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Abstract
Successful applications of a conceptually novel setup of Quantum Field Theory, that 
accounts for all subtheories of the Standard Model (QED, Electroweak Interaction 
and Higgs, Yang–Mills and QCD) and beyond (Helicity 2), call for a perspective 
view in a broader conceptual context. The setting is “autonomous” in the sense of 
being intrinsically quantum. Its principles are: Hilbert space, Poincaré symmetry 
and causality. Its free quantum fields are obtained from Wigner’s unitary represen-
tations of the Poincaré group, with only physical and observable degrees of free-
dom. A “quantization” of an “underlying” classical theory is not needed. It allows 
renormalizable perturbation theory with interactions whose detailed structure, and 
in some cases even the particle content, is predicted by internal consistency. The 
results confirm and extend observable predictions for the interactions of the Stand-
ard Model without assuming a “principle” of gauge invariance.

Keywords Quantum field theory · String-localized quantum fields · Perturbation 
theory · Standard Model interactions

1  The Autonomous Quantum Approach to QFT

We review “string-localized quantum field theory (sQFT)” by contrasting its concep-
tual ambitions with standard approaches to perturbative QFT. In later sections, we 
shall explain in a largely untechnical way how sQFT proceeds, and report the results 
it has produced by now in the context of the Standard Model of particles (SM).

Conceptual issues of QFT. Standard textbook approaches to QFT start from 
classical field theory plus “quantization”. At the level of free fields, the strategy is 
to use a classical free Lagrangian and “derive” canonical commutation relations 
that have to be fulfilled in a covariant way. This initial step is beset with problems: 
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In the case of the Dirac field, the canonically conjugate momenta are functions of 
the field itself; and one has to replace equal-time CCR by CAR ad hoc. In the case 
of the Maxwell field, one has to take the unobservable gauge potential as “canoni-
cal” variables, one has to change the dynamics by a “gauge fixing term” in order to 
get a canonically conjugate momentum for all components of the potential, and one 
gets CCR that can only be represented on a Fock space with indefinite inner product 
(a Krein space), which contains unphysical “photon states”. We have learned how 
to circumvent such trouble by ingenious tricks (Dirac’s theory of constraints, the 
Gupta–Bleuler method to eliminate unphysical states with negative or zero norm 
square, and the normal-ordering prescription to make the vacuum energy finite). But 
we would rather prefer to avoid these first steps altogether.

When it comes to adding an interaction Lagrangian, one usually invokes gauge 
invariance, a postulate on unobservable gauge-dependent quantities.1 In order to 
make the previous quantization methods survive the interaction, in many cases of 
interest one has to introduce ghost fields and promote the Gupta–Bleuler condition 
to BRST invariance.

Apart from its need of unphysical degrees of freedom in gauge theories, one may 
object against “quantization” at a more fundamental level. Classical physics is a 
limiting regime in a quantum world, applicable in situations where the uncertainty 
bound is largely exceeded. A prescription to “read back” the true theory from its 
limit precisely in the regime where the latter is not applicable, seems a hazardous 
endeavour. It goes a long way towards explaining the “need” for artful but artificial 
devices like the ones just exposed.

The autonomous quantum approach, advocated in this paper, instead starts from 
quantum principles: Hilbert space, unitary Poincaré symmetry and Causality. In the 
words of Jordan [20]: it shows how QFT can be formulated “without the crutches of 
classical correspondences”. Along the way, it will show that the Wightman axioms 
(postulating causality or anti-causality for all Wightman fields, as an extrapolation 
from free fields) fall too short for interacting charged fields. sQFT tells us how inter-
acting charged quantum fields behave instead.

The autonomous approach proceeds as follows. One or several of Wigner’s uni-
tary representations of the Poincaré group [39] for one’s favorite physical particles 
give rise to a Fock space, which is a Hilbert space. The generators of the Poincaré 
symmetry of the one-particle space lift to the Fock space, and their lifts can be 
expressed as integrals over densities that are already normal-ordered from the out-
set. Covariant free fields may be defined with Weinberg’s method [38],  intertwining 
momentum space Fock space operators with position space local fields, and their 
linear equations of motion follow from the construction. Their two-point functions 
and commutators can be computed directly, and causality is automatic for fields 
associated with particles of integer spin. (In the massless case, one has to combine 
helicities +h and −h.)

1 In a famous panel discussion among P.A.M. Dirac, S. Ferrara, H. Kleinert, A. Martin, E.P. Wigner, 
C.N. Yang, and A. Zichichi, recorded in [42], it was consented that gauge theory does not refer to a 
“symmetry” of Nature. Its main role is the selection of renormalizable interactions that lie at the basis of 
the Standard Model of particles, without constituting a symmetry of the final quantum theory.
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The spin-statistics theorem is the observation that in the case of half-integer spin, 
causality would conflict with the positivity of two-point functions viewed as inner 
products of one-particle state vectors, and the best one can achieve in this case is 
anti-locality—and this forces one to use a fermionic Fock space. Equal time (anti-)
commutation relations are consequences, and they may not be “canonical” at all. 
Because anti-locality means maximal violation of causality, fermionic free fields are 
not observable fields. Their role is to create fermionic particle states, and to allow 
the construction of observable conserved currents. Their fate when an interaction is 
turned on has to be analyzed case by case.

For interactions, one adds an interaction Hamiltonian density, and appeals to 
time-dependent perturbation theory with a spacetime cutoff function �(x) to begin 
with. In the end the adiabatic limit �(x) → 1 has to be taken. This limit may be a 
tough problem, corresponding to IR problems popping up when one works without 
a cutoff function from the outset. The mathematically rigorous setup for perturbation 
theory with a cutoff, in which causality is under control, is known as “causal pertur-
bation theory”, or as the “Epstein–Glaser renormalization scheme (EG)” [12].

Common to both approaches is the resulting formula for the S-matrix in the vac-
uum sector

(to be properly interpreted), where Lint is a Wick polynomial in free fields. The 
S-matrix is computed perturbatively, by expansion of the exponential. In the 
EG approach, one replaces the coupling constant g in Lint(x) by a   test function 
g(x) = g�(x) , and regards the resulting “local S-matrix” S[g] as an operator-valued 
distribution with properties that can be axiomatized (and that may be established by 
a perturbative construction).

Worth mentioning is the absence of a “free Lagrangian L0 ” in this formula,2 
which signals that its troublesome use for the mere purpose of “quantization” can 
(and should) be avoided altogether if possible. Indeed, the autonomous approach 
starts from the free fields, intrinsically defined in terms of the Wigner representa-
tions of the Poincaré group, and proceeds with (1.1).

In the standard approach, one has to postulate BRST invariance of the S-matrix, 
which otherwise cannot be unitary. This is a nontrivial issue, as �BRSTLint is (at low-
est order) a total derivative which in general cannot be ignored because time-order-
ing does not commute with derivatives, see Sect.  2. This failure causes “obstruc-
tions” against BRST-invariance of the S-matrix, that have to be taken care of. In 
the form of a “principle of Perturbative Gauge Invariance (PGI)” [2, 34], the BRST 
method was developed to a mature tool to predict the structure of interactions, com-
patible with all sectors of the Standard Model. It is expanded in G. Scharf’s book 
[34]. The technical (but not the conceptual!) aspects of this method are in fact a 

(1.1)S = Tei ∫ d4x Lint(x)

2 Path integral approaches use the “free Lagrangian” only for the formal definition of a (Euclidean) 
“Gaussian measure”, the counterpart of the Fock space whose inner product is the free two-point func-
tion in real time.
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precursor of the autonomous approach, which ultimately makes the BRST method 
obsolete altogether.

