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Non-targeted screenings (NTS) are essential tools in different fields, such as

forensics, health and environmental sciences. NTSs often employ mass spectrometry

(MS) methods due to their high throughput and sensitivity in comparison to, for

example, nuclear magnetic resonance–based methods. As the identification of mass

spectral signals, called annotation, is labour intensive, it has been used for developing

supporting tools based on machine learning (ML). However, both the diversity of

mass spectral signals and the sheer quantity of different ML tools developed for

compound annotation present a challenge for researchers in maintaining a

comprehensive overview of the field.

In this work, we illustrate which ML-based methods are available for compound

annotation in non-targeted MS experiments and provide a nuanced comparison of

the ML models used in MS data analysis, unravelling their unique features and

performance metrics. Through this overview we support researchers to judiciously

apply these tools in their daily research. This review also offers a detailed exploration

of methods and datasets to show gaps in current methods, and promising target

areas, offering a starting point for developers intending to improve existing

methodologies.

1 | INTRODUCTION

Mass spectrometry (MS) comprises a variety of analytical methods that

ultimately yield ion intensities or mass spectra representing molecules

contained in the processed samples. The assignment of chemical

identity to the mass spectral data, known as annotation, is crucial in

many scientific domains, particularly in environmental and health

sciences. The achievement of such assignments strongly depends on

the type and structure of the mass spectra, including factors such

as resolution and complexity. Except for the most straightforward

cases, annotation is a time-consuming process that requires expert

knowledge. This situation has sparked an interest in the use of machine

learning (ML), a field that explores the use of algorithms capable of

“learning” from data, making their development more cost effective,

faster and more precise compared to conventional, human-designed

algorithms. However, ML-based approaches require and depend on

training data, which can be quite diverse in the field of spectral

annotation. Throughout this introduction, we, therefore, will present

commonly used MS techniques and methods, focusing on the

properties of the generated data that are relevant for both

conventional and ML-based annotation approaches (Figure 1).

Frequently used data repositories are presented in Table S1.
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MS experiments can be conducted in either a targeted or non-

targeted fashion. Traditionally, targeted approaches are used to

identify and quantify compounds of interest within a sample. These

approaches require each substance of interest to be known and a

standard to be available for confirming the identity of the compound

and enabling quantitation. As a consequence, only a limited number of

compounds are monitored, even though well more than 100 may be

integrated. However, in fields such as metabolomics or monitoring

of narcotics, where novel compounds are of interest, targeted

approaches are of limited use. In this case, an alternative is offered by

non-targeted methods. The predecessor of modern non-targeted

methods involved gas chromatography coupled with electron

ionisation mass spectrometry (GC-EI-MS). This approach offers

advantages, as EI-MS fragmentation patterns exhibit good

reproducibility, and extensive spectral libraries are available.1,2

However, the restriction to volatile compounds and the occurrence of

extensive fragmentation, which can result in the loss of the molecular

ion and ambiguous interpretation, have limited the applications of EI

in non-targeted MS. As an alternative, liquid chromatography in

combination with soft ionisation methods, such as electrospray

ionisation (ESI), enables the analysis of a broader range of substances.

Soft ionisation techniques, when combined with high-resolution mass

spectrometry, often allow the deduction of the molecular formula

from the molecular ion and enable querying a compound database

(e.g., PubChem3) for potential candidates in a successive step.

As previously stated, various MS techniques have been employed

in non-targeted approaches The type of instrument used for data

generation is an important question for ML as it influences mass

spectra and therefore the potential application of ML. Briefly, a

mass spectrometer can be schematically divided into three

components: the ion source, the mass analyser and the detector. The

ion source generates ions from a typically neutral analyte, allowing us

to separate analyte ions based on their mass-to-charge (m/z) ratio.

Concerning the resulting mass spectra, the ion source often

determines which analyte is amenable for analysis and plays an

important role in how intensive the signal of a given analyte

F IGURE 1 Graphic overview of relevant components in compound annotation of mass spectrometry data. The data obtained from the
experiment can be highly heterogeneous depending on the preparation (e.g., derivatisation), the type of measurement (direct injection [DI],
coupling with gas chromatography [GC] or high-performance liquid chromatography [HPLC], supercritical fluid chromatography [SFC], capillary
electrophoresis [CE], etc.) and instrumental factors such as the ion source (e.g., electron ionisation [EI], electrospray ionisation [ESI] and chemical
ionisation [CI]) and device resolution. Spectral annotation is often attempted by querying a spectral database. However, spectral databases have

limited coverage due to the slow and laborious process of measuring reference spectra. More comprehensive databases are generated using in
silico fragmentation tools, which were steadily improved with the use of machine learning (ML). Alternatively, the molecular ion (if present) can be
used to assign a chemical formula and query a spectral library. The direct querying of compound libraries can return overwhelming quantities of
candidates, thus fuelling the development of fingerprinting methods. Fingerprinting methods are ML-based tools that predict a molecular
fingerprint from a mass spectrum, offering a more specific query for spectral databases. ML-based steps are indicated by blue arrows, and ML
methods discussed in this review are indicated in the upper right panel. [Color figure can be viewed at wileyonlinelibrary.com]
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is. Furthermore, the ionisation process determines whether the

analyte is visible as positive or negative species and determines if

radical cations, protonated or deprotonated molecular ions, alkali or

similar adduct, clusters or only fragments are detected.

Due to their widespread use and the availability of data, EI and

ESI have been at the core of ML method development. EI sources

ionise analytes in the gas phase, with electrons accelerated at 70 eV.

The energy transferred to the analyte molecule causes fragmentation

of the molecule, resulting in a mass spectrum characterised by

multiple signals representing the fragments of the molecule, with no

guaranteed presence of the ionised intact molecule, that is, the

molecular ion.

In contrast, ESI sources typically produce spectra using a lower

number of signals. The ESI source transfers charged ions from a

solution into the gas phase.4 Spectra resulting from ESI sources

usually present signals for protonated or deprotonated analytes,

complexes with ions, adducts and/or multimers. In most cases, the

unfragmented analyte is observed. Although this is an advantage

compared to EI, it comes at the cost of losing structural information

that may be deduced from the fragmentation pattern. A solution to

this conundrum is offered by tandem MS (abbreviated as MS/MS or

MS2). In an MS2 experiment, an ion of interest, referred to as the

precursor ion, is fragmented into so-called product ions. The most

common method of fragmentation is collision-induced dissociation

(CID), where collision with neutral gas molecules is used to induce

fragmentation of the precursor ion.

After ionisation, the ions are transferred to the mass analyser,

where they are separated based on their m/z ratio. The mass analyser

determines the resolution of the resulting spectrum. The resolution of

the mass spectra ranges from nominal mass (NM) spectra to high-

resolution (HR) spectra (mass accuracy level <5 ppm and mass

resolution >10 000 full width at half maximum).5 This diversity of

ionisation methods (EI, ESI) and MS techniques (MS, MS2) is reflected

in highly heterogeneous MS data, leading to time-consuming

data evaluation and annotation for non-targeted experiments.

Consequently, various (bio)informatics tools for automated batch

processing have been developed.

Annotation is often achieved through laborious expert evaluation,

making automation approaches particularly intriguing but complex.

Promising strategies for automating and enhancing annotation often

rely on ML. Indeed, applications of ML have surged over the past

decades and become prominent in bioinformatics6 and life sciences,7

in general. In ML, mathematical models are estimated (trained) on

observables (training data) to learn patterns, enabling the programme

to make meaningful predictions about new observations.8 With the

recent increase in computational power and the availability of massive

datasets, especially deep learning has gained enormous attention in

the scientific community.

