
MOLECULAR PHYSICS
2024, VOL. 122, NOS. 21–22, e2391998 (11 pages)
https://doi.org/10.1080/00268976.2024.2391998

RULL-ABASCAL SPECIAL ISSUE FOR STATISTICAL PHYSICS IN SPAIN (BY INVITATION ONLY)

Critical surface adsorption of confined binary liquids with locally conservedmass
and composition

Sutapa Roya and Felix Höfling b,c

aDepartment of Physics, University of Milan, Milano, Italy; bDepartment of Mathematics and Computer Science, Freie Universität Berlin, Berlin,
Germany; cZuse Institute Berlin, Berlin, Germany

ABSTRACT
Close to a solid surface, the properties of a fluid deviate significantly from their bulk values. In this
context, we study the surface adsorption profiles of a symmetric binary liquid confined to a slit pore
bymeans ofmolecular dynamics simulations; the latter naturally entails thatmass and concentration
are locally conserved. Near a bulk consolute point, where the liquid exhibits a demixing transition
with the local concentration as the order parameter, we determine the order parameter profiles and
characterise the relevant critical scaling behaviour, in the regime of strong surface attraction, for a
range of porewidths and temperatures. The obtained order parameter profiles decaymonotonically
near the surfaces, also in the presence of a pronounced layering in the number density. Overall, our
results agree qualitatively with recent theoretical predictions from a mesoscopic field-theoretical
approach for the canonical ensemble.
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1. Introduction

The investigation of fluids under nano-confinement has
drawn substantial research attention in the past decades.
In this context, water doubtlessly belongs to the most
prominent liquid substance whereas it is arguably also
one of the most difficult one to understand. To this
end, molecular simulations have provided key insights
into the properties of water, complementing experimen-
tal findings and theoretical analyses (see, e.g. Ref. [1] and
references therein). This includes the calculation of phase
diagrams, e.g. of liquid–vapour and fluid–solid equilib-
ria [2,3] and a putative liquid–liquid transition deep in
the super-cooled state [4], but also structural proper-
ties [1] and transport coefficients such as the dynamic
shear viscosity [5–7].
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Confining a liquid in channels of only a few nanome-
tres in diameter manifestly breaks the translational
symmetry and can significantly alter its physical prop-
erties relative to its behaviour in bulk. For example,
certain crystal structures can be suppressed and phase
transition temperatures can be shifted [8]. Confinement
intricately modifies the relaxation dynamics of glass-
forming [9–11] and polymeric [12–15] liquids, as well as
water again [16,17]. The presence of solid surfaces modi-
fies the transversal density profiles showing, e.g. layering,
which can lead to surface-induced phase transitions such
as pre-freezing andpre-melting [18] and the rich scenario
of wetting and drying transitions [19–32]; predictions
that long-ranged dispersion forces lead to specific phase
diagrams [31] were criticised recently [32]. For complex
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liquids, consisting of anisotropic molecules, anchoring
effects to the surface add another fascinating twist to the
wetting problem [33–35], whereas orientational ordering
can be observed for rod-like, stiff polymers [36].

Going beyond single-component fluids, liquid mix-
tures exhibit phase separation, which in conjunctionwith
confinement can lead to surface enrichment and domain
growth of one component [37–40]. The demixing tran-
sition of the bulk phase diagram is associated with a
continuous phase transition and, thus, with the emer-
gence of a macroscopic correlation length and relaxation
time [41–49]. Furthermore, the transversal pore dimen-
sions delimit the growth of critical fluctuations so that
the critical singularities near the consolute point appear
rounded [50,51]. It also gives rise to critical Casimir
forces [52–59] and to a splitting of the bulk universal-
ity class into few surface universality classes [20,60] (see
below). In particular, for the local excess concentration,
playing the role of the order parameter (OP), one expects
that its spatial dependence near a solid substrate exhibits
critical scaling. This surface-critical behaviour was cor-
roborated within Monte Carlo simulations for Ising-like
lattice fluids [23,61] and for single-component Lennard-
Jones (LJ) liquids [28,62], with the local density as the OP
field.

MonteCarlo simulations on phase coexistence are typ-
ically carried out either in the grand canonical or in the
Gibbs ensemble. Also the majority of theoretical studies
on critical phenomena in confinement have been per-
formed in the grand canonical ensemble. Experimentally,
however, the mass of each component of a mixture is
locally conserved, the corresponding total masses are
fixed, and thus the canonical ensemble appears as the
proper description of confined liquids in thermal equi-
librium. Whereas the statistical ensembles are equiva-
lent with respect to the mean values of thermodynamic
observables, they are not with respect to their fluctu-
ations [63,64]. Further on the level of thermodynamic
macrostates, the ensemble equivalence may not hold
in the presence of long-ranged interactions (see, e.g.
Refs. [65,66] and references therein). This issue becomes
particularly relevant for confined fluids close to their crit-
ical points and, as a result, the choice of the ensemble can
yield very different predictions for the behaviour of the
fluid. For example, the critical Casimir force emerging for
a fluid confined in between two parallel walls with sym-
metric boundary conditions is repulsive for the canonical
ensemble whereas it is attractive for the grand canonical
ensemble [67–70].

