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Abstract 1 

Abstract 

The continuous increase in available specimens and data is a catalyst for medical re-

search and development and a prerequisite for personalized medicine. One way to effec-

tively process the growing amount of data and derive new diagnostic tools or insights 

from it is through machine learning algorithms, particularly those based on artificial neural 

networks and summarized under the term deep learning. These algorithms have made 

significant progress in solving various problems in recent years. This is evident in image 

recognition and processing, where solutions based on neural networks promise to sup-

port, optimize, or even replace established medical procedures. 

Most neural networks are currently trained using the supervised learning approach, which 

requires a large, annotated training dataset. Due to the expertise and legal restrictions in 

the annotation process, this poses a significant challenge and an enormous cost factor in 

the medical domain. This work demonstrates that self-supervised Learning methods im-

plement an alternative learning paradigm that addresses this issue by drastically reducing 

the need for annotated training data. This effect is demonstrated using sequential and 

image data, two fundamental types of machine learning data. 

Multiple state-of-the-art self-supervised learning methods are adapted to the characteris-

tics of histopathological image data, compared under controlled conditions, and evaluated 

for their suitability in the domain. It is shown that the trained models, across different 

network architectures and configurations, positively impact performance in histopatholog-

ical classification tasks, even with limited annotated data. The observations suggest that 

the learned features of such models are transferable to a certain extent within the domain, 

for example, from one tissue type to another. Sequential data demonstrates how a proto-

type for reference-free taxonomic classification of DNA sequences can be developed 

based on a self-supervised trained amino acid language model. It is shown that existing 

tools can be improved, and new research-relevant questions can be investigated using 

such models. 

The results of the two case studies show that the adoption of the self-supervised Learning 

paradigm is of essential importance in the field of medicine. Models trained in this manner 

are expected to substitute existing ones and establish themselves as baseline models in 

various medical domains. 
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Zusammenfassung 

Der stetige Zuwachs an verfügbaren Bioproben und Daten ist ein Katalysator für die me-

dizinische Forschung und Entwicklung und eine Voraussetzung für die personalisierte 

Medizin. Eine Möglichkeit, die wachsenden Datenmengen gewinnbringend zu verarbei-

ten und daraus neue diagnostische Werkzeuge oder Erkenntnisse zu gewinnen, sind Al-

gorithmen des maschinellen Lernens, insbesondere solche, die unter dem Begriff Deep-

Learning zusammengefasst werden und auf künstlichen neuronalen Netzwerken basie-

ren. Diese Algorithmen haben in den vergangenen Jahren einen signifikanten Fortschritt 

bei der Lösung unterschiedlichster Probleme erzielt. Dies wird beispielsweise im Bereich 

der Bilderkennung und -verarbeitung deutlich, wo diese Ansätze versprechen, etablierte 

medizinische Verfahren zu unterstützen, zu optimieren oder sogar zu ersetzen. 

Der überwiegende Teil neuronaler Netzwerke wird aktuell auf Basis von überwachtem 

Lernen trainiert, welches einen großen annotierten Trainingsdatensatz erfordert. In der 

medizinischen Domäne ist dies aufgrund der für den Annotationsprozess erforderlichen 

Fachkenntnisse und rechtlichen Einschränkungen eine große Herausforderung sowie ein 

enormer Kostenfaktor. In dieser Arbeit wird gezeigt, dass selbst-überwachte Methoden 

ein alternatives Lernparadigma umsetzten, welches dieser Problematik entgegenwirkt, 

da dies die Anzahl der benötigten annotierten Trainingsdaten drastisch reduziert. Anhand 

von sequenziellen Daten sowie Bilddaten, zwei elementaren Datentypen des maschinel-

len Lernens, wird dies belegt. 

Verschiedene selbst-überwachte Lernmethoden, die dem aktuellen Stand der Forschung 

entsprechen, werden an die Eigenheiten histopathologischer Bilddaten angepasst, unter 

kontrollierten Bedingungen verglichen und für die Eignung in der Domäne bewertet. Es 

wird gezeigt, dass die trainierten Modelle über verschiedene Netzwerkarchitekturen und 

-konfigurationen hinweg eine positive Auswirkung auf die Leistung bei histopathologi-

schen Klassifizierungsaufgaben haben. Die Beobachtungen deuten darauf hin, dass die 

erlernten Merkmale der Modelle bisher nur zu einem gewissen Grad auf andere Bereiche 

innerhalb der Domäne transferierbar sind, beispielsweise von einem Gewebetyp auf ei-

nen anderen. Für sequenzielle Daten wird gezeigt, wie basierend auf einem selbst-über-

wacht trainierten Amino-Säure-Sprachmodell ein Prototyp zur referenzfreien taxonomi-
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schen Klassifizierung von DNS-Sequenzen entwickelt werden kann. Es wird demons-

triert, dass sowohl existierende Werkzeuge mit Hilfe solcher Modelle verbessert als auch 

neue forschungsrelevante Fragestellungen untersucht werden können. 

Die Ergebnisse der beiden Fallstudien zeigen, dass die Verbreitung des selbst-überwach-

ten Lernparadigmas für die Medizin von essenzieller Bedeutung ist. Es wird erwartet, 

dass derartig trainierte Modelle existierende substituieren und sich als Basismodelle in 

verschiedenen medizinischen Bereichen etablieren werden. 
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1 Introduction 

High-quality specimens and their associated clinical data are essential for biomedical re-

search and are the foundation for rapid progress in personalized medicine. The continu-

ous digitalization of medical processes and improvement of procedures accelerate the 

collection of such information, leading to growing amounts stored in associated biobanks 

and databases. Through this development, specimens often become data themselves. 

For instance, the digital transformation of pathology workflows results in the digital archiv-

ing of microscope slides. This increases the usability of these slides for research and 

development of supporting analytical tools, as digitized information is more reliably avail-

able, easily accessible, and effortlessly shareable than its physical counterpart. Likewise, 

improvements in the sequencing technique of biospecimens led to an explosion of genetic 

information available to researchers. The ability to process and analyze this bulk of data 

can be considered a crucial factor for further developing diagnostic and therapeutic meth-

ods. 

One promising class of algorithms that can be used for this purpose and utilize the in-

creasing amount of data belongs to machine learning, a subfield of artificial intelligence. 

Machine learning algorithms generate (probabilistic) computational models to perform 

specific tasks, usually classification or decision problems, without being explicitly pro-

grammed how to do so. Instead of operating on predefined rules or heuristics, such algo-

rithms learn characteristic properties or underlying patterns to solve the task from data by 

processing examples. One particular group of those algorithms, well-known as deep 

learning, significantly pushed the performance boundaries in several problem fields, like 

natural language processing or natural image recognition, in the last decade [1]. The per-

formance improvement provided by deep learning models was so disruptive that these 

quickly replaced existing computational models based on feature-engineering or system 

rules designed by human experts. Moreover, the methods have been promptly adapted 

by other fields of research and development to investigate domain-specific problems, in-

cluding the medical domain [2]. So far, most deep learning models, especially outside the 
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machine learning community, are built upon neural networks1 implementing the super-

vised learning paradigm. This training strategy uses a fixed predefined number of super-

visory signals 𝑇 providing information about the desired output when processing samples 

of a problem set 𝑋. Thus, a dataset 𝐷 = {(𝑥, 𝑡)|𝑥 ∈ 𝑋, 𝑡 ∈ 𝑇} is mandatory when training a 

model using the supervised learning approach since each training example must be as-

sociated with a supervisory signal. The connected signal of a specific data point is often 

called its ground truth annotation or label.  

An early successful application of neural networks, the recognition of zip codes [4], can 

serve as an example to illustrate this learning approach. During its training process, the 

model received images of single handwritten numbers along with the information about 

the number actually shown. In this case, 𝑋 consists of all images, and the distinct label 

information describing the content (a number between 0 and 9) represents the set of 

possible supervisory signals 𝑇. Processing an input image through the model predicted 

likewise in a number between 0 and 9, which could be compared to the label information 

to verify the prediction. Based on this feedback loop, the model is optimized to maximize 

the correct predictions. Thus, the neural network learned to recognize digits without prior 

domain knowledge, e.g., handwriting properties, instead independently identifying char-

acteristic features of the data to distinguish these numbers. 

The supervised learning approach can be formalized, following the empirical risk minimi-

zation principle, as an iterative optimization problem over the model parameters 𝑤 mini-

mizing the expectation of a per-example loss function L(𝑡, 𝑥, 𝑤) measuring the difference 

between the supervisory signal and the model prediction. Evidently, this learning strategy 

crucially depends on label information, consequently influencing the resulting model. 

Thus, the availability of huge, diverse datasets with high-quality ground truth annotations 

was a significant prerequisite for the success of algorithms implementing the paradigm 

[5, Chapter 1.2.2-1.2.4]. Moreover, these attributes of datasets remain critical to the per-

formance of models trained using this approach. This results in a challenge for the med-

ical domain. Even though the collected data is steadily increasing, the cost and effort to 

process this data into proper machine learning datasets are hardly feasible due to the 

 
1 Strictly speaking, such a network is an artificial neural network consisting of artificial neurons correspond-
ing to a mathematical function rather than a biological circuit [3]. However, the term artificial is generally 
omitted for brevity in the machine learning community. 
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demanding nature of annotations, requiring expert knowledge, and the restrictive regula-

tions. In pathology, for example, the existing datasets are either of limited size or designed 

for specific tasks, thereby failing to capture the full spectrum of tissue types, morphologi-

cal changes, and disease characteristics. Hence, learning models incorporating features 

representing general domain patterns are somewhat challenging. Comparing the total 

size of publicly annotated datasets, frequently used [6–10], with the raw whole slide im-

age research data available through the GDC Data Repository [11], there is a considera-

ble difference in orders of magnitude (gigabyte versus terabyte). Consequently, unlocking 

the potential of using unannotated datasets is essential to exploit deep learning algo-

rithms in the domain fully.  

Using alternative learning paradigms is one approach to address the requirement for di-

verse and extensive annotations. In contrast, to a supervised learning approach, self-

supervised learning methods enable a training process with unannotated samples, 𝐷 =

{𝑥|𝑥 ∈ 𝑋}. This is because no external supervisory signal is required. Instead, such sig-

nals are specified within these methods by solving a particular internal task from which 

the term self-supervised is derived. Hence, learning from orders of magnitude more data 

becomes achievable, allowing the opportunity to recognize and understand patterns more 

nuanced, even of less frequent structures. For instance, a common technique today to 

train a language model with such a task is to mask certain input parts, e.g., words in a 

sentence, and train the neural network to infer appropriate tokens from the training data 

to fill these gaps., i.e., assign high probabilities to such tokens compared to other from a 

vocabulary. Note that the supervisory signal here is self-created by deliberately omitting 

information from the training data. This information can then be used to validate the pre-

dictions later. Therefore, no labeled data is needed. Predicting missing parts of the input 

has become, in fact, a standard technique of self-supervised learning and is called de-

noising autoencoder [5, Chapter 14.5]. One method for implementing this strategy is the 

Bidirectional Transformer (BERT) [12], which can learn hidden structures and patterns in 

sequential data this way, e.g., the underlying grammatical rules in natural language. 

The application of denoising autoencoders based on the Transformer architecture has 

only recently been adapted for computer vision tasks [13]. Compared to a natural lan-

guage processing task, where a finite vocabulary is usually given, image analysis tasks 

often have significantly larger solution spaces that quickly become computationally intrac-
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table. Therefore, implementations of the denoising learning strategy are much more chal-

lenging. These initial attempts [13] are promising but have yet to be established in appli-

cation domains outside the machine learning community. In contrast to the denoising 

learning strategy, a common approach in computer vision has been constructing the su-

pervisory signal by maximizing the similarity in the embedding space (feature space) be-

tween the actual input and a slightly modified version [14–19]. Roughly speaking, the 

strategy of this approach is to learn that different versions of an image share the same 

features and to extract these features in the learning process. An analogy in human learn-

ing would be that one is shown different pictures of the same object without knowing its 

name and thus learns to recognize this object without being able to name it. 

So far, no accepted unified theoretical approach formalizes the various self-supervised 

learning approaches. LeCun and Misra [20] suggest interpreting the methods within the 

energy-based model framework (EMB) [21]. A disadvantage of this interpretation is that 

purely supervised learning can also be formalized into the EMB framework and, thus, 

lacks differentiation [22]. Dubois et al. recently presented a narrower conceptual frame-

work. The authors self-critically assess, however, that "There are many limitations that 

should be addressed for a more realistic prescriptive framework for ISSL" (invariant self-

supervised learning) [23]. 

Models trained with a method implementing the self-supervised learning approach are 

not problem-related, i.e., they do not solve a specific task associated with its training data. 

Consequently, these models incorporate features reflecting more general patterns in the 

data produced by method-related tasks that are universal and data-independent. How-

ever, these models, known as encoders, can be adapted later in time to a specific task, 

e.g., a classification (predicting a class of an object) or regression problem (predicting the 

next token in a sequence). For this purpose, only a few annotated data points are neces-

sary to adjust the generic encoder features to the concrete task and train a small predic-

tion head mapping the features into problem space. These process steps are often called 

pertaining (training an encoder with a self-supervised learning task to extract generic fea-

tures) and finetuning (adjusting encoder models to a specific task using supervised learn-

ing with a small amount of annotated samples), see Figure 1. 
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Figure 1: Pretraining and finetuning pipeline - During pretraining, a network is trained to encode 

the input into an embedding space representing the feature space. This training is performed with 

an unannotated dataset Xpre solving a self-supervised learning task. The resulting encoder net-

work can later be adjusted in a finetuning stage to solve a particular task utilizing only a small 

number of annotated examples Xfine. Here a classification task into k+1 different classes is shown 

as an example [author illustration]. 

In the field of natural language processing and natural image classification, working with 

sequential [12, 24–27] and image data [13–19], respectively, finetuned encoder models 

have demonstrated significantly better performance compared to models trained solely in 

a supervised manner. In fact, the self-supervised approach decouples the learning pro-

cess of generic features inside a domain from actual problems, opening up the possibility 

of making more versatile models publicly available. An immediate consequence could be 

significantly saving computational resources since complex models for tasks building 

upon such feature space do not have to be thoroughly trained repeatedly. Furthermore, 

it allows the (research) community to train models for problems with usually insufficient 

data or to use more complex models than the dataset would allow, e.g., due to overfitting 

threads. 

This thesis summarizes contributions to training deep learning algorithms with unanno-

tated data in the medical domain. For this purpose, the application and investigation of 

the self-supervised learning paradigm are considered for the two fundamental data types, 

sequential and image data, using deoxyribonucleic acid (DNA) sequences and histo-

pathological image data as examples. The contributions are based on the following pub-

lications: 
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Voigt, B., Fischer, O., Schilling, B., Krumnow, C., & Herta, C. (2023). Investigation of 

semi-and self-supervised learning methods in the histopathological domain. Journal of 

Pathology Informatics, 100305. 

Voigt, B.*, Fischer, O.*, Krumnow, C., Herta, C., & Dabrowski, P. W. (2021). NGS read 

classification using AI. Plos one, 16(12), e0261548.  

* equal contribution 
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2 Histopathological Image Data 

Since semi- and self-supervised learning methods has the potential to drastically reduce 

the effort of data annotation without limiting the predictive performance of the models. 

This development is essential in application areas such as computational pathology, 

where large amounts of data are available, but open, high-quality annotated datasets are 

rare or non-existent. Hence, training a well-generalizing classifier is challenging. Training 

methods utilizing non-annotated data have, accordingly, strong potential. The first at-

tempts have already been made to transfer such methods to histopathological data and 

explore their performance in this domain. While most follow the semi-supervised [28–30] 

or contrastive self-supervised learning approach [31–33], fewer studies have imple-

mented the non-contrast learning principle so far, e.g., [34, 35]. 

Contrastive self-supervised learning methods focus on creating useful representations by 

contrasting positive and negative pairs of samples from the training data. These methods 

aim to maximize the similarity between positive pairs while minimizing the similarity be-

tween negative pairs. In other words, they encourage the model to distinguish between 

different samples in a learned embedding space. Non-contrastive self-supervised learn-

ing methods, on the other hand, do not rely on explicit positive and negative pairs. In-

stead, they employ a self-supervised task that involves constructing multiple views of the 

same sample and training the model to predict one view from another. The key idea is to 

learn invariant representations that capture important information about the data.  

Even though the initial transfer studies suggest histological domain encoders as a benefit 

on in-domain classification and segmentation problems compared to non-domain feature 

extractors (trained on natural images) or purely supervised training, the learned embed-

dings have been limited studied, especially across different methods. An exception is the 

work of Ciga et al. [36], who performed a deeper analysis of SimCLR [15] across different 

datasets. In this work, we developed a framework to study encoder models under uniform 

conditions to investigate different pretraining approaches' capabilities to learn effective 

histopathological domain embeddings. To perform a cross-sectional study, we investi-

gated advanced techniques that utilize different learning paradigms for training encoder 

models. Specifically, we evaluated PAWS [37] as a semi-supervised learning method, 

SimCLR as a contrastive self-supervised learning method, and SimSiam [18] as a non-

contrastive self-supervised learning method. 
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2.1  Methods 

For the investigation and comparison, we intended to produce each method's best en-

coder in the new data domain, keeping the approaches of the different pretraining meth-

ods as close to the initial proposed implementation as possible. However, to maintain 

internal comparability throughout the experiments, we defined an experiment protocol for 

the pretraining, restricting the encoder networks to an equal baseline architecture and 

unifying some training settings. In particular, we ensured that all random operations, such 

as weight initialization or training data sampling, were standardized across the pretraining 

runs. Thus, the overall encoder training environment was nearly identical (e.g., the em-

bedding space varied across the methods) allowing encoders to be compared later, even 

if trained method-specifically. 

