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Abstract
The Pharmpy Automatic Model Development (AMD) tool automates the building 
of population pharmacokinetic (popPK) models by utilizing a systematic stepwise 
process. In this study, the performance of the AMD tool was assessed using simu-
lated datasets. Ten true models mimicking classical popPK models were created. 
From each true model, dataset replicates were simulated assuming a typical phase 
I study design—single and multiple ascending doses with/without dichotomous 
food effect, with rich PK sampling. For every dataset replicate, the AMD tool auto-
matically built an AMD model utilizing NONMEM for parameter estimation. The 
AMD models were compared to the true and reference models (true model fitted 
to simulated datasets) based on their model components, predicted population and 
individual secondary PK parameters (SP) (AUC0-24, cmax, ctrough), and model qual-
ity metrics (e.g., model convergence, parameter relative standard errors (RSEs), 
Bayesian Information Criterion (BIC)). The models selected by the AMD tool closely 
resembled the true models, particularly in terms of distribution and elimination, 
although differences were observed in absorption and inter-individual variability 
components. Bias associated with the derived SP was low. In general, discrepancies 
between AMD and true SP were also observed for reference models and therefore 
were attributed to the inherent stochasticity in simulations. In summary, the AMD 
tool was found to be a valuable asset in automating repetitive modeling tasks, yield-
ing reliable PK models in the scenarios assessed. This tool has the potential to save 
time during early clinical drug development that can be invested in more complex 
modeling activities within model-informed drug development.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Developing population pharmacokinetic (popPK) models is a complex, often re-
petitive, and time-consuming task. The Pharmpy Automatic Model Development 
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INTRODUCTION

The use of nonlinear mixed-effects (NLME) modeling to 
characterize pharmacokinetic (PK) data has an important 
and well-established place in modern drug development 
settings.1,2 It is commonly used for informing decision-
making, clinical trial designs, and extrapolation to non-
observed scenarios.3,4

Building population pharmacokinetic (popPK) mod-
els requires interdisciplinary expertise in both pharma-
ceutical sciences and statistics. However, it is also often 
a repetitive and time-consuming task, especially at the 
beginning of the modeling process. To address this prob-
lem, several approaches are being explored to accelerate 
model-building development. One approach is to imple-
ment machine learning (ML) algorithms.5–7 Even though 
promising, this approach is complex and differs from the 
conventional modeling procedures. Other less complex 
non-ML-based tools of varying degrees of automation are 
also available, including those that solely generate and fit 
requested models with offering estimation information, as 
well as tools that optimize model components step-by-step 
and select the best model.8–13

The Pharmpy Automatic Model Development (AMD) 
tool is a tool that builds full classical popPK models uti-
lizing a systematic stepwise process.13,14 The AMD tool 
is implemented in Pharmpy, an open-source software 
package for pharmacometrics modeling in Python, with 
the wrapper for R, PharmR.15,16 The AMD tool consists 
of different subtools that can be used together in a fully 
automated workflow or independently, each building a 
different part of the NLME PK model, such as model-
search, for structural PK model development; IIVsearch, 

for inter-individual variability (IIV) model develop-
ment; RUVsearch, for residual unexplained variability 
(RUV) model development; and COVsearch, for covari-
ate model development (COV). Each subtool uses dedi-
cated algorithms that create model candidates, fit them 
(under Pharmpy version 0.86.0, using NONMEM), and 
finally select the best model based on predefined cri-
teria. The AMD tool builds model components step by 
step, using the best model from one subtool as input for 
the next. It only requires a dataset as input and provides 
details on all candidate models and estimation outputs, 
offering transparency in the underlying model-building 
process.

The AMD tool can play a key role in facilitating 
model-informed drug development (MIDD). However, 
an assessment of the tool and the respective automati-
cally built models by comparison with true models used 
for the simulation of datasets is lacking. The aim of this 
study is to assess the performance of the AMD tool in a 
simulation framework, mimicking phase I clinical sin-
gle ascending dose (SAD) and multiple ascending dose 
(MAD) study designs, with/without a dichotomous food 
effect, with rich PK sampling.

METHODS

An automated simulation and analysis framework was es-
tablished for 10 scenarios with varying popPK model com-
ponents (Figure 1). All scenarios were based on the same 
study design. For each scenario, the “true model” with 
known model components and parameter values was uti-
lized to simulate 30 datasets that were used as input for 

(AMD) tool builds full classical popPK models automatically in a stepwise man-
ner. To date, the AMD models have not been evaluated within a simulation 
framework by comparison with true models used for dataset simulation.
WHAT QUESTION DID THIS STUDY ADDRESS?
Within the context of early clinical drug development, this study investigated how 
well the AMD models describe simulated datasets compared to the true models.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The AMD models describe datasets well and are similar in structure to the true 
models. The discrepancies in derived secondary PK parameters are associated 
with stochasticity in simulations rather than differences in model structures.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Leveraging the AMD tool in early drug development can accelerate popPK model-
building and free up resources for further modeling tasks, ultimately facilitating 
decision-making in a model-informed drug development (MIDD) framework.
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the AMD tool. The model finally selected by the AMD tool 
was referred to as the “AMD model” (30 AMD models per 
scenario, i.e., one for each dataset). In addition, the true 
model was fitted to each simulated dataset to account for 
stochasticity in simulations, resulting in 30 new sets of pa-
rameter estimates under the original model, referred to as 
“reference models.” Metrics related to the AMD models 
were compared with metrics from the true and reference 
models. Additional details on the methodology are de-
scribed in the following sections.