In the broader context of non-targeted MS, a variety of ML

applications have emerged, successfully addressing various data

processing tasks to automate and refine compound annotation and

interpretation. These include fragment ion identification, prediction of

fragmentation pathways from molecular structures and fingerprinting

methods to characterise molecules. Algorithms for these tasks range

from conventional ML and statistical methods, such as Markov

processes and kernel methods, to deep neural networks (DNN).

Kernel methods express similarities between data points, with a

kernel function serving as the basis for high-dimensional learning

techniques.9 Examples are support vector machines (SVM), which

optimise a linear boundary between training classes in the high-

dimensional feature space, resulting in a nonlinear boundary in the

original feature space by computing only the kernel function.9,10

Nevertheless, kernel methods have fallen out of favour due to the

resource-intensive estimation of kernel parameters. Artificial neural

networks (ANN) are a diverse class of nonlinear statistical models that

can be efficiently estimated on large datasets. ANNs extract a linear

combination of their inputs to model the desired output as a nonlinear

function of the derived feature combinations.9 This is accomplished

by stochastic gradient descent (SGD) methods that allow training on

specialised hardware (e.g., graphical processing unit) where only

limited memory is available. Several reviews offer a comprehensive

overview of current computational methods for metabolomics. We

refer to Liebal et al.,11 Nguyen et al.,12 Petrick and Shomron13 and

Pomyen et al.14 Liebal et al.,11 Petrick and Shomron13 and Pomyen

et al.14 offer broad overviews of the use of ML for various steps of

the metabolomics data processing pipeline, like peak picking,

quantification and data interpretation. On the contrary, Nguyen

et al.12 focuses on structure annotation and ML-based annotation in

particular. The described methods enable the processing of

substantial quantities of non-targeted MS data, reducing the need for

manual evaluation. ML methods provide advantages over more

traditional methods. For instance, predicting mass spectra using ML

models is faster than ab initio quantum mechanical simulations.

Additionally, fingerprinting methods (described in Section 2.1) reduce

dependence on spectral libraries. De novo methods generate new,

previously unreported structures and extend compound libraries more

rapidly than usual.

However, the ML methods and data types used among the

various software are not the focus of aforementioned reviews. Our

contribution to this review is to shed light on various state-of-the-art

ML applications for non-targeted metabolomics, clarifying the

methods utilised for different types of MS and the involved datasets.

We also aim to identify gaps in current software and potential target

areas for the development of future applications. We focus on tools

for in silico fragmentation, the prediction of representations from

mass spectra to query compound libraries (i.e., chemical formulas,

molecular fingerprinting, representation-based methods) and de

novo methods. We would nevertheless like to mention that the use of

ML in MS also includes the prediction of orthogonal properties

(e.g., collision cross section, chromatographical properties) and the

development of scoring functions for querying and networking

(e.g., MS2DeepScore,15 DeepMass,16 MS2Query17). Neither of these

topics will be treated in this review, and we would refer interested

readers to Liebal et al.11 and Petrick and Shomron13 instead.

Following a formal systematic review process, we queried Web of

Science (Clarivate) using the keyword search terms “(‘machine
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learning’ OR ML) AND (MS or ‘mass spectrometry’) AND annotation”
and “(‘machine learning’ OR ML) AND (MS or ‘mass spectrometry’).”
Additionally, the results were filtered to include entries with the

citation topic “mass spectrometry” and to exclude the topic

“proteomics.” The filtered entries were exported to files, the files

were merged, and duplicate entries were removed. In a first step the

titles were manually evaluated to sort out publications which did not

directly fall in the focus of this manuscript. Finally, we conducted a

full-text analysis of the resulting 54 publications that were re-

evaluated for relevance of the present study. A graphical overview of

their fields and applicability for the two considered ion source types is

shown in Figure 2.

2 | REPRESENTATION-BASED METHODS

Based on the acquired mass spectrum of an unknown compound, the

assignment of the corresponding chemical identity is often archivable

by querying a spectral library. As a result, candidate compounds

are ranked based on a similarity score between the query spectrum

and the library spectrum. However, building spectral libraries by

measuring the spectra of pure substances is a time-consuming and

expensive process, resulting in libraries that grow slowly and often

remain incomplete. The incomplete coverage of spectral libraries has

prompted the search for alternatives in compound identification. Of

particular interest is the use of compound databases, such as

PubChem,3 which comprise collections of molecules orders of

magnitude larger than spectral databases. The primary objective

of compound databases, however, lies in the collection of compounds

and their properties, rather than on mass spectra. Therefore,

compound databases require a query other than a mass spectrum,

such as the molecular mass or a chemical formula. Queries with little

specificity, such as molecular mass, can yield a large number of

candidates, requiring additional information for further filtering and

ranking. An approach to tackle this challenge is the use of molecular

fingerprints or an intermediate representation, which can be easily

generated for a given molecule. In their most common form,

molecular fingerprints are vectors of fixed length that encode the

presence or absence of molecular features (i.e., topological, physico-

chemical or electrical properties of a compound18). The molecular

structure of a compound can be encoded into a molecular fingerprint,

allowing compounds in compound databases to be converted into

molecular fingerprints. ML has been employed to predict molecular

fingerprints from mass spectra. The predicted molecular fingerprints

can be used to query compound databases similar to mass spectral

libraries. This approach offers the advantage of efficiently computing

the similarity between molecular fingerprints, making it advantageous

for querying large databases. Nevertheless, molecular fingerprints

were not designed for the task of identifying compounds from MS

spectra and thus are unspecific and in some case might contain

redundant features.

In the following text, we will discuss methods that predict

molecular fingerprints, substructures and embeddings for querying

and scoring molecules from a database. Two groups of fingerprinting

methods can be distinguished: methods based on supervised learning

and methods based on unsupervised learning. Supervised methods

require a labelled training dataset, that is, a dataset consisting of

inputs and the desired outputs, to train the algorithm. In most cases

considered in this manuscript, algorithms were trained to predict

molecular fingerprints (the label). The training set consists of mass

spectral libraries (the input) and the molecular fingerprints for each

compound in the library. Unsupervised methods, on the contrary, do

not require labelled data; that is, only the input data (without the

desired output) are required. These methods aim to identify patterns

and groupings, such as neutral losses or functional groups, that appear

in a given set of spectra. To be more precise, the unsupervised

methods reported in this work are inspired by natural language

modelling and interpret mass spectra as “documents” containing

“words” (e.g., peaks, mass differences). These methods then model

the relationship between “words” and their respective “distributions,”
allowing the identification of similar compounds based on the co-

occurrence of similar MS patterns or by their “semantic” distance.
The field of supervised fingerprinting is dominated by the

SIRIUS19 suite, which is the most cited tool of all those considered in

this section. The SIRIUS suite and CSI:FingerID20 not only are

efficient as useful tools but also offer a user-friendly graphical user

interface (GUI) which facilitates operation for users inexperienced

with command line interfaces (CLI) and/or without knowledge of

programming languages.

CSI:FingerID20 has emerged from kernel-based fingerprinting

methods and differentiates itself from other similar methods through

the use of fragmentation trees in addition to MS2 spectra as input.