We performed several experiments on multiple in-domain classification tasks based on 

these structurally aligned encoders. Likewise, we created another protocol that defined 

the environment for the finetuning processes. Yet, this protocol was much stricter, guar-

anteeing that all experimental runs performed similarly. We acknowledge that this ap-

proach may lead to slightly lower performance on a given task than individually possible 

for each classifier, particularly compared to published state-of-the-art results. However, 

optimizing each experiment individually makes it nearly impossible to disentangle and 

compare the impact of the pretrained models. On the other hand, the fixed finetune pro-

cess prevents individual training effects and enhances the comparability of results across 

the different learning methods, enabling the inference of learned encoder embeddings. 

Accordingly, we consider this approach justified. Both protocols combined form the com-

plete experimental pipeline, i.e., the designated framework. 

Utilizing the framework as a first experiment, we studied the methods regarding possible 

performance fluctuations. In critical domains like medical applications, it is essential that 

(deep learning) algorithms yield consistent results. Similarly, in medical research, trace-

ability and reproducibility are crucial aspects. Thus, we trained 5 encoders for each in-

vestigated method by only varying the experiment random seeds, i.e., changing the initial 

network weights. After, we finetuned these encoders on the corresponding classification 

problem of the dataset used in pretraining five times, reusing the same seeds. Accord-
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ingly, this resulted in 25 data points on the downstream task per method for each meas-

ured performance metric. Finally, standard deviations were examined to determine 

whether performance fluctuations were due to pretraining or finetuning. 

An assumed benefit of training a classification model based on a powerful encoder is that 

the annotated training data can be drastically reduced since the general patterns only 

need to be tuned for the specific task. We examined this assumption quantitatively while 

still looking for differences between the pretraining approaches. Employing the protocols, 

we trained multiple encoder variations per method on the PCam [6] and NCT-CRC-HE-

100K [7] histopathological patch datasets. We finetuned each across both corresponding 

classification problems using different subsets of the training data (100%, 8%, 0.8%, and 

0.2%) to simulate settings with sparse annotated data available. In addition, the encoders 

were evaluated on the Lizard [9] dataset representing a tissue type never utilized in pre-

training and, hence, were unknown to all encoder models. Pretraining and finetuning ex-

periment runs were executed with several configuration settings to explore different as-

pects that may influence the performance, e.g., the encoder's network complexity or the 

prediction head's complexity while finetuning. Overall, we trained 288 classifiers per 

method. Further, we computed method-wise a fully supervised complement for each ex-

periment setting to calculate an absolute benefit when built upon an encoder by subtract-

ing the performance metric values from the complementary runs. Based on this compre-

hensive result data, not only the initial assumption could be examined with statistical sig-

nificance, but also other essential aspects influencing the overall performance. Moreover, 

through examining experiment runs in which the encoder training data differed from that 

of the finetuning task, it was possible to conclude about the learned embedding quality 

and properties, e.g., feature transferability, of histopathological domain encoder. 

In addition, we qualitatively investigated specific classifier with explainable AI techniques 

to study encoder embeddings in more detail. Therefore, using one model across each 

method, we created activation maps for randomly chosen samples using Grad-Cam [38] 

to observe if the decision-relevant image content represented domain features or was 

more of a general nature. 

2.2  Results 

The results from our experimental analysis demonstrate that pretraining generally pro-

vides a positive impact, as indicated by the average benefit (Figure 2a) and absolute 
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performance when compared to exclusively supervised training. This effect was more 

substantial for complex network architectures and remained consistent even when reduc-

ing the amount of training data. Notably, it was observed that fewer annotated data sam-

ples were necessary to achieve comparable performance when building upon a domain 

encoder. Additionally, the evidence suggests that these models are capable of learning 

domain-specific features that are applicable across different tissue types. However, we 

also noted that the transferability of these features was limited and depended on the en-

coder training and downstream task data divergence (as depicted in Figure 2b). Despite 

this limitation, based on the overall findings, it is recommended to construct a neural net-

work classifier using a histopathological domain encoder model, especially if there is less 

annotated data available. 

 
Figure 2: Benefit distribution of different training methods - Accuracy benefit distribution is shown 

for successively decreasing finetuning training data (a) and encoder transferability, i.e., encoder 

training data distinguishes from finetuning data (b); graphics were taken from [39]. 

It should be noted that using a unified evaluation strategy has restrained the performance 

of all methods studied. However, it has facilitated the comparison of the encoders and 

the examined learning strategies, which was the key objective of this study. We expect 

each method to improve relatively if individually optimized for a downstream task, i.e., not 

constrained by the finetuning protocol. Regarding the methods comparison, PAWS 

achieved mainly lower values than the other methods. Hence, the additional information 

the method received due to its semi-supervised learning approach showed no advantage 
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in the experimental setup of this work. SimCLR, a representative of contrastive self-su-

pervised learning, exhibited the most reliable performance across all experimental con-

figurations. Regardless of the encoder training data and network architecture, its results 

revealed the least amount of fluctuations. Thus, it can be inferred that this methodology 

generates the most stable embeddings for the domain inside the comparison group. On 

the other hand, SimSiam, as the non-contrastive self-supervised learning approach, was 

less sensitive to weight initialization if the encoder was finetuned. Its evaluation metrics 

were the highest and obtained the greatest relative benefit overall. However, training a 

high-performance encoder was most challenging with this method, and the encoders also 

provided significantly more variable results than the SimCLR approach. The findings im-

ply that SimSiam may demand more customized tuning than the fixed experimental de-

sign permits. Hence, testing SimSiam could be a favorable complement or alternative to 

SimCLR, which appears the preferred choice for obtaining consistent results in the histo-

pathological domain. 
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3 DNA Sequence Data 

For processing medical sequential data, DNA sequences (metagenomic datasets) are 

used as an example in this work. The sequencing process of metagenomics generates 

extensive nonspecific data due to its nature. Thus, the relevant sequences must be fil-

tered out to prepare the data for further analysis, e.g., a diagnostic process. The standard 

approach for cleansing metagenomic data involves comparing it to reference databases. 

As an established method, recent optimization of implementations has efficiently detected 

pathogens in the utilized databases. However, a common issue when analyzing a meta-

genomic patient sample is the inability to identify pathogen sequences. Lennon & Locey 

[40] estimated that approximately 1014 bacterial taxa exist, but only around 106 have been 

identified, while Anthony et al. [41] suggested the presence of over 3x105 undetected 

mammalian viruses. Determining whether the absence of pathogen evidence in the data 

is due to the pathogen's nonexistence in the genome or its unavailability in the database, 

and thus being impossible to classify the sequences, presents a challenge. 

Previous studies have demonstrated the effectiveness of machine learning in addressing 

this issue. For instance, Deneke et al. [42] utilized Random Forests to accurately antici-

pate the occurrence of human pathogenic organism sequences in metagenomic datasets. 

Although various methods have employed machine learning to enhance the parameters 

of existing tools [43, 44], Deneke et al. [42] research is the only known to us, utilizing 

machine learning to identify microbial sequences without depending on reference se-

quences. We aspire to extend the understanding of such approaches' usefulness by ap-

plying deep learning language models to this problem. Using a self-supervised protein 

language model, we have developed a proof-of-concept tool to detect novel pathogens 

in metagenomic datasets. This is accomplished by a taxonomic classification of proteins 

encoded by sequences from these datasets. We thereby demonstrate that such a model 

developed for a different purpose can be adjusted to create new diagnostic tools and 

investigate other research questions by intra-domain transferring its learned features. 

3.1  Methods 

We developed a prototype pipeline for classifying Next Generation Sequencing (NGS) 

reads into the taxonomic domains of virus, bacteria, or human/mammalian. The pipeline 
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is founded on the self-supervised trained protein language model ProtTrans [45], em-

ployed as an encoder. Multiple data processing and classification tasks are performed for 

taxonomic prediction. To solve these tasks, we built upon the knowledge ProtTrans 

learned about the protein domain. Thus, the initial model was finetuned to individual pipe-

line problems using customized datasets created from amino acid sequences of the Uni-

ProtKB/Swiss-Prot database [46, 47] and DNA reference sequences of the RefSeq data-

base [48]. Figure 3 provides a conceptual outline of the entire taxonomic classification 

pipeline. 

 
Figure 3: Taxonomic domain classification pipeline for NGS reads - The DNA sequences are 

translated into an amino acid sequence. A first model Pframe predicts if the amino acid sequence 

is correct translated (on-frame) or if the initial DNA sequence needed to be shifted before trans-

lation (off-frame). After the correct translation, which can be verified by the using Pframe again 

(dotted arrow), the amino acid sequence can be taxonomic classified by the second model Ptax. 

is performed a second; Graphic is taken from [49]. 

The pipeline input consisted of NGS reads and accepted nucleotide sequences up to 300 

base pairs each. One restriction for this proof-of-concept pipeline was that all reads lie 

within a coding sequence, i.e., coding to a protein. Considering that the ProtTrans model 

is trained on amino acids, it was necessary to translate the DNA sequences into an amino 

acid sequence, which was implemented using biopython [50] as an established tool for 

this task. Thus, the effective model input length is reduced to 100 or less since three 

nucleotide base pairs are coding one protein. Translating these fragments into a proper 

coding sequence poses a significant challenge due to the absence of distinct start or stop 
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codons, which typically serve as indicators of the correct reading frame. Hence, this trans-

lation process can be regarded as a non-trivial problem. However, this problem can be 

represented as a classification task comprising six classes: the correct reading frame (on-

frame) and five possible offset frames. Therefore, ProtTrans was finetuned to a first clas-

sification model returning a probability distribution over the frames classes for a given 

amino acid sequence. Figure 3 illustrates this pipeline step as Pframe. 

After determining an amino acid sequence's most likely reading frame, the initial nucleo-

tide sequence was shifted accordingly and translated into the correct amino acid se-

quence used for further processing. Note that for minor additional computational re-

sources, Pframe could be reused to validate the new translation, i.e., the most likely pre-

diction of the corrected sequence should be on-frame. In the last pipeline step, another 

finetuned ProtTrans model Ptax classified the on-frame amino acid sequence into taxo-

nomic domains virus, bacteria, or human/mammalian. 

The final models were evaluated on a 10% split of the customized datasets reserved for 

internal testing. Further, the applicability of the trained models and the complete pipeline 

was tested by classifying real-world reads. Therefore, data from two metagenomic se-

quencing projects available within the SRA [51] were classified, i.e., human skin meta-

genomic study (SRR7188139) and a swine feces metagenome (ERR3013343). Com-

pared to the training derived from curated reference databases, these test reads con-

tained sequencing errors. Moreover, the frame classification was evaluated against ex-

isting tools determining the correct translation frame directly from short NGS reads: frag-

GeneScan [52] and CNN-MGP [53]. 

3.2  Results 

Benchmarking the frame classification Pframe on the internal test set yielded an overall 

accuracy of 0.98, significantly outperforming both CNN-MGP (0.34 accuracy) and frag-

GeneScan (0.59 accuracy) within the experimental setting. Also, reexamining the shifted 

sequences with the classifier showed the expected behavior of almost all sequences 

moved into the proper frame. For the taxonomic classification model Ptax, an accuracy of 

0.91 on the internal test data was measured. Upon closer examination of the inner-class 

accuracies, we found that most reads predicted as bacterial (0.94) were correctly classi-

fied. In contrast, only 0.88 of sequences classified as viral were of viral origin, with 0.8 

being mammalian. Aligned patterns were observed for mammalian classified reads. The 
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classifier faced significant challenges in differentiating between mammalian and viral 

reads, as evident from the higher frequency of mammalian reads (0.92) compared to viral 

reads (0.06). This behavior can be explained to retroviral sequences within the human 

genome. 

However, the exemplary analysis of real metagenomic sequencing data was more chal-

lenging for the pipeline, likely due to its noisy nature. The swine feces metagenomic da-

taset could achieve a taxonomic domain classification precision of 0.87. This could be 

improved to 0.90 if cleaning the test data of erroneous sequences, e.g., discarding reads 

containing a stop codon in every possible frame, which is impossible within a coding se-

quence. In contrast, the human skin metagenome classification had a precision of 0.62. 

This apparent drop resulted mainly from bacterial reads being wrongly predicted as viral. 

Yet, the extent to which this performance difference between the test datasets is due to 

a distributional shift requires clarification through further investigation, which was beyond 

the scope of this proof-of-concept study. 

Altogether, the findings suggest that a sufficiently trained contemporary language model 

can acquire the necessary domain knowledge to develop a domain-level taxonomic clas-

sifier using short amino acid sequence fragments of an organism's proteins without de-

pending on a reference database. Moreover, the frame classification task results demon-

strated such language models' ability to determine the frame of a short DNA sequence 

within an open reading frame without prior knowledge of the reference sequence. This 

approach could potentially serve as an alternative to the conventional practice of com-

paring all possible translations with a protein sequence database, provided that the exist-

ing restriction of reads being within coding sequences can be removed without any per-

formance loss. 
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4 Discussion and Outlook 

It was shown that models classifying histopathological images based on domain-specific 

encoders have performance advantages over models trained exclusively with supervised 

learning, especially if only a few training examples are available. This confirms previous 

research results on individual self-supervised learning methods in this domain [31–36]. 

However, comparing methods within the controlled experiment setting highlighted differ-

ences in performance and methodological domain challenges. The findings suggest that 

these are due to both learning approaches and the peculiarities of histopathology data 

compared to natural images. 

Training with the SimCLR, representative of contrastive self-supervised learning meth-

ods, showed the most stable learning behavior based on optimized hyperparameters and 

consistently produced meaningful features leading to similar results on a downstream 

task. These observations are consistent with a recent theoretical investigation of such 

methods. Pokle et al. [54] argue that self-supervised training with the support of negative 

pairs converges more stably to a local minimum corresponding to a valuable representa-

tion of the training data features. 

In contrast, for non-contrastive self-supervised learning methods, Pokle et al. [54] defines 

certain initial criteria that must be satisfied in order to converge to a meaningful represen-

tation. In general, non-contrastive methods tend to quickly converge to poor local minima 

if these criteria are not met, e.g., optimized hyperparameter settings, integration of weight 

normalization, or a network warm-up. This may explain the initial problems observed 

when adapting the SimSiam method to the histopathological domain. Although a none 

collapsing training process was observable, the SimSiam encoders performed poorly on 

the downstream tasks during the initial method exploration. Data and weight normaliza-

tion as well as optimization of hyperparameters and augmentation strategies fixed this 

issue. So, this is also aligned with the proposition of Pokle et al. [54]. It can be inferred 

that non-contrastive self-supervised learning methods have sensitive learning processes. 

A deeper investigation will be necessary to identify optimal factors for the respective med-

ical training data to generate high-performance encoders in the domain. 

Another relevant study finding concerns the domain-specific scope of encoder models, 

i.e., histopathological feature transferability. The results indicate that the usefulness of an 

encoder correlates with the similarity of its training data and the downstream data. This 
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effect is generally expected, as the usefulness of learned features decreases with the 

distributional shift of the data. Still, it is unexpectedly prominent in the homogeneous – 

compared to the variety of natural images – histopathology data. Thus, it cannot be con-

cluded with certainty to what extent the learned features have general domain-specific 

validity and usefulness. However, since the study investigates the feature transferability 

only on three very different patch datasets, this aspect must be considered in a differen-

tiated manner and, above all, analyzed further. Training neural networks through self-

supervised learning methods allow unrestricted use of non-annotated data. This potential 

has not yet been fully exploited in the present study. Recent work on histopathological 

encoder models extensively trained on larger amounts of TCGA whole slide image data, 

such as Ciga et al. [36] and Chen et al. [55], shows significantly better transfer perfor-

mance, i.e., achieving good performance results on different domain-specific classifica-

tion and segmentation problems. This emphasizes the correlation between the encoder 

training data and the applicability of its features within the domain spectrum. Compiling 

optimized encoder training datasets could be an essential aspect of general histopatho-

logical base models and, accordingly, another research topic. Stacke et al. [56] reached 

similar conclusions in their recent work analyzing the SimCLR method in the domain. 

The case study on sequential medical data details the successful development of an 

analysis tool that utilizes a self-supervised trained language model for the taxonomic do-

main-level classification of short protein sections. Notably, this tool demonstrates prom-

ising results as a proof-of-concept in the absence of matching sequences with a reference 

database, which is the current standard practice. Additionally, it has been demonstrated 

that short DNA sequences can be frame-predicted using a language model without prior 

knowledge of the reference sequence or the typical comparison of a six-frame translation 

with a protein sequence database. This reference-free recognition suggests that self-su-

pervised trained language models can decipher the underlying grammar of nature, as 

supported by parallel advancements in the field, most notably DeepMind's AlphaFold 

model [57, 58], which predicts protein structure based on amino acid sequence and has 

become a research database in its own right. 