In the present study, we employ state-of-the-art
molecular dynamics (MD) simulations to investigate the
surface adsorption of a confined binary liquid film at its
bulk demixing (liquid–liquid) critical point. The binary

mixture considered is symmetric with respect to its com-
ponents [45,46,48], and both walls of the slit pore prefer-
entially attract, with equal strength, the same component
of the mixture. Within the MD simulations, as well as in
experiments, the partial masses of the two components
are naturally conserved so that the data obtained for equi-
librium properties correspond to the canonical ensem-
ble. Specifically, we calculate spatial profiles of the excess
adsorption and analyse their critical scaling.Our findings
are compared with existing mean-field predictions in the
limit of infinite surface attraction strengths. We note that
computational studies of near-critical fluids are notori-
ously challenging due to critical slowing down [42], a
macroscopically large correlation length (entailing finite-
size corrections [49,71–73]), and strong OP fluctuations
(expressed by a high compressibility or generalised sus-
ceptibility); we have addressed these issues by performing
a large number of independent simulations encompass-
ing long time spans and huge particle numbers.

2. Critical surface adsorption

Upon approaching the critical point of a continuous
phase transition, the local OP near a boundary deviates
in normal direction from its bulk value on the scale of
the diverging bulk correlation length [74,75]. The kind
of thermodynamic singularities occurring in this surface
layer depends on the boundary conditions for the OP
such that each bulk universality class splits up into vari-
ous surface universality classes. Generically, fluids belong
to the so-called normal surface universality class [20],
which is characterised by the presence of a symmetry
breaking surface field inducing order at the surface even
if the bulk is in the disordered phase. Close to the critical
point the bulk correlation length ξb diverges in the ther-
modynamic limit, thus becoming the most predominant
length scale in the system. In the following, we specialise
to binary fluids near their bulk consolute point, given by
the critical temperature Tc and the critical composition
(which plays a similar role as the critical density in case
of a liquid–vapour transition). In addition, we restrict the
discussion to the mixed phase, i.e. to fluid temperatures
T > Tc, and we will often incorporate the temperature
dependence via the bulk correlation length ξb = ξb(T).
For this choice of temperatures, wetting transitions are
not expected to occur [19,23,32].

The demixing OP of a binary liquid of species A and
B in bulk is given by ϕb = xA − xB in terms of the bulk
concentrations xA and xB of both species, defined as
their corresponding mole fractions. Upon confinement
to a slit pore, these quantities depend on the perpen-
dicular distance z from one of the confining walls, so
that the local OP reads �(z) = xA(z) − xB(z), where
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xμ(z) = �μ(z)/�(z) for μ = A,B; the partial number
density�μ(z) counts the particles of speciesμ in a narrow
slab at position z, and �(z) = �A(z) + �B(z) is the overall
local number density.

For fluids in contact with a single wall, ξb competes
with the range of the surface interaction of the fluid
molecules; in the case of a short ranged interaction, as
studied here, this range is typically on the order of the
molecular diameter σ . A universal shape of the OP pro-
file �(z), as function of the distance z to the surface,
is anticipated except very close to the surface, i.e. uni-
versality holds for z � σ . Depending on the distance z
compared to the correlation length ξb, one distinguishes
a standard regime with an exponential decay, �(z) ∼
exp(−z/ξb) for z � ξb, and a critical regime exhibit-
ing power-law behaviour, �(z) ∼ z−β/ν for z � ξb. The
exponents β and ν denote the standard critical expo-
nents of the three-dimensional Ising universality class;
we use the reliable estimates [76] ν = 0.630 and β =
0.325. In particular, they govern the critical singularities
in the bulk behaviour of the correlation length and the
OP, respectively [44,77]: ξb(T) � ξ+

0 ε−ν in terms of ε =
(T − Tc)/Tc ↓ 0, measuring the proximity to the bulk
critical point, and ϕb(T) � ϕ0(−ε)β for ε ↑ 0, where ξ+

0
and ϕ0 are non-universal amplitudes.

