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Abstract
Substance-related disorders are complex psychiatric disor-
ders that are characterized by continued consumption in 
spite of harmful consequences. Addiction affects various 
brain networks critically involved in learning, reward, and 
motivation, as well as inhibitory control. Currently applied 
therapeutic approaches aim at modification of behavior that 
ultimately leads to decrease of consumption or abstinence 
in individuals with substance use disorders. However, tradi-
tional treatment methods might benefit from recent neuro-
biological and cognitive neuroscientific research findings. 
Novel cognitive-behavioral approaches in the treatment of 
addictive behavior aim at enhancement of strategies to cope 
with stressful conditions as well as craving-inducing cues 
and target erroneous learning mechanisms, including cogni-
tive bias modification, reconsolidation-based interventions, 
mindfulness-based interventions, virtual-reality-based cue 

exposure therapy as well as pharmacological augmentation 
strategies. This review discusses therapeutic strategies that 
target dysregulated neurocognitive processes associated 
with the development and maintenance of disordered sub-
stance use and may hold promise as effective treatments for 
substance-related disorders. © 2022 S. Karger AG, Basel

Introduction

Substance use disorders (SUDs) are characterized by 
continued harmful consumption of psychoactive sub-
stances despite severe adverse consequences for the indi-
vidual such as clinical and social impairment and persis-
tent relapse over time as well as for society [1, 2]. Accord-
ing to comprehensive research in this field, one hallmark 
of addictive disorders is an increased salience attribution 
toward addiction-related stimuli. As stated in this incen-
tive-sensitization theory of addiction [3, 4], environmen-
tal stimuli associated with substances of abuse acquire 
motivational properties via Pavlovian learning processes 
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and subsequently act as powerful motivators that drive 
operant alcohol seeking and consumption (i.e., cue reac-
tivity [4, 5]), thereby undermining the goal to stay absti-
nent. Moreover, these processes are accompanied by ab-
errant brain responses and functional connectivity within 
dopaminergic pathways [6–9].

Although there is a growing body of basic research 
aiming to inform potential therapeutic approaches, re-
sults of interventions are inhomogeneous and complex. 
The present narrative review aims at giving a broad over-
view on current results on novel therapeutic approaches 
for SUD with a focus on cognitive-behavioral content. 
When reviewing randomized-controlled trial (RCT) 
studies, we will also report effect sizes where available, in 
order to guide comparison between treatment approach-
es. Since stress is known to play a major role in the devel-
opment and maintenance of SUD [10, 11], we will intro-
duce mindfulness-based interventions (MBIs) aiming at 
reducing stress and habitual responding while strength-
ening goal-directed behavior and salience of natural re-
wards and thus strengthening self-efficacy. To also re-
duce habitual responding and to enhance cognitive con-
trol in subjects with SUD, so-called cognitive bias 
modification (CBM) is used to modify automatic cogni-
tive biases. We will moreover introduce virtual-reality-
based cue exposure therapy (VR-CET) as well as pharma-
cologically augmented extinction therapies targeting the 
aforementioned maladaptive Pavlovian associations via 
repeated confrontation (exposure) with addiction-relat-
ed cues without the subsequent reinforcing consumption. 
Complementary, reconsolidation-based therapies will be 
introduced; here, the critical reconsolidation window is 
used to modify cue-drug associations. Besides cue-in-
duced processes, we will subsequently focus on specific 
neurobiological therapeutic approaches. We will present 
neuromodulation such as transcranial magnetic stimula-
tion (TMS), transcranial direct current stimulation 
(tDCS), and neurofeedback, the latter mostly in combina-
tion with cue exposure. Finally, we will give an overview 
of new pharmacological approaches, such as psychedelic-
assisted psychotherapies (PAPs). For a schematic over-
view, please see Figure 1. In the field of more intensively 
researched areas such as CBM and neuromodulation, we 
will focus on comparative and summarizing work such as 
meta-analysis and reviews, while we will concentrate on 
detailed study information for intervention with high 
novelty such as VR-CET or reconsolidation-based inter-
ventions.

Mindfulness-Based Interventions

Mindfulness has been described as a state of conscious-
ness in which one purposefully attends to their experi-
ences, feelings, and perceptions in a noncritical manner 
[12, 13]. Mindfulness has its conceptual roots in Eastern 
contemplative tradition and has been shown to be in-
creased with practice of mindfulness meditation [14]. 
Nowadays, MBIs have been developed and applied in a 
variety of secular settings, most prominently psychiatric 
disorders, due to proven positive effects on mood and 
anxiety [15]. More recently, MBIs tailored to treat a vari-
ety of addictive disorders from SUD to behavioral addic-
tions have been introduced [16]. These include, among 
others, mindfulness-based relapse prevention, mindful-
ness-oriented recovery enhancement (MORE), and ac-
ceptance and commitment therapy [17]. Due to the grow-
ing interest in MBIs in the context of addictive disorders, 
various meta-analyses have validated their efficacy in the 
context of addiction (e.g., [18, 19]). Here, effect sizes of 
the efficacy of craving reduction were OR = 0.72 and d = 
−0.68, respectively. In this context, the benefit of MBIs in 
patients with SUDs has been found to be increased in sub-
groups with higher SUD and affective symptom severity 
[20].

Parallel to the growing body of efficacy studies, the un-
derlying cognitive mechanisms, e.g., cue reactivity, cogni-
tive control, negative affect, and stress susceptibility, have 
been applied in clinical MBI studies [21]. For instance, in 
tobacco use disorder (TUD) neural cue reactivity was re-
duced in prefrontal areas as well as in the ventral striatum 
after 10 weeks of receiving a manualized MBI (MORE) 
[22, 23]. In the former study, a reduction in neural cue 
reactivity was related to a reduction in cigarettes smoked 
(d = 0.79) [22]. In a sample of opioid users, 8 weeks of 
treatment with an MBI resulted in decreased self-report-
ed as well as physiological cue reactivity reflected by low-
er heart rate and increased heart rate variability (HRV) 
(ηpartial

2 = 0.09). This was paralleled by reduced opioid 
misuse and craving [24, 25]. Neurophysiologically, re-
ductions in late positive potential in response to drug-
cues indicate a reduction in cue reactivity in another co-
hort of opioid users after MBI treatment (ηpartial

2 = 0.12) 
[26]. In addition, these groups of opioid misusers dis-
played enhanced reactivity toward natural rewards after 
treatment (ηpartial

2 = 0.16). As drug cues gain salience over 
natural rewards during the course of addictive disorders, 
this indicates that craving and substance use might be re-
duced through shifting valuation from drug-related re-
wards back to natural rewards.
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As addictive disorders are often accompanied by a de-
crease of executive control that further ameliorates the 
manifestation of craving and relapse [27], it was found 
that MBIs affect clinical outcome through enhancement 
of top-down control. For instance, a brief MBI led to P3 
amplitude decreases in a Go/No-Go task in smokers. The 
authors link this proposed decrease in effort to inhibit re-
sponses to positive clinical outcomes in consumption 
measures [28].

In a cohort of subjects with TUD, implementation of 
an MBI led to increased neural activation in anterior cin-
gulate cortex (ACC) and medial prefrontal cortex (mPFC) 
which form part of a cognitive control network [29]. This 
increase in turn was associated with improved emotional 
regulation [30]. An increase of reflected decision-making 
as well as goal-directed control and working memory 
function were seen in polysubstance users post-MBI in-
tervention [31]. MORE has been further researched in 

Fig. 1. Overview of cognitive-behavioral interventions and respective dysfunctional target mechanisms.
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cohorts of patients with chronic pain treated with pre-
scription opioids at risk for misuse. Here, improvement 
in executive functions such as decreased errors of com-
mission in a pain-related Go/No-Go task when faced with 
pain-related distractors was seen (ηpartial

2 = 0.07) [32]. It 
was furthermore seen that drug-related attentional bias 
was decreased by MORE (d = 0.75) [33] as well as that 
HRV during meditation was increased after reception of 
MORE, which finally correlated with reduced drug intake 
post-intervention (d = 1.07) [34]. Prefrontal theta power 
increases after MORE treatment which was related to the 
observation of reduced opioid intake [35]. Withal, MORE 
led to reductions in attentional bias in patients with alco-
hol use disorder (AUD) [36].

