor variants: temporal (tCompCor)
and anatomical (aCompCor). tCompCor components are then calcu-
lated from the top 2% variable voxels within the brain mask. For
aCompCor, three probabilistic masks (CSF, WM and combined CSF +
WM) are generated in anatomical space. The implementation differs
from that of Behzadi et al. in that instead of eroding the masks by 2
pixels on BOLD space, the aCompCor masks are subtracted a mask of
pixels that likely contain a volume fraction of GM. This mask is
obtained by dilating a GM mask extracted from the FreeSurfer’s aseg
segmentation, and it ensures components are not extracted from
voxels containing a minimal fraction of GM. Finally, these masks are
resampled into BOLD space and binarized by thresholding at 0.99 (as
in the original implementation). Components are also calculated
separately within the WM and CSF masks. For each CompCor
decomposition, the k components with the largest singular values are
retained, such that the retained components’ time series are sufficient
to explain 50 percent of variance across the nuisance mask (CSF, WM,
combined, or temporal). The remaining components are dropped
from consideration. The head-motion estimates calculated in the
correction step were also placed within the corresponding confounds
file. The confound time series derived fromheadmotion estimates and
global signals were expanded with the inclusion of temporal deriva-
tives andquadratic terms for each186. Frames that exceeded a threshold
of 0.5mm FD or 1.5 standardized DVARS were annotated as motion
outliers. All resamplings can be performed with a single interpolation
step by composing all the pertinent transformations (i.e., head-motion
transform matrices, susceptibility distortion correction when avail-
able, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the
smoothing effects of other kernels187. Non-gridded (surface) resam-
plings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2 (188,
RRID:SCR_001362), mostly within the functional processing workflow.
For more details of the pipeline, see the section corresponding
to workflows in fMRIPrep’s documentation.

Next, the fMRI data from the main experimental runs (sessions 2-
5) underwent temporal resampling. In detail, we resampled each

voxel’s time series using cubic interpolation to change the acquisition
TRof 1.75 second to a newTRof 1 s. The 1.75 s acquisition TR combined
with a 4 second trial length allowed for a dense sampling of the BOLD
response relative to stimulus onset and thereby a good estimate of the
BOLD response shape. However, as on every trial the timing of MR
acquisition with respect to the trial was different, analysis of the BOLD
response time-locked to the onset of each trial was cumbersome. The
interpolation to a 1 s TR achieved a time series with regular sampling of
the BOLD response relative to stimulus onset, enabling analysis time-
locked to the onset of the videos.

Functional localizer scans were subsequently smoothed with a
9mm full width half maximum of the Gaussian kernel. The main
experimental functional runs use unsmoothed data.

General linear model
Functional localizer. To model the hemodynamic response to the
localizer videos, the preprocessed fMRI data, video, and fixation
baseline onsets and durations were included in a general linear model
(GLM). The fixation and five category (faces, objects, scenes, bodies,
and scrambled objects) blocks were included as regressors of interest.
Motion and run regressors were included as regressors of no interest.
All regressors were convolved with a hemodynamic response function
(canonical HRF) to calculate beta estimates.

Main experiment. We modeled the BOLD-signal of each voxel in the
preprocessed fMRI data of each participant as a weighted combination
of simple Finite Impulse Response (FIR) basis functions. We modeled
the BOLD response with respect to each video onset from 1 to 9 s in 1 s
steps (corresponding to the resolution of the resampled time series).
The stimulus presentation trials, but not the null response trials, were
included as regressors of interest. Within this time interval the voxel-
wise time course of activation was high-pass filtered (removing signal
with f < 1/128Hz) and serial correlations due to aliased biorhythms or
unmodelled neuronal activity were accounted for using an auto-
regressive AR(1) model.

Using FIR in the way described above, we modeled every trial in
the experimental run of each session, simultaneously capturing the
spatial variability and the temporal evolution of brain responses
underlying visual event understanding. For every sessionwegenerated
separate FIR models for training and testing sets. Overall, for each
video condition in the testing set we extracted 10 (repetitions) x 9
(seconds) beta value estimates, and for each video condition in the
training set we extracted 3 (repetitions) x 9 (seconds) beta value
estimates.