Due to the models' capability of reference-free recognition, diverse application possibili-

ties arise for the tool. For example, it enables further investigation of previously unknown 

sequences in an unclassified read set that typically remains after analysis of meta-
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genomic NGS data. With the present model, this would be possible for the potential pres-

ence of bacterial and viral proteins, thus unknown organisms. Moreover, it can assist in 

analyzing metaproteomic experiments by classifying peptides at a high level. This classi-

fication can aid protein sequence assemblers, like PASS [59], by reducing the number of 

sequences and minimizing the risk of misleading overlaps. Furthermore, frame classifi-

cation can be decoupled and integrated into other algorithms to make them more efficient 

by eliminating matching and translation operations employed for frame identification 

steps. As another example, this classifier could detect novel frame-shift mutations in un-

known genomes without needing a high-quality reference sequence. 

The ability to learn hidden structures from (unannotated) data and the emerging possibil-

ities that arise from this, such as reference-free recognition, rapidly drive the development 

of such models in the medical field. Thus, improved protein language models have been 

developed in the past two years [60, 61], and models based entirely on DNA sequence 

data have been published [62]. Related work on taxonomic classification, which builds on 

DNA language models, has already emerged. For example, Mock et al. [63] presents their 

BERTax model for the taxonomic classification of DNA sequences at the domain and 

phylum levels. 

Transformer language models have been utilized in novel medical applications, showcas-

ing the potential of self-supervised learning in the field. The taxonomic and frame classi-

fication are two examples that demonstrate the value of this approach in 2021. However, 

the classifiers are limited by requiring the DNA sequence to be within an open reading 

frame. Resolving this constraint is necessary to advance the tool from a proof-of-concept 

to productive status. One solution could be to build upon a DNA language model instead 

of a protein one. Another limitation is the maximum sequence length that the models can 

process. The sequence length is due to the available computational capacity during de-

velopment and could be modified by a re-training with more resources. A fundamental – 

but more general – challenge for future development and research is making the 

knowledge incorporated in these language models accessible and comprehensible to fa-

cilitate learning from it, especially in the medical domain. 
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5 Conclusions  

In this thesis, training neural networks with self-supervised learning methods was inves-

tigated through two case studies on two elementary data types, sequential and image 

data, to evaluate the usefulness of such training methods for the medical domain. 

Different state-of-the-art training methods were compared in a controlled experiment re-

garding the image data. It could be shown that all methods have an advantage over purely 

supervised training and that encoders, respectively their features, are transferable within 

the domain to a certain degree. After assessing the individual methods, a recommenda-

tion for usefulness in the histopathological context could be given. In the case of sequen-

tial data, it could be shown how an application with diagnostic and scientific relevance 

was (further) developed based on a protein language model. The implemented proof-of-

concept analysis tool taxonomic classifies (domain-level) short amino acid segments 

without relying on a reference database. 

Even though these methods are predominantly novel and proportionally lack a proven 

theoretical framework, their research potential and feasible performance improvements 

must be addressed even for this critical application domain. In the context of rapidly grow-

ing data volumes in the medical sector, self-supervised deep learning methods can cata-

lyze the further development of therapeutic and diagnostic procedures. 
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Abstract

Clinical metagenomics is a powerful diagnostic tool, as it offers an open view into all DNA in

a patient’s sample. This allows the detection of pathogens that would slip through the cracks

of classical specific assays. However, due to this unspecific nature of metagenomic

sequencing, a huge amount of unspecific data is generated during the sequencing itself and

the diagnosis only takes place at the data analysis stage where relevant sequences are fil-

tered out. Typically, this is done by comparison to reference databases. While this approach

has been optimized over the past years and works well to detect pathogens that are repre-

sented in the used databases, a common challenge in analysing a metagenomic patient

sample arises when no pathogen sequences are found: How to determine whether truly no

evidence of a pathogen is present in the data or whether the pathogen’s genome is simply

absent from the database and the sequences in the dataset could thus not be classified?

Here, we present a novel approach to this problem of detecting novel pathogens in metage-

nomic datasets by classifying the (segments of) proteins encoded by the sequences in the

datasets. We train a neural network on the sequences of coding sequences, labeled by tax-

onomic domain, and use this neural network to predict the taxonomic classification of

sequences that can not be classified by comparison to a reference database, thus facilitat-

ing the detection of potential novel pathogens.

Introduction

Over the past one and a half decades, Next Generation Sequencing (NGS) has revolutionized
genomics and adjacent fields of research. The ability to sequence massive amounts of DNA at
ever-decreasing costs per base has led to an explosion of the genetic information available for
researchers. For instance, since the introduction of the Roche 454, the first commercially suc-
cessful NGS machine [1], in 2005, the number of bases in GenBank has grown from about 1010

to almost 1012, at a staggering average rate of 5 × 1010 bases per month—the same number of
bases every two months that it had previously taken 22 years to accumulate [2]. And this is just
the analyzed tip of the iceberg: The Sequence Read Archive (SRA) currently holds over
4 × 1016 bases of raw NGS data [3].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0261548 December 22, 2021 1 / 13

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Voigt B, Fischer O, Krumnow C, Herta C,
Dabrowski PW (2021) NGS read classification
using AI. PLoS ONE 16(12): e0261548. https://doi.
org/10.1371/journal.pone.0261548

Editor: Yanbin Yin, University of Nebraska-Lincoln,
UNITED STATES

Received: June 24, 2021

Accepted: December 3, 2021

Published: December 22, 2021

Peer Review History: PLOS recognizes the
benefits of transparency in the peer review
process; therefore, we enable the publication of
all of the content of peer review and author
responses alongside final, published articles. The
editorial history of this article is available here:
https://doi.org/10.1371/journal.pone.0261548

Copyright: © 2021 Voigt et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All data files are
available from zenodo (accessions 4306240,
4306248, 4307779, 4306420, 4306499). The
source code is available from github: https://github.
com/CBMI-HTW/TaxonomicClassification-NGS-
NN.

https://orcid.org/0000-0003-2368-9683
https://orcid.org/0000-0002-1871-9350
https://orcid.org/0000-0003-4893-805X
https://doi.org/10.1371/journal.pone.0261548
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261548&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261548&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261548&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261548&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261548&domain=pdf&date_stamp=2021-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0261548&domain=pdf&date_stamp=2021-12-22
https://doi.org/10.1371/journal.pone.0261548
https://doi.org/10.1371/journal.pone.0261548
https://doi.org/10.1371/journal.pone.0261548
http://creativecommons.org/licenses/by/4.0/
https://github.com/CBMI-HTW/TaxonomicClassification-NGS-NN
https://github.com/CBMI-HTW/TaxonomicClassification-NGS-NN
https://github.com/CBMI-HTW/TaxonomicClassification-NGS-NN


This massive amount of available data presents diverse challenges when it comes to data
analysis. One common application of NGS is metagenomic sequencing, where all genetic
material in a complex sample, such as a patient’s body liquid (clinical metagenomics) or a
piece of arctic ice (environmental metagenomics), is sequenced. While in targeted approaches,
such as sequencing a cultured bacterium, the composition of the sample is known a priori and
that knowledge can be used to inform the analysis, in metagenomic sequencing the primary
data analysis task is determining that composition. The common approach to this challenge is
using known reference sequences. Very broadly speaking, for each read from an NGS sample
the similarity to all sequences within a reference database is determined and the read is classi-
fied as belonging to a taxon based on this comparison. While this approach allows highly suc-
cessful detection of organisms with already sequenced relatives, as evidenced by the results of
studies such as CAMI where all entries used variations on the above-mentioned approach [4],
it does not allow the detection of entirely novel organisms—especially if those are only repre-
sented at low levels in the sample. Data from such organisms disappears within the thousands
to millions of “unclassified” reads that remain as a byproduct of any metagenomic NGS dataset
analysis—hidden among technical artifacts and reads from known organisms that could not
be clearly assigned to a taxon.

Although such “unclassified” reads are usually discarded within the analysis workflow, the
hints towards novel bacteria and viruses contained therein would be a valuable resource if they
could be identified and isolated for further, more detailed analysis. This would facilitate the
detection and characterization of the huge number of organisms that have not yet been
sequenced—for instance, [5] estimate that there are around 1014 bacterial taxa, of which only
around 106 have been described, and [6] estimate that there are over 3 × 105 undetected mam-
malian viruses.

It has previously been shown that machine learning can be a valuable tool in overcoming
this challenge: [7] have successfully used Random Forests to predict the presence of sequences
from human pathogenic organisms in metagenomic datasets. While several other approaches
have used machine learning to optimize parameters of existing tools [8, 9], to our knowledge
the work by [7] represents the only attempt to detect microbial sequences using machine learn-
ing without relying on reference sequences. Here, we aim to extend the understanding of such
approaches’ usefulness by applying transformer neural networks to the classification of NGS
reads as mammalian, bacterial or viral in origin.

The application of neural network models is profoundly successful in the field of natural
language processing [10, 11]. In particular, models based on the Transformer architecture [12]
have led to significant breakthroughs in developing so-called language models that have
shown state-of-the-art performance on a variety of natural language processing tasks [13–15].
One tremendous advantage is that such models can be trained using a self-supervised
approach, i.e., there is no requirement for labeled data like in a supervised learning regime.

In recent work, language models from various transformer networks, primarily multi-layer
bidirectional Transformer [14], have been trained on datasets containing a large number of
unlabeled protein sequences, e.g., UniProt [16]. [17] developed the protein generation lan-
guage model (ProtGen) that creates proteins that exhibit near-native structure energies. [18]
investigated the learned representations of a protein language model. Their findings show that
high-capacity networks reflect biological structure at multiple levels, including amino acids,
proteins, and evolutionary homology. [19] compared the performance of the embeddings gen-
erated by several network architectures [14, 20–22] on multiple supervised learning tasks, e.g.,
classification into membrane and non-membrane proteins.

In this paper we build upon the aforementioned work on the application of transformer
networks in protein classification to demonstrate their applicability to taxonomic classification
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of NGS reads. Since the overarching goal is the detection of entirely novel organisms from
metagenomic datasets, in this initial work we focus on a classification on the domain level, spe-
cifically into mammalian (i.e. host in the case of clinical metagenomic datasets), viral and bac-
terial reads. This will allow extraction and specific examination of reads representing hitherto
undescribed viruses and bacteria from reads that remain in the “unclassified” bin after tradi-
tional metagenomic data analysis and taxonomic classification has been performed with tools
such as Kraken [23], RIEMS [24], PathoScope [25], PAIPline [26] or MetaMeta [27]. Since we
are building upon large existing models that have been trained on protein sequences, we limit
this proof of concept to the classification of reads that lie within a coding sequence (CDS).
While, in order to be able to correctly perform classification independent of a read’s offset
within the CDS, we also automatically determine which of the six possible frame the read is in.
This pre-requisite step in itself is a novel application of machine learning to ORF detection, as
current tools either (i) rely purely on presence/absence of start/stop codons without further
interpretation of the sequence (such as getorf [28] or OrfM [29]) or return all candidate
sequences for each read without clearly resolving potentially contradictory hypotheses (such as
FragGeneScan [30], CNN-MGP [31] or geneRFinder [32]). However, since this is a proof-of-
concept work, we do not—in contrast to these existing tools—examine reads that are outside
of CDSs in this paper.

Methods and implementation

We developed a proof-of-concept for the classification of NGS-reads into the taxonomic
domains viruses, bacteria, and mammals. The classification is done by concatenating multiple
data processing and sub-classification steps.

At first, the frame of a read within its CDS must be recognized to translate the DNA
sequence fragments into amino acid sequences correctly. This is a non-trivial step because
there are typically no start or stop codons in the fragments. We developed a classifier based on
a language model to detect the correct frame of a read. Using this information, the read
sequences can be translated into amino acid sequences. In a final step, the amino acid
sequences are classified into taxonomic domains by another language model.

In this section, we describe this proof-of-concept pipeline in more detail. Then, we provide
information about the design and training process of the individual classifiers which are used
in different steps of the pipeline. Finally, we describe how training and test data sets were
generated.

Classification pipeline

The pipeline was implemented as an python script (see https://github.com/CBMI-HTW/
TaxonomicClassification-NGS-NN). A general overview is shown in Fig 1.

As input the pipeline gets a file in the FASTA format with NGS reads. We expect the nucleo-
tide sequences s to be of 300 base pairs each, i.e., s = (s1, . . ., s300). This is not a strict require-
ment as shown by our experiments with different amino acid sequence length (S1 Appendix;
S1 Fig), but since the classifiers were optimized on that length it will lead to the best results.
While for the prototype, we assume that all reads lie within CDSs, we plan to add an automatic
selection of such reads from raw NGS data in future work. Each nucleotide sequence is trans-
lated into a protein sequence x = (x1, . . ., x100) using biopython [33]. Often, this is not the cor-
rect translation because most reads are off-frame. Such wrong translations are detected in the
next step and are then re-translated. However, if there are any stop codons in the initial trans-
lation, a full six-frame translation of the read is performed and, if a translation x̂ without stop
codons is found, this x̂ is used instead.
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The resulting amino acid sequence x from the initial translation is fed into the frame classi-
fication model that returns a probability distribution over the classes pframe(k j x). There are six
possible classes k 2 {0, . . ., 5} which are predicted by the model for each sequence: on-frame
(k = 0), offset by one base (k = 1), offset by two bases (k = 2), reverse-complementary (k = 3),
reverse-complementary and offset by one base (k = 4) and reverse complementary and offset

by two bases (k = 5). Based on the classification result k̂, with k̂ à arg maxk pframeÖk j xÜ, the

transformations (shifting, reverse-complementing) necessary to make each amino acid
sequence on-frame are performed on the original DNA sequences s before they are again
translated into amino acid sequences _x for further processing. Finally, each on-frame amino
acid sequence _x is classified into one of the taxonomic domains t used in this prototype: virus,
bacteria, or human/mammalian using the second classification model

t̂ à arg maxt ptaxÖt j _xÜ.
The output of the pipeline is the input FASTA file with a modified identifier line, i.e., infor-

mation about the frame classification k̂ and species classification t̂ is appended.

Model description, training, and fine-tuning

The classifiers are based on pre-trained (protein) language models. A language model is an
assignment of a probability distribution to a sequence of tokens for a language. In our context,
the tokens are amino acid symbols. Such language models are trained (self-supervised) on
large corpora of sequences/sentences of a language, e.g. on protein data bases. In the training
process the language model must continue a sequence (autoregressive) or should predict miss-
ing tokens which are masked in the input [14], i.e. it must assign high probabilities to the cor-
responding tokens of the training data. Therefore, no labeled data is needed.

A neural network language model can be used after training as a feature extractor, i.e., the
token sequence is transformed by the model into a sequence of feature vectors. The sequence

Fig 1. Overview of the complete neural network classification pipeline. The pipeline consists of four major blocks: (1) preprocessing NGS reads, (2) frame
classification of NGS reads, (3) frame correction and translation of NGS reads, (4) taxonomic classification of amino acid sequence. The dotted arrow line shows an
optional loop of the frame classification used for checking the frame correction block, as shown in Fig 2.

https://doi.org/10.1371/journal.pone.0261548.g001
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of features can be used for other tasks, e.g., for the classification of a complete sequence. Here-
fore, the sequence of features is pooled into one feature vector with a fixed size. With addi-
tional labeled data a classification model can be trained on pairs of feature vectors and labels.
This is an example of transfer learning: The knowledge learned by modeling the language is
used for another task, e.g., a classification. The parameters of the feature extractor can also be
modified for the specific task. Typically, a classification head replaces the last layer(s) of the
pre-trained language model neural network such that the new neural network can be trained
end-to-end on the classification data (sequence-label pairs). I.e., the parameters of the neural
network are fine-tuned to improve the classification performance.

We used a pre-trained language model called ProtBert [19], a multi-layer bidirectional
transformer neural network [14] with 30 layers and 420 million parameters. The language
model was trained on the Uniref100 dataset [16]. As an important detail we note that the data-
set contains protein sequences in their correct reading frame. Such sequences don’t contain
any stop codon which we take into account in our pipeline as discussed above in Section “Clas-
sification Pipeline” and in our data generation as described in Section “Data generation”.

The language model maps an amino acid sequence x = (x1, . . ., xn) into a sequence of fea-
ture vectors (h01, . . ., h0n). In case of the pre-trained language model ProtBert each h0 consists
of 1024 elements. We reduce these sequence of feature vectors into a single feature vector h by
using different pooling strategies. We explored mean, max, and dot product self-attention
functions for pooling. For classification, we fed the feature vector h into a two-layer dense net-
work (classification head), projecting this representation into unnormalized log probabilities z
= (z1, . . ., zc) with c being the number of classes of the task. The probabilities are computed
from z by a softmax operation. Note that the language models are trained on complete protein
sequences. In contrast, the classification is done on (protein) fragments.

