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1 Introduction

The Billiard Configuration Space was initially introduced to study the number of
periodic billiard trajectories in a smooth strictly convex domain 2 in euclidean space
(Farber & Tabachnikov [17/], Blagojevi¢, Harrison, Tabachnikov & Ziegler [7]). The
points where a periodic trajectory of length n hits the boundary of 2 live in the Bil-
liard Configuration Space of the boundary of (2,

G0, n) == {(z1, ..., xp) € (OQ)*" : @; # x4y for 1 <i < n},

where we set x,,,1 := x1. In the process of studying topology of the space G(0€2,n), its
local version

G(RE, n) = {(21, ..., z) € (R)*™ : @; # zi44 for 1 <i < nl,

where z,,,1 := x;, became essential for further calculations [!/]. Moreover, estimating
the Lusternik-Schnirelmann category of the Billiard Configuration Space G(S%, n) of the
sphere is of great importance for bounding the number of periodic trajectories [/].

A similar concept to that of Lusternik—Schnirelmann category, namely the topological
complexity of a space, was introduced by Farber [14]. It is a homotopical invariant of a
space which measures how complex a motion planning algorithm on the space must be.
In two papers, Farber & Yuzvinsky [ 6] and Farber & Grant [15] computed topological
complexity of the (standard) Configuration Space

F(RY n) := {(z1,...,z,) € RY)*": 2; # x; for 1 <i<j<n}.

In this thesis, we aim to give bounds for topological complexity, as well as calculate the
Lusternik—-Schnirelmann category, of the Billiard Configuration Space G(R<, n).

The thesis is divided into six sections. In Section 2 we provide a cellular model for
the Billiard Configuration Space G(R¢, n) which has the cellular model of the (standard)
Configuration Space F(R?,n) as a subcomplex. In Section 3 we use these two models
to compute the fundamental group of G(R%, n).

In Section 4 we provide another cellular model for G(R¢, n), which is of smaller di-
mension than the one obtained in Section 2. This dimension coincides with the integral
cohomological dimension of G(R? n), which is a fact necessary for our later computa-
tions. In Section 5 we provide an introduction to the sectional category of a fibration
and to the notion of topological complexity of a space. In Section © we first compute
the Lusternik-Schnirelmann category of G(R%,n). Next, we compute topological com-
plexity of the same space in some cases and provide bounds for the remaining cases. To
bound the topological complexity we use obstruction theory and the low dimensional



cellular model from Section 4. We believe that fundamental group calculation from Sec-
tion 3 could be used to further sharpen the bound of topological complexity of G(R?, n)
using obstruction theory.

In this thesis we provide original results in the setting of Billiard Configuration
Space. Therefore, whenever we are using a result from a source, we will reference
it without giving a proof in the thesis. However, we will provide proofs of statements
from other sources for which we could not find a complete proof elsewhere.

1.1 Some mathematical preliminaries
Forn>1landd > 1 let
F(RY n) := {(z1,...,xn) € RD)*": a; # x;for 1 <i<j<n}

be the (standard) Configuration Space. This space is well studied in the literature over
the years ([2], [12], [19], [20], [6]). The main space of our interest will be a similarly
defined space, namely the Billiard Configuration Space defined as

GRY,n) = {(z1,...,2,) € (RY)*" : x; # 2, for 1 <i < n},

where we set x,,,; := z;. One can notice that F(R? n) < G(R% n) and the two spaces
are the same if n < 3.

Let &,, denote the symmetric group on n elements, that is the set of automorphisms
of the set [n] := {1,...,n}. A left action of G,, on the n-fold product X *" of any set X
can be defined as

0 (21,0 Tn) = (To-1(1)5 ooy To-1(n)),

for any (z1,...,x,) € X" and any o € G,,. In particular, this defines an action of &,, on
(R4)*™ which restricts to a free action on F(R?, n) < (R4)*".
Let D, < &, be the dihedral group, i.e., a subgroup generated by the permutations

p:[n]—n],i—i+1 and 6O:[n]—[n],i—n+1—1i.
In these generators, the dihedral group has a presentation
D,={p,0|p" =1, 6*=1, pf =0p" .
By restriction, action of D,, on (R¢)*" is generated by
p(T1,m9, s y) = (T, X1, ooy Tp—q) and 0 - (1,22, ..., Tp) = (Tp, Tp_1, -y T1)-

Therefore, G(R¢,n) < (R?)*" is an invariant space of this action.



2 First CW model

In this section we will define regular &,,-equivariant CW complexes
F(d,n) < F(R%n) and G(d,n) < G(R% n)

which are equivariant strong deformation retracts of their respective ambient spaces
F(R4,n) and G(R? n). To do so, we closely follow the work of Blagojevi¢ & Ziegler [3],
where cellular model F(d, n) of F'(R% n) is constructed. See also [26].

The type of the complex we construct is known as the Salvetti complex [22]. See also
Fox & Neuwirth [19], Bjorner & Ziegler [5] and de Concini & Salvetti [ 1 2]. We will use
the CW model G(d,n) in Section 3 to compute the fundamental group of G(R? n).

Let us denote by
D= {(zy,....,zy) € (R : 2y = =2,}
the diagonal and
WP = {(zy,...,1,) € RD*": zy 4+ - + 2, = 0}
its orthogonal complement in (R%)*". The composition
(R)*"\ D —e, WP\ {0} —, SV (D

is an G,,-equivariant deformation retraction, where the first map
1 1
(X1, .y ) — (7 — ﬁ(l’l + oLy, e Ty — ;(Il + o+ xy))

is the orthogonal projection along D, the second map z — z/||z| is the normalization.
By S(W®?) we denote the unit sphere in W®<. Let us denote by

FR%n):= F(RYn) n SWP) and G(R% n):= GRY n)n S(W)

the induced equivariant strong deformation retracts of F'(R% n) and G(R? n), respec-
tively.

The idea is first to construct a CW structure S(d, n) on the sphere S(W®4). It will
turn out that both F(R?,n) and G(R?, n) will be union of relatively open cells of S(d, n),
but will not be subcomplexes of the sphere, because the set of open cells belonging
to them will not be closed downwards in the face poset of S(d,n). However, they
will be closed upwards in the poset. Next, a duality argument will be used to show
the existence of invariant subcomplexes F(d,n) and G(d,n) of the dual cell complex
S(d,n)°? of S(d,n) with respect to actions of &,, and D,, respectively. They will be
consisting of the duals of the open cells of S(d,n) contained in F(R% n) and G(R%,n),
respectively. Finally, F(d,n) and G(d,n) will be equivariant strong deformation retracts
of F(R? n) and G(R?, n), respectively.



2.1 Stratification of W ¢

Let (x4, ..., 7,) € WP be any point. We can associate to it a permutation o € &,, such
that

To(l) S " S To(n)s

where < denotes the lexicographic order of the column vectors in R?. Notice that if
To(i) = To(i+1), the permutation o o (i,% + 1) can also be associated to (1, ...,2,) to
represent the lexicographic order. Thus, we impose a convention that if z,;) = Zo@i41)
we must have

1<o(i)<o(i+1) <n.

Foreachl <i<n—1let
r = min{r € [d] : Ty, < Togir1)rp U {d+ 1},

Thus r; = d + 1 if and only if 2,4 = Zo@i41). Letr := (71,...,7,—1). We will call the pair
(o,r) € &, x [d+ 1]*"! the combinatorial data associated to the tuple (zy,...,x,) and
write

Toy <pyp 0 gy Lo,

where 0; :=o(i) forall 1 <i < n.
Definition 2.1. Let the set
C={o,r)eG, x[d+1]": ri=d+1 = 0; < 0y41}

parameterize all combinatorial data that can be associated to points in W®? and for
each (o,r) € C let

C(o,r) = {(w1, .y 2n) e WP s 1y, < - <y, X0}
be the set of all points with combinatorial data (o, r).

The family {C(o,r) : (0,r) € C} stratifies W®?. Moreover each C(o,r) is a relatively
open cone of dimension

dn—1)—(r1—1)— - = (rp_1 — 1),

as it is defined by a set of (r; — 1) + --- + (r,—1 — 1) equalities and up to n — 1 strict
inequalities in W®4. Apart from C(id, (d + 1, ...,d + 1)) = {0}, for all other (o, r) € C the
intersection
c(o,r) := S(W®) ~ C(o,r)
is homeomorphic to the open disk of dimension d(n— 1) —1—(r; —1) — -+ — (rp,_1 — 1).
Hence, in order to prove that this construction induces a regular CW structure on

S(W®?) it suffices to show that the boundary of each cell is contained in the union of
lower dimensional cells. This fact is secured by the following lemma.
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Lemma 2.2. For each (o,r) € C the closure of the stratum C(o,r) is a union of strata
C(t,s), where (1,s) € C satisfy the following condition. Let 1 < p < A < n be any two
indices and let

T <gg oo Thees

appear in that order in (7,s), where s; is the minimal such number. Let 0,, = 7, and
o, = Ty for some m,l € [n]. Then

® ..Om... <p, ...0y... appear in (o, r) with r; being the minimal such number and r; < s;
or

® ..0l... <7'j

<..Op... appear in (o,r) with r; being the minimal such number and r; <
Si.

