
Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Connecting stochastic optimal control
and reinforcement learning

Cite as: J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665
Submitted: 29 December 2022 • Accepted: 20 July 2024 •
Published Online: 19 August 2024

J. Quer1 and Enric Ribera Borrell1 ,2,a)

AFFILIATIONS
1 Institute of Mathematics, Freie Universität Berlin, 14195 Berlin, Germany
2Zuse Institute Berlin, 14195 Berlin, Germany

Note: Paper published as part of the Special Topic on Cascades of Scales: Applications and Mathematical Methodologies.
a)Author to whom correspondence should be addressed: ribera.borrell@fu-berlin.de

ABSTRACT
In this paper the connection between stochastic optimal control and reinforcement learning is investigated. Our main motivation is to apply
importance sampling to sampling rare events which can be reformulated as an optimal control problem. By using a parameterised approach
the optimal control problem becomes a stochastic optimization problem which still raises some open questions regarding how to tackle the
scalability to high-dimensional problems and how to deal with the intrinsic metastability of the system. To explore new methods we link
the optimal control problem to reinforcement learning since both share the same underlying framework, namely a Markov Decision Process
(MDP). For the optimal control problem we show how the MDP can be formulated. In addition we discuss how the stochastic optimal
control problem can be interpreted in the framework of reinforcement learning. At the end of the article we present the application of two
different reinforcement learning algorithms to the optimal control problem and a comparison of the advantages and disadvantages of the two
algorithms.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0140665

I. INTRODUCTION
Rare event sampling is an area of research with applications in many different fields, such as finance,1 molecular dynamics2 and many

more. Very often the reason for the occurrence of rare events is that the dynamical system of interest exhibits metastable behavior. Metasta-
bility means that the underlying process remains in certain regions of the state space for a very long time and only rarely changes to another
region. This change is particularly important for accurate sampling of rare events. The average waiting time for the occurrence of the rare
event is orders of magnitude longer than the timescale of the process itself. This behavior is typically observed for dynamical systems following
Langevin dynamics and moving in a potential with multiple minima. Here the metastable regions correspond to local minima of the poten-
tial. The minima are separated by barriers and the transitions between these regions are of interest. In molecular dynamics, for example, these
quantities of interest correspond to the macroscopic properties of the molecules under consideration. Furthermore, it can be shown that the
time to cross the barriers scales exponentially with the height of the barrier.3 In terms of sampling it is observed that the variance of the Monte
Carlo estimators associated with these rare transitions is often large. One idea to improve these estimators is the application of importance
sampling but other methods such as splitting methods have been proposed. In this article we are going to focus on importance sampling. For
a detailed discussion of splitting methods see Ref. 4 and the references therein.

One of the main challenges in importance sampling is to find a good bias so that the reweighted expectation has a low variance. The
theory shows that the bias that would lead to a zero variance estimator is related to the quantity one wants to sample; see, e.g., Refs. 5 and 6.
Therefore, many different variational methods have been proposed to find a good bias.7 For importance sampling applications in stochastic
differential equations it is well known that the optimal bias is actually given as the solution of a Hamilton-Jacobi-Bellman (HJB) equation, a
nonlinear partial differential equation.8 Since the HJB equation is the main equation of stochastic optimal control the importance sampling

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-1

© Author(s) 2024

https://pubs.aip.org/aip/jmp
https://doi.org/10.1063/5.0140665
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0140665
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0140665&domain=pdf&date_stamp=2024-August-19
https://doi.org/10.1063/5.0140665
https://orcid.org/0009-0007-1064-6963
https://orcid.org/0000-0002-3897-5984
mailto:ribera.borrell@fu-berlin.de
https://doi.org/10.1063/5.0140665

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

problem can be interpreted as stochastic optimal control. A stochastic optimization approach to approximate the bias using a parametric
representation of the control has been proposed in Ref. 9. In the optimization approach the weights of the parametric representation are
minimised to find the best approximation of the control. Methods for solving the related Hamilton-Jacobi-Bellman equation using deep
learning based strategies in high dimensions have been developed; see, e.g., Refs. 10–15. The approximation of control functions with tensor
trains has been presented in Ref. 16.

Although many methods have been proposed to approach the sampling problem from an optimal control point of view the stochastic
optimization formulation offers the possibility to make a connection with reinforcement learning. Reinforcement learning (RL) is one of
the three basic machine learning paradigms and has shown impressive results in high-dimensional applications such as Go and others.17,18

The reinforcement learning literature is very rich and many interesting ideas such as model-free, data-driven methods and robust gradient
estimation have been extensively explored. From a more abstract point of view optimal control and reinforcement learning are concerned
with the development of methods for solving sequential decision problems19 and their connection has been explored to some extent in Ref. 20.
A general formulation can be given as follows: an intelligent agent should take different actions in an environment to maximise a so-called
cumulative reward associated with a predefined goal. Applications of this formulation can be, for instance, a cleaning robot moving in a
complex space, playing various games21,22 or portfolio optimization.8 The environment in which the agent moves is typically given in the
form of a Markov decision process (MDP). Solution methods are often motivated by dynamic programming. The main difference between
classical dynamic programming methods and reinforcement learning algorithms is that the latter do not require knowledge of an exact
mathematical model of the MDP. In addition, reinforcement learning targets large MDPs where exact methods become infeasible. We make
the link between the two fields in two ways. One way is to use the optimal control problem and formulate it as a Markov decision process
which is the underlying theoretical framework of reinforcement learning. The other way is to formulate the reinforcement learning problem
as a stochastic optimization problem. By comparing the resulting optimization problem with the optimization problem derived in Ref. 9 for
the importance sampling stochastic optimal control problem, one can see that both agree. Although the link is known there are few papers
that show how to explicitly establish this link and the different language in these fields makes it difficult to understand the overlap. For this
reason we want to show this connection in more detail for our problem of interest namely the application of importance sampling. However,
the underlying connection is much more general and can be used for other applications that use stochastic modeling. Moreover, making this
connection has the advantage that ideas developed in one area can be transferred to the other.

The paper is structured as follows. In Sec. II we set the stage of rare event simulation, present the importance sampling problem and
state its stochastic optimal control formulation. Section III is dedicated to the introduction of the reinforcement learning framework. In Secs.
III A–III D we discuss Markov decision problems, which are the underlying theoretical framework of reinforcement learning. In Sec. III E we
state the reinforcement learning optimization problem and in Sec. III F we recap the key ideas behind the main RL algorithms. Section IV
is devoted to showing how optimal control and reinforcement learning are related. In Sec. IV A we show how the stochastic optimal control
problem can be formulated as an MDP. In Sec. IV B we compare the two optimization formulations presented for both problems. In Sec. IV C
we first discuss how a previously presented solution method in the framework of reinforcement learning can be understood as a model-based
approach. We introduce the well-known model-free deterministic policy gradient (DPG) algorithms. In Sec. V we present an application of
the presented methods to a small toy problem. The focus of this section is the approximation of the optimal control problem which we will
discuss in more detail. We conclude the article with a summary of our results.