The computation of fragmentation trees is time consuming and has

contributed to the interest in alternative methods. ANN-based
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F IGURE 2 Overview of publications categorised by the task they
solve and the type of mass spectrometry (MS) data they can be used
on (electron ionisation [EI], electrospray ionisation [ESI]). After review
papers were excluded, we found that most of the publications
analysed were concerned with ESI-MS and only a few with EI-MS.
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alternatives offer the possibility of predicting all bits of a fingerprint at

once, instead of requiring one estimator per bit (like with SVMs). The

use of ANNs allowed the exploration of novel approaches based on

the use of embeddings. Spec2Vec21 and ADAPTIVE both use

embeddings as fingerprints, which should result in fingerprints which

are more specific for the task and faster calculation of similarity

scores. At the moment of writing, Spec2Vec is, together with

MS2LDA,22 one of the most cited tools after CSI:FingerID and the

SIRIUS19,23,24 suite. The two unsupervised fingerprinting tools,

Spec2Vec and MS2LDA, serve a different use than supervised

fingerprinting tools and use different approaches. Spec2Vec21

generates a “fingerprint” which can be used similar to supervised

fingerprinting methods, whereas MS2LDA22 works like a networking

method that uncovers relationships between compounds in a dataset.

When developing a new method, accessibility to the end user should

be considered. Of the four most popular tools, only Spec2Vec is

provided as CLI python package and does not offer a GUI.

2.1 | Fingerprinting methods

Heinonen et al.25 used SVMs to predict fingerprints from MS2

spectra. The authors examined linear and quadratic integral mass

kernels and HR mass kernels (probability product kernel previously

described by Kondor and Jebara26) separately or in combination with

mass difference kernels and neutral loss kernels. Three datasets were

used in the study: the triple quadrupole (QqQ) dataset, which

consisted of 514 compound spectra, recorded in ESI positive mode at

NM resolution, using five different collision energies between 10 and

50 eV; the Ltq dataset consisting of 293 compound spectra recorded

in positive mode at HR; and the lipid dataset, consisting of HR

negative-mode spectra of 403 phosphatidylethanolamines. Both

HR datasets were measured on Orbitrap instruments. The authors

found that the HR kernel on all features resulted in the best

performance on average. The performance of FingerID was compared

with MetFrag27 on 20 spectra randomly removed from the QqQ

dataset and 20 spectra randomly removed from the Ltq dataset. The

two datasets were used to query both PubChem3,28 and KEGG

(Kyoto Encyclopedia of Genes and Genomes).29–32 The performance

was reported as the top 10 recall rate, indicating how often the

correct molecule was ranked within the first 10 candidates. The

reported top 10 recall rates are summarised in Table S2, where

reported recall rates from all the reviewed manuscripts can be found.

Building on the work by Heinonen et al.,25 Brouard et al.33

developed a method based on input output kernel regression (IOKR)

to map MS2 spectra to molecular fingerprints. The method enables

the prediction of a fingerprint for a given ESI-MS2, which was

subsequently used to query a compound database for candidates. The

authors trained a linear combination of input kernels with multiple

kernel learning (MKL) to map the input spectra to an intermediary

representation. Three output kernels were used to map the

intermediary representation to a molecular fingerprint of 4138

compounds. Candidates were queried from PubChem and ranked

based on the distance from the predicted feature vector.

CSI:FingerID, a state-of-the-art annotation tool within the SIRIUS

suite, was used for comparison with respect to the top n recall rates.

ADAPTIVE34 is a fingerprinting tool developed using ESI-MS2

data, which was proposed to overcome the problem with redundancy

and lack of specificity present in manually curated fingerprints. To

improve the specificity, a custom fingerprint, which the authors refer

to as molecular vector, was generated using a message passing neural

network (MPNN). In a second step, IOKR was used to learn a mapping

from MS spectra to the vector representation. The MPNN was

trained to generate vectors from molecular graphs while maximising

the correlation between the generated molecular vector and the ESI-

MS2 spectra. The performance was compared with IOKR,33

FingerID25 and CSI:FingerID20 on a dataset of 4138 ESI-MS2 spectra

from the Global Natural Product Social (GNPS) spectral library

regarding the top n recall rates.

Similarly, MetFID35 uses a DNN to predict the fingerprint of a

compound from ESI-MS2 spectra. The DNN that generates the

molecular fingerprint was trained on 11 748 spectra of 5667

compounds from MoNA and 122 481 spectra of 10 731 compounds

from NIST 2017. The training set consisted of only ESI positive-mode

(ESI+) spectra within a mass range of 100–1010 Da measured on

QqQ, Orbitrap or quadrupole time-of-flight instruments. Furthermore,

only spectra of H+ and NH4
+ adducts were kept in the training set.

Multiple entries for the same compound were merged, with exception

of the MS2 spectra of different collision energies. The spectra were

normalised to relative intensities, scaled between 0 and 100, denoised

by removing peaks with relative intensities lower than 10 and spectra

with less than five peaks with a relative intensity higher than 2%.

Finally, the spectra were binned to NM vectors. The performance of

MetFID was compared to MetFrag and ChemDistiller36 on a test set

of 482 compounds removed from the training data, where it

performed significantly better than the other methods. Additionally,

MetFID was compared with CSI:FingerID,20 which was trained on

data from the NIST library, on the CASMI 201637 dataset. Again,

recall rates are presented in Table S2.

IDSL_MINT38 is a tool developed to allow a simpler use and

development of ML tools for non-targeted ESI-MS2. IDSL_MINT

allows to easily train fingerprinting models based on the transformer

architecture. The models can be trained on a custom library focused

on the end users' needs. To demonstrate the performance of the

pipeline, the authors trained two transformer models, one for

negative-mode and one for positive-mode ESI-MS2 spectra. Each

model consisted of four hidden encoder and decoder layers and two

attention heads. The models were trained to predict ECFP2

fingerprints of a subset of the LIPID MAPS library. The subset was

derived from the MoNA and GNPS libraries and was cleaned by

removing in silico spectra and spectra with over 10% of the peaks

outside the m/z range of 50–1000. The resulting training sets for

positive and negative modes contained mass spectra of 2617 unique

lipids and 1722 unique compounds, respectively. The publicly

available metabolomics study ST002044 from the Metabolomics

WorkBench database was used as the test set, containing 3386 and
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1901 unique mass spectra in positive and negative modes,

respectively. When the LIPID MAPS database were queried with

fingerprints generated from the test set, the trained models reached a

top 1 recall rate of 35.4% and 35.1% for positive- and negative-mode

spectra, respectively.

As part of the SIRIUS suite/web service,19 SIRIUS is a state-of-

the-art tool for chemical formula prediction and fragmentation tree

computation of ESI-MS2 spectra. To identify the most likely chemical

formula, SIRIUS iterates candidate formulas matching the precursor

peak and computes the fragmentation tree for each, solving the

maximum colourful subtree problem using integer linear

programming.39 Uncommon elements in the molecular formulas are

detected from isotope patterns using a DNN.23 Unfeasible formulas

are filtered out, and unlikely ones are identified using an SVM.23 Next,

SIRIUS determines the posterior probability for each tree using

Bayesian statistics. This is done by estimating the prior probability

from the size of the tree, neutral losses and fragment formulas and

the likelihood of the MS2 spectrum given the fragmentation tree.

Molecular formulas are ranked according to the posterior probability

of their best fragmentation tree. SIRIUS 3.0 was trained and tested on

GNPS and AFT library datasets and reportedly outperformed all

competing methods and previous versions with a top 1 recall rate of

76% and a top 5 recall rate of 91%.

CSI-FingerID,20 which is available as part of the SIRIUS suite, is a

fingerprinting tool that uses the MS2 spectra and the fragmentation

trees generated by SIRIUS as input to predict molecular fingerprints.