True models

A previously published popPK model was modified to cre-
ate the true models for the 10 scenarios.17 The overview 
of the model components and parameters for different 
scenarios can be found in Table 1 and the model code in 
Supporting Information S2. All models had two distribu-
tion compartments and differed in (i) absorption model 
complexity—first-order (FO) absorption with or without 
delay (three transit compartments), and slow or rapid ab-
sorption; (ii) elimination type—FO, Michaelis–Menten 
(MM), or mixed (MIX-FO-MM); (iii) complexity of IIV 
structures; (iv) magnitude of proportional RUV; and (v) 
presence/absence of food effect on absorption. Typical 
PK profiles and nominal sampling times after the first 

and the last dose are shown in Supporting Information S1 
(Figure S1).

Simulated datasets

The study design for simulation was based on the phase 
I SAD and MAD clinical studies in a real drug devel-
opment program for an orally administered new mo-
lecular entity (Figure S1a). The SAD study included six 
dose cohorts (0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 mg) with 
six subjects per cohort. The MAD study included four 
dose cohorts (0.5, 1.0, 1.5, and 2.0 mg) with once-daily 
dosing over 14 days and nine subjects per cohort. For 
scenarios 8–10, where a food effect on mean absorption 
time (MAT) was included, SAD cohorts were assumed 
to be in fasted state and MAD cohorts in fed state. The 
PK sampling scheme was rich, with 24 samples per sub-
ject for the SAD study and 38 samples per subject for 
the MAD study. Deviation from nominal time in the 
simulated dosing and PK sampling times was introduced 
using a truncated normal distribution (mean = nominal 
time, standard deviation = 2.5 min, min/max = nomi-
nal time ± 5 min). The dataset with the above-described 
characteristics (including actual sampling times) was 
used as an input for the simulation of 30 replicates per 
scenario using NONMEM (Supporting Information S2). 

F I G U R E  1   Automated simulation and analysis framework for a given scenario. The “true model” with known model components 
and model parameter values was used to simulate 30 datasets. During simulation, a set of individual model parameters was associated with 
each individual of each dataset replicate (true individual parameters). Each simulated dataset was used as input for one automatic model 
development (AMD) tool run. The final model selected by the AMD tool was referred to as the “AMD model” (30 AMD models per scenario, i.e., 
one for each dataset, each with its own population and individual model parameters estimates). In addition, the true model was fitted to each 
simulated dataset to account for stochasticity in simulations, resulting in 30 new sets of population and individual parameter estimates under 
the original model with the true model components, referred to as “reference models.” Metrics related to the AMD models were later compared 
with metrics from the true and reference models. The gray hexagons represent the key workflow steps. Models are depicted as rectangles and 
datasets as card shapes. The dashed line indicates that the true model code was used for the estimation of the parameters, resulting in reference 
models. Lighter-color rectangles represent the nature and number of parameters derived from the corresponding elements.

True model
30 simulated datasets

(72 individuals per dataset)

30 reference models

1 set of true population
parameters

30 x 72 sets of simulated true
individual parameters

30 sets of estimated reference
population parameters

30 x 72 sets of estimated
reference individual parameters

30 AMD models

30 sets of estimated AMD
population parameters

30 x 72 sets of estimated AMD
individual parameters

Simulation

Model building
with the AMD tool

Parameter
estimation

https://ascpt.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fpsp4.13213&mode=


1710  |  DUVNJAK et al.

T
A

B
L

E
 1

 
M

od
el

 c
om

po
ne

nt
s o

f t
ru

e 
(a

nd
 re

fe
re

nc
e)

 m
od

el
s f

or
 e

ac
h 

sc
en

ar
io

.

Sc
en

ar
io

B
as

ed
 o

n 
sc

en
ar

io
A

bs
or

pt
io

n
D

is
tr

ib
ut

io
n

E
lim

in
at

io
n

II
V

a
R

U
V

C
ov

ar
ia

te
s

1
“B

as
e”

b
–

FO
2 

C
M

T
FO

[M
A

T]
 +

 [C
L,

V
C

,Q
P1

,V
P1

]
PR

O
P

–

2
“B

as
e 

w
ith

 si
m

pl
ifi

ed
 II

V
”

1
FO

2 
C

M
T

FO
[M

A
T]

 +
 [C

L,
V

C
]

PR
O

P
–

3
“D

el
ay

ed
 a

bs
or

pt
io

n”
1

3 
tr

an
si

t 
C

M
Tc  +

 d
ep

ot
2 

C
M

T
FO

[M
A

T]
 +

 [C
L,

V
C

,Q
P1

,V
P1

]
PR

O
P

–

4
“D

el
ay

ed
 a

nd
 ra

pi
d 

ab
so

rp
tio

n”
3

3 
tr

an
si

t 
C

M
Td  +

 d
ep

ot
e

2 
C

M
T

FO
[M

A
Tf ] +

 [C
L,

V
C

,Q
P1

,V
P1

]
PR

O
P

–

5
“M

M
 e

lim
in

at
io

n”
2

FO
2 

C
M

T
M

M
g

[C
L]

 +
 [V

C
]

PR
O

P
–

6
“M

IX
- F

O
-M

M
 e

lim
in

at
io

n”
2,

 5
FO

2 
C

M
T

M
IX

- F
O

-M
M

h
[C

L]
 +

 [V
C

]
PR

O
P

–

7
“D

el
ay

ed
 a

bs
or

pt
io

n 
an

d 
M

IX
-F

O
-M

M
 

el
im

in
at

io
n”

3,
 5

, 6
3 

tr
an

si
t 

C
M

T 
+

 d
ep

ot
2 

C
M

T
M

IX
-F

O
-M

M
h

[C
L]

 +
 [V

C
]