Proof. Each stratum is given by the set of equalities and strict inequalities, so its closure
is given by keeping the same set of equalities and replacing the strict by weak inequal-
ities. Therefore, each of the strata described in the statement of the lemma belong to
the closure. To prove the opposite, suppose

C(r,s) < clC(o,r)

and pick (z4,...,x,) € C(7,8). Let ...7,... <,, ...7... appear in that order in (7,s) and let
om = 7, and o; = 7). Assume moreover that s; is the smallest such index. Then, the
vectors z,, and z,, are equal on the first s; — 1 coordinates and z,, ,, < 2., ;.
Therefore, if ...0,,... <,, ...0;... appear in (o,r) and r; is a minimal such number, it
follows that z,,,, and z,, are equal the first r; — 1 coordinates and x,,, ,, < 4,,,. Thus
r; < s;. On the other hand, if ...0;... <,, ...0,,,... appear in (o, r) and r; is a minimal such
number, then z,, and z,,, are equal the first r; — 1 coordinates and 2., ,, < z,,, ;. Thus

r; <S8 O

As mentioned before, we will denote the sphere S(W®¢) endowed with such a CW
structure by S(d,n). The &,-action on W® is stratum-preserving, since the equality

7-C(o,r) = C(10,1)

holds for any 7 € &,, and (o,r) € C. Therefore, S(d,n) is a regular &,,-complex.

2.2 The duality argument
By Lemma 2.2, there is a poset structure on the set C' given by

(1,8) < (o,1) & C(r,s) € clC(o,r),
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for any (7,s), (o,r) € C. Poset C has minimum 0 := (id, (d+ 1, ...,d+1)). We will denote
this poset with the minimum omitted by

S(d,n) := (C\ {0}, ).

It represents the face poset of CW complex S(d, n) and 0 corresponds to the empty cell.
Blagojevi¢ & Ziegler [¢] denoted by S(d,n) the same poset with minimum included.
Let us denote by
S(d,n)* := (C'\ {0}, <°P)

the opposite poset of S(d,n). Notice that for each (o, r) € S(d, n)°? we have
either C(o,r) € F(R% n) or C(o,r) n F(R%,n) = &,

and similarly for G(R?,n). We define F(d,n) and G(d, n) as
F(d,n):={(o,r) € S(d,n)® : C(o,r) < F
G(d,n) := {(o,r) € S(d,n)® : C(o,r) = G(R% n)}. 2)

Lemma 2.3. F(d,n) and G(d,n) are subposets of S(d,n).

Proof. The following characterizations hold.

- (o,r) € F(d,n) ifand only if 1 < rq,...,7,1 < d.

- (o,r) € G(d,n) if and only if whenever o; <441 ... <411 0} occurs, that is when-
ever we have r; = ... = 1,y = d + 1, it follows that o; < o} are not cyclically
consecutive, thatis 2 < o, — 0; < n — 2.

From this and Lemma it follows that F'(d,n) and G(d,n) are subposets of S(d,n)P,
since going down in the poset S(d,n)°? does not change any of the two properties. [

Thus, we are motivated to show that S(d,n)° is a face poset of sphere.

Proposition 2.4. Poset S(d,n)? is the face poset of CW complex S(d,n)? on the sphere
SWP.

Proof. First step is to show that S(d, n) is PL sphere, meaning it has a subdivision which
is isomorphic to a subdivision of a boundary of a simplex. To prove this, one can use
the same argument as in the proof of [5, Theorem 2.6]. Indeed, each stratum C(o,r)
is a relatively open cone, so it can be made a face of some full-dimensional region for
a certain hyperplane arrangement. Let K be a hyperplane arrangement consisting of all
such hyperplanes. Family K divides W® into relatively open cones which define a CW
structure on S(W®4) which is a subdivision of S(d, n). To prove that this CW structure
on S(W®?) is PL it is enough to show it is polytopal. This is indeed the case for S(d,n),
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since its face poset is isomorphic to the boundary poset of the polar of the zonotope
associated to hyperplane arrangement C [4, Theorem 2.2].

Second step is to apply [4, Theorem 4.7.26 (iv)] by which it follows that the opposite
poset of the face poset of a PL sphere is also a face poset of the CW sphere. O

Remark 2.5. From the construction in the proof of [4, Theorem 4.7.26 (iv)] about the
opposite poset of the face poset of PL sphere, it follows that the opposite CW structure
is exactly the dual block complex of S(d,n) in the sense of Munkres [27, Chapter 64].

This dual block complex of S(d,n) is defined by having as cells the duals of cells
c¢(o,r) for each (o,r) € S(d,n). For each (o,r) € S(d,n), the dual cell of ¢(o,r) is the
geometric realization of the order complex A(S(d,n)>(.)), which is a subcomplex of
the first barycentic subdivision

sdS(d,n) = |AS(d,n)|.

Here AS(d,n) denotes the order complex of S(d,n). As explained in [4, Section 4.7],
the fact that the dual block complex is indeed a CW complex is provided by the fact that
S(d,n) is PL. See also Hudson [22, Ch. I Sec. 6].

For a cell ¢(o,r) € S(d,n) let us denote its dual block cell in S(d, n)°? by ¢(o,r). Let
us define
F(d,n) < S(d,n)® and G(d,n) < S(d,n)°®

as the CW subcomplexes of S(d, n)°? corresponding to subposets F'(d,n) and G(d,n) of
S(d,n)°P defined in (2). In other words, for each dual cell ¢(o,r) < S(d,n)°P? we have

¢(o,r) = G(d,n) = S(d,n)® ifand onlyif (o,r)e G(d,n) < S(d,n)°.
The cellular &,,-action of S(d, n) defines a cellular action on S(d, n)°? by the rule
7 ¢(o,r) = é(ro,r),

for each 7 € &,, and each (o,r) € S(d,n)°®. Therefore F(d,n) is a &,-invariant and
G(d,n) is D,-invariant subcomplex of S(d, n)°P.

Theorem 2.6. For d > 1 and n > 2 the following are true.

(i) Space F(R?,n) contains, as an equivariant strong deformation retract, a finite regu-
lar G&,,-CW complex F(d,n) of dimension (d — 1)(n — 1).

The face poset of F(d,n) is F'(d,n) < S(d,n)?, which can be described as follows.

e Cells ¢(o,r) of F(d,n) are indexed by (o,r) € &,, x [d]"~! and the dimension of
the cell ¢(o,r) is

dimé(o,r) = (rp — 1) + -+ + (rp—1 — 1).
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e The boundary of a cell ¢(1,8) < F(d,n) consists of all cells ¢(o,r) < F(d,n)
which satisfy the following condition. Let 1 < u < A < n be any two indices and
let ...7,... <y, ...Tx... appear in that order in (7,s), where s, is the minimal such
number. Let 0,, = 7, and o, = T, for some m,l € [n]. Then

- .Om... <y; ...0y... appear in (o, r) with r; being the minimal such number
and rj < s;, or

- ..01... <p; ..Op... appear in (o, r) with r; being the minimal such number
and rj < s;.
The &,,-action on F(d,n) is given by

7-¢(o,r) = ¢(1o,r), T€GS,, (o,r)e F(d,n).

(ii) Space G(R?,n) contains, as an equivariant strong deformation retract, a finite regu-
lar ®©,,-CW complex G(d, n) of dimension d(n — 1) — 1 — (n mod 2).

The face poset of G(d,n) is G(d,n) < S(d,n), which can be described as follows.
e Cells ¢(o,r) of G(d,n) are indexed by the set

{(oor)e@, x[d+1]"": (ViI<j<k<n)rj=-=r_=d+1

= 2<o0,—0; <n-—2}

and the dimension of the cell ¢(o,r) is dimé(o,r) = (r1 — 1) + -+ + (rp—1 — 1).
e The boundary of a cell ¢(1,s) < G(d,n) consists of all cells ¢(o,r) < G(d,n)

which satisfy the following condition. Let 1 < y1 < A < n be any two indices and
let ...7,... <s, ...Tx... appear in that order in (7,s), where s; is the minimal such

number. Let 0,, = 7, and o, = T, for some m,l € [n]. Then
- .Om... <y, ...0y... appear in (o, r) with r; being the minimal such number
and r; < s;, or

- ..0l... <y, ...Op... appear in (o, r) with r; being the minimal such number
and Ty < S

Complex F(d,n) is an ®,,-invariant subcomplex of G(d,n) and the action of ©,, on G(d,n)
is given by

7 ¢(o,r) = é(ro,r), 7€ D,, (o,r) e G(d,n).
Proof. Statements (i) and (ii) follow by analogous reasoning. Since part (i) is proved

in Blagojevi¢ & Ziegler [2, Theorem 3.13], we will give the proof for part (ii). The
composition (1) from the beginning of the section restricts to an equivariant strong



deformation retraction from G(R% n) to G(R%, n) := G(R%n) n S(WP). Let H :=
{H;}1<j<n be a subspace arrangement in (R?)*" defined by

Hj = {(wy,...,m,) € RN)*™: ;= 3;,,}, 1<j<n,
where z,,,, := z;. Space G(R%,n) is the complement of subspace arrangement #. Let
H(d,n) == SW) n | H.

It is a subcomplex of S(d, n) since it is a union of closed strata not contained in G (R%, n),
which thus has
H(d,n) := S(d,n) \ G(d,n) < S(d,n)

as its face poset. To finish the proof, it is enough to show there exists an equivariant
deformation retraction from G(R% n) = S(d,n) \ H(d,n) to the subcomplex G(d,n) =
S(d,n)°P.

As explained in the proof of Proposition 2.4, the CW structure S(d, n)° is the dual
block structure of S(d,n) (see Munkres [27, Chapter 64]). Thus S(d,n) and S(d, n)°?
have the same first barycentric subdivision sd S(d,n). Moreover, the first barycentric
subdivisions sd H(d,n) and sd G(d, n) are subcomplexes of sd S(d,n) on a disjoint set of
vertices which together form the set of vertices of sd S(d,n). Thus, there is a strong
deformation retraction

S(d,n) \ H(d,n) — G(d,n)

induced by the map which maps each simplex of sd S(d, n) which is not totally contained
in sd #H(d,n) to its intersection with sd G(d,n) by projection. This maps is also D,-
equivariant. O



3 Fundamental group

The aim of this section is to compute the fundamental group of the Billiard Configu-
ration Space G(R%, n).
In the case d = 1 notice that G(R, n) is the complement R" \ (H; u---u H,,) of union
of hyperplanes of the form

Hi = {<x17 71"71) eR": Ty = xi+1}7

for 1 < i < n. This complement is a disjoint union of 2" open cones and hence has a
trivial fundamental group for any choice of base point. Thus, we can focus on the case
d = 2. As the next proposition shows, d = 2 is the most interesting one.