With negative affect and stress being directly linked to 
substance use as well as behavioral addictions, MBIs’ ef-
fects on these domains have been investigated in addic-
tion populations as well. For instance, in a group of pa-
tients with SUD, increased HRV as well as lower anxiety 
and stress reactivity was found after MBI treatment 
(ηpartial

2 = 0.3–0.4) [37]. In a TUD cohort, similarly, 
changes in subjective stress reactivity but not vagal con-
trol indicated by HRV were found after a brief MBI [38]. 
In opioid-treated chronic pain patients, MORE increased 
positive affect and reduced stress (OR = 2.75), which was 
related to reduced craving as well as misuse of opioids af-
ter treatment. Reductions in stress (d = −0.77) also medi-
ated substance use (d = −0.58) after undergoing MBI in 
patients with SUD [39]. In line with this, a brief MBI in 
AUD subjects, stress-induced negative mood (ηpartial

2 = 
0.41) as well as alcohol seeking was decreased (ηpartial

2 = 
0.02), while subjective mood improved (ηpartial

2 = 0.07) 
[40]. Moreover, an fMRI study suggested that lower stress 
reactivity following an MBI was associated with decreases 
in amygdala and anterior/mid-insula activation [41].

Conclusion
The research conducted thus far indicates the efficacy 

of MBIs in the field of addiction, while underlying cogni-
tive mechanisms such as increased cognitive control have 
been suggested to impinge treatment success. Across the 
limited body of research that considered adverse events 
caused by MBIs, the treatment method is considered rel-
atively safe [18, 42]. While acceptance and MBIs have 
been rated as high, some issues regarding treatment re-
tention have been reported and it has been suggested to 
assess clients on motivation to sustain engagement in the 
intervention [43].

Cognitive Bias Modification

The term “cognitive bias modification” (CBM) sum-
marizes different approaches which aim at enhancing 
cognitive control in subjects with different mental health 
issues by modifying so-called cognitive biases. In recent 
years, evidence from experimental psychology also led to 
a better understanding of unconscious and automatic re-
sponses underlying addictive behavior in subjects with 
SUD. Such cognitive alterations are referred to as atten-
tional and approach biases. Concretely, attentional bias 
means the tendency for attention to be allocated toward 
substance-related cues, while approach bias refers to au-
tomatic behavioral tendencies when being confronted 
with substance-related cues. One assumes that most psy-
chotherapy approaches target mainly more conscious as-
pects of cognitive control and therefore do not affect 
more automatic processes like cognitive biases. Thus, in 
the field of treatment of subjects with SUD, existing evi-
dence on cognitive biases in SUD (e.g., [44, 45]) is trans-
lated into interventions and trainings which are intended 
to decrease approach and/or attentional bias toward 
drug-related cues. Depending on the specific operation-
alization, a distinction is made between attentional bias 
interventions and approach bias modification.

As an example, a CBM intervention as used in the con-
text of SUD should be described here in more detail. CBM 
interventions are intended to modify an approach to-
ward, e.g., alcohol-related cues by pairing such cues with 
a motor avoidance response, i.e., pushing a joystick, in 
contrast to other (soft) drinks (e.g., [46]). Training ses-
sions may vary in frequency and duration [47]. Further, 
sham training with equal proportions of approach-avoid-
ance responses is used as control condition [46]. Thus, 
subjects with SUD can retrain approach-avoidance ten-
dencies in a self-administered computerized training. As 
an example, by using such a training, CBM has been 
shown to reduce alcohol relapse rates up to 1 year after 
training measured with moderate effect sizes compared 
to sham training and no training (ηpartial

2 = 0.09) [46, 47]. 
In line with this, a more recent CBM study found that 
training in comparison with a sham intervention signifi-
cantly increased abstinence rates in AUD patients [48].

Recent reviews and meta-analyses focusing on the ef-
fectiveness of bias modification training in SUD [49, 50] 
came to mixed conclusions. In their meta-analysis, Cris-
tea et al. [50] focused on RCTs of CBM interventions in 
SUD and included 18 RCTs for problems related to alco-
hol and seven RCTs for smoking behavior. This meta-
analysis found no significant effects of CBM interven-
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tions on addiction symptoms in general (g = 0.08), nor on 
craving (g = 0.05) as a specific characteristic. Neverthe-
less, there was a moderate significant effect of CBM inter-
ventions on the extent of cognitive bias itself (g = 0.60). 
Further, a small significant effect on addiction outcomes 
during follow-up measures, as reported by a subgroup of 
seven studies, was observed (g = 0.18). Based on this and 
also on further methodological analyses, the authors con-
cluded that the clinical utility of CBM interventions in 
SUD has to be doubted and methodologically improved 
trials are necessary to conclude on this issue.

Consequently, Boffo et al. [49] expanded the work by 
Cristea et al. [50]. They conducted a Bayesian meta-anal-
ysis of 14 studies with a total of 2,435 participants on 
CBM interventions in subjects with AUD and TUD. 
Analyses of outcomes included alterations in cognitive 
biases, in substance use as well as relapse rates (short and 
long term). No effects on reduction on substance use were 
seen (θ = 0.05) but small significant effects of CBM inter-
ventions on cognitive bias (θ = 0.10) and relapse rates (θ 
= 0.28). When including moderating covariates such as 
severity of substance use, type of SUD, or number of com-
pleted training trials, no effect on the outcomes was seen. 
These authors also doubted the reliability of the so far 
available evidence. They concluded that research in this 
field would benefit from more high-standard RCTs using 
shared protocols of CBM interventions.

Besides the above-reported meta-analyses, systematic 
reviews focused on attentional bias modification (ABM) 
as a specific form of CBM. For example, Heitmann et al. 
[51] included and reported on 18 studies on ABM in SUD 
(nine studies on alcohol, six on nicotine, and three on opi-
ate use). As already criticized by Boffo et al. [49], the re-
ported studies differed regarding relevant variables, like 
type and frequency of ABM interventions and outcome 
measures as with regard to the reported results of ABM 
interventions on addiction symptoms. Therefore, no 
clear conclusions regarding the effectiveness of ABM in-
terventions could be drawn thus far.

With a similar intention, Zhang et al. [52] provided a 
systematic review on ABM, but with a focus on subjects 
with the use of stimulants, cannabis, and opioids. The au-
thors reported on six randomized trials highlighting the 
relevance of attentional biases in opioid use disorder 
(OUD) and cocaine use disorder (CUD), but they did not 
perform further analyses of secondary outcome measures 
due to methodological limitations. Despite the contro-
versial findings regarding the clinical utility of CBM in 
SUD, studies have been undertaken to understand its 
neural correlates and related brain functional alterations 

after the intervention. This is also related to the fact that 
previous studies showed that the effect of a CBM inter-
vention, like described above, on alcohol relapse rates is 
mediated by its effectiveness in building an alcohol avoid-
ance bias, while changes in executive functions (Stroop 
task training) did not function as a mediator [47]. To fur-
ther investigate the underlying cause of interindividual 
differences in training success, various predictors such as 
addiction severity, psychopathology, or demographics 
were examined. Results demonstrated that patients prof-
ited most from CBM with increased age [47]. To extend 
these findings, Eberl et al. [53] further investigated the 
effect of training sessions on treatment success and con-
cluded that optimal intervention effects were seen after 
six sessions. Since action tendencies and executive func-
tions are known to be associated with different function-
al systems in the brain, this evidence suggests that distinct 
mechanisms on neuronal level may play a role here. 
Therefore, Wiers et al. [54, 55] conducted two fMRI stud-
ies in order to measure the neural effects of a 3-week CBM 
intervention (six sessions) in subjects with AUD. The au-
thors reported a significantly reduced activation in the 
mPFC post-training related to bias modification. At the 
same time, the training showed no effects on the nucleus 
accumbens, as a reward-related region in the brain. In-
stead, the CBM intervention diminished alcohol-related 
cue reactivity in the amygdala which was correlated with 
self-reported craving [54, 55]. Taken together, the neuro-
imaging evidence suggests alterations in the motivational 
system of the brain underlying the effects of CBM inter-
ventions, but further studies are needed for a better un-
derstanding (see [56]).