II. IMPORTANCE SAMPLING SOC PROBLEM
The main goal of this paper is to show how stochastic optimal control (SOC) and reinforcement learning (RL) are related. We introduce

a SOC problem related to an importance sampling diffusion problem. However, the importance sampling SOC formulation can be easily
adapted to general SOC problems and is not restricted to the importance sampling application. First we motivate the importance sampling
problem and present a rather formal formulation. Then we show the relationship to the corresponding Hamilton-Jacobi-Bellman (HJB)
equation. Finally we show how this problem can be formulated as a stochastic optimization problem. This section will be formulated in
continuous time to show the relation to the HJB equation. In the following sections we will return to the discrete-time problem for convenience
as this is the viewpoint used in most of the reinforcement learning literature.

A. The sampling problem
The problem we are going to consider in this paper is a particle moving in some potential landscape V : Rd → R on the bounded domain

D ⊂ Rd. The movement of the particle follows the gradient of the potential plus a perturbation given by a Brownian motion noted as wt and
scaled by a diffusion term. This type of movement can be described by a stochastic differential equation (SDE) known as the overdamped
Langevin equation:

dxt = −∇V(xt)dt + σ(xt)dwt , x0 = x, (1)

where xt is the position of the particle at time t, x ∈ Rd is a deterministic starting position and the diffusion term is chosen to be

σ(x) =
√

2β−1 Id. Let us assume we are interested in computing the expectation

Ψ(x) ∶= E[I(x0:T) ∣ x0 = x] (2)

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-2

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

of path dependent characteristics which can be described as

I(x0:T) ∶= exp(−g(xT) − ∫
T

0
f (xt)dt), (3)

where T = inf{t > 0 ∣ xt ∈ T } is the first hitting time of a specific target set T ⊂ D and f , g : Rd → R are some bounded and sufficiently
smooth functions. In the literature f and g are often denoted as the running cost and the terminal cost respectively. For instance the quantity
of interest which leads to estimating the moment generating function of T can be achieved by setting f = λ ∈ R and g = 0, resulting in
Ψ(x) = E[eλT ∣ x0 = x].

We usually consider a potential V which has many local minima and which induces metastable dynamics in the model under considera-
tion. This metastability leads to a high variance of the Monte Carlo estimator of the path dependent quantity of interest and thus it becomes
unreliable. To improve the properties of the estimator we will apply an importance sampling strategy. The general idea of such a strategy is to
sample a different dynamical system by introducing a bias and later correcting this effect in the expectation.

In the considered problem we are going to introduce a bias in the drift term of the SDE. This additional drift is known as a control in the
SOC literature. By construction it does not influence the stochastic noise. The controlled dynamical system is given by

dyt = (−∇V(yt) + σ(yt)u(yt))dt + σ(yt)dwt , y0 = x, (4)

where u : Rd → Rd is the mentioned control, which belongs to the space of time-independent feedback controls U (see Ref. 23 for more
technical assumptions on the control). The time-independence assumption on the feedback control comes from the fact that the quantity of
interest (2) is time independent thus the overall problem we are trying to solve is stationary. The controlled dynamics can be related to the
original dynamics by using the Girsanov formula, which is a change of measure in path space. Precisely, we have that the importance sampling
quantity of interest is an unbiased estimator of (2)

Ψ(x) = E[I(x0:T) ∣ x0 = x] = E[I(y0:Tu) m0:Tu ∣ y0 = x], (5)

where m0:Tu is an exponential Martingale given by

m0:Tu ∶= exp(−∫
Tu

0
u(yt) ⋅ dwt −

1
2∫

Tu

0
∣u(yt)∣2dt) (6)

and Tu is the first hitting time of T under the controlled process. Although the importance sampling relation (5) holds for any control u ∈ U ,
the variance of the corresponding estimators significantly depends on the choice of u. Hence, one is tempted to aim for an optimal control u∗

which minimizes the variance of the importance sampling estimator over the space of controls

u∗ = arg inf
u∈ U

{Var (I(y0:Tu) m0:Tu ∣ y0 = x)}. (7)

B. Hamilton-Jacobi-Bellman equation
With this formulation at hand we can now search for the optimal control. It is well-known in the literature that the optimal control

can be found by using the Feynman-Kac formula and the resulting partial differential equation (PDE) connection.6,23 Via the Feynman-Kac
formula Ψ satisfies the following elliptic boundary value problem (BVP)

(L − f)Ψ = 0, in O, (8a)

Ψ = exp (−g), on ∂O, (8b)

on the domain O ∶= D ∩ T c where L denotes the infinitesimal generator, which is given by

L = 1
2

d

∑
i,j=1
(σσ⊺)ij(x)

∂2

∂xi∂xj
−

d

∑
i=1
(∂

∂xi
V(x)) ∂

∂xi
. (9)

By using the Cole-Hopf transformation Φ = −log Ψ, one can derive the well-known Hamilton-Jacobi-Bellman equation

LΦ − 1
2
∣σ⊺∇Φ∣2 + f Φ = 0, in O, (10a)

Φ = g, on ∂O. (10b)

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-3

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Moreover, it has been shown that the optimal control depends directly on the solution of the above PDE

u∗ = −σ⊺∇Φ = σ⊺∇ log Ψ (11)

and that the corresponding importance sampling estimator achieves zero variance see e.g., Refs. 6 and 23.
A priori one can calculate the quantity that we originally wanted to estimate as a function of the initial position via e.g., a finite difference

method. However, such a problem becomes not trivial to solve for high-dimensional settings due to the curse of dimensionality. Furthermore,
we know that the problem we are trying to solve is hard because we are trying to find a solution for a nonlinear PDE.

C. Stochastic optimization problem
To this end we are going to reformulate the problem as an optimization problem. Let us recall the value function Φ as a function of Ψ

which can be expressed in terms of the importance sampling estimator (5)

Φ(x) = − log(E[exp(−g(yTu) − ∫
Tu

0
f (yt)dt − ∫

Tu

0
u(yt) ⋅ dwt −

1
2∫

Tu

0
∣u(yt)∣2dt) ∣ y0 = x]).