Proposition 3.1. Let n > 1 and d > 3 be integers. Then G(R? n) is simply connected.

Proof. We will use the CW models F(d,n) and G(d,n) from Theorem because it
illustrates the idea we use for d = 2 case, even though the claim also follows from
simpler considerations. From the work of Fadell and Neuwirth [12] we know that
F(R? n) is simply connected for d > 3 (see also [24, Cor. 2.3.4]). Since F(d,n) <
G(d,n) is a subcomplex with the full 1-skeleton, G(d, n) is simply connected as well, due
to [21, Ch. 1 Prop. 1.26]. O

In order to provide a presentation of 7 (G(R? n)), we will first need to recall the
Pure braid group presentation of 7, (F(R?,n)) due to Artin [2] and connect it to the CW
structure on F(2,n).

3.1 Configuration space case

Since the fundamental group of a CW complex is naturally isomorphic to the funda-
mental group of its 2-skeleton, it will be useful to describe the cells and the boundaries
cells in the 2-skeleton.

For each 1 < k < n — 1 let I}, denote the set of k-cells of the (n — 1)-dimensional cell
complex F(2,n).

e The set of 0-cells is
Iy ={c¢(o,1): 0€&,},

where 1 := (1,...,1) € [d + 1]"~'. The base point is set to be ¢(id,1).
e The set of 1-cells is
I ={¢lo,1;): 0€6,, 1 <i<n-—1},

where 1, := (1,...,2,...,1) € [d + 1]"! has 2 only at position i € [n — 1].
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e The set of 2-cells is
122{6(0',]11‘7]')1 oeB,, 1<Z<]<TL—1},

where 1,; := (1,..,2,...,2,...,1) € [d + 1]*! has 2 only at (distinct) positions
i,7€[n—1].

Foreachl <i<n-—1letr; := (i,i+1) € &,, denote the transposition. Due to Lemma
we have the following.

e The boundary of any 1-cell ¢(o,1;) € I;, where 1 < i < n — 1, consists of vertices
¢(o,1) and ¢(oT;, 1).

e The boundary of any 2-cell ¢(o,1, ;) € I, where 1 <i < j < n — 1, consists of
— closures of the six 1-cells
¢(o,1it1), ¢(oTig1,14), ¢(omip1Ti Liva), ¢(omiTivr, 1), ¢(om,1ig1), ¢(o,1;)

inthe case j —i =1, or

— closures of the four 1-cells
é(O’,]lj), é(O’Tj,]lZ‘), é(O‘Ti,ﬂj), é(O’,]li)
in the case j —i > 2.

We can orient the 1-cells ¢(o,1;) € I; to go from the vertex ¢(o, 1) to the vertex ¢(o7;, 1 ).
Thus, with such orientation in place, we can consider each one cell ©(c,1;) as a path in
F(2,n).

Let us denote by
B(R% n) := F(R% n)/&,

the unordered configuration space and by p : F(R% n) — B(R¢,n) the quotient map,
which is a covering map since the group is finite and the action is free. Thus

B(d,n) := F(d,n)/&,

is the homotopically equivalent CW model for B(R% n) which has the quotient CW
structure with the unique 0-cell which is also the base point, namely the orbit of ¢(id, 1).
In what follows we again specify to the case d = 2.

Definition 3.2. The braid group on n strands is the group
By, = (11, oy Tac1| TiTigaTi = TigaTiTiv1, 7575 = 757 for [i — j| = 2). (3)
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Remark 3.3. Artin [2] introduced the notion of geometric braid, as a collection of n dis-
joint arcs (74, ..., 7,) connecting two collections of n pairwise distinct points (xy,...,z,)
and (yi, ..., y,) placed on the planes z = 0 and z = 1 in R3, respectively. In addition, for
each i € [n] and each ¢ € [0, 1] the point ~;(¢) belongs to the plane z = ¢. Concatena-
tion of braids and the shrinking procedure applied to the representatives of homotopy
classes of braids nicely fit with the homotopy relation and as such are a well defined
group operation on the space of homotopy classes of braids. In fact, he showed that this
group has the presentation (2). Generator 7; € B,, and its inverse are depicted in Figure

R I

\ /
- —

1 i 1+1 n 1 i 1+1 n

Figure 3.1: Generator 7; € B,, and its inverse 7, ' as a geometric braid.

The following proposition, due to Artin [2], allows us not to distinguish between B,
and the fundamental group of B(R?,n).

Proposition 3.4. Let n > 1 be an integer. Then there is a group isomorphism
m(B(R* n)) — B,
which maps the orbits of 1-cells ¢(id,1;) to generators 7; foreach 1 <i <n — 1.

Proof. Fundamental group of a CW complex B(2,n) is the same as the fundamental
group of its 2-skeleton, which is the quotient of the 2-skeleton of 7 (2, n). The 0-skeleton
of F(2,n) consists of a single &,,-orbit, which corresponds to the base point on the
quotient, and 1-cells

¢(o,1;) =0 -¢(id, 1)

get mapped to loops at the base point of the quotient. Hence, the 1-skeleton of B(2,n)
is the wedge of n — 1 circles. Due to [21, Ch. 1 Prop. 1.26], the fundamental group
m1(B(2,n), pt) is isomorphic to the group generated by those loops, subject to relations
generated by the boundaries of the 2-cells. The 2-cells in (2, n) are the images under
the quotient map of 2-cells

¢(o,1,5) = o-¢(id, 1),



foreach 1 <i < j < n—1. The two types of relations in the definition of the braid group
B,, correspond exactly the boundary relations from the orbit of the 2-cell ¢(id, 1, ;) for
j—1=1and j—i > 2, respectively. Thus, the isomorphism follows. O

Lemma 3.5. (Bjorner & Brenti [2, Example 1.2.3]) The symmetric group S,, has a pre-
sentation

2 . . ~
(T1s oo Tac1| 7 = 1, i T = T TiTig1, 7Ty = 757 for |[i — j| = 2) — 6,
with 7; corresponding to the transposition (i,i + 1) € &,, foreach 1 <i<n — 1.

Proof. Denote by S, the group on the left hand side. Transpositions generate &,, and
satisfy relations in the presentation of S, so the morphism is well defined and surjective.
We prove injectivity by inductively showing that S, is a finite group with |S,,| < nl.

Let H :={(m,...,Tn_2) € S, be a subgroup. Since the group morphism

Spo1— H, 701,
is an epimorphism, by the induction hypothesis it follows that
|H| < |Sp-1| < (n—1)L
Due to the relations in S,,, the set cosets S,,/H has exactly n elements, namely
Sp/H =Am T 1H, 7o -7y 1H,..., T,_1H, H}. (@)

Therefore S, is finite with |S,| < n|H| < nl. O

In particular, from (4) it follows that for any permutation ¢ € &,, we can fix its
presentation in basis {7y, ..., 7,,_1 }, namely

0= Tk, 1-Tn-1)* (Thy_peeTn2) oo (Thy-T1), (5

where 1 < k; <i+1foreach 1 <i <n—1. Here for every 1 <i < n—1 in each bracket
of the form 7y, - ... - 7; we assume the ascending order of indices from left to right. In
particulay, if k; = ¢ + 1 the product is equal to the identity permutation.

Definition 3.6. The pure braid group P, on n strands is the kernel of the group mor-
phism

¢: B, — G,, T, T;.

The presentation of &,, from Lemma allows us to see that the morphism ¢ is well
defined.

13



Remark 3.7. We can geometrically interpret ¢ as follows. Each based loop in B(2,n) is
path-homotopic to some based loop ~ in its 1-skeleton. Thus, ~ lifts to a unique path 7%
on the 1-skeleton of F(2,n) starting at the base point ¢(id, 1) € F(2,n). That is, the lift
74 is a concatenation of (oriented) 1-cells of F(2,n) and their inverses. Let the endpoint
of 4 be the O-cell ¢(0,1) € F(2,n). Then, ¢([y]) = 0. Indeed, any (oriented) 1-cell
¢(m,1;) of F(2,n) starts at ¢(m, 1) and ends at ¢(n7;, 1). Moreover, the orbit of such a
1-cell ¢(m,1;) is a loop in B(2,n) corresponding to the generator 7; € B,,.

From the description in the remark above we see that the composition
m(F(R?,n)) > m(B(R®,n)) = &,

is trivial, since loops in the 1-skeleton of F(2,n) start and end at the base point ¢(id, 1 ).
Thus, morphism
ps 1 m(F(R?* n)) — m(B(R? n))

factors through the pure braid group P,. Next, we arrive at the presentation of 7, (F(R?,n)).

Proposition 3.8. The fundamental group of the Configuration Space F(R? n) is a sub-
group of the braid group 7, (B(R? n)) generated by the elements

Qi 1= Qj4 = (Tj,]...Ti+1) : Ti2 : (Tj,l...TZ’+1)_l, 1<i< ] <n.