PR
O

P
–

8
“D

el
ay

ed
 sl

ow
 o

r r
ap

id
 a

bs
or

pt
io

n 
w

ith
 fo

od
 

ef
fe

ct
”

3,
 4

i
3 

tr
an

si
t 

C
M

T  
+

 d
ep

ot
2 

C
M

T
FO

[M
A

T]
 +

 [C
L,

V
C

,Q
P1

,V
P1

]
PR

O
P

Fo
od

 o
n 

M
A

T

9
“I

nc
re

as
ed

 R
U

V
”

8
3 

tr
an

si
t 

C
M

T 
+

 d
ep

ot
2 

C
M

T
FO

[M
A

T]
 +

 [C
L,

V
C

,Q
P1

,V
P1

]
PR

O
Pj

Fo
od

 o
n 

M
A

T

10
“D

ec
re

as
ed

 R
U

V
”

8
3 

tr
an

si
t 

C
M

T 
+

 d
ep

ot
2 

C
M

T
FO

[M
A

T]
 +

 [C
L,

V
C

,Q
P1

,V
P1

]
PR

O
Pk

Fo
od

 o
n 

M
A

T

N
ot

e: 
Tr

ue
 m

od
el

s a
re

 m
od

el
s u

se
d 

fo
r d

at
as

et
s s

im
ul

at
io

n.
 R

ef
er

en
ce

 m
od

el
s a

re
 tr

ue
 m

od
el

s f
itt

ed
 to

 si
m

ul
at

ed
 d

at
as

et
s (

m
od

el
 p

ar
am

et
er

s w
er

e 
es

tim
at

ed
)

A
bb

re
vi

at
io

ns
: C

L,
 c

le
ar

an
ce

; C
LM

M
, M

ic
ha

el
is

–M
en

te
n 

cl
ea

ra
nc

e;
 C

M
T,

 c
om

pa
rt

m
en

t; 
C

V
, c

oe
ffi

ci
en

t o
f v

ar
ia

tio
n;

 F
O

, f
ir

st
-o

rd
er

 k
in

et
ic

s; 
II

V
, i

nt
er

-in
di

vi
du

al
 v

ar
ia

bi
lit

y;
 K

M
, M

ic
ha

el
is

 c
on

st
an

t; 
M

A
T,

 m
ea

n 
ab

so
rp

tio
n 

tim
e 

(M
A

T 
=

 1/
k a

); 
M

D
T,

 m
ea

n 
de

la
y 

tim
e 

(M
D

T 
=

 N
tr

an
si

t/k
tr

); 
M

M
, M

ic
ha

el
is

–M
en

te
n 

ki
ne

tic
s; 

PR
O

P,
 p

ro
po

rt
io

na
l; 

Q
P1

, i
nt

er
co

m
pa

rt
m

en
ta

l c
le

ar
an

ce
 fo

r t
he

 fi
rs

t p
er

ip
he

ra
l c

om
pa

rt
m

en
t; 

R
U

V
,  

re
si

du
al

 u
ne

xp
la

in
ed

 v
ar

ia
bi

lit
y;

 V
C

, c
en

tr
al

 a
pp

ar
en

t v
ol

um
e 

of
 d

is
tr

ib
ut

io
n;

 V
P1

, a
pp

ar
en

t v
ol

um
e 

of
 d

is
tr

ib
ut

io
n 

fo
r t

he
 fi

rs
t p

er
ip

he
ra

l c
om

pa
rt

m
en

t.
a II

V
 p

ar
am

et
er

s i
n 

[]
 in

cl
ud

e 
of

f-d
ia

go
na

l e
le

m
en

ts
.

b Tr
ue

 p
ar

am
et

er
s i

n 
“b

as
e”

 sc
en

ar
io

 a
nd

 a
ll 

ot
he

r s
ce

na
ri

os
 if

 n
ot

 in
di

ca
te

d 
di

ffe
re

nt
ly

: C
L 

=
 8.

87
 L

/h
, V

C
 =

 23
1 L

, Q
P1

 =
 31

.0
 L

/h
, V

P1
 =

 11
40

 L
, M

A
T 

=
 3.

0 h
, I

IV
_C

L 
(C

V
) =

 71
.3

%
, I

IV
_V

C
 (C

V
) =

 25
.9

%
, I

IV
_Q

P1
 

(C
V

) =
 36

.3
%

, I
IV

_V
P1

 (C
V

) =
 37

.4
%

, I
IV

_M
A

T 
(C

V
) =

 53
.8

%
, c

or
re

la
tio

n 
be

tw
ee

n 
II

V
_C

L 
an

d 
II

V
_V

C
 =

 0.
65

1,
 c

or
re

la
tio

n 
be

tw
ee

n 
II

V
_C

L 
an

d 
II

V
_Q

P1
 =

 0.
51

8,
 c

or
re

la
tio

n 
be

tw
ee

n 
II

V
_C

L 
an

d 
II

V
_V

P1
 =

 0.
24

8,
 

co
rr

el
at

io
n 

be
tw

ee
n 

II
V

_V
C

 a
nd

 II
V

_Q
P1

 =
 0.

72
1,

 c
or

re
la

tio
n 

be
tw

ee
n 

II
V

_V
C

 a
nd

 II
V

_V
P1

 =
 0.

35
0,

 c
or

re
la

tio
n 

be
tw

ee
n 

II
V

_V
P1

 a
nd

 II
V

_Q
P1

 =
 0.

55
0,

 P
R

O
P_

R
U

V
 (C

V
) =

 26
.4

%
.

c M
D

T 
=

 0.
12

0 h
.

d M
D

T 
=

 0.
21

2 h
.

e M
A

T 
=

 0.
66

4 h
.

f II
V

_M
A

T 
(C

V
) =

 41
.9

%
.

g C
LM

M
 =

 8.
87

 L
/h

, K
M

 =
 1.