By using the Jensen’s inequality and later the fact that an expectation of an Itô stochastic integral is zero we obtain the following upper bound
for the value function

Φ(x) ≤ E[g(yTu) + ∫
Tu

0
f (yt)dt + 1

2∫
Tu

0
∣u(yt)∣2dt ∣ y0 = x]. (12)

In the literature it is shown with the help of some stochastic calculus that the equality is attained for the optimal control u∗.6,23 We can
understand the right-hand side of the Eq. (12) as a performance measure of the control applied to the dynamical system. The first two terms
in the expectation are equal to the logarithm of the quantity of interest e.g., the stopping time in our example setting and the third term
measures the force applied to the system. In the optimal control literature this expression is known as the cost functional conditional on the
initial condition. On the one hand we can use the right-hand side of (12) as the objective function for the optimization problem since it is
easier to handle numerically. On the other hand we see that there is still a connection to the optimal control problem. If we manage to find
the optimal solution with the optimization procedure we have the solution to the HJB equation.

By minimizing this functional in terms of the control u subject to the controlled dynamical system we have derived an optimization
problem in order to find the optimal control. This optimal control problem is given by

u∗ = arg inf
u∈U

J(u; x) (13)

where the minimisation is taken again over the space of controls and J(u; x) is the corresponding cost functional

J(u; x) ∶= E[g(yTu) + ∫
Tu

0
f (yt)dt + 1

2∫
Tu

0
∣u(yt)∣2dt ∣ y0 = x] (14a)

s.t. dyt = (−∇V(yt) + σ(yt)u(yt))dt + σ(yt)dwt , y0 = x. (14b)

Many different ideas have been proposed in the literature to solve this problem. One idea is to use a Galerkin projection of the control
into a space of weighted finite ansatz functions and optimise over the weights using a gradient descent method or a cross-entropy method.9,24

Another idea is to solve the deterministic control problem and use it to steer the dynamical system in the right direction.25 A more detailed
discussion of solution methods can be found in Ref. 6.

According to the theory using optimal control to sample the quantity of interest would result in a zero variance estimator. In principle
one needs to sample a trajectory to find the quantity of interest. However, due to discretization and numerical issues this is not possible in the
implementation. However, with a good approximation to the optimal control the sampling effort can be massively reduced and the estimator
converges faster with a smaller relative error. Furthermore, it can be shown that the relative error scales exponentially with the approximation
error.26 This means that one should use the best possible approximation to find a good estimator of the quantity of interest. Because of this
dependence, it is necessary to use methods that find a solution close to the optimum.

For mathematical completeness it is necessary to have a small remark on other possible types of time horizons. In this article Tu is an a.s.
finite stopping time with respect to the canonical filtration of the controlled process. In general we could consider

● a finite horizon time Tu = Tend, leading to a deterministic stopping time,
● a bounded stopping time T̃u = min (Tu, Tend),
● or a general random stopping time Tu ∈ R+ ∪ {+∞}.

The first two types of stopping times are also a.s. finite and are of special interest since they guarantee the applicability of Girsanov’s theorem
for a control on a bounded domain. In this case the Novikov condition is satisfied. The reason is that with this assumption the boundedness of
the control is guaranteed. However, one ends up with a different problem formulation. In these cases the corresponding BVPs are not elliptic

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-4

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

but parabolic leading to time-dependent solutions and as a consequence the optimal control is also time-dependent.23,27 The general case of
random stopping time needs to be discussed in more detail and is beyond the scope of this article.6

III. INTRODUCTION TO REINFORCEMENT LEARNING
Before showing the connection between RL and SOC for completeness we would like to give a brief overview of a typical model for a

reinforcement learning problem. First, we look at the underlying theoretical framework namely Markov decision processes. Then, we will
discuss key concepts of RL theory, such as types of policies, value and Q-value functions, and their recursive relations provided by the Bell-
man equations. Finally, we will introduce the reinforcement learning problem from an optimization point of view and discuss two different
formulations of the RL problem.

As stated by Sutton and Barto: “Reinforcement learning is learning what to do - how to map situations to actions - in order to maximise
a numerical reward signal.”21 So from this very first definition we can already see what it takes to define a reinforcement learning problem. To
learn what “to do,” we need someone to do something. This is usually called the agent. The agent experiences situations by interacting with
an environment. This interaction is based on the actions the agent takes, the reward signals the agent receives from the environment and the
next state the agent has moved to by following the controlled dynamics. Usually the interaction with the environment is considered to take
place over some time interval (finite or infinite).

The goal of the agent is to reach a predefined goal that is part of the environment. The agent will reach the goal if it optimally chooses the
sequence of actions so that the sum of the reward signals received along a trajectory is maximised. Given the dynamics of the environment
and a chosen goal reinforcement learning assumes that there are reward functions that can lead the agent to success in the sense that the
predefined goal is reached. The existence of a unique reward function that is certain to lead to the predefined goal is not given. Thus, the
choice of the reward function can be flexible and depend on the task that the agent has to solve. Furthermore, it may have an influence on the
learned action.

Environments with sparse reward functions are often difficult to handle, since the reward signal received is often negligible. For example
this is often the case in games where the reward signal is 0 throughout the game and changes to −1 in the event of a loss or +1 in the event of
a win. However, this is not the only possible reward function that makes the agent learn how to play. If a person plays a game of chess with a
teacher who tells her how she played after every move the person will receive a much richer reward signal which will eventually lead to faster
learning.

A. Markov decision processes
The theoretical framework of all reinforcement learning problems is a Markov decision process. A typical RL problem has the following

elements:

● the state space S is the set of states i.e. the set of all possible situations in the environment,
● the action space A is the set of actions the agent can choose at each state,
● the set of decision epochs T ⊂ R+ is the set of time steps corresponding to the times where the agent acts. Let us assume the set of

decision epochs is discrete. In this case, it can either be finite, i.e., T = {0, . . . , T} with T ∈ N+, or infinite T = N0.
● the (state-action) transition probability function p : S × S × A→ [0, 1] provides the probability of transitioning between states after

having chosen a certain action. The transition probability function depends on the state where the agent is s ∈ S, the action she
chooses a ∈ A and the next state the agent moves into s′ ∈ S, i.e.,

p(s′, s, a) = p(s′∣s, a) ∶= P(st+1 = s′ ∣ st = s, at = a). (15)

The transition probability function given a state-action pair p(⋅∣s, a) is a conditional probability mass function

∑
s′∈ S

p(s′∣s, a) = 1. (16)

If S is a continuous state space p : S × S × A→ R+ represents the (state-action) transition probability density. Let Γ ∈ B(S) be a
Borel set of the state space, then the probability of transitioning into Γ conditional on being in the state s ∈ S and having chosen
action a ∈ A is given by

P(st+1 ∈ Γ ∣ st = s, at = a) = ∫
Γ

p(s′∣s, a)ds′.

For more details about continuous MDP we recommend to look at Ref. 28. For ease of notation, we will use the same symbol p to
denote the transition probability function and the transition probability density throughout the article.