The OP profile exhibits critical scaling which, for a
semi-infinite fluid, is condensed in a dimensionless scal-
ing function P1 with the rescaled distance ẑ := z/ξb as
the only variable [78,79]:

�(z;T > Tc) = ϕ0(ξb/ξ
+
0 )−β/νP1(z/ξb), z � σ .

(1)

The scaling function is universal, but depends on the
boundary condition for theOP at the surface. The scaling
function obeys the asymptotics sketched above, namely
P1(ẑ → ∞) � exp(−ẑ) and P1(ẑ → 0) � c0ẑ−β/ν with
the universal surface amplitude c0. The excess mass of
fluid adsorbed to the surface is quantified by the inte-
grated OP profile,


(T) =
∫ ∞

0
[�(z;T) − ϕb(T)] dz, (2)

for which, upon inserting Equation (1), one infers a crit-
ical power-law divergence [79]:


(T → Tc) ∼ ξ
1−β/ν
b ∼ |ε|β−ν , (3)

provided that β < ν. (In mean-field theories, where β =
ν = 1/2, a logarithmic divergence is predicted). These
scaling predictions for the OP profile have been tested
successfully in simulations of Ising lattices [61]. Scal-
ing has also been corroborated in simulations of one-
component LJ fluids, but the verification of the critical
divergences has remained challenging [27,28].

For fluids confined to a slit pore, surface effects due
to both walls are present and, as a result, the distance
D between the two walls enters the problem as another
relevant length. In particular, critical fluctuations are sup-
pressed in the direction of the surface normal for ξb � D,
whereas the slit confinement is expected to be ineffec-
tive for ξb � D, approximating the situation of a semi-
infinite fluid delimited by a single surface. The OP profile
�(z) is now a function of the position z, the temperature
T, and the pore width D; it also depends on the strength
of the surface interaction, and we may again use the bulk
correlation length ξb(T) instead of T. The dependence
on the pore width D is accounted for by decorating the
scaling function in Equation (1) with a second scaling
variable, D̂ = D/ξb, which is further used to substitute
ξb byD, i.e. we compare other quantities such as the posi-
tion z to the pore width D. In the strong adsorption limit
(large surface field), the finite-size scaling form of the OP
profile reads [60]:

�(z;T,D) = ϕ0

(
D
ξ+
0

)−β/ν

P2
(
z
D
,
D
ξb

)
, z � σ .

(4)

Thus, plotting ϕ−1
0 (D/ξ+

0 )β/ν�(z;T,D) vs. z̄ = z/D for
a fixed value of D̂ = D/ξb should yield a data col-
lapse. The new, two-parameter scaling function P2 repro-
duces the behaviour near a single surface via P1(ẑ) =
limD̂→∞ D̂−β/νP2(ẑ/D̂, D̂) and it encodes the critical
profile �(z;Tc,D) as the limit P2(z̄, D̂ → 0). The func-
tion P2 also depends on the boundary conditions at the
two surfaces; here, we focus on a slit pore with equal sur-
faces on both sides, namely symmetric, attractive bound-
ary conditions.

We note that, due to the confinement, the critical
divergence at the bulk critical values of temperature
and composition is shifted towards a lower temperature
and a more A-rich composition (assuming A-preferring,
symmetric surfaces) [19,23,39,40]. The phenomenon is
related to capillary condensation and depends on the
pore width D; it is particularly relevant for thin films,
D � ξb. More precisely, it may be expressed as a compe-
tition of the pore widthD and the bulk correlation length
ξb and can be incorporated in the scaling form (4) by
adding an additional scaling variable for the composi-
tion. However, we will not explore these aspects here and
restrict toT > Tc in the following, whereTc always refers
to the critical temperature of the bulk fluid, which also
enters Equation (4) through the scaling of ξb.

For a conserved OP field, the critical scaling of the
OP profiles has been studied in depth recently within
a mesoscopic theory based on the Ginzburg–Landau
(GL) free energy functional, prescribing either a surface
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field [67,68] or the contact values at the two surfaces [70].
In these works, analytic calculations within a systematic
perturbative approach yield OP scaling functions, which
are corroborated by numerical solutions of the field equa-
tions; in addition, these findings are supported qualita-
tively with data from Monte Carlo simulations for Ising
lattices. The obtained OP profiles are mean-field like, as
is typical for GL theories, and suggest that, for symmetric
boundary conditions [see Equation (33) of Ref. [67]],

�(z;T,D) � μξ 2b − �m(T,D) cosh
(
z − D/2

ξb

)
(5)

in the inner part of the pore, viz., for ξb � z � D − ξb.
Here, we consider binary fluids at critical composition so
that the chemical potentialμ associated with the OP field
is zero and the first term vanishes.1 With this, the prefac-
tor �m = �(z = D/2) equals the minimum value of the
OP profile, which is attained in the central plane of the slit
pore by symmetry. Furthermore, the local conservation
of the OP field implies a constraint on the total OP ϕtot,
which is the spatial integral of �(z) and which vanishes
in the mixed phase at critical composition:

ϕtot :=
∫ D

0
�(z) dz = 0. (6)

Therefore and exploiting the symmetry�(z) = �(D − z)
of the set-up, �m < 0 is related to the excess adsorption

 on each surface via


(T,D) :=
∫ D/2

0
[�(z) − �m] dz = −�mD

2
. (7)

For a finite pore width, D < ∞, the profile �(z;T,D)

is expected to depend on the temperature T analytically
near Tc, which implies that the scaling function P2(z̄, D̂)

is analytic in D̂1/ν with D̂ = D/ξb [Equation (4)]. Hence,
�m(T,D) may be expanded for T ↓ Tc or, equivalently,
for ξb(T) → ∞:

�m(T,D)� ϕ0

(
D
ξ+
0

)−β/ν [
P2

(
1
2
, 0

)
+C

(
D
ξb

)1/ν
]
,

(8)

with some constant C>0. In particular, �m(T,D), and
thus the excess adsorption 
(T,D), do not diverge near
the bulk critical point, which is a consequence of the
OP conservation and at variance to the behaviour in the
grand canonical ensemble [79] [Equation (3)]. Rather,
for fixedD, the excess adsorption decreases linearly from
its critical value at Tc as the temperature is increased
(ξb(T) � D):


(T ↓ Tc,D) + 
(Tc,D) ∼ ξ
−1/ν
b ∼ T − Tc. (9)

3. Simulationmodel andmethod

For the MD simulations, we use a symmetric binary
liquid with well-known bulk properties [45–49]. Specifi-
cally, we consider an equimolar mixture of two compo-
nents A and B which interact symmetrically with each
other via the Lennard-Jones (LJ) pair potential,

uLJ(r; ε, σ) = 4ε[(σ/r)12 − (σ/r)6], (10)

with parameters ε and σ . The potential is shifted and
smoothly truncated at a cut-off distance rc = 2.5σ , which
renders very good numerical stability with respect to
energy conservation [80–82]:

Uμν(r)= [
uLJ(r; εμν , σ)− uLJ(rc; εμν , σ)

]
f ((r − rc)/h)

(11)

for μ, ν ∈ {A,B}, h = 0.005σ , and f (ζ � 0) = ζ 4/(1 +
ζ 4) and f (ζ > 0) = 0. The interaction range σ is the
same for all pairs μν, whereas the interaction strengths
are chosen as εAA = εBB = 2εAB =: ε. For the units of
length and energy, we use σ and ε, respectively, which
implies the reduced temperature T∗ := kBT/ε. Of each
species, we simulate Nμ particles such that species μ has
concentration xμ = Nμ/N and such that the total num-
ber density is fixed at �b = N/V = 0.8σ 3, in terms of
N = NA + NB and the pore volume V. We have previ-
ously determined the demixing phase diagram of this
fluid2 and the relevant critical behaviour in bulk [48];
in particular, the critical point was found to be in the
liquid phase at temperatureT∗

c = 1.629 ± 0.001 and con-
centrations xA,c = xB,c = 1/2; the non-universal ampli-
tude of the correlation length ξb(T) was obtained as
ξ+
0 = (0.47 ± 0.02)σ , and we have estimated for bulkOP
amplitude ϕ0 = 0.77 ± 0.02.

The liquid is confined in between two planar walls
separated by a distance D. The area of each wall is
L × L and is set by the lateral dimensions of the sim-
ulation box, with periodic boundary conditions applied
along the two directions parallel to the walls; the vol-
ume of the slit pore is thus V = L2D. The walls are
located at nominal positions z = 0 and z = D, with the
z-axis of the Cartesian coordinates chosen normal to
the walls. The surface–fluid interaction is the same for
both walls and is given by the LJ wall potential (see, e.g.
Refs. [39,40,83]):

U(μ)
sf (z̃) = 2πεw

3

[
2
15

(σ

z̃

)9 − wμ

(σ

z̃

)3]
, (12)

in terms of the distances z̃ = z + σ/2 and z̃ = D +
σ/2 − z to each of the walls. The offset σ/2 is introduced
in the surface potential to better match the volume that is
effectively available to the fluid particles with the nominal
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pore volume L2D. The form of the potential results from
an integral over the LJ pair potential, modelling the wall
as an infinite half-space which is filled homogeneously
with LJ particles. The surface potential U(μ)

sf (z̃) is fur-
ther shifted and smoothly truncated at the cutoff distance
rc,sf = 2.5σ as described above for the pair interaction.
The energy εw and the dimensionless parameter wμ con-
trol the overall attraction strength and the relative surface
preference for one of the two fluid components, respec-
tively; U(μ)

sf (z̃) has its minimum at z̃min = (2/5wμ)1/6σ ,

for wμ > 0, with depth (2πεw/9)
√
10w3

μ. We use the
same value εw for bothwalls of the pore, andwe putwA =
1 and wB = 0, which amounts to symmetric boundary
conditions with a preference for A particles.