Conclusion
As seen above, different studies confirm the relevance 

of cognitive biases in the development and maintenance 
of SUD. Further, several studies focused on the effective-
ness of bias modification interventions of different kinds 
in substance-using individuals. Structured reviews as well 
as meta-analyses came to mixed results, and therefore, 
authors recommended generating more extensive evi-
dence of higher methodological quality before drawing 
final conclusions. Notably, CBM interventions and its ap-
plication to subjects with SUD are not without challenges. 
For example, it has been observed that the existence and 
magnitude of cognitive biases show a high interindividu-
al variability and CBM interventions are highly depen-
dent on the selection of the appropriate task for bias as-
sessment and modification (see [57]).
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Most recent studies tried to overcome previous meth-
odological limitations and increasingly aim at applying 
CBM interventions in more naturalistic settings, e.g., 
home-delivered and Internet-based. For example, Heit-
mann et al. [51] used an ABM intervention and investi-
gated its effectiveness in a home-delivered, multi-session, 
Internet-based form as an add-on to treatment-as-usual 
(TAU) in subjects with AUD or CUD and found no sig-
nificant effects on attentional bias nor on substance use, 
craving, relapse rates, or other complaints. Other studies 
on the development and validation of app-based CBM 
interventions are ongoing [52]. In general, CBM has been 
considered as cost-effective, easy to implement, and rela-
tively safe. However, adverse events due to exposure to 
alcohol-related cues during withdrawal should be moni-
tored [48]. Thus, while considered a tolerable, low-cost 
intervention, evidence on CBM interventions in SUD all 
in all remains controversial.

Virtual-Reality-Based Cue Exposure Therapy

Repeated confrontation (exposure) with addiction-re-
lated cues without the subsequent reinforcing consump-
tion has been applied to reduce the association between 
the drug and the cue and thus to reduce craving [58]. This 
so-called CET is believed to utilize the well-established 
principle of habituation, i.e., the decrease of psychobio-
logical responses to substance-related stimuli via repeat-
ed presentation [58] as well as the development of alter-
native behavioral strategies in high-risk situations poten-
tially leading to relapse [59]. Although there have been 
some promising results [60, 61], CET is not a routine part 
of clinical care and its efficacy has been called into ques-
tion. One reason could be lacking feasibility within the 
context of psychotherapeutic practice (i.e., immense time 
and organizational effort; high costs) as well as lacking 
transferability of confrontation with drugs of abuse with-
in laboratory settings to daily life encounters in natural 
settings [58]. One promising approach to successfully 
deal with these pitfalls is the so-called VR-CET, i.e., the 
confrontation with addiction-related stimuli within a re-
alistic VR environment. Originally, VR-based interven-
tions have been developed for specific phobia in the 
1990s, but since then have continuously been adapted to 
other psychiatric conditions such as other anxiety disor-
ders, posttraumatic stress as well as SUD [62, 63].

VR Techniques

There are four key elements defining the operating 
principles of VR: (1) the Virtual World as an imaginary 
space with objects and rules governing these objects; (2) 
(Mental) Immersion as a state of being deeply engaged 
into this alternative reality/environment; (3) Sensory 
Feedback based on the physical positions of the partici-
pants within the VR environment; and (4) Interactivity as 
the ability of the participant to interact with the comput-
er-based world. Here, “cybersickness” (i.e., nausea, head-
aches, disorientation, and tiredness, typically experienced 
by stationary users that perceive that they are moving in 
a virtual scene) is the most common side effect of VR 
simulation. Besides this factor, VR-CET is safe and is ac-
companied by high patients’ compliance: in a study with 
a focus on specific phobias, 76% of all patients preferred 
a VR-based exposure compared to in vivo exposure [64]. 
An online survey on the public opinion on VR technique 
application via a social media platform showed mostly 
positive perceptions (ca. 75% of all given comments) 
about the use of VR in a wide range of health care settings 
[65]. To date, the application of head-mounted displays 
with motion tracking is the most common medium of VR 
with the advantage of isolating the user from all external 
visual stimuli while reducing costs for other expensive 
equipment such as 3D walls, etc. [66]. The majority of VR 
environments focus on visual simulations, but there are 
also multisensory VR environments available with audi-
tory and haptic or even olfactory and gustatory stimuli 
[67].

VR-Based Approaches Focusing on Craving

Up to now, there is a wide range of studies probing VR 
to elicit and assess craving as one of the core symptoms 
of addictive disorders [68, 69]. Here, as a first step, the 
evaluation of potentially relevant cues via interviews or 
questionnaires is of importance: early studies in AUD in-
corporated visual, auditory, and olfactory stimuli in a VR 
environment to evoke the urge to drink: Bordnick et al. 
[70]; Ryan et al. [71]; and Ghita et al. [72] determined rel-
evant contextual triggers of alcohol craving, including 
situations (e.g., being in a restaurant, bar, or pub; being at 
a party or at home) as well as emotional states (e.g., sad-
ness, stress, frustration, anxiety, tension, or irritability). 
Here, the role of social pressure as a possible moderator 
might be of relevance: Cho et al. [73] observed signifi-
cantly higher alcohol craving in situations with an avatar 
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(social pressure) than in situations without an avatar (no 
social pressure), while Lee et al. [74] showed that patients 
with AUD reported extremely high levels of craving im-
mediately upon exposure to a virtual environment with 
alcohol cues, regardless of social pressure. Similar results 
have been shown in other substances such as nicotine, 
cannabis, cocaine, and methamphetamine: virtual envi-
ronments significantly increased the urge to consume the 
drug in individuals with SUD with and without avatar 
interactions [75–81].

VR-Based Approaches Focusing on Therapy

Up to now, there are only a few studies with rather lim-
ited sample sizes focusing on VR implementation in ther-
apeutic approaches, most of them applying VR-CET. In 
AUD, different studies observed a significant reduction 
in cue-elicited craving after VR-CET [73, 82, 83]. Lee et 
al. [84] showed that a series of ten VR-CET sessions com-
pared to the same amount of cognitive-behavioral thera-
py sessions led to a greater decrease in craving. An inter-
esting cohort study by Hernández-Serrano et al. [85] ex-
plored potential predictors of changes within craving for 
alcohol in patients with AUD: they showed that TAU 
supplemented with VR-CET compared to TAU only was 
especially beneficial among patients with intense alcohol 
craving and individuals having used illicit substances pri-
or to treatment. In different studies using VR-CET in nic-
otine dependence, a reduction in (cue-induced) craving 
was shown [78, 80, 86] as well as a reduction in consump-
tion [87].

Regarding potential underlying neurobiological mech-
anisms, Hyun et al. [88] observed that VR-CET led to a 
decrease in craving as well as a decrease in brain metabo-
lism (measured with 18F-fluorodeoxyglucose positron 
emission tomography) after ten VR-CET sessions com-
pared to baseline in a small sample of alcohol-dependent 
subjects. This finding is in line with a glucose positron 
emission tomography study by Son et al. [89]: after VR-
CET, alcohol-dependent individuals showed decreased 
brain metabolism in lentiform nucleus and temporal lobe 
relative to that at baseline (the latter being heightened 
compared to healthy individuals).