ROI definitions of early visual cortex and ventral visual stream
We computed five t-contrasts (FWE corrected at p = 0.05) per subject
based on the beta values from the localizer experiment to quantify
category-specific voxel activations. The t-contrasts were used to
localize voxels in early visual regions (objects & scrambled objects >
baseline; V1v, V1d, V2v, V2d, V3v, V3d, hV4), a body-selective region
(bodies > objects; EBA), an object-selective region (objects > scram-
bled objects; LOC), face-selective regions (faces > objects; FFA, OFA,
STS), and scene-selective regions (scenes > objects; PPA, RSC, TOS).
Together, these 15 ROIs cover brain regions along the ventral visual
pathway thought to transform low-level visual features into complex,
semantic representations useful for object recognition.

The ROI masks for each subject were defined using the subject’s
t-contrast maps. Voxels outside the anatomical region of interest were
manually set to 0, and ROIs were limited to 1000 voxels in size. In the
event that two or more ROIs overlapped, we used a probability map
computed from all ten subjects’ t-contrasts to assign each overlapping
voxel to the ROI it most likely belonged to. In detail:

We first created a probabilistic map for each of the 8 category-
selective and 7 early visual ROIs, using data from all 10 subjects. Each
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subject’s five t-contrast maps from the localizer experiment were
family-wise error (FWE) corrected at p = 0.05. We then added each
subject’s binarized version of the FWE corrected t-contrast maps (1 if
the voxel passed FWE correction, 0 if not) and divided by the total
number of subjects. This resulted in 5 probabilistic maps corre-
sponding to each of the 5 t-contrasts, where each voxel had a value
from 0 to 1 in steps of 0.1 (0, 0.1, 0.2,…, 1.0) representing the decimal
percentage of the number of subjects where that voxel was significant.
We defined a probabilistic map for each of the 7 early visual ROIs by
masking the t-contrast probabilitymap (objects & scrambled objects >
baseline) with the early visual masks defined by Wang and
colleagues189. We used the remaining 4 category-selective t-contrast
probabilistic maps to define a probabilistic map for each of the 8
category-selective ROIs by visually inspecting the appropriate
t-contrast probability map (e.g., inspecting the scenes > objects
t-contrast probability map to define the scene-selective ROIs) and
manually setting the voxels clearly outside the region of interest to 0.
This way we defined a total of 15 separate probabilistic maps.

Next, we defined 15 ROI masks for each subject. For each subject,
we masked their own appropriate FWE corrected t-contrast map with
the correspondingbinarized t-contrast probabilitymap. TheROIswere
limited to the top 1000 voxels. This process resulted in fifteen subject-
specific ROI masks.

Lastly, we assigned any overlapping voxels to a single ROI. In the
event two or more voxels overlapped, we assigned the overlapping
voxels to a single ROI based on the ROI probability map in step 1.
Exemplified for two ROIs A and B, if ROI A and ROI B overlapped on
voxel x, we indexed into ROI A’s probability map at voxel x and ROI B’s
probability map at voxel x. We assigned voxel x to the ROI with the
higher probability. If ROIA andBhave equal probabilities at voxel x, we
grew a patch by one voxel along each dimension and compared the
ROIs’mean probabilities within that patch. This process was repeated
until there was no longer a tie between ROIs and each ROI was non-
overlapping.

Subject 6 did not showany responses inTOS andRSC, and subject
7 did not show any responses in RSC. The ROI masks were used in
subsequent analyses to extract active voxels within a subject’s ROI
during the main experiment.

ROI definitions of dorsal visual stream
We additionally defined dorsal regions of interest using anatomical
landmarks, since our functional localizer was designed to define early
visual and ventral category-selective regions only. All dorsal regions
were defined the same way for all subjects. Specifically, we use the
maximum probability map in Wang and colleagues189 to anatomically
define area V3ab (grouping areas V3a and V3b), IPS0, and IPS1-2-3
(grouping areas IPS1, IPS2, and IPS3). We additionally define 7AL, BA2,
PFt, and PFop in more superior regions of the dorsal stream using the
atlas described inGlasser and colleagues190. Atlas versions registered in
MNI volume space were downloaded and resampled to BMD’s func-
tional voxel resolution with nearest neighbor interpolation using SPM
12’s reslice function. The resampled atlases were then used to index
ROIs in the BMD volume data.