In the training phase a library of 4138 compounds from the GNPS40

library and 2120 compounds from the AFT library were used as the

training dataset. Multiple fragmentation tree kernels and multiple

spectrum kernels were used to compute the similarities for each pair

of compounds in the training dataset. SVMs, one for each bit in the

target fingerprint, are trained on the kernel similarities to discriminate

between compounds that exhibit a given bit of the fingerprint and

those that do not. CSI:FingerID was compared with FingerID25

(retrained on the same training data as CSI:FingerID), CFM-ID,

MAGMa, MIDAS and MetFrag.27 For comparison, PubChem was

queried with 3868 compounds from GNPS and 2055 from the AFT

library. The top 1 recall rate of the three best-performing methods

was reported for both libraries individually and for a mixed library of

both. An overview of the reported top 1 recall rates is presented in

Table S2, and recall rates up to 20 for all tools can be found in the

figures of the original publication.35

MIST is a fingerprint tool developed by Goldman et al.41 Inspired

by CSI:FingerID,20 MIST uses chemical formulae (C, H, N, O, P, S, F,

Cl, Br, I, Si, B, Se, Fe, Co and As) for each peak and calculates the

pairwise distance for all peaks. The chemical formulae and

the respective intensities of the peaks are encoded using an

multilayer perceptron (MLP). The embedded chemical formulae, the

intensities and the pairwise formula differences between peaks are

used as input for a chemical formula transformer. The pairwise

difference is used to model the relationship between peaks and is

featurised in the modified attention mechanism developed by the

authors. The final representation of the transformer is used to predict

the molecular fingerprint. The prediction of the fingerprint is

performed by stepwise unfolding. The unfolding is achieved by a

model trained to reverse stepwise halving in size of the molecular

fingerprint. Furthermore, a custom distance metric was learned by

fine-tuning MIST with a contrastive learning objective. MIST was

trained on 31 145 positive-mode ESI-MS2 spectra of 27 797

compounds from the NIST, MoNA and GNPS spectral libraries. The

resulting dataset was augmented with a purpose-built in silico

fragmentation ANN. During training a sub-module to predict MAGMa

substructures was used as an additional signal. The substructure

annotation module used the final representation of the transformer to

predict the 512-bit Morgan fingerprint for each sub-fragment while

using a clipped cosine as loss function. The unfolding module is

trained with the binary cross-entropy loss function calculated at each

unfolding step. The loss function for training MIST was the sum of the

binary cross-entropy of the final fingerprint, the sum of the losses at

each unfolding step and the loss function of the substructure

annotation module. Both the unfolding loss and the substructure

annotation module were weighted with factors determined during

hyperparameter tuning. For fine-tuning, the model weights were used

as a contrastive space. For each compound, the 256 closest isomers

by Tanimoto score were retrieved from PubChem as decoys and

sampled in each batch proportionally to their Tanimoto similarity. A

single-layer projection to map the fingerprints to the contrastive

space was learned. The training objective was to minimise the

distance of the true fingerprint to the latent transformer

representation, while maximising the distance to the decoys. MIST

was compared with CSI:FingerID on three separate splits of 20% data

holdouts. Using an ensemble of five separately trained models with

different random initialisation, MIST fingerprints reached higher

cosine similarity to the ground truth spectra than CSI:FingerID in

11 994 of 18 700 predictions. Interestingly, the top 1 recall rate is

higher for CSI:FingerID, whereas MIST has higher recall rates for

k > 20.

In regard to EI-MS, Ljoncheva et al.42 developed a tool, which

they call CSI:IOKR, to identify trimethylsilyl (TMS) derivatives of

contaminants of emerging concern (CEC) using GC-EI-MS. CSI:IOKR

consists of a product kernel as input kernel and a linear kernel as

output kernel. The training data consisted of 4648 TMS derivative

NM EI-MS spectra from the NIST 2017 mainlib and replib libraries.

The fingerprint to be predicted was the combination of four

fingerprints, with features being always present or duplicate removed.

The test set consisted of GC-EI-MS spectra measured by the authors.

For the test set 100 CECs were selected, derivatised and measured,

resulting in spectra for 104 derivatives, and recall rates, compared

with MetExpert,43 are reported. On the test set CSI-IOKR

demonstrates the viability of kernel methods for GC-EI-MS, which

might see further development for a more general-use scenario or the

use on HR-EI-MS spectra.

An alternative approach is offered by DeepEI, a deep-

learning-based approach to fingerprinting using an ANN to extract the

fingerprint from EI-MS spectra. The predicted fingerprint was

obtained by concatenating six different fingerprints and removing bits
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except those coding for features present in 10%–90% of compounds.

For each bit of the fingerprint, an ANN was trained on NM EI-MS

spectra from the NIST 2017. Compounds with molecular weight over

2000 Da and containing elements other than C, H, N, O, P, S, F, Cl, Br

and Si were removed from the dataset, resulting in a training set of

184 874 spectra, making it more useful for general-purpose analysis

of EI-MS data. A test set consisting of spectra from the MassBank

database was cleaned like the NIST set, resulting in 13 000 spectra, of

which 5619 were also present in the training set. Additionally, the

performance was measured by querying the NIST 2017 database

using the MassBank test set. Candidates were queried using a 5-Da

mass window from an augmented NIST library; that is, spectra

for compounds not present in the NIST library were generated

using Neural Electron–Ionization Mass Spectrometry (NEIMS).44

Furthermore, a synthetic library entirely simulated using NEIMS was

used as the reference library, and the observed recall rates were

reported.

Supervised fingerprinting methods (an overview of which is

available in Table 1) are a developed research field. The first methods

used fragmentation spectra as input for kernel-based methods to

predict binary fingerprints. From this research CSI:FingerID and the

SIRIUS suite emerged as widely used tools with a user-friendly GUI

and useful documentation. However, CSI:FingerID has long

computation times, a reason why alternative approaches are still

being investigated.

Research in the field of fingerprinting is vibrant and competitive.

The development of tools which offer faster computation and of tools

that work with EI spectra are two main topics of research.

Furthermore, the development of novel strategies based on the

possibilities offered by ANNs, like the use of embeddings as

fingerprints, as seen with ADAPTIVE and Spec2Vec, is an interesting

development. Another important consideration during the

development of new tools to ensure its success is user friendliness,

because the final user might not be interested in CLI or packages and

might expect a more familiar GUI, which is reflected in the citation

numbers of the individual tools.

2.2 | Substructure-prediction and embedding-
based methods

Spec2Vec is a method adopted from natural language processing.

Here, Huber et al. implemented the Word2Vec algorithm by treating

MS2 spectra as text documents. Peaks and neutral losses are

interpreted as words. By training a neural network to predict the

context of each word (peak or neutral loss) and the word from its

context, latent embeddings are learned for all peaks. Each spectrum is

then represented as the weighted average of its peak embeddings,

and spectral similarity scores are computed in the embedding space.

Spec2Vec was trained and evaluated on a large GNPS40 dataset,

where it achieved a higher correlation to structural similarity

(Tanimoto score) when compared with standard cosine scores. The

authors also demonstrate Spec2Vec's application to query spectra of

unknown compounds (not present in the library), being able to

identify structurally similar candidates in 60% of cases. Although

the two available Spec2Vec models were trained on positive-mode

ESI-MS2 spectra, the authors note that it is possible to train the model

on specific datasets and, due to the higher computational efficiency

TABLE 1 Overview of supervised fingerprinting methods discussed in this manuscript. The full set of publications evaluated for this review
with structured information is provided as Table S3.

Reference (year) Method/tool ML method Highlights

Heinonen et al.25

(2012)

FingerID SVM First use of high-resolution mass kernel in fingerprinting. Three models trained on in-house

datasets with at most 528 compounds.

Duhrkop et al.20

(2015)

CSI:FingerID SVM Uses both the ESI-MS2 spectra and the fragmentation tree from SIRIUS for fingerprinting.

Baygi and Barupal38

(2024)

IDSL_MINT Transformer First use of transformer model for fingerprinting, trained on two sets from MoNA and

GNPS.

Brouard et al.33

(2016)

IOKR IOKR Reportedly faster than CSI:FingerID, trained on spectra from GNPS.