For any 1 < i < j < n the generator a; ; corresponds to the loop at the vertex ¢(id, 1)
obtained by concatenating oriented 1-cells

&(Tjm1-Te1, Li), k=j—-1,..,i
the 1-cell ¢(;—1...73,1;), and the inverses
1

é(Tj_l...Tk,]lk)i 3 k=Z+1,,j—1

Here both products 7j_; - ... - Ty11 and 7,1 - ... - 7, have descending indices from left to right.
Moreover, m,(F(R?,n)) has the following presentation in these generators

<{aij}1<i<j<n| AjjQrs = ApsQys; r<s<i< ] ori<r<s< j
aﬂairarj = airarjaji = arjajiair r<i< j
Ars(Qjrajiais) = (Qjraj;Qis)ars r<i<s<ysgy. (6)

Proof. As noted above, we have 7, (F(R?* n)) < P, < B,. Indices of both subgroups
inside B,, are |&,], so the subgroups must be equal. In particular, there is a short exact
sequence

1 — m(FR2,n)) 25 m(B(R%n) -5 &, — 1.
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Artin [2] was the first to obtain the presentation on the pure braid group P, with
generators «; ;. Later Lee [25, Theorem 1.1] obtained the presentation stated above,
which was different from Artin’s in the sense that it was positive, i.e., that the relations
only included the generators a;; and not their inverses.

Since 7, (B(R?,n)) is generated by the orbits of the 1-cells {¢(id,1;): 1 <i<n—1},
it follows that the generators a;; of m (F(R? n)) are the concatenations of 1-cells as
described in the statement of the theorem. O

Figure 3.2: Generator a, ; € P, as a geometric braid.

3.2 Billiard configuration space case

For n < 3we have G(R¢,n) = F(RY,n). Thus, in the case d = 2 we have the following.
Proposition 3.9. Let n < 3. Then we have 7 (G(R? n)) = 71 (F(R?, n)).

From now on, we will assume n > 4. Similarly as above, fundamental group of
G(R?,n) is isomorphic to that of G(2,n), and also that of its 2-skeleton. Let J; be the
set of the k-cells of G(2,n). Then

e Jy = I, with the base point ¢(id, 1), J; = I, and
o J, =1, u J), where
Jy:={c(0,1;;): 0€S,, ie[n—1]suchthatl < o;11 —0; <n— 1},
where1;; := (1,...,3,...,1) € [d + 1] has 3 only at position i € [n — 1].

The boundary relations of cells in J; and I, are the same as in the complex F(2,n),
while the boundary of any cell ¢(o,1,;) € Jj is the closure of the two 1-cells

é(O’,ﬂi) and é(O’Ti,ﬂi),
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for each 1 < i < n — 1. For each 2-cell ¢(o,1;;) € Jj, let p, denote a fixed path
from the base point ¢(id, 1) to point ¢(o,1) on the boundary of the 2-cell ¢(o,1;;). For
example, p, can be chosen to be the path given by the presentation (5) of 0 € &,
where 1-cells ¢(—,1;) are concatenated in the same order as corresponding generators
7; in presentation of o, and instead of a dash, there is the unique permutation such that
the 1-cells can be concatenated and such that the path starts at ¢(id, 1 ). This choice of
a path p, associates a loop

Do - &(0,1;) - ¢(omi, 14) - p;° (7)
at the base point ¢(id, 1) to the added 2-cell ¢(o,1;;) € J3.
For two elements a, b € P, we will write a ~ b if one is a conjugate of the other, that

is if a = cbc™! for some ¢ € P,. Before we proceed to compute 7 (G(R?,n)), it will be
useful to have the following results at our disposal.

Lemma 3.10. For any generator a; ; € P,, where1 <i < j <n,andforany1 <k <n-—1
we have the following conjugacy in P,

—1
Tk * Qg T~ Ay (i), (5) -

Proof. We split the proof into cases according to how 7, acts on i and j.
1. If 7, acts only on i, we have two possibilities. Either £ = ¢ — 1, or £ = ¢ and
j > i+ 1. In the first case of k =i and j > i + 1 we have

(Tm+1) ) Tiz ’ (Tm+1)_1 = z‘2+17
hence
Ti Q- Ti_l = (Tj_1.-.Tit2) - (TiTix1) - 71‘2 (mimign) (Tj—l---Ti+2)_1 = Qjt+1,5-

This equality is depicted in Figure
In the second case of k = i — 1 we have, similarly as above

- -1
. 1°T; -

1 2 2
1'7'-'7'1;1:7'1"7'- i

K3 1—

T

i—
It follows that
-1 —1 2 -1
Ti 1" CZZ'J‘ cTi—1 = (7};1...7’141) T Tyt Ti—1- (ijl---Tiqu) = aifl,j

and therefore

-1 ~1 -1
Tic1* Qg Tiy = Qi1 - (Tiy - Qi Tim1) Qg ipy ™~ Qi1
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Figure 3.3: Equality 7; - a; ; - 7, " = a;41 for j > i+ 1.

® ® - @

Figure 3.4: Equality 7, - a;; - 7j1 = a; ;- fori < j — 1.

2. If 7, acts only on j we again have two possibilities. Either £k = j, or k = j — 1 and
i < j— 1. In the case k = j we immediately have 7; - a;; - 7, ' = @ ;41. In the case
k=7j7—1andi < j — 1 we immediately have

-1
Tio1 @it Tj—1 = Q1.

This equality is depicted in Figure
Hence it follows

- -1
i1+ Qi - Ty = i1~ (7,00 - Qi Tjo1) - G510 ~ Qi1
3. If k <i—1ork > jthen 7, commutes with
2 -1
am- = (Tj—1-~-Ti+1) “ T (Tj—1-~-7-i+1)

and 7, does not act on ¢ and j, so the claim holds. If i < £ < j—1 (hence j—i > 2),
then 7, does not act on ¢ and j as well. Therefore

Tk(Tj—l---Ti—i-l) = (Tj—l---Tk+2) “Tk (Tk+1---7'z‘+1) = (Tj—l---Tk+2) ) (Tka+1Tk) : (Tk—l---Ti+1)

= (Tj—l---Tk+2) : (Tk+1Tka+1) : (Tk—1~-~Ti+1) = (Tj—1~--Ti+1)Tk+1-
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Therefore, we have
—1 2 —1 —1
Tk * ai,j . Tk = (Tj—l---Ti+1) *Thk+1 - 7'2- . Tk-i—l . (Tj—l---Ti—i-l) = ai,j.

4. If 7, acts on both i and j, theni = k£ = j — 1 and 7, flips i and ¢ + 1. Thus

-1 2 -1
T Qig+1 Ty =TTy Ty = Qiplg

With these four cases, the lemma is proven. O

Corollary 3.11. For any 0 € 6,, and any 1 < i < n — 1 we have the following conjugacy
in P,

2 -1
O -T; 0 ~ ~Qs(i),0(i+1)s

where we abuse the notation on the left hand side and denote by o the element in B,, with
presentation (5).

Proof. Let us say that a permutation is of length £ if it is composed of k elements in the
presentation (5). We prove the claim by induction on the length of a permutation.

Assume the statement holds for all permutations of length not greater than &, with
k > 0, and assume o € &, is of length & + 1. Then ¢ = 7,7, for 1 < m < n — 1 and
7 € G, of length at most k. By the induction hypothesis we have

w1t = b (i) b

for some b € P,. Hence by applying Lemma in the last step we conclude
o-1t0 t =ru(r Tt o )T = (b Ay iy O )T
= (Tmb7,") - (T * Ay m(inny T ) - (T, ) 7!
~ T Q(i)m(i+1) * Tom ~ Qo(i),o(i+1)
as desired. O

Proposition 3.12. Let n > 4 be an integer. Then the fundamental group of G(R? n)
is a free abelian group on n generators. The generators can be taken to be the push-
forwards of the generators a; ;1 € m(F(R? n)) in (0), for 1 < i < n, via the inclusion
inc : F(R?,n) — G(R? n).

Proof. The 2-skeleton of G(2,n) is obtained from the 2-skeleton of F(2,n) by attaching
only the 2-cells in J}. Therefore, by [21, Ch. 1 Prop. 1.26] it follows that the inclusion

inc: F(2,n) — G(2,n)
induces a short exact sequence

incy

1— N —m(F2,n) —— m(G(2,n)) — 1, (8)
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where N := kerinc, is the normal closure of a subgroup of m(F(2,n)) generated by
loops (/) associated to added 2-cells. In more detail, due to the correspondence of
1-cells ¢(o,1;) of F(2,n) and the classes of loops 7; € B,,, we have

N = nclpn{a'ri?a_l c0€e6,, 1<i<n-—1suchthatl <o,y —0; <n—1}.

Here we again abused notation and denote by ¢ also the braid with presentation (5).
Thus, 71 (G(R?, n)) has presentation which is the same as (©) but with additional relation
otfo~t =1foreachoce &, and 1 <i <n—1forwhichl<o;; —0; <n—1.
Conjugation in P, of generating elements will not change the normal closure N, and
thus by Corollary it follows that the added relations are equivalent to a, () ,(i+1) = 1
foreacho € G, and 1 < i < n—1suchthatl < 0,1 — 0; < n — 1. This is further
equivalentto a;; = 1 foreach1 <i < j <n—1with1 < j—1i < n—1. Thus, the desired
presentation follows, since the relations in (6) now amount to elements a; 5, as 3, ..., Gy 1
commuting. O
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4 Second CW model

In this section we will construct another CW model G,,, for Billiard Configuration
Space, again in the spirit of the Salvetti complex [28]. See also Bjorner & Ziegler [5]
and Blagojevi¢ & Ziegler [2¢]. This model will also be a strong deformation retract of
G(R?, n), but with an important distinction from model G(d, n) from Section 2. Namely,
it will be (n — 1)(d — 1)-dimensional, which is not greater than

dimG(d,n) =d(n—1) — 1 — (n mod 2).
This will be particularly useful for calculating topological complexity of G(R¢,n), since
the dimension of CW model used there is important.
Similar to the procedure in Section 2, we first retract G(R?, n) to the subspace
GRY n) = GRY n) n S(WP)

via map (1), namely
(RY)*™\D — WEN{0} — S(W21).