Univariate split-half reliability analysis
To select voxels with high signal-to-noise ratio, we defined a selection
criteria based on split-half trial reliability74,191. Our assumption behind
the criteria was that the voxel responses on different trials corre-
sponding to the same video should bemore correlatedwith each other
than voxel responses to different videos. As the voxel response to a
video, we used the beta estimates from the FIR model averaged over
timepoints TR 5-9 (representing the peak of a typical BOLD signal).We
then z-scored the voxel responses across the videos.

We divided the voxel responses of the testing set stimuli trials
(n = 10 trials) into two equal splits and calculated the Pearson

correlation (ρ) between the splits. The split-half reliability was calcu-
lated using the Spearman-Brown formula (Eq. 1), where the maximum
reliability is 1. We calculated the split-half reliability for all possible
combinations of splits and used the mean reliability as the reliability
for that voxel.

To assess if reliability is better than chance, we first estimated
chance-level reliability. For each voxel, we calculated the split-half
reliability for all possible combinations of splits while randomly per-
muting the video indices for one of the two splits. This process was
repeated 100 times with a different video index permutation each
time. This procedure resulted in 100 random reliability values for each
voxel, whichwas used to calculate a p-value. The voxels that satisfy our
reliability criteria (p < 0.05) are referred to as reliable voxels. Due to
the testing set’s high number of repetitions, the reliable voxels were
defined using data from the testing set runs. See Supplementary Fig. 4
for each subject’s number of reliable voxels at each ROI, and see
Supplementary Fig. 5 for each subject’s mean reliability at each ROI.

Multivariate searchlight-based reliability analysis
We computed the upper and lower noise ceilings at each voxel in the
whole brain using the testing set and present subject-specific and
subject-averaged results (Supplementary Fig. 3). For each subject
separately, the raw FIR beta estimates to the video stimuli at each voxel
were z-scored across stimuli, averaged across TRs 5-9, and averaged
across stimuli repetitions to result in a (n_stimuli x 1) vector of beta
values. A spherical searchlight with radius 4 voxels was defined and
centered on a voxel v. The (n_stimuli x 1) vector of beta values over all
voxels contained within the searchlight sphere compose a (n_stimuli x
n_voxels) matrix. The 1-Pearson correlation of the matrix resulted in a
single Representational Dissimilarity Matrix (RDM) of size (n_stimuli x
n_stimuli) for the voxel v. The searchlight then centered on the next
voxel, and the procedurewas repeated until an RDMwas calculated for
each voxel. This procedure was repeated for each of the 10 subjects.

The upper and lower noise ceilings of themultivariate searchlight
results were computed192,193. To compute the upper noise ceiling at
voxel v, the voxel’s searchlight-computed RDM from one subject was
correlated (Spearman’s R) with the 10-subject group averaged RDM.
The average of each subject’s correlation to the 10-subject group
averaged RDM is the upper noise ceiling for voxel v. This process was
repeated over all voxels to result in the upper noise ceiling values
throughout the whole brain displayed in Fig. 3b. The upper noise
ceiling estimates the highest correlation that a model can be expected
to obtain given the noise in the data.

To compute the lower noise ceiling at voxel v, the voxel’s
searchlight-computed RDM from one left-out subject was correlated
(Spearman’s R)with the remaining 9-subjectgroup averagedRDM.The
average of each left-out subject’s correlation to the corresponding
9-subject group averaged RDM is the lower noise ceiling for voxel v.
This process was repeated over all voxels to estimate the lower noise
ceiling values throughout the whole brain.