Nguyen et al.34

(2019)

ADAPTIVE MPNN + IOKR Uses a custom fingerprint from the MPNN for increased specificity. The fingerprint is

predicted from the spectra using IOKR.

Fan et al.35

(2020)

MetFID ANN Uses an ANN to predict the fingerprint from ESI-MS2 spectra, trained on MoNA and NIST

2017.

Ljoncheva et al.42

(2022)

CSI:IOKR IOKR Fingerprinting of EI-MS spectra of silylated compounds, trained on small in-house library.

Goldman et al.41

(2023)

MIST Transformer Uses annotated spectra and peak differences, fingerprint reconstructed through “unfolding.”

Ji et al.45

(2020)

DeepEI ANN Uses an ANN for fingerprinting of EI-MS spectra, trained on NIST 2017.

Abbreviations: ANN, artificial neural network; EI, electron ionisation; ESI, electrospray ionisation; IOKR, input output kernel regression; ML, machine

learning; MPNN, message passing neural network; MS, mass spectrometry; SVM, support vector machine.
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when compared to cosine scores, would allow to search large libraries

with all-against-all matching. This is particularly interesting in the case

of GC-MS where filtering by precursor m/z is not a reliable method to

reduce the number of scores to calculate.

Another tool inspired by a text-mining algorithm is MS2LDA,46

which can recognise biochemically relevant substructures, from MS2

data and group spectra based on shared structural patterns. The

algorithm is based on latent Dirichlet allocation and decomposes

fragmentation spectra into blocks of co-occurring peaks and losses,

which the authors call “Mass2Motifs” (similar to assigning topics in

text documents). MS2LDA learns these substructure motifs in an

unsupervised manner (without the need for metabolite annotations)

and enables grouping of spectra of structurally similar metabolites,

regardless of their spectral similarity. Doing so aids structural de novo

annotation and functional classification of unidentified compounds.

Furthermore, “Mass2Motifs” can be annotated by querying

MotifDB,22 a database of annotated “Mass2Motifs,” which can

further increase the speed of analysis by reducing the need for

manual annotation.

Similar to MS2LDA, MESSAR47 is an ML tool for substructure

annotation. Instead of decomposing spectra into mass to motives,

MESSAR consists of 8378 rules that map ESI-MS2 features to

substructures. The substructures were mined from the target and

decoy GNPS libraries as built by Scheubert et al.48 Mass spectra for

the same structure were merged, and duplicated fragments were

removed, resulting in a training dataset of 3146 spectra. Target

substructures were identified from the fingerprint of CSI:FingerID by

taking all bits except the ECFP4 bits and by iteratively breaking bonds

of the compounds in the training dataset and keeping all CHNO

substructures with more than five carbon and oxygen atoms.

MESSAR was tested on two MoNA test sets, “MASSBANK” and

“MASSBANK_CASMI,” with structures present in the training set

removed. In total, 4743 rules which had at least five true positives in

the MASSBANK test set were evaluated, and 2364 of the evaluated

rules had a recall over 0.6, whereas only 463 had a recall lower than

0.2. Additionally, MESSAR was compared to CSI:FingerID on the

MASSBANK_CASMI test set. Although MESSAR correctly annotated

fewer structures correctly under the top three candidates,

concatenating the results of both CSI:FingerID and MESSAR and

removing duplicates produced more correct annotations than

either tool.

The methods described in this section are quite dissimilar.

Spec2Vec uses unsupervised methods to generate a “fingerprint,”
which is more specific to the task of finding compounds in spectral

libraries and results more in a stronger correlation of fingerprint

similarity score with the structural similarity of compounds.

Nevertheless, like supervised fingerprinting methods it might require

retraining for compounds that are too dissimilar or are absent from

the training dataset. Retraining is not necessary for MS2LDA, which

finds correlation inside a given dataset. Nevertheless, MS2LDA is

considerably slower than supervised methods and does not offer a

fingerprint for searching compound databases, instead identifying

relationships between compounds in the dataset. Both tools are fairly

popular in regard to the number of papers citing them, with MS2LDA

being by far the most cited tool of the two. Furthermore,

MS2LDA and MESSAR are available as a web server, whereas

Spec2Vec is available only as a Python package.

3 | IN SILICO FRAGMENTATION

In silico fragmentation methods are methods which computationally

predict a mass spectrum of a specific type for a given compound,

which subsequently can be used for library-based annotation. Four

approaches to generate in silico spectra are rule-based methods,

combinatorial methods, ML-based methods and ab initio methods.12

Rule-based methods rely on expert knowledge to curate a collection

of rules which are used to predict fragments. Combinatorial methods

generate fragments by iteratively splitting bonds in the molecule.

Ab initio methods use quantum mechanical simulations to generate

a mass spectrum but are constrained by their low throughput.

ML-based methods, which are covered in this review, are diverse in

their approaches; some try to apply ML to a part of the problem, for

example, predicting the bond dissociation probability, whereas others

try to directly predict a mass spectrum from an input. The considered

methods have different strengths and weaknesses. The direct

prediction methods require huge quantities of high-quality

homogenous data for training. The trained models are fast but can

predict spectra only with the resolution of the training dataset and are

less interpretable. These disadvantages can be addressed by models

that simulate the fragmentation events, thus resulting in easily

interpretable spectra which allow arbitrary precision. Nevertheless,

models that simulate fragmentation tend to be conceptually more

complicated and might include time-consuming fragmentation steps,

like CFM-ID.49–53

In silico identification software (ISIS)54 is a fragmentation tool

designed to predict ESI-MS2 spectra of lipids. ISIS simulates the

fragmentation processes in a linear ion trap through a kinetic Monte

Carlo approach. The algorithm was trained on a set of 22 lipids

measured in positive mode using a normalised collision energy of

30%. Under the same experimental conditions, a test set of 45 lipids

was measured. A genetic algorithm, with the similarity between the

simulated spectrum and the measured one as fitness function, was

used to find the optimal weights of the ANN used to predict the

bond-cleaving energies for CID. The ISIS algorithm was tested on a

subset of 18 399 lipids from the LIPID MAPS55–57 database (mass

≤1100 Da, only CHNOPS atoms). ISIS was used to generate an

artificial library with 300 replicates of each lipid in the LIPID MAPS

subset. The recall rates are presented in Table S2. A general-purpose

tool is CFM-ID,49–52,58 available as a web server, developed for the

annotation of MS2 spectra of compounds not present in spectral

databases. Since its initial release, the web server has offered three

functionalities: predicting spectra, assigning fragments and identifying

compounds. In the case of spectral prediction, the input (a SMILES

string, an InChIKey or a list of SMILES strings) is used to generate the

10, 20 and 40-eV ESI-CID-MS spectra in both positive and negative
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modes. The fragment assignment functionality uses a given SMILES or

InChIKey structure and an input spectrum to annotate peaks with

possible fragments ranked by their computed probabilities. The

compound identification functionality allows putative identification of

MS2 spectra (ideally CID spectra acquired at 10, 20 and 40-eV

collision energy) used as input. The scoring is based on the Jaccard

score. Central to the function of CFM-ID is its ability to predict mass

spectra. The spectral prediction is achieved by systematically breaking

bonds, generating possible fragments and assigning a probability to

each fragmentation event.

More precisely, the fragmentation process is simulated by a

homogeneous Markov-chain process. A vector of features that

characterise each fragmentation is used as input to a linear function

to predict fragmentation events. The computed fragmentation

probability is used to estimate the intensity of a signal in the

spectrum. The weights of the linear function were learned on ESI-MS2

data from the Metlin database59 obtained using an Agilent 6520

Q-TOF spectrometer.