● and the reward function r : S × A→ R is the reward signal the agent will receive after being in state s ∈ S and having taken action
a ∈ A, i.e.,

rt ∶= r(st , at). (17)

Formally, the tuple (S, A,T, p, r) defines a Markov decision process. A more detailed introduction to MDPs can be found in Ref. 29.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-5

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

B. Reward and state-action transition probabilities
If an action at is chosen in a state st at time t, two things happen. First, the agent receives a reward signal rt = r(st , at). Second, the

agent transitions to the next state st+1 according to the transition probability function st+1 ∼ p(⋅∣st , at). In the literature one can find reward
functions that depend on the state, the action and the next state. In this case the order changes. First the agent moves to the next state, and
second, the agent receives the reward signal. We will consider the first case throughout this paper. Note that both the (state-action) transition
probability function and the reward function depend only on the current state of the agent and the action chosen in that state. This is sufficient
to describe the dynamics of the agent, since we assume that the agent is Markov. Recall that the Markov decision framework can be generalised
to non-Markovian dynamics; see, e.g., Ref. 29.

The reward signal depends solely on the reward function. The reward function cannot be influenced by the agent and is considered to
be part of the environment. We use the convention that the reward function is deterministic. However, for some environments the reward
function may be described in a probabilistic way. In these cases it is useful to work with the so-called dynamics function pdyn : S ×R × S ×
A→ [0, 1] which gives us the probability that the agent is in the next state and has received a certain reward conditional on a state-action
pair,21 i.e.,

pdyn(s′, r, s, a) = pdyn(s′, r∣s, a) ∶= P(st+1 = s′, rt = r ∣ st = s, at = a).

The expected reward function R : S × A→ R provides us the expected reward signal conditioned on being in a state and taking an action

R(s, a) ∶= E[rt ∣ st = s, at = a].

If the dynamics of the environment is deterministic, the state transition probability function is replaced by the so-called environment
transition function, denoted by h : S × A→ S. In this case the next state is given by st+1 = h(st , at). By introducing in the transition function
a dependence on a random disturbance ξt one can treat both stochastic and deterministic dynamical systems st+1 = h(st , at , ξt). To treat
deterministic systems in this framework we just have to set ξ to zero; see, e.g., Ref. 30.

C. Policies
Policies are the most important part of reinforcement learning. A policy is a mapping that determines what action to take when the agent

is in state st at time t. This is why they are sometimes called the agent’s brain. Policies can be either deterministic or probabilistic.
A deterministic policy is a function from the state space into the action space. Deterministic policies are usually denoted by μ, and the

action for state st is given by at = μ(st). A stochastic policy is a conditional probability distribution over the action space. Stochastic policies are
usually denoted by π, and the new action for state st can be computed by sampling from this conditional probability distribution. The action
for st is given by at ∼ π(⋅∣st). The deterministic policies can be seen as special cases of stochastic policies where the probability distributions
over the action space are degenerate.

In the following sections we will show how the goal of reinforcement learning can be expressed in terms of finding policies that maximise
the reward signal received at each time step.

D. Trajectories, return and value functions
Depending on the time horizon which is considered the reinforcement learning literature distinguishes between infinite horizon problems

and terminal problems. We are only going to discuss terminal problems here since the SOC problem belongs to this class. For infinite time
horizon problems a discounted factor has to be taken into account to make sure that the cumulative reward is finite. Details can be found in
Ref. 31.

By interacting with the environment the agent generates a trajectory τ which is a sequence of states (s.), actions (a.), and rewards (r.)

τ ∶= s0, a0, r0, s1, a1, r1, . . . sk, ak, rk, (18)

The initial state s0 ∈ S is either sampled from a start state distribution s0 ∼ ρ0 or chosen to be constant s0 = sinit, i.e., s0 ∼ ρ0 = δsinit . Recall that
the state transitions only depend on the most recent state and action st+1 ∼ p(⋅∣st , at).

The overall goal of the agent is to maximize the cumulative reward along a trajectory up to time t

Gt(τ) ∶= rt + ⋅ ⋅ ⋅ + rT =
T−t

∑
k=0

rt+k (19)

by choosing the actions or policy optimally.
In order to estimate how well the agent performs starting in a given state and following a certain policy we need to define a performance

measure. For each policy this performance measure is called value function which is a function of the state only. It is defined as the expected
return conditional on the agent starting at the state s ∈ S

Vπ(s) ∶= E[Gt(τ) ∣ st = s; π], (20)

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-6

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

where the actions are chosen according to the policy at ∼ π(⋅∣st) for all t ∈ {0, . . . , T}. In optimal control theory the value function term is a
synonym of the so-called optimal cost-to-go which refers to the optimal value of the cost functional (with respect to all possible controls)
conditional on the initial condition. In RL the term value function is used for all policies. When the policy is optimal we use the term
optimal value function. A crucial property of the value function is that it satisfies the following recursive relationship. For all s ∈ S and
t ∈ {0, . . . , T − 1} we have

Vπ(s) = E[
T−t

∑
k=0

rt+k ∣ st = s; π] = E[rt + ⋅ ⋅ ⋅ + rT ∣ st = s; π]

= E[rt + E[
T−1−t

∑
k=0

rt+1+k∣ st+1 = st+1; π] ∣ st = s; π] = E[rt + Vπ(st+1) ∣ st = s; π].

In the reinforcement learning literature often stationary problems are considered; see, e.g., Ref. 21. However, from a theoretical view point
is possible to extend this to time-dependent problems. Moreover, the value function gives us a partial ordering over policies. We say that a
policy π is better than or equal to another policy π′, π ≥ π′, if Vπ(s) ≥ Vπ ′(s) for all states s ∈ S. If a policy is better than or equal to all other
policies, this is the optimal policy. The optimal policy is denoted as π∗ and the optimal value function is defined by

V∗(s) = max
π

Vπ(s), ∀s. (21)

For a small, finite MDP, policy iteration (PI) strategies offer in general convergence to the optimal policy.21 They interlude value iteration
where the value function is estimated by using the Bellman equation iteratively and policy improvement. A direct way to find the optimal
actions is given by solving the Bellman equation. For any MDP results about the existence of an optimal policy can be found in Ref. 29.

Analogous to the motivation of the value function one might be interested in estimating how well the agent performs following a policy
starting in a given state and taking a certain action. The performance measure for this is the so-called Q-value function. The Q-value function
for a certain policy is a function of state and action and is given by

Qπ(s, a) ∶= E[Gt(τ) ∣ st = s, at = a; π]. (22)

It provides us with the quality of the chosen action with respect to the given state. Since the Q-value function is an extension of the value
function it also satisfies the Bellman expectation equation

Qπ(s, a) = E[rt +Qπ(st+1, at+1) ∣ st = s, at = a; π] (23)

and thus the recursive relationship. Last, let us define the advantage function with respect to a certain policy by

Aπ(s, a) ∶= Qπ(s, a) − Vπ(s), (24)

which tells us for each state-action pair the advantage of taking action a in state s with respect to the value function at s.