00
 n

g/
m

L.
h C

LM
M

 =
 5.

92
 L

/h
, K

M
 =

 1.
00

 n
g/

m
L,

 C
L 

=
 2.

96
 L

/h
.

i SA
D

 c
oh

or
ts

 (3
6 

pa
tie

nt
s)

 e
xh

ib
iti

ng
 P

K
 p

ro
fil

es
 fr

om
 sc

en
ar

io
 4

 (f
as

te
d 

st
at

e)
, M

A
D

 (3
6 

pa
tie

nt
s)

 c
oh

or
ts

 e
xh

ib
iti

ng
 P

K
 p

ro
fil

es
 fr

om
 sc

en
ar

io
 3

 (f
ed

 st
at

e)
.

j PR
O

P_
R

U
V

 (C
V

) =
 50

.0
%

.
k PR

O
P_

R
U

V
 (C

V
) =

 10
.0

%
.

https://ascpt.onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fpsp4.13213&mode=


|  1711AUTOMATIC MODEL DEVELOPMENT TOOL EVALUATION

Full adherence to dosing and sampling was assumed, 
and values below the LOQ were removed after the simu-
lation. Only datasets for which reference models were 
estimated with ≥2.5 significant digits were kept for the 
analysis and used for model development with the AMD 
tool.

AMD tool settings

The AMD tool was run with the following subtools: 
Modelsearch, IIVsearch, and RUVsearch for all scenarios 
and, in addition, COVsearch for scenarios 8–10. The AMD 
subtools were run sequentially in the abovementioned 
order, where the model selected by one subtool was used 
as input for the next subtool. Default settings were used 
(additional information below), except for the initial es-
timates for the starting model, which were NCA-derived 
for each scenario based on the typical true profile follow-
ing 1.0 mg drug administration. Specialized NONMEM 
ADVAN routines with explicit ordinary differential 
equations (ODEs) solutions were used, unless nonlinear 
elimination was present, in which ADVAN13 was uti-
lized and ODEs were solved numerically. The first-order 
conditional estimation with interaction (FOCEI) was the 
estimation method used. A brief description of the AMD 
subtools is given below, and the reader is referred to the 
tool documentation for additional details.13,14

Modelsearch subtool

The default starting point for the model-building process 
is the creation and fitting of a one-compartment model 
with FO absorption and elimination, featuring IIV on 
MAT, clearance (CL), central volume of distribution 
(VC), assuming log-normal distribution of individual PK 
parameters, and CL-VC correlation to the input dataset. 
Afterward, additional structural components are tested. 
For the absorption, different processes are tested such 
as FO, zero-order (ZO), and sequential (SEQ-ZO-FO). 
Additionally, absorption delay models, for example, 
lag-time or the presence of 1, 3, or 10 transit compart-
ments, with or without a depot compartment (ka and ktr 
estimated as two separate parameters or assumed equal), 
are considered. Absorption is parameterized in terms 
of MAT (MAT = 1/ka) and optional mean delay time 
(MDT = lag-time; MDT = Ntr-cmt/ktr, where Ntr-cmt is the 
number of transit compartments and ktr the transit rate 
constant; or MDT = infusion_duration/2). The distribu-
tion is modeled using either one or two compartments, 
and for elimination the AMD tool tests FO, MM, and 
MIX-FO-MM processes. The default algorithm was used,

which creates candidate models by adding one feature in 
each step in all possible orders and selects among identi-
cal model structures the best model before the inclusion 
of the next feature.18 During structural model develop-
ment, the starting IIV structure is preserved and IIV on 
MDT is added, if this parameter is present. A proportional 
RUV is used. The selection criterion for the final model 
within the Modelsearch subtool was the default Bayesian 
Information Criterion (BIC) type.14

IIVsearch subtool

The IIVsearch subtool employs a “brute force” algorithm 
and a full-block strategy to identify the best IIV model. In 
the first step, the algorithm adds a full covariance matrix 
with IIV on all parameters, removes IIV from one param-
eter at a time, and the best structure is selected. In the 
second step, the algorithm checks all possibilities of joint 
distributions between parameters. Individual PK param-
eters were assumed to be log-normally distributed. The 
selection criterion was the default BIC type.14

RUVsearch subtool

To shorten the time needed for RUV model develop-
ment, RUVsearch is modeling RUV on the conditional 
weighted residuals of the fit of the input model to inves-
tigate which residual model to select.19 Models tested in-
cluded proportional, combined, and power models, IIV 
on RUV, and multiple time-varying RUV.13,14 The input 
model is then updated with the selected RUV model and 
fitted to verify if the selected RUV model led to a bet-
ter overall model using the likelihood ratio test (LRT) 
(at α = 0.05). This iterative process is repeated multiple 
times to verify if the data support additional complexity 
in the RUV model.

COVsearch subtool

The COVsearch subtool implements the Stepwise 
Covariate Modeling (SCM) algorithm.10 In this work, food 
status was tested as a categorical covariate on all param-
eters with IIV, one at a time, with α = 0.05 and α = 0.01 for 
forward and backward search, respectively.

Metrics used for AMD models evaluation

The AMD models were compared qualitatively and quan-
titatively to the true and reference models with respect 
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to model components, secondary PK parameters (SP), 
and model quality metrics, as detailed in the following 
sections.

Model components

The proportion of correctly selected and most commonly 
selected model components per scenario was evaluated 
for (i) absorption, (ii) distribution, (iii) elimination; (iv) 
IIV structure; (v) RUV structure, and, for scenarios 8–10, 
(vi) covariates.