Action recognition TSM ResNet50 model training
The model adopts the architecture of a Temporal Shift Module
(TSM)96, with ResNet50 as the backbone network. We trained our
model on the M4 (Multi-Moments minus Memento) training dataset
for 120 epochs by using LSEP (log-sum-exp pairwise) loss43. LSEP loss
was first proposed in194 and modified in43 as an appropriate loss func-
tion to train on multi-label and class imbalanced datasets, such as
actions. The M4 training dataset consists of 1012,169 videos which are
in the Multi-Moments in Time dataset but not in the Memento dataset
to ensure no overlap with the 1102 BMD stimuli. Our model was initi-
alized with the weights of the ResNet50 trained on ImageNet-1k data-
set. We chose themodel hyperparameters to closely follow those used
in Lin and colleagues96. Specifically, during the training phase, our
model split the input video into 8 segments and sampled 1 frame from
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each segment. We used SGD optimizer to optimize our model. The
learning rate followed the cosine learning rate schedule and was
initialized as 0.02. The weight decay was set to be 0.0001 and the
batch size 128. The model achieved a precision-at-one score 0.593, a
precision-at-five score of 0.829, and a mAP score of 0.636 (loss of
2.75054). Model training took 3 months on 16 V100 GPUs and is
available here: https://github.com/pbw-Berwin/M4-pretrained.

DNN block to cortex correspondence procedure
We used an encoding model procedure to quantify the correspon-
dence between DNN Blocks and regions of cortex72,74,195. For the DNN,
we train a Temporal Shift Module (TSM) network96 with a ResNet50
backbone on the M4 dataset (Multi-Moments in Time Minus Memen-
to10k). In this way, we achieved a model that consecutively processed
video frames (as opposed to frame averages), incorporated biologi-
cally necessary recurrent computations, and learned to perform a
video-based task (i.e., action recognition) from the same set of short,
natural videos of which we sample the BMD stimuli.

We ran inference on the TSM ResNet50 model using the 1102
videos used in the fMRI experiment and extracted the activations for
each video. The activations for a given block were extracted after the
nonlinearity.We then used an encodingmodel procedure. In detail, we
standardized the DNN activations (using the mean and standard
deviation of the training videos) and performed principal component
analysis (PCA) using the top 100 components of theDNNactivations to
ensure fair comparison of activations of different embedding sizes.
The PCA procedure was fit on the 1000 training set video activations
and applied to the 102 testing set video activations. For each voxel v,
we fit a linear model from the training set DNN activations (size
(n_training_videos x n_PCA_components)) to the training set fMRI
responses (beta values z-scored across stimuli and averaged over TRs
5-9) averaged over the 3 trial repetitions (size (n_training_videos x
n_voxels)). We then predicted testing set voxel responses (size
(n_testing_videos x n_voxels)) by applying the linear fit on the testing
set DNN activations (size (n_testing_videos x n_PCA_components)). We
evaluated the performance of the prediction by correlating (Pearson)
the predicted testing set voxel responses with the true testing set fMRI
responses of each of the 10 testing set repetitions (size (n_testing x
n_voxels)). The final performance of the prediction is the average
correlation of the 10 repetitions. The noise-normalized correlation is
this 10-repetition average Pearson correlation divided by the voxel’s
split-half correlation value (the Pearson correlation value before
Spearman-Brown).We only predicted the values of the voxels thatmet
the split-half reliability criteria, as described in the Univariate Split-Half
Reliability Analysis Methods section above, in order to model mean-
ingful signal.

In this way, we obtained an encoding model accuracy (correla-
tion) at each voxel in the whole brain for each of the four ResNet50
Blocks and for each subject. We averaged the noise normalized cor-
relation at each voxel across subjects for each of the four Blocks and
displayed the results in a whole-brain volume (Fig. 4b).

We then computed the difference in encoding accuracy between
Block 1 and Block 4 at each of the 22 ROIs to determine if a region’s
brain responses were predicted significantly better by activations of
early or late DNN Blocks. For each subject, we computed both Block 1
and Block 4’s average noise-normalized correlation (encoding accu-
racy) within each ROI and took the difference (Block 1—Block 4). We
then performed a t-test (one-sample, two-sided) against a null
hypothesis of zero correlation and corrected formultiple comparisons
across ROIs (Bonferroni, p < 0.05 with n = 22). We plotted the subject-
averaged Block 1—Block 4 noise-normalized correlation differences
and denoted the significant ROIs with an asterisk and a color corre-
sponding to significance with Block 1 (blue) and Block 4 (red) (Fig. 4c).
See Supplementary Fig. 7 to see each Block’s encoding accuracy at
each ROI.