All results presented here are obtained at or above
the bulk critical temperature of the binary liquid, T �
Tc (after a quench from the mixed phase at T > Tc),
and at the critical concentrations xA = xB = 1/2, i.e. for
zero total OP, ϕtot = xA − xB = 0. Extensive MD simu-
lations were carried out in the canonical ensemble with
the Nosé–Hoover thermostat (NHT) chain [84], using an
integration timestep of δt = 0.001t0; the unit of time is
t0 = √

mσ 2/ε in terms of the particle mass m, which is
the same for A and B particles. To mitigate the compu-
tational issues associated with the simulation of critical
fluids, such as critical slowing down [42] and finite-size
corrections [49,71–73], we have used large system sizes
for up to 300,000 particles over a long time span of
104t0; in addition, ensemble averages were taken over
up to 20 independent initial configurations for each
parameter set. Specifically, we have used large simula-
tion boxes of lateral length up to L = 100σ and we have
varied the pore width from D = 10σ to 30σ . The sim-
ulations were performed with the software HAL’s MD
package [82,85], which exploits the high degree of par-
allelism of recent accelerator hardware [86], e.g. graphics
processors (GPUs), and which is an efficient and precise
tool for the study of inhomogeneous fluids [87–90]. For
example, a simulation run for D = 20σ over a period of
104t0 (107 steps), takes about 1 h on a single GPU of type
Nvidia A40 and about 5.8 h on the much older hardware
generation, Nvidia Tesla K20Xm.

The simulation data were stored in the structured,
compressed, and portable H5MD file format [91].
Laterally averaged number density profiles �μ(z) =
Nμ(z)/(L2�z) were calculated in a post-processing step
by counting the number Nμ(z) of particles of each
species μ that are located in the interval [z − �z/2, z +
�z/2) along the z-axis for a bin width of �z = 0.5σ .
For the total density profile �(z), shown in the inset of
Figure 1(b), we used a different technique to be described
elsewhere, which is based on Fourier transforms, avoids

Figure 1. (a) Exemplary configuration of an equimolar, critical
binary liquid confined to a slit pore. Brownish and turquoise beads
show the particle positions of the fluid components A and B,
respectively, in a snapshot of the MD simulations for lateral edge
length L = 50σ and pore width D = 15σ . Both wall surfaces (at
the top and bottom of the wire frame, not shown) have the same
strong preference for component A. The binary mixture is at its
consolute point, and the mass of each component is locally con-
served within the simulations, i.e. the order parameter (OP) for
demixing is a conserved field. (b) Excess adsorption of the later-
ally averaged, local OP �(z) for a high temperature in the mixed
phase (T∗ = 5, light blue symbols) and at thebulk consolute point
of the mixture, T∗ = T∗

c ≈ 1.63 (red symbols). The wall surfaces
are located at effective positions z = 0 and z = D = 20σ . Filled
symbols are simulation data and solid lines smoothly connect the
data. The inset shows the corresponding number density profile
�(z) of the critical fluid; the mean density is �b = 0.8σ−3.

the spatial binning and reduces the amount of data to be
stored. The method includes a slight smoothing of the
obtained profile �(z), here with a Gaussian filter of width
σ/8.

4. Results and discussion

Within the MD simulations, we have obtained the sur-
face adsorption profiles �(z) of binary liquids confined
to a slit pore which preferentially attracts componentA at
both of its walls with equal strength [Figure 1(a)]; unless
stated differently, we consider a strong surface attrac-
tion, εw = 8ε [see Equation (12)]. The present study is
restricted further to binary liquids at critical composi-
tion (xA = xB = 1/2) and in the mixed phase (T � Tc),
so that the temperature T controls the distance to the
bulk critical point of the demixing transition.�(z) serves
also as the corresponding local OP, it is defined such that
positive values indicate an excess of A particles. Since
the set-up exhibits a mirror symmetry, �(z;T,D) =
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�(D − z;T,D), with respect to the central plane (z =
D/2), wewill often discussmerely the behaviour near one
of the surfaces.