E. RL as optimization problem
Solving the Bellman optimality equations is often not an easy task because the transition function has to be known beforehand or learned.

Even if this is the case it becomes an unfeasible assignment for high-dimensional problems due to the curse of dimensionality. In reinforcement
learning one way to circumvent this is to formulate the RL problem as an optimization problem. Very generally this optimization problem
can be stated as

π∗ = arg max
π∈Π

J(π) (25)

where Π is the space of policies we consider and J is the RL objective function

J(π) ∶= E[G0(τ) ∣ π] (26a)

s.t. s0 ∼ ρ0, st+1 ∼ p(⋅∣st , at), at ∼ π(⋅∣st), (26b)

for all t ∈ {0, . . . , T − 1} where at is the action chosen at the state st following policy π and st+1 is the next state of the agent given by the
dynamics of the system. The expectation in (26a) denotes the expected return along all trajectories following the policy π

E[G0(τ) ∣ π] = ∫
Ω̃

ρtraj(τ ∣ π)G0(τ)dτ,

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-7

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

ALGORITHM 1. Main RL Online model-free algorithm.

1: for trajectory = 1, 2, . . . do
2: for time step = 1, 2, . . . , T do
3: Evaluate the dynamical system with the current policy π and calculate the reward.
4: end for
5: Optimize the policy.
6: end for

where Ω̃ denotes the space of all possible trajectories and ρtraj(⋅∣π) represents the probability distribution over the trajectories which follow
the policy π

ρtraj(τ∣π) = ρ0(s0)
T−1

∏
t=0

p(st+1∣st , at)π(at ∣st). (27)

In general it is numerically infeasible to optimize over a function space or a space of probability distributions. Hence, one often considers
a parametric representation of a policy and tries to optimize with respect to the chosen parameters.

F. Brief summary of RL algorithms
Over the last few years many different algorithms have been developed to solve reinforcement learning problems. For a good but non-

exhaustive review we refer to Ref. 32 and the references therein. Many of the algorithms share a general framework, which is summarized in
Algorithm 1.

The main difference between the methods is how the policy optimization is computed which depends on the underlying problem. The
proposed methods can be distinguished if they are model based or model-free and if the policy optimization is done via Q-learning, policy
gradient or a combination of both methods.

Let us first discuss the difference between model-based and model-free approaches. An algorithm is said to be model-based if the tran-
sition function is explicitly known (tractable to evaluate) point-wise. In this case we can just take the transition function and sample s′ from
p(⋅∣s, a). The known transition function contains a lot of information about the underlying dynamics and is therefore very useful for possible
solution methods. A method is called model-free when the transition function is not explicitly known. In this case the transition function
cannot be used explicitly in the solution methods. The difference is related to the distinction between stochastic optimal control and rein-
forcement learning. In the case of stochastic optimal control the model is often known while reinforcement learning aims at a more general
solution method that does not depend on the underlying dynamical system.

Let us briefly discuss the main underlying solution methods.

1. Q-learning
One of the first methods which was proposed was Q-learning.33 The main idea is to approximate the state-action value function and use

greedy policy iteration until convergence to the optimal policy.21 The Bellman optimality equation

Q∗(s, a) = E[rt +max
a′∈A

Q∗(st+1, a′) ∣ st = s, at = a, π∗]

provides a recursive formula for updating the Q-value function until convergence as long as some mild assumptions with respect to the
learning rates and how often a state-action pair is visited are satisfied (see Refs. 21 and 33 for more details). If this is the case for any state
s ∈ S the optimal policy is given by the action which maximizes the Q-value function

π∗(s) = arg max
a∈A

Q∗(s, a).

However, the Q-learning algorithm can only be applied to problems with finite action spaces since taking the maximum over a continuous
action space is not a feasible task. It works well as long as the state space is small and discrete. For large or continuous state spaces deep
Q-learning has been developed in Ref. 34 where the Q-value function is approximated by a parametric representation called the deep Q-value
network (DQN). In addition Q-learning algorithms suffer from possible overestimation of the action values due to the fact that the maximum
expected action value is approximated by the maximum action value which is biased. The idea of double Q-learning attempts to overcome
this problem by storing two Q-value functions. The method has been introduced for both tabular and function approximation settings.35,36

An extension of the Q-learning idea for continuous action spaces is only possible by considering a separate policy parameterisation lead-
ing to an actor-critic setting which will be discussed in detail in Sec. IV C 2. We refer to Ref. 37 and the references therein for a comprehensive
study of Q-learning in continuous time.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-8

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

2. Policy gradient
The main idea is to approximate the policy by a parametric representation and then solve the RL optimization problem (25) with respect

to the parameters. In this approach one would like to use a direct optimization method like gradient descent. But one big challenge is the
gradient calculation of the expectation, which is a research field by its own; see, e.g., Ref. 1. One way to overcome this is to consider a
parametrized stochastic policy. In this case the gradient calculation can be done explicitly and one can find a close formula. This was first
presented in Ref. 38 and the so-called policy gradient theorem for stochastic policies was derived. The derived estimator is given by

∇θJ(πθ) = E[G0(τ)∇θ log ρtraj(τ∣θ) ∣ πθ]

= E[G0(τ)(
T−1

∑
t=0
∇θ log πθ(st , at)) ∣ πθ]

= E
⎡⎢⎢⎢⎢⎣

T−1

∑
t=0

⎛
⎝

T

∑
t′=0

rt′
⎞
⎠
∇θ log πθ(st , at) ∣ πθ

⎤⎥⎥⎥⎥⎦
,

(28)

where one first uses the so-called log-derivative trick and then expands the expression for the gradient of the logarithm of the distribution of
trajectories following the policy π. Notice that this gradient estimator does not depend on the transition probability density p and hence it is
considered to be model-free.

The methods presented here are the two main general ideas behind many variants of RL algorithms and were presented very early in
the reinforcement learning community. Over the years, many drawbacks have been identified and extensions and combinations of solution
methods have been proposed. Since policy evaluation is quite expensive, off-policy methods have been developed, i.e., trajectories simulated
under a different policy are used for the current optimization step. This can be done, for example, by using an importance sampling approach;
see, e.g., Ref. 39. Methods that only use policies that have been sampled with the current policy are called online. A combination of Q-learning
and policy gradient has been proposed to overcome the high variance of a pure policy gradient.40 These ideas have been further developed
and methods such as TRPO39 and PPO41 have been proposed.

All of these algorithms have been developed for stochastic policies but methods for deterministic policies have also been derived. In
the next section we will introduce the family of model-free deterministic policy gradient algorithms which provide a policy gradient without
needing to know the model explicitly.

The selection presented here is far from complete but a more detailed discussion of RL is beyond the scope of this article. For a more
detailed overview we refer to Refs. 21, 32, and 42. Most of the developed methods have a specific domain of application so one needs to
carefully consider whether a method can be applied to a specific problem at hand.