The next goal is to stratify the space W® into cones.

To each (z, ..., 7,) € WP we assign combinatorial data
(T7$) € [d+ 1]n X {+7 _70}n

in the following way. For each 1 < i < n we are comparing vectors x; and x;,1, where
we set x,,,1 := 1. They are either equal, in which case we set

T'i§=d+1 and SZ'I=O,

or thereisaunique 1 <r < dsuchthatxz;; = x;4;;forall1 < j <r—1landz;1, # 2,
in which case we set
ri =71 and s; :=sign(r;, — Tiy1.)-

More formally, this procedure gives us a function
foWP— [d+1]" x {+,—,0}"
assigning to each point its combinatorial data.
Definition 4.1. Let
C" = fF(W®) < [d+1]" x {+,—,0}"
denote the set of combinatorial data of points in W®¢ and let
C'(r,s) := fH(r,s)) = {x e WP (r,s) is the combinatorial data assoc. to z}.

for each (r,s) € C'.
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In more detail, the set C’ of all possible combinatorial data of points in W®? can be
described as follows. Assume (r,s) € [d + 1]™ x {0,+, —}"isin C".
e By definition, we have
ri=d+1 < s;,=0

forall 1 <i<n.

e If J:={j:r; = min; r;} denotes the set of all indices for which the minimum of r
is obtained and if we denote this minimum by » := min; ; < d + 1, then we cannot
have that the set of signs {s; : j € J} has only one element. Indeed, if for example
{s; : 7€ J} ={+} we would have

xl,r <. < xn,r < xl,r

with at least one strict inequality, which is impossible.
Thus, we conclude that (r,s) € C’ must satisfy these two conditions, and moreover they
characterize C'.

For each (r,s) € C' the set C'(r,s) is a relatively open cone. To see what the dimen-
sion is, let r := minj¢;<, r;. Then C’(r, %) is given by the set of
(rm—1)+..+(rp—1)—(r—1)

equalities and some strict inequalities. Indeed, for each 1 < i < n — 1 we have r; — 1
equalities coming from comparing the coordinates of z; and ;. ;. When we compare z,,
and z,, we already know their first » — 1 coordinates are the same, so we only need to
add (r, — 1) — (r — 1) additional equalities. Thus, we have

dimC'(r,s) = (n— 1)d + (miinri —1)=(r—=1)—...—(rp, = 1).

Let us denote by A
0:=((d+1,...,d+1),(0,..,0)) e C'

the combinatorial data corresponding to the origin {0} < W%,
Definition 4.2. For each (r,s) € C’\ {0} we define
d(r,s) = C'(r,s) n S(WS).

As in Section 2, for each (r,s) € C' \ {0} sets ¢/(r,s) are non-empty relatively open
subsets of the sphere S(W®¢) homeomorphic to open discs of dimensions

n—1)d—-1+ (miinrl —1)=(r1—=1)—...— (r, = 1).

Thus the codimension of ¢/(r,s) in the sphere S(W®9) is

codimd(r,s) = (r1 — 1)+ ... + (r, — 1) — (minr; — 1),
for each (r,s) e ¢\ {0}.
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Definition 4.3. On the set ¢\ {0} we define a poset structure by letting (r,s) < (z/,s’)
if and only if we have

e 1. <r;foreach1 <i<n,and
o ifr/ =r; then s, = s,.
Let us denote by S'(d,n) := (C"\ {0}, <) this poset.
Proposition 4.4. The collection
{d(r,s): (r,8)eC"\ {0}

of cells forms a cellular structure S'(d, n) on the sphere S(W®4) with face poset S’(d,n).
Opposite poset S’(d, n)? is a face poset of a cellular structure S'(d, n)°? on the same sphere,
with cells ¢ (r,s) of dimension

dimd(r,s) = (r1 — 1)+ .. + (rn — 1) — (miinri —1)

for each (r,s) € S'(d,n).

Proof. Notice that ¢ (r,s) < cl(¢/(r/,s’)) if and only if (r,s) < (r/,s’) in S'(d,n). More-
over, in this case we have dim ¢(r,s) < dim ¢(r’,s’). Thus, the cells make a regular CW
structure on the sphere with poset S’(d, n).

The reason why S’(d, n)°P is also a face poset of a CW structure on S(W®9) is anal-

ogous to the one made in Proposition . The cells of the opposite structure are
dual block cells, and thus have complementary dimension to the original cells in the
sphere. O

Similarly to the situation in Section 2, we again have
either C'(r,s) < G(R%,n) or C'(r,s) nG(R%n) =,
for each (r,s) € C'. Let us define
Gan = {(r,s) € S'(d,n)®? : C'(r,s) < G(RY n)}.
Then for each (r,s) € C" we have
(r,s) € Gg,, ifandonlyif 1<mr,..,r, <d
We again see that G4, is closed downwards in the poset S’(d, n)°P.

Definition 4.5. Let n > 1 and d > 2 be integers. Define G, ; < S’(d,n)° to be the CW
subcomplex induced by the subposet G,, 4 < S’(n, d)P.
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Finally, we obtain another CW model of the Billiard Configuration Space.

Theorem 4.6. Let d > 2 and n > 2 be integers. The space G(R%,n) contains, as a strong
deformation retract, a finite regular CW complex G, ,, of dimension (d — 1)(n — 1) with the
face poset G,, < S'(d,n)°?. Moreover, the following facts hold.

e The boundary of a cell &(r,s) < Gg., consists of cells ¢ (r',s") < G,,, which satisfy:

- ri<riforall<i<n,and
- if r. = r; for some 1 < i < n, then s, = s;.

e The dimension of the cell & (r,s) is

dimd(r,s)=(r— 1)+ -+ (r,— 1) — (miinn- —1).

Moreover, Gy, < G(R% n) is D,-invariant subspace, where D,, = {(p,0) < &, is the
dihedral group. The action is cellular and for a cell & (v,s) it is generated by

p- é/(<7“1, 3 Tn>, (317 s Sn)) = é,((rm T1yeees 7"n—1>a (Sny S1y 00y Sn—l))

and
0 - é'((rl, ey Tn)y (815 eny sn)) = é'((rn, 1), (=S oeny —51)),

where p : [n] — [n] maps i+ i+ 1and 0 : [n] — [n] maps i — n — i.

Proof. The proof that G,,, is a D,-equivariant strong deformation retract is analogous
to the proof of Theorem 2.6. As for the dimension of the complex G, ,,, notice that for
each cell ¢(r,s) < G4, we have r; < d for all 1 < i < n. Thus, if r; = min; r; we have

dimd(r,s) = Y| (r—1)<(n-1)(d-1),
i€[n]—{j}

and the equality is obtained when r = (d, ...,d) and s = (+, ..., +, —). O
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5 Sectional category of a fibration

The main reference for this section is paper by Schwarz [29], where the notion of a
sectional category is referred to as the genus of a fibration.

Definition 5.1. A continuous map p : E — B is called a Hurewitz fibration if for any
space X and any two maps f : X x {0} — E and H : X x [0,1] — B such that the
square

Xxf{0) ——— E

3G -

X x[0,1] —2— B

commutes, there is a map G : X x [0,1] — F such that the two triangles commute,
that is, such that Goi = fand po G = H.

The existence of such a map G is called the Homotopy lifting property of the map p.
In this thesis we will only deal with Hurewitz fibrations (as opposed to Serre fibrations),
so for the sake of brevity we will denote them just by the term fibrations.

If two points by, b, € B are in the same path component of B, then the fibers p~!(b,)
and p~!(by) are homotopically equivalent [2 1, Proposition 4.60]. By the fiber of a fibra-
tion p : E — B we will denote the fiber F' := p~!(b) of a fixed, and usually implicitly
assumed, base point b € B.

Remark 5.2. The existence of a lift G : X x [ — FE is equivalent to the existence a
dashed arrow

making the diagram commute. Here B! and E! denote the path spaces of B and E,
while the map H : X — B! corresponds to the map H : X x I — B under the
Exponential law [, Section 1.3]. Due to the universal property of the pull back

B' x5 E:={(y,e) € B x5 E: v(0) = p(e)},

existence of a dashed arrow I' : X — E' for any X is equivalent to existence of a path
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lifting map A : B! xp E — E' making the diagram

Bl xz E P
_ g %)
l”
evop B7

commute. Here pr, : B! xz E — B! and pr, : B! x3 E — E are the projections on the
first and second coordinate, respectively [, Ex. 4.3.13].

Definition 5.3. Let X be a topological space. Then by
CX :=X x[0,1]/X x {0}
we denote the cone of X. Moreover, let
C'X :=X x[0,1)/X x {0}.

We can see X sitting inside the cone C'X as X x {1} < CX, so we have C'X =
CX \ X. Next, we give a definition due to Schwarz [29, Ch. I Sec. 5].

Definition 5.4. Let X, ...., X}, be topological spaces. We define their join X ... * X}, to
be the space

Xi#.ox Xpi= (OXy x - x OXp) \ (C"Xy x -+ x C'Xy).
Thus, a point in the join X; = - - - = X}, is of the form
([xl,tl], . [xk,tk]) eCX; x---xCX;

such that
max{t;: 1 <i<k}=1,

where z; € X; and t; € [0,1] for each 1 < i < k.