Functionality of CFM-ID was extended in version 3.051 adding a

rule-based fragmentation module for lipids, which improves

computational time and predictive performance for in silico

fragmentation of lipids. Furthermore, a chemical class classification

tool, an improved scoring function and the inclusion of metadata and

experimental spectra for annotation were implemented. Version 4.052

further improved the rule-based fragmentation module, covering

additional molecule classes and changing the ring fragmentation

modelling, which simplified the feature vector describing the

fragmentation event. The changes resulted in an improvement in

CFM-ID 2.0/3.0 of on average 26.7% better dot product when

predicting [M + H]+ spectra and of 20.6% when predicting [M-H]�

spectra. The performance of CFM-ID was compared with SIRIUS 4 on

the CASMI 2016 dataset. CFM-EI49 was implemented in CFM-ID 2.0

to predict EI-MS spectra from SMILES or InChI string. CFM-EI

simulates the fragmentation of the input compound using a fixed-

length stochastic Markov chain, with the transition between discrete

fragment states sampled from a set containing all possible fragments.

Additionally, the simulation function was adjusted to handle isotope

peaks and odd electron peaks. Furthermore, an ANN with a

20-neuron and a 4-neuron hidden layer with ReLU activation function

was implemented in the CFM transition function. The CFM transition

function was trained on 70-eV EI-MS spectra from the NIST/EPA/

NIH mass spectral library.

An in silico method specifically developed for EI-MS is NEIMS.44

NEIMS is an ANN that predicts EI mass spectra of small molecules.

Precisely, NEIMS uses an ANN to predict NM EI mass spectra from

extended circular fingerprints (ECFP). The ANN was trained on

240 942 NM EI mass spectra from the mainlib of the NIST 2017. The

ANN was adjusted with reverse prediction to improve the prediction

performance in the high-mass region, which has a greater impact on

the match score than the lower-mass region. To evaluate the

performance of the trained ANN, the replib of the NIST 2017 spectral

library was used. An augmented library was constructed by removing

the spectra contained in the replib from the mainlib and replacing it

with artificial spectra generated by the NEIMS ANN. The augmented

library was queried using the spectra from the replib, and a top

10 recall rate of 85.5% was observed, which further increased to

91.7% when prefiltered using a 5-Da mass filter. Nevertheless, the

performance is inferior to the use of the not-augmented NIST 2017

spectral library, which was shown to achieve a top 10 recall rate of

98.8% and a vastly superior performance at top 1 and top 5 recall

rates. Additionally, the authors compared the performance of NEIMS

to CFM-EI. To make it more comparable, NEIMS was retrained on the

NIST 2014 spectra database, and an augmented library containing

only predicted spectra was queried using the NIST 2014 replib to

obtain top n recall rates. The use of ANNs to directly predict mass

spectra has the considerable advantage of being faster than CFM-ID,

consequently allowing the generation of vast synthetic NM EI-MS

libraries.

Further exploration in the direct prediction of EI mass spectra

was conducted by Zhang et al.,59 who examined the possibility of

using graph neural networks (GNN). A significant difference compared

to NEIMS is that, instead of coding the molecular structure into an

ECFP, a molecular graph is used as input for the graph convolutional

network (GCN). In the molecular graph, non-hydrogen atoms are

encoded as nodes, whereas the chemical bonds are represented as

edges. Unlike ECFPs, which are designed for general use, the GCN

learns an intermediate molecular representation specific for predicting

EI-MS spectra. Additionally, this avoids the problem of different

features having the same value in the fingerprint due to bit overflow

or the loss of relevant information. The generated molecular graphs

were used as input for the GCN, consisting of a feature extraction

module, which extracts structural features from the molecular graphs.

The extracted molecular features are successively used in the spectral

prediction module to predict the EI-MS spectrum. The GCN was

trained on 143 989 spectra from the NIST 2005 mainlib, with spectra

of compounds contained in the replib removed. A test of 22 316

spectra from the NIST 2005 replib was used for testing, together with

7462 spectra from the MassBank database. As previously done by

Wei et al., the recall rate was measured by querying augmented

libraries. The augmented libraries were generated by removing the

spectra of compounds in the test set and replacing them with spectra

generated by the GCN.

Another approach to in silico fragmentation is presented by

Goldman et al.60 in the form of ICEBERG, a tool which predicts ESI-

MS2 spectra in a two-step process. In the first step the most probable

fragments are predicted by the ICEBERG Generate model, and in the

second step the fragments are assigned an intensity by the ICEBERG

Score module. Unlike CFM-ID, which generates fragments by

removing bonds from the molecular graph, ICEBERG, like MAGMa,61

generates fragments by removing atoms. The fragmentation is

simulated through the ICEBERG Generate module. The ICEBERG

Generate module assigns each atom a fragmentation probability and

retains only the most probable fragments. The fragmentation is

repeated until the third generation of fragments. At each iteration, a

GNN is used to encode the graph of the root molecule and the graph

of the current fragment. The graph embedding of the root molecule,
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the atom embeddings of the current fragment and a context vector

containing metadata are concatenated and used as an input for an

MLP that calculates the fragmentation probability for each atom. The

resulting fragments are assigned intensities by the second model

called ICEBERG Score. ICEBERG Score is a set transformer that

predicts the intensities of the fragments. Isotope patterns and

hydrogen shifts are modelled by predicting multiple intensities. For

each fragment, the intensity of the fragment and the intensity of the

fragment with the addition and loss of up to six hydrogen masses are

predicted.

ICEBERG was trained on the NIST 20 MS2 library and the NPLIB1

dataset (a subset of the GNPS library used to train CANOPUS62).

Consensus spectra were used for training, which means it cannot

predict spectra for different collision energies (unlike tools like CFM-

ID and FIORA63). The consensus spectra were generated by merging

all spectra at different collision energies, merging peaks within

0.1 mDa. The resulting spectra were normalised and filtered to keep

up to the 50 most intense peaks with normalised intensity over 3‰.

Furthermore, the mass of the adduct ion was subtracted from all MS2

spectra. The resulting test sets were split into structurally disjoint

90/10% train-test splits and used to compare ICEBERG with

SCARF,64 CFM-ID, NEIMS and the GNN proposed by Zhang et al.59

To train the ICEBERG Generate module, MAGMa was used to

enumerate fragments up to a fragmentation depth of three and

filtered to retain only fragments present in the mass spectra. The

authors found ICBERG to outperform the closest contender (SCARF)

on average cosine similarity between simulated and real spectra for

the NPLIB1 test set. ICEBERG was outperformed by SCARF on the

NIST 20 MS2 test set. Nevertheless, when comparing the top n recall

rates, ICEBERG clearly outperforms all competing tools on both

test sets.

An alternative method, developed by Zhu and Jonas,65 is RASSP,

a model to predict EI-MS spectra. Two versions of the prediction

model were developed, a version based on the prediction of sub-

formulae (RASSP:FN) and one based on the prediction of atom

subsets (RASSP:SN). Both models comprise an enumeration step

followed by the prediction of the probability distribution over the

enumerated sub-formulae/subsets. RASSP:FN enumerates the sub-

formulae by recursively taking the set-wise Cartesian product of the

possible sub-formulae of one element with the sub-formulae over

the rest of the molecule. To estimate the probability of a sub-formula,

a GNN is used to encode the molecular information into a per-atom

feature matrix. The per-atom feature matrix and the sub-formula are

used to calculate a context vector, which is concatenated to the sub-

formula and used as input to an ANN to obtain the sub-formula

probabilities. The probabilities are further scaled with weights derived

from the per-atom feature matrix.