IV. THE SOC PROBLEM AS RL FORMULATION
In this section we show how the importance sampling SOC problem can be formulated as a reinforcement learning problem. First we

show how to define an MDP for the stochastic control problem. This allows us to construct an RL environment based on the time-discretised
stochastic optimal control problem. Then we compare the optimization approaches for both problems and argue that both formulations have
a large overlap. After that we discuss how a previously presented method for the SOC problem can be categorised as a reinforcement learning
algorithm. Finally we present a family of RL algorithms designed to deal with environments such as our stochastic optimal control problem.

A. Importance sampling SOC problem as RL environment
To show how the stochastic control problem can be interpreted as a reinforcement learning environment we consider for simplicity its

corresponding time-discretized formulation. For the time-discretized dynamics of (4) we use an Euler-Maruyama discretization of the SDE
see e.g., Ref. 43

st+1 = st + (−∇V(st) + σu(st))Δt + σ
√

Δt ηt+1, s0 = x (29)

where st represents the time evolution of the controlled dynamics for a time step Δt. The term
√

Δt ηt+1 is the so-called Brownian increment
where ηt+1 ∼ N (0, 1) is a normally distributed random variable. The time-discretized objective function is given by

J(u; x) ∶= E
⎡⎢⎢⎢⎣

g(sTu) +
Tu−1

∑
t=0

f (st)Δt + 1
2

Tu−1

∑
t=0
∣u(st)∣2Δt ∣ s0 = x

⎤⎥⎥⎥⎦
. (30)

The state space consists of all possible states s ∈ Rd in the domain and is therefore infinite and continuous, S = Rd. The action space is given
by the codomain of the SOC admissible controls u ∈ U i.e., A = Rd. Recall that the set of decision epochs T is a discrete set. As for the
uncontrolled process we assume that the stopping time for the controlled process Tu is a.s. finite and hence for any trajectory, the set of
decision epochs T is finite.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-9

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

To get a better understanding of the policy under consideration let us first have a look at the control used in (29). The main idea to turn
the SOC problem into an optimization problem is to use a Galerkin projection into a space of weighted approach functions. This was first
proposed in the literature by Ref. 9. We will denote the approximation by uθ and it is given by

uθ(x) =
M

∑
m=0

θmbm(x) (31)

where the bm(x) are some approach functions such as radial basis functions, polynomials and θ is the weight vector. It is also possible
to approximate the control with nonlinear function approximations such as neural networks; see, e.g., Ref. 44. Regardless of the choice
of approximation functions the resulting control is still deterministic which is usually called feedback form control in the optimal control
literature. Due to the deterministic control the resulting policy is deterministic and the optimization will be over the weights of the ansatz
function.

The time evolution for each control is given by the time-discretised dynamics (29) and this is sufficient to simulate trajectories. Moreover,
for the considered SDE, the corresponding transition probability density for the deterministic policy can even be explicitly derived from (29)
(see Ref. 44 for details)

p(st+1∣st , at) = (
β

4πΔt
)

d/2
exp(−βΔt

4
∣ st+1 − st

Δt
+∇V(st) −

√
2β−1at∣

2
). (32)

The reward function is defined such that the corresponding return along a trajectory equals the negative term inside the expectation of
the time-discretized cost functional (30). The reward signal at time step t reads

rt = r(st , at) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

− f (st)Δt − 1
2
∣at ∣2Δt if st ∉ T ,

−g(st) if st ∈ T .
(33)

Notice that the reward signal is in general not sparse since the agent receives feedback at each time step but the choice of the running cost f
and the final cost g can influence this statement. Moreover, the return along a trajectory τ looks like

G0(τ) = −g(sT) −
T−1

∑
t=0

f (st)Δt − 1
2

T−1

∑
t=0
∣at ∣2Δt. (34)

To do this we have defined an MDP for the importance sampling SOC problem. So we change the viewpoint of the SOC problem to the
RL viewpoint. Next let us have a brief look at the two optimization problems for reinforcement learning and stochastic optimal control.

B. Comparison between the optimization approaches
Let us start by looking at the two optimization problems given in (25) and (13). Both problems are stochastic optimization problems.

The RL optimization problem maximises the expected return and the importance sampling SOC problem minimises the time-discretized cost
functional conditional on the initial position. The RL optimization problem is a bit more general as the forward time evolution is stated in
a very general setting. The forward trajectories are determined by the probability transition density and the stochastic policy while for the
stochastic optimal control problem the time evolution is explicitly given by a controlled SDE (29) for a chosen control. Furthermore, in the
RL framework, technical conditions are rarely imposed on the policy. In contrast in the SOC optimization formulation it is known that the
optimal control is deterministic and must satisfy some technical assumptions as shown above.

The time-discretized optimization problem for the SOC problem is given by

J(πθ) = E[g(sT) +
T−1

∑
t=0

f (st)Δt + 1
2

T−1

∑
t=0
∣at ∣2Δt ∣ πθ]→ min (35a)

s.t. st+1 = st + (−∇V(st) + σat)Δt + σ
√

Δt ηt+1, s0 = x, at ∼ πθ(⋅∣st), (35b)

where st is the time evolution of the controlled dynamics. Furthermore, we can turn the minimisation problem into a maximisation problem
by multiplying the cost functional by −1 without making any further changes. Looking more closely at the reward signal for the SOC problem
we see that the signal is a compromise between maximising the negative logarithm of the quantity of interest, which is given here by −g(sT) −
T−1
∑
t=0

f (st)Δt, and maximizing the negative of the control term, given by − 1
2

T−1
∑
t=0
∣at ∣2Δt. So the last part of the reward can be seen as a kind of

regularisation which keeps the norm of the actions low.
In both cases the expectation is about trajectories. For the SOC case the probability density over the trajectories can be given in the same

way as in (27). Note that in this particular case the reward along a trajectory depends on the chosen policy.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-10

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

C. Algorithms for SOC in a RL framework
The first method proposed to solve the importance sampling SOC problem9 was a pure gradient descent but many other variants of this

approach have been developed in the literature; see, e.g., Ref. 23 and the references therein. Nevertheless most methods are based on the idea
of gradient descent. We will show a derivation of the gradient descent method in the RL framework and show that this can be interpreted as
a deterministic model-based policy gradient method. For the deterministic policy setting methods in reinforcement learning have also been
proposed namely the model-free DPG family of algorithms and its subsequent variants. We will introduce the main idea of these methods
and in the next section we will present an application of both algorithms.