We note that while the temporal dimension in videos invites
exciting modeling opportunities, it also adds complexities in the fMRI
data that may make modeling difficult. For example, regions may
reconfigure their roles over the duration of the video or integrate
features over time in a manner that cannot be resolved with fMRI.
Thus, the extent that models can predict fMRI brain responses to
videos may be inherently limited by the temporal resolution of fMRI
and best be modeled alongside millisecond-level temporal resolution
neuroimaging data (M/EEG).

Shuffling analysis to determine importance of temporal order
To determine whether the temporal order of visual information is
preserved in fMRI responses of the human visual system,wecompared
the encoding performance of the TSM model trained on the M4
dataset (Multi-Moments in Time Minus Memento10k) with preserved
order of visual information with the model with a randomly shuffled
order of visual information. TSM requires eight frames as the input to
the model. These frames were sampled uniformly. In the original
(unshuffled) order, the order of frames was preserved for all the
videos. In the shuffled case, the indices of the frames were shuffled
randomly, and then for all the videos, the same order of shuffled
indices was used to create the input to the TSM model. We used ten
such random shuffles of indices to introduce more randomness.

We first extracted the activations from the four blocks of the TSM
model for the unshuffled case and each shuffled case. Then we per-
formed PCA to extract the top 100 components of each block’s acti-
vations to reduce the number of features and equate their
dimensionality while preserving the variance in the activations. Then,
we performed an encoding model procedure to predict the fMRI
responses of the testing videos. We repeated the shuffling ten times
and then took the mean encoding correlation across ten shuffles to
compare with the encoding results using unshuffled order of frames.
As brain responses, we used beta values z-scored across stimuli and
averaged over TRs 5-9 (TRs 5-9 reflect the peak of a typical BOLD
response). We only predicted the reliable voxels, as defined in the
Univariate Split-Half Reliability Analysis Methods section above.

At each of the four blocks, we computed the difference in
encoding accuracy (correlation) between activations that used the
unshuffled and shuffled video input (unshuffled minus shuffled). We
visualized the difference in correlation at each block in a whole-brain
volume (Fig. 5b). Within each Block, we then computed the difference
in encoding accuracy (unshuffled minus shuffled) within each
ROI. We performed a t-test (one-sample, two-sided) between the
subject-averaged difference in correlation and a null hypothesis cor-
relation of zero. We corrected for multiple comparisons across ROIs
(FDR, assuming positive correlation, p < 0.05 with n = 88 compar-
isons). The bar plot in Fig. 5c displays the subject-averaged unshuffled
minus shuffled correlation difference at each TSMResNet50Block and
ROI. Significant blocks were marked with an appropriately colored
asterisk.

We additionally correlate (Pearson) the unshuffled activations
with each of the ten shuffled activations at each of the four blocks to
examine the effect of frame shuffling on the model itself without the
brain data. We average the correlations across activation units and the
ten random seeds and find the following block correlations:

Block 1: 0.998
Block 2: 0.984
Block 3: 0.928
Block 4: 0.808
These results show decreasing activation similarity between the

unshuffled and shuffled activations through the four blocks, with a
notably steep drop in activation similarity by block 4. This result sug-
gests that block 4 is most impacted by frame shuffling. Subsequently,
block 4 also has the largest impact in brain prediction performance
across cortex (Fig. 5b) and ROIs (Fig. 5c).
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Encoding and variance partitioning analysis procedure
We use an encoding model and variance partitioning analysis to
identify any unique variance explained by the first and third video
seconds in the brain activity. In this way, we measure if the brain
activity captures temporal content. The encoding algorithm involved
two steps. In the first step, we fed the first and third video second
frames of the 1000 training and 102 testing videos to an AlexNet
architecture196 pre-trained on the ILSVRC-2012 image classification
challenge197, and we extracted the corresponding activations at each
layer. We then applied the following operations to the activations of
both video seconds (first and third), independently: we appended the
feature maps of all layers, averaged them across frames, standardized
them (using the mean and standard deviation of the training videos
feature maps) and downsampled them to 100 components through
principal components analysis (PCA) (computedon the training videos
feature maps). This resulted in the training activations of size 1000
×100 x 2 and testing activations of size 102 ×100 x 2 (number of videos
x features x video seconds). In the second step, we linearlymapped the
stimuli videos feature space onto voxel space, thus predicting the fMRI
responses to videos. For each combination of subjects (10), fMRI
voxels (N), and fMRI TRs (9), we trained the weights of a linear
regression model to predict the fMRI training data (averaged over the
three repetitions) using the training activations of both video seconds
independently as predictors, and then multiplied the learned weights
with the test activations. This resulted in two synthetic fMRI test data
instances (size 10 subjects × 102 test videos × 9 fMRI TRs × N fMRI
voxels), one for each video second.