The RASSP:SN version, instead, enumerates subsets by iteratively

breaking chemical bonds up to a depth of three. The enumerated sub-

formulae are supplemented by considering hydrogen rearrangements.

For a given subset, it calculates an embedding by calculating the

average of the per-atom feature of atoms present in the subset.

The embedding is used instead of the context vector to calculate the

probability of a sub-formula. The models were trained with minibatch

SGD and L2 loss function on spectra with 100 438 EI-MS spectra

from the NIST 2017 library (≤48 atoms, ≤4096 maximum unique sub-

formulae, ≤12 288 subsets). The performance was evaluated by

querying an augmented NIST 2017 mainlib with the NIST 2017 replib.

In silico fragmentation tools (an overview is presented in Table 2)

have developed rapidly due to the evolution of ML methods. ML

methods can predict intensities, instead of barcode spectra, in a

fraction of the time required by ab initio methods. These ML-based in

silico fragmentation methods can be useful to expand existing MS

libraries, as an alternative to fingerprints to rank candidate annotation

and, in the case of methods that predict fragments, to help elucidate

the fragmentation mechanism.

The available ML-based in silico tools serve different purposes.

Direct prediction tools like NEIMS or the GNN reported by Zhang

et al.59 can predict vast libraries of NM EI-MS spectra but are less

useful in cases where annotation of the fragments is required or for

TABLE 2 Overview of in silico fragmentation methods described in this manuscript. The full set of publications evaluated for this review with
structured information is provided as Table S3.

Reference Tool name ML method Highlights

Kangas et al.54 ISIS ANN Monte Carlo simulation of fragmentation of lipids; trained on a small in-house lipid library (22

lipids).

Wang et al.52 CFM-ID ANN Modelling of CID-MS2 fragmentation as stochastic Markov-chain process; trained on Metlin

database; available as web server and Docker container.

Wang et al.52 CFM-EI ANN CFM-ID model for EI spectra; trained on NIST 2014, available as CLI.

NEIMS ANN ANN-based direct prediction of NM-EI-MS spectra; trained on NIST 2014.

Zhang et al.59 GCN GNN Use of a GNN to predict NM-EI-MS spectra from the molecular graph; trained on NIST 2005.

Goldman et al.60 ICEBERG GNN

+ transformer

Models ESI-MS2 in two steps: one model predicts most probable fragments; the second model

predicts the intensities.

RASSP:SN GNN Use of GNN to predict fragments of EI-MS trained on NIST 2017.

Abbreviations: ANN, artificial neural network; CID, collision-induced dissociation; CLI, command line interface; EI, electron ionisation; ESI, electrospray

ionisation; GCN, graph convolutional network; GNN, graph neural network; ISIS, in silico identification software; ML, machine learning; MS, mass

spectrometry; NM, nominal mass.

10 of 15 RUSSO ET AL.



the prediction of ESI-MS spectra, where CFM-ID is de facto without

an alternative. The development of alternative methods has great

potential, as is seen with EI-MS spectra, where RASSP is capable of

producing easily interpretable spectra with annotated fragments, like

CFM-ID, at much higher speeds.

4 | DE NOVO METHODS

Previously described methods are of limited use in the identification

of unknown unknowns, that is, mass spectra of compounds that are not

present in any public databases. Due to the necessity of an input for

in silico methods and the dependence on compound databases of

fingerprinting methods, both methods will fail to identify a genuinely

unknown compound. A possible workaround is the de novo

generation of candidate structures. The field of de novo molecular

generation has been of particular interest for novel drug development,

where they allow exploring a targeted chemical space by generating

molecules with desired properties on demand. These methods are

based on models used in linguistics, for example, long-short-term

memory (LSTM) networks that learn an intermediate representation

from which the novel molecule is generated via perturbation. Two

methods will be described, both addressing different problems. The

first paper treats compound library expansion and training with

augmented datasets. The second publication handles inverse spectral

prediction by dividing it into two sub-problems.

Building upon their previous study,66 Skinnider et al.67 developed

DarkNPS, a method of de novo structure generation for the purpose

of identifying novel psychoactive substances (NPS). The chemical

space of NPS is peculiar because it is characterised by a small number

of structural motifs and a limited number of chemical transformations

used to synthesise NPS. Based on their previous work, the authors

trained a gated recurrent unit model and an LSTM model with

augmented SMILES datasets with different degrees of augmentation.

The augmentation of the datasets was achieved by including non-

canonical SMILES, that is, SMILES obtained by varying the path by

which the molecule is traversed to generate the SMILES string. The

non-augmented training data consisted of 1753 unique NPS

structures contained within the HighResNPS68 dataset, with another

194 used as the test set. An LSTM model with an augmentation of

factor 100 of the training set was selected based on the higher

percentage of valid SMILES generated and the five metrics described

in their previous work.66 An artificial compound library was generated

by sampling SMILES from the trained model and removing invalid

SMILES and known NPS, resulting in an artificial library of 62 354

novel NPS. It was observed that some NPS appeared multiple times,

which was hypothesised to correlate with the probability of the

compound appearing on the grey market. Out of the molecules in

the training set, 90.7% appeared at least once in the artificial library,

with the 18 molecules not present showing a significantly lower

similarity to any compound in the training set. After the 18 dissimilar

entries were removed from the test set, 93.1% of compounds in the

TABLE 3 Overview of selected ML-based annotation tools.

Method Typology Input Output

Heinonen et al.25 FP ESI-MS2 spectra Binary fingerprint

Brouard et al.33 FP ESI-MS2 spectra Binary fingerprint

ADAPTIVE34 FP ESI-MS2 spectra Molecular fingerprint

CANOPUS62 FP ESI-MS2 spectra Classy fire classes

SIRIUS23 AS ESI-MS2 spectra Molecular formula, molecular fingerprint, predicted structure

MIST FP ESI-MS2 spectra with annotated peaks Molecular fingerprint

Ljoncheva et al.42 FP ESI-MS2 spectra of TMS derivatives Molecular fingerprint

MetFID35,76 FP ESI-MS2 spectra Molecular fingerprint

DeepEI45 FP ESI-MS2 spectra Molecular fingerprint

Spec2Vec21 FP ESI-MS2, EI-MSa spectra Embedding

MS2LDA-MotifDB22,46 FP ESI-MS2 spectra Annotated and unannotated mass spectral patterns

ISIS54 ISF Molecular structure ESI-MS2 spectrum

CFM-ID49,50,52,53 ISF Molecular structure HR-CID-MS2, HR-EI-MS spectrum

NEIMS44 ISF Molecular structure Nominal mass EI-MS spectrum

Zhang et al.59 ISF Molecular structure Nominal mass EI-MS spectrum

DarkNPS67 DCG Training set Library of novel compounds

MSNovelist69 DCG ESI-MS2 spectrum Candidate structure

Abbreviations: AS, annotation suite; CID, collision-induced dissociation; DCG, de novo compound generation; EI, electron ionisation; ESI, electrospray

ionisation; FP, fingerprinting; HR, high resolution; ISF, in silico fragmentation; ISIS, in silico identification software; ML, machine learning; MS, mass

spectrometry; TMS, trimethylsilyl.

The column “method” provides references and the name of the published tool when available.
aAlthough advantages of Spec2Vec for EI were mentioned in the manuscript, the user would need to retrain the model to use it on EI-MS spectra.
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test set were predicted by the model. Using only the accurate mass

with a search window of ±10 ppm, a top 1 recall of 33%, a top 3 recall

of 48% and a top 10 recall of 72% were observed. Furthermore,

based on the results obtained on a subset of 79 compounds with MS2

data, the combination of CFM-ID50 and DarkNPS with the sampling

frequency of a molecule as ranking was analysed. A top 3 recall rate

of 53% for the model alone, 1% for CFM-ID and 70% for the

combination of CFM-ID and DarkNPS were observed.