Both classification models pframe and ptax were trained with two different approaches:
(pure) feature extraction and fine-tuning. In the first variant, the feature vectors generated by
the transformer were fixed, i.e., the parameters that were trained by the language model objec-
tive are frozen. Only, the parameters of the classification head are adapted during training.
This approach has the advantage of significantly reduced training time. Since only the small
dense network parameters have to be updated, the batch size can be increased. However,
updating all weights during the training process lets the pre-trained models adapt to the spe-
cific task. We explored this alternative using smaller batch sizes and different learning rates for
the dense networks and the pre-trained language model. Regardless of the training type, we
used the LAMB optimizer [34] to update the model parameters. We optimized model hyper-
parameters using the the ASHA algorithm [35]. We summarize the final hyperparameter set-
tings of our experiments in Table 1.

Table 1. Hyperparameter settings used for the training process of Pframe and Ptax.

Pframe Ptax

Epochs 2 10

Batch size 128(8) 64(4)

LM Learning Rate 1e−5 25e−5

CN Learning Rate 0.0025 0.0005

CN Feature Number 512 256

CN Dropout Rate 0.0 0.25

For brevity in the table LM is short for language model and CN referring to the classification network.

https://doi.org/10.1371/journal.pone.0261548.t001
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The model calculation was done using a small cluster consisting of 8 Nvidia V100 GPUs.
We realized distributed training through data parallelism, i.e., distribute the same model with
different batches across the nodes. In Table 1 we report the global batch size with the number
of nodes in brackets if calculated distributed, e.g., 256(4), meaning a batch size of 64 per GPU.

Data generation

To train the models as described above with the most reliable data available, we used amino
acid sequences from Uniprot [16] for the taxonomic classification model and RefSeq [36] ref-
erence sequences for the frame classification model. We then tested the applicability of the
trained models and the whole pipeline by classifying reads from two metagenomic sequencing
projects available within the SRA [37], after selecting only the reads matching the criteria for
this pipeline (i.e. those that lie within a viral, bacterial or mammalian CDS). The steps for gen-
erating the input sequences x for the classifiers from the initial sequences s of the three raw
data sets are described in detail in the following sections.

Training data for taxonomic classification. For training of the taxonomic classification,
we downloaded the 2020–04 release of the fully manually annotated and curated UniProtKB/
Swiss-Prot database for bacteria, viruses and human as representative for mammalian
sequences [16, 38]. For each amino acid sequence x = (x1, . . ., xN(s)) we created with a sliding
window all possible patches (xl, . . ., xl+99) for all l N(s) − 100 of length 100. N(x) denotes the
varying length of the initial sequence x and sequences with N(x)< 100 were discarded.

The initial data is strongly unbalanced with respect to its biological origin. In order to split
the data in training, validation and test sets we iteratively draw without replacement from all
sequences x and fill all patches generated from x successively either in the test, validation or
training. Further we balanced the data by considering all viral sequences and down sampling
sequences with bacterial and human origin until all data sets contain the same number of
patches for all three classes with an approximate ratio of (10% test, 10% validation, training
80%) of the total sizes.

The final data sets contain approximately 1.8 × 107 patches and are deposited at zenodo
[39].

Training data for frame classification. For training of the frame classification, randomly
selected viral and bacterial genomes and the human (GRCh38.p13) reference genome were
downloaded from GenBank [40]. From these genomes, all annotated CDS DNA sequences s
were extracted. Similar to the amino acid data, for each nucleic acid sequence s = (s1, . . ., sN(s))
using a sliding window all possible patches (sl, . . ., sl+299) of length 300 as well as their reverse
complemented versions Öslá299; . . . ; slÜ for all l N(s) − 300 were created and translated to

amino acids using biopython [33]. By this, we create the on-frame sequence, as well as all pos-
sible off-frame configurations.

In order to avoid the model from relying on the presence of a stop codon for the classifica-
tion of off-frame sequences, all sequences whose translation contained a stop codon were dis-
carded. We split the data into three sets with approximate ratios of (10%, 10%, 80%) of the
total sizes by placing all patches generated from one initial sequence s into one of the three
sets.

Due to the removal of sequences containing stop codons which are only present in off-
frame sequences, on-frame sequences were heavily over-represented in these data sets. We bal-
anced the data sets by discarding sequences in over-represented frames until all frames were
present at the same ratio—and the final three data sets have the exact size ratios (10% test, 10%
validation, 80% training). The resulting data sets contain a total of 1.2 × 107 patches and are
deposited at zenodo [41].
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Application data. To test the applicability of the trained models to real data, we down-
loaded the raw NGS reads from two metagenomic SRA runs using a read length of 300: A
human skin metagenomic study (SRR7188139) and a swine feces metagenome (ERR3013343).
Since the proof-of-concept pipeline only classifies reads that lie within a CDS, eligible reads
were extracted by mapping. To that end, all RefSeq viral and bacterial genomes, the human ref-
erence genome (GRCh38.p13) and the sus scrofa reference genome (GCF_000003025.6) were
downloaded, annotated CDS sequences were extracted and raw reads were mapped to these
using bowtie2 [42] with the –end-to-end parameter. Reads mapping to either only viral, bacte-
rial or mammalian ORFs were selected for the application test.

Benchmarking of frame classification

The first step of the pipeline—determining the frame for translating a read’s sequence—is a
task that is also tackled by other existing tools. It is therefore not immediately obvious
whether the best performance can be achieved by using frame classification using ProtBert, as
shown in Fig 1, or by using one of these existing tools. In order to answer this question, we
have compared the ability of our classifier to predict the correct frame of a read to that of other
tools.

We have found six tools that tackle the task of determining the correct translation frame
directly from short NGS reads: MGC [43], metaGun [44], metaGene [45], Orphelia [46], frag-
GeneScan [30] and CNN-MGP [31]. The last one of these, CNN-MGP, also uses a neural net-
work to perform the classification. Unfortunately, out of these six tools, only two were suitable
for our comparison. Orphelia requires a java binary that was built against gcc version 3.4,
which has been superseded by version 4.0 in late 2006. Setting up a system with such old pack-
age versions was outside of the scope of this work. The websites referenced in the publications
for metaGun and metaGene are offline, and MGC does not even mention any download web-
site or include the binaries in the supplementary materials. We were not able to find any other
resources such as mirrors or git repositories from which source code or binaries can be down-
loaded, making it impossible to run any of these tools. Accordingly, we only included fragGen-
eScan and CNN-MGP in our benchmarks.

In order to make the benchmark reproducible, we have implemented it as a nextflow [47]
pipeline (see https://gitlab.com/dabrowskiw/cdsfinderbenchmark). For the evaluation, we
have used the above-mentioned test dataset [41]. Since the documentation of CNN-MGP out-
put is not entirely clear on how the reported reverse reading frames are encoded, we have man-
ually tested all possible interpretations and chosen the one yielding the best results for
CNN-MGP. We have also excluded reads for which CNN-MGP or fragGeneScan reported no
reading frame from the calculation, since including these would have given our approach an
unfair advantage—while we know that in this proof-of-concept work we have only included
reads from within CDS and we thus predict a frame for each read, CNN-MGP and fragGeneS-
can can be applied to real data also including reads from non-coding regions and thus need to
be able to predict that a read contains no valid frame.

Results

In this section, we report the results of the trained model for two different settings. First, we
test the taxonomic and frame classification models separately on the test data of the corre-
sponding training setups. Then we use the full pipeline on real data from metagenomic
sequencing studies.
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Evaluation of both models

We evaluated the final classification models using a 10% split of generated data. As metrics, we
report the ROC curve and error matrix as a heatmap for both tasks.

On the test dataset, the frame classification pframe achieved an overall accuracy of 0.98 (S2
Fig in S1 Appendix). Since the datasets’ classes are balanced, we expected a strong diagonal in
the classification task’s error matrix. This expectation has been confirmed; see Fig 2A. After
applying the frame correction, we used the classification model to verify that the reads were
correctly shifted into frame zero (k = 0). We observed that almost all sequences had been
moved accordingly (Fig 2B).

We measured an accuracy of 0.91 on the corresponding test data for the taxonomic classifi-
cation model ptax, as shown in the error matrix (Fig 3A). We calculated the inner class accura-
cies to inspect that result in more detail. We observe that for reads predicted as bacterial,
indeed 94% were correctly classified. In contrast, for sequences classified as viral, only 88%
were actually of viral origin and 8% were mammalian. We observed a similar behavior in the
reads classified as mammalian (92% mammalian and 6% were viral). This indicates that the
classifier has the most problems in differentiating between these two classes. This observation
is also reflected in Fig 3B, the classifier’s ROC curve, where class 0 (viral) and 2 (human) are
slightly worse compared to class 1 (bacterial). This is likely due to the presence of retroviral
sequences in the human genome.

Exemplary analyses

The exemplary analysis of data from real metagenomic sequencing studies presented a more
challenging classification task, most likely due to more noisy data. Firstly, training and testing
was performed using error-free sequences derived from curated references, while real NGS
reads contain sequencing errors. Secondly, since filtering of reads belonging to a CDS was

Fig 2. Prediction results of the frame classification model on the test dataset. Predictions of the most probable class k̂ on the frame test data [41] are shown as an
error matrix. The classes are as follows: on-frame (0), offset by one base (1), offset by two bases (2), reverse-complementary (3), reverse-complementary and offset by
one base (4), reverse complementary and offset by two bases (5). (A) represents the initial classification results of the reads. (B) Re-evaluation of the reads after applying
the frame correction to validate that the reads were correctly shifted to be on-frame, i.e., k = 0.

https://doi.org/10.1371/journal.pone.0261548.g002
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performed by mapping to all CDS sequences annotated in RefSeq, all automatic annotations
that mistakenly classified a non-coding open reading frame as CDS cause reads that do not
encode a real protein sequence to remain in the dataset. Still, a taxonomic domain classifica-
tion precision of 0.87 could be achieved on the swine feces metagenomic dataset, or 0.90 if all
reads that had a stop codon in every possible frame were discarded (since this should not hap-
pen in a correct read within a CDS and can thus be seen as indicative of an error). These results
are visualized in Fig 4A.

Using SKESA [48] with default parameters on the reads classified as viral it was possible to
de novo assemble five out of six CDSs of the porcine epidemic diarrhea virus present in the
sample, each in a single config—the only CDS that could not be be assembled was that encod-
ing the envelope protein, since it is shorter than the read length of 300 bases used in the analy-
sis and accordingly reads containing this CDS were discarded during dataset generation.

However, the classification of reads from the human skin metagenome only showed a preci-
sion of 0.62, due to a large number of bacterial reads being wrongly classified as viral. The
resulting ROC curve is shown in Fig 4B. This disparate performance on different datasets war-
rants closer examination in the future. One possible explanation could be the presence of
unannotated bacteriophage sequences on the bacterial reference genomes used for the map-
ping-based classification of the reads, which would lead to the observed discrepancy between
the neural network’s and the mapper’s assessment of whether a sequence is bacterial or viral in
origin.

Benchmarking of frame classification

In the classification of the frame in a read, our approach using ProtBert (98.18% correctly clas-
sified frames) significantly outperformed both CNN-MGP (33.62% correctly classified frames)
and fragGeneScan (58.65% correctly classified frames). However, it is important to note that

Fig 3. Prediction results of the taxonomic classification model on the test dataset. Error matrix (A) and ROC curve (B) on the taxonomic test dataset [39] are
shown. The classes are as follows: 0—viral, 1—bacterial, 2—mammalian.

https://doi.org/10.1371/journal.pone.0261548.g003
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due to the limitations described in the methods section, these results are only meaningful in
the context of this specific proof of concept work. Especially given the current limitation to
recognizing the frame of reads that wholly lie within CDS, this step of the pipeline does not
represent a production-ready alternative method of determining the correct frame of NGS
reads in general.

Discussion

With this work, we have shown that a taxonomic classification on the domain level based on
short sections of the amino acid sequence of an organism’s proteins is possible using a trans-
former neural network without relying on a reference database. We have also demonstrated
that it is possible to determine the frame of a short DNA sequence within an ORF using a
transformer neural network without knowledge of the reference sequence or the usual com-
parison of a six-frame translation with a protein sequence database.

This novel application of transformer neural networks to sequence classification will sup-
port the reference-free detection of hitherto unknown bacterial and viral proteins—and, by
proxy, unknown organisms—in the “unclassified” readset typically left over after metagenomic
NGS data analysis. It could also support the analysis of metaproteomic experiments, allowing
an initial high-level classification of peptides and thus aiding protein sequence assemblers such
as SSAKE-based PASS [49] by presenting them with a reduced number of sequences with a
lower likelihood of misleading overlaps.

Additionally, the ability to classify the frame of a short DNA sequence should be useful in
diverse fields of study. For instance, it is very likely that this classification is possible due to an
ability to recognize biologically functional amino acid sequences. In that case, the application
of this classifier could allow the detection of recent frame-shift mutations in new genomes
without requiring a high-quality reference sequence. It could also be integrated into gene
detection algorithms to aid in the ranking of ORFs based on their likelihood of encoding a
functional protein, complementing approaches such as that described by [50].

In order to allow simple integration into analysis workflows using raw NGS reads, in the
future we will add an initial classification to determine which reads lie within an ORF and can
thus be used for frame and taxonomic classification.

Fig 4. Prediction results of the complete classification pipeline on data from real metagenomic sequencing
studies. ROC curves for taxonomic classification in swine feces metagenome (A) and human skin metagenome (B)
datasets. The classes are as follows: 0—viral, 1—bacterial, 2—mammalian.

https://doi.org/10.1371/journal.pone.0261548.g004
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Training models with semi- or self-supervised learning methods is one way to reduce annotation effort since they rely
on unlabeled or sparsely labeled datasets. Such approaches are particularly promising for domains with a time-con-
suming annotation process requiring specialized expertise and where high-quality labeled machine learning datasets
are scarce, like in computational pathology. Even though some of these methods have been used in the histopatholo-
gical domain, there is, so far, no comprehensive study comparing different approaches. Therefore, this work compares
feature extractors models trained with state-of-the-art semi- or self-supervised learning methods PAWS, SimCLR, and
SimSiam within a unified framework. We show that such models, across different architectures and network configu-
rations, have a positive performance impact on histopathological classification tasks, even in low data regimes. More-
over, our observations suggest that features learned from a particular dataset, i.e., tissue type, are only in-domain
transferable to a certain extent. Finally, we share our experience using each method in computational pathology
and provide recommendations for its use.

Introduction

Supervised learning is still the dominant paradigm for building machine
learning applications. A large, diverse, and qualitatively annotated dataset is
needed for a robust andadequatepredictionperformanceof classifiers trained
with such a paradigm. For natural images, such datasets are publicly
available1 and have significantly contributed to the success of deep learning.2

Models trainedon suchdatasets arepublicly available for standarddeep learn-
ing frameworks as part of their correspondingmodel zoo. Those models typi-
cally consist of a feature extractor and an additional classificationhead,where
the latter is usually highly trained on the specific task, and the former can be
transferred to and reused for other applications in different data domains.

A problem with such a transfer approach arises when a certain propor-
tion of the learned features are not helpful for the classification task, and on
the other hand, necessary nuances in the data are not faithfully differenti-
ated. Usually, this is the case in the histopathological domain, where the
images differ significantly, e.g., from natural images.3 Therefore, the need
for appropriate datasets in the domain to apply the supervised learning ap-
proaches is significant. Unfortunately, publicly available labeled histopa-
thological datasets suitable for machine learning barely exist due to the
required expertise for annotations and legal regulations that restrict the

use of such data. Furthermore, the few existing datasets are either small
or specialized for one particular task. Consequently, one of these datasets
cannot represent the tremendous variety of tissue types, tissue characteris-
tics, and changes due to different diseases.

In general, a remedy to overcome the need for a diverse large-scale la-
beled dataset is using unlabeled data to improve the prediction (classifica-
tion or regression) performance. Thus, different approaches utilizing
semi- or self-supervised learning paradigms have been developed to im-
prove the model performance on various downstream tasks. Some of
these approaches have recently been transferred to or optimized for the
field of histopathology (Section Related Work).

This work explores the effectiveness of such learning paradigms aside
from supervised learning in computational pathology. For this, we compare
the performance of feature extractors resulting from 3 different state-of-the-
art pretraining methods on different histopathological classification tasks.
For amore comprehensive study, we chosemethodswith opposing learning
paradigms, i.e., PAWS4 as a semi-supervised learningmethod, SimCLR5 as a
contrastive self-supervised learning method (SSL), and SimSiam6 as a non-
contrastive self-supervised learning method (NCSSL). In Section Models
and pretraining protocol, we provide a unified review of the details of
each method from which their similarities and differences become evident.
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We trained feature extractors using publicly available histopathological
datasets with each method and evaluated them on various in-domain clas-
sification tasks.7–9 To allow for comparability of the different methods, we
hereby aligned the corresponding training protocols as much as possible.
We especially use a unifiedfinetuning protocol for all 3methods that allows
comparing the impact of the different pretraining methods directly. Fur-
thermore, we explored how applicable the methods were to a new data do-
main and investigated them with different data augmentation strategies
suited for histopathological data. We examined the performance difference
between the feature extractor, finetuned models, and models trained from
scratch in a standard supervised fashion on different amounts of labeled
data to study the benefit of pretraining in such settings. Furthermore, we
analyzed how the representations of the feature extractors transfer to addi-
tional in-domain data, i.e., other downstream tasks.