Secondary PK parameters

To evaluate how the PK profiles derived from the AMD 
models compare with those from the true and the ref-
erence models, population and individual SP for the 
true, reference, and AMD models were obtained from a 
dense grid of both population-predicted and individual-
predicted concentration–time points. Simultaneously 
with dataset simulation, the true dense predicted PK grids 
were recorded by requesting IPRED and PRED in the 
NONMEM output table. Reference and AMD dense PK 
grids were recorded during model estimation. Calculated 
SP were AUC0-24 and cmax derived from after-the-first-dose 
data (both SAD and MAD cohorts) and steady-state pa-
rameter ctrough (MAD cohort).

The relative errors (RE) of AMD- and reference-derived 
(estimated models) population SP (ŜPpop) compared with 
the true population SP (SPpop) were calculated for each 
dth (d = 1, 2, …, D; D = 6) investigated dose of kth replicate 
(k = 1, 2, …, K; K = 30) as follows:

The RE of individual SP (ŜPind) for each ith (i = 1, 2, …, 
N; N = 72) individual of kth replicate (k = 1, 2, …, K; K = 30) 
were also calculated:

where ŜP can be derived either from AMD model (for 
REAMD) or reference model (for REref).

The possible deviation of reference SP from the true 
SP (i.e., REref) is a consequence of stochasticity in the 
simulations given by the limited number of simulated 
subjects and sampling scheme. Hence, REAMD > 0 is 
also expected. To account for the impact of stochastic-
ity in REAMD, the correlation between REAMD and REref 

expressed as the coefficient of determination (R2) was 
calculated for both SPpop and SPind. Moreover, the impact 
of different model components selected by the AMD 
tool (absorption model, elimination model, IIV model, 
covariate model) on the magnitude of the REAMD was ex-
amined visually.

As an overall measure of accuracy and imprecision in 
AMD- and reference-derived population-predicted SP (in 
comparison to the true SP), the bias and the root mean 
squared error (RMSE) were used, respectively:

Model quality metrics

The following quality metrics were summarized across rep-
licates for each scenario: the number of (i) converged min-
imizations, (ii) successful covariance steps, (iii) condition 
number <1000, (iv) models with all relative standard errors 
(RSEs) <20% for fixed effect parameters, and <40% for ran-
dom effect parameters, (v) difference in BIC (BICdifference 
= BICAMD − BICreference), and (vi) difference in total num-
ber of parameters (Npar_difference = Npar_AMD − Npar_reference).

Software and technical implementation

The true models were coded using the R interface to 
Pharmpy through the package pharmr (0.86.0) and assem-
blerr (0.1.2) in R (4.2.0).20 Simulations were performed in 
NONMEM (7.5.1) using a study design dataset generated 
in R. For the AMD tool run and model fitting, pharmr 
was used, which utilized NONMEM. Ten models were 
estimated simultaneously on a 12-core high-performance 
computing (HPC) platform. Package qpNCA (1.1.6) was 
used for SP calculation.21 All results were generated and 
analyzed within the validated environment Improve 
(2.9.4).22,23

RESULTS

The AMD tool successfully built models for the 10 simu-
lated scenarios, with 30 AMD models developed per sce-
nario. Replicates for which the starting AMD model failed 
to converge (3/300 replicates) were not included in the re-
sults and were replaced by new ones. In our settings, 3–8 h 
were needed to run the AMD tool and gather the results 
for one replicate. In this section, an overview of all results 

(1)%RE ̂SPpop,dk
=

̂SPpop,dk−SPpop,d

SPpop,d
⋅100

(2)%RE
ŜPind,ik

=
ŜPind,ik−SPind,ik

SPind,ik
⋅100

(3)%bias
ŜPpop

=
1

D

1

K

∑D

d=1

∑K

k=1
%RE ̂SPpop,dk

(4)%RMSE
ŜPpop

=

√

1

D

1

K

∑D

d=1

∑K

k=1
%RE ̂SPpop,dk

2
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is presented, with a graphical representation for scenarios 
3 (“Delayed absorption”) and 6 (“MIX-FO-MM elimina-
tion”). Details of the remaining scenarios are presented in 
Supporting Information S1.

Model components

The model components most frequently selected by 
the AMD tool for each scenario are shown in Table  2. 
Detailed information on the selected components for the 
30 replicates for scenarios 3 and 6 are illustrated using 
alluvial plots (Figure 2a,b, respectively). In general, the 
AMD tool selected models that were similar but not 
identical to the true models in all its components. The 
true two-compartment disposition model was identified 
for all scenarios and replicates. The true elimination 
was identified for all scenarios, except for a few repli-
cates (9/60) in scenarios with MIX-FO-MM elimination, 
where MM elimination was selected instead (Figure 2b; 
Figure S6).

The most frequently selected absorption models did 
not always match the true absorption. In the scenario with 
delayed absorption (scenario 3), a 1-transit-compartment 
model was mostly selected (Figure  2a). In the sce-
nario with delayed and rapid absorption (scenario 4), 
an absorption model with delay, but one less parameter 
(1-transit-compartment model with ka = ktr), was identi-
fied. In scenarios with nonlinear elimination (scenarios 
5–7), the SEQ-ZO-FO absorption model was most fre-
quently selected (Figure 2b). In the remaining scenarios, 
true absorption was mostly identified.

In all scenarios, a diversity of IIV models was selected 
across scenarios and replicates (Figure 2; Figures S2–S9). 
The true proportional RUV model was mostly identified, 
with a median of 22/30 replicates (range 20–26/30) for all 
scenarios (Figures S2–S9), except for the “increased RUV” 
scenario 9, where the power error model was mostly se-
lected (26/30 replicates).