Another de novo approach is the direct prediction of the

molecular structure from mass spectra, as done by MSNovelist.69

The method breaks the inverse spectral problem into two parts: the

prediction of a fingerprint and the prediction of a SMILE from a

fingerprint. The fingerprint is predicted using SIRIUS.19 The

fingerprint and the molecular formula, predicted using CSI:FingerID20

or manually given by the user, are used as input for an LSTM model

to predict the SMILES of the compound. The ANN was trained on

1 232 184 compounds collected from HMDB,70–74 COCONUT and

DSSTox.75 The trained model was tested on a test set of 3863

compounds from the GNPS database. For each spectrum in the test

set, the 128 highest-scoring SMILES were retrieved with a top

128 recall rate of 45% and a top 1 recall rate of 25%—for

comparison, CSI:FingerID reaches a top 1 recall rate of 39% when

searching against a database. The performance on the GNPS dataset

was compared with a naive generation model, which lacked the

fingerprint input. The naive model had a top 1 recall rate of 17% and

retrieved 31% of all correct structures. Additionally, MSNovelist was

tested on 127 positive ion mode spectra from the CASMI 2016

challenge, reaching a top 1 recall rate of 26% and a total correct

recall rate of 57% (compared to, respectively, 24% and 52% for the

naive model).

Of the discussed methods, de novo methods are the newest and

as such the less investigated and less mature. The novelty of the

models is only in part responsible for the low number of publications;

more importantly the requirement of high quantities of data limits the

development of de novo annotation methods. To overcome

the limited data availability, data augmentation and breaking down

into multiple more manageable sub-problems have been deployed. In

both cases it was shown that using adequate strategies, it is possible

to utilise de novo methods to augment compound libraries and

to predict the identity of a compound from MS2 spectra. The relative

novelty of the methods might limit their application right now, but the

potential of expanding compound libraries and predicting molecular

formulae directly from mass spectra will ensure further interest in the

scientific community.

5 | CONCLUSION AND OUTLOOK

In recent years, significant progress has been made in using ML to

annotate MS data in metabolomics. Multiple annotation approaches

have been proposed (an overview is presented in Table 3).

The approaches studied in this article were grouped into three

categories: fingerprinting, in silico fragmentation and de novo

methods. Fingerprinting and in silico fragmentation can be considered

as more developed fields and are, as such, dominated by several

well-established tools, for example, the SIRIUS suite or CFM-ID,

which are subject to steady improvement. The evolution of applied

algorithms over time, as seen in Figure 3, shows trends similar to the

general development of ML based approaches. Initially, methods were

based on more traditional ML approaches, which in the case of

fingerprinting are still highly relevant, followed by the adoption

of ANNs and, especially in recent years, of novel specialised ANN

architectures. More recently, GNNs were adopted in both,

fingerprinting and in silico fragmentation approaches, and RNNs for

de novo methods.

Fingerprinting methods have seen a broad use of classical ML

methods and recently some utilisation of ANNs, which are capable of

predicting whole fingerprints, resulting in fast inference. The problem

with using ANNs is the requirement of considerable quantities of data

for training and the quality of the mass spectra. Furthermore, the

similarity of the training data to the application data determines how

reliable the results are.

F IGURE 3 Graphical timeline of ML (machine learning) methods used in compound annotation. Fingerprinting methods are colour coded in
blue, in silico fragmentation methods in red and de novo methods in green. The trend towards the adoption of artificial neural networks (ANN)
can be observed for both in silico fragmentation and fingerprinting methods. The more recent de novo methods use recurrent neural networks
(RNN). ANNs have been repeatedly investigated for in silico fragmentation tools, where in recent years new architectures, such as graph neural
networks (GNN) and message passing neural networks (MPNN), have been implemented. In contrast, fingerprinting methods are dominated by
kernel methods, for example, support vector machines (SVM) and input output kernel regression (IOKR), which still show competitive
performance, even though methods based on ANN have been investigated in recent times. [Color figure can be viewed at wileyonlinelibrary.com]
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A similar scenario emerges for in silico fragmentation that has

seen the emergence of ML-based direct prediction methods, which

can generate huge synthetic spectral libraries due to their

computational speed. Direct in silico fragmentation methods are

based on ANNs, which require high quantities of data and strongly

profit from homogeneous standardised datasets. The availability of

vast, standardised NM libraries (NIST, Wiley) has resulted in promising

algorithms for NM EI-MS. Although vast MS libraries are also

available for ESI-MS, the high data heterogeneity has inhibited the

development of direct in silico fragmentation algorithms so far. More

complex physics-inspired algorithms like CFM-ID and RASSP, which

predict molecular fragments, have shown the possibility to be trained

with less data (CFM-ID) and the ability to predict spectra at arbitrary

resolution. However, it is still necessary to use computationally

intensive methods such as CFM-ID or quantum mechanics-based

methods to simulate HR MS spectra, ESI-MS2 spectra or compound

spectra too dissimilar from the training set. Additionally, ML methods

can facilitate the identification of “unknown unknowns,” that is,

compounds that have not been previously described in the literature

and are therefore absent from databases. This is possible either by

identifying similar compounds in databases or by generating possible

structures from the spectral data. More precisely, ANNs open novel

possibilities such as de novo methods which can complement already-

established tools by expanding their area of application to compounds

not contained in compound libraries. The adoption of these methods

is limited by their resource-intensive nature and the need for further

fine-tuning to better fit the compounds of interest. Nonetheless, the

continuous improvement in computer hardware and cloud computing,

the availability of good-quality training data and the integration of ML

methods into existing user-friendly packages might result in the

popularisation of de novo methods for non-targeted MS annotation.

In summary, ML approaches are already substantially benefitting

non-targeted MS analyses, and a variety of well-established tools exist

and are being constantly improved. Naturally, a single universally

applicable tool does not exist. Depending on the task and question

being investigated, different tools are viable. Weaknesses of state-of-

the-art tools and novel possibilities offered by ML approaches like

ANNs are the main drivers of development. We observed that

incorporating chemical knowledge into the architecture of a tool leads

to improved performance, in addition to making models more

interpretable for users. An additional contribution to the popularity of a

tool is the ease of use, where a tendency of more popular tools offering

a GUI can be observed. There is reason for some optimism as the

accuracy, capabilities and accessibility of the methods are continuously

improving. Simplifying and automating the annotation of non-targeted

MS data is of great interest due to the potential of increased

throughput, reproducibility and reduced costs. ML might catalyse a

wider diffusion of non-targeted MS by suppressing costs and reducing

the high time consumption of highly qualified labour. Beneficial for the

development of the field are, on the one hand, the availability of high-

quality training data, that is, annotated spectra with well-curated

metadata, and, on the other hand, the use of well-defined test sets that

allow a fair comparison between the different methods. Benchmarking

and comparison with existing methods is non-trivial and has been

discussed by multiple authors (e.g., de Jonge et al.77 and Hoffmann

et al.78). For a good comparison the test set needs to be representative

of the tool use case. When multiple tools are compared, the test set

should be structure disjoint from the training set. The lack of

standardised, publicly available test sets can result in metrics which are

comparable only within a single study. We are optimistic about the

development of the field, as we observe an increased effort of authors

to ensure fair and representative benchmarking.

Furthermore, we observe a steady growth of open-access mass

spectral libraries, which hopefully will accelerate the progress and

development in the field. ML approaches for compound annotation

are already performing well. More competitive, dynamic approaches,

as well as fruitful collaborative efforts, may result in the establishment

of standard testing procedures, methods and datasets, which in turn

will further improve ML-based approaches.
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