Our results show that differences in the performance of the different
learning paradigms under the same conditions are observable.2 The results
indicate that pretraining with any method on in-domain data seems benefi-
cial. However, we found that SimCLR yields the most stable performance,
while SimSiam has the best overall results. Surprisingly, despite explicitly
using label information, PAWS showed the weakest performance in our
experiments.

Related work

Due to the challenges associated with creating a usable labeled dataset
for machine learning, early efforts were made to use fewer or no labels,
i.e., semi-supervised learning or unsupervised learning. In particular,
established unsupervised learning methods, like autoencoder, random for-
est, clustering, transfer learning, or newer ones, e.g., generative adversarial
networks, have been studied in the histopathological domain for some
time.McAlpine et al10 reviews some of thesemethods and their application.
However, in this study, we investigate a learning paradigm that recently
came into focus: self-supervised learning.11

Self-supervised learning is well suited for computer vision tasks with
large neural networks. It divides into 2 classes contrastive self-supervised
learningmethod (SSL) and non-contrastive self-supervised learningmethod
(NCSSL).

SSL generates representations (views) of samples by using data augmen-
tation techniques. Representations of the same samples denote positive
pairs and representations of different inputs as negative pairs. In this
context, these representations are typically mapped via a CNN, also called
a feature extractor, into an embedding space. A contrastive loss function
minimizes the distance between embeddings of positive representations
while the distance to embeddings of negative representations ismaximized.
Widespread implementations of this concept are CPC,12 SimCLR,5 and
MoCo.13 These approaches are already present in different studies on histo-
pathological tasks and indicate a benefit if a feature extractor is pretrained
within the data domain. Saillard et al14 trained feature extractors using
MoCo on a public cancer dataset15 to show that these consistently outper-
form their counterparts pretrained using ImageNet. Baykaner et al16

presented their DIME pipeline to evaluate pretrained CNNs using SimCLR
as self-supervised learningmethods on an extensive, diversewhole slide im-
ages (WSI) dataset created fromTheCancer GenomeAtlas (TCGA). They in-
vestigated the feature embedding space of these models in a detailed
graphical fashion using UMAP visualizations, McInnes and Healy.17 Lu et
al18 combined CPCwithmultiple instance learning to classify breast cancer
on the publicly available BACH dataset.19 Additional papers, which differ
mainly in using different datasets for pretraining or other downstream
tasks also show the benefit.20–22

NCSSL methods utilize pretraining without the use of negative
examples. Possible implementations usually fulfill domain-agnostic or do-
main-specific subtasks to train a feature extractor. An agnostic task can be
any transformation that does not require expert or domain knowledge.

For example, an image could be tiled and shuffled. The task would be to ar-
range the tiles in the correct order to create the original or the identification
of different rotations of a sample. A histopathological-specific task could be
to order different magnification levels of a WSI patch. Such self-supervised
strategies are used as pretraining by Koohbanani et al,23 and Srinidhi et
al.24 Another class of NCSSL methods attempts to learn embedding space
mappings, such that different augmented views of an image are mapped
closely together. BYOL25 uses 2 distinct networks to create such representa-
tions, while SimSiam utilizes Siamese Networks.26 These methods have
also been used for pathological tasks.27–29 Furthermore, SimTriplet is
another implementation designed explicitly for histopathological data.
This approach emerged as a further development of SimSiam using the
multi-view nature of histopathological WSIs. In addition to 2 augmented
views from 1 patch, SimTriplet crops a second patch within the spatial
neighborhood of the first one from the WSI, which is included in the simi-
larity measure. Since tissue is assumed to be locally similar, SimTriplet
adds additional positive pair information, resulting in better embedding
space clustering.

So far, only a fewworks have analyzed self-supervised learningmethods
for histopathological downstream tasks in greater detail, e.g. Ciga et al.30

They pretrained multiple CNN architectures on 57 fully unlabeled histopa-
thology datasets drawn from TCGA using SimCLR and tested the perfor-
mance on different downstream classification and regression tasks. In
addition, they investigated the transferability of feature extractors between
different tissue types, analyzed the impact of augmentation stacks and
patch resolution on pretraining, and the impact of dataset size on perfor-
mance in the downstream task. We serve as a complementary study to
their work and expand this by evaluating additional methods.

Semi-supervised learning approaches allow the usage of unlabeled
data combined with a small amount of labeled data. This technique is par-
ticularly suitable for themedicalfield, where insufficient resourceswith the
necessary expertise and a lack of time lead to a bottleneck in annotating
data. Methods, which implement the semi-supervised learning paradigm,
are numerous. We limit ourselves here to give some examples of the appli-
cation of this paradigm in the context of artificial neural networks and his-
topathological data.

Wang et al31 created a semi-supervised learning pipeline for nuclei de-
tection. The approach reconstructs images from detection maps created
from unlabeled data. The spatial consistency between the original image
and the reconstruction is used as a regularizing effect in the actual training
of the detection network. In addition, several works exist utilizing unla-
beled and labeled data to train generative adversarial networks (GANs) to
solve the stain normalization problem, i.e., a color shift between different
digitalized tissues caused by the staining and scanning process.32–34 Finally,
an interesting approach was recently published by Liu et al.35 They used a
small amount of labeled training data to stabilize the pseudo-label predic-
tion of an unsupervised trained feature extractor. Instead of using a few
data points with classical direct labels, it is also possible to use so-called
weak-labels corresponding to assigning a high-level label for multiple unla-
beled data (e.g., images) belonging to one category; see, for instance
Sikaroudi et al.36

Besides these application examples, we utilized a recent development
method named PAWS,4 which shows exceptional classification perfor-
mance on ImageNet with a drastically reduced amount of labeled data.
However, to the authors’ knowledge, PAWS has been no application in
the medical domain, especially in the analysis of histopathological images.

Models, material, and methods

This section presents the datasets and the 2 protocols used for training
models in the pretraining and finetuning. Both protocols combined form
our full experimental pipeline.

In this regard, the pretraining protocol specifies our environment to
train models with self- and semi-supervised methods. Such models consist
of an encoder that maps (encodes) the input into a high-dimensional
space and a method-specific head. The encoder part is further trained

2 Experiment protocols and implementation of the study can be found in the GitHub
repository https://github.com/bensnajdar/histopathology-ssl.
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using supervised learning on a so-called downstream task, i.e., a specific
histopathological problem. The finetune protocol unifies the settings for
such downstream training over all experiments and enables us to evaluate
the performance of an encoder as a feature extractor. It also ensures the
comparability of the learned encoders despite different self- and semi-
supervised methods used in the pretraining.

In addition, the self- and semi-supervised methods and their necessary
adaptations, which we applied, are briefly reviewed.

Datasets

All data used are publicly available. We selected 2 datasets with differ-
ent tissues, classes, and histopathological tasks for pretraining: Kather and
PCam. The Lizard dataset was used exclusively to explore and evaluate
the resulting encoders. In the following, we provide a brief introduction
to all datasets. Additionally, Table 1 shows the training dataset and split
sizes used in this work.

PCam: The PatchCamelyon is extracted from histopathological slides of
lymph node sections provided by the Camelyon16 Challenge.37 The origi-
nal hematoxylin and eosin (H&E) stained tissue is digitized using a 40x
objective resulting in a pixel resolution of 0.243 microns. This process
was performed in 2 different laboratories using different scanners, resulting
in color differences in the images, i.e., a potential distributional shift in the
data. PCams patch-based dataset is sampled from theWSIs, keeping the ini-
tial split into train and test sets. Validation images are drawn from 20% of
the training set. It contains 262.144 examples for the training set and
32.768 for each validation and test set. Images are 96x96 pixels and in-
creased to 10x magnification by undersampling. Therefore, the resolution
of the images changes to about 0.972 microns/pixel. Patches containing
mostly background are filtered out in the sampling process. The resulting
publicly available dataset is a balanced binary classification dataset with
the positive class indicating the presence of metastatic tissue in the center
of an image.

NCT-CRC-HE-100K: After its creator, this dataset is often referred to as
Kather. The training set consists of 100.000 non-overlapping images of
224×224 pixels scanned at 0.5 μm/pixel spatial resolution from H&E
stained histological images of human colorectal cancer and normal tissue.
It is divided into 9, approximately balanced, tissue classes: Adipose (ADI),
background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC),
smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated
stroma (STR), and colorectal adenocarcinoma epithelium (TUM). In addi-
tion, the dataset is available in an authentic and stain-normalized variant.
We used only the latter. One-tenth of the training images were split-off
for validation purposes. As a test set, the co-published CRC-HE-7K dataset
was utilized as recommended by Kather et al.8 The 7180 images are also
from patients with colorectal adenocarcinoma but do not overlap with the
training data. Their resolution is the same at about 0.5 microns/pixel.

Lizard: The Lizard dataset is a large-scale histopathological dataset, for
instance, segmentation byGraham et al.9 Images are 224× 224 pixels with
20x magnification. Originally, the dataset is designed for instance

segmentation. Based on the publicly available dataset, we created an object
classification task by cropping the images such that the label-defining ob-
ject is positioned in the image center. In addition, we applied zero padding
to increase the patch size, if necessary, back to the initial resolution.3 The
unfiltered dataset includes 6 classes: neutrophil, epithelial, lymphocyte,
plasma, eosinophil, and connective tissue. In preprocessing, we removed
the neutrophil (4116 samples) and eosinophil (2979 samples) classes to
balance the dataset since these 2 classes were vastly underrepresented.
Our train, validation, and test sets are created from distinct images and con-
tain 29 7245, 64 901, and 62 672 samples, respectively. The resolution of
the patches is about 1.167 microns/pixel.

Models and pretraining protocol

We adapted each of the self- and semi-supervised methods to get the
best performance possible in the new data domain. However, we imple-
mented an open protocol for the model training to increase interpretability
and comparability in the evaluation process between these methods.

The network architectures of each learning method can be split into an
encoder f, also denoted as feature extractor, followed by a projection head
h, depending on themethod (Fig. 1). TheResNet family38 is used as the base
architecture for f. The networks’ multi-layer perceptrons (MLPs) were
adjusted tomatch the structure of the proposed method. We trained the en-
coder with 3 different architectures to investigate how model complexity
affects the quality of the feature extractor later in the experiments. The
ResNet50 is studied as a standard, as by most other works. Since the histo-
pathological datasets are often small, ResNet18 is also used since it has
fewer parameters and is built on a simpler structure, not using the bottle-
neck approach like more complex ResNet networks. In addition, we trained
models with aWide_ResNet28w2, which has slightlymore parameters than
the ResNet18 and operates with more channels in the convolution blocks
than a default architecture. Therefore, in terms of complexity, this results
in the following ascending order: ResNet18, Wide_ResNet28w2, and
ResNet50. The projection heads h used are small MLPs. Each method uses
an individual structure for h, and we left these MLPs as proposed in the
original publications.

We performed a broad hyperparameter search for each architecture–
method–data triplet to select optimizer parameters, augmentation stack,
and method-specific parameters to adapt the methods to the domain. The
latter are fixed after generally well-working values were found. Depending
on the method, the searches are performed using grid search and more ad-
vanced techniques like Adaptive-Asha.39 We selected the final training
settings (Appendix A.2), based on the feature space clustering estimated
by UMAP or t-SNE projections17,40 and model performance measured by
method-specific proxy metrics described in the corresponding method sec-
tions. In all final training settings, an SGD optimizer, either with or without
a LARC/LAMB optimizer, is used, and training is performed using specific
random seeds used consistently for all methods, which especially ensures
that all methods use the same initialization of the encoders, and thus
reduces corresponding variations effect between the methods.

All models were trained with input dimensions of 96×96, correspond-
ing to the smallest image patch size of the utilized datasets. Resulting in a
change of the microns/pixel values for datasets based on an image size of
224 by a factor of 7/3. Besides image scaling, several other data augmenta-
tion techniques were applied to the images.

We investigated different augmentation stacks for each method in the
pretraining process. Starting from the originally published stack, we de-
signed modified variations of these stacks by adjusting parameters and
adding transformations, which proved beneficial for the data domain in
the past.41 Appendix A.1 describes each stack in more detail.

In essence, all methods use augmentation techniques to create different
views of the same input and then optimize the encoder parameters such

Table 1
Total and average annotated samples per class for each split size used in the down-
stream tasks, given in %. Data points were uniformly sampled for each split.

Data Split in % Samples Avg. samples per class

Kather 100 90 000 10 000
8 7200 800
0.8 720 80
0.2 180 20

PCam 100 262 144 131 072
8 20 971 10 485
0.8 2097 1048
0.2 524 262

Lizard 100 297 245 74 311
8 23 780 5945
0.8 2378 594
0.2 594 149

3 A script to reproduce the lizard classification dataset is also included in the GitHub repos-
itory (https://github.com/bensnajdar/histopathology-ssl/blob/main/utils/create_lizard_
dataset.py).
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that those views are mapped in a meaningful way into an embedding space
by either comparing them to labeled data (PAWS), maximizing their dis-
tance in embedding space from additional negative examples (SimCLR) or
clustering embedding of similar inputs (SimSiam, SimCLR).

PAWS
PAWS is a semi-supervised learning method meaning that it utilizes

partially labeled data. The training data D consists of a labeled support set
Dsup and a much larger set of unlabeled data, denoted by Dunl. The basic
idea of PAWS can be described in 3 major steps; see Fig. 1. First, 2 views
are generated for an image drawn from Dunl via an augmentation stack, in-
cluding random operations, and mapped through the encoder network f
into embedding vectors. Additionally, a balanced batch of annotated sup-
port images is sampled, augmented by the same stack, and likewise
encoded into embedding vectors. Finally, (soft) pseudo-labels are derived
for each view by comparing the views’ embeddings with the embeddings
of the support set samples using a similarity function sim. As an optimiza-
tion task, the difference between these pseudo-labels is minimized so that
the encoder network becomes stable against different augmentations and
learns important features by exploiting the annotated support set.

On a formal level, for an input x ∈ Dunl, the pair of views (v1,v2) and the
corresponding embeddings (z1,z2) are generated.4 Similarly for a support
set batch (x1(s),y1(s)), …, (xns

(s),yns
(s)) ∈ Dsup, the embeddings z1(s), …zns

(s) are
generated where yi(s) ∈ RK is the one-hot encoded label of xi(s) with K
being the number of classes. The pseudo-labels (p1,p2) for (v1,v2) are
yield by

pi ¼ ∑
ns

j¼1

sim zi, z
sð Þ
j

! "

∑
ns

k¼1
sim zi, z

sð Þ
k

! " y sð Þ
j (1)

with i= 1, 2. We used the exponential temperature scaled cosine simi-
larity as sim(zi,zj) = exp (ziTzj/ ∥zi∥ ∥zj∥ τ) with τ denoting the temperature
parameter, which is 0.1 in all experiments. Since by construction p1, p2 ∈
[0,1]K and the sum of their elements is normalized to 1, they are
interpreted as a class probability distribution, providing (soft) pseudo-la-
bels, for the views (v1,v2). At last, p1, p2 are compared by cross-entropy H,
which constitutes the cost function of PAWS. In practice, the 2 training
batches are independently sampled from Dunl and Dsup. To optimize the

function of the supporting batch, it should be ensured that each class is
equally represented in the support set.

As suggested in Assran et al,4 wemodified the CNN encoder f by adding
3 linear layers, while the first 2 layers included batch normalization and
ReLU as an activation function. The input and hidden dimensions of the
MLP were chosen according to the CNN architecture (128 for the
Wide_ResNet28w2, 2048 for ResNet50, and 512 for ResNet18), and we
fixed the output dimension to 128.

We employed PAWS without methodological adaptations on the histo-
pathological data. PAWS models were trained using a LAMB optimizer for
about 10 epochs, concerning the size of Dunl. Since the approach outputs
soft pseudo-labels, we could compute classification metrics for a validation
set to monitor the learning process as for standard supervised learning ap-
proaches. We trained multiple models for each architecture–method–data
pair exploring distinct sizes of the support set Dsup. Given a training set D
of size N, we consider support sets of size 0.08N, 0.008N, and 0.002N.
The smallest support set size resulted in about 20 labeled images per class
for Kather, which is extremely low considering modern deep learning
approaches. Table 1 provides a detailed overview of data split sizes.

SimCLR
SimCLR is a self-supervised learning method based on the contrastive

approach. The fundamental training objective is to maximize the distance
of encodings resulting from fundamentally unequal inputs. This process is
controlled by minimizing the embedding similarity of views generated
from the same input, while simultaneously maximizing the distance to all
other views in a training batch. Again, views are generated by an augmen-
tation stack containing random operations.