To test our hypothesis that the brain activity captures informa-
tion unique to the first and third video seconds, we ran a variance
partitioning analysis between the biological fMRI test data and the
two instances of synthetic fMRI test data. At each subject, TR, and
voxel we ran a searchlight78 to calculate the portion of the biological
fMRI test data (averaged over the ten test set repeats) uniquely
explained by, respectively, the synthetic fMRI test data of the first or
third video seconds. The unique biological fMRI variance explained
by the first/third video second fMRI synthetic data consisted in the
adjusted R2 score of a linear regression trained to predict the biolo-
gical fMRI data using both synthetic fMRI data instances as pre-
dictors, minus the adjusted R2 score of a linear regression trained to
predict the biological fMRI data using only the third/first synthetic
fMRI data instance as predictor. We then observed at which TRs the
unique variance explained by the two versions of synthetic test data
peaked, and subtracted the peak TR of the first video second syn-
thetic data from the peak TR of the third video second synthetic data.
Next, we created subject wise binary whole brain masks with ones in
voxels that show TR peak differences in the range 1 to 3 and zeros
elsewhere, summed the binarymasks across subjects, and performed
a binomial test with FDR correction to remove the non-significant
voxels.

The variance partitioning analysis for the ROIs was similar but
performed on the reliable (split-half reliability p < 0.05) voxels within
each ROI. Again, this results in time courses that reveal how well the
synthetic fMRI test data from either the first or third video second
explains the real fMRI data at each of the nine TRs. To quantify this
difference, we again subtracted the peak TRs of the first and third
video second synthetic data.

Metadata RSA analysis procedure
We performed Representational Similarity Analysis (RSA)29 between
metadata RDMs and neural RDMs to examine the extent that repre-
sentations defined by the semantic metadata of varying information
content are reflected in neural activity. The analysis broadly consisted
of correlating a Representational Dissimilarity Matrix (RDM) defined
by themetadata (Fig. 7b) with a RDM at each voxel in the brain defined
by the brain responses (Fig. 7a).

We defined five metadata RDMs—object, scene, action, object
+scene+action, and text description RDMs—from each of the 102
testing set videos. The object, scene, action, and text description RDM
was defined by first indexing the annotations from the first five
annotators (if the video contained annotations from more than five
annotators). We then feed the 5 object, 5 scene, 5 action, and 5 text
caption metadata from each of the 102 testing set videos into a lan-
guagemodel to generate vector embeddings for each label. In the case
of the object labels, since each annotator labeled up to three different
objects, we computed the word embedding of each object label indi-
vidually then averaged them (object labels corresponding to No more
objects in video were skipped) to obtain one object embedding per
annotator. The object, scene, and action labels were fed into the Fas-
tText model114 to compute single-word embeddings (length 300) and
the text descriptions were fed into the Sentence-BERT115 model to
compute sentence-level embeddings (length 384). To minimize the
effect of noise in the metadata labels, we averaged the 3 most similar
vector embeddings together to result in a single vector embedding
that represents the object, scene, action, or text caption for that video.
At this step, the object+scene+action embedding was created by
concatenating the individual object, scene, and action vector embed-
dings (length 900). We then computed the pairwise cosine distance
between each video’s vector embedding to produce a single 102 ×102
Representational Dissimilarity Matrix (RDM) for the object, scene,
action, object+scene+action, and text caption metadata. Figure 7b
shows the rank-normalized (rank eachdistance value and divide by the
maximum rank) RDM for the object, scene, action, object+scene
+action, and text description RDMs.