Remark 5.5. This definition coincides (up to homeomorphism) with the notion of join
which can be found in the literature, which for k£ = 2 has the form

XY :=XxY xI/(x,y,0)~ (2,y,0), (z,y,1) ~ (z,9, 1).
For example, we have the homeomorphism [29, Ch. L. Sec. 5]
XY 55 XY
mapping ([z,t],[y,1]) € X =Y to (z,y,t/2) € X +' Y and ([z,1],[y,t]) € X =Y to
(x,y,1 —t/2) e X ¥ Y.
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Definition 5.6. Let f : X — Y be a continuous map. Then by
My = (X % [0,1] U Y)/(2,0) ~ f()
we denote the mapping cylinder of f. Moreover, let
Mj = (X x[0,1) u Y)/(x,0) ~ f(z).

Cone of a space is a special case of a mapping cylinder, namely when Y = {pt}. For
amap f: X — Y we have a natural map

M(f): My —Y, [z,t]— f(z), y—y.
Next definition is due to Schwarz [29, Ch. II, Def. 1 & Def. 17].

Definition 5.7. Suppose we have a fibration F; — E; £> B over the same base space
for each 1 < i < k. Then we define the space E; + ... + Ej to be the pullback of the
diagram

Ei+..+E, —— (Hf:l Mpi)\(nle MIIM)

!

[, 1, (10)

h A k
B » [ 1=y B,

where A : B — [[¥_, B is the diagonal map and
pL+...+pp: B+ ...+ E,— B
is the induced map.

The map
p+..+p:E1+...+E,.— B

is a fibration if py, ..., p, are as well and if B is path connected [29, Ch. II Sec. 1].
Since we are not aware of the full proof of this statement, we include it for the sake of
completeness. We split the proof into a lemma and a corollary.

Lemma 5.8. Let F — E 2 B be a fibration. Then

CF —— M,

lM (p)
B
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is a fibration. Moreover; if
X x {0} —1 M,

7

G .-
i P

XxJ " 4B

is a commutative square, then the lift G can be chosen such that for any x € X the following
implication holds:

f(,0)e Ex{l}c M, = G(z,I)< E x {1} < M,. (11)

Proof. Let A : B! xg E — E! be a path lifting map (©) for fibration p. In view of Remark
it is enough to construct a path lifting map

©:B' xp M, — M, (12)
for which the path ©(y, [e, 1]) € M/ lies completely in E x {1} = M,.
Mapping cylinder M, is a push out of the diagram

Ex{0} —— ExI

gl |

B— M,

Moreover, the top horizontal map is a closed cofibration over B and maps p : F x {0} —
B,id: B — Band popr, : E x I — B, from the three spaces making the push out
diagram, are fibrations. Therefore, by [0, Proposition 1.3] it follows that the induced
map

M(p): M, — B

is a fibration. Moreover, the path lifting map (9)
I':B' xp M, — M]
of fibration M (p) is given by

[Ae,7)(s), max{0,t — s/2}], x = [e,t] € M, for some (e,t) € E x I
v(s) x = be M, for some b e B,

L(7v,2)(s) = {

for any (v, x) € M, and s € I. Let us define

~

M, = ((E x [0,2]) u B)/ ~,
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where relation ~ is generated by (e, 0) ~ p(e) for each e € E. We will use this model
for the mapping cylinder instead of M, to define the path lifting map (12)

9:BI><BZ\7P—>J\7;

with the property that the path ©(, [e,2]) is completely contained in E x {2} < Mp.
Path lifting map I is defined on points (z,7) € B! xp Mp whenz € B < Mp or when

r = [et] € ]\710 for e € F and t € [0, 1]. This is the "lower half’ of B xp ]\7]0. Now we
define a map
I": B xp (E x [1,2]) — (E x [1/2,2])" — M!

on the "upper half’ of B! x ]\71, to map by the rule
(e, t,7)(s) = [Ale,)(s), t — s + ts/2],
for (e,t) € E x [1,2], v € B! and s € I. Notice that the time coordinate of I satisfies
t—s+ts/2=(2—1)(1—s/2)+ (t—1)2€e[1—s/2, 2] < [1/2, 2]

fort e [1,2] and s € [0, 1].

Map IV on B! x5 (E x {1}) coincides with map I" on B! x5 (E x {1}) € M, xp B/,
so they can be glued along the intersection of their domains to form a continuous path
lifting map

~

©:B! xB]\N/[p—>M;.
On an element (v, [e,2]) on top level B! xp (E x {2}) < B! xp Mp map © equals
O(7.[e.2])(s) = T'(v, [e, 2])(s) = [A(v,e)(s), 2] € B' x5 (E x {2}),

for every s € I, so the path ©(~, [, 2]) indeed stays on the top level as wanted.
0

Corollary 5.9. Assume F; — E; 25 B is a family of fibrations, where 1 < i < k. Then the
right vertical map in (10) is a fibration

Fi«.«F, —— Ei+ ..+ E}

lp1+...+pk

B

with fiber F} = ... = F}.
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Proof. Since the pull back of a fibration is a fibration [, Prop. 4.3.11], it is enough to
show that the left vertical composition in (10) is fibration.

By Lemma it follows that M (p;) : M,, — B is a fibration with fiber C'F; for each
1 <i < k. Hence, the product map

k k

k
HM(pi):HMpiHHB

i=1 i=1
is also a fibration with fiber [ ¥, CF}. Let
f
X x {0} —— (I Mp)\(T T2, M;,)
Hle Mpi
G,/’/// leM(Pz)

-

g H k
X xT » T1°, B

be a commutative diagram with f = (f1,..., fx) and H = (Hj, ..., Hy). Denote by

k
G:=(Gy,....,G) : X x I — HMl
=1
the lift of H, where G; is a lift of H; satisfying (1 1). In order to show that the composi-

tion of the two vertical maps on the right is a fibration, we want to show that G factors

through
k

(GMM) \ (ﬁM,’%) < ﬁMpi.

i=1
Let (z,t) € X x I be any point. Since the image of f avoids ]_[f:1 M, it follows that
fi(x,0) € E; x {1} € M,

for at least one 1 < j < k. Hence by (11) it follows that G;(x, 1) < E; x {1} < M,,, so

we have
k

G(z,I)n HMI’) = .
=1
Therefore, the desired factorisation holds.
The fiber of this fibration at the diagonal point in B* is

(ﬁCF) \ (ﬁCF) CFie e Fy

which finishes the proof. O
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For a fibration F — E % B and an integer k, we will denote the k-fold sum of
fibration p by
F* — B,

|

B.
Now we state the central definition of this section.

Definition 5.10. (Schwarz [29, Definition 5]) Let F — E 2 B be a fibration. The
sectional category of fibration p, denoted by seccat(p), is the minimal integer £ € Nu {c0}
such that there is an open cover of the base space by & open sets,

B=U u---uUy,
such that the restricted fibration p|y, admits a cross section for each 1 <i < k.

The following result transforms the question of finding & partial sections of fibration
to the existence of a global section of the k-fold sum fibration.

Proposition 5.11. (Schwarz [29, Proposition 2]) Let FF — E 2, Bbea fibration. Then
seccat(p) < k if and only if the k-fold sum fibration F** — E; 2% B admits a global
section.

For a topological space X we will denote by conn(X) the connectivity of X. Next
we state an upper bound for sectional category of a fibration over particularly nice base
space.

Corollary 5.12. (Schwarz, [29, Theorem 5]) Let FF — E 2, Bbea fibration. Assume B
is a finite-dimensional CW complex. Then

[ dim B + 1 }
seccat(p) < :

conn(F) + 2

Proof. Let k be the number on the right hand side. By Proposition we know
seccat(p) < k if and only if the k-fold sum F** — E;, 2% B admits a section. The connec-
tivity of the fiber F** follows from formula of the connectivity of a join (Whitehead [30]),
namely

conn(F**) = kconn(F) + 2(k — 1) = k(conn(F) + 2) — 2.
Thus, there is no obstruction for existence of a section on skeleton of B of dimension
conn(F**) + 1 > k(conn(F) +2) — 1 > dim B. O

The above corollary gives an upper bound on the sectional category of a fibration.
Next theorem gives a way to obtain a lower bound.
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Theorem 5.13. (Schwarz [29, Theorem 4]) Let F — E 2 B be a fibration. Assume
there exist k cohomology classes

& € H*(B; Ay),...,& € H*(B; Ayp),
where Aq, ..., A, are some local systems of coefficients on B, such that
() p*¢;, =0e H*(E;p*A;) forall 1 <i <k, and
(i) Gu---U& #0e HY(B; A ®z -+ - ®z Ap).
Then seccat(p) = k + 1.

5.1 Topological complexity and Lusternik—Schnirelmann category

In this section we define the notion of topological complexity of a topological space,
as introduced by Farber [14].

Definition 5.14. Let (X, z,) be a pointed and path connected topological space. The
topological complexity of X, denoted by TC(X), is defined as the sectional category of
the fibration

QX — PX

lp
X x X.

Here
PX :={y:[0,1] — X : ~ continuous}

denotes the path space of X,
QX :={y:[0,1] = X : v continuous and (0) = (1) = ¢}
denotes the loop space, and p := ev, x ev; is the product of evaluations at the end points.
Lemma 5.15. For any space X the map
p:PX — X xX, v+ (7(0),7(1))
from Definition is a fibration.

Proof. LetY beaspaceand f:Y x {0} — Eand H : Y x I — B continuous maps such
that the diagram

y — 1 . px

Jiaxo lp

YxI 24 XxX.
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commutes. Map f : Y — PX corresponds to the map

fY x I — X, (y,t) — fy)(t)

due to the Exponential law [, Section 1.3]. Similarly, the lift G : Y x I — PX corre-
spondstoamap G’ : Y x I x | — X. Map G’ can be defined as

pr, o H(y,t — 3s) 0<s<%
G'(y,t,8) =1 f'(y, 35) t<s<1-t
pryoH(y,3s+t—3) 1—-L<s<l
It follows that
G(y,0)(s) = G'(y,0,) = f'(y,5) = f(y)(s)
and
poGly,t) = (G'(y,1,0),G'(y, t,1)) = H(y, 1)
hold for any y € Y and any ¢, s € 1. O

The map X — PX assigning a constant path at each point is homotopy equiva-
lence. The homotopy inverse is evaluation at the origin, evy : PX — X, and homotopy
continuously shrinks the path to its origin.