On a formal level from the unlabeled dataset D, a batch x1, …xn ∈ D is
drawn and for each sample xi, 2 views (v2i−1,v2i) (forming a positive pair)
are generated, resulting in 2n views v1, …, v2n. The other 2n − 2 views
act as negative (contrastive) examples for each positive pair of views. We
created the views with a reduced augmentation stack as the original
SimCLR paper proposed using a strong color distortion and random crop
only (Appendix A.1). Each view vi is processed through an encoder f and
an additional projection head h to create a corresponding encoding ~zi,
i.e., h f við Þð Þ ¼ ~zi.5

Fig. 1. Semi- and self-supervisedmethods used for themodel training. Eachmethod forwards different views of an image (or images) through a network structure based on a
backbone CNN network f, i.e., the encoder, and an MLP projection head h. The resulting representations are compared by a similarity function sim and assessed by an
individual loss function; see the related method section for details. Crossed-out paths do not contribute to the parameter update.

4 The notation was adapted for consistency. In the original formulation the views were
denoted as v and v+ with the corresponding embeddings z, z+ and pseudo-labels p and p+.

5 We refer to the output of the full network ~zi as encoding here as we want to distinguish it
from the outputs of encoders, which we usually refer to as embedding.
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The loss function is built around encoding ~zi. Therefore, the loss calcu-
lates the similarity of encoding ~zi and all other encodings ~zj, which result
from views of different inputs, by a function sim and is given by

L ¼ 1
2n

∑
n

k¼1
l2k$1,2k þ l2k,2k$1½ '

with li,j ¼ $ log
exp sim ~zi,~zj

# $
=τ

# $

∑
2n

k¼1
k≠i

exp sim ~zi,~zkð Þ=τð Þ
: (2)

Here, τ denotes a temperature parameter. We fixed τ to 0.5 for all of our
experiments and used the cosine similarity as sim. By the definition of the
loss, the overall learning objective of SimCLR is to maximize the similarity
between positive pairs while minimizing the similarity to all negative
examples.

We implemented adaptations as suggested by Chen et al (p. 6).42 The
encoder f consists of a base CNN extended by an additional linear layer
with variable output dimension, batch normalization, and ReLU activation.
Likewise, a deeper projection head hwas employed by adding 2 additional
linear layers, including batch normalization and ReLU. The output
dimension value of f and the hidden dimensions of h resulted from a
hyperparameter optimization, but the output dimension of h was
fixed to 128.

Each SimCLR model was trained using a LAMB optimizer and a 1-cycle
cosine decaying learning rate. We investigated other optimizers, but LAMB
led to the best results. As large batch sizes are crucial for the SimCLR
method, we trained with a batch size of 512. We utilized Adaptive-ASHA
to obtain the final parameters of the network dimensions and optimizer
settings. We appended an overview in Appendix A.2. A k-nearest-neighbor
classifier was regularly calculated on a validation set in the embedding
space during the training process. The metric did not influence the training
but functioned as a proxy variable to observe the learning process.

SimSiam
SimSiam uses the self-supervised learning paradigm implementing a

non-contrastive approach, i.e., it does not repel the representations of neg-
ative pairs in the learning process.

The method implements the learning paradigm by comparing the out-
put vectors of 2 views of the same input. Again, the views are created by
an augmentation stack, including random operations. For each view, an
embedding (encoder output), an encoding (output of an additional MLP),
and a similarity of these 2 vectors are computed. However, the similarity
is calculated between the embedding of one view and the encoding of
another.

Formally, for an image x from an unlabeled dataset D, we created a pair
of views (v1,v2). For each view vi, we computed the embedding zi = f(vi)
and the encoding ~zi ¼ h f við Þð Þ. In this study, the encoder f consisted of a
deep CNN with an additional 3-layer MLP network. The last batch-norm
layer of the MLP was dropped to match the network structure of PAWS.
The only difference is the output dimension of the encoder, i.e., the
embedding size. The projection head h6 was left unchanged, a 2-layer
MLP with a bottleneck structure and a hidden dimension of one-quarter
of the embedding size as recommended in Chen and He.6

The optimization goal is to maximize the similarity, measured by a
function sim, between the embeddings and the encodings as represented
in the loss function

L ¼ $ 1
2
sim ~z1, z2ð Þ þ sim z1ð ,~z2Þ½ ', (3)

The overall minus sign converts the maximization of the similarity into
a minimization of the given loss function, and the cosine similaritywas used

as the similarity measure sim. An essential aspect of the method is that only
the gradients of the encodings ~zi update the network where the embedding
zj are considered constant during the update step, see Fig. 1.

In the training process, we studied the standard deviation of the ‘2-
normalized outputs to check if the embeddings were collapsing to a con-
stant vector and regularly calculated the accuracy of a k-nearest-neighbor
classifier as a proxy metric to monitor the progress. We employed an SGD
optimizer, scaled the learning rate linearly with lr ∗ batch_size/256 accord-
ing to the original implementation, and adjusted with a 1-cycle cosine
decay schedule. We performed a hyperparameter optimization using grid
search here instead of ASHA. The final network parameters and optimizer
settings are reported in Appendix A.2.

Finetune protocol

To increase the comparability of the pretrained model performance
across the methods, we used a fixed protocol unifying the training settings
of every finetune process, i.e., the downstream tasks. We recognize that, in
general, this approachmay result inweaker performance on the task than is
individually possible for each classifier, especially if compared to published
state-of-the-art results. However, disentangling and inter-comparing the
effect of the pretrained models is essentially impossible if each experiment
is individually optimized.

In contrast, the fixed finetune process is a reasonable basis for a fair
comparison, provided that the results are compared relatively between
the evaluated methods. In addition, using this approach, the focus is clearly
on the pretrained model in a controlled environment. Therefore, we
consider this strategy justified.

Each downstream task was trained using the following training settings
and network modifications. Based on the experiment, the model’s head h
was replaced by a reinitialized MLP head consisting of either 1 linear
layer (logistic regression) or 3 blocks, each including a linear layer, a
batch-norm layer, and ReLU as an activation function. The corresponding
downstream task at hand defined the output dimension. The input dimen-
sion of the head was chosen according to the embedding dimension of
the encoder. In the case of PAWS, where h ismissing, the headwas attached
to the encoder instead. The MLP parts of the encoders, described in the re-
lated method sections above, are usually kept if not stated otherwise. Since
this approach resulted in a stronger, more complex prediction head for
SimSiam and SimCLR, we conducted an ablation study to investigate this
further, where the MLP part is reduced to the initially proposed one. We
report the results in Appendix C.3.

To ensure the performance comparability of the semi- and self-super-
vised pretraining, we trained a corresponding model in a fully supervised
fashion for each encoder finetuning. In this case, the entire model was ran-
domly reinitialized using the proposed strategy of He et al.38 The training
was performed with the same settings as the finetuning of the related en-
coder. Due to this process, we were able to calculate a benefit for each en-
coder that is not biased by the slight architectural differences of the
encoder and thus ensures comparability.

We studied the encoders on tiny subsets of the training data, Section
Downstream task data reduction. Since some datasets contained only a
few hundred samples per class in such experiments, a fixed batch size of
32 was used for every training. In the extreme case of a 0.2% subset split
of Kather, 1 epoch is about 180 samples only (20 images per class), for ex-
ample. The training length, the number of batches trained, was chosen to
represent 20 epochs on each dataset. In addition, an encoder warmup for
roughly 4 epochs was implemented, i.e., parameters of the pretrained
model were not updated during that period. The models were trained
using an SGD optimizer with a learning rate of 0.005, a momentum value
of 0.9, and a weight decay value of 0.0001. The learning rate was adjusted
with a cosine decay. We applied a small augmentation stack to the training
set suited for histopathological data (Appendix A.1). Despite rescaling to
match the input size and data normalization, no test augmentation was em-
ployed. As an exception to the protocol, if a training utilized the entire

6 Notation was adapted for reasons of consistency. In the original publications of SimSiam,
themapping h is denoted as a prediction head, and themodification of the encoderMLP as pro-
jection head.
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dataset, we trained with a batch size of 256 instead of 32 and adjusted the
total batches trained to be equal to 20 epochs.

If not stated otherwise, we used a fixed set of seeds for each experi-
ment’s method/dataset combination to ensure equally random initializa-
tions again. Model evaluations are performed on fully trained models
only to achieve consistent comparability across experiments, i.e., interme-
diate model states were discarded even if they performed better on the
validation data during training.

Experiments

We investigated semi- and self-supervised trained models in various
experimental setups to gain more insight into the benefit of pretraining in
the histopathological environment. In particular, we explored the stability
of the training process, which is an essential factor for the reproducibility
and applicability of a classifier in the medical field. In addition, we
analyzed the encoder performance under the reduction of training data
on different downstream tasks and compared them to a fully supervised ap-
proach. Finally, we examined the transferability properties of the encoders
learned by the different methods upon in-domain shifts.

Encoder initialization sensitivity

Within this experiment, we analyzed the classifiers for possible perfor-
mance fluctuations. In critical domains like medical applications of deep
learning algorithms, it is essential to be consistent in the results, and also
for scientific work, traceability and reproducibility are crucial aspects. We
trained 5 encoders for eachmethod on the Kather dataset using different ex-
periment seeds to study the performancefluctuations. Seedswere randomly
sampled. After, we finetuned each encoder on the Kather downstream task
5 times, reusing the same seeds, resulting in 25 runs per configuration.

By fixing the seeds, it is ensured that for the encoder training, all CNNs
were initialized consistently for all methods, and thus provided a fair and
comparable starting ground. Accordingly, on the downstream task, the
seeds ensured an equal initialization of the prediction heads and training
settings (data sampling, batch sampling, etc.) on a method level.

In this setting, we limited prediction heads to logistic regression since it
provides the most information about the performance of each encoder.
However, we trained each configuration with and without updating the
encoderweights, i.e., freezing the encoder during finetuning. If the encoder
weights were updated, we trained only the prediction head for about 4
epochs before updating the entire model weights (encoder warmup). In ad-
dition, the finetuning was performed on a fixed 8% data split set to save
computational resources. In this experiment, a ResNet50 was studied as a
default architecture representative.

Downstream task data reduction

One purported benefit of training networks based on an encoder is to
achieve a competitive performance using less annotated data compared
with solely supervised training. We finetuned encoders on subsets to
examine this aspect, simulating the scenario of limited annotations being
available.

Besides using the entire training set, we randomly sampled 3 notably
smaller subsets for every dataset. In the initial investigation of Kather, we
could not observe any significant performance changes before reducing
the data to 8% of its original size. Hence, we used this breakpoint to create
afirst subset. Going further, we limited the samples to 0.8% and 0.2% of the
corresponding datasets for the other splits. The resulting number of training
data and average images per class are given in Table 1. We ensured the
subsets were fixed across all experiment runs to maintain comparability.

We trained PCam and Kather encoders with each method for the se-
lected ResNet architectures on the entire datasets. Note that PAWS models
have seen labeled data in the process, potentially introducing a bias if the
encoder has seenmore annotated samples than infinetuning. To counteract
this risk, we calculated multiple encoders for PAWS with different sizes of

the support set Dsup matching the split sizes. If the finetuning is performed
on an entire training dataset, we used the 8% split encoder version.

Each encoder was then finetuned on the downstream task of every
dataset using the 4 training data splits with several configurations. We
explored the regression head and 3-layer MLP option as a prediction
head. Furthermore, we trained variants in which the encoder weights
were either updated or frozen, i.e., finetuning the prediciton head only.
We used the same warmup strategy as before (4.1) in the configurations
where the encoder was updated. Across all datasets, network variations,
and configuration settings, we trained 288 classifiers per method. Since
we calculated a fully supervised complement for each encoder finetuning,
the number effectively doubles.

We monitored the accuracy, the f1-score, and the expected calibration
error (ECE) metric to measure the performance on the downstream tasks.
In addition, we calculated a benefit for each of those metrics except the
ECE. We define the benefit as the difference between the performance of
a finetuned encoder and the solely supervised trained counterpart. Accord-
ingly, the benefit reflects the absolute difference (gain or loss) in each
experimental setting and allows us to compare the performance gain of dif-
ferent methods.

Histopathological features and transferability

An essential assumption is that self-supervised methods learn underly-
ing fundamental patterns from non-annotated data.

We investigate this assumption on a macro-level by reexamining the
data generated by the experiments conducted in 4.2. Hereby, the experi-
ment runs finetuning an encoder to classification task unrelated to its train-
ing data were significant. Hence, their performance metrics provide
information about the transferability of the feature space, i.e., to what
extent embeddings learned on a specific tissue can be valuable for tasks
using other tissue types.

Therefore, we examined specific encoders with basic explainable AI
methods to gain a deeper insight into the feature space. Grad-Cam43 and
Guided Backpropagation44 maps were created for randomly selected im-
ages of the Kather test set. In consultation with pathologists, we evaluated
maps to determine which morphological structures were relevant for each
classifier. However, since we have performed this evaluation exclusively
for a few examples, we include the results, even though promising, in
Appendix C.2. Finally, we computed t-SNE mappings of these encoders to
explore how the datasets were already clustered in feature space, also
reported in the B.1.

Results and discussion

General observations

Before discussing the experimental results, we report our experience
gained in applying the methods in the histopathological domain.

The PAWS approachwas most sensitive to the choice of training param-
eters. To identify suitable parameters, a hyperparameter optimization was
needed for every support set split. The ASHA algorithm, covering a larger
search space than Grid Seach with equal computational resources, worked
best with PAWS. In the initialization sensitivity experiment, even with
optimized parameters, 2 of 5 encoder trainings collapsed by changing the
random seed only, i.e., different initial weights. Thus, we had to change
the random seeds twice to train all models. However, overall, we observed
that PAWS adapted sufficiently to the domain. But among the tested
methods, it was the most computationally intensive.

Discovering a parameter setting for the SimSiam training was initially
challenging. When using sophisticated hyperparameter search algorithms
such as ASHA, we observed that this approach leads to corrupted training
processes regardless of the chosen thresholds. The loss drops close to the
minimum within a few iterations, but the proxy metrics did not reflect
any improvement. Also, monitoring the standard deviation of the normal-
ized outputs did not help with this problem either. We observed cases
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where ASHA would identify parameter settings leading to non-collapsed
encoders with no meaningful representation. Thus, we conclude that defi-
cient representation at local minima could be a general issue (even for the
class of NCSSL methods) and a subject of further research.

Finally, we used Grid Search for SimSiamwith a significantly narrowed
search space, leading to appropriate parameter settings. However, the de-
termined parameters were stable across the experiments regardless of
changing the architecture or dataset. During our exploration of the role of
the augmentation stack, we learned that it is another critical factor for
learning meaningful embeddings, particularly strong color manipulations
were essential.

SimCLR was the only method chosen where we have not encountered
any reportable difficulties when applying it to the histopathological do-
main. However, large batch sizes are required for optimal performance,
so the appropriate computational resources are a prerequisite.

Encoder initialization sensitivity

We investigated how much the weight initialization affected the
encoder training and its performance. Therefore, encoders were trained
and finetuned on Kather with a fixed setting but a changing random seed.
This yielded a total of 25 data points for each method. The experiment
was repeatedwithout updating the encoderweights in thefinetune process,
i.e., finetuning the prediction head only. We report eachmethod’s mean ac-
curacy and f1-score and their respective standard deviations in Table 2.

The results of SimCLR slightly outperform those of SimSiam in the fro-
zen setting. The standard deviation values are consistently low regardless
of metric and dataset. Indeed, comparing these methods, this is expected
since the contrastive approach is a more stable learning strategy and likely
produces a more distinct clustering in the feature space. However, interest-
ingly, this performance advantage is lost when finetuning the encoder
weights. As a result, the performance of SimCLR barely changes, while
SimSiam improves both metrics and their standard deviations and exceeds
the other methods.

In contrast, the metrics of PAWS are predominantly lower, and their
standard deviations are consistently above those of the other methods. Es-
pecially in the frozen setting, the performance differences on the test data
are substantial with a gap of at least 8.17% (f1-score of SimSiam) and stan-
dard deviations above 2.15. We conclude that the PAWS encoders learned
much weaker embeddings, which was unexpected since it partially exploits
annotated data. A probable explanation is the choice of the support set Dsup.
When exploring the methods, we observed that the choice of Dsup strongly
influences the performance of PAWS. Finetuning the encoder significantly
closes the performance gap and elevates the results of PAWS to the ones
of SimCLR.

Next to the apparent performance differences, we also noticed that the
standard deviation of, for instance, the test set accuracy ranges from
0.29% to 2.60%, hence changes by an order of magnitude when comparing
the differentmethods.We investigated the accuracy standard deviation fur-
ther to explore the origin of the corresponding values. Hence, we computed
for all 5 encoders of each method, i.e., fixing the pretraining seed, the
standard deviation of their 5 finetune runs. Averaging these encoder-wise
standard deviations for eachmethod gives us an estimate of thefluctuations
resulting from the finetuning. Vise versa, we received the pretraining esti-
mate by averaging the finetune-wise standard deviations obtained from

the 5 distinct encoders sharing the samefinetune seed.We restrict ourselves
to the frozen encoder setting and report the estimates in Table 3.

In cases with a significant standard deviation, we find that the major
contribution resulted from the pretraining. Thus, genuinely different en-
coders resulted from the different initializations of the pretraining with
the semi- or self-supervised method. In contrast, the variations resulting
from the downstream task are mostly minor, which post-validates our
finetuning scheme as relatively stable. The only exception is the PAWS
method, where the finetuning also led to notable variations. This observa-
tion likely resulted from the weaker embeddings learned in the pretraining
such that more substantial performance variations appeared in the
finetuning process.