We compute the correlations (Spearman) between the metadata
RDMs to measure the similarity of their information content. As
expected, the correlations between the individual single-word object,
scene, and action labels were generally lowest, since these labels
highlight explicitly different components of the video. The correla-
tions between the individual single-word object, scene, and action
labels with the text descriptions were generally next highest, also
expected because the text description likely contains information
about each of the single-word labels plus extra information. The
combined object+scene+action RDM with the text description RDM
was higher still given even more overlapping information. The highest
similarities were between the single-word object, scene, and action
RDMs and the combined object+scene+action RDM because of expli-
citly overlapping information content (computed using the same
embedding) but less extra information than the text description.

[scene, object]: 0.1808
[scene, action] 0.1133
[scene, scene+object+action]: 0.6641
[scene, text description]: 0.1969
[object, action]: 0.0884
[object, scene+object+action]: 0.6137
[object, text description]: 0.2618
[action, scene+object+action]: 0.5238
[action, text description]: 0.1560
[scene+object+action, text description]: 0.3145
To define the RDMs at each voxel in the brain for each subject,

we perform a searchlight analysis in the way described in the Meth-
ods section Multivariate searchlight-based reliability analysis. To
summarize, we center a sphere (radius of 4 voxels) around voxel v
and extract the beta values (TRs 5-9 averaged over repetitions and
z-scored across conditions) for all testing set conditions at all voxels
encompassed in the sphere. Each stimulus thus has a corresponding
vector of beta values, one from each voxel within the searchlight
sphere. We compute the 1-Pearson’s R correlation between all pairs
of stimulus vectors to obtain an RDM at the centered voxel v. We
repeat this process for all voxels in the whole brain for each sub-
ject (Fig. 7a).
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We then correlate (Spearman’s R) the metadata RDM (cosine-
distance, not rank-normalized) with the searchlight-based RDMs at
each voxel for each of the 10 subjects separately. For the whole-brain
analysis (Fig. 7c), we compute a t-test (one-sample, two-sided)
against a null hypothesis of a correlation of 0 at each voxel then
perform FDR correction (q = 0.05, assuming positive correlation) on
all p-values in the whole brain to obtain a set of significant voxels. We
compute the noise-normalized correlation by dividing the correla-
tion with the voxel’s upper noise ceiling and plot the 10-subject
average noise-normalized correlation at each significant voxel
(Fig. 7c). For the ROI-based analysis (Fig. 7d), after we correlate
(Spearman’s R) themetadata RDMwith the searchlight-based RDM at
each voxel, we compute the average noise-normalized correlation
within each ROI. For each ROI, we compute a one-way ANOVA test
between the average noise-normalized correlations corresponding
to the five semantic metadata models. If the p-value of the ANOVA
test is significant (p < 0.05, Bonferroni corrected with n = 22 ROIs),
we perform a pairwise Tukeys Honestly Significant Difference test
(alpha=0.05). Significant differences between a pair of metadata
models are reported with the dual-colored bars under the ROI name
in Fig. 7d.

The RSA analysis comparing the sentence text descriptions of the
full video with the sentence text descriptions of a single frame, pre-
sented in Supplementary Fig. 11, follow a similar pipeline as above.
First, we generate five different captions of the middle frame of each
video using the captioning model GIT, version git-large-coco123 (gen-
eration parameters max_length=100, num_beams=5, temperature=1,
top_k = 250, top_p = 1). These captions are available alongside the
human-annotated metadata but in a separate file.

Following the same pipeline as used for the full video sentence
text descriptions above, we compute vector embeddings using
Sentence-BERT115 for each of the five frame captions. We average the
top 3 most similar captions and compute the pairwise cosine distance
(1-cosine similarity) between each test set video’s averaged embedding
to obtain a 102 ×102 RDM.