Where applicable (scenarios 8–10), the most commonly 
selected covariate effect was also the true effect (food ef-
fect on MAT). In all replicates that had IIV on MAT, a food 
effect on MAT was identified.

Secondary PK parameters

The bias in SPAMD,pop was found to be low across scenar-
ios (median and maximum |bias| of 0.59% and 2.48% for 
AUC0-24, 0.38% and 2.57% for cmax and 0.87% and 2.04% for 
ctrough), and the RMSE was found to be moderate (median 
and maximum of 3.91% and 6.65% for AUC0-24, 4.27% and 
8.18% for cmax and 7.02% and 11.5% for ctrough) (Table 3). 

The most extreme values of bias and RMSE were associ-
ated with increased RUV (scenario 9).

Both AMD- and reference-derived SPpop and SPind 
tended to differ similarly from true SP for most scenarios, 
replicates, and subjects, as shown by the assessment of the 
correlation between REAMD and REref (Figure 3; Table S1; 
Figures  S11–S20). The median coefficient of determina-
tion between REAMD,ind and REref,ind across all scenarios 
and SP was 0.926. The REAMD was notably higher than 
REref only for a subset of subjects in 14/300 replicates and 
was attributed to either oversimplified IIV (11/14), wrong 
absorption (1/14), or elimination model (2/14).

Model quality metrics

The summary of model quality metrics is shown in 
Table 4. In FO elimination scenarios (1–4, 8–10), success-
ful minimization was achieved for most models (95% and 
96% for AMD and reference models, respectively). The 
covariance step was obtained for 82% AMD and 74% refer-
ence models. When obtained, the condition number was 
<1000 for all AMD models, but multiple had high RSEs 
(>20% for fixed effects or >40% for random effects) for at 
least one parameter (26% and 49% AMD models for fixed 
and random effects, respectively). In nonlinear elimina-
tion scenarios (5–7), both reference and AMD models less 
frequently achieved successful minimization and esti-
mated covariance step.

The BIC of AMD models was mostly similar to the BIC 
of reference models (median difference between −3 and 
8). Few AMD replicates with several hundred points BIC 
increase had an oversimplified IIV structure. The differ-
ence in the total number of parameters between AMD and 
reference models ranged between −8 and 9 (mostly ran-
dom effects parameters).

DISCUSSION

The AMD tool automates popPK model building, aim-
ing to streamline and facilitate a process that involves 
repetitive steps, minimizing the time needed to develop 
models. In this simulation-based study, the descriptive 
performance of models generated by the AMD tool using 
NONMEM was systematically evaluated across PK sce-
narios often found in an early clinical drug development 
context. This multifaceted evaluation included an assess-
ment of AMD models, compared with the true and refer-
ence models, in terms of (i) model components, (ii) SP as 
model-independent quantitative measures of exposure, 
and (iii) model quality metrics for parameter identifiabil-
ity, precision, and goodness of fit. In general, the AMD tool 
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selected models that describe the datasets well within the 
tested space. Considerations related to the results and lim-
itations of the tool are discussed in the following sections.

In most scenarios and replicates, models selected by the 
AMD tool closely resembled but were not identical to the 
true models in all its components. Structural model compo-
nents for distribution and elimination (both linear and non-
linear) were correctly identified in most replicates. However, 
notable variations in absorption models were observed. In 
some cases, the absorption model was simplified (e.g., de-
layed and rapid absorption scenario (scenario 4) with fewer 
transit compartments (1 vs. 3) and simplified absorption 

parameters (ka = ktr vs. ka ≠ ktr)), which could be explained by 
the design with rather short true delay and absorption times 
(for scenario 4, MDT = 0.2h, MAT = 0.7 h, time_of_the_first_
measurement = 0.5 h). In other cases, the absorption models 
were complexified in comparison to the true (FO) absorp-
tion model (e.g., scenarios 1–2, 5–6). However, estimates of 
the introduced MDT parameter had a negligible impact on 
population PK profiles. Finally, when nonlinear elimination 
was present (scenarios 5–7), the AMD tool had more diffi-
culty in selecting the true absorption model and the SEQ-
ZO-FO absorption model was often selected. In all cases, the 
bias associated with the cmax was low (<3%).

FIGURE 2   Alluvial plots for the components of the final AMD models (models automatically developed by the automatic model 
development (AMD) tool) for (a) scenario 3 (“Delayed absorption”); (b) scenario 6 (“MIX-FO-MM elimination”). Each longitudinal band 
represents one AMD model (30 replicates in total). Bands from AMD models that have identical model components are merged together. 
Each band passes through different transversal rectangles representing different model components selected by the AMD tool. Highlighted 
yellow boxes represent the true model components; IIV parameters in [] include off-diagonal elements; the number in parentheses next to 
the “time-varying” RUV component indicates which, out of three time-varying models tested, was selected; IIV, inter-individual variability; 
RUV, residual unexplained variability; CMT, compartment; FO, first-order kinetics; MM, Michaelis–Menten kinetics; CL, clearance; VC, 
central apparent volume of distribution; QP1, intercompartmental clearance for the first peripheral compartment; VP1, apparent volume 
of distribution for the first peripheral compartment; MAT, mean absorption time (MAT = 1/ka); MDT, mean delay time (MDT = Ntransit/ktr); 
CLMM, Michaelis–Menten clearance; KM, Michaelis constant.
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Alternative ways of including IIV in model parameters 
during structural model development are available but 
not set as default in the AMD tool. Upon review of the re-
sults, a modeler may decide to rerun modelsearch subtool 
as standalone, using other IIV strategies, to evaluate the 
impact of more or less extensive IIV structure on the final 
structural model. Moreover, Chen et al. showed that run-
ning the AMD tool with different order of subtools (struc-
tural/IIV/RUV, structural/RUV/IIV, and RUV/structural/
IIV) yielded generally consistent structural models, but

the resulting IIV and RUV models tended to vary, without 
a clear superiority of a given order.13