Besides VR-CET, VR is increasingly used to enhance 
other therapeutic approaches, such as serious games. In a 
study by Metcalf et al. [90], users were instructed to hit or 
kick away drug-related cue images (alcohol- and nico-
tine-related) as they fly toward the user in a four-session 
intervention. If a user successfully hits the image, it ex-

plodes and the user gains points. The authors observed 
that craving and substance use significantly decreased 
while self-efficacy increased. Similarly, the group of Gi-
rard et al. [91] used a VR game where participants crushed 
virtual cigarettes via arm motions: although there were no 
effects after 4 weeks of treatment, they observed signifi-
cant higher abstinence rates for the cigarettes crushing 
group at the end of the 12-week program and at a 6-month 
follow-up.

Moreover, VR was used in studies pairing drug-related 
cues with unpleasant stimuli. Choi and Lee enhanced an 
imagery-based aversive treatment (i.e., repeatedly pairing 
heavy drinking with unpleasant aversive stimuli) with 
VR. Although they used a single treatment session, AUD 
participants changed explicit, self-reported craving as 
well as implicit craving (as assessed via alcohol implicit 
association test, eye-tracking test, and alcohol Stroop test) 
[92]. Regarding methamphetamine dependence, a study 
by Wang et al. [93] combined VR videos depicting meth-
amphetamine-related cues with VR videos showing ad-
verse consequence caused by methamphetamine use (ar-
restment; severe bodily conditions; sudden death): they 
observed a significant decrease in subjective craving and 
a more negative attitude toward methamphetamine use 
compared to TAU.

Most recently, Mellentin et al. [94] published a study 
protocol of a RCT to examine the effectiveness of an al-
cohol-associated approach-avoidance training program 
(AATP) within a VR environment compared to AATP 
without VR as well as to TAU in a large sample of AUD 
individuals. The authors hypothesize that AATP is more 
effective than TAU and VR AATP more effective than 
standard AATP. Regarding cannabis and cocaine use, 
there are currently no studies on VR-based treatment ap-
proaches indicating the urgent need for future research.

Conclusion
Taken together, studies up to now suggest that VR is a 

promising tool for the assessment and treatment of crav-
ing among individuals with diverse SUDs. Especially 
since SUD is associated with different social aspects (i.e., 
increased consumption and craving under social pres-
sure, see [73]), VR might be able to mimic socially diffi-
cult situations better than in vivo laboratory exposure. 
VR allows for a number of advantages over in vivo expo-
sure therapy by (1) significantly increasing practicability 
of exposure therapy, (2) high comparability between dif-
ferent treatment providers, e.g., therapists via structured 
and standardized stimulation protocols plus adaptation 
toward individual needs (setting, drug, etc.), (3) safer ex-
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posure to cues of illicit substances, and (4) high ecological 
validity combining the benefits of a laboratory setting 
with the advantages of a realistic environment.

D-Cycloserine-Augmented Cue Exposure Therapy

As the efficacy of CET for substance use is limited [95, 
96], the partial N-methyl-D-aspartate (NMDA) receptor 
agonist D-cycloserine (DCS) has been proposed as a cog-
nitive enhancer to improve CET outcomes. CET is 
thought to rely at least partly on the principle of extinc-
tion learning, an NMDA receptor-dependent form of 
learning [97]. DCS binds at the glycine site of the NMDA 
glutamate receptor, thereby increasing its activation 
probability [98]. Research has documented NMDA re-
ceptor involvement in synaptic plasticity, learning, and 
memory [99]. In line with that, preclinical models of drug 
addiction demonstrated that systemic administration or 
local infusion of DCS in relevant brain structures (i.e., 
amygdala, hippocampus, ventromedial prefrontal cortex) 
before or immediately after extinction training enhanced 
extinction learning of drug-associated cues and improved 
extinction memory retention [97, 100]. Corroborating 
preclinical studies showing robust and strong improve-
ment of fear memory extinction under DCS (d = 1.19) 
[101], meta-analytic investigations from clinical trials of 
DCS-augmented exposure therapy in various anxiety dis-
orders revealed an overall beneficial effect of DCS, al-
though effect sizes might be rather small (d = 1.19) [102]. 
While open questions about potential moderating factors 
still remain [102], the benefit of DCS-augmented expo-
sure therapy might primarily lie in a speeding-up of treat-
ment responses rather than a long-term superiority com-
pared to standard exposure therapy [103]. In contrast to 
these encouraging findings, clinical trials investigating 
DCS-augmented CET for SUD yielded quite heteroge-
neous results [99, 104].

Santa Ana et al. [105] were the first to investigate DCS-
augmented CET for smoking cessation. They found two 
sessions of DCS-augmented CET to reduce subjective 
and physiological cue reactivity relative to placebo. Al-
though groups did not differ in reported smoking behav-
ior, expired carbon monoxide in the DCS group was sig-
nificantly lower at the first of two follow-up sessions (d = 
1.1). In line with this, Otto et al. [106] investigated DCS-
augmented CET after treatment-seeking TUD patients 
completed a smoking cessation treatment, showing re-
duced subjective craving and physiological reactivity to 
smoking cues (d = 0.8–1.21), but only a tendency of high-

er abstinence rates at 6-week follow-up in DCS-treated 
participants relative to placebo. However, a third study 
found no effect of DCS + CET on cue-induced craving or 
attentional bias, but a statistical trend indicating DCS 
might have reduced tonic craving at 2-week follow-up, as 
assessed in the emotional subscale of the Tobacco Crav-
ing Questionnaire [107].

Watson et al. [108] investigated DCS-augmented CET 
in recently detoxified AUD patients and found no benefit 
of DCS relative to placebo on subjective or physiological 
cue reactivity. However, a substantial portion of patients 
exhibited no or only very low levels of cue reactivity 
throughout the sessions, making it difficult to detect a 
pharmacological augmenting effect. Contrary to this, de-
fining alcohol cue-induced craving as inclusion criterion, 
DCS has been shown to attenuate subjective craving in the 
first of four CET sessions (η2

partial = 0.13). This reduction 
was sustained up to a 3-week follow-up period [109]. 
Moreover, patients receiving DCS drank significantly less 
and reported viewer drinking days by the end of treat-
ment, although these effects did not sustain until the fol-
low-up period [109]. Corroborating these results, in re-
cently detoxified AUD patients showing neural alcohol 
cue reactivity before treatment, DCS-augmented CET sig-
nificantly decreased ventral and dorsal striatal cue reactiv-
ity compared to placebo [110]. Two additional studies in-
vestigated the effect of DCS in a high-risk population of 
heavy social drinkers (η2

partial = 0.25) [111, 112], suggest-
ing that DCS had no effect on subjective, physiological, or 
attentional measures of cue reactivity in this population 
[111] or might even increase short-term craving [112].

The line of research investigating DCS-augmented cue 
exposure for CUD reveals a comparably homogenous 
picture, as DCS failed to attenuate cue-induced craving 
responses across studies [113–117]. Intriguingly, some of 
these studies rather suggest detrimental effects of DCS. 
Specifically, DCS has been found to impede within-ses-
sion extinction and enhance cue-induced craving com-
pared to placebo [114, 115]. One neuroimaging study as-
sessed the effect of DCS-augmented CET using a cue re-
activity paradigm before and after treatment [116]. While 
both groups showed significant decreases in brain activa-
tion in a variety of frontostriatal regions (i.e., nucleus ac-
cumbens, caudate, frontal pole), placebo but not DCS 
participants also showed reduced blood oxygen level-de-
pendent signal in left angular gyrus, middle temporal 
gyri, and lateral occipital cortex, indicating more wide-
spread reductions in cue-induced neural signals in the 
placebo group, although subjective craving did not differ 
between groups.
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Conclusion
Although DCS has been considered a well-tolerated 

and safe pharmacological adjunct with minimum side ef-
fects at low doses [118], the literature on DCS-augmented 
CET for SUDs appears rather disillusioning. Preliminary 
evidence for the usefulness of DCS as a cognitive enhanc-
er for CET stems from trials investigating patients with 
TUD and AUD. Intriguingly, some studies even suggest 
detrimental effects of DCS, especially for CUD. As the ef-
ficacy of DCS might depend on extinction success [119, 
120], several methodological challenges have been dis-
cussed that might explain some of these negative findings 
(e.g., [104]). These moderators include insufficient crav-
ing reduction by the end of CET sessions [107, 108] or 
concerns about reconditioning experiences under the in-
fluence of DCS between CET sessions in studies that did 
not control for between-session drug use [107, 121].