String-localized quantum fields. On the Wigner Fock space for helicity 1 (pho-
tons), there exist fields that one may oxymoronically call “gauge-invariant gauge 
potentials”. The latter share formal properties with gauge potentials, but they do not 
contain unphysical modes, see Sect. 2.

This miracle is possible because one admits these potentials to have a weaker 
localization than usual: they may be “localized along a string”. A “string” is a line 
or a narrow cone extending from x to spacelike infinity, and “localization” is under-
stood in the sense of commutation relations. This feature is the origin of the name 
“string-localized quantum field theory (sQFT)”. String-localized potentials also 
exist in the massive case: they have a better UV behaviour than local massive vector 
fields, because the weaker localization tames their vacuum fluctuations. This allows 
power-counting renormalizable interactions3 that are otherwise forbidden.

The string-localized potentials are free fields, labelled by some auxiliary function 
c(e) characterizing the string, as will be explained in Sect. 2. They are used to build 
interactions

as a Wick polynomial (or possibly a power series) on the physical Hilbert space.
How sQFT determines interactions. (i) Lint(c) depends, through the string-

localized potentials, on the auxiliary function c(e). The point is that the S-matrix 
must not depend on this function (“string-independence”). At lowest order (in the 
coupling constant g), this implies that when c is varied by a function �c(e) , then 
�cL1(c) must be a total derivative:

by virtue of the equations of motion of the free fields. We call (1.2) an “L–Q pair”. 
The L–Q pair condition selects admissible first-order interactions, to begin with. 
They are typically cubic in the free fields. The first noticeable fact is that all known 
cubic interactions of the SM are among them, see Sect. 3 for their L–Q pairs.

Even more, in all cases of sQFT pertaining to SM interactions, there is also a 
point-localized interaction density Kint = gK1 +

g2

2
K2 +⋯ to compare with. When 

the Hilbert space where Lint(c) is defined is suitably embedded into the possibly 
indefinite state space where Kint is defined, it holds

We call (1.3) an “L–V pair”. It is the point of departure for an analysis [28, 31] to 
establish that Lint and Kint produce the same S-matrix, see below.

Lint(c) = gL1(c) +
g2

2
L2(c) +⋯

(1.2)�cL1(x, c) = ��Q
�

1
(x, c, �c)

(1.3)L1(x, c) = K1(x) + ��V
�

1
(x, c).

3 We use the term “renormalizable” in the sense of power-counting throughout. The actual renormaliza-
tion of sQFT has not been achieved so far, but the main result of [15] indicates that power-counting still 
is a valid criterion.
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(ii) Once an initial L–Q pair (or L–V pair) is selected, it turns out that the higher 
orders of the S-matrix built with L1(c) will in general depend on the auxiliary 
function c: there arise “obstructions against string-independence” at higher order 
of the perturbative expansion. Their origin, as well as the strategy to cancel them 
is quite analogous to the failure and recuperation of BRST invariance in the PGI 
approach [34]: even if at first order (where there is no time-ordering) one has

by virtue of (1.2), the second-order contribution

will in general not vanish because the derivatives cannot be taken out of the time-
ordered product. It must be cancelled by a second-order interaction L2 , which is only 
possible if the obstruction has a suitable form. In that case, it is said to be “resolved” 
by L2 , which is called the “induced” interaction. Restricting the analysis of the 
obstruction to tree level, it follows from Wick’s theorem that if L1 is cubic in the 
fields, then L2 will be quartic. The second noticeable fact is that the induced interac-
tions thus determined coincide with the known quartic interactions of the SM.

(iii) It may happen that obstructions are non-resolvable. A model with non-
resolvable obstructions would have an S-matrix depending on the auxiliary string 
variable c without physical meaning, and must be abandoned as inconsistent with 
fundamental principles. The third noticeable fact is that the non-resolvable obstruc-
tions of several first-order interactions can cancel each other if all cross-channels are 
considered. We call this a “lock-key scenario”: pieces of the SM will be inconsist-
ent, while the whole becomes consistent. Examples are given in Sect. 3.

(iv) The method to compute induced interactions follows a recursive scheme, 
whose systematics has been elucidated in [31]. In principle, it may continue to arbi-
trary order. The fourth remarkable fact is that in all cases investigated so far, the 
recursion terminates at the power-counting bound for renormalizability—without 
renormalizability having been imposed.4

Interacting fields and observables. It is worth remembering that interac-
tion densities Lint are just the field-theoretical tool to produce the corresponding 
S-matrix of interactions among (asymptotic) particles, by Formula (1.1). As long as 
the S-matrix computed with string-localized Lint(c) is independent of the string, it 
appears that one is done.

One should, however, object that a QFT is more than an S-matrix: it is defined 
by its interacting fields whose LSZ limit at t → ±∞ is described by that S-matrix. 

�c ∫ dx L1(x, c) = ∫ dx ��Q
�

1
(x, c, �c) = 0

(1.4)

�c ∫ dx dx� T[L1(x, c)L1(x
�, c)] = ∫ dx dx� T[��Q

�

1
(x, c, �c)L1(x

�, c) + (x ↔ x�)]

4 The case of perturbative interactions involving massless particles of helicity 2 (“gravitons”) is an 
exception, see Sect. 3.5: the lowest orders of induced interactions, that have been computed so far, repro-
duce the Einstein–Hilbert action which is known to be power-counting non-renormalizable already at 
first order, and there is no hint for a termination.
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Especially charged fields are of interest because they create charged states from 
the vacuum. Interacting fields are perturbatively defined by Bogoliubov’s formula

to be expanded as a series of retarded integrals over free fields.
In gauge theory, interacting charged fields are not BRST invariant and are there-

fore not defined on the physical Hilbert space which is defined as the BRST quotient 
space (2.2). In the BRST approach, one must be content with an interacting quantum 
field theory lacking fields of major interest, that would generate charged states.

In sQFT, interacting fields can be constructed by the same Formula (1.5). Along 
with Lint(c) being defined on the physical Hilbert space, so are the interacting fields. 
The point is, however, that a non-local interaction density in general will jeopardize 
locality of the perturbative interacting fields. Fortunately, there is a powerful tool [the 
“magic formula” (1.6)] in sQFT that secures at least string-locality. It proceeds by relat-
ing the interacting fields with interaction Lint(c) to interacting “dressed” fields with a 
local interaction Kint as in the standard frameworks. The free “dressed” fields are much 
easier to compute than interacting fields, and their localization can be directly read off. 
The virtue of the magic formula is that (because Kint is local) the interacting dressed 
fields have the same localization as the free dressed fields, and this determines the local-
ization of the interacting Hilbert space fields Φ|Lint(c) even if Lint(c) is string-localized.

Before we shall explain the working of the “magic formula”, let us pause for 
a reflection about the meaning of “localization” in quantum field theory; and 
explain how sQFT allows to assess the localization of interacting fields.

Localization in quantum field theory is an algebraic feature—not a geomet-
ric one as the term might suggest (and of course not a matter of just labelling 
either). An operator is localized “somewhere” if it commutes with all observables 
at spacelike distance from “somewhere”. Thus, localization refers to causality of 
the fields, rather than locality of the interaction.

A more precise formulation would be that localization is a relative algebraic 
property because it refers to the localization of observables. For example, in per-
turbation theory, interacting fields are represented as power series of retarded 
integrals over free fields. One may therefore not even expect them to be localized 
relative to the free fields, and Borchers [3] has shown that they cannot be so if 
there is nontrivial interaction.

But they can be localized relative to each other. This property selects interact-
ing observables. Perturbed fields which fail to be localized relative to the inter-
acting observables may still be present in the theory as non-observable fields, 
and they are welcome because they create states with non-local features [8]. One 
may call them “charged fields” in a generalized sense. Notice that anti-local fields 
(even free ones) violate causality in the strongest possible way. This is why only 
quadratic expressions like the Dirac current j� =∶���� ∶ have a chance to qual-
ify as observables, while the Dirac field � creates charged states.

In sQFT, string-localized free fields (notably the “gauge-invariant vector 
potentials” mentioned before) arise by integrating a free observable along a string 

(1.5)Φ|Lint(x) =
(
Tei ∫ Lint

)∗(
T
[
Φ(x)ei ∫ Lint

])
,
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emanating from x. These appear in Lint(c) , and define the perturbation theory. 
They are of little interest for the resulting interacting observables, but they leave 
their traces on the interacting charged fields.

The “magic formula” settles trouble with non-locality. A first reaction on 
sQFT is often the (in general justified) alarm that a non-local interaction will spoil 
locality of the interacting fields. We sketch here how locality is taken care of when 
there is an L–V pair available.

The all-orders analysis [31] of obstructions starting from an initial L–V pair (1.3) 
provides the prerequisites to investigate whether Kint and Lint(c) produce the same 
S-matrix (at tree level at all orders). This indeed turns out to be the case for all inter-
actions of the SM. Then, even if Kint may be non-renormalizable, e.g., because it 
contains couplings of massive vector bosons, the S-matrix Tei ∫ dxKint(x) will be uni-
tary and renormalizable—because Tei ∫ dx Lint(x,c) is. Conversely, the latter will be 
string-independent because the former is.

An offspring of the L–V analysis is the “magic formula”

where the formula to compute the “dressed fields” Φ[g] from the unperturbed field Φ , 
using the L–V pair, is given in [31]. This formula may transfer some of the degrees 
of freedom of the string-localized free fields onto the dressed fields. The latter may 
therefore depend on c and are manifestly relatively local or string-localized relative 
to the observable free fields (the latter can be characterized by the property that Φobs

[g]
 

is local—e.g., if Φobs
[g]

= Φobs in the easiest case). By Borchers’ result [3], this means 
that Φ[g] are still not interacting—but their localization can be just read off. Then, 
because Kint is a local interaction density, standard results of causal perturbation the-
ory assure that Φ[g]|Kint

 have the same relative localizations among each other as Φ[g] . 
Therefore, Φ|Lint is relatively local resp. string-localized to the interacting observa-
bles. This is all one needs to know for the physical discrimination between “observ-
able” or “charged” fields.

Some dressed fields, and consequently also the corresponding interacting fields 
are indeed local (and string-independent), and qualify as the local observables of the 
perturbative QFT. Some others (like the Dirac field of QED) become dynamically 
string-localized.

This bug is a feature: first, it is unproblematic because charged fields are not 
observables. Second, it is even to be expected in theories like QED, because charges 
can be measured and have effects at infinite spacelike distance by the Gauss Law. 
Notice that the Gauss Law does not violate causality, as the “creation of a charge” is 
not a physical process. The effects at spacelike infinity record the behaviour of the 
charges in the past.

The need to admit string-localized interacting fields was anticipated by an analysis 
(based on the axioms of algebraic quantum field theory referring exclusively to local 
observables) [8] of the causal support where charged superselection sectors (of massive 
theories) are distinguishable from the vacuum sector. The result can be interpreted as a 

(1.6)Φ
|||Lint(c)(x) = Φ[g]

|||Kint

(x),
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statement on putative fields that would create such sectors from the vacuum, and con-
forms exactly with the weaker localization of the interacting fields in sQFT.

2  String‑Localized Quantum Field Theory

We give here several complementary motivations for string-localized QFT. The first 
one starts from gauge theory and BRST and arises as an attempt to eliminate all 
obstructions against BRST invariance, as would appear in the PGI approach, from the 
start. Only the next two are truly in the autonomous spirit. They are enhancements 
towards applications in the SM of the original motivation [29] which was rooted in 
Algebraic QFT and “modular localization”. This background will also be explained 
briefly below.

For simplicity, and in order to best exhibit the complementarity, we shall concentrate 
on the prototypical case of QED, with comments on other cases where appropriate.

String-localized quantum fields as the “reverse side of BRST”. If one comes 
from gauge theory, one would start with a classical interaction density like

for QED. After covariant quantization, the field A�(x) is defined on a Fock space 
that contains states of negative norm square (“timelike photons”) and states of zero 
norm (“longitudinal photons”). One eliminates these unphysical states by the Gupta-
Bleuler method, or equivalently by the more general BRST method, which is the 
method of choice in non-abelian gauge theories. The latter extends the indefinite 
Fock space by another indefinite Fock space of “ghost” particles. On the extended 
Fock space F  there is defined a nilpotent fermionic BRST operator Q with posi-
tive-semidefinite kernel. Its graded commutator [Q, ⋅]∓ defines the BRST variation 
�BRST =∶ s . Physical states (in QED: photons with only the two physical helicities, 
and no ghosts) are those annihilated by Q modulo states in the range of Q, which are 
of norm zero. In mathematical language, the physical Hilbert space is the quotient 
space (“cohomology”)

In order to be defined on this Hilbert space, observables must be BRST-invariant 
[ s(X) = 0 ], including the S-matrix.

One finds that s(j�) = 0 while

where u is a ghost field. Consequently,

is a total derivative. In particular, L1 itself is not BRST invariant—only its classical 
action integral ∫ d4x L1(x) is BRST invariant. But then the same is not automatically 

(2.1)L1(x) = A�(x)j
�(x)

(2.2)H = Ker(Q)∕Ran(Q).

(2.3)s(A�) = ��u,

(2.4)s(L1) = ��uj
� = ��(uj

�) =∶ ��P
�



Foundations of Physics (2024) 54:57 Page 9 of 25 57

true for the perturbative S-matrix (1.1) because time-ordering does not commute 
with derivatives. For example,

is in general not a derivative, in which case the integral will not vanish. This failure 
is called an “obstruction” against BRST invariance.

Fortunately, QED is particularly good-natured in that this obstruction actually 
does not occur, thanks to a Ward identity. (It is particularly bad-natured by its IR 
problems, though. The IR aspects of QED will be addressed separately in Sect. 3.1.) 
But the obstruction does occur in many other cases of interest, including the non-
abelian case if L1 is only the minimal interaction and the cubic part of the (self-)
interaction. The quartic part of the self-interaction precisely cancels the obstruc-
tion. In [2, 34], the attitude is taken (and proven) that this cancellation mechanism 
is a justification for gauge invariant Lagrangians even if one does not assume gauge 
invariance from the start.

How would string-localized quantum fields enter the scene?
Because of (2.3) and (2.4), one seeks a field � whose BRST variation would be

Then, one could replace A� by the gauge-equivalent but BRST-invariant field 
A� + ��� , and L1 by the BRST-invariant interaction density (A� + ���)j

�.
Such a field � is usually not “in the list” of BRST variations. But one can easily 

produce it: the string-localized integral

does the job, with any string direction e.
One notices that (by virtue of the homogeneous Maxwell equations)

This representation of A�(x, e) makes its BRST-invariance more transparent: it is 
just a string integral over the BRST-invariant field strength. Equation (2.8) shows 
that A�(x, e) creates and annihilates only physical photon states with helicity ±1 , 
both manifestly (because F does so) and by counting degrees of freedom [namely, 
(2.8) implies ��A�(x, e) = e�A�(x, e) = 0].

Because of the distributional nature of quantum fields, one must smear the string 
direction e in (2.7), (2.8) with a suitable smooth function c(e) and a suitable measure 
d�(e) , thus defining �(x, c) and A�(x, c).5 If ∫ d�(e) c(e) = 1 (“unit weight”), then

(2.5)s(T[L1(x)L1(x
�)]) = T[��P

�

1
(x)L1(x

�)] + (x ↔ x�)

(2.6)s(�) = −u.

(2.7)�(x, e) ∶= ∫
∞

x

dx�� A�(x
�) = ∫

∞

0

ds e�A�(x + se)

(2.8)A�(x, e) ∶= A�(x) + ���(x, e) = ∫
∞

0

ds F��(x + se)e� .

5 In contrast to the smearing in x, we consider the smearing of the string variable as a label of the field 
A(⋅, c).
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is still a potential for F��:

One may then work with the BRST-invariant interaction density

Equation (2.11) is an L–V pair for QED. The S-matrix computed with L1(c) will be 
manifestly BRST-invariant. In the case of QED, one can establish that the derivative 
term does not alter the S-matrix. In more general cases, one may have to add higher-
order interactions, as indicated after (1.4).

So, it seems that nothing is gained: instead of obstructions against BRST-invari-
ance, there arise obstructions against string-independence, that must be resolvable. 
But on the contrary:

Because Lint(c) = gL1(c) +
g2

2
L2(c) +⋯ is BRST-invariant, it is defined on 

the physical Hilbert space (2.2), and so will be the S-matrix and the interacting 
fields (1.5). One has a (perturbative) QFT on a Hilbert space without unphysical 
states  from the outset, including charged fields that can generate charged states 
from the vacuum, whereas interacting charged fields in the BRST approach are not 
defined on the BRST Hilbert space. See the next paragraph.

The autonomous motivation for massless string-localized quantum fields. 
One can spare the detour through BRST by starting directly from the integral over F 
in (2.8)

as an autonomous definition of the string-localized potential satisfying (2.10), where 
F is defined on the Wigner Fock space. As in (2.11), the interaction is

with the distinction that there is no split (2.9) making it an L–V pair, because neither 
A nor � are defined on the Wigner Fock space. The vital fact is that also without 
the split, �c(A�(x, c)) is still the derivative of a quantity defined on the Wigner Fock 
space, that we call w(x, �c)6:

(2.9)A�(x, c) = A�(x) + ���(x, c)

(2.10)��A�(x, c) − ��A�(x, c) = F��(x).

(2.11)L1(x, c) = A�(x, c)j
�(x) = A�(x)j

�(x) + ��(�(x, c)j
�(x)).

(2.12)A�(x, c) ∶= ∫ d�(e) c(e)∫
∞

0

ds F��(x + se)e�

(2.13)L1(x, c) = A�(x, c)j
�(x),

(2.14)�cA�(x, c) = ��w(x, �c).

6 Because c must have unit weight, a variation must be of the form �c(e) = �e
�
b� (e) . The field w(�c) is 

then computed by integrating �e
�
 by parts onto the s-integral in (2.8) where it produces a derivative �x

�
 , 

and using the homogeneous Maxwell equations. The resulting precise form of w is not of interest here. 
The field Q1 contains a factor $w$, and may in more general models than QED also involve other string-
localized fields.
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Therefore, one has the L–Q pair of QED

 The next steps then follow the familiar scheme: perturbation theory with an inter-
action L1(c) will in general exhibit an obstruction against string-independence. In 
order to resolve the obstruction, one seeks a second-order interaction L2 that makes

vanish. The first-order term vanishes thanks to (1.2). The condition that the second-
order term vanishes at tree level is conveniently formulated as

where �2 is the symmetrization in two arguments, and

is the second-order obstruction that one would get from the first-order interaction 
alone. Equation (2.18) is analogous (with Q1 in the place of a conserved current) to 
the violation of a Ward identity. By Wick’s theorem, its tree-level part can be com-
puted in terms of differences of time-ordered two-point functions (propagators)

of the linear free fields of the model. The subtractions of explicit derivative terms 
bring the advantage that (2.19) and the numerical distributions in (2.18) automati-
cally exhibit delta functions and string-integrated delta functions.

The existence of L2 and Q2 resolving the obstruction as in (2.17) is a nontrivial 
feature of a model. In particular, all string-localized delta functions must be part of 
the derivative term �Q2 . If non-resolvable obstructions arise, the model must be dis-
carded, unless they can be cancelled (in the “lock-key scenario”) by the inclusion of 
further first-order interactions. In general, one may have to proceed to higher orders.

The interacting fields Φ|Lint(c) are computed with Bogoliubov’s formula (1.5). In 
order to assess their localization with the help of the “magic formula” (1.6), one 
embeds the Wigner–Fock space into a suitable indefinite state space,7 where there 
exists an L–V pair with a local interaction Kint . Then, Φ|Lint(c) are defined on the 

(2.15)�c(L1(x, c)) = ��w(x, �c)j
�(x) = ��(w(x, �c)j

�(x)) =∶ ��Q
�

1
(x, �c).

(2.16)

�c

(
Te

i ∫ dx
(
gL1+

g2

2
L2+⋯

))
=ig� dx �c(L1(x, c))

+
(ig)2

2

[

� dx dx� �c
(
T[L1(x, c)L1(x

�
, c)]

)
− i� dx �c(L2(x, c))

]
+…

(2.17)O(2)(x, x�)||tree
!
=�c(L2(x, c)) ⋅ i�(x − x�) + i�2�

x

�
Q

�

2
(x, x�, c, �c),

(2.18)
O(2)(x, x�) ∶= 2�2

(
T[��Q

�

1
(x, c, �c)L1(x

�, c)] − �x
�
T[Q

�

1
(x, c, �c)L1(x

�, c)]
)

(2.19)O�(�(x),�(x
�)) ∶= ⟨T[���(x)�(x�)]⟩ − ��⟨T[�(x)�(x�)]⟩

7 In QED, the embedding can be made in such a way that the split (2.9) holds on a positive-definite sub-
space with a third degree of freedom besides the two polarizations of the photon. Upon interaction, this 
extra degree of freedom is transferred onto the interacting Dirac field—a feature whose importance has 
been stressed in [7]. (The photon continues to have two physical states.)
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Hilbert space, but in general localized in the cone spanned by the strings e in the 
support of c.

In QED, the interacting Maxwell field turns out to be local, while the Dirac field 
is localized along the string, see Sect. 3.1. This feature resolves the conflict between 
the Gauss Law (the total electric charge equals the total electric flux at spacelike 
infinity), the Noether property [the total electric charge operator generates the U(1) 
symmetry of the charged field], and locality (the electric flux at infinity should com-
mute with the Dirac field at x = 0 ). There is no such conflict when the last property 
is dynamically invalidated. sQFT produces this effect intrinsically.

The autonomous motivation for massive string-localized quantum fields. A 
second beneficial feature of the Formula (2.8) arises with massive vector fields. The 
Proca field in the Wigner representation has short-distance scaling dimension 2: in 
its two-point function and propagator, −��� is replaced by −(��� + m−2p�p�) . The 
momentum-dependent term secures positivity but increases the UV scaling dimen-
sion, which is a measure for the size of vacuum fluctuations. This jeopardizes the 
use of the Proca field in perturbation theory: the minimal coupling to a current has 
dimension 5 beyond the renormalizability bound.

One way to deal with this is to just drop the term m−2p�p� which brings down 
the dimension to 1. The resulting field is a local “massive gauge field”, whose two-
point function violates positivity. One then needs BRST to return to a Hilbert space. 
BRST requires gauge invariance, but the mass violates gauge invariance. So the 
usual method of choice is to replace the massive gauge field by a massless one and 
invoke the Higgs mechanism to make it “behave as if it were massive”.

Alternatively (see [34]), one may as well introduce a (local and positive) Stück-
elberg field which allows to adapt the BRST method without gauge invariance and 
ghosts. Also in this case, the BRST variation of L1 is a derivative, causing obstruc-
tions of the S-matrix, which can be resolved only if the vector potential is coupled to 
a scalar field with the quartic interaction of the Higgs field.

The autonomous approach, in contrast, secures power-counting renormalizabil-
ity by string-localization. The field strength of the Proca field of dimension 2 also 
has dimension 2 because the exterior derivative kills the “dangerous” momentum-
dependent term in the two-point function. Then, because the subsequent integra-
tion decreases the dimension, the string-integral (2.12) with the massive Proca field 
strength (instead of the Maxwell field strength F) is a massive vector potential of 
dimension 1 on the Wigner–Fock space of the Proca field. When this field is coupled 
to a current, the renormalizability bound is respected.

For more on this treatment of the massive vector bosons of the electroweak inter-
action, including its ensuing prediction of chirality of the weak interactions and the 
shape of the Higgs self-coupling, see Sect. 3.4.

Modular localization. Localization in QFT is an algebraic feature: observables 
at spacelike separation must commute with each other. Usually, one constructs free 
fields �(x) whose commutator function is manifestly local. Upon perturbation with 
local scalar interactions, the relative localization is preserved.

In these approaches, the localization of an operator is encoded in the test 
function with which a local field is smeared. In contrast, “modular localization” 
is a construction of algebras of local observables that are distinguished by the 
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relevant causal commutativity, without specific commutation relations when the 
separation is not spacelike. It proceeds with Modular Theory.

Modular Theory is an abstract theory about von Neumann algebras M on a Hil-
bert space with cyclic and separating vectors Ω ∈ H . From such a pair (M,Ω) it 
allows to extract its “modular data”: a one-parameter group of automorphisms of 
M and an anti-linear conjugation j taking M to its commutant M′ . These data have 
functorial properties which can be exploited for manifold applications of Modular 
Theory in QFT (by encoding locality in terms of commuting algebras), see [4].

“Modular localization” also starts from the Fock space over unitary Wigner 
representations. On this Hilbert space, one can specify von Neumann algebras 
M with the vacuum as a common cyclic and separating vector, in such a way that 
their modular data coincide with boost subgroups of the Poincaré group and PCT 
transformations [5]. (For the latter to be possible, one must combine the massless 
representations of helicities +h and −h.)

Exploiting the correspondence between wedge regions of Minkowski space-
time and boost subgroups that preserve these regions, together with the func-
torial properties of modular data, one can consistently define algebras of local 
observables in wedge regions. Namely, the definition complies with the inclusion 
and commutation properties that are required for such an interpretation. In other 
words, the “localization” arises from Poincaré symmetry and modular data. Alge-
bras of local observables in smaller regions can be defined as intersections of 
algebras for all wedge regions that contain the smaller regions.

Modular localization has not least opened the way to novel non-Lagrangian 
constructions of QFT models with interactions (in two dimensions so far), by 
deformations of von Neumann algebras [22].

The method applies as well to the “infinite spin representations” of the Wigner 
classification, for which local free fields do not exist [41]. Only in the last step 
of the agenda just outlined, the intersections of wedge algebras defining puta-
tive algebras of local observables in bounded regions, turn out to be trivial. The 
smallest intersections of wedge regions that admit nontrivial local observables 
are spacelike cones extending to infinity [23, 29].

This construction suggests that free fields for the infinite spin representations 
exist despite [41], provided they are allowed to be localized in cones. Indeed, the 
authors give concrete examples for such fields in [29]. They then notice that con-
structions like (2.12) are possible for every finite spin and helicity, and already 
observe their possible usefulness for perturbation theory, as outlined in the previ-
ous motivations.

The present paper intends to show that sQFT lives up to these expectations.
String-localized quantum field theory in action. In Sect.  3 we shall look at 

concrete realizations of sQFT in the Standard Model of elementary particles.
A main emphasis will be on the fact that interactions are predicted by the need to 

resolve obstructions, i.e., they are ultimately consequences of the underlying fundamen-
tal principles of quantum field theory: Positivity, covariance and locality, as explained 
in Sect. 1. The strategy is always to find first-order (cubic) interactions complying with 
the condition of string-independence (1.2), and study their obstructions to determine 
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the higher interactions that make the S-matrix string-independent by “resolving the 
obstructions” as in (2.17).

Since string-independence is a necessary condition, it is legitimate to study the 
obstructions and their resolution only at tree level. Higher-order obstructions at tree 
level can always be reduced to expressions of a form generalizing (2.18), which in turn 
can be computed, with the help of Wick’s theorem, in terms of propagators of the linear 
free fields of the model as in (2.19). The systematics at higher orders is fairly simple 
when one starts from L–Q pairs, and more involved with L–V pairs, see [31] for details.

The interactions determined by tree-level string-independence are then the starting 
point for the UV renormalization of the loop contributions, as in all other approaches. 
The power-counting bound being satisfied for Lint(c) is of course instrumental for this 
step. See Sect. 4.

The recurrent “lock-key scenario” has already been mentioned: The obstructions 
of certain first-order interactions cannot be resolved separately. One has to extend the 
model by other first-order interactions whose obstructions cancel each other. For exam-
ple, the minimal interactions in non-abelian models require the cubic self-interactions 
of the vector bosons; and non-abelian self-interactions of massive vector bosons require 
interactions with a Higgs field [19]. Weak interactions of massive leptons require also 
Yukawa couplings to the Higgs field. Notice that these interactions are not added “in 
order to make massless particles massive”, but they are required by consistency of 
interactions involving massive particles from the outset.

In this way, all the interactions otherwise known from gauge theory are accounted 
for. The resulting orthodox point of view of sQFT is that one should abandon “gauge 
invariance” altogether as a physical principle (not least because it exclusively refers 
to unobservable entities). However, we thank D. Buchholz for the comment that also 
imaginary numbers are “not real”, yet they simplify life enormously. The same seems 
to be true for gauge theory methods as compared to sQFT (even if ghost fields may also 
be technically awkward). But the usefulness of gauge theory should not be mistaken as 
a “principle of Nature”.

3  Examples and Achievements So Far

We give a brief overview of the manifold achievements of sQFT (some of them work in 
progress). Their relevance for the Standard Model of elementary particles will become 
apparent.

We shall present the relevant L–Q pairs and some of the resulting obstructions. The 
treatment of L–V pairs is technically more intricate, cf. [32], and will not be presented 
here, except for some results concerning dressed fields.

For detailed accounts, we refer to the cited literature.
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3.1  QED

The initial L–Q and L–V pairs of QED were given in (2.15), (2.11). It turns out that 
obstructions of the S-matrix, as illustrated at second order in (2.18), vanish at all 
orders, and no induced higher-order interaction is needed.

Among the interacting fields, the Maxwell field tensor and the Dirac current 
remain local at all orders.

On the other hand, the dressed Dirac field is easily computed and turns out to be 
string-localized, so that also the interacting Dirac field is dynamically string-local-
ized. The dressed Dirac field has the (superficially) simple form

where �(x, c) was defined in (2.9). The function c(e) must be supported within the 
unit sphere of a spacelike plane.8 Quantities of the form (3.1) were previously con-
sidered by pioneers of QED [10, 21, 24] as classical expressions with the motive to 
quantize only gauge invariant quantities.

However, what looks like an innocent classical gauge transformation, has drastic 
consequences in quantum theory: the exponential of the infrared divergent quantum 
field � turns the free Wigner Dirac field with a sharp mass into an infrafield which 
admits no mass eigenstates: its spectrum is only bounded from below. This spec-
tral manifestation of the long-distance behaviour of QED was anticipated in a two-
dimensional model [35], and later recognized as a consequence of the Gauss Law of 
QED in four dimensions [6].

Steinmann [36] also used quantum expressions of the form (3.1) as a starting 
point to formulate perturbation theory. His idea is very close to ours, with the dis-
tinction that he chose (3.1) (not least because it is gauge-invariant), while sQFT 
derives it.

The quantum field �(c) in the exponent (3.1) is IR singular because of the inte-
gration over the massless vector potential involved in (2.7). But its exponential can 
be defined non-perturbatively with the help of an IR regularization [27]; and one 
finds that the string-smearing function c(e) acquires a physical meaning: it describes 
the profile of the asymptotic electric flux density at infinity in the direction e, meas-
ured in states created from the vacuum by the field (3.1). Loosely speaking, it is the 
“shape of the photon cloud” of an electron.

This profile is not necessarily uniform in all directions (because physically it 
depends on the trajectory of the electron in the past), and it can be “engineered” by 
choosing the function c(e) of unit weight.

States generated by the dressed Dirac field are orthogonal to the Fock space of the 
free fields because the coherent state created by the exponential factor has infinite 
particle number. In fact, the cloud function c defines a discrete superselection sector 
structure on an uncountably extended Hilbert space such that states with different 

(3.1)�[g](x, c) = ∶eig�(x,c) ∶ �(x),

8 The smearing with c(e) is needed because of the distributional nature of quantum fields. It must be 
restricted to a spacelike plane in order not to spoil positivity.
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c belong to different sectors. More precisely, for states with several electrons and 
positrons created by fields with different c, the sum (resp. difference) of their cloud 
functions is superselected.

While this is manifestly true for the free dressed fields, the uncountable superse-
lection structure survives for the interacting Dirac fields, but seems to be “dynami-
cally deformed” by the interaction Kint in (1.6) [27].

It was stressed in [7] that it is impossible to satisfy the Gauss Law with only 
two photon degrees of freedom, see Footnote 7. Indeed, unlike the potential A�(c) , 
the field �(c) is not defined on the photon Fock space. By restricting the support of 
c(e) to a spacelike plane, its exponential remains positive but contributes one addi-
tional degree of freedom which becomes physical by turning the free Dirac field 
into an infrafield (3.1), and then describes its photon cloud. The interaction Kint then 
“hooks” at the dressing factor, so that the interacting field complies with the Gauss 
Law without “fictitious currents” (the failure of the free Maxwell equation in the 
Feynman gauge by a null field that, however, contributes to the interacting equations 
of motion). The field �(c) itself is not part of the interacting theory because of its IR 
singularity.

The sQFT treatment of the infrared features of QED [27] encourages a new look 
at the “Infrared Triangle” (soft theorems—asymptotic symmetries—memory effect), 
see [37] for an overview. sQED provides conceptual (in the autonomous sense) elu-
cidations of many of its features.

For example, sQED allows to compute quantum expectation values of the Max-
well field in states created by dressed charged fields, and study their asymptotic 
behaviour at spacelike ( �0 ), null ( ℑ± ), and timelike ( �± ) infinity.

The behaviour along ℑ± can be regarded as a pair of three-dimensional QFTs 
with their own intrinsic algebraic structure and dynamics, arising as asymptotic lim-
its from the bulk, and capturing the helicity-one version of the gravitational “mem-
ory effect”. The “matching conditions” between the past rim of future null infinity 
and the future rim of past null infinity can be traced by following the continuous 
interpolation from ℑ− to ℑ+ across spacelike infinity �0.

When one views the matching conditions as conservation laws [37], the corre-
sponding infinitely many electric and magnetic conserved charge operators Q� and 
Q̃� can be computed, along with the “large gauge transformations” that they would 
generate in the Feynman gauge. In fact, the latter act also on the additional degree of 
freedom in the field �(c) , emphasized above, and consequently on the dressed field 
and the state it creates from the vacuum. Thus, while they leave the Maxwell field 
invariant, they transform its asymptotic expectation values.

The connection with soft photon scattering is manifest in sQED in the dynamical 
deformation of the superselection structure [27] caused by the proper (positivity-
preserving) treatment of the IR divergent field �(c) in the exponent in (3.1).
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3.2  Yang–Mills

A cubic L–Q pair involving several massless vector potentials Aa
�
(c) is necessarily of 

the form

A most general ansatz shows that the numerical coefficients fabc must be totally 
antisymmetric (string-independence at first order) and must satisfy the Jacobi iden-
tity (second order) [16]. Thus, they are necessarily the structure constants of an 
(unspecified) reductive Lie algebra � . (The same result was also found within the 
PGI approach, see [2].)

If � is non-abelian, there is a second-order obstruction that can be resolved by 
the induced quartic interaction

and higher-order interactions do not appear. gL1(c) +
g2

2
L2(c) is precisely the string-

localized version of the Yang–Mills interaction.

3.3  QCD

One may add to (3.2) an L–Q pair of minimal quark-gluon interactions [copies 
of (2.15) with colored currents j�

a
= ����a� ]. The minimal interaction, if taken 

separately, has a non-resolvable obstruction at second order:

which arises from the violation of the Ward identity for the non-abelian currents. 
It is resolved by the same obstruction with the opposite sign appearing in the cross 
contributions when the self-interaction (3.2) is included [32]. In particular, there is 
no induced interaction in the quark sector. This is the first appearance of the “lock-
key scenario” mentioned in Sect. 2.

The computation of the dressed quark field is much more difficult than in QED, 
because of the non-abelianness. We do not have a closed expression like (3.1), 
but the first three orders [32] indicate the onset of a path-ordered exponential

Recall that �(e) =
∑

a
Ie(A

a)�a is a Lie-algebra-valued line integral over A. The 
path-ordering orders the Lie-algebra generators, while the field operators are Wick-
ordered. Path-ordering is well defined for a sharp string (c(e) supported in a single 
direction) and the resulting Wilson operator makes (3.4) invariant under classical 

(3.2)

L1(c) = −
1

2

∑

abc

fabcF
a��Ab

�
(c)Ac

�
(c), Q

�

1
(c) = −

∑

abc

fabcF
a��wb(�c)Ac

�
(c).

L2(c) = −
1

2

∑

abcde

fabefcdeA
a
�
(c)Ab

�
(c)Ac�(c)Ad�(c),

(3.3)−
∑

abc

fabcw
a(x, �c)Ab

�
(x, c)j�

c
(x) ⋅ �(x − x�),

(3.4)�[g](x, c) = ∶Peig�(x,c) ∶ ⋅�(x).
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gauge transformations that are trivial at infinity. For smooth smearing functions c(e) 
(which are needed because of the distributional nature of quantum fields), “path-
ordering” of the exponential of smeared line integrals is not defined in an obvious 
way, but (3.4) still enjoys gauge-invariance (to third order). To give a flavour of the 
result [32]:

where A = A(c) − ��(c) is the Lie-algebra-valued local potential in Feynman 
gauge,9 i[⋅, ⋅] is the Lie algebra commutator, and Ic(Y) is short-hand [appearing 
already in (2.12), where we had �(x, c) = (Ic(A))(x) ] for the string integral operation 
on a vector field

The third-order term in (3.5) is

For sharp strings, the nested string integrations of commutators in the exponent take 
care of the path-ordering along the string.

As in QED, the string-integrated field � = Ic(A) is infrared divergent, and its 
appearance in the exponent requires a non-perturbative definition. We speculate that 
analytic confinement criteria such as [40] or [13] could then be established already 
at the level of the dressed quark field (3.4); but for this one would need a closed for-
mula at all orders which is presently not available.

3.4  Electroweak Interactions

Turning to weak interactions, one may as well generalize the L–Q pair (3.2) to mas-
sive vector bosons, including self-coupling terms proportional to the masses [18, 
19]. One may again add L–Q pairs for minimal couplings to vector or axial cur-
rents J�

a
= cVj

�
a
+ cAj

5�
a

 . For massive fermions (because the axial current is not con-
served), one also needs couplings to scalar and pseudoscalar currents with coeffi-
cients determined at second order.

The fermionic sector with the exact field content and masses of the SM (includ-
ing the Higgs field) has been analyzed, and its details are reported in [18]. The 
main emphasis is that the maximal chirality ( cA = ±cV ) of the weak coupling of 
the W-bosons is a necessary condition for the resolution of obstructions, which 
needs both the minimal interactions and the self-interactions of the vector bosons. 

(3.5)

�[g](x, c) = :exp i
[

g�(c) +
g2

2
Ic(i[�(c), 2A + ��(c)]) +

g3

6
�(3)(c) +⋯

]

(x): ⋅ �(x),

(Ic(Y))(x) ∶= ∫ d�(e) c(e)∫
∞

0

ds e�Y
�(x + se).

�(3) = 3Ic(i[Ic(i[�, 2A + ��]),A + ��]) + Ic(i[�, i[�, 3A + ��]]) −
3

2
i[�, Ic(i[�, 2A + ��])].

9 The expression (3.5) is not manifestly positive. But it is positive, because it was computed with the 
help of an L–V pair on a positive-definite subspace of the Feynman gauge Fock space, see Footnote 7.
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Chirality is of course well-known as an empirical fact and used as a constitutive 
feature of the GSW model, but has no a priori explanation from gauge theory. Also 
the empirically known mass-dependence of the Yukawa couplings follows as a con-
sequence of string-independence at first and second order.

The bosonic sector is presently under investigation [19], including the self-interac-
tion of massive and massless vector bosons and their couplings to the Higgs boson. The 
most important feature is that the latter are necessary in order to resolve non-resolva-
ble obstructions of the self-interaction. Moreover, the masses mW and mZ as the only 
empirical input fix, as a consequence of string-independence, the Z and photon cou-
plings to W, and the coupling strengths of Z and W to the Higgs boson. There arise 
non-resolvable obstructions at third order in the sectors with one or three Higgs fields. 
They can be cancelled if one adds Higgs self-interactions �H3 to L1 , and �′H4 to L2 . 
The values � and �′ determined by string-independence are precisely the same as one 
also would get from the shifted-symmetric double-well potential

of the GSW model. (Details of this latter analysis are almost identical with the abe-
lian model as reported in [27].)

Notice that sQFT predicts a Higgs particle along with its self-interaction [19]—
but without a “Higgs mechanism” because the vector bosons are massive from the 
start.

Let us point out an interesting pattern of cancellation of obstructions, that deter-
mines the Lie algebra. It arises most cleanly in the simpler Higgs–Kibble model, 
anticipating a similar one in the full electroweak theory. The model describes mass-
less fermions and vector bosons of equal mass and no photon [32].

The L–Q pair for the self-coupling is (with summation over abc understood)

where B� = A�(c) − ��(c) is the local Proca field.
The self-coupling has a non-resolvable obstruction at second order of the form

This obstruction can be cancelled by another non-resolvable obstruction arising 
from the coupling to a scalar field (the Higgs field of mass mH ) with L–Q pair (sum-
mation over a understood)

Its non-resolvable obstruction has the form

1

2
�
[
(� + H)2 − �2

]2
with g� = 2mW , � = m2

H
∕4�2

L1,self(c) =
1

2
fabc

(
Fa��Ab

�
(c) − m2�a(c)Bb�

)
Ac
�
(c),

Q
�

1,self
(c) =fabc

(
Fa��Ab

�
(c) −

1

2
m2�a(c)Bb�

)
wc(�c)

(3.6)m2
⋅ fabefcde ⋅ w

a(�c)Ab
�
(c)�c(c)Bd�.

L1,Higgs(c) =� ⋅

(
Aa
�
(c)Ba�H + Aa

�
(c)�a(c)��H −

1

2
m2

H
�a(c)�a(c)H

)
,

Q1,Higgs(c) =� ⋅ wa(�c)(Ba�H + �a(c)��H).
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The cancellation of (3.6) against (3.7) requires to match the self-coupling coeffi-
cients fabc with the Higgs coupling � via m2

⋅ fabefcde = 4�2
⋅ (�ab�cd − �ad�cb) . This 

determines the structure constants fabc = �abc of ��(2) and � = 1
2m

 . (The overall rela-
tive factor 1

2
 as compared to the abelian model [27] corresponds to the normalization 

convention of the generators 1
2
�a of ��(2) .) Other Lie algebras are presumably pos-

sible when nontrivial mass patterns or several Higgs fields are admitted [19].

3.5  Helicity 2

In [17], three of us have pursued an analysis of interactions of massless particles 
of helicity ±2 (“gravitons”) with massive or massless matter of spin 0, 1

2
 or 1. The 

latter do not need sQFT, but the former do, because there is no local covariant Hil-
bert space field to serve as a “metric deviation” h��(x) . There is, however, a string-
localized field h��(x, c) , built from the “linearized Riemann tensor field” on the Fock 
space over the unitary Wigner representations of helicity ±2 , by a formula analo-
gous to (2.12) (with two string integrations).

The analysis of possible cubic L–Q pairs results in unique couplings 1
2
h��(c)Θ

��
matter 

to the conserved matter stress–energy tensors, and in a unique (up to total deriva-
tives) cubic self-coupling. The matter couplings separately have non-resolvable 
obstructions, which are all cancelled in the cross-channels with the self-coupling. 
This is another appearance of the lock-key scenario. More remarkably, the induced 
interactions (computed only at second order) coincide with the classical expansions 
of the Einstein–Hilbert action and of the standard generally covariant matter cou-
plings, upon substitution of the classical metric deviation field h�� by the quantum 
field h��(c).

General covariance was not assumed. It arises instead as a consequence of the 
quantum principles underlying sQFT—a feature that we called “quantum general 
covariance”.

Clearly, the expansion is not power-counting renormalizable. Yet, the strong con-
straints underlying the resolution of obstructions may even raise the hope that the 
renormalized sQFT of gravity has no free parameters besides the coupling constant.