Two exemplary OP profiles �(z) for two tempera-
tures, in the mixed phase and at criticality, are shown in
Figure 1(a). At the higher temperature, T∗ = 5 ≈ 3T∗

c ,
the profile is comparably flat in a large part of the pore but
increases sharply upon approaching one of the surfaces
(e.g. z → 0), the latter reflecting the expected surface
enrichment of A particles. Upon decreasing the temper-
ature to Tc, the contact value �(z → 0) increases to its
largest possible value,�(z → 0) = 1, which we attribute
to the choice of a strong surface interaction (εw = 8ε);
this value of �(z) corresponds to a pure layer of A par-
ticles next to the surfaces. Concomitantly, the OP profile
broadens as T ↓ Tc, reflecting the emergence of critical
fluctutations. However, the width of the surface enrich-
ment layer remains finite (of the order of 3−4σ ) despite
the bulk correlation length ξb(T) diverging at Tc, which
is a consequence of the confinement to a slit and of the
aforementioned symmetry of �(z) at z = D/2 = 10σ .

Furthermore, the conservation of the OP implies that
the integrated OP ϕtot does not change upon varying
the temperatures; here, we use ϕtot = 0. It follows from
Equation (6) that the OP value in the middle of the
slit pore must be negative, �m = �(z = D/2) < 0, to
compensate the surface enrichment. This is a specific fea-
ture of the canonical ensemble and unlike in the grand
canonical ensemble, in which the local OP remains posi-
tive,�(z) � 0, for symmetric surfaces both preferentially
attracting component A. For conserved OP, the value�m
thus serves as a measure of the total excess adsorption

(T,D) = −�m(T,D)D/2 [Equation (7)]. The latter is
predicted to vary linearly with T near the critical tem-
perature [Equation (9)], which is corroborated by our
simulation data (Figure 2).

In contrast to themonotone decay of�(z) for 0 � z �
D/2 (Figure 1), the number density of the critical fluid
(T = Tc) exhibits a pronounced layering near the sur-
faces (inset of Figure 1): the density profile �(z) shows
rapidly decaying oscillations around the mean density
�b = 0.8σ−3, which have a large amplitude next to the
surface at z = 0 and which are barely visible in the mid-
dle of the pore, for z � 4σ ; the period of the oscillations
is of the order of themolecular length σ . Such oscillations
hinder the scaling analysis of critical surface profiles, and
their absence in the present OP profiles (i.e. in the con-
centration and thus the excess adsorption) underscores
that, in this respect, binary liquids are favourable sys-
tems for the study of critical behaviour. We note that the
critical behaviour of the structural and dynamic prop-
erties of binary liquids is governed by two fluctuating
fields, viz., the total number density and the composition.

Figure 2. Total excess adsorption 
 as function of the reduced
temperature ε = (T − Tc)/Tc , defined relative to the critical value
Tc . The excess adsorption is proportional to the OP value in the
middle of the slit pore, 
 = −�mD/2 with �m = �(z = D/2),
due to the use of the canonical ensemble with conserved OP
[Equation (7)]. The binary liquid is at critical composition such that
the critical point is approached from themixed phase upon ε ↓ 0.
For this case, the solid line tests an asymptotically linear depen-
denceof
 on ε [Equation (9)]. The simulationdata (symbols)were
obtained for fixed pore geometry (D = 30σ , L = 100σ ) and fixed
surface interaction strength εw = 8ε; the statistical uncertainties
are smaller than the size of the symbols.

The investigated binary liquid (with �b = 0.8σ 3) was
demonstrated [48] to be sufficiently far away from its liq-
uid–vapour critical point and thus the density field �(z)
acts as a secondary field [42], which does not exhibit crit-
ical enhancement (see, e.g. the bulk structure factors in
Figures 4 and 5 of Ref. [48]).

In order to further elucidate the lateral structure of
the layers near the surface, we have calculated the lat-
eral structure factor S��(|k|) of the density for each
layer separately, by restricting the calculation to quasi-
twodimensional slabs encompassing one layer each and
such that the wave vector k points parallel to the wall sur-
faces, for details see Ref. [92]. Upon approaching the sur-
face, layer by layer, the apparent compressibility∝ S��(0)
is reduced and the degree of local ordering increases, as
follows from the growth and the sharpening of the first
peak of S��(|k|) (Figure 3). However, also the first fluid
layer, which is in direct contact with the wall, does not
exhibit crystallisation but remains in a fluid state.

Next, we investigate the dependence of the OP profile
�(z) of the critical mixture on the pore widthD for fixed
temperature T = Tc. For strong surface attraction (εw =
8ε), the contact value �(z → 0) at the surface does not
exhibit any prominentD dependence [Figure 4(a)]. AsD
is increased, the profile becomes deeper (|�m| increases)
and broadens: the thickness of the surface adsorption
layer (e.g. the distance to the surface at which �(z)
changes its sign) increases.