Indeed, studies controlling for between-session sensi-
tization experiences reported positive effects for DCS-
augmented CET in patients with AUD [110] and TUD 
[122]. Moreover, all reported studies suffer from small 
sample sizes, making it difficult to detect the presumably 
small effect suggested from clinical trials in anxiety disor-
ders [102]. An individual patient data meta-analysis on 
DCS-augmented exposure therapy for anxiety disorders 
related fewer sessions of DCS-augmented exposure (<9) 
and a short time interval between DCS administration 
and exposure (60 min or less) to diminished efficacy of 
this treatment approach [123], which might potentially 
also translate to DCS-augmented CET for SUD. Finally, 
although DCS facilitates appetitive extinction learning in 
preclinical models and reduced cue-evoked BOLD acti-
vation after extinction in a human laboratory study [124], 
the mechanism of action of CET is not limited to extinc-
tion learning; e.g., higher order cognitive processes like 
self-control might be even more important for treatment 
success [58].

Reconsolidation-Based Interventions

Another strategy aims to interfere with the reconsoli-
dation process of maladaptive learned cue-drug associa-
tions, using either pharmacological or behavioral inter-
ventions. According to reconsolidation theory, the reac-
tivation of an already consolidated memory renders it 
into a labile state, in which it is susceptible to change [125, 
126]. The process of reconsolidation restabilizes this ac-
tivated memory, serving as an update mechanism in or-
der to add new information to an already consolidated 

memory or to strengthen the memory with repeated re-
trieval. A timed intervention during the critical “recon-
solidation window” spanning several hours post-reacti-
vation should be able to directly modify the original cue-
drug associations, leading to long-lasting reductions in 
cue-induced craving [127, 128]. Indeed, preclinical and 
experimental clinical research on reconsolidation-based 
interventions for SUD flourished over the last two de-
cades, with quite encouraging results [129–131].

Behavioral Reconsolidation Interference

Extinction and counterconditioning are the most of-
ten used behavioral interventions that have been provid-
ed after a reactivation procedure in order to incorporate 
new learning into drug-related memories during recon-
solidation. In a seminal study, Xue et al. [132] investigat-
ed the effectiveness of a retrieval extinction procedure to 
reduce cue reactivity in inpatient detoxified heroin ad-
dicts. A short video sequence with heroin-related content 
served as the retrieval cue to activate drug-cue memories. 
Three experimental groups were examined, receiving a 
45-min cue exposure session either (a) 10 min after the 
reactivation (i.e., within the reconsolidation window, (b) 
6 h after reactivation (i.e., outside the reconsolidation 
window), or (c) only cue exposure without former reacti-
vation. Consistent with a reconsolidation update effect, 
only the retrieval extinction manipulation with a 10-min 
delay caused a long-lasting attenuation of cue-induced 
craving and blood pressure, but not heart rate for at least 
6 months [132]. This effect has been replicated in nico-
tine-dependent patients, where a retrieval extinction pro-
cedure compared to extinction alone reduced cue-in-
duced craving (d = 0.44) as well as smoking behavior (d = 
0.50) and corresponding CO breath levels (d = 0.47) at 
1-month follow-up [133]. Importantly, reductions in 
subjective craving also generalized to novel cues and 
group differences in cue-induced craving increased over 
the follow-up period. These results are in line with the 
idea that, in contrast to standard cue exposure, the re-
trieval extinction procedure produces long-lasting effects 
that are less susceptible to Pavlovian relapse phenomena 
like spontaneous recovery or renewal. Recently, Zando-
nai et al. [134] showed that a brief VR retrieval extinction 
manipulation was successful in reducing cue-induced 
craving in smokers, tested 24 h later.

Two studies combined memory reactivation via re-
trieval cues with counterconditioning in hazardous 
drinkers [135, 136]. During counterconditioning, drug-
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cues were reassociated with disgust-inducing outcomes 
(i.e., disgusting images and bitter tasting drink). Follow-
ing evidence that a prediction error (PE [137]) is critical 
for memory destabilization (e.g., [138]), both studies ex-
plicitly manipulated expectancy violations to drink alco-
hol during retrieval (i.e., the generation of a PE). Here, 
retrieval with PE in comparison with retrieval without PE 
led to significant reductions in subjective value (η2

partial = 
0.09) and attentional bias (η2

partial = 0.11) toward alcohol 
cues at 1-week follow-up [135]. Independent of the PE 
manipulation, retrieval + counterconditioning has been 
further associated with long-term reductions in alcohol 
consumption at 9-month but not 1-week follow-up [136]. 
However, only in the retrieval with PE group, effective-
ness of counterconditioning was associated with reduced 
reactivity to alcohol cues and actual alcohol consumption 
[136].

Besides extinction and counterconditioning, other be-
havioral interventions have been applied during the pro-
posed reconsolidation window in order to interfere with 
maladaptive drug-cue memories [139–142]. In abstinent 
patients with heroin use disorder (HUD), acute social 
stress following memory reactivation compared to a con-
trol condition significantly impaired free recall of previ-
ously learned heroin-related but not neutral words [142]. 
Likewise, cognitive reappraisal following alcohol-related 
memory reactivation with PE resulted in reduced verbal 
fluency for positively valenced alcohol-related words in 
at-risk drinkers, suggesting that this procedure could al-
ter drug-related semantic networks [139]. Kaag et al. 
[140] used a working memory task in order to interfere 
with drug memory reconsolidation in heavy drinkers. 
Here, unexpectedly, high working memory load before 
but not after memory reactivation reduced subjective 
craving at 1-month follow-up, an effect that warrants fur-
ther investigation. Finally, preliminary evidence suggests 
that CBM training following drug memory reactivation 
compared to a control reactivation procedure differen-
tially influenced brain oscillation during resting state 
EEG in abstinent AUD patients [141].

Pharmacological Reconsolidation Interference

Considerable evidence from animal addiction models 
showed that pharmacological reconsolidation blockade 
by protein synthesis inhibitors, β-adrenergic or NMDA 
receptor antagonists is efficacious in preventing drug re-
lapse (for reviews see, e.g., [129, 143]). However, most of 
the tested substances are not safe for humans. One excep-

tion is the β-adrenergic antagonist propranolol. A single 
session of oral propranolol administration 1 h before a 
reactivation procedure has been shown to reduce subjec-
tive liking of smoking cues (d = 0.57–0.69) as well as cue 
(d = 0.64) or priming dose (d = 1.15)-induced craving in 
smokers when tested up to 48-h later, in contrast to pla-
cebo + reactivation or propranolol administration 6 h be-
fore memory reactivation [144]. In abstinent patients 
with HUD, propranolol administration before memory 
reactivation significantly impaired free recall of positive-
ly and negatively valenced heroin-related but not neutral 
words tested 24 h later [145]. Critically, the effect of pro-
pranolol was dependent on memory reactivation, as pa-
tients receiving propranolol without memory reactiva-
tion did not perform differently from the placebo groups 
[145]. While Saladin et al. [146] support the aforemen-
tioned short-term effects of propranolol by showing that 
one session of propranolol versus placebo administration 
immediately after memory retrieval reduced subjective as 
well as physiological cue-induced craving in patients with 
CUD 24 h later, these effects could not be maintained up 
to 1-week follow-up, as would be expected under the as-
sumption of reconsolidation blockade. Likewise, two oth-
er studies found no beneficial effect of propranolol + 
memory reactivation on cue reactivity measures in smok-
ers [147] or patients with HUD [148] when tested 1 week 
later. The latter study further suggested detrimental acute 
effects of propranolol with increased craving during the 
intervention session [148].