The k-fold sum of fibration p will be denoted by

(QX)* — P.X

[

X x X.

Example 5.16. (Farber [ 14, Theorem 1]) For a topological space X we have TC(X) = 1
if and only if X is a contractible space. Indeed, if X and contractibleand 4 : X x I — X
is homotopy hy = idy and h; = const, then section

s: X xX—PX

of p may be constructed as follows. For (z,y) € X x X we set s(x,y) to be the concate-
nation of paths ¢t — h;(z) and ¢t — hy_4(y).
On the other hand, if s : X x X — PX is a section of p and z, € X is the base point,
the map
h: X xI— X, hi(x) := s(x,z0)(t)

is homotopy A : idx ~ xg .
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In the example above we see that topological complexity of a space homotopic to
a point is the same as topological complexity of a point. Even more is true, namely
topological complexity is homotopy invariant.

Proposition 5.17. (Farber [14, Theorem 3]) Let X and Y be topological spaces and
suppose that X ~ Y. Then we have TC(X) = TC(Y).

Another well-studied notion of complexity of a space is the notion of Lusternik-
Schnirelmann category. In fact, it can be seen as a sectional category of a certain fibra-
tion.

Definition 5.18. Let (X, () be a pointed and path connected topological space. The
Lusternik-Schnirelmann category of X, denoted by cat(X), is defined as the sectional
category of the fibration

QX —— P.X
[s (13)
X

where
P.X :={v:([0,1],0) — (X, xq) : 7 continuous}

is the based path space of X and ¢ := ev;.

Notice that the space P, X is contractible, as all paths can be continuously deformed
to the constant path at the base point. Thus from the long exact sequence of the fibration
(13) we have the following.

Lemma 5.19. Let (X, x¢) be pointed and path connected topological space. Then we have
T(QX, 20) = i1 (X, 7o)
for each k > 0. In particular, conn(X) = conn(QX) + 1.

Since both topological complexity and Lusternik—Schnirelmann category are sec-
tional categories of fibrations, we have the following upper bounds due to connectivity
of the loop space and the Corollary

Proposition 5.20. Let X be finite dimensional CW complex. Then

2dim X +1

conn X + 1

TC(X) < -
C(X) [ conn X +1

w and cat(X)é[dlmXJrl}.

Next, we provide a lower bound for the topological complexity and Lusternik—
Schnirelmann category.
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Proposition 5.21. Let X be a topological space. Assume there exist cohomology classes
& e HY (X x X; Ay),....&. € H (X x X; Ap),
for some local systems of coefficients A, ..., A, on X x X, such that
(D) &|lx =0e H*(X; Aj|x) forall 1 <i <k, and
G) &0 U&G #0e HY (X x X; 4 ®z - Qg Ay).
Then TC(X) = k + 1.

Proof. We apply Theorem to fibration QX — PX % X x X. Since the composition
X — PX £ X x X is the diagonal mapping d : X — X x X, with the first map being
homotopy equivalence, we conclude that a cohomology class £ € H*(X x X; A) satisfies
p*¢ =0e H*(PX;p*A) if an only if it satisfies d*¢ = 0 € H*(X;d*A). O

Proposition 5.22. Let X be a topological space. Assume there exist cohomology classes
& e HM(X; A, ..., & € H*(X; Ap),
for some local systems of coefficients Ay, ..., A, on X, such that
(i) d; = 1forall1 <i<k,and
(i) &G0 U #0e HAP (X A Qg - - @z Ap).
Then cat(X) = k + 1.

Proof. We apply Theorem to fibration QX — P, X % X. Since P,X =~ pt, the
condition ¢*¢§; = 0 is satisfied if d; > 1. O

Example 5.23. (Farber [14, Theorem 8]) We have TC(S') = 2. More generally,

2, nisodd,
3, niseven.

TC(S™) = {

Let n be odd. Due to Example , we have 2 < TC(S™) since S™ is not contractible.
To prove TC(S™) < 2 we will construct two open sets U,V of S™ x S™ which cover it,
and define sections of p on both of them. Let

U:={(x,y) e S" x S": = # —y}.

For each (z,y) € U there is a unique geodesic from z to y, namely the part of a great
circle containing x and y. This choice yields a continuous section

sy :U— PS", (z,y) — (t — xcos(mt/2) + ysin(nt/2)).
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For the other open set we choose
Vi={(z,y) e S" x S": x # y}.

Since n is odd, there is a non-zero vector field X on S". Without loss of generality
we may assume X is of unit length. Section sy : V' — PS™ is defined as follows. For
(z,y) € V we set sy(x,y) to be concatenation of paths

t — xcos(mt/2) + (—y)sin(nt/2) and ¢ +— (—y)cos(nt) + X (y)sin(nt).

The first path goes from x to —y along the unique geodesic, and the second path goes
from —y to y along the unique geodesic which passes through X (y) € S". The second
path is well defined since X (y) is orthogonal to both y and —y.
Let n be even. Since S" is n-dimensional and (n — 1)-connected, from Proposition
it follows that TC(S™) < 3. On the other hand, there is a graded Z-algebra isomor-
phism
H*(S™) = Z[€]/(€?),

where deg ¢ = n. In this case, the cross-product

>~

x : H*(S™) ® H*(S") = H*(S" x S™)

is an isomorphism [21, Theorem 3.15]. Let A : X — X x X be the diagonal map.
Then the composition of the cross product and the restriction to the diagonal is the cup
product, A* o x = u. Hence, the class

E=(®1-1®¢&e HY(S™)®?
satisfies (A* o x)(§) = u(§) =¢ul—-1uUé=0e H*(S") and
Eul=—((-1)"+1)E®E=(-2)6®E # 0e H"(S")®.

Thus, by Proposition we have TC(S™) > 3.
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6 Topological complexity of Billiard Configuration Space

The aim of this section is to bound topological complexity of the Billiard Configuration
Space
GRYn) = {(z1,...,2,) € (RY)*" : z; # x;,, forall 1 <i < n},

where z,,,, := x,. First, it will be crucial for us to know integral cohomology of G(R%, n).

Theorem 6.1. (Farber & Tabachnikov [17, Proposition 2.2]) Let d > 2 and n > 2 be
integers. Then there is a graded-commutative Z-algebra isomorphism

H*(G(RY,n);Z) = Zley, ...,en]/I,

where ey, .., e, are of degree d — 1 and I < Z]ey, ..., e,,] is an ideal generated by n elements
€2, ...,e2 of degree 2(d — 1) and the homogeneous element

€1...Cp1 + E€o...Cp + E25...0p€1 + - + " Leeq.0n_2 (14)
of degree (n — 1)(d — 1), where ¢ := (—1)~D@=1),
For each S € 2[" let

es 1= Hei e HE¥IE-D(GQ(R?, n)),
i€S

where the product is taken in ascending order of indices. The cohomology ring of
G(R9,n) is non-trivial only in dimensions k(d — 1) for 0 < k < n — 1. Moreover, for
0 < k < n — 2, as abelian groups we have

H* DGR ) = P Zles) (15)
se(%)

In the top dimension however, due to relation (14), we have

HODEED(GQRYn) = @ Zes). (16)
Se(i’j]l),nes

Corollary 6.2. Let d > 2 and n > 2 be integers. Then G(R¢,n) is (d — 2)-connected.

Proof. For d > 3 by Proposition it follows that G(R¢,n) is simply connected. Thus,
the claim follows by Theorem and Hurewitz theorem. O

Remark 6.3. Let G;,, = G(R? n) be cellular model from Section 4. The cross product
XL H*(gd,n) ® H*(gd,n) i) H*<gd,n X gd,n)
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is a graded ring isomorphism, since G,,, is a finite dimensional CW complex with free
integral homology groups of finite rank [21, Theorem 3.15]. Due to this isomorphism,
we will sometimes for convenience not make the distinction between the two. Post
composing the cross-product with the diagonal map gives the cup product map. Thus,

in view of Proposition , lower bound TC(G,,,) = k + 1 would follow if we there are
classes vy, ..., vx € H*(Gg,,) such that vy - ... - ), # 0 € H*(G,4,,)®?, where we define
@::v®1—1®veH*(gd7n)®2 a7

for any class v € H*(Gg4,,,)

Before we continue further, let us compute Lusternik—-Schnirelmann category of Bil-
liard Configuration Space.

Theorem 6.4. Let n > 1 and d > 2 be integers. Then we have
cat(G(R%, n)) = n.

Proof. Since Lusternik—Schnirelmann category is homotopy invariant [23], we can com-
pute it for CW model G;,, ~ G(R? n) from Section 4. Since G, is (d — 2)-connected
and (n — 1)(d — 1)-dimensional, by Proposition we have

—1)(d—-1 1
cat(Ga,) < (n )d<—1 )+ =n

On the other hand, generators ¢y, ...,e,_; € H*'(G,,,) have non-trivial product
er...ep_1 #0€ H(”_l)(d_l)(gzn),

so by Proposition we have n < cat(Gy,,). O

Let us know compute topological complexity of G(R? n) in the case when n > 3 is
odd.

Theorem 6.5. For d > 3 odd and n > 1 integer we have

TC(G(RY n)) = 2n — 1.