1. Model-based deterministic policy gradient
Let us again understand the expectation of the objective function (26a) taken over the distribution of trajectories and proceed with the

gradient computation as we did in (28). First, notice that the probability distribution over the trajectories now reads

ρtraj(τ∣μθ) =
T−1

∏
t=0

p(st+1∣st , μθ(st))

and the derivative of the logarithm of the probability distribution with respect to the parameters changes to

∇θ log ρtraj(τ∣μθ) = ∇θ log(
T−1

∏
t=0

p(st+1∣st , μθ(st)))

=
T−1

∑
t=0
∇θ log (p(st+1∣st , μθ(st)))

=
T−1

∑
t=0
∇a log p(st+1∣st , a)∣

a=μθ(st)

⋅ ∇θμθ(st).

Moreover, the return along a trajectory now depends directly on the policy parameter θ

G0(τ; θ) =
T

∑
t=0

rt =
T

∑
t=0

r(st , μθ(st))

and therefore its derivative cannot be neglected

∇θG0(τ; θ) =
T

∑
t=0
∇θr(st , μθ(st)) =

T

∑
t=0
∇ar(st , a) ∣a=μθ(st)

∇θμθ(st).

By putting everything together the deterministic policy gradient reads

∇θJ(μθ) = E[∇θG0(τ; θ) +G0(τ; θ)∇θ log ρtraj(τ∣μθ) ∣ μθ] (36)

= E[
T

∑
t=0
∇ar(st , a)∣a=μθ(st)∇θμθ(st)

+G0(τ; θ)(
T−1

∑
t=0
∇a log p(st+1∣st , a)∣

a=μθ(st)

⋅ ∇θμθ(st)) ∣ μθ]. (37)

As mentioned by Ref. 45 this gradient estimator requires the knowledge of the (state-action) transition density and the reward function.
Hence, in contrast with its analog for stochastic policies it is a model-based method. Moreover, notice that this gradient estimator has the
same form as (28) with an extra term in the expectation corresponding to the gradient of the return. Thus an optimization method which uses
this gradient estimator can be interpreted as a deterministic version of the well-known REINFORCE method. A different approach to derive
the same gradient estimator for the continuous-time SOC problem can be found in Refs. 44 and 46.

For the importance sampling RL environment we can provide a close expression for this gradient estimator since the model is known

∇θJ(μθ) = E[−Δt
T−1

∑
t=0

μθ(st) ⋅ ∇θμθ(st) +G0(τ; θ)(
T−1

∑
t=0

ηt+1 ⋅ ∇θμθ(st)) ∣ μθ], (38)

where the term ∇a log p(st+1∣st , a) has been computed by using the Euler-Marujama time-discretized stochastic differential equation (29).
Such an approach has already been successfully implemented for the mentioned environment in the context of stochastic optimal control
optimization. In the original work9 the deterministic policy i.e., the control is represented by a linear combination of Gaussian ansatz functions
and later the approach is extended to a general deep representation of the control to avoid the curse of dimensionality.44

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-11

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

2. Model-free deterministic policy gradient
Due to the nature of the importance sampling SOC problem we are interested in exploring RL algorithms designed for continuous envi-

ronments with optimal deterministic policies. The well-known deterministic policy gradient (DPG) algorithms presented in Ref. 22 attempt
to find a deterministic policy and are suitable for environments with continuous actions. The authors extend the policy gradient theorem31 to
problems with deterministic policies and discounted infinite horizon. The gradient derived in this paper is given by

∇θJ(μθ) = Es∼ρμ[∇θμθ(s)∇aQμθ(s, a)∣a=μθ(s)] (39)

where ρμ is meant to be the so-called “(improper) discounted state distribution.”21,22,31 The actor representation μθ approximates the deter-
ministic policy and its parameters are updated by stochastic gradient ascent of (39). The critic representation Qω approximates the Q-value
function Qμθ and can be estimated by using policy evaluation algorithms.

Furthermore, the authors show that this deterministic policy gradient is the limiting case of its stochastic analogue as the policy variance
tends to zero. This is shown by using a stochastic policy πμ,σ , where μ is a parameter for the mean and σ controls the variance of the underlying
probability distribution. The variance parameter is then set to 0. Under certain assumptions, it can be shown that the following expression
holds (see Ref. 22)

lim
σ→0
∇θJ(πμθ ,σ) = ∇θJ(μθ). (40)

The underlying idea is that the probability distribution degenerates and the resulting degenerated probability distribution is only optimized
in the mean parameter.

Later this actor-critic approach was developed further resulting in a deep deterministic policy gradient (DDPG)47 version of the algorithm
where the policy and the Q-value function are approximated by deep neural networks. In this work the main ideas of deep Q-learning34 have
been adapted to problems with continuous actions. The critic network is updated by minimising the following loss function known as the
(mean squared) Bellman loss

LBE(Qμ
ω) = E(s,a,r,s′ ,d)∼D[(Qω(s, a) − (r(s, a) + (1 − d)Qω(s′, μ(s′)))2] (41)

where D is a given data set of trajectory transitions and d tells us if the next state s′ is a terminal state i.e., d = 𝟙 T (s′). The Bellman loss tells us
how close the approximation Qω is to satisfy the Bellman equation in the given data set of transitions.

Further ideas behind the success of DQN algorithms34 such as off-policy training with samples from a replay buffer or the use of separate
target networks have been implemented to provide more stable and robust learning. The replay buffer consists of a finite set of trajectory
transitions (st , at , rt , st+1, d) that are stored online or offline. When the replay buffer is full the oldest tuples are discarded. The transition
records required in (41) are randomly sampled from the replay buffer. The motivation for using target networks is to reduce the correlations
between the action values Qω(s, a) and the corresponding targets r + (1 − d)Qω(s′, μ(s)). A separate network is used for the targets, and its
weights are updated slowly according to the original network. By forcing the target networks to update slowly, the stability of the algorithm is
improved.

Finally, the work of Ref. 48 addresses how to deal with a possible overestimation of the value function for continuous action space
problems with ideas from double q-learning. They introduce the idea of clipped actions as a regularisation technique for deep value learning.
The idea behind this is that similar actions should have similar action values. The algorithm developed is the latest developed algorithm in the
DPG family and is called twin delayed deep deterministic policy gradient (TD3).

In general, the DPG family of algorithms combines the two ideas of policy optimization and Q-learning methods. On the one hand it is
a type of policy gradient algorithm because it uses a parametric representation of the policy and updates its parameters by a gradient ascent
method. On the other hand the required gradient depends on the Q-value function that needs to be approximated. Last let us conclude by
highlighting that the resulting DPG algorithms are model-free, i.e., they do not require knowing the model transition density (see Refs. 22 and
47 for further details).

V. EXAMPLES: ONE-DIMENSIONAL DOUBLE WELL POTENTIAL
In this section we compare the use of two different algorithms to solve the RL optimization problem for the importance sampling

environment introduced in Sec. IV. We consider the two main possible approaches for environments with continuous states and actions
where the desired optimal policy is deterministic. We restrict ourselves to deterministic policy methods because we know from the PDE
connection of the SOC problem that the optimal solution is deterministic. The first is an online model-based policy gradient method and the
second is an offline model-free actor-critic method.