The frame text description RDM has the following Spearman
correlations with the other metadata RDMs:

[frame text description: object]: 0.2451
[frame text description: action]: 0.1335
[frame text description: scene]: 0.2025
[frame text description: scene+object+action]: 0.2878
[frame text description: video text description]: 0.6653
We correlate (Spearman’s R) the frame text description RDMwith

the searchlight-based neural RDMs at each voxel for each subject
separately. We then normalize the correlation by each voxel’s upper
noise-ceiling and average the correlations within the ROI (Supple-
mentary Fig. 11a). We compute the difference in correlation (Supple-
mentary Fig. 11b) between the full video text description and the frame
text description at the subject-level and compute statistical sig-
nificance for each ROI against 0 correlation (p < 0.05, one sample two-
sided t-test, Bonferroni corrected with n = 22 ROIs).

Memorability analysis procedure
For each subject, we averaged the beta values (z-scored across con-
ditions) over TRs 5-9 andover repetitions (3 repetitions per training set
stimuli and 10 repetitions per testing set stimuli) to obtain one beta
valueper video. From thememory game implementedbyNewmanand
colleagues41, we had one memorability score per video. Under the
hypothesis that the magnitude of brain response positively correlates
with stimuli memorability30,31,127, we performed a ranked correlation
(Spearman’s R) between the vector of memorability scores (size (1102
×1)) and the vector of beta values (size (1102 ×1)) at each voxel for each
subject. In thisway,weobtained a correlation value at eachvoxel in the
brain for each subject.

For the whole-brain analysis, we first performed a t-test (one-
sample, one-sided) at each voxel against a null hypothesis of zero
correlation. We then performed FDR correction on the p-values
(q = 0.05, assuming positive correlation). We visualized the subject-
averaged correlations of the significant voxels that passed FDR cor-
rection in the whole-brain volume (Fig. 8b).

For the ROI analysis, we computed the average correlation
within each ROI for each subject. We then computed a t-test
(one-sample, one-sided) for each ROI against a null hypothesis
of zero average correlation and corrected for multiple comparisons
(p < 0.05, Bonferroni corrected with n = 22). We plotted the
subject-average correlation at each ROI (Fig. 8c) and denoted
significance with an asterisk and a green colored bar. A one-sided, as
opposed to two-sided, test against a correlation of 0 was
computed because there exists clear a-priori hypotheses that relate
memorability effects to larger (not smaller) magnitudes of
response16,30,31,127.

Version A and version B data pipelines
We provide two preprocessed versions of the (f)MRI data that are
identical up until the fMRIPrep preprocessing stage (see Supple-
mentary Fig. 12). The version A pipeline, detailed here, is used in the
main manuscript and Supplementary Figs. 1-11. The version B pipe-
line is used for Supplementary Figs. 13-14. Version B provides the
data in five output spaces (native volume, native surface, MNI152N-
Lin2009cAsym volume, fsLR32k surface, and fsaverage surface)
compared to version A’s one output space (MNI152NLin2009cAsym),
uses a newer version of fMRIPrep (version 23.2.0), differentiates
between left and right hemisphere for the ROIs, and estimates single
trial beta values with GLMsingle34. Beta value estimates are provided
for Version B data in MNI152NLin2009cAsym volume space (Sup-
plementary Fig. 13), fsLR32k surface space (Supplementary Fig. 14),
and fsaverage surface space. For more details on Version B pre-
processing and analysis, see Supplementary section Version B pre-
processing pipeline.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The (f)MRI data, stimulusmetadata, and TSMResNet50model weights
generated in this study have been deposited in the OpenNeuro data-
base under accession code ds005165. The original video stimuli can be
accessed from the Moments in Time, Multi-Moments in Time, and
Memento10k datasets, available at the following links [http://
moments.csail.mit.edu/] and [http://memento.csail.mit.edu/]. Source
data are provided with this paper.

Code availability
Code used in this manuscript have been provided alongside the data
in the OpenNeuro database under accession code ds005165. The
TSM ResNet50 model training code is available here [https://github.
com/pbw-Berwin/M4-pretrained]. Starter code demonstrating basic
usage of the dataset is available here [https://github.com/blahner/
BOLDMomentsDataset].
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