So far, only isolated studies investigated alternative re-
consolidation blocker other than propranolol in subjects 
with SUD. However, first promising evidence suggests 
that post-retrieval intravenous ketamine – an NMDA re-
ceptor antagonist – can reduce alcohol craving and con-
sumption in at-risk drinkers up to 9-month follow-up, 
compared to ketamine alone or placebo infusion post-
retrieval [149]. Apart from that, combining memory re-
trieval with memantine [150], nitrous oxide gas [151], or 
lidocaine [152] revealed null results.

Conclusion
To conclude, targeting drug memory reconsolidation 

by means of behavioral or pharmacological interventions 
constitutes a promising avenue for future translational 
and clinical work. Providing new Pavlovian learning as-
sociations (i.e., extinction or counterconditioning) dur-
ing the reconsolidation window has been shown to result 
in marked and long-lasting reductions in drug craving 
and consumption, thereby outperforming the very lim-
ited efficacy of stand-alone extinction learning provided 
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by cue exposure or its pharmacological augmentation us-
ing DCS. In contrast, studies that used pharmacological 
interventions like propranolol to interfere with reconsol-
idation yielded more heterogeneous results, and it re-
mains to be further investigated whether the reported 
acute beneficial effects are longer lasting. Although based 
on a small number of studies published thus far (n = 8), a 
meta-analysis across retrieval interference strategies in 
(sub)clinical SUD [131] identified interference type (be-
havioral vs. pharmacological) as a significant moderator, 
as only behavioral post-retrieval interventions were asso-
ciated with a significant moderate effect size (g = 0.6), in 
contrast to pharmacological interference strategies (g = 
−0.03). However, post-retrieval ketamine infusion has 
been associated with long-lasting reductions in alcohol 
consumption [149] and is therefore a promising new can-
didate worth investigating further. This also matches pre-
clinical evidence showing that NMDA receptor antago-
nists are more effective reconsolidation blocker than 
β-adrenergic antagonists [153]. While reconsolidation-
based strategies represent a relatively short intervention 
that could be easily incorporated into a larger treatment 
protocol, several “boundary conditions” on memory de-
stabilization have been discussed that might limit the 
clinical applicability of this treatment approach, includ-
ing the age and strength of drug memories, or the speci-
ficity of the applied retrieval cues (reviewed, e.g., [131, 
143]).

Neuromodulation

As the underlying neural basis of addictive disorders 
has been vastly studied and altered structures within the 
brain of patients with SUD have been identified, the field 
of neuromodulation aims to translate this knowledge into 
treatment by targeting and modulating impaired brain 
circuits [154].

tDCS and TMS

In the field, noninvasive brain stimulation techniques 
such as tDCS and TMS are safe and accessible methods of 
modulating brain activity [155]. With tDCS, a continuous 
weak electrical current (ranging from 0.5 mA to 2 mA) is 
applied directly to the scalp. Initially, the current modifies 
resting membrane potentials by depolarization or hyper-
polarization and respective increase or decrease of neural 
activity (depending on an anodal or cathodal stimulation 

protocol). Eventually, prolonged stimulation enables ef-
fects of long-term potentiation/depression [156]. On the 
other hand, with TMS, distinct electromagnetic induc-
tion generates electrical activity in underlying cortical tis-
sue [157]. While single stimulation protocols have been 
unsuccessful in targeting populations with SUD, repeti-
tive TMS (rTMS) has been more promising [158]. With a 
stimulating coil, a magnetic field is applied to the skull 
that induces action potentials in cortical regions. Hereby, 
stimulation protocols differ between excitatory high-fre-
quency and inhibitory low-frequency rTMS [159]. tDCS 
and TMS studies in populations with addictions have 
mostly focused on the dorsolateral prefrontal cortex 
(DLPFC) for its role in craving and cue reactivity as well 
as executive functioning such as attention, inhibition, or 
awareness [160].

Clinical trials in addiction populations found active 
stimulation protocols to be related to reduced craving, 
posttreatment consumption, and relapse rates in popula-
tions with various SUDs. A meta-analysis by Song et al. 
[161] evaluated the effects of DLPFC neuromodulation in 
SUD and food addiction populations and found that 
craving was reduced (g = 0.46). The effect was largest in 
TUD (g = 0.63). When investigating consumption, which 
was only assessed on TUD populations at this point, a 
large effect on smoking reduction was revealed (g = 1.14). 
For both consumption and craving reduction, multiple 
sessions turned out to be more effective than single-ses-
sion protocols [161]. A more recent meta-analysis by the 
same authors aimed at investigating follow-up effects of 
neuromodulation [162]. In line with the previous analy-
sis, craving (g = 0.73) as well as consumption (g = 0.53) 
was effectively reduced right after the interventions. Fol-
low-up indicated the sustained efficacy in regard to absti-
nence levels in all SUD and eating disorder populations 
(g = 0.70) [162].

When investigating potential moderating factors on 
the efficacy of neuromodulation interventions, it was 
found that stimulation of the left DLPFC compared to the 
right hemisphere pendent was more effective [162], while 
an earlier analysis found no difference [161]. This is in 
line with another meta-analysis that found no difference 
in efficacy comparing substance type, stimulation sites, 
current intensities, duration of stimulation, and study de-
sign [163].

To exemplify, for instance, in comparison with TAU, 
short bilateral DLPFC tDCS as well as sham tDCS in five 
sessions was associated with reduced craving and en-
hanced cognitive functioning in AUD patients. However, 
improved long-term relapse rate was only seen after the 
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active tDCS sessions [164]. In another recent study by 
Klauss et al. [165], craving was significantly reduced in 
the real tDCS group after ten sessions (η2

partial = 0.23).
In a study combining tDCS with ABM, AUD patients 

received a stimulation or sham protocol during four 
training sessions [166]. Results indicated no training ef-
fect nor an enhancing effect of tDCS on the training. Post 
hoc logistic-regression indicated a positive trend effect on 
relapse rates [166]. Some studies did not conclude tDCS 
treatment to be superior to sham interventions [167, 168], 
while generally sample sizes are small and studies lack as-
sessment of long-term effects in addiction.

As indicated by various meta-analyses [161–163], 
studies that employ rTMS show some preliminary posi-
tive results in the treatment of SUDs as well. In popula-
tions with AUD, high-frequency DLPFC stimulation led 
to reductions in craving after ten sessions (η2 = 0.40) 
[169] and 15 sessions [170]. Ceccanti et al. [171] found 
decreased consumption in addition to reduction in crav-
ing after ten rTMS sessions in patients with AUD. Intake 
but not craving was reduced in a small sample after rTMS 
as well as that dopamine transporter availability was de-
creased in the striatum as indicated by single-photon 
emission computerized tomography [172]. Incongruent 
to these findings, several studies failed to find effects of 
rTMS on craving and consumption [173–175].

Neurofeedback

An additional appealing neuromodulatory approach 
is neurofeedback, a biofeedback technique that converts 
recorded neural activity into visual and auditory cues. 
Consequently, patients can modulate their own brain ac-
tivity and cognitive processes and behaviors can be al-
tered through training [176]. In light of the deleterious 
neuropsychological effects related to onset and course of 
SUDs, neurofeedback has been applied in the context of 
treatment [177].

While to date no meta-analytic reviews on this topic 
exist yet, various studies in populations with SUD have 
been applying alpha/theta training in combination with 
variants of a beta-sensory motor rhythm protocol in or-
der to reduce craving, stress, or depression. Most inter-
ventions are based on a study by Scott et al. [178] that 
included patients with mixed SUD that showed better 
compliance and abstinence rates after training compared 
to a control group at 12-month follow-up.