In order to test the scaling property of these crit-
ical OP profiles, we have plotted the combination
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Figure 3. Local, quasi-twodimensional density–density structure
factor S��(|k|) calculated separately for the first four layers of par-
ticles closest to the pore surface (see �(z) in Figure 1); the wave
vector k points parallel to the walls [92].

Figure 4. (a) Surface adsorption profiles of the critical mixture
confined to slit pores of five different widths D and constant
aspect ratio L/D = 3.3. Symbols show simulation data for the
laterally averaged OP profiles �(z), and all results correspond
to T∗ = T∗

c and εw = 8ε. (b) Data collapse of the rescaled
OP profiles of panel (a) onto the scaling function P2(z̄, 0) =
ϕ−1
0 (D/ξ+

0 )β/ν�(z; T ,D) in termsof the the rescaleddistance z̄ =
z/D [Equation (4)]. The black solid line indicates a fit to a parabolic
profile in the central part of the pore [cf. Equation (5)].

ϕ−1
0 (D/ξ+

0 )β/ν�(z,T,D) as a function of the scaling
variable z̄ = z/D for a range of pore widths D that is
spread out by a factor of 3. Figure 4(b) demonstrates
convincingly that this rescaling of the OP profiles of
Figure 4(a) yields data collapse onto the scaling func-
tion P2(ẑ, 0); due to T = Tc, we have D̂ = D/ξb(Tc) =
0. Deviations from this universal master curve occur
for distances z � 0.8σ , which corresponds to the non-
universal microscopic regime. We note that, in order to

Figure 5. Scaling of the surface adsorption profiles of near-
critical binary liquids confined to five different slit pores for
(a) strong (εw = 8ε) and (b) weak (εw = 0.8ε) surface interac-
tions. The plots test the data collapse onto the scaling func-
tion P2(z̄, D̂) = ϕ−1

0 (D/ξ+
0 )β/ν�(z; T ,D) as function of z̄ = z/D

[Equation (4)]. The data (symbols) correspond to different com-
binations of pore width D and temperature T, the latter entailing
the bulk correlation length ξb(T), such that D̂ = D/ξb(T) � 5.9 is
constant; the aspect ratio of the pore is kept fixed at L/D = 3.3.

avoid spurious finite-size corrections to the scaling, we
found it necessary to also fix the aspect ratio L/D = 3.3
of the pore geometry; the ratio L/D enters the scaling
form of the OP profile [Equation (4)] as an additional
finite-size scaling variable (see, e.g. Refs. [49,71]).

The scaling function P2 of the OP profile �(z;T,D)

depends on two scaling variables, z̄ = z/D and D̂ =
D/ξb(T) [Equation (4)]. For elevated temperatures, T >

Tc, a similar data collapse as for the criticalmixture can be
obtained by considering a range of combinations of pore
width D and temperature T such that D̂ = D/ξb(T) =
(D/ξ+

0 )εν is kept constant. Indeed, the rescaled data
for the OP profiles with D̂ = 5.9 and for strong sur-
face attraction (εw = 8ε) collapse onto the master curve
P2(z̄, D̂ = 5.9) similarly well as in Figure 4(b) forT = Tc.
However, repeating this analysis for weak surface attrac-
tion (εw = 0.8ε), the quality of the data collapse is con-
siderably worse [Figure 5(b)]. In this situation, the OP
profiles depend also on the strength εw of the surface
field, which enters the scaling function in Equation (4)
as another scaling variable, in addition to z/D, D/ξb, and
L/D (see, e.g. Ref. [67] for details).
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For a more systematic investigation of the depen-
dence of the OP profile on the strength εw of the surface
attraction, we consider the OP value close to the surface.
Within the mesoscopic GL theory employing a surface
field h1 [67], it was predicted that �(z → 0) = �0 dis-
plays a crossover from the scaling �0 ∼ h1 for weak
fields, h1 → 0, to �0 ∼ h1/21 for strong fields, h1 → ∞.
Since there is no directmapping between the surface field
h1 of GL theory and the surface interaction parameters
(εw,wA) used in theMD simulations, we check if the scal-
ing of�0 with εw is analogous to what has been predicted
within GL theory for the dependence on h1; to this end,
the mean-field exponents should be replaced by their
counterparts in the 3D Ising universality class. However,
the contact value �(z → 0) appears to be not suited for
this task since universality of the surface adsorption pro-
files is expected to hold only for z � σ . Hence, we define
the surface value �0 as an integral over the particle layer
second-closest to the surface:

�0 = 1
0.5σ

∫ 1.5σ

σ
�(z) dz. (13)

Using this definition of �0, the data from MD simu-
lations of the critical mixture (T = Tc, D = 20σ , and
L = 100σ ) are described by the behaviour �0(εw →
0) ∼ ε0.55w for weak surface interaction strengths, vary-
ing from εw = 10−2ε to ≈ 0.2ε [Figure 6(a)]. Despite
these low values of εw, the observed scaling is at variance
with the expectation from perturbation theory for Ising
and GL models that �0 scales linearly with the surface
field [23,67]. For the the strong-surface field behaviour,
one needs to account for the bound |�0| � 1 due to
the definition of �(z), similarly as above for the excess
adsorption 
. Thus, we consider 1 − �0 in order to test
the approach of�0 to its saturation value. Fitting a power
law to the data points for the two largest surface inter-
actions simulated (εw = 4ε and 8ε) suggests that 1 −
�0(εw → ∞) ∼ ε−0.57

w [Figure 6(b)]. We note that this
value of the exponent is larger than the standard surface
exponent [23,67] �1 ≈ 0.46 and that, to the best of our
knowledge, a theoretical prediction for the strong-surface
field behaviour of �0 under the simulated conditions is
not available.

5. Summary and conclusions

Understanding the surface critical behaviour of a fluid
confined to a slit pore is demanding due to the pres-
ence of multiple length scales: there are the molecular
size σ and the pore widthD, the temperature dependence
implies the bulk correlation length ξb(T), the strength of
the surface interaction εw adds another implicit length,
and, in simulations, the finite lateral extent L of the slit

Figure 6. Contact value�0 of the surface adsorption of the criti-
calmixture (T = Tc) as functionof the surface interaction strength
εw on double-logarithmic scales. Both panels show the same sim-
ulation data (symbols), corresponding toD = 20σ and L = 100σ ,
with panel (b) testing the approach to the maximum OP value,
�0 � 1. Asymptotic power laws (solid lines) are fits to the data for
the regimes of (a) weak surface interaction,�0(εw → 0) ∼ ε0.55w ,
and (b) strong surface interaction, 1 − �0(εw → ∞) ∼ ε−0.57

w .

pore cannot be ignored. Here, we have used large-scale,
off-lattice MD simulations to explore the scaling of the
excess adsorption profiles �(z) of a binary liquid with
locally conserved mass and concentration; the liquid is
kept confined to a slit whose walls have selective surface
adsorption preferences. For the demixing transition, the
excess adsorption plays the role of the OP field, which
develops critical fluctuations near the liquid–liquid crit-
ical point. Relying on the corresponding scaling form
[Equation (4)], we have shown that the data for laterally
averaged OP profiles �(z;T,D) for a range of tempera-
tures T and pore widths D collapse onto a master curve
upon suitable rescaling (Figure 4). This master curve is
given by the scaling function P2 in the limit of strong sur-
face adsorption and for fixed ratios D/ξb and L/D. The
obtained OP profiles behave monotonically near the sur-
faces, also in the presence of a pronounced layering in
the number density profiles [Figure 1(b)]. Furthermore,
our data suggest that OP profiles obtained within theMD
simulations are better described by the regime of strong
surface attraction, even for low values of εw, which raises
a question on the precise mapping between the parti-
cle model used in the MD simulations and GL theory
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(Figure 6). Overall, our results are in qualitative agree-
ment with mean-field predictions from field-theoretical
calculations [67,68,70].

Whereas our study is based on the generic and
somewhat artificial Lennard-Jones pair interaction, we
anticipate that our findings for critical adsorption are
universal and can be transferred mutatis mutandis to
real-world binary liquids, including water–lutidine mix-
tures. In particular, understanding the influence of sur-
faces on a confined fluid is important for the study
of fluctuation-induced forces, such as critical Casimir
forces [54–59] and, in constraint ensembles, critical
Helmholtz forces [93,94]. We hope this work will moti-
vate future work on the non-equilibrium dynamics of
near-critical confined fluids and on the dynamic response
to a temperature quench [95–97].

Notes

1. A similar expression was obtained for Dirichlet boundary
conditions at both surfaces [see Equation (24) of Ref. [70]].
However, the situations studied analytically in Refs. [67,70]
differ from the present setup, which corresponds to the
boundary conditions �(0) = �(D) = �0 ≈ 1 and zero
total OP, ϕtot = 0.

2. We note that a force-shifted potential was employed in the
studies in Refs. [45,49], which yields different values for
non-universal properties, i.e. the critical temperature and
the critical amplitudes.
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