Throughout, we will consider the paradigmatic one-dimensional double well potential Vα : D S ⊂ S→ R given by

Vα(s) = α(s2 − 1)2,

where the parameter α is responsible for the height of the barrier and D S = [−2, 2] is the domain of the state space. We assume that the

dynamics of the environment is governed by the transition probability density (32) with σ(x) =
√

2β−1 and time step Δt = 0.005. The para-
meter α and the inverse temperature β encode the metastability of the system. The height of the barrier is set to α = 1.0 so that the metastability

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-12

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

FIG. 1. Trajectories following the null policy for the two settings of study. The actions chosen along the trajectories are null. The trajectories are sampled starting at sinit = −1
until they arrive into the target set T = [1,∞). Left panel: snapshots of the metastable trajectory β = 4. Right panel: trajectory positions as a function of the time steps.

is mainly influenced by the choice of β. To evaluate the performance of both algorithms we set a non-metastable setting β = 1 and a more
metastable one β = 4. The initial value of the trajectories is set to sinit = −1 and the target set is chosen to be T = [1,∞) for all experiments
(Fig. 1). We set f = 1 and g = 0 so that the quantity of interest (3) is reduced to I(xT) = exp(−T).

For the chosen environment the corresponding HJB Eq. (10) is one-dimensional and therefore we can compute reference solutions
for the optimal control by a finite difference method. We call this reference control the HJB policy. The construction of our environ-
ment is motivated by finding the optimal policy with the intention of minimising the variance of the original importance sampling
estimator (5). However, we do not focus on the performance of such variance reduction as it is sufficient to measure how close the
approximated policy is to the optimal solution. To do this we track a L2-type error of our deterministic policy approximations along the
trajectories. Specifically, we define the empirical L2 error along an ensemble of sampled trajectories with an arbitrary deterministic policy
μ by

L2(μ) ∶= 1
Ktest

Ktest

∑
k=1

⎛
⎝

T(k)

∑
t=0
∣μ − μHJB∣2(s(k)t)Δt

⎞
⎠

, (42)

where Ktest is the test batch size and the superscript (k) denotes the index of each trajectory. This quantity tells us how close the pol-
icy μ is to the reference policy μHJB along the trajectories of the ensemble. For all experiments, the test batch size is chosen to be
Ktest = 103.

To approximate the optimal policy and the Q-value function we use feed-forward neural networks. These are essentially composi-
tions of affine-linear maps and nonlinear activation functions which show remarkable approximation properties even in high dimen-
sions. Let din, dout ∈ N+ be the input and output dimensions of the feed-forward network φθ : Rdin → Rdout which is defined recursively as
follows

φθ(x) = ALρ(AL−1ρ(⋅ ⋅ ⋅ ρ(A1x + b1) ⋅ ⋅ ⋅) + bL−1) + bL, (43)

where L is the number of layers d0 = din, dL = dout, Al ∈ Rdl×dl−1 and bl ∈ Rdl , 1 ≤ l ≤ L are the weights and the bias for each layer and ρ : R→ R
is a nonlinear activation function applied componentwise. The collection of matrices Al and vectors bl contains the learnable parameters
θ ∈ Rp. For all experiments we consider the policy representation μθ = φθ where din = dout = 1 and the Q-value representation Qω = φω where
din = 2 and dout = 1 with both L = 3 layers, dimension of the hidden layers d1 = d2 = 32, and the activation function ρ(x) = tanh(x). To ensure
that the initial output of the networks is close to zero the final layer weights and biases are initialised by sampling from the following uniform
distributions U(−10−2, 10−2), U(−10−3, 10−3) respectively.

We repeat all our experiments several times with different random seeds to ensure generalisability. Each experiment requires only one
CPU core, and the maximum value of allocated memory, is set to 1 GB unless otherwise stated.

A. Model-based deterministic REINFORCE
First we present the results of the deterministic model-based version of the REINFORCE algorithm for the one-dimensional environment

described above. We consider an online based implementation where the batch of trajectories is not reused after each gradient step. We
summarise this method in Algorithm 2.

For both metastable and non-metastable settings we consider two different batch sizes K = {1, 103} and use the Adam gradient based
optimization algorithm49 with corresponding learning rates λ = {5 × 10−5, 5 × 10−4} respectively. The stopping criteria is set to be a fixed
number of gradient steps N = 104 and the approximated policy is tested every 100 gradient updates.

Figures 2 and 3 show the L2 empirical error as a function of the gradient updates and the policy approximation at different gradient
steps for the two different problem settings. In the non-metastable case we can see for the experiment with batch size K = 103 that the policy

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-13

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

ALGORITHM 2. Model-based deterministic policy REINFORCE.

1: Initialize deterministic policy μθ.
2: Choose a batch size K, a gradient based optimization algorithm, a corresponding learning rate

λ > 0, a time step size Δt and a stopping criterion.
3: repeat
4: Simulate K trajectories by running the policy in the environment’s dynamics.
5: Estimate the policy gradient∇θJ(μθ) by

1
K

K
∑
k=1

T(k)
−1
∑
t=0
(−Δt μθ(s(k)t) ⋅ ∇θμθ(s(k)t) +G0(τ; θ)ηt+1 ⋅ ∇θμθ(s(k)t)).

6: Update the parameters θ based on the optimization algorithm.
7: until stopping criterion is fulfilled.

FIG. 2. Left panel: estimation of L2(μθ) at each gradient step for the non-metastable setting β = 1. Right panel: approximated policy for different gradient updates for the
batch of trajectories case (K = 103).

approximation agrees well with the reference control already after ∼5000 gradient steps. On the other hand with only one trajectory one has to
rely on a lower learning rate and therefore learning is much slower. In the more metastable scenario we can see that the policy approximation
for K = 103 is not as close to the HJB policy as in the less metastable case. One can see that after the same number of gradient steps the L2

error differs by more than an order of magnitude. Moreover, for the non-metastable setting with K = 103 we need to increase the maximum
value of allocated memory to 8 GB. For the metastable setting we end up allocating 4 GB for the one trajectory case K = 1 and around 100 GB
for the batch case K = 103.

FIG. 3. Left panel: estimation of L2(μθ) as a function of the gradient steps for the metastable setting β = 4. Right panel: approximated policy for different gradient updates.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-14

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

B. Model-free deterministic policy gradient
Next we present the application of a model-free DPG method. In particular we will implement the TD3 variant of the DDPG method

introduced at the end of Sec. IV C 2. First we consider a replay buffer and use separate target networks with slow updating so that the learning
of the Q-value function is stabilised. We consider two critic networks to avoid overestimation of the value function. The replay buffer helps to
reduce the amount of data that needs to be generated for each gradient estimation