In one study, patients with AUD received alpha-theta 
training, a neurofeedback paradigm that aims at amplifi-

cation of slow-wave bands to ultimately increase well-be-
ing and cognitive performance [179]. After twelve ses-
sions of biweekly neurofeedback, the experimental group 
improved in terms of severity of clinical scales such as the 
Beck Depression Inventory (BDI) or the Brief Symptom 
Inventory (BSI) [179]. In the same cohort, an improve-
ment of a subscale of the Inventory of Clinical Personal-
ity Accentuations (ICP), namely, Avoidant Personality 
Accentuation, was observed [180]. Furthermore, partici-
pants with AUD were subjected to alpha-beta neurofeed-
back aiming at normalizing a low alpha to high beta wave 
ratio. Improvement in for example self-efficacy and self-
regulation was seen [181].

Three studies assessed alpha-theta in combination with 
SMR training in OUD. In 20 patients with OUD, it was 
found that substance use-related measures such as craving 
or general psychiatric symptomatology measured by the 
Symptom Checklist-90-Revised (SCL-90-R) were mitigat-
ed along with abnormal EEG functions (g = 0.37 [182]). In 
the same group, restitution of, e.g., depressive, somatic, 
and general mental health symptoms along with reduc-
tions in desire to use opioids, craving, and withdrawal was 
seen (η2 = 0.26) [183]. In addition, a large group (n = 100) 
of crystal meth-dependent patients undergoing the alpha-
theta SMR protocol showed decreased addiction severity 
and improvements in psychological well-being [184].

Next to EEG, real-time fMRI as a neurofeedback mo-
dality has the advantage of higher spatial resolution, thus 
enabling training of activity or functional connectivity 
between regions. A vast amount of interventional studies 
has been conducted thus far – mostly in populations with 
TUD. All of them aimed at decreasing craving-related 
ACC activity in response to drug-cues [185–188]. For in-
stance, studies showed that training sessions decreased 
ACC activity, which was correlated to decreased nicotine 
craving [186, 187]. In contrast, increasing mPFC activity 
to enhance urge resistance did not yield positive results 
[186, 188]. In terms of treatment success, it was found 
that the reduction of craving-related activation was cor-
related with treatment success in terms of abstinence 
rates [189]. In extension of previous studies, Kim et al. 
[190] contrasted ACC activity reduction with additional 
modulation of connectivity between craving-related re-
gions of interest and found functional connectivity neu-
rofeedback to be superior in efficacy. A recent study also 
investigated the effect of neurofeedback on reward sensi-
tivity to natural rewards in cocaine users [191]. Here, 
neurofeedback training improved the ability to activate 
reward-related regions in response to previously trained 
rewarding imaginary scenarios.
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Two studies have been conducted in the context of 
AUD so far. It was shown that neurofeedback also had an 
effect on reducing craving-related neural activation in 
prefrontal areas [192] as well as in ventral striatum [193].

Conclusion
Considering the relationship between SUD and altera-

tions in cortical functioning, targeting specific prefrontal 
areas by neuromodulation techniques has shown efficacy 
in reducing craving, consumption as well as enhancing 
cognitive functioning. Some results of neuromodulation 
studies seem promising; however, the sample sizes were 
very small as well as duration of treatment was short over 
all reviewed studies. At this point, the lack of studies with 
adequate sample sizes and methodology produce con-
flicting results. Concerning the application of tDCS and 
TMS, the occurrence of side effects, such as seizures, has 
been extremely rare, available literature is still relatively 
sparse, and the long-term safety needs to be confirmed 
[194]. Regarding the well-established safety and tolerabil-
ity of EEG and fMRI, no concerns regarding long-term 
consequences have been raised; however, the use of fMRI 
in particular is very costly [195].

Pharmacologically Assisted Psychotherapy in SUD

Pharmacological Therapy and CBT
There is approved medication for the relapse preven-

tion of SUD as well as promising off-label medication 
[196]. Relating to the most frequent use disorder TUD, 
approved medication includes for example the antide-
pressant bupropion and the partial nicotine receptor ago-
nist varenicline. With regard to AUD, relapse prevention 
substances such as the NMDA receptor antagonist acam-
prosate and the opioid-receptor antagonist naltrexone 
can be prescribed. In the treatment of SUD, a recent re-
view analyzing more than 30 RCTs recommends adding 
CBT to a regular pharmacological therapy especially in 
the treatment of AUD [197]. The authors suggest that 
while waiting for the medication effects to become appar-
ent, CBT can provide support and skills, enhance treat-
ment adherence, and improve treatment and study reten-
tion [197]. Combining behavioral therapy and medica-
tion does indicate advantage not only in the treatment of 
AUD but also in OUD [198] and TUD [199]. However, 
the efficacy of adding psychosocial interventions varied 
across studies and within types of interventions. Espe-
cially looking at CBT, results of these rather small sample-
sized studies are heterogeneous. No study could show a 

clear benefit of combining pharmacotherapy with CBT 
concerning different outcomes such as treatment reten-
tion [200–203].

Psychedelic-Assisted Psychotherapies

Research on the therapeutic use of psychedelics started 
in the 1940s after synthetization of the first hallucinogen-
ic substance, lysergic acid dimethylamine. Already back 
then, it was used as an adjunctive psychotherapy medica-
tion and served for studies on the nature of psychoses.

Research was halted by regulatory restrictions in the 
1970s and has been resumed in the last 20 years in the 
context of PAPs [204]. PAPs combine psychotherapy and 
new pharmacological treatment approaches and have 
been given rising attention especially in the treatment of 
affective disorders in the past decade (e.g., [205, 206]). By 
now, some studies on their benefit in the treatment of 
SUD exist [207–209]. Psychedelic substances include the 
glutamate receptor agonist ketamine, the entactogen 
MDMA as well as serotonergic substances known as 
“classical psychedelics,” such as LSD, psilocybin, and di-
methyltryptamine (DMT) [210]. Nowadays, the most 
studied psychedelic substance is ketamine, followed by 
MDMA, and psilocybin [211]. PAP usually includes a 
preparatory session, a medication session in a comfort-
able room with music and an integration session [212]. 
Frequency and type of therapy vary across studies, and 
studies often integrate elements from different psycho-
therapeutic approaches [213]. All elements in combina-
tion – the psychedelic drug itself, the PAP experience, and 
in this the drug-facilitated enhancements in the therapeu-
tic alliance – are suggested to promote the therapeutic ef-
fect [214].

Although their exact neurochemical modes of action 
remain unknown, evidence suggests that psychedelics in-
crease the expression of brain-derived neurotrophic fac-
tor, facilitating neuromodulation [215]. Ketamine exerts 
a neuromodulatory effect by induction of synaptogenesis 
and could potentially improve adaptation of learned be-
havioral patterns [216]. Moreover, psychedelics’ effect on 
neural network communication seems to play an impor-
tant role. It has been reported that “classical psychedelics” 
decrease communication within neural networks and in-
crease communication between them, leading to en-
hanced global brain connectivity [217, 218]. Also, they 
are proposed to relax the precision of pathological over-
weight priors and beliefs [219]. Psychedelic substances 
are described to cause powerful subjective experiences 
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and altered states of consciousness [214]. These possible 
mechanisms may allow psychedelics to change narrow 
mental states with inflexible habits of thought and behav-
ior [220]. Doing so, they are presumed to facilitate psy-
chotherapeutic interventions according to their catalyza-
tion and augmentation, attaining positive long-term 
mental health consequences [211]. Indeed, not only stud-
ies on mood disorders [221], but also a few studies on 
SUD describe that even a few treatment sessions may al-
low for long-lasting therapeutic effects of weeks to months 
[207, 208], but further research is clearly necessary.