The highest diversity in AMD model components was ob-
served in IIV structures. Different IIV structures with similar 
complexity (similar number of parameters) did not affect the 
SP (Figure 3a). However, oversimplified IIV components re-
sulted in biased SP (Figure S11a, Figure S14a). They were also 
associated to be the main driver of large differences in BIC 
between AMD and reference models (BICAMD > BICreference) 
found in a few outlying replicates. The oversimplified IIV 

T A B L E  3   Accuracy and precision in AMD and reference population-predicted secondary PK parameters for each scenario, calculated 
compared to the true values.

Scenario
Secondary PK 
parameter

%biasŜPpop
%RMSEŜPpop

AMD Reference AMD Reference

1 “Base” AUC0-24 0.5 −1.25 3.96 3.97

cmax −0.05 −1.37 4.41 4.35

ctrough 1.06 0.81 7.33 7.14

2 “Base with simplified IIV” AUC0-24 −1.45 −1.58 2.49 2.57

cmax −2.57 −2.88 4.25 4.39

ctrough 0.89 0.74 6.52 6.53

3 “Delayed absorption” AUC0-24 −0.17 −1.47 3.85 4.13

cmax 0.33 −1.46 4.29 4.40

ctrough −0.03 −0.03 7.04 6.82

4 “Delayed and rapid absorption” AUC0-24 −0.81 −1.41 4.06 3.95

cmax −0.13 −1.34 3.65 3.34

ctrough 0.11 0.06 6.71 6.66

5 “MM elimination” AUC0-24 −0.27 −0.36 1.75 1.66

cmax 0.4 −0.23 3.65 2.17

ctrough −0.99 −1.03 2.88 2.84

6 “MIX-FO-MM elimination” AUC0-24 −0.68 −0.31 1.78 1.50

cmax −0.18 −0.20 2.14 2.12

ctrough −1.88 −0.27 6.99 4.86

7 “Delayed absorption and MIX-
FO-MM elimination”

AUC0-24 −0.23 −0.17 1.49 1.45

cmax −0.35 −0.28 1.80 1.94

ctrough −0.55 −0.09 5.18 4.87

8 “Delayed slow or rapid 
absorption with food effect”

AUC0-24 −1.00 −1.46 4.83 4.18

cmax −1.27 −2.14 5.51 5.08

ctrough −0.71 0.19 9.00 7.13

9 “Increased RUV” AUC0-24 2.48 1.05 6.65 4.41

cmax 2.04 0.24 8.18 5.14

ctrough 2.04 4.19 11.5 9.24

10 “Decreased RUV” AUC0-24 0.24 −0.32 5.00 4.47

cmax −0.67 −0.94 5.02 4.56

ctrough 0.85 0.40 7.76 7.86

Note: True models are models used for datasets simulation. Reference models are true models fitted to simulated datasets (model parameters were estimated). 
AMD models are models automatically developed by the automatic model development (AMD) tool.
Abbreviations: AUC, area under the curve; FO, first-order kinetics; IIV, inter-individual variability; MM, Michaelis–Menten kinetics; PK, pharmacokinetic; 
RMSE, root mean squared error; RUV, residual unexplained variability; SPpop, population secondary PK parameter.
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F I G U R E  3   Correlation between relative errors (RE) in individual-predicted secondary pharmacokinetic (PK) parameters of estimated 
models (RE

ŜPind,ik
 i.e., REAMD,ind and REref,ind) with corresponding regression lines and R2 values. Each point represents one RE of individual-

predicted secondary PK parameter derived from one subject of one replicate. Secondary PK parameters derived from all 72 subjects from 
all 30 replicates are pooled to calculate the correlation. Stratification by model components allows for identification of the source of 
discrepancies between REAMD,ind and REref,ind (IIV, or absorption/elimination component); (a) scenario 3 (“Delayed absorption”)—points 
following the regression line show that all replicates, no matter the absorption or IIV model selected by the AMD tool, have accurate 
individual secondary PK parameters; (b) scenario 6 (“MIX-FO-MM elimination”)—data points that are not aligned with the regression 
line belong to a subset of subjects in two out of seven replicates for which MM elimination instead of true MIX-FO-MM elimination was 
selected by the AMD tool. IIV parameters in [] include off-diagonal elements; Reference models are true models fitted to simulated datasets 
(model parameters were estimated). AMD models are models automatically developed by the automatic model development (AMD) tool. 
RE, relative error; ind, individual-predicted; ref, reference; PK, pharmacokinetic; CL, clearance; VC, central apparent volume of distribution; 
QP1, intercompartmental clearance for the first peripheral compartment; VP1, apparent volume of distribution for the first peripheral 
compartment; MAT, mean absorption time (MAT = 1/ka); MDT, mean delay time (MDT = Ntransit/ktr); CLMM, Michaelis–Menten clearance; 
KM, Michaelis constant; CMT, compartment; IIV inter-individual variability.
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structures were selected during IIVsearch since models with 
IIV on correct parameters, but with full covariance matrix, 
did not converge, for example, due to numerical issues. This 
issue could be potentially solved by using different estima-
tion algorithms, such as the stochastic approximation expec-
tation maximization (SAEM) method.24

The true proportional RUV model was identified in all 
scenarios and most replicates, except for scenario 9 with 
increased RUV, where the power model, which provides 
more flexibility with an additional parameter, was more 
frequently selected instead.