In summary, PAWS generated the weakest encoders, showing the most
considerable performance fluctuations. Moreover, these fluctuations
persisted even when such an encoder was finetuned in this experiment.
The other methods yield a stable performance all over (SimCLR) or at
least after finetuning (SimSiam). However, the findings were somewhat
surprising since we expected methods that receive more information in
pretraining to be more powerful. Hence, PAWS should be the most reliable
approach, followed by SimCLR and SimSiam. Especially with SimSiam, we
were concerned that the naive NCSSL approach would have difficulties
separating the ”similar-looking” histopathological data. On the contrary,
it is noteworthy that the method achieved almost comparable results to
currently published ones24,30,45, even though the training conditions were
not optimal due to the unified finetuning protocol and the usage of merely
8% of the training data. However, observation indicates that SimCLR is
the most stable method concerning the investigated different training
initializations.

Downstream task data reduction

We studied the performance development of the encoders depending on
the size of the training dataset. Therefore, PCam and Kather encoders were
trained using the proposed methods with different ResNet architectures.
Each encoder was finetuned on every dataset classification task using
multiple data splits (100%, 8%, 0.8%, and 0.2%) and exploring several
training configurations by changing the prediction head complexity and
freezing the encoder weights. Furthermore, for each encoder finetuning, a
randomly initialized network counterpart was trained complementarily.
Since the calculated performance metrics, f1-score and accuracy, demon-
strated analogous results, we limit ourselves to discussing the accuracy
here. We append all representations using the f1-score in Appendix B.2.

Table 2
Accuracies and f1-scores averaged over 25 results on the Kather classification task. Their standard deviation is noted in brackets. Using a logistic
regression prediction head, several ResNet50 encoders were finetuned on the 8% data split. The training runs differed only by the initialized weights.

Method Acc (val) Acc (test) f1 (val) f1 (test)

PAWS (freezed) 82.80% (2.52) 79.25% (2.60) 81.87% (2.68) 75.28% (2.15)
SimCLR (freezed) 92.67% (0.28) 90.45% (0.29) 92.81% (0.28) 87.02% (0.44)
SimSiam (freezed) 85.13% (1.57) 89.42% (0.44) 84.20% (2.09) 83.45% (0.97)
PAWS (finetuned) 91.14% (1.67) 90.52% (1.15) 91.21% (1.72) 87.23% (1.16)
SimCLR (finetuned) 94.10% (0.45) 90.57% (0.70) 94.19% (0.45) 87.01% (0.96)
SimSiam (finetuned) 95.47% (0.27) 91.47% (0.52) 95.54% (0.26) 88.53% (0.60)

Table 3
Summary of the mean standard deviation (std) of the resulting accuracy on the val-
idation (val acc) and test set (test acc), computed for the varying seeds in the pre-
training and finetuning where the encoder weights were not updated during
finetuning.

Method Val acc std Test acc std

Finetune Pretrain Finetune Pretrain

PAWS 0.70% 2.44% 1.06% 2.34%
SimCLR 0.18% 0.25% 0.26% 0.21%
SimSiam 0.18% 1.57% 0.18% 0.41%
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We report each method’s maximum accuracies on different dataset
splits in Fig. 2. Note, as we analyzed the completely finetuned networks
here, each maximum was picked from a pool of 12 training configurations
in which the CNN architecture, MLP complexity, and pretraining dataset
were altered. Since complementary supervised runs exist for every method,
such maxima were selected from 36 data points. On Kather, the perfor-
mance consistently decreases if the available training data is reduced. A
widening gap between the solely supervised trained models and finetuned
encoders is discernible and suggests that the smaller the annotated dataset
becomes, the greater the relative advantage of pretraining. The SimCLR
performance on the 100% split is an exception to this general behavior,
which is not reflected in the f1-score. However, both observations align
with our anticipations of the experimental setup and are consistent with
recently published results.30 Overall, the methods yield minor differences
in maximum accuracy using lower training splits, and none is consistently
superior.

We observe this somewhat differently with the Lizard data. Simsiam
performed consistently better than the other methods, while SimCLR did
not consistently exceed the supervised runs. Further, an apparent widening
of the performance gap between the finetuned encoders and the purely
supervised runs is missing. For SimSiam and PAWS, it seems relatively con-
stant. One likely explanation is that most encoder embeddings were irrele-
vant for the task or tissue since Lizard was absent in the pretraining. Note
that this indicates some encoder transferability limitations, which we will
investigate further in the following section. The PCam results rank between
the observations for Kather and Lizard. The training data reduction aligns
mainly with a performance drop but not a widening performance gap.
One oddity is that the peak performance was generally achieved at a train-
ing split of 8% for each encoder finetuning, rather than for the entire
dataset. This observation may indicate that the finetuning could not fully
converge on the large PCam dataset within the finetune protocol. Here,
too, SimSiam predominantly outperforms the other methods slightly.

By comparing the maximum accuracies in Fig. 2, we simulated a real-
world case of running multiple experiments with various architectures
and selecting the best performing. However, we compared data resulting
from multiple configurations and thus discarded information about perfor-
mance differences of encoders in single experiment runs. To investigate this
further, we calculated the accuracy benefit for the same data as used before,
i.e., runs with finetuned encoder weights. As a reminder, we defined the
benefit as the performance difference of a specific metric between a
finetuned encoder and its purely supervised trained counterpart. Hence,
the benefit estimates the gain or loss expected through an encoder.We sum-
marize the accuracy benefits in Fig. 3.

A prominent observation from the benefit evaluation is that SimSiam
outperforms the other methods, especially on Kather and Lizard, where
the benefit disparity was significant. It was the only method close to purely
positive benefits. Yet, on Kather, each method had a considerable benefit,
and, like before, we observed the expected behavior, i.e., an increasing
benefit with decreasing training data, only here. In contrast, substantial
positive benefits were also evident on Lizard, but not following the same
pattern and also with apparent method differences. For example, the
smallest median of SimSiamwas close to 0.1, while SimCLRwas barely pos-
itive. Ignoring the data points for the entire training set, the benefits consis-
tently decreased with the data reduction. That the performance relies
primarily on the amount of data supports the findings in Fig. 2 and
strengthens the assumption that embedding transferability is an issue
between the tissue types. This effect was also observable in PCam, which
is curious since it was used in pertaining. Further, the benefit variance

Fig. 2.Top accuracy of each training data split (0.2%, 0.8%, 8%, and 100%) divided
by dataset. As the training data is reduced, the classifier performance generally
decreases; an exception is the 100% PCam split. The finetuned encoders mostly
attain higher accuracies than purely supervised training.
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was, in general, significantly more minor compared to the other datasets.
Therefore, the finetuned PCam and Kather encoder yielded relatively stable
results. We suppose that the Kather encoder embeddings benefit PCam but
not Lizard. Overall, the benefits investigation confirms some observations
made in Fig. 2 on the individual experiment level.

To disentangle the influence of the different finetuning configurations,
we analyzed the benefit distributions separated by network architecture,
prediction head, and finetuning of the encoder weights. We append a de-
tailed discussion in Appendix C.1, but thefindings indicated that the useful-
ness of pretraining increases with the network complexity, i.e.,
architectures with more parameters benefit more. Similarly, SimSiam
mostly exceeded the other methods in settings where the encoder weights
werefinetuned, consistent with the previous observations. However, signif-
icant instabilities were observed for SimSiam if the encoder was fixed dur-
ing the finetuning. A closer examination of the apparent oddity revealed
that it is an artifact induced by the unified finetune protocol (Appendix
C.3). Further investigating runs with fixed encoders, we find that SimCLR
produces the most stable, beneficial embeddings, which aligns with previ-
ous observations.

In summary, the expected behavior for reducing the training data avail-
able was only observable for Kather. This may be because the finetune
protocol was initially adjusted to this dataset. But when averaging over
the experimental runs, the results showed that building upon a domain en-
coder was generally advantageous. This strengthens the assumption that all
methods generated encoders with beneficial embeddings for the data do-
main, while SimSiam performed best in the comparison group.

Basic histopathological features

To investigate the in-domain transferability of the encoder embeddings,
we reexamined the results generated in 4.2.We studied the benefit distribu-
tion of the finetuned encoders based on their training data on every down-
stream task. Fig. 4 summarizes the findings.

Analyzing the Kather finetuning results, we observed that all methods
performed consistently better if their encoders were trained on this dataset.
We assume an encoder learns the underlying patterns in its pertaining data.
Therefore, the observation was rather logical and supports this assumption.

The benefits generally dropped when the finetuning was based on the
PCam encoder. However, this was anticipated since the dataset is built
upon another tissue type. Though, the methods decreased to a significantly
different extent, which was indeed unexpected. Thus, we suppose the en-
coder embeddings differ considerably, with some learning more features
transferable in-domain than others. Method-wise, SimSiam yielded rela-
tively stable results across both encoders while consistently surpassing the
other methods. Followed by SimCLR, which was almost on par with
SimSiam using the Kather encoder. Even though the median and average
benefit of PAWS were positive, the method performed weaker in compari-
son. However, concluding whether such embeddings represent fundamen-
tal histopathological patterns or universal features is challenging.
Therefore, we used basic XAI techniques to examine the models on some
Kather samples as discussed in Appendix C.2. We found qualitative
evidence that the classifiers targeted pathologically relevant tissue struc-
tures. Although SimCLR produced the most consistent maps, this was gen-
uine for all methods. Indeed, this conveys the presence of domain-specific
embeddings.

Examining the PCam downstream task, we observed a somewhat equiv-
alent behavior, with SimSiam exceeding SimCLR, which in turn
outperformed PAWS. Interestingly, the median and the average benefit
were higher for PAWS using an encoder trained on Kather. Nevertheless,
the differences were minor since the second and third quantiles strongly
overlap, and the higher average benefit could result from somepositive out-
liers. Overall, the differences were minor between the methods regarding
their general performance and the influence of the encoder training data.
Thisfinding contrasts with the onemade before on the Kather downstream.
We suspect this is a direct consequence of the datasets and can be explained
accordingly. The Kather dataset is built upon colorectal cancer and normal
tissue. The evenly distributed 9 classes represent almost distinguishable tis-
sue structures from which the classification task is derived. This structural
distinction is not reflected in the design of PCam, which consists of ran-
domly selected samples of sentinel lymph node sections that may or may
not contain metastatic tissue. Thus, the apparent benefit decrease using a
PCam encoder on Kather is explainable. In contrast, the Kather dataset
may include helpful information for the PCam task, i.e., cancer and normal
tissue, even if from another tissue type.

Fig. 3. Test set accuracy benefits for each dataset and split size for runs finetuned
encoder weights. Overall, the gain with SimSiam compared to PAWS and SimCLR
is significant for Kather and Lizard.

Fig. 4. Benefits distribution of finetuned encoders depending on training and
downstream task data. The benefit represents the accuracy gained (the mean is
noted in the setting label) by comparing the encoder’s performance with its
supervised counterpart. SimSiam generally outperforms the other methods.
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We chose the Lizard dataset since the intersection of the tissue sections
included in the dataset with PCam, and Kather is small. In addition, its clas-
sification task, detection of cell nuclei, is, in fact, different from that of the
other datasets. Therefore, Lizard represents a proxymetric for learning fun-
damental histopathological features or at least valuable universal features
that work across tissues. Under this assumption, we observed that the fea-
ture transfer was not optimal for PAWS or SimCLR, regardless of the en-
coder training data. SimSiam yielded remarkably better performance,
significantly surpassing the other methods. This observation aligns with
the findings of Fig. 2 and Fig. 3. However, across all experimental setups,
the general performance achieved and benefits gained on the Lizard dataset
were mainly inferior to the other datasets. This is strongly supported when
studying the experiment runs with a frozen encoder (e.g., Fig. C.2) in more
detail. Note that the influence of the initially learned embeddings is
maximized in such runs. The benefit distribution was either decreasing or
relatively constant, depending on the method, compared to finetuned
encoder runs. Hence, the learned embedding was as valuable as those
resulting from a freshly initialized network for Lizard. The difference
between Lizard and the pretraining datasets seems too pronounced.
Accordingly, training encoders on specific datasets seem insufficient to
represent the entire histopathological domain.

In summary, we found evidence that the encoders produced embed-
dings transferable in-domain but with limitations only. The observations
suggest that the embeddings lose value while the downstream task data
shifts from the pretraining data. Hence, training with a diverse dataset,
including various tissue types and structures, is likely a requirement to pro-
duce encodermodels applicable across the domain.We identify the training
of such models as a further research topic, including a closer investigation
of the embeddings.

Conclusions

We have compared a cross-selection of state-of-art semi- and self-super-
vised learning methods in the histopathological domain. Therefore, we
trained encoders with PAWS, SimCLR, and SimSiam on public datasets
and evaluated them within a unified framework on several domain tasks.

The findings suggest that pretraining generally has a positive effect,
measured by the average benefit and absolute performance, compared
to a purely supervised training approach. This effect is more significant
for complex network architectures and persists in insufficient training
data regimes. Thus, less annotated data is needed to achieve comparable
performance if building upon a domain encoder. Furthermore, there is
evidence that suchmodels learn underlying domain-specific features ap-
plicable across tissue types. Regarding this, initial explorations of en-
coder models using GradCam are promising, revealing that classifiers
targeted structures of interest from a pathological perspective. Yet, ac-
cording to observations, feature transferability is limited and dependent
on encoder training and downstream task data divergence. Accordingly,
we identify the relation between training data and resulting feature
space as a critical topic of further research to build a general domain en-
coder. We recommend building a neural network classifier on an in-do-
main encoder model, especially if less annotated data is available.

Therefore, we notice a necessity to expand the sharing of domain
models, i.e., a public histopathological model zoo.

As a semi-supervised approach, PAWS is the only method that uses par-
tially labeled data in the training process. This additional information
showed no advantage in this work since PAWS could keep up on average
but mainly achieved significantly lower values than the other methods.
Also, we experienced PAWS results as the most sensitive regarding
hyperparameter settings and network initialization, which is potentially
unsuitable in the medical field. Across the methods, PAWS has the highest
computational resource consumption.

SimCLR is also a relatively computationally expensive method. It
yielded the most consistent performance concerning all experimental set-
tings, a valuable property in this domain. Moreover, it mainly achieved
comparable results in its absolute metrics and benefit distributions, close
to the best-performing method. SimCLR was straightforwardly applicable
to the new data domain, i.e., identifying appropriate training settings was
uncomplicated.

SimSiam demonstrated the lowest sensitivity regarding weight initiali-
zation in the finetuned encoder setting. In comparison, it achieved top
evaluation metrics and gained the most relative benefit overall. Addition-
ally, the method consumes, by far, the least computational resources. How-
ever, it was the most challenging method to train a performant encoder.

Note that a unified evaluation strategy limited the performance of every
method. Though, it enhanced the inter-comparability of the encoders and,
therefore, the investigated learning strategies, which is the primary aspect
of this work. We assume each method will improve relatively if optimized
for a downstream task. Under this assumption and based on the experimen-
tal result, we recommend trying SimSiam as a promising alternative or
addition to the more established SimCLR, which seems the primary choice
for consistent results in the histopathological domain.
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Appendix A. Encoder training information

A.1. Augmentation stacks

All methods utilized augmentation strategies to create distinct views of a given image. In addition, to the augmentation stacks published with the asso-
ciated methods, we implemented custom augmentation stacks suited for the data domain in a supervised setting, based on the findings of Tellez et al,41 and
Annuscheit et al.46 Fig. A.1 illustrates transformations of a datapoint from the Kather dataset using all different augmentation stacks.

First, we trained SimSiam models with the simpler of our adapted histopathological stacks. The stack utilized only a slight color jitter because we ex-
pected too much distributional shift and problems in the learning process. Usually, color differences in the input data are a problem when modeling a clas-
sifier for histological tasks, e.g., stain normalization problems. Furthermore, gray scaling of the image was applied as a color transformation. As geometric
manipulations random cropping, rotating (360°), and flipping (horizontal/vertical) are parts of the augmentation stack. The size of an image is correctly
adjusted before and after the rotation transformation to avoid black borders. Each transformation is applied with a probability p with p ∈ [0.2;0.8].

We observed that models trained with the stack struggled to learn meaningful representations even though they did not collapse during the process.
Hence, we attempted the moco_v2 stack initially used for SimSiam training, leading to considerably better results. However, after further investigations,
we found that the parameterization of the color jitter caused the problem. Therefore, wemodified our stack to use the moco_v2’s heavier color jitter param-
eterization and also added the Gaussian blur to this method. This new custom stack, adapted moco_v2, achieves similar to better results with the same train-
ing settings of SimSiam and SimTriplet learning approaches. For the other learningmethods, we also adapted their augmentation stacks to our observations
by adding geometric transformations or using different parameterizations but keeping the color manipulations of the respective method.

A.2. Hyperparameter settings

Table Appendix A.2 reports the final hyperparameter used for the encoder training. In addition to the noted optimizer parameter, each onewas wrapped
in a 1-cycle cosine scheduling to decrease the learning rate. For the PAWS encoder trained on the Kather dataset, the same setting was used across the dif-
ferent split sizes.