Proof. Topological complexity is homotopy invariant by Proposition . Thus it is
enough to show TC(G,,,) = 2n — 1. Since G, is (n — 1)(d — 1)-dimensional and (d — 2)-
connected, from Proposition we obtain

2(n—1)(d—1)+1
d—1

TC(Gay) < [ } o1
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The lower bound 2n — 1 < TC(G,,,) is obtained from Proposition . Indeed, in
view of the Remark 6.3, it is enough to find a non-trivial product of 2n — 2 classes in
H*(Gy,,)®? of the form (17). For example,

n—1

1_[ €€ = H 2)e;®e; = (—=2)""er...tn1) @ (e1...n1) # 0 € H*(Gypn)®,

i=1
because ;- ¢; = —((—1)4 1 + 1)(e; ® e;) = (—2)(e; ® ;) for d odd. O
By the work of Farber & Yuzvinsky [1 6], we know that
TC(F(RY n)) =2n—1

when d is odd. Thus, topological complexity of Billiard and standard Configuration
Space coincide in this case. Natural question arises, that is whether the same is true for
the case of d even. In the same paper, Farber and Yuzvinsky proved

TC(F(R?* n)) = 2n — 2
and obtained bounds
2n — 2 < TC(F(R%n)) < 2n—1

for d > 4 even. It wasn’t until some years later that Farber & Grant [15] the lower
bound is tight. Namely, they obtained

TC(F(R% n)) =2n —2

for d even. In this thesis, besides computing topological complexity of the Billiard
Configuration Space in the case when d is odd, we provide a lower and an upper bound
for the case of even d. As mentioned in the proof of the next theorem, we postpone the
full proof of the upper bound until Subsection

Theorem 6.6. For d > 2 even and n > 3 we have
n+1< TC(G(R% n)) < 2n — 2.

Proof. Let us first obtain the lower bound. By the homotopy invariance of topological
complexity, Proposition , we will bound TC(G,,,). The lower bound is obtained by
Proposition for all even d > 2. Indeed, in this case there is a non-trivial product of
n elements in H*(G,,,)®? of the form (17), namely

:]:

g =|[e®1-1®¢) #0e H(Gyn)®”. (18)
=1

7 i=1
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Therefore n + 1 < TC(G,, 4). The product (12) is non-trivial since it is a signed sum of

terms of the form
(H@) ® ( H €j> e H*(Gyn)®, (19)
VS

el [n]—1

for I € 2["). To see non-triviality, notice first that the terms for I = ¢§ or I = [n] are
trivial. Due to cohomology relation (14), the term corresponding to I = {n} can be
expressed as sum

n—l(

en®eq...en 1 =—c(e, ®eges...ep) — ... — € en ® €ne1...6n_2),

all of which are basis elements not of the form (19) since they have e, on both coordi-
nates. Analogous expression holds for I = [n—1]. When expressed like this, the product
(18) is a signed sum of distinct additive basis elements of degree n part of H*(Gy,,)®?
and hence non-zero. Notice that the ring H*(G,,,)®* has an additive basis the products
of basis elements (15) and (16).

As for the upper bound, we first give an argument for d = 2. The proof for d > 4 and
even we postpone until Subsection 6.1. We have

G(R*n) =C" - | J*,
where H := {H; : 1 <i < nj} is a central complex hyperplane arrangement
Hi:={(21,..,20) € C": 2; = 211}

of rank n — 1. Thus, the upper bound TC(G(R?,n)) < 2(n — 1) holds due to Farber &
Yuzvinsky [16, Theorem 6]. Namely, they proved that the topological complexity of a
complement of central complex hyperplane arrangement is not greater than twice the
rank of the arrangement, where the rank of a hyperplane arrangement is the dimension
of the linear span of normal vectors to the hyperplanes which make the arrangement.

U

6.1 Obstruction theory
In this subsection the goal is to obtain the upper bound

for d > 4 even. We use Obstruction Theory. Our methods are similar to the ones used
by Farber & Grant in the case of standard Configuration Space [15]. See also Costa &
Farber [11].
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Letd > 4,n > 2 and k > 1 be integers and let

(di,n)*k S Pkgd,n
lpk (20)
gd,n X gd,n

be the k-fold sum of fibration

p: Pgn,k E— gn,k X gn,ka S (7(0)77<1))

In particular, we have p; = p. Due to Lemma we know that the fiber (2G,,)*"
of py, is (k(d — 1) — 2)-connected and the base is (d — 2)-connected. In particular, since
d > 4, the fiber and the base space are simply connected, so we avoid cohomology with
local coefficients. Thus, without mentioning explicitly, all cohomology coefficients will
be assumed to be non-local.

Therefore, due to connectedness of the fiber, by the obstruction theory (see [15,
Lecture 18]), fibration (20) admits a section over the (k(d — 1) — 1)-skeleton of the base
space Gu, % G4, and the first obstruction to existence of a section is

0 € Hk(d_l)( dezL; Tr(a—1)-1((2Ga)*")). (21)

Moreover, o, = 0 if and only if there is a section on k(d — 1)-skeleton of G,,, x G4,,. We
prove the following lemma.

Lemma 6.7. Let d > 4 be even and n > 2 be an integer. If k > n + 1, then the first
obstruction class (1) to the existence of section of k-fold sum fibration (2.0) vanishes.

Before giving a proof of the lemma, let us first obtain the upper bound from previous
subsection.

Proof of Theorem. for d = 4 even. We want to show the upper bound
TC(gdm) < 2n — 2,

which by Proposition is equivalent to the fact that fibration (20) admits a section
for k = 2n — 2. Since n > 3, we can apply Lemma for k = 2n — 2 to conclude that
the first obstruction 0,,,_, vanishes,

02, 2 =0¢€ H(Qn_z)(d_l)( dezL; 7r(2n72)(d71)71((di,n)*zn_2))-

Thus, there is a section of p,,_» over the (2n — 2)(d — 1)-skeleton of Q;ﬁ. This finishes
the proof, since the complex G;? is in fact (2n — 2)(d — 1)-dimensional. O
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Before proving Lemma 6.7, let us exhibit the following. The loop space QG,,, is
(d — 3)-connected, Lemma . By the work of Whitehead [20] it follows that the first
non-trivial homotopy group of a join (G, ,,)** satisfies

Tr(a—1)-1((2Ga0)**, pt) = 74-2(Q2G 40, pt)®*
Notice that for d > 4 all homotopy groups in this formula are abelian. Let us denote by
01 € HN (G2 Ta—2(QGan)),

the first obstruction class of fibration p; = p. Its k-fold cup product lives in

E Hk (d—1) (gdn’ Td— 2(di’n)®k) Hk (@=1) (gd nt Tk(d—1)— ((di n)*k>)

Moreover, due to Schwarz [29, Theorem 1], this k-fold cup product coincides with the
first obstruction to the existence of section of p,

Oi)k =0} € Hk(dil)( ;EL’ Td— Q(di n)®k)
The coefficients of the cohomology group satisfy

Ta2(2Gan)®" = 74 1(Gan)®* = Hy 1(Gyn)®"

due to Lemma and Hurewitz isomorphism. Thus, since H,;_1(G,,,) is a free abelian
group, by the Universal coefficients theorem we may say

01 € Hd_l(g(;i) ® Hd_l(gd’n) = (H*(Q )®2) ®Hd 1(gdn) (22)

and
0" = op € H*V(G;%) ® Hi1(Gan)®* = (H*(Gan)®*) ™™ @ Haor(Gun)®*. (23)

The isomorphisms in (22) and (23) are the inverse of the cross product isomorphism,
Remark 6.3. Now we have all the ingredients to finish the proof of Lemma

Proof of Lemma ©.7. By the Universal coefficient theorem, we know that

Hd—l(gd,n) = Hd_l (gd,n>a

so let sq,...,s, € Hq-1(Ga,) be generators, e.g., the ones corresponding to generators
e1,...,en € H7Y(Gy,). Obstruction class o; therefore has a presentation in the right
hand side of (22) of the form

:an (Zn: ¢ii(e®1) +d”(1®ez)> ®s; € (H*(Gan)®) "V ® Ha1(Gun),
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where ¢; ;,d; ; € Z. TH fibration
pr=p: PX — X x X, y— (7(0),7(1))

admits a section over the diagonal, namely a map which assigns to each point x € X <
X x X on the diagonal the constant path at that point. Thus, by naturality of the
obstruction class it follows that 0,|x = 0. Therefore,

222 CZ]+de ez®33)_O€Hd l(gdn)®Hd l(gdn)

which means ¢; ; + d;; = 0 for each 1 < ¢, j < n. Thus, the obstruction class o; has the
form

= Z Z Ci j 61 ® S] (H*(gd,n)®2)(d_1) ® Hd—l(gd,n)a
j=1i=1

where we again use the notatione; = ¢; ® 1 — 1 ® e; € H*(Gy,,)®?
Now, due to (23) we have that the class o;, = o}* is a sum of elements of the form

(&1, Biy) ® (85,---55,) € (H*(Gan)®) ") @ Hy_1(Ga,p)®F,

which are all zero on the first coordinate ¢, ...¢;, . Indeed, since d is even for each

1 <7 < n we have

e
éz‘ . Ei = —((—1)d_1 + 1)(62 ®61) = 0,
so for k > n + 1 two of the indices i, ..., i, will be the same. O

Remark 6.8. Lemma says that the first obstruction of fibration p, vanishes, when-
ever d > 4 is even and k > n + 1. To prove

TC(G(R%,n)) < k

under the same numerical assumptions as above one might attempt to prove that all
obstructions of p; vanish. The situation is perhaps more complicated in the case d = 2,
since obstructions of p,, live in cohomology modules

FIse<2(n-1) (an X g27n; 71'._1((Qg27n)*k))

with local coefficients. That is why we believe that our computation of fundamental
group of G(R? n) ~ G, 4 from Section 3 can be useful if one attempts to continue along
the path of obstruction theory.
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