The COVsearch identified the food effect in sce-
narios 8–10 in all replicates. However, the parameter 
associated with the effect depended on which parame-
ters included IIV; if IIV on MAT was present, the true 
parameter–covariate relationship (food on MAT) was 
always identified; if IIV on MAT was not present, then 
the food effect was not tested on MAT, and the covari-
ate effect was found to be associated with one of the pa-
rameters with IIV. This behavior illustrates a limitation 
of an end-to-end automatic model-building approach, 
where the knowledge of which model will be selected, 
and therefore which parameters may include unex-
plained variability is unknown at the start. With default 
AMD tool settings (v.0.86.0), critical covariates could be 
missed; nonetheless, this could be prevented. Possible 
workarounds are to apply the COVsearch subtool in a 
subsequent independent step after the structural, IIV, 
or RUV models have been optimized, to include the co-
variate in the base model, or to define the search space. 
This way the user has increased flexibility on which 
parameter–covariate relationships to test, informed by 
model structure and mechanistic knowledge, which is 
especially important when multiple, potentially cor-
related covariates are available and causal interpreta-
tion is wanted. The covariate model was not the focus 
of this study; therefore, more complex scenarios (e.g., 
multiple covariates) were not explored. Developing an 
appropriate covariate model is critical for dose adjust-
ments, identifying subpopulation, bridging to different 
populations or other objectives of the analysis. The cur-
rently implemented SCM is a widely used method that 
is considered suitable for general covariate screening.10 
However, the covariate selection methodology should be 
guided by the objective of the covariate analysis.11,12,25–27

In scenarios involving FO elimination, AMD and 
reference models had similar model quality metrics. In 
nonlinear elimination scenarios (5–7), the number of 
AMD models with minimization and covariance step 
successful was lower than for the remaining scenarios, 
mainly due to rounding errors. However, this feature 
was also observed in reference models, reflecting lower 
numerical stability within NONMEM when describing 

more complex PK based on the generated data. When 
an AMD model component had more structural pa-
rameters than the true model, it was noticed that these 
extra parameters tended to be estimated with low pre-
cision, and their values appeared uninformative sug-
gesting that the corresponding parts of the model were 
not fully supported by the data. Nevertheless, such 
over-parameterized models were selected based on the 
lowest BIC, possibly driven by influential individuals. 
This indicates that model selection based solely on BIC, 
which was the case in the Phampy tool version tested, 
may at times lead to over-parameterized models which 
may cause numerical instability of subsequent analysis 
steps, for example, IIVsearch for an over-parameterized 
structural model. Refining model selection strictness 
criteria, based on criteria such as parameter precision 
or parameter estimates, can further improve the AMD 
tool robustness. Moreover, the inclusion of structural 
elements in a model informed by mechanistic or prior 
knowledge could help avoid the selection of statistically 
significant models that are not mechanistically interpre-
table. However, it must be pointed out that in most cases 
where AMD structural models were different from the 
true model, the effect on derived SP was negligible.

The methodology followed by the AMD tool was kept 
unchanged across and within scenarios. However, it was 
observed that the selected AMD model components var-
ied for the replicates within scenarios despite the under-
lying datasets coming from the same true model. It was 
also observed that reference SP tended to deviate from 
true parameters as also observed for AMD SP (high R2 
values). The cause can be attributed to the stochasticity 
associated with simulations used to generate datasets 
carrying limited information about the true structural 
and stochastic model components. This is often the case 
when characterizing the PK of compounds in early clin-
ical development based on data from a limited number 
of subjects.

In this work, classical PK scenarios with rich PK 
sampling were examined, mimicking only typical phase 
I clinical trial designs. In future research, it will be of 
value to further assess the impact of the study design 
(e.g., variation in the number of individuals, or use 
of sparse sampling), alternative combinations of true 
model components and more complex PK models, the 
AMD models' predictive performance, as well as identi-
fiability. It is also important to mention that this study 
covers only the evaluation of AMD models selected by 
using default tool settings that can be adjusted in multi-
ple ways, for instance, by changing the order of the sub-
tools, or by defining the search space for structural and 
covariate model, which may influence the final model 
structure.13 Furthermore, novel algorithms have been 
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proposed for the building of certain model components 
(i.e., IIV or covariate model) and the full NLME mod-
els. It would be valuable to compare these algorithms 
in terms of their performance, time, and computational 
power needed but also complexity and time required for 
setting them up.5–8

This study showcases the usefulness of the AMD 
tool in an early drug development setting, where a full 
popPK model that describes a given dataset adequately 
can be developed in a short period of time. It was shown 
that even though components of the AMD models were 
sometimes different from the true model, both individ-
ual and population-predicted SP, which are crucial in a 
MIDD context, were accurate in most of the replicates. 
Nevertheless, including mechanistic knowledge through 
defining the algorithm search space, along with a criti-
cal review of all model-building steps is recommended to 
check for the plausibility and robustness of the selected 
models. In addition, the automated generation of model 
code in a standardized manner was found to be partic-
ularly useful, as well as the exhaustive permutation of 
predefined model components. Other than developing 
models end-to-end, the tool is a valuable resource for 
model screening when running a popPK analysis on 
a new dataset, for generating a starting point for more 
complex models, or for model refinement, as the subtools 
can be used independently, which increases the applica-
bility. In conclusion, the AMD tool was found to be a 
valuable asset which yields reliable models in the scenar-
ios assessed, offering the opportunity to advance MIDD.
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