Ketamine

While ketamine works as anesthetics in high dose, 
whereas lower doses are used as psychiatric pharmaco-
therapy [222]. Studies suggest that ketamine has a sig-
nificant overall antidepressant effect on treatment-resis-
tant depressions in disparate formulations, at least in 
short-time administration [223, 224]. Evidence from pre-
clinical studies shows that acute administration also re-
duces alcohol intake in rodents [225]. In humans with 
cocaine use, ketamine leads to a reduction of craving, a 
rising motivation to quit cocaine, and decreased rates in 
cocaine use [226, 227]. Furthermore, ketamine-assisted 
psychotherapy indicates to increase abstinence rates as 
well as suppress physiologic response to withdrawal in 
OUD [228–230], while reducing withdrawal-related ben-
zodiazepine requirements in AUD [231]. Of note, these 
studies are limited either because of limited sample sizes, 
homogeneous populations, short follow-up periods or 
due to lack of placebo control. Nevertheless, promising 
studies are ongoing. In a recent randomized-controlled 
pilot study, single ketamine infusion was found to im-
prove measures of drinking in persons with alcohol de-
pendence engaged in motivational enhancement therapy 
[232]. Finally, ketamine’s addictive potential should be 
considered in SUD populations especially; however, low-
er dosages are usually not seen as producing stronger psy-
chomimetic effects that might be responsible for the re-
warding and addictive effect [222].

“Classical Psychedelics” and MDMA

Data from studies on the effect of “classical psychedel-
ics” on SUD are still very limited [220]. A meta-analysis 
of six relevant RCTs evaluated the clinical efficacy of LSD 
in AUD and found small to moderate effects (OR = 1.96) 

[233]. The authors found evidence that a single dose of 
LSD has a significant beneficial effect on alcohol misuse 
in the short term (2–3 months posttreatment) and me-
dium term (6 months posttreatment), which was not sta-
tistically significant in the long term (12 months post-
treatment). Among the three trials that reported main-
tained abstinence from alcohol use, the authors describe 
a beneficial effect of LSD at the first and second follow-up 
(1–3 months posttreatment), but not at medium-term 
follow-up (6 months posttreatment). In five of the six tri-
als, a total of eight participants reported acute adverse 
reactions without lasting harmful effects [233]. In more 
recent literature, psilocybin is promoted as a safe, feasible, 
and potentially efficient drug in the treatment of TUD 
[208, 234]. In an open-label trial, 10 patients with AUD 
received moderate to high dosages of psilocybin during a 
12-week manualized psychotherapeutic intervention. Af-
ter 4 weeks, patients showed significant reductions in 
drinking days and heavy drinking days and these reduc-
tions were largely maintained throughout the study until 
the last follow-up, 32 weeks after their first psilocybin 
treatment [207]. Although to date no well-designed stud-
ies have yet been published, some promising preliminary 
findings on the therapeutic use of DMT in SUD exist as 
well [235–237]. Thomas et al. [235] evaluated the impact 
of the administration of DMT-containing ayahuasca 
broth in group therapy for problematic substance use and 
stress [235]. Statistically significant increases were seen in 
hopefulness, empowerment, mindfulness, quality of life 
measures, while self-reported alcohol, tobacco, and co-
caine use decreased [235].

Concerning the use of MDMA in the treatment of 
AUD, evidence (so far) is limited to the support of its 
safety and tolerability [209]. However, MDMA has risen 
prominence in the past years in the treatment for social 
phobia in autistic adults [238] and posttraumatic stress 
disorder: only recently, it has been shown to be highly ef-
ficacious in individuals with severe posttraumatic stress 
disorder [239].

Conclusion
Adding psychotherapy to a regular pharmacological 

therapy in SUD may provide support and skills and is rec-
ommended to improve treatment outcomes and treat-
ment retention. In recent years, interest in PAP has re-
sumed, representing a treatment approach which is 
unique as pharmacological and psychotherapeutic di-
mensions are combined and closely interrelated to each 
other. While there is some evidence on a beneficial use of 
PAP in the therapy of affective disorders, a wider transfer 
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to its use to treat SUD is suggested. In this field, most 
evidence exists on the use of LSD and psilocybin. Evi-
dence on other psychedelics’ use in the treatment of SUD 
is still very limited. Furthermore, established as physio-
logically safe, there are psychological and psychiatric side 
effects of psychedelics. Most commonly, they include 
challenging experiences during the session, while the risk 
of prolonged psychoses is very low [212]. Although their 
use could already be evaluated as safe and tolerable, ran-
domized-controlled studies with greater samples on the 
efficacy of PAP in SUD are still needed.

Overall Conclusion

As demonstrated in this review of the current state of 
novel cognitive-behavioral treatments in SUD, there are 
several different emerging approaches in this field includ-
ing MBIs, CBM interventions, neuromodulation tech-
niques, virtual-reality-based and pharmacologically en-
hanced cue exposure as well as reconsolidation-based in-
terventions. With regard to MBIs, it is possible to conclude 
so far that a good efficacy of MBIs in the field of addiction 
can be assumed. Nevertheless, the underlying mecha-
nisms are not yet clear. An increase in cognitive control 
might be one relevant factor here, an aspect that is also 
targeted by CBM interventions. To date, several studies 
assessed the effectiveness of different bias modification 
interventions in SUD, but also meta-analyses were not 
able to draw clear conclusions so far, especially due to 
methodological limitations of the available studies. Main 
future perspectives in this field are the improvement of 
available evidence as well as the development of Internet/
app-based applications. Also different neuromodulatory 
interventions are discussed including tDCS, rTMS, and 
neurofeedback. Based on the neurobiological knowledge 
on alterations in cortical functioning of specific prefron-
tal and limbic areas in SUD, such techniques showed 
some efficacy in reducing craving, consumption as well as 
enhancing cognitive functioning. Although promising, 
the results do not yet justify neuromodulation as a stan-
dard treatment option for patients with SUD given the 
methodological constraints of the available literature. 
One of the most promising tools with high clinical rele-
vance is the assessment and treatment of craving among 
individuals with different SUD via VR settings. Given a 
number of advantages over in vivo exposure therapy and 
some positive preliminary findings, further research is 
needed to determine the specific relevant variables in VR-
based interventions in SUD and to foster translation into 

patient care. Finally, various pharmacologically aug-
mented interventions are discussed for SUD with mixed 
results. While there is little clear evidence on the usability 
of DCS-augmented CET for SUD, targeting drug-related 
memory reconsolidation by means of behavioral or phar-
macological interventions seems to be an encouraging 
approach for future translational and clinical studies. 
Further, studies on PAP are ongoing with unclear results 
for the application in subjects with SUD.

Notably, digital technology is gaining momentum as a 
powerful tool to deliver interventions in a personalized, 
accessible, and engaging format [240]. On the one hand, 
digital interventions have been designed to deliver evi-
dence-based therapeutic interventions as stand-alone or 
supplementary treatment to effectively reduce substance 
use outcomes [241]. On the other hand, digital phenotyp-
ing technology has been fundamental in advancing per-
sonalized care in a mental health setting: dense data col-
lection in real-life settings is used to predict relapse risk 
and monitor clinical symptoms to deliver specific inter-
ventions [242]. In light of the suspension of in-person 
treatment due to the COVID-19 pandemic, it could be 
vital to expand clinical support to accessible digital plat-
forms [243].

One important and open point of discussion is the dif-
ferentiation of the described treatment approaches re-
garding the present type of substance. Although the dis-
cussed treatment approaches aim at providing clinically 
evident improvement across addictions, research about 
drug-specific mechanisms of action would be recom-
mendable. Up to date, there is no detailed information 
given that could have been taken account of in this review. 
Taken together, the literature on novel cognitive-behav-
ioral treatments in subjects with SUD so far appears rath-
er disillusioning, although there is a rocky road ahead for 
more high-quality research projects on the most promis-
ing candidates.
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