Fig. A.1. A Kather sample transformed with the different augmentation stacks used.
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Table A.1
Summary of final hyperparameter settings used to train the different encoders. PAWS networks are divided by the size of the support set Dsup used. For brevity some column
headings are shortened: ‘Size’ represents the batch size used; the optimizer column includes values for learning rate, momentum, and weight decay; column ‘Emb./MLP’
reports the values used for the encoder embedding size and the MLP hidden layer size.

Method Data Network Epoch/Batch Size Optimizer Emb./MLP

PAWS PCam R18/.08 10/40940 64 LARS (0.467, 0.647, 72e-6) 128/–
R18/.008 10/40940 64 LARS (1.17, 0.364, 29e-6) 128/–
R18/.002 10/40940 64 LARS (2.41, 0.317, 31e-7) 128/–
R50/.08 10/40940 64 LARS (0.88, 0.48, 25e-6) 128/–
R50/.008 10/40940 64 LARS (1.39, 0.57, 18e-6) 128/–
R50/.002 10/40940 64 LARS (1.57,0.6, 19e-6) 128/–
W28/.08 10/40940 64 LARS (2.231, 0.364, 87e-6) 128/–
W28/.008 10/40940 64 LARS (2.379, 0.49, 82e-6) 128/–
W28/.002 10/40940 64 LARS (0.784, 0.81, 32e-6) 128/–

Kather R18 10/28120 32 LARS (1.772, 0.499, 28e-6) 128/–
R50 10/28120 32 LARS (2.0, 0.5, 3e-4) 128/–
Wide 10/28120 32 LARS (1.5, 0.6, 5e-4) 128/–

SimCLR PCam R18 23/12000 512 LAMB (6e-3, -, 1e-5) 1024/64
R50 23/12000 512 LAMB (6e-3, -, 1e-5) 2048/256
Wide 23/12000 512 LAMB (17e-4, -, 1e-5) 2048/128

Kather R18 77/15000 512 LAMB (7e-4, -, 1e-5) 2048/256
R50 77/15000 512 LAMB (3e-3, -, 1e-5) 1024/256
Wide 77/15000 512 LAMB (3e-3, -, 1e-5) 1024/64

SimSiam PCam R18 50/51200 256 SGD (0.5, 0.5, 1e-4) 512/128
R50 50/51200 256 SGD (0.5, 0.5, 1e-4) 2048/512
Wide 50/204800 64 SGD (0.5, 0.5, 1e-4) 512/128

Kather R18 115/45000 256 SGD (1.0, 0.5, 1e-3) 512/128
R50 29/45000 64 SGD (0.5, 0.9, 1e-4) 2048/512
Wide 29/45000 64 SGD (0.5, 0.9, 1e-4) 512/128

Appendix B. Additional results

B.1. t-SNE examplesv

Fig. B.1 shows t-SNE plots of the Kather validation dataset after an encoder training using a ResNet50. To what extent the investigated semi- and self-
supervisedmethods can separate the validation data after training is remarkable. The plots indicate that the separation of some classes is difficult. Especially
for the classes MUS (smooth muscle tissue, brown) and STR (cancer-associated stroma, gray), the separate clustering seems to be challenging. Both
SimTriplet and PAWS achieve the sharpest separation. This results probably from the direct label information of the PAWSmethod and the close-patch strat-
egy implementation of the SimTriplet method used here, which gives indirect information about the class affiliation. Also, the background class (BACK, or-
ange), which combines quite diverse structures, appears problematic to unite in one cluster. With this mapping, SimTriplet and SimCLR manage to assign
most data points to a joint region.

B.2. F1-score and ECE results

We append the corresponding f1-score representations (Figs. B.2, B.3 and B.4), of the accuracy ones reported in the main text. Although performance
differences were observed for each method when comparing f1 score/accuracy metrics, they were small and non-significant. In particular, there was no dif-
ference in terms of methodological relations. This effect could be expected since the Kather, and PCam datasets are nearly balanced. Only the Lizard dataset
contains some imbalances, which could have led to major differences in those metrics. However, these were also not observed, compare Fig. 4 with Fig. B.4
and Fig. 3 with Fig. B.3.

Fig. B.1. Example ResNet50 encoder t-SNE representations of each method on the Kather validation dataset. The representations suggest that the MUS (brown) and STR
(gray) classes are the most difficult to separate in the learning process. The most structured clusters create the SimTriplet method (d) on the dataset.
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Fig. B.2. Top F1-score of each training data split (0.2%, 0.8%, 8%, and 100%) divided by dataset. Corresponding representation to 2.

Fig. B.3. Test set f1-score benefits for each dataset and split size for runs finetuned encoder weights. Corresponding representation to 3.
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In addition, Fig. B.5 reports the distribution of the ECE (expected calibration error) across the different architectural settings. The models are usually
relatively calibrated for experiments that finetune the encoder, but some outliers exist. The medians are between 0.05 and 0.1, which is reasonable for net-
works with that many parameters.

Fig. B.4. F1-score benefit distribution of finetuned encoders depending on training and downstream task data. The benefit represents the accuracy gained (themean is noted
in the setting label) by comparing the encoder’s performance with its supervised counterpart. Corresponding representation to 4.

Fig. B.5.

B. Voigt et al. Journal of Pathology Informatics 14 (2023) 100305

14



Appendix C. Additional analysis

C.1. Benefit of architectural settings and frozen encoder

In Sections Encoder initialization sensitivity and Downstream task data reduction, we have investigated the experiments finetuning encoders across the
different datasets since this view is comparable to real-world training procedures and, thus, reflects practical usage. However, such finetunings blur the ef-
fective contribution of the encoder to the results, and inferences about learned domain-specific features are impaired. To disentangle some of those effects,
we analyzed the benefits regarding the finetuning configurations more in-depth. Therefore, we calculated the benefit distribution separated by network ar-
chitecture, prediction head, and finetuning of the encoder weights and summarized the findings in Fig. C.1.

We found onlyminor influences of the network settings in case the encoderweights werefinetuned (indicated by a ‘T’ in thefigure label). There is almost
no difference when using logistic regression or a 3-layer MLP prediction head. However, we observed more minor benefits for all methods when using the
Wide_ResNet28w2 and for PAWS/SimCLR using the ResNet18. The most consistent positive benefit occurs for the ResNet50 across all methods, although
SimSiam showed a similar positive benefit for the ResNet18. We expected an increased benefit for the ResNet50 since networks with increasing complexity
also require more data to tune their many parameters appropriately. Therefore, pretraining should be more helpful for more complex architectures.

For finetunings with fixed encoder weights (indicated by an ‘F’ in the figure label), we observed evident changes. First, some SimSiam configurations
were immediately conspicuous. The methods showed tremendous benefit fluctuations in the case of a logistic regression head. The median was negative
in 2 of these settings, suggesting that the encoder impaired the classification performance. Even if this is possible, e.g., a (nearly) collapsed feature space,
this observation appeared curiously based on the previous results. Therefore, we investigated these runs in more detail and found that adapting the learning
rate was sufficient to improve these seemingly corrupted runs. Further, by dropping the encoder MLP part, this issue could be fixed, see Appendix C.3. The
MLP encoder part represented an adaption of SimSiam tomatch the architecture baseline of PAWS. Hence, this observation was not caused bymethodolog-
ical issues but represents an artifact resulting from the unifiedfinetune protocol. Notably, this clearly showed that only the CNN embeddings, as intended by
the method, should be used as feature extractors to create performant embedding.

Besides the artifacts, we found the benefits generally increased but registered largerfluctuations in the results. Especially PAWS and SimCLR significantly
improves in particular. On the one hand, this seems reasonable since it cannot be assumed that a randomly initialized encoder, like in the supervised runs,
will produce linearly separable features without finetuning its weights, and the performance gap measured by the benefit, therefore, should be increased in
such settings. On the other hand, thefindings could also indicate that the encoder captured beneficial domain properties, resulting in a gain.More detailedly,
we also notice that the average benefit increases and its fluctuations decrease if the logistic regression is replaced with a 3-layer MLP here. Again, the
ResNet50 gained the most average benefit in each setting, supporting the previous observations that pretraining is more profitable for complex networks.

In Fig. C.2, we reported the corresponding representation to the finetuned encoder runs (Fig. 4), i.e., same settings but without updating the encoder
weights duringfinetuning. SimSiam’s results here suffered from the same corrupt experiment runs, leading to tremendousfluctuations. However, we noticed
that the benefit median generally increases, even for SimSiam, including the faulty runs. Again, this is expected compared to a supervised run but also in-
dicates the presence of valuable features. Especially if the difference is substantial, like in some observations for PAWS or SimCLR. There was a notable dis-
tinction between the encoder of those two methods, i.e., in the case of the Kather-encoder, PAWS benefited more, while for the PCam-encoder, SimCLR
surpassed the other methods. SimCLR repeatedly showed minor differences between the different encoders and overall fluctuations, supporting the finding
that this method is the most consistent.

Fig. C.1. Benefit distribution over different network configurations. The benefit represents the accuracy gained/lost using a pretrained model instead of a randomly
initialized network. The mean accuracy gain is noted in the label of each setting. For brevity, the labels are shortened (R18: ResNet18, R50: ResNet50, W28w2:
Wide_ResNet28w2, 1L: logistic regression, 3L: 3-layer MLP, T: encoder weights finetuned, F: encoder weights frozen).
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The drop behavior between the encoder training set and the downstream task did not differ in the case of the frozen encoder from the previous obser-
vations in Section Downstream task data reduction. Hence, it supports the conclusion regarding the transferability of the encoder embeddings, which is an
important one.

C.2. Encoder GradCam and Guided Backprop illustrations

We investigated the topic qualitatively by examining a part of the resulting models from Section Downstream task data reduction using eXplainable AI
methods, i.e., Grad-Cam43 and Guided Backpropagation44 on randomly selected examples from all downstream test datasets. Here, we only used encoders
with theWide_ResNet28w2 for the experiment because it produced the largest featuremap (14x14) of the 3 architectures before entering the global average
pooling layer, using an input size of 96x96 pixels. The feature map size is crucial for the quality of resulting activation maps of the applied technics and con-
sequently allows a more significant analysis. Furthermore, to maximize the impact of the encoder, we only evaluated models that used logistic regression as
the prediction head and only consideredmodels that were finetuned on an 8% split of the corresponding training dataset with a frozen encoder. Besides the
resulting activationmaps, we rendered the normalized version of the original imagewith a threshold of 0.6 to highlight the relevant content. Parts below the
threshold are whitened, and higher activated areas are more color-intense, see Fig. C.3.

We observed a fragmented selection from the purely supervised models. On the normal colon mucosa image (Fig. C.3.a), the activation reflected some
structures of the original image, which was nevertheless remarkable for a randomly initialized network with a regression head only. However, the higher
activations in C.3.e were somewhat arbitrary from a pathologist’s point of view.47 Crypts can be recognized (besides the shape) by the goblet cells. Typically,
the nucleus is close to the basement membrane and the cytoplasm of the goblet cells towards the intestine. Thus, only marking the cell nuclei is problematic
because thesewould still have to be distinguished from other cell nuclei, e.g., those of basal cells. However, selecting the cytoplasmof the goblet cells is more
meaningful. From a pathological point of view, marking both aspects is the most significant. We observed all gradations in the activation maps of the
pretrained models. Almost all models pretrained on the Kather dataset considerably recognized the cytoplasm of the goblet cells. SimSiam (Fig. C.3.d)
also marked the cell nucleus structure, albeit slightly. For the 2 encoders pretrained on Kather and PCam, respectively, SimCLR showed the best generali-
zation performance. Both variants identified parts of the cytoplasm and partially marked the same image content, comparing Fig. C.3.c and C.3.g.

The second example (Fig. C.3.i) represented adipose tissue. Detecting fatty tissue can be tricky. The fat cells can quickly be perceived as background and
useless information due to larger uniform areas. The supervised approach (Fig. C.3.m) targeted some nuclei with no discernible structure. The surrounding
area had amuch lower activation, and no explicitmarking of relevant adipose tissuewas noticeable. In comparison, all pretrainedmodels consider this tissue
type to varying degrees. One strategy is to mark the cell membrane and the adjacent adipose tissue. Good results were achieved here by several methods.
However, SimCLR had consistent results for both encoders again, comparing images C.3.k and C.3.o. The PAWS encoder, trained on the PCam dataset,
followed a different approach and targeted the fat tissue directly. The PAWS results also contain a part of the cell membrane and other unimportant tissue
in the context, see Fig. C.3.n.

Even though it is a qualitative exploration, the results indicate that the evaluated learning approaches produce models already adapted to the histopa-
thological data domain. Therefore, such models can generate reasonable representations from a pathologist’s view to a certain degree. The observation also
suggests that encoders trained on a particular tissue type can produce underlying histopathological features usable for another tissue type, i.e., downstream
task. Both encoders occasionally selected the same image content or used the same histopathological features across the encoders, regardless of the chosen
method.

Fig. C.2. Accuracy benefit distribution of frozen encoders depending on training and downstream task data. The benefit represents the accuracy gained (themean is noted in
the setting label) by comparing the encoder’s performance with its supervised counterpart. Corresponding representation to 4.
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Fig. C.3. Exploration of tissue samples with the Grad-Cammethod. Images (a) and (i) illustrate the original samples from the Kather data. All other images merge the original
imagewith the activationmap produced byGrad-Cam on a particular encoder, revealing the relevant parts for the classification decision. The encoder training data is noted in
brackets after themethod. Pretrained models make use of domain-specific structures but to a different degree, e.g., selecting goblet cells (b)–(h) or targeting fat tissue (j)–(p).
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Overall, the experience applying bothmethodswas that GradCammarkedmedium-sized image regions of interest based on feature activationmaps from
the CNNs’ last convolutional layer, while Guided Backprop marked relatively small local pixel regions, given the nature of the method. Therefore, GradCam
worked more closely with a pathologist’s workflow when making classification decisions and showed a decision-making process based on contextual re-
gional information. For Guided Backprop, it seemed that instead of medium-sized regions, strongly H&E colored pixels are marked, whichmight not always
be of interest for a specific classification. Especially for fully supervised experiments, meaning experiments with no feature-based pretraining, this appeared
to be the case. Even some Guided Backprop maps that looked like noise were no exception in this setup. However, this problem softens for semi-supervised
experiments, andGuided Backprop showed far bettermaps that looked reasonably congruent toGradCammaps, underlying the importance of feature-based
pretraining.We suggest that, when using XAI methods to analyze the feature space of encodermodels, multiple strategies should be used and discussedwith
domain knowledge experts.

C.3. MLP ablabation study

In the original publications of SimCLR and SimSiam, only the base network of the encoder f, i.e., without themodifiedMLP part, is used for further down-
stream training. To preserve the comparison with PAWS, this was changed in the study. Hence, we also performed all experiment runs of the data reduction
experiment with the intended implementation of the methods to examine the influence of these adaptations. We limit ourselves here to report one
representation,7 which can be used to summarize the results of the ablation study. Fig. C.4 illustrates the distribution of accuracy benefits for the different
training configurations (corresponding to Fig. C.1).

In the case of the finetuned encoder runs, we observed that the performance is relatively constant when dropping the MLP. The additional parameters
were, therefore, not very profitable in this scenario, which corresponds more to the realistic use case. Even if the MLP learned helpful information in the
pretraining. Even though the MLP had contained helpful representations learned in pretraining, this could be negated solely based on the encoder CNN fea-
ture and a simple prediction head.

However, the frozen encoder settings weremore interesting in this context.We found that dropping theMLP significantly influenced the performance of
SimSiamhere. In all settingswith logistic regression, this leads to an apparent reduction of corrupted runs. Indeed, omitting the encoderMLPwhen using the
ResNet50 architecture fixed the problem completely. In contrast, using a 3-layer prediction head, no significant performance change was observable. We
suppose that during pretraining, the MLP learned a poor mapping, which a single linear transformation could not correct in the finetune process, which re-
sulted in corrupted runs. Additional experimental runs without the added MLP were executed to investigate this further. We repeated all ResNet18 and
ResNet50 architecture experiments with one exception to the finetune protocol, which was an increased learning rate. This modification, furthermore,
evoked a significant performance gain in the case of the ResNet18 but only barely changed the results of the ResNet50, supporting the idea of harmful map-
ping. Overall, these are strong indications that this problem was induced by the design of the pretraining and finetuning protocol, not the method itself.
Thus, we recommend using SimSiam as initially proposed, i.e., using only the CNN structure as a feature extractor.

Fig. C.4. Accuracy benefit distribution over different network configurations of SimCLR and SimSiam omitting the additional MLP. The mean accuracy gain is noted in the
label of each setting. For brevity, the labels are shortened (R18: ResNet18, R50: ResNet50, W28w2: Wide ResNet28w2, 1L: logistic regression, 3L: 3-layer MLP, T: encoder
weights finetuned, F: encoder weights frozen).

7 However, all presented diagrams and the corresponding f1-score charts can be generated from the raw experimental data using the reproducibility script found in the git repository.
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