A similar result was obtained in the PGI setting [11]: consistency with BRST, 
which in turn is needed to secure positivity, is secured by the expansion of the Ein-
stein–Hilbert self-interaction in all orders.

3.6  Beyond the Standard Model?

There are many proposals that “dark matter” might consist of particles of spin or 
helicity beyond 2. We want to discuss what could be possible with sQFT in this 
respect.

Recall that by the Weinberg–Witten theorem, particles of helicity 2 or higher do 
not admit local and covariant stress–energy tensor fields on a Hilbert space. This 
is often taken as an argument that massless matter of higher helicity cannot couple 

(3.7)−4�2
⋅ (�ab�cd − �ad�cb) ⋅ w

a(�c)Ab
�
(c)�c(c)Bd�.
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gravitationally, see a discussion in [30]. Stress–energy tensors of massive matter of 
higher spin exist but have increasing UV scaling dimension, leading to “more and 
more non-renormalizable” interactions.

On the contrary, there exist string-localized stress-energy tensors Θ��
matter(c) of UV 

dimension 4 for every integer spin and helicity [25]. The self-coupling of the helic-
ity-2 field mentioned in Sect. 3.5 is a small modification of 1

2
h��(c)Θ

��

h=2
(c) (which 

would be part of an L–Q pair only if Θh=2 were string-independent). This observa-
tion raises the hope that sQFT might also admit L–Q pairs for graviton couplings to 
massless matter of helicity beyond 2. Unfortunately, the systematic search turned 
out no candidates beyond the known ones with h = 0, 1, 2 . The analysis of L–Q pairs 
coupling gravitons to particles with half-integer helicity and to massive higher-spin 
particles remains to be done.

One may also wonder whether sQFT allows new interactions among known par-
ticles. One such proposal is [1]. The authors observed that with an interaction L′ 
involving the Z� field multiplying two dressing factors exp ig�(e) and exp−ig�(e�) 
with e ≠ e′ , one can produce the decay of a Z-boson into two photons, otherwise 
forbidden by the Landau–Yang theorem. (The latter uses Lorentz invariance which 
is manifestly broken by the choice of the strings.)

The proposed interaction term L′ is not part of an L–Q or L–V pair, so the result-
ing scattering matrix has no reason to be string-independent. This may not even be 
intended by the authors; but what weighs heavier is that as a consequence, there is 
no “magic formula” which would ensure any kind of localization for quantum fields 
subjected to an interaction L′ , along the lines discussed in Sect. 1.10

We do not know what is possibly “allowed” as string-localized interactions 
beyond L–Q or L–V pairs and higher-order interactions induced from them, and how 
much flexibility is gained for interactions beyond the SM. For example, L–Q pairs 
that are quartic in the free fields may have slipped our attention. But we strongly feel 
that one cannot choose any interaction merely because it seems convenient. Locality 
and positivity are precious goods that must be taken care of.

4  Conclusion and Outlook

String-localized quantum field theory (sQFT) is a new framework to address the 
relation between particles and quantum fields. For free fields, it is just “more flex-
ible” than local QFT. This flexibility can be used to overcome problems with Hilbert 
space positivity due to canonical quantization of massless vector fields, and prob-
lems with renormalizability due to the increased UV scaling dimension of vacuum 
fluctuations of massive vector fields [25].

10 The authors use an ad hoc IR and UV regularization which in fact violates positivity. Smearing the 
strings with c(e) would solve the UV issue. The positivity-preserving IR regularization used in [26] pro-
duces the superselection structure mentioned in Sect. 3.1, and would actually make the amplitude in [1] 
vanish whenever c ≠ c′.
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sQFT deploys its power when applied to perturbation theory: it strongly con-
strains admissible interactions by fundamental quantum principles (notably Hilbert 
space). In fact, sQFT can be understood as a scheme to predict the interactions of 
the SM in an “autonomous” (purely quantum) way.

A prominent lesson that sQFT teaches us is that perturbed quantum fields, except 
the observables of the model, must not be expected to be local (or anti-local). Their 
dynamical string-localization is a physical feature (e.g., related to the Gauss Law 
of QED), and it still allows “sufficient commutativity” to conceive a scattering the-
ory in terms of correlations at asymptotic times. However, the prevalent methods of 
scattering theory have to be properly adjusted.

The dressed Dirac and quark fields (3.1) and (3.4), that are (classically) gauge-
invariant, are instances of an issue that calls out for a deeper understanding: given 
that sQFT a priori “knows nothing” about gauge theory, why do (classically) 
gauge-invariant string-localized fields play a distinguished role in sQFT, and why 
seem the observables of sQFT to correspond to (classically) gauge-invariant local 
fields? Is perhaps “gauge-invariant and local” just another characterization of 
“string-independent”?

An interesting recent argument by Rivat [33] proposes another reason for “gauge 
invariance”: it explains it as a consequence of the need to have a Lorentz invariant 
action ∫ d4x Lint(x) . This looks unrelated to sQFT, but there is a close connection. 
Rivat starts from the well-known facts that on the Wigner Fock space of the pho-
ton, a Lorentz covariant vector potential does not exist [38]; but one can construct 
a vector potential AW

�
 which is Lorentz covariant “up to an operator-valued gauge 

transformation”:

where Γ arises from the “pseudo-translations” in the little group E(2) (the stabilizer 
subgroup of the Lorentz group of an arbitrary massless reference momentum vec-
tor) in the Wigner decomposition of Λ . A transformation law of the same form as 
(4.1) holds for A�(c) , where Γ arises instead from the Lorentz transformation of 
the strings. Consequently, interactions like both AW

�
j� and A�(c)j

� change by a total 
derivative under Lorentz transformations. The main difference between AW

�
 and 

A�(c) is the well-controlled localization of the latter.
The focus in this paper was on the relevant analysis to determine interactions, 

which proceeds at tree-level. The development of an efficient UV renormalization 
program is the main open agenda of sQFT. An adaptation of the EG program [12] to 
the string-localized context might be most promising.

A general strategy can be outlined already. With a fixed smearing function c(e), 
string-localized two-point functions enjoy the Hadamard property [14], which allows 
to formulate a Wick expansion. Replacing two-point functions by kinematic propa-
gators, one obtains an unrenormalized time-ordered Wick expansion, which has to 
be extended to the singular set where it is not well-defined. Thanks to the Hadamard 
property, this set is not bigger than in the local case [14, 15], and in particular, the 
usual power-counting method applies, limiting the scaling degree of the renor-
malizations. But there may be more ambiguities in the extensions because of the 

(4.1)U(Λ)AW
�
(x)U(Λ)∗ = Λ�

�

(
AW
�
(Λx) + ��Γ(Λ, x)

)
,
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possibility of string-integrated delta functions. Their classification seems to be the 
main difficulty, where a “factorization rule” for string-localized S-matrized would 
be instrumental. Here, ideas from “string-chopping” [9] are expected to be helpful. 
At the same time, the increase of ambiguities will be (partly) counter-balanced by 
the condition that string-independence (valid at tree level) must be preserved.

On the other hand, the equivalence results at tree-level, presented in this paper 
and [31], let us surmise that sQFT will not produce other results than local QFT 
with its “negative probabilities plus BRST”. One may therefore do the actual loop 
calculations in the usual framework, while the message of sQFT is conceptual: The 
interactions of the SM can be understood without gauge fields and ghosts, and are 
rather direct consequences of fundamental principles of quantum field theory: Hil-
bert space positivity, covariance and locality.
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