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Abstract
In this paper we study a system of decoupled forward-backward stochastic differ-
ential equations driven by a G-Brownian motion (G-FBSDEs) with non-degenerate
diffusion. Our objective is to establish the existence of a relaxed optimal control for
a non-smooth stochastic optimal control problem. The latter is given in terms of a
decoupled G-FBSDE. The cost functional is the solution of the backward stochastic
differential equation at the initial time. The key idea to establish existence of a relaxed
optimal control is to replace the original control problem by a suitably regularised
problem with mollified coefficients, prove the existence of a relaxed control, and then
pass to the limit.
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Mathematics Subject Classification 60H05 · 60H20 · 60J75 · 93E20 · 91G80 · 91B70

1 Introduction

In this paper we study systems of decoupled controlled forward-backward stochas-
tic differential equations (FBSDEs) driven by G-Brownian motion. These FBSDEs
appear in connection with optimal control problems for diffusion with uncertain drift
and diffusivity, e.g. as representations of the associated dynamic programming equa-
tions [4]. We call these FBSDEs in the framework of G-Brownian motion and the
associated nonlinear expectation space G-FBSDEs, so as to distinguish them from
standard FBSDEs that are driven by a standard Brownian motion.
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In the standard framework, (F)BSDEs were studied by many authors, starting from
the seminal work on linear BSDEs by Bismut [3] in 1973, as equation for the adjoint
process in the stochastic version of Pontryagin maximum principle. Nonlinear back-
ward stochastic differential equations (BSDEs) and associated decoupled FBSDEs
driven by standard Brownian motion have been introduced by Pardoux and Peng [17]
in 1990. They proved that, in aMarkovian framework, the solution of aBSDEdescribes
the viscosity solution of the associated semi-linear PDE. We refer for more details to
the paper by El-Karoui et al. [5] the references therein. The relation between viscosity
solutions to a certain class of nonlinear Hamilton–Jacobi–Bellman (HJB) equation for
optimal control and the solutions to BSDEs has been studied in [14], using that the
associated cost function is described by an adapted solution of a BSDE. Early exam-
ples of applications of BSDEs to stochastic control, especially in finance, are found
in [5, 12, 13], to mention just a few examples. More recent examples of fully-coupled
FBSDEs with non-smooth coefficients and their applications to stochastic control
problems include existence results for optimal controls that have been established in
[1, 11].

In the last years, aspects of model ambiguity, such as volatility uncertainty, have
been studied by Peng [15, 16] who introduced the G-expectation space as the canon-
ical nonlinear expectation space associated with the G-Brownian motion. Denis and
Martini [4] suggested a structure based on quasi-sure analysis from abstract potential
theory to construct a similar structure using a tight family P of possibly mutually sin-
gular probabilitymeasures and established a corresponding Itô type stochastic calculus
for the G-framework. Existence and uniqueness of solutions of G-SDEs were studied
by Peng [16] and, later on, by Bai and Lin [2] under slightly weaker integral-Lipschitz
conditions on the SDE coefficients.

BSDEs driven by a G-Brownian motion (G-BSDEs) were studied by Hu and al.
[10] who showed that, unlike classical BSDEs that do not admit a direct probabilistic
interpretation of fully nonlinear PDEs, G-BSDEs provide the missing link for fully
nonlinear PDEs that appear for example, in mathematical finance in connection with
the pricing of path-dependent contingent claims in uncertain volatility model; see also
[7] for a related existence and uniqueness result for G-BSDEs.

1.1 Own Contribution and RelatedWork

In this paper, we consider decoupled controlled G-FBSDEs of the form

dXu
s = b(s, Xu

s , us)ds + σ(s, Xu
s )dWs + h(s, Xu

s , us)d〈W 〉s (1a)

dY u
s = − f (s, Xu

s ,Y
u
s , Zu

s , us)ds − g(s, Xu
s ,Y

u
s , Zu

s , us)d〈W 〉s + Zu
s dWs + dMu

s ,

(1b)
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where s ∈ [t, T ] for some T ∈ (0,∞), and h(s, Xu
s , us)d〈W 〉s =

∑

i, j

hi j d〈Wi ,Wj 〉s
and likewise for g = (gi j ). Equation (1) is endowed with the boundary data

Xu
t = x, Yu

T = �(Xu
T ), Mu

t = 0. (2)

Precise assumptions on the coefficients are given below. Our cost function if the
solution of the BSDE at the initial time t . We call the system decoupled, because
the controlled forward SDE (1a) is independent of the solution to the BSDE (1b).
Existence and uniqueness of coupled G-FBSDEs has been studied byWang and Yuan
[20] under some monotonicity assumptions of the coefficients conditions.

Our objective is to establish the existence of a relaxed optimal control allowing the
coefficients to be non-smooth. The key idea to establish existence of a relaxed optimal
control is to replace the coefficients in the original control problem by a suitably
regularised problemwithmollified coefficients, prove the existence of a relaxed control
and then pass to the limit. Existence of solutions for uncontrolled G-BSDEs with
discontinuous drift coefficient was proved by [21], in our case the jump coefficient is
zero.

Relaxed controls for stochastic differential equations driven by a G-Brownian
motion (G-SDEs) were studied by Redjil and Choutri [18] who introduced the notion
of G-relaxed controls and proved the so called G-Chattering Lemma to establish
existence of an relaxed optimal control.

In the present work, one of the key steps in proving existence of a relaxed optimal
control is to prove that the gradient of the solution of the approximate HJB equation is
bounded, which allows us to define the second component of the approximate solution
of the BSDE as a control in a bounded set before passing to the limit.

The paper is organized as follows: in the remainder of this section, we will record
the main technical assumptions and definitions. In Sect. 2, we define the mollified
control problem and the corresponding dynamic programming (HJB) equation, and
prove various stability results, including convergence of the value function in the limit
of vanishing mollification parameter. The existence of the relaxed control is shown
in Sect. 3 by proving convergence of the relaxed controls. Conclusions are given in
Sect. 4. The Appendix contains various technical Lemmas for Sects. 2 and 3.

1.2 Preliminaries

LetU be any compact subset ofRl , and callU(t) the set of adapted controlsu : [t, T ] →
U for any 0 ≤ t < T .

Assumption 0 The coefficients of our control problem have the form

b : [0, T ] × R
n ×U → R

n, hi j : [0, T ] × R
n ×U → R

n,

f : [0, T ] × R
n × R × R

n ×U → R, gi j : [0, T ] × R
n × R × R

d ×U → R,

σ : [0, T ] × R
n → R

n×n;
� : Rn → R.
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In what follows, we suppose that the diffusion coefficient σ is non-degenerate, with
uniformly bounded inverse. The analysis in this paper is based on the sublinear G-
expectation space framework of [16] (called “G−framework” in what follows). The
corresponding canonical process on the G-expectation space is called “G-Brownian
motion” and is characterized as follows:

Definition 1 A d-dimensional process (Wt )t≥0 on a sublinear expectation space
(�,H, Ê) is called a G-Brownian motion if it has the following properties:

(i) W0(ω) = 0,
(ii) For every t, s ≥ 0, the increment Wt+s − Wt is N ({0}, s�)1 is distributed and is

independent of (Bt1, Bt2 , . . . , Btn ), for any 0 ≤ t1 ≤ . . . ≤ tn ≤ t , n ∈ N,

where � is any positive semidefinite symmetric d × d matrix.

We define

Mp
G([0, T ];Rn), p ∈ [1,∞) to be the completion of the space of simple processes

of the form

ξt (ω) =
N∑

k=1

ηk−1(ω)1[tk−1,tk )(t)

with 0 = t0 < t1 < . . . < tN = T being a partition of [0, T ] and ηk ∈ L p
G(�tk ),

where the completion is with respect to the norm

‖ξ‖G,p :=
(
Ê

(∫ T

0
|ξt |p dt)

))1/p

H p
G(0, T ) to be the completion of M0

G(0, T ) under the norm ‖η‖H
p =

⎧
⎨

⎩Ê

⎡

⎣
(∫ T

0
|ηs |2ds

) p
2

⎤

⎦

⎫
⎬

⎭

1
p

;

S0G(0, T ) := {h(Wt1∧t , . . . ,Wtn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb.li p(R
n+1)
} ;

S p
G(0, T ) is the completion of S0G(0, T ) under the norm ‖η‖S

p
G

=
{
Ê

(
sup

s∈[0,T ]
|ηs |p

)} 1
p

;
L
p
G(�T ) is the space of decreasing G-martingales with K0 = 0 and KT ∈

L p
G(�T );

We also need the following BDG-type inequalities in the G-framework:

1 N ({0}, s�) is the G-normal distribution that is defined in terms of the associated G-heat equation; see
[16].
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Proposition 2 (from [16]) Let β ∈ Mp
G(0, T ) with p ≥ 2. Then we have

∫ T

0
βt d Bt ∈

L p
G(�T ) and

Ê

(∣∣∣∣
∫ T

0
βt dWt

∣∣∣∣
p
)

≤ CpÊ

⎛

⎝
∣∣∣∣
∫ T

0
β2
t d〈W 〉t

∣∣∣∣

p
2

⎞

⎠ . (3)

Proposition 3 (from [7]) For each η ∈ Hα
G(0, T ) with α ≥ 1 and p ∈ (0, α], it holds

l pcpÊ

⎛

⎝
∣∣∣∣
∫ T

0
η2s ds

∣∣∣∣

p
2

⎞

⎠ ≤ Ê

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
ηsdBs

∣∣∣∣
p
)

≤ l̄ pCpÊ

⎛

⎝
∣∣∣∣
∫ T

0
η2s ds

∣∣∣∣

p
2

⎞

⎠ ,

where 0 < cp < Cp < ∞ are constants, and l and l̄ are upper and lower bounds for
the component-wise variance of W1.

Assumption 1 (a) For everyfixed (x, υ) ∈ R
n×U ,b(·, x, υ),hi j (·, x, υ), andσ j (·, x)

are continuous in t , where σ j denotes the j-th column of the matrix σ ;
(b) b, hi j , σ j are given functions satisfying b(·, x, υ), hi j (·, x, υ), σ j (·, x) ∈ L2

G
([0, T ],Rn);

(c) There exists a constant L > 0, such that for every t ∈ [0, T ], x, x ′ ∈ R
n , and

every u ∈ U ,

∣∣φ(t, x, u) − φ(t, x ′, u)
∣∣ ≤ L

∣∣x − x ′∣∣ ,

where φ is a placeholder for b, hi j . We further suppose that σ j is Lipschitz in x .

Assumption 2 (a) There exists some β > 2 such that for any y, z, u, we have

f (·, ·, y, z, u), gi j (·, ·, y, z, u) ∈ Lβ
G([0, T ],Rn).

(b) There exists L > 0, such that for every t ∈ [0, T ], u ∈ U , y, y′ ∈ R, and
z, z′ ∈ R

d , it holds

| f (t, x, y, z, u) − f (t, x, y′, z′, u)| +
d∑

i, j=1

|gi j (t, x, y, z, u) − gi j (t, x, y
′, z′, u)|

≤ L(|y − y′| + |z − z′|).

(c) f (·, x, y, z, u), gi j (·, x, y, z, u) are continuous in t ∈ [0, T ], for every fixed
(x, y, z, u)

(d) There exist a constant L > 0, such that

|�(x) − �(x ′)| ≤ L(|x − x ′|).
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Assumption 3 The functions b, σ, f , h = (hi j ), g = (gi j ), and � are bounded.
For every fixed initial time t ∈ [0, T ], and initial state x ∈ R

n , and for every fixed
control u ∈ U(t) under Assumption 1 (see [16]), the forward stochastic differential
equation in (1) has a unique solution Xt,x,u . Moreover, under Assumption 3 (see [7])
the backward stochastic differential equation of (1) has a unique solution denoted by
(Y , Z , M) = (Y t,x,u, Zt,x,u, Mt,x,u). Note that, the first component, Y , of the solution
of the backward stochastic differential equation in (1) is deterministic in that Y t,x,u

t is
a deterministic function of (t, x); see [10].

Definition The cost functional which will be minimized, is defined for u ∈ U(t) by:

J (t, x; u) := Y t,x,u
t .

A control û is called optimal if it minimizes J that is:

Y t,x ,̂u
t = essinf

u∈U(t)
Y t,x,u
t .

If û ∈ U(t), we say that û is an optimal strict control. We define the value function
by:

V (t, x) = essinf
u∈U(t)

J (t, x, u).

V (t, x) is the unique viscosity solution of the G-HJB equation
In what follows, we will suppress the dependence of V on the variables t and x and

simply write V = V (t, x)

∂t V + inf
u∈U(t)

H(∇2V ,∇V , V , x, t, u) = 0,

V (T , x) = �(x),
(4)

where

H(∇2V ,∇V , V , x, t, u) =G(F(∇2V ,∇V , V , x, t, u)) + 〈b(t, x, u),∇V 〉
+ f (t, x, V , σ T∇V , u),

with G denoting the nonlinear infinitesimal generator of the G-Brownian motion, and

Fi j (∇2V ,∇V , V , x, t, u) =〈∇2Vσi (t, x), σ j (t, x)〉 + 2〈∇V , hi j (t, x, u)〉
+ 2gi j (t, x, V , σ T∇V , u),

where (σ T∇V )(t, x) = (〈σ1,∇V 〉, . . . , 〈σd ,∇V 〉)T (t, x) = Z δ
t .

We give now the definition of a relaxed stochastic control:
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Definition 4 (Relaxed stochastic control) A relaxed stochastic control (or simply
a relaxed control) on (�T ,Lip(�T ), Ê) is a random measure q(ω, dt, da) =
μt (ω, da)dt such that for each subset A ∈ B(U ), the process (μt (A))t∈[0,T ] is FP -
progressively measurable i.e. for every t ∈ [0, T ], the mapping [0, t] × � → [0, 1]
defined by (s, ω) 
→ μs(ω, A) isB([0, t])⊗F̂P

t -measurable. In particular, the process
(μt (A))t∈[0,T ] is adapted to the universal filtration F

P . We denote by R the class of
relaxed stochastic controls.

Our coefficients are not smooth enough to ensure the existence of a strong solution
of the HJB equation (4). Therefore, the next step will be to define an approximate HJB
equation.

2 TheMollified Hamilton–Jacobi–Bellman Equation

In this section we aim to determine explicitly an optimal feedback control process
from a sequence of stochastic control problems which value functions converge to
the value function of our original problem. The coefficients of the original control
problem are not smooth enough to get a smooth solution, therefore we replace them
by mollified coefficients.

To this end, we define the mollification of a given function as follows: for any
integer m ≥ 1, let ϕ : Rm → R have the following properties:

• ϕ ≥ 0 is non-negative and smooth function.
• The support of ϕ is contained in the unit ball in R

m , i.e. supp(ϕ) ⊂ B0(1) where
B0(1) denotes the unit ball in Rm .

• ϕ is normalised, i.e.
∫

R
m

ϕ (ξ) dξ = 1.

The function ϕ is called a “mollifier”. Then, for any Lipschitz function l : Rm → R,
we define its mollification by

lδ (ξ) := δ−m
∫

R
m
l
(
ξ − ξ

′)
ϕ
(
δ−1ξ

′)
dξ

′
, ξ ∈ R

m, δ > 0.

Properties 5 The mollification lδ of a function l enjoys the following properties:

(1) |lδ (ξ) − l (ξ)| ≤ Clδ

(2) |lδ (ξ) − lδ′ (ξ)| ≤ Cl |δ − δ′|
(3)
∣∣lδ (ξ) − lδ

(
ξ ′)∣∣ ≤ Cl |ξ − ξ ′| for all ξ, ξ ′ ∈ R

m and δ, δ′ > 0 where Cl denotes
the Lipschitz constant of l that is independently of δ.

Proof We prove only the last statement. It holds

|lδ(ξ) − lδ(ξ
′)| = δ−m

∫

R
m

|l(ξ − x)ϕ(δ−1x) − l(ξ ′ − x)ϕ(δ−1x)|dx

≤ δ−m
∫

R
m

ϕ(δ−1x)Cl |ξ − ξ
′ |dx

123
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≤ δ−mCl |ξ − ξ
′ |
∫

R
m

ϕ(δ−1x)dx .

Substituting M = δ−1x , it follows that

|lδ(ξ) − lδ(ξ
′)| ≤ Cl |ξ − ξ

′ |
∫

R
m

ϕ(M)dM ≤ Cl |ξ − ξ ′|.

Then
∣∣lδ (ξ) − lδ

(
ξ ′)∣∣ ≤ Cl |ξ − ξ ′|. ��

Definition 6 For each δ ∈ (0, 1] we denote by bδ, σδ, fδ and �δ the mollification
of the functions b, σ, f and �, respectively, introduced in Sect. 1, with l = b (·, v) ,

σ (·, v) , f (·, v) and �(.) .

Now, let Assumptions 1–3 hold, and let δ ∈ (0, 1] be an arbitrary fixed number. We
define the function Fδ = (Fδ

i j ) by:

Fδ
i j (t, x, V ,∇V ,∇2V , v) = 〈∇2Vσ δ

i (t, x), σ δ
j (t, x)〉

+2〈∇V , hδ
i j (t, x, V , v)〉 + 2gδ

i j (t, x, V , (σ δ)T∇V ).

The mollification H δ(t, x, V ,∇V ,∇2V , u) of the Hamiltonian is defined as

H δ(t, x, V ,∇V ,∇2V , v) = Gδ(Fδ(t, x, V ,∇V ,∇2V , v)) + 〈bδ,∇V 〉
+ fδ(t, x, V ,∇V ,∇2V , v).

Now, since H δ is a smooth function and Gδ is uniformly elliptic, the corresponding
G-HJB equation

∂t V
δ + inf

v∈U H δ(t, x, V δ,∇V δ,∇2V δ, v) = 0

V δ(T , x) = �δ(x), x ∈ R
n . (5)

has a unique bounded and continuous viscosity solution V δ . It moreover follows from

the regularity result of Krylov [8], that (5) even has a classical C1+ l
2 ,2+l([0, T ]×R

n)

solution. The regularity of V δ and the compactness of the control set U allows us to
find ameasurable function vδ : [0, T ]×R

n 
→ U such that for all (t, x) ∈ (0, T ]×R
n ,

H δ(x, (V ,∇V ,∇2V )(t, x), vδ) = inf
v∈U H δ(x, (V δ,∇V δ,∇2V δ)(t, x), v). (6)

Lemma 7 Assume that the Assumptions1–3 are satisfied, then

J δ(t, x; uδ) = V δ(t, x) = ess inf
u∈U(t)

J δ(u).

Moreover uδ
s := vδ

s (s, X
δ
s ), s ∈ [0, T ] is an admissible control.
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Proof Let (t, x) ∈ [0, T ]×R
n a fixed arbitrary initial datum and δ ∈ (0, 1]. Further let

V δ be the solution of (5) and vδ the function defined by (6). We consider the following
G-SDE

dX δ
s = bδ(s, X

δ
s , v

δ(s, X δ
s ))ds + σδ(s, X

u
s )dWs

+hδ(s, X
δ
s , v

δ(s, X δ
s ))d〈W 〉s, s ∈ [t, T ]

X δ
t = x . (7)

Since bδ, hδ are bounded measurable functions in (t; x) and σδ is Lipschitz in x , and
as b and h are in L2, then, due to a result in [6], see also [21], there exists a unique
solution X δ

t ∈ M2
G([0, T ];Rn). We define

Y δ
s = V δ(s, X δ

s ), and Z δ
s = ∇V δ(s, X δ

s )σδ(s, X
δ
s ). (8)

and apply the G-Itô formula to V δ(s, X δ
s ):

V δ(s, X δ
T ) − V δ(s, X δ

t ) =
∫ T

t
∇V δ(s, X δ

s )σδ(s, X
δ
s )dWs

+
∫ T

t
∇V δ(s, X δ

s bδ(s, X
δ
s , v

δ(s, X δ
s ))ds

+
∫ T

t
[∇V δ(s, X δ

s )hδ(s, X
δ
sv

δ(s, X δ
s )), v

δ((s, X δ
s ))

+
∫ T

t

1

2
∇2V δ(s, X δ

s )σδ(s, X
δ
s )]d〈W 〉s .

Taking the partial derivative with respect to s and time s = t yields together with the
G-HJB equation (5) the following system of coupled equations for (X δ

s ,Y
δ
s , Z δ

s , M
δ
s ):

dXδ,u
s = bδ(s, X

δ,u
s , uδ

s )ds + σδ(s, X
δ,u
s )dWs + hδ(s, X

δ,u
s , uδ

s )d〈W 〉s , (9a)

dY δ,u
s = − fδ(s, X

δ,u
s , Y δ,u

s , Zδ,u
s , vδ(s, Xδ

s ))ds − gδ(s, X
δ,u
s , Y δ,u

s , Zδ,u
s )d〈W 〉s + Zδ,u

s dWs + dMu
s

(9b)

Xδ,u
t = x, Y δ,u

T = �δ(X
δ,u
T ), Mu

t = 0 . (9c)

By [7], the backward equation (9b) has a unique solution (Y δ, Z δ, Mδ) ∈ S2G(0, T )×
H2
G(0, T ), and we can identify the solution (X δ,Y δ, Z δ) of (9) with the solution

(X δ,t,x,uδ
,Y δ,t,x,uδ

, Z δ,t,x,uδ
, Mu) of (7)–(8). In particular, Y δ,t,x,uδ

t = V δ(t, x).
To show that uδ is optimal, consider any δ′ ∈ (0, 1] different from δ. Then dropping

the dependence on the initial conditions, and denoting X δ′,uδ := X δ′,t,x,uδ
the solution

of the forward stochastic differential equation

dX δ′,uδ

s = bδ′(s, X δ′,uδ

s , uδ)ds + σδ′(s, X δ′,uδ

s )dWs

+hδ′(s, X δ′,uδ

s , uδ)d〈W 〉s, s ∈ [t, T ]

123
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X δ′,uδ

t = x .

Here uδ is a shorthand for uδ
s := vδ

s (s, X
δ′,uδ

s ) for any s ∈ [t, T ]. Applying G-Itô’s
formula to

Y δ′,uδ := V δ′
(s, X δ′,uδ

s ) and Z δ′,uδ := σδ′(s, X δ′,uδ

s )∇V δ′
(s, X δ′,uδ

s )

and introducing the shorthand

f̃δ′,u := Gδ′
(Fδ′

(t, x, V δ′
,∇V δ′

,∇2V δ′
, u)) + 〈bδ′(t, x, V δ′

, u),∇V δ′ 〉,

it follows that the process (Y δ′,uδ
, Z δ′,uδ

, M ′) is the unique solution of the system of
equations

dY δ′,uδ

s = − f̃δ′,uδds − gδ(s, X
δ′,uδ

s ,Y δ′,uδ

s , Z δ′,uδ

s )d〈W 〉s + Z δ′,uδ

s dWs + dM ′
s

Y δ′,uδ

T = �δ′(X δ′,uδ

T ),

where M ′ is a G-decreasing martingale [6]. The mollified G-HJB equation with clas-
sical solution V δ′

implies f̃δ′,uδ ≤ f̃
δ′,uδ′ . Then, using the comparison theorem for

BSDEs, [10, Thm 3.6, p. 1183], and observing that f̃
δ′,uδ′ = fδ′ , we can conclude

that

Y δ′,uδ′
t ≤ Y δ′,uδ

t ,

where the left hand side is the solution of (9b) for δ = δ′. Since δ′ was arbitrary, the
last inequality shows that uδ = vδ(s, X δ,uδ

s ) =: vδ(s, X δ
s ) is the optimal control. ��

Lemma 8 Suppose that Assumptions 1–3 hold. Then there exists a non-negative con-
stant C̄, only depending on the Lipschitz constants of the coefficients and the terminal
time T , such that:

|V δ′
(t, x) − V δ(t, x)|2 ≤ C̄ |δ′ − δ|2, t ∈ [0, T ], x ∈ R

n . (10)

For the proof of this Lemma, we refer to Appendix A.1.

Lemma 9 As fδ, bδ,�δ, σδ, hδ and gδ are boundedC∞ functions, all their derivatives
are bounded. Then

∂t V
δ(t, x) + H δ(x, (V δ,∇V δ,∇2V δ)(t, x), vδ(t, x)) = 0 (t, x) ∈ [0, T ] × R

n

V δ(T , x) = �(x), x ∈ R
n . (11)

admits a unique solution V δ ∈ C1,2
b ([0, T ] × R

n), where

∇V δ and ∇2V δ are uniformly bounded on [0, T ] × R
n . (12)

123



Journal of Optimization Theory and Applications (2024) 202:1027–1059 1037

Moreover, there exists a constant C̄ only depending on T and constants �̄, κ̄ only
depending on T and the Lipschitz constant L of the FBSDEcoefficients (cf. Assumption
2), such that

sup
(t,x)∈[0,T ]×R

n
|V δ(t, x)| ≤ C̄ (13)

sup
(t,x)∈[0,T ]×R

n
|∇V δ(t, x)| ≤ �̄ (14)

∀t, t ′ ∈ [0, T ], |V δ(t ′, x) − V δ(t, x)| ≤ κ̄|t ′ − t | 12 . (15)

Similar result of the estimations given in the above lemmawere already proved in [9]
even when the diffusion is depend on the control. Here our diffusion is independent on
the control because then when it is the case we need to prove existence of the solution
of G-SDE with measurable diffusion which we leave for a future work.

For the proof of the lemma, see Appendix A.2.
We briefly discuss the implications of Lemmas 7–9: To this end, note that

|V δ′
(t ′, x ′) − V δ(t, x)| ≤ |V δ′

(t ′, x ′) − V δ(t ′, x ′)| + |V δ(t ′, x ′) − V δ(s, x)|,
as a consequence of which, (14) and (15) imply that

|V δ′
(t ′, x ′) − V δ(t, x)| ≤ κ̄|t − t ′| 12 + �̄|x − x ′|,

Using (10) and adapting the constants whenever necessary, we obtain

|V δ′
(t ′, x ′) − V δ(t, x)| ≤ C

(
|t − t ′| 12 + |x − x ′| + |δ − δ′|

)

for some generic constant C > 0 depending on L and T . As V δ is bounded in (t, x),
we conclude that it converges to a function V̄ as δ → 0, moreover the Hamiltonian
H δ converges to H because of the stability of the viscosity solution, in fact V̄ is also
solution of (5). The uniqueness of the solution of equation (5) entails that V̄ = V .
This prove that

V δ → V as δ → 0.

More precisely,

|V δ(t, x) − V (t, x)| ≤ Cδ, for all δ ∈ [0, 1) and (t, x) ∈ [0, T ] × R
n,

for a constant C that depends on x and t .

3 Convergence of the Optimal Control

In this section we show that the solution to the mollified problem (5) converges to
the value function of our original problem, and show that the optimal control of our
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original stochastic optimal control is the limit of the sequence of the optimal control
of the mollified systems. The result is stated in the next theorem.

Theorem 10 Assume that the Assumptions 1–3 are satisfied. Let (t, x) ∈ [0, T ] ×R
n

and (δn)n∈N be a sequence of positive real numbers which tends to 0. Then, there
exists a process (X̄ , Ȳ , Z̄ , M̄) ∈ M2

G([0, T ]) × S2
G(0, T ), with M̄ is a decreasing

martingale and an admissible control ū ∈ U(t), such that:

1. There is a subsequence of (X δn ,Y δn )n∈N which converges in distribution to (X̄ , Ȳ ),
2. (X̄ , Ȳ , Z̄ , M̄) is a solution of the FBSDE system

d X̄s = b(s, X̄s, ūs)ds + σ(s, X̄s)dW̄s + h(s, X̄s, us)d〈W 〉s,
dȲs = − f (s, X̄s, Ȳs, Z̄s, ūs)ds − g(s, X̄s, Ȳs, Z̄s)d〈W 〉s + Z̄sdWs + d M̄s,

X̄t = x ȲT = ξ = �(X̄T ), M̄t = 0. (16)

3. For every (t, x) ∈ [0, T ] × R
n, it holds that

Ȳt = V (t, x) = ess inf
u∈R(t)

J (t, x; u) ,

i.e. there is a relaxed control, such that ū ∈ R is optimal for (16) and hence for
our original SOC problem.

To prove the Theorem, we need the following Lemma:

Lemma 11 For all n ∈ N. There exists a constant L such that

Ê

(
sup

s∈[t,T ]
|X δn

s − Xn
s |2
)

≤ Lδ2n (17)

Ê

(
sup

s∈[t,T ]
|Y δn

s − Yn
s |2
)

≤ Lδ2n . (18)

For the proof see Appendix B.

Proof of Theorem 10 Wewill prove that the limit of the sequence (X δn ,Y δn ) coincides
with the limit of a subsequence of an auxiliary sequence of forward SDEs whose
solutions converge in law to (X̄ , Ȳ ). To this end, we define the sequence of auxiliary
processes (Xn

s ,Y
n
s ) as the unique solution of the following controlled forward system:

dXn
s = b(s, Xn

s , u
δn
s )ds + σ(s, Xn

s )dWs + h(s, Xn
s , u

δn
s )d〈W 〉s,

dY n
s = − f (s, Xn

s ,Y
n
s , σ Twδn

s , uns )ds − g(s, Xn
s ,Y

n
s , σ Twδn

s )d〈W 〉s
+σ Twδn

s dWs + θns d〈B〉s − 2G(θns )ds,

Xn
t = x, Yn

t = V δn (t, x), (19)

where uδn
s := vδn (s, X δn

s ) and w
δn
s = ∇V δn (s, X δn

s ). We moreover use the short-
hand σ Tw

δn
s = (σ (s, Xn

s ))
Tw

δn
s here and σ T

δn
w

δn
s = (σδn (s, X

δn
s ))Tw

δn
s below for
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the mollified Z -process. Here, (θn)n∈N is some sequence of stochastic processes
θn = (θns )s∈[0,T ] with θn0 = 0 for all n ∈ N. We further define the process (X δn

s ,Y δn
s )

as the solution of the following controlled forward SDE

dX δn
s = bδn (s, X

δn
s , uδn

s )ds + σδn (s, X
δn
s )dWs + hδn (s, X

δn
s , uδn

s )d〈W 〉s,
dY δn

s = − fδn (s, X
δn
s ,Y δn

s , σ T
δn

wδn
s , uδn

s )ds − g(s, X δn
s ,Y δn

s , σ T
δn

wδn
s )d〈W 〉s

+σ T
δn

wδn
s dWs,

X δn
t = x Y δn

t = V δn (t, x)

From(8)wehave, for t ≤ s ≤ T , thatY δn
s = V δn (s, X δn ). Since (s, x) 
→ V δn (s, x)

is a C1,2 function that satisfies equation (11) with δ = δn , it follows from G-Itô’s
formula that

Y δn
t = �δn (X

δn
T ) +

∫ T

t
fδn (s, X

δn
s ,Y δn

s , σ T
δn

wδn
s , uδn

s )ds

+
∫ T

t
g(s, X δn

s ,Y δn
s , σ T

δn
wδn
s )d〈W 〉s −

∫ T

t
σ T

δn
wδn
s dWs .

Setting

χn
s :=

(
Xn
s

Y n
s

)
, rns := (σ Twδn

s , 0, uδn
s ) W :=

(
W
W

)
, and d〈W〉 :=

(
d〈W 〉
d〈W 〉

)

then (19) can be recast as

dχn
s = β(χn

s , rns )ds + �(χn
s , rns )d〈W〉s + �(χn

s , rns )dWs, s ∈ [t, T ],
χn
t =

(
xT , V δn (t, x)

)T
,

with

β(χn
s , rns ) =

(
b(s, Xn

s , u
δn
s )

− f (s, Xn
s ,Y

n
s , σ Twδn , uδn

s ) − 2G(θn)

)

�(χn
s , rns ) =

(
h(s, Xn

s , u
δn
s )

−g(s, Xn
s ,Y

n
s , wδnσ(Xn

s )) + θn

)

�(χn
s , rns ) =

(
σ(s, Xn

s )

w
δn
s σ(Xn

s )

)
.

From (9), we can conclude that w
δn
s = ∇V δn (s, X δn

s ) is uniformly bounded. As
a consequence, we can regard (rns )s∈[t,T ] as a control with values in the compact set
A ⊂ R

d+1 ×U .
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The next step is to take the limit n → ∞, for the purpose of which we consider the
random measure

qn(ω, ds, da) = δrns (ω)(da)ds, (s, a) ∈ [0, T ] × A, ω ∈ �.

We can identify the control process rn with the measure qn , which amounts to saying
that the controls rn are in the set of relaxed controls. Specifically, we consider rn as
random variable with values in the space V of all Borel measures qn on [0, T ] × A,
whose projection qn(·× A) coincides with the Lebesgue measure on A, endowed with
the usual σ -algebra of Borel sets, B(A).

From the boundedness of our coefficients and by the compactness of V with respect
to the topology induced by the weak convergence of measures, we get the tightness of
the laws of (χn, qn) on this space, and then, from this and the use of the G-Chattering
Lemma [18] we can extract a subsequence that converges in law to (χ, r̄), with r̄
having values inR. The limit process satisfies

dχs = β(χ, r̄s)ds + �(χs, r̄s)d〈W〉s + �(χs, r̄s)dWs, s ∈ [t, T ],
χt =

(
xT , V δn (t, x)

)T
, (20)

with the straightforward definitions of �,
∏

and β, and

χ :=
(
X̄
Ȳ

)
,W :=

(
W
W

)
, and d〈W〉 :=

(
d〈W 〉
d〈W 〉

)
.

Noting that r̄ := (w̄, θ̄ , ū), the system (20) can be again recast as

d X̄s = b(s, X̄s, ūs)ds + σ(s, X̄s)dWs + h(s, X̄s, ūs)d〈W 〉s,
dȲs = − f (s, X̄s, Ȳs, Z̄s, ūs)ds − g(s, X̄s, Ȳs, Z̄s)d〈W 〉s + Z̄sdWs + d M̄s,

X̄t = x Ȳt = V (t, x)

with

(M̄s)s∈[t,T ], M̄s :=
∫ s

t
θ̄r d〈B〉r − 2

∫ s

t
G(θ̄r )dr

being a decreasing G-martingale. This proves the first part of the Theorem (Note that
by tightness, we can choose an arbitrary subsequence).

The second statement follows from Lemma 11 that shows that, if the sequence
(Xn,Yn)n∈N converges in law, the same holds true for (X δn ,Y δn )n∈N, and the limits
have the same distribution. Further, we deduce from (17)–(18) and Proposition 9, that
Ȳs = V (s, X̄s) for each s ∈ [t, T ] quasi-surly (q.-s.). In particular, YT = �(XT ) q.-s.
So, the second part of the assertion is proved.

To prove the last part, note that Ȳs = V (s, X̄s) for all s ∈ [t, T ] q.-s.. On the other
hand, it is well known that, for the unique bounded viscosity solution V of the HJB
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equation (4), it holds

V (t, x) = ess inf
u∈R(t)

J (t, x; u), q.-s.

Hence the Theorem is proved. ��

4 Conclusions

In this paper, we have proved existence of a relaxed optimal control for a stochastic
control problem that involves a system of decoupled forward-backward SDEs, with
non-smooth coefficients and driven by a G-Brownian motion (G-FBSDEs). From a
high level perspective, the proof is based on the G-Chattering Lemma that has been
proved by one of the authors of this paper. The key idea is to replace all coefficients
in the original G-FBSDE by mollified coefficients, for which existence of an optimal
control can be proved, and then send the mollification parameter to zero. From a tech-
nical perspective, the proof relies on uniform gradient bounds for the corresponding
value function that implies that the associated backward SDE is driven by a control
that is bounded uniformly in time. The latter then allows for proving existence of a
relaxed optimal control by extracting appropriate subsequences. We believe that the
general approach of the G-Chattering Lemma can even be applied to optimal con-
trol problems for smooth G-FBSDEs, such as G-FBSDEs with coefficients that have
multiscale features. We leave this investigation, however, for future work.

Appendices

A Approximation of the HJB Equation

A.1 Proof of Lemma 8

Proof We start by introducing some notation:

X := X δ,t,x,uδ

, Y := Y δ,t,x,uδ

, Z := Z δ,t,x,uδ

,

X ′ := X δ′,t,x,uδ′
, Y ′ := Y δ′,t,x,uδ′

, Z ′ := Z δ′,t,x,uδ′

and

fδ(s) := fδ(s, Xs,Ys, Zs, u
δ), fδ′(s) := fδ′(s, X ′

s,Y
′
s , Z

′
s, u

δ′
)

gδ(s) := gδ(s, Xs,Ys), gδ′(s) = gδ′(s, X ′
s,Y

′
s)

hδ(s) := hδ(s, Xs, u
δ
s ), hδ′(s) = hδ′(s, X ′

s, u
δ′
s ) .
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Applying Itô’s formula to |Y ′
s − Ys |2, we obtain

|Y ′
t − Yt |2 +

∫ T

t
|Z ′

s − Zs |2d〈W 〉s = −
∫ T

t
2|Y ′

s − Ys ||Z ′
s − Zs |dWs

−
∫ T

t
|Y ′

s − Ys |2dMs+|�δ(XT )−�δ′(X ′
T )|2

+
∫ T

t
2|Y ′

s − Ys |( fδ(s) − fδ′(s))ds

+
∫ T

t
2|Y ′

s − Ys |(gδ(s) − gδ′(s))d〈W 〉s .

Let Jt =
∫ T

t
2|Y ′

s − Ys ||Z ′
s − Zs |dWs +

∫ T

t
|Y ′

s − Ys |2dMs ; then

|Y ′
t − Yt |2 + Jt =|�δ(XT ) − �δ′(X ′

T )|2 +
∫ T

t
2|Y ′

s − Ys |( fδ(s) − fδ′(s))ds

+
∫ T

t
2|Y ′

s − Ys |(gδ(s) − gδ′(s))d〈W 〉s .

According to [7], the process J is a G-martingale, therefore

Ê(|Y ′
t − Yt |2) ≤Ê(|�δ′(X ′

T ) − �δ(XT )|2) + Ê

(∫ T

t
2|Y ′

s − Ys |( fδ(s) − fδ′(s))ds

)

+ Ê

(∫ T

t
2|Y ′

s − Ys |(gδ(s) − gδ′(s))d〈W 〉s
)

,

and so, by Young’s inequality,

Ê(|Y ′
t − Yt |2) ≤Ê(|�δ′(X ′

T ) − �δ(X
′
T ) + �δ(X

′
T ) − �δ(XT )|2)

+ Ê

(∫ T

t

1

ε
|Y ′

s − Ys |2 + ε| fδ(s) − fδ′(s)|2ds
)

+ Ê

(∫ T

t

1

ε1
|Y ′

s − Ys |2 + ε1|gδ(s) − gδ′(s)|2d〈W 〉s
)

.

Using the BDG inequality under G-expectations, [2, Lemma 2.18], with p = 1, we
have

Ê(|Y ′
t − Yt |2) ≤2Ê(|�δ′(X ′

T ) − �δ(X
′
T )|2) + 2Ê(|�δ(X

′
T ) − �δ(XT )|2)

+ 1

ε

∫ T

t
Ê(|Y ′

s − Ys |2)

+ εÊ

(∫ T

t
| fδ(s) − fδ′(s)|2ds

)
+ l + l̄

4ε1

∫ T

t
Ê(|Y ′

s − Ys |2)ds
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+ ε1(l + l̄)

4
Ê

(∫ T

t
|gδ(s) − gδ′(s)|2ds

)

≤2Ê(|�δ′(X ′
T ) − �δ(X

′
T )|2) + 2Ê(|�δ(X

′
T ) − �δ(XT )|2)

+ 1

ε

∫ T

t
Ê(|Y ′

s − Ys |2)ds

+ εÊ

(∫ T

0
| fδ(s) − fδ(s, X

′
s , Y

′
s , Z

′
s , u

δ) + fδ(s, X
′
s , Y

′
s , Z

′
s , u

δ)

− fδ′(s, X ′
s , Y

′
s , Z

′
s , u

δ) + fδ′(s, X ′
s , Y

′
s , Z

′
s , u

δ) − fδ′(s)|2ds
)

+ l + l̄

4ε1

∫ T

t
Ê(|Y ′

s − Ys |2)ds + ε1(l + l̄)

4
Ê

(∫ T

0
|gδ(s) − gδ′(s)|2ds

)
.

Since the function f is Lipschitz, with Lipschitz constant L , and bounded by b f ,
the properties of the mollifier function imply that

Ê(|Y ′
t − Yt |2) ≤2L2|δ′ − δ|2 + 2L2

Ê(|X ′
T − XT |2) + 1

ε

∫ T

t
Ê(|Y ′

s − Ys |2)ds

+ 6L2εÊ

(∫ T

t
|(|Xs − X ′

s |2 + |Ys − Y ′
s |2 + |Zs − Z ′

s |2)ds
)

+ 2L2(T − t)ε|δ′ − δ|2 + 2L2(T − t)εb f

+ l + l̄

4ε1

∫ T

t
Ê(|Y ′

s − Ys |2)ds

+ ε1(l + l̄)

4
Ê

(∫ T

t
|gδ(s, Xs,Ys) − gδ′(s, Xs,Ys)|2ds

)

+ ε1(l + l̄)

4
Ê(

∫ T

t
|gδ′(s) − gδ′(s)|2ds)

≤ 2L2|δ′ − δ|2 + 2L2
Ê(|X ′

T − XT |2)

+ 1

ε

∫ T

t
Ê(|Y ′

s − Ys |2)ds

+ 6L2εÊ

(∫ T

t
|Xs − X ′

s |2 + |Ys − Y ′
s |2 + |Zs − Z ′

s |2ds
)

+ 2L2(T − t)ε|δ′ − δ|2 + 2L2(T − t)εb f

+ l + l̄

4ε1

∫ T

t
Ê(|Y ′

s − Ys |2)ds + (T − t)
ε1(l + l̄)L2

4
|δ − δ′|2

+ 2L2ε1(l + l̄)

4
Ê

(∫ T

0
|Xs − X ′

s |2 + |Ys − Y ′
s)|2ds

)
.
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The last inequality implies

Ê(|Y ′
t − Yt |2) ≤

(
2L2 + 6L2(T − t)ε + (T − t)

2ε1(l + l̄)L2

4

)
|δ′ − δ|2

+ 2L2
Ê(|X ′

T − XT |2)

+
(
1

ε
+ 2L2ε + l + l̄

4ε1
+ 2L2ε1(l + l̄)

4

)∫ T

t
Ê(|Y ′

s − Ys |2)ds
+ 2L2(T − t)εb f

+ 6L2εÊ

(∫ T

0
|Zs − Z ′

s |2ds
)

+
(
6L2ε + 2L2ε1(l + l̄)

4

)
Ê

(∫ T

0
|Xs − X ′

s |2ds
)

.

(21)

On the other hand,

Xt − X ′
t =
∫ t

0
(bδ(s, Xs, u

δ) − bδ′(s, X ′
s, u

δ′
))ds +

∫ t

0
(σδ(s, Xs) − σδ′(s, X ′

s))dWs

+
∫ t

0
(hδ(s) − hδ′(s))d〈W 〉s .

We apply Itô’s formula to |Xs − X ′
s |2 where Xt and X ′

t have the same initial condition,
so |Xt − X ′

t | = 0, then

|Xt − X ′
t |2 =

∫ t

0
2|Xs − X ′

s |(bδ(s, Xs, u
δ) − bδ′(s, X ′

s, u
δ′
))ds

+
∫ t

0
2|Xs − X ′

s |(σδ(s, Xs) − σδ′(s, X ′
s))dWs

+
∫ t

0
2|Xs − X ′

s |(hδ(s) − hδ′(s)) + (σδ(s, Xs) − σδ′(s, X ′
s))

2d〈W 〉s .

By Young’s inequality, we have for any ε1, ε2, ε3 > 0

|Xt − X ′
t |2 ≤

∫ t

0

(
1

ε1
|Xs − X ′

s |2 + ε1|bδ(s, Xs, u
δ) − bδ′(s, X ′

s, u
δ′
)|2
)
ds

+
∫ t

0
2|Xs − X ′

s |(σδ(s, Xs) − σδ′(s, X ′
s))dWs

+
∫ t

0
ε2|Xs − X ′

s |2 + |hδ(s) − hδ′(s)|2

+ (σδ(s, Xs) − σδ′(s, X ′
s))

2d〈W 〉s .
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Since

Ê

(∫ t

0
ε3|Xs − X ′

s |2 + 1

ε3
|σδ(s, Xs) − σδ′(s, X ′

s)|2dWs

)
= 0,

we obtain after taking expectations

Ê(|Xt − X ′
t |2) ≤Ê

(∫ t

0

(
1

ε1
|Xs − X ′

s |2 + ε1|bδ(s, Xs, u
δ) − bδ′(s, X ′

s, u
δ′
)|2
)
ds

)

+ Ê

(∫ t

0

1

ε2
|Xs − X ′

s |2 + ε2(|hδ(s) − hδ′(s)|2

+(σδ(s, Xs) − σδ′(s, X ′
s))

2)d〈W 〉s
)

.

It then follows from the BDG inequality in the G-framework for p = 1 that

Ê(|Xt − X ′
t |2) ≤

(
1

ε1
+ (l̄ + l)

4ε2

)∫ t

0
Ê(|Xs − X ′

s |2)

+ ε1Ê

(∫ t

0
|bδ(s, Xs , u

δ) − bδ′(s, X ′
s , u

δ′
)|2ds

)

+ (l̄ + l)ε2
4

Ê

(∫ t

0
|hδ(s) − hδ′(s)|2ds

)

+ (l̄ + l)ε2
4

Ê

(∫ t

0
|σδ(s, Xs) − σδ′(s, X ′

s)|2ds
)

≤
(

1

ε1
+ (l̄ + l)

4ε2

)∫ t

0
Ê(|Xs − X ′

s |2)ds

+ ε1Ê

(∫ t

0
|bδ(s, Xs , u

δ) − bδ′(s, Xs , u
δ)|2ds + ε1

∫ t

0
|bδ′(s, Xs , u

δ)

−bδ′(s, X ′
s , u

δ′
)|2ds

)

+ (l̄ + l)ε2
4

Ê

(∫ t

0
|hδ(s) − hδ(s, X

′
s , u

δ′
)|2ds

)

+ (l̄ + l)ε2
4

Ê

(∫ t

0
|hδ(s, X

′
s , u

δ′
) − hδ′(s)|2ds

)

+ (l̄ + l)ε2
4

Ê

(∫ t

0
|σδ(s, Xs) − σδ(s, X

′
s)|2ds

)

+ (l̄ + l)ε2
4

Ê

(∫ t

0
|σδ(s, X

′
s) − σδ′(s, X ′

s)|2ds
)

,

which by Assumptions2 and 3 implies

Ê(|Xt − X ′
t |2) ≤

(
1

ε1
+ (l̄ + l)

4ε2

)∫ t

0
Ê(|Xs − X ′

s |2)ds
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+ ε1

(
t L2|δ − δ′|2 + 2L2

∫ t

0
|Xs − X ′

s |2ds
)

+ 4(l̄ + l)L2ε2

4

∫ t

0
Ê(|Xs − X ′

s |2)ds + 2(l̄ + l)ε2t

4
b2h

+ (l̄ + l)L2ε2

4

∫ t

0
Ê(|Xs − X ′

s |2)ds + (l̄ + l)ε2t

4
b2σ

Setting

bhσ = 2(l̄ + l)b2h
4

+ (l̄ + l)

4
b2σ , C1 = 1

ε1
+
(
l̄ + l

)

ε2
+
(
l̄ + l

)
L2

ε24
+ ε1L

2 + (l̄ + l)L2

ε34
.

the last inequality can be brought in the form

Ê(|Xt − X ′
t |2) ≤ C1

∫ t

0
Ê(|Xs − X ′

s |2)ds + ε1t L
2|δ − δ′|2 + bhσ ε2t .

We now choose ε1 and ε2 sufficiently small, such that

ε1 ≤ L2

bhσ

, bhσ ε2t ≤ ε1t L
2|δ − δ′|2.

and therefore

Ê(|Xt − X ′
t |2) ≤ C1

∫ t

0
Ê(|Xs − X ′

s |2)ds + 3ε1t L
2|δ − δ′|2.

If we now apply Gronwall’s Lemma, the last inequality turns into

Ê(|Xt − X ′
t |2) ≤ eC1t (3ε1t L

2|δ − δ′|2). (22)

By the same steps done above, we get

Ê(|XT − X ′
T |2) ≤ eC

′
1T (3ε′

1T L2|δ − δ′|2). (23)

Now, by applying Itô’s formula to |Y ′
s − Ys |2, we find the following inequality

Ê

(∫ T

t
|Z ′

s − Zs |2d〈W 〉s
)

≤
(
2L2 + 6L2(T − t)ρ + (T − t)

2ρ1(l + l̄)L2

4

)
|δ′ − δ|2

+ 2L2
Ê(|X ′

T − XT |2)

+
(
1

ρ
+ 2L2ρ + l + l̄

4ρ1
+ L2ρ1(l + l̄)

4

)∫ T

t
Ê(|Y ′

s − Ys |2)ds

+ 2L2(T − t)ρb f + 2L2ρÊ

(∫ T

0
|Zs − Z ′

s |2ds
)
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+
(
2L2ρ + L2ρ1(l + l̄)

4

)
Ê

(∫ T

0
|Xs − X ′

s |2ds
)

.

that holds for any ρ, ρ1 > 0. Using the G-Itô isometry

Ê

(∣∣∣∣
∫ T

t
ξdWs

∣∣∣∣
2)

= Ê

(∫ T

t
|ξ |2d〈W 〉s

)

and the BDG inequality under G-expectations for p = 2 (see [2]), we obtain

Ê

(∫ T

0
|Z ′

s − Zs |2ds
)

≤ 1

lc2

(
2L2 + 2L2(T − t)ρ + (T − t)

ρ1(l + l̄)L2

4

)
|δ′ − δ|2

+ 2L2

lc2
Ê(|X ′

T − XT |2)

+ 2L2

lc2

(
1

ρ
+ 2L2ρ + l + l̄

4ρ1
+ L2ρ1(l + l̄)

4

)∫ T

0
Ê(|Y ′

s − Ys |2)ds

+ 2L2

lc2
(T − t)ρb f + 2L2

lc2
ρÊ

(∫ T

0
|Zs − Z ′

s |2ds
)

+ 1

lc2

(
2L2ρ + L2ρ1(l + l̄)

4

)
Ê

(∫ T

0
|Xs − X ′

s |2ds
)

,

for some sufficiently small constant c2 > 0. Choosing

ρ ≤ min

{
lc2
8L2 ,

2L2 + 2L2

2L2b f

}
,

then yields

(
1 − 2L2

lc2

)
Ê

(∫ T

0
|Z ′

s − Zs |2ds
)

≤C5|δ′ − δ|2 + 2L2

lc2
Ê(|X ′

T − XT |2)

+ Cy

∫ T

0
Ê(|Y ′

s − Ys |2)ds + 2L2

lc2
(T − t)ρb f

+ Cx Ê

(∫ T

0
|Xs − X ′

s |2ds
)

,

where

C5 = 1

lc2

(
2L2 + 2L2(T − t)ρ + (T − t)

ρ1(l + l̄)K 2

4

)

Cx = 1

lc2

(
2L2ρ + L2ρ1(l + l̄)

4

)

Cy = 2L2

lc2

(
1

ρ
+ 2L2ρ + l + l̄

4ρ1
+ L2ρ1(l + l̄)

4

)
.
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The last inequality can be recast as

Ê

(∫ T

0
|Z ′

s − Zs |2ds
)

≤2C5

Cz
|δ′ − δ|2 + 2CzL2

lc2
Ê(|X ′

T − XT |2)

+ Cy

Cz

∫ T

0
Ê(|Y ′

s − Ys |2)ds + Cx

Cz
Ê

(∫ T

0
|Xs − X ′

s |2ds
)

,

(24)

with the shorthands Cz = 1 − 2L2

lc2
We can choose ρ > 0 such that

2L2

lc2
(T − t)ρb f ≤ C5|δ′ − δ|2 and ρ ≤ min

{
lc2
8L2 ,

2L2 + 2L2

2L2b f

}
.

and substitute (24) in (21). Furthermore, we define

C̄1 = 2

(
2L2 + 2L2(T − t)ε + (T − t)

3ε1(l + l̄)L2

4

)
+ 6L2ε + 2C5

Cz

C̄2 = 1

ε
+ 6L2ε + l + l̄

4ε1
+ 3L2ε1(l + l̄)

4
+ Cy2L2ε

Cz

C̄3 = 2L2ε + 3L2ε1(l + l̄)

4
+ Cx2L2ε

Cz
,

which allows us to simplify the following expression:

Ê(|Y ′
t − Yt |2) ≤C̄1|δ′ − δ|2 +

(
2L2 + 24CzL4ε

lc2

)
Ê(|X ′

T − XT |2)

+ C̄2

∫ T

0
Ê(|Y ′

s − Ys |2)ds + C̄3Ê

(∫ T

0
|Xs − X ′

s |2ds
)

.

(25)

If we now substitute (22) and (23) in the (25), it follows after further simplifications

Ê(|Y ′
t − Yt |2) ≤C̄1|δ′ − δ|2 +

(
2L2 + 24CzL2L2ε

lc2

)
eC

′
1T (3ε′

1T L2|δ − δ′|2)

+ C̄2

∫ T

0
Ê(|Y ′

s − Ys |2)ds + C̄3e
C1t (3ε1t L

2|δ − δ′|2), Ê(|Y ′
s − Ys |2)

≤
(
C̄1 +

(
2L2 + 24CzL2L2ε

lc2

)
eC

′
1T 3ε′

1T L2 + C̄3e
C1t (3ε1t L

2)

)
|δ − δ′|2

+ C̄2

∫ T

0
Ê(|Y ′

s − Ys |2)ds,

Finally, setting

C̄ = C̄1 +
(
2L2 + 24CzL2L2ε

lc2

)
eC

′
1T (3ε′

1T L2) + C̄3e
C1t (3ε1t L

2)
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and using Gronwall’s Lemma, we find

Ê(|Y ′
t − Yt |2) ≤ C̄eC̄2T |δ′ − δ|2.

This proves Lemma 8. ��

A.2 Proof of Lemma 9

Proof SinceG satisfies a uniform ellipticity condition, the unique bounded continuous
viscosity solution V δ of equation (11) is smooth with regularity C1,2([0, T ] × R

n),
and thus the regularity results of Krylov [8, Theorems 6.4.3 and 6.4.4] apply. As a
consequence, V δ satisfies (12).

Let (t, x) ∈ [0, T ] × R
n be given. We introduce the shorthands

B(t, x) := bδ(s, X
δ,t,x,uδ

, vδ(s, X δ,t,x,uδ

))

�(t, x) := σδ(s, X
δ,t,x,uδ

)

�(t, x) := hδ(s, X
δ,t,x,uδ

, vδ(s, X δ,t,x,uδ

)) .

For every s ∈ [t, T ], the SDE

Xt,x,δ
s = x +

∫ s

t
B(r , Xt,x,δ

r )dr +
∫ s

t
�(r , Xt,x,δ

r )dWr +
∫ s

t
�(r , Xt,x,δ

r )d〈W 〉r ,

has a unique solution. We define Y t,x,δ and Zt,x,δ , t ≤ s ≤ T by

Y δ
s = V δ(s, X δ

s ), and Z δ
s = σδ(s, X

δ
s )∇V δ(s, X δ

s ).

By applying Itô’s formula to the function (t, x) 
→ V δ(t, x) using that

∂t V (t, x)δ + H̄ δ(t, x, V δ,∇V δ,∇2V δ, u) = 0
V δ(T , x) = �δ(x),Rn,

it follows that

Y t,x,δ
t = �δ(Xt,x,δ

T ) − ∫ Tt fδ(s, X
t,x,δ
s , Y t,x,δ

s , Zt,x,δ
s , vδ

s )ds

− ∫ Tt gδ(s, X
t,x,δ
s , Y t,x,δ

s , Zt,x,δ
s )d〈W δ〉s + ∫ Tt Z t,x,δ

s dW δ
s − (MT − Mt ),

(26)

which shows that the process (Xt,x,δ
s ,Y t,x,δ

s , Zt,x,δ
s ) is the solution of the G-FBSDE

associated with the coefficients �δ, bδ, σδ, hδ, fδ, gδ and initial data (t, x).
To prove the bounds (13)–(15), we apply Itô’s formula to the function (t, x) 
→

|Y t,x,δ
s |, t ≤ s ≤ T . To this end, we drop all superscripts whenever there is no risk of

confusion and write Xs := Xt,x,δ
s , Ys := Y t,x,δ

s , etc., and we define

J ′
t =
∫ T

t
2|Ys ||Zs |dWs +

∫ T

t
|Ys |2dMs .
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Then

|Yt |2 +
∫ T

t
|Zs |2d〈W 〉s + J ′

t = |�δ(XT )|2 +
∫ T

t
2|Ys | fδ(s)ds +

∫ T

t
2|Ys |gδ(s)d〈W 〉s,

which implies

|Yt |2 + J ′
t ≤ |�δ(XT )|2 +

∫ T

t
2|Ys | fδ(s)ds +

∫ T

t
2|Ys |gδ(s)d〈W 〉s,

and thus

Ê

(
sup

t∈[0,T ]
|Yt |2

)

≤ Ê

(
|�δ(XT )|2 + sup

t∈[0,T ]

∫ T

t
2|Ys | fδ(s)ds + sup

t∈[0,T ]

∫ T

t
2|Ys |gδ(s)d〈W 〉s

)
.

We then apply Young’s and BDG inequalities to obtain for any ε − ε1 > 0:

Ê

(
sup

t∈[0,T ]
|Yt |2

)
≤Ê

(
C2

� + sup
t∈[0,T ]

{∫ T

t
ε|Ys |2 + 1

ε
| fδ(s)|2ds

})

+ C2l̄Ê

(
sup

t∈[0,T ]

{∫ T

t
ε1|Ys |2 + 1

ε1
|gδ(s)|2ds

})

≤C2
� + T εÊ

(
sup

t∈[0,T ]
|Ys |2

)
+ TC2

f

ε

+ C2l̄T ε1Ê

(
sup

t∈[0,T ]
|Ys |2

)
+ C2l̄C2

gT

ε1
.

Here C� > 0, C2 > 0 and C f ,Cg > 0 are appropriate constants. Now, setting
ε = (8T )−1 and ε1 = (8C2l̄T )−1, it follows that

Ê

(
sup

t∈[0,T ]
|Yt |2

)
≤ 4C2

�

3
+ 32T 2C2

f

3
+ 32C2

2 l̄
2C2

gT
2

3
. (27)

We conclude that there exist a constant C̄ = C̄(T ) > 0, such that (13) is satisfied.
Based on the a priori estimate of the supremum norm of |∇V (t, x)|2 in the work of

Ladyzhenskaya et al. [19, Theorem 6.1 & Chapter VII], we can estimate the gradient
on every compact subset of [0, T ] × R

n , moreover, we can extend this result to the
cylinder [0, T ]×{x ∈ R

n, |x | ≤ n} and [0, T ]×{x ∈ R
n, |x | ≤ n+1}. Exploiting the

Lipschitz continuity of theFBSDEcoefficients, sup{|∇V (t, x)|2 : t ∈ [0, T ], |x | ≤ n}
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can be bounded from above by a constant that depends on C̄ , T and L , but not on n.
As a consequence, there exist a constant �̄ = �̄(L, T ), such that

|∇V δ(t, x)| ≤ �̄, (t, x) ∈ [0, T ] × R
n .

This proves (14). Finally, it is easy to check that there exists a constant κ̄ > 0, such
that the following bounds hold (see Appendix A.2.1 below):

Ê(|Xs − Xr |2) ≤ κ̄(s − r), Ê

(
sup

t∈[0,T ]
|Y t,x,δ

s − Y t,x,δ
r |2

)
≤ κ̄(s − r)2.

Further using the fact that Y s,x,δ
r = V δ(r , Xs,x,δ

r ), it follows that

Ê(|V δ(s, x) − V δ(r , x)|2) ≤ 2Ê(|V δ(s, x) − Y s,x,δ
r |2) + 2Ê(|Y s,x,δ

r − V δ(r , x)|2)
≤ 2κ̄(s − r) + 2�̄Ê(|Xs − Xr |2)
≤ 2κ̄(s − r) + 2κ̄(s − r), modifying κ̄

≤ 4κ̄(s − r).

Hence (15) is proved. ��

A.2.1 Estimating Growth in Time

Let 0 ≤ t ≤ r ≤ s ≤ T . Then

Y t,x,δ
s − Y t,x,δ

r = −
∫ T

s
fδ(τ )dτ +

∫ T

r
fδ(τ )dτ −

∫ T

s
gδ(τ )d〈W 〉τ +

∫ T

r
gδ(τ )d〈W 〉τ

+
∫ T

s
Z t,x,δ

τ dWτ −
∫ T

r
Z t,x,δ

τ dWτ − (MT − Ms) + (MT − Mr )

−
∫ s

r
fδ(τ )dτ −

∫ s

r
gδ(τ )d〈W 〉τ

+
∫ s

r
Z t,x,δ

τ dWτ + (Ms − Mr ).

Comparing (26), and using the result (27), we conclude

Ê

(
sup

t∈[0,T ]
|Y t,x,δ

s − Y t,x,δ
r |2

)
≤ 32(s − r)2C2

f

3
+ 32C2

2 l̄
2C2

g(s − r)2

3
,

and thus

Ê

(
sup

t∈[0,T ]
|Y t,x,δ

s − Y t,x,δ
r |2

)
≤ κ̄(s − r)2.
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On the other hand, it follows from the gradient bound on V δ that

Ê(|Y t,x,δ
r − V (r , x)|2) = Ê(|V (r , Xt,x,δ

r ) − V (r , x)|2)
≤ �̄Ê(|Xt,x,δ

r − x |2)
≤ �̄Ê(|Xt,x,δ

r − Xt,x,δ
s |2),

where we have redefined �̄ in the last step. For Xs − Xr , it readily follows that

Xs − Xr =
∫ s

r
(bδ(τ, Xτ , uτ )dτ +

∫ s

r
σδ(τ, Xτ )dWτ +

∫ s

r
hδ(τ )d〈W 〉τ ,

which, together with the boundedness of b, σ, h and the BDG inequality yields

Ê(|Xs − Xr |2) ≤ 2(s − r)2C2
b + 2C2l̄(s − r)C2

σ + (l + l̄)2

8
(s − r)2C2

h .

As a consequence

Ê(|Xs − Xr |2) ≤ κ̄(s − r).

B Convergence of the Auxiliary Control Problem

Proof of Lemma 11 Let the sequence of processes (Xn
s ,Y

n
s ) satisfy the following con-

trolled G-SDE

dXn
s = b(s, Xn

s , Y
n
s , uδn

s )ds + σ(s, Xn
s )dWs + h(s, Xn

s , Y
n
s , uδn

s )d〈W 〉s ,
dY n

s = − f (s, Xn
s , Y

n
s , (σ (s, Xn

s ))
Twδn

s , uδn
s )ds − g(s, Xn

s , Y
n
s , (σ (s, Xn

s ))
Twδn

s )d〈W 〉s
+(σ (s, X δn

s ))Twδn
s )dWs + dMn

s ,

Xn
t = x, Yn

t = V δn (t, x), Mn
t = 0.

Here w
δn
s = ∇V δn (s, X δn

s ) and uδn
s = vδn (s, X δn

s ) being the optimal control for the
mollified process. In the following, we will use the shorthands

σ Twδn
s := (σ (s, Xn

s ))
Twδn

s and σ T
δn

wδn
s := (σδn (s, X

δn
s ))Twδn

s .

We now consider a subsequence (X δn
s ,Y δn

s ), that for convenience we denote with the
same index n as the full sequence, and that satisfies the following controlled SDE

dX δn
s = bδn (s, X

δn
s ,Y δn

s , uδn
s )ds + σδn (s, X

δn
s )dWs + hδn (s, X

δn
s ,Y δn

s , uδn
s )d〈W 〉s,

dY δn
s = − fδn (s, X

δn
s ,Y δn

s , σ T
δn

wδn
s , uδn

s )ds − gδn (s, X
δn
s ,Y δn

s , σ T
δn

wδn
s )d〈W 〉s

+σ T
δn

wδn
s dWs + dMδn

s ,

X δn
t = x Y δn

t = V δn (t, x), Mδn
t = 0
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We apply Itô’s formula to |X δn
t − Xn

t |2, which gives

|Xn
t − X δn

t |2

=
∫ t

0
2|Xn

s − X δn
s |(b(s, Xn

s ,Y
n
s , uδn

s ) − bδn (s, X
δn
s ,Y δn

s , uδn
s ))ds

+
∫ t

0
2|Xn

s − X δn
s |(σ (s, Xn

s ) − σδn (s, X
δn
s ))dWs

+
∫ t

0
2|Xn

s + X δn
s |(h(s, Xn

s ,Y
n
s , uδn

s ) − hδn (s, X
δn
s ,Ys, u

δn
s )) + (σ (s, Xn

s )

− σδn (s, X
δn
s ))2d〈W 〉s .

As a consequence,

Ê(|Xn
t − X δn

t |2)
= Ê

(∫ t

0
2|Xn

s − X δn
s |(b(s, Xn

s ,Y
n
s , uδn

s ) − bδn (s, X
δn
s ,Y δn

s , uδn
s ))ds

)

+ Ê

(∫ t

0
2|Xn

s − X δn
s (|σ(s, Xn

s ) − (σδn (s, X
δn
s ))dWs)

)

+ Ê

(∫ t

0
2|Xn

s − X δn
s |(h(s, Xn

s , u
δn
s ) − hδn (s, X

δn
s , uδn

s )) + (σ (s, Xn
s )

−σδn (s, X
δn
s , uδn

s ))2d〈W 〉s
)

.

Now using BDG inequalities (see [2, Lemma 2.18] and [7, Proposition2. 6]) for p = 1,

Ê(|Xn
t − X δn

t |2) ≤Ê

(∫ t

0
2|Xn

s − X δn
s |(b(s, Xn

s , u
δn
s ) − bδn (s, X δn

s , uδn
s ))ds

)

+ (l + l̄)

4
Ê

(∫ t

0
2|Xn

s − X δn
s |h(s, Xn

s , u
δn
s ) − (hδn (s, X

δn
s , uδn

s )

+ (σ (s, Xn
s ) − σδn (s, X

δn
s ))ds

)
,

and (extensively) Young’s inequality,

Ê(|Xn
t − X δn

t |2) ≤ Ê

(∫ t

0

1

ε
|Xn

s − X δn
s |2 + ε|b(s, Xn

s , u
δn
s ) − bδn (s, X δn

s , uδn
s )|2ds

)

+ (l + l̄)

4
Ê

(∫ t

0

1

ε1
|Xn

s − X δn
s |2 + 2ε1|h(s, Xn

s , u
δn
s ) − hδn (s, X

δn
s , uδn

s )|2

+ 2ε1|σ(s, Xn
s ) − σδn (s, X

δn
s )|2ds

)

≤Ê

(∫ t

0

1

ε
|Xn

s − X δn
s |2 + ε|b(s, Xn

s , u
δn
s ) − bδn (s, X

δn
s , uδn

s )|2ds
)
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+ (l + l̄)

4
Ê

(∫ t

0

1

ε1
|Xn

s − X δn
s |2 + 2ε1|h(s, Xn

s , u
δn
s ) − hδn (s, X

δn
s , uδn

s )|2

+ 2ε1|σ(s, Xn
s ) − σδn (s, X

δn
s )|2ds

)

≤
(
1

ε
+ (l + l̄)

4ε1

)∫ t

0
Ê(|Xn

s − X δn
s |2)ds

+ εÊ

(∫ t

0
|b(s, Xn

s , u
δn
s ) − bδn (s, X

δn
s , uδn

s )|2ds
)

+ ε1(l + l̄)

2
Ê

(∫ t

0
|h(s, Xn

s , u
δn
s ) − hδn (s, X

δn
s , uδn

s )|2ds
)

(l + l̄)ε1
2

Ê

(∫ t

0
(σ (s, Xn

s ) − σδn (s, X
δn
s ))2ds

)
.

and

Ê

(∫ t

0
|b(s, Xn

s , u
δn
s ) − bδn (s, X

δn
s , uδn

s )|2ds
)

≤ 2Ê

(∫ t

0
|b(s, Xn

s , u
δn
s ) − bδn (s, Xn

s , u
δn
s )|2ds

)

+ 2Ê

(∫ t

0
|bδn (s, Xn

s , u
δn
s ) − bδn (s, X δn

s , uδn
s )|2ds

)

Ê

(∫ T

0
|h(s, Xn

s , u
δn
s ) − hδn (s, X

δn
s , uδn

s )|2ds
)

≤ 2Ê

(∫ T

0
|h(s, Xn

s , u
δn
s ) − hδn (s, X

n
s , u

δn
s )|2ds

)

+ 2Ê

(∫ T

0
|hδn (s, X

n
s , u

δn
s ) − hδn (s, X

δn
s , uδn

s )|2ds
)

Ê

(∫ T

0
|σ(s, Xn

s ) − σδn (s, X
δn
s )|2ds

)

≤ 2Ê

(∫ T

0
|σ(s, Xn

s ) − σδn (s, X
n
s )|2ds

)

+ 2Ê

(∫ T

0
|σδn (s, X

n
s ) − σδn (s, X

δn
s )ds

)

together with the mollification properties (cf. Properties 5))

Ê

(∫ t

0
|b(s, Xn

s , u
δn
s ) − bδn (s, X

δn
s , uδn

s )|2ds
)

≤ 2T L2
δn

δ2n + 4L2
Ê

(∫ T

0
|Xn

s − X δn
s |2ds

)
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Ê

(∫ t

0
|h(s, Xn

s , u
δn
s ) − hδn (s, X

δn
s , uδn

s )|2ds
)

≤ 2T L2
δn

δ2n + 2L2
Ê

(∫ T

0
|Xn

s − X δn
s |2ds

)

Ê

(∫ t

0
|σ(s, Xn

s ) − σδn (s, X
δn
s )|2ds

)

≤ 2T L2
δn

δ2n + 2L2
Ê

(∫ T

0
|Xn

s − X δn
s |2ds

)
,

we obtain the following bound

Ê(|Xn
t − X δn

t |2) ≤
(
1

ε
+ (l + l̄)

4ε1

)∫ t

0
Ê(|Xn

s − X δn
s |2)ds

+ ε2T L2
δn

δ2n + 2L2εÊ

(∫ T

0
|Xn

s − X δn
s |2ds

)

+ ε1(l + l̄)T L2
δn

δ2n + ε1(l + l̄)L2
Ê

(∫ T

0
|Xn

s − X δn
s |2ds

)

+ ε1(l + l̄)T L2
δn

δ2n + ε1(l + l̄)L2
Ê

(∫ T

0
|Xn

s − X δn
s |2ds

)
.

Applying Gronwall’s lemma, it follows that there exists a constant K independent of
δn , such that

Ê(|Xn
t − X δn

t |2) ≤ K δ2n, (28)

which proves the first part of the assertion.
For the second part, we have to estimate the solution of the correspondingG-BSDE.

We start by applying Itô’s formula to |Yn
s − Y δn

s |2, with the shorthand

Jt =
∫ T

t
2|Yn

s − Y δn
s ||((σ (s, Xn

s ))
T − (σδn (s, X

δn

s ))T )wδn
s |dWs

+
∫ T

t
|Yn

s − Y δn
s |2dMs,

where M = Mn − Mδn . This yields

|Yn
t − Y δn

t |2 + Jt ≤ |�(Xn
T ) − �δn (X δn

T )|2

+
∫ T

t
2|Yn

s − Y δn
s |( f (s, Xn

s ,Y
n
s , σ Twδn

s , uδn
s ) − fδn (s, X

δn
s ,Y δn

s , σ T
δn

wδn
s , uδn

s ))ds

+
∫ T

t
2|Yn

s − Y δn
s |(g(s, Xn

s ,Y
n
s , σ Twδn

s ) − gδn (s, X
δn
s ,Y δn

s , σ T
δn

wδn
s )d〈W 〉s,
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Taking expectations, we obtain

Ê(|Yn
t − Y δn

t |2 + Jt ) ≤ Ê(|�(Xn
T ) − �δn (X δn

T )|2)

+ Ê

(∫ T

t
2|Yn

s − Y δn
s |( f (s, Xn

s , Y
n
s , σ Twδn

s , uδn
s ) − fδn (s, X

δn
s , Y δn

s , σ T
δn

wδn
s , uδn

s ))ds

)

+ Ê

(∫ T

t
2|Yn

s − Y δn
s |(g(s, Xn

s , Y
n
s , σ Twδn

s ) − gδn (s, X
δn
s , Y δn

s , σ T
δn

wδn
s )d〈W 〉s

)
.

As before, we apply BDG inequalities for p = 1,

Ê(|Yn
t − Y δn

t |2) ≤ Ê(|�(Xn
T ) − �δn (X δn

T )|2)

+ Ê

(∫ T

t
2|Yn

s − Y δn
s |( f (s, Xn

s , Y
n
s , σ Twδn

s , uδn
s ) − fδn (s, X

δn
s , Y δn

s , σ T
δn

wδn
s , uδn

s ))ds

)

+ (l + l̄)

4
Ê

(∫ T

t
2|Yn

s − Y δn
s |(g(s, Xn

s , Y
n
s , σ Twδn

s ) − gδn (s, X
δn
s , Y δn

s , σ T
δn

wδn
s )ds

)
,

and Young’s inequality for any ε, ε1 > 0,

Ê(|Yn
t − Y δn

t |2) ≤ Ê(|�(Xn
T ) − �δn (X δn

T )|2) +
(
1

ε
+ (l + l̄)

4ε1

)
Ê

(∫ T

t
|Yn

s − Y δn
s |2ds

)

+ εÊ

(∫ T

t
| f (s, Xn

s , Y
n
s , σ Twδn

s , uδn
s ) − fδn (s, X

δn
s , Y δn

s , σ T
δn

wδn
s , uδn

s )|2ds
)

+ (l + l̄)

4ε1
Ê

(∫ T

t
|g(s, Xn

s , Y
n
s , σ Twδn

s ) − gδn (s, X
δn
s , Y δn

s , σ T
δn

wδn
s )|2ds

)
.

To simplify the notation, we define

f − fδn := f (s, Xn
s ,Y

n
s , σ Twδn

s , uδn
s ) − fδn (s, X

δn
s ,Y δn

s , σ T
δn

wδn
s , uδn

s )

g − gδn := g(s, Xn
s ,Y

n
s , σ Twδn

s ) − gδn (s, X
δn
s ,Y δn

s , σ T
δn

wδn
s ).

Then,

Ê

(∫ T

t
| f − fδn |2ds

)

≤ 2Ê

(∫ T

t
| f − fδn (s, X

n
s ,Y

n
s , σ Twδn

s , uδn
s )|2ds

)

+ 2Ê

(∫ T

t
| fδn (s, Xn

s ,Y
n
s , σ Twδn

s , uδn
s ) − fδn |2ds

)

≤ 2(T − t)L2
δn

δ2n

+ 6LÊ

(∫ T

t
(|Xn

s − X δn
s |2 + |Yn

s − Y δn
s |2 + |(σ T − σδn )w

δn
s |2)ds

)
.
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and, using the same argument,

Ê

(∫ T

t
|g − gδn |2ds

)
≤ 2(T − t)L2

δn
δ2n

+ 6LÊ(

∫ T

t
(|Xn

s − X δn
s |2 + |Yn

s − Y δn
s |2

+ |(σ T − σ T
δn

)wδn
s |2)ds).

Hence,

Ê(|Yn
t − Y δn

t |2) ≤
(
1

ε
+ (l + l̄)

4ε1

)
Ê

(∫ T

t
|Yn

s − Y δn
s |2ds

)
+ ε2(T − t)L2

δn
δ2n

+ 6LεÊ

(∫ T

t
(|Xn

s − X δn
s |2 + |Yn

s − Y δn
s |2 + |(σ T − σ T

δn
)wδn

s |2)ds
)

+ (T − t)L2
δn

(l + l̄)

2ε1
δ2n

+ 3L(l + l̄)

2ε1
Ê

(∫ T

t
(|Xn

s − X δn
s |2 + |Yn

s − Y δn
s |2 + |(σ T − σ T

δn
)wδn

s |2)ds
)

≤
(
1

ε
+ (l + l̄)

4ε1
+ 3L(l + l̄)

2ε1
+ 6Lε

)
Ê

(∫ T

t
|Yn

s − Y δn
s |2ds

)

+ ε2(T − t)L2
δn

δ2n + (T − t)L2
δn

(l + l̄)

2ε1
δ2n

+
(
6Lε + 3L(l + l̄)

2ε1

)
Ê

(∫ T

t
|Xn

s − X δn
s |2ds

)

+
(
6Lε + 3L(l + l̄)

2ε1

)
Ê

(∫ T

t
|(σ T − σ T

δn
)wδn

s |2ds
)

≤
(
1

ε
+ (l + l̄)

4ε1
+ 3L(l + l̄)

2ε1
+ 6Lε

)
Ê

(∫ T

t
|Yn

s − Y δn
s |2ds

)

+ 2ε(T − t)L2
δn

δ2n + (T − t)L2
δn

(l + l̄)

2ε1
δ2n

+
(
6Lε + 3L(l + l̄)

2ε1
)Ê(

∫ T

t
|Xn

s − X δn
s |2ds

)

+
(
6Lε + 3L(l + l̄)

2ε1

)
Ê

(∫ T

t
‖σ − σδn‖2F |wδn

s |2ds
)

,

where ‖·‖F in the last line denotes the Frobenius norm of a matrix. From the Lipschitz
property

Ê

(∫ t

0
‖σ(s, Xn

s ) − σδn (s, X
δn
s )‖2Fds

)
≤ 2T L2

δn
δ2n + 2L2

Ê

(∫ T

0
|Xn

s − X δn
s |2ds

)

and the fact that wδn is bounded due to Lemma 9, it follows that

Ê(|Yn
t − Y δn

t |2)
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≤
(
1

ε
+ (l + l̄)

4ε1
+ 3L(l + l̄)

2ε1
+ 6Lε

)
Ê

(∫ T

t
|Yn

s − Y δn
s |2ds

)

+ 2ε(T − t)L2
δn

δ2n + (T − t)L2
δn

(l + l̄)

2ε1
δ2n

+
(
6Lε + 3L(l + l̄)

2ε1

)
C2

w2T L2
δn

δ2n

+
(
6Lε + 3L(l + l̄)

2ε1
+ 2L2(6Lε + 3L(l + l̄)

2ε1

)
C2

w)Ê

(∫ T

t
|Xn

s − X δn
s |2ds

)
.

Hence, from (28) and Gronwall’s Lemma,

Ê(|Yn
t − Y δn

t |2) ≤ eC1(T−t)Cδ2n .

for some C,C1 > 0. This concludes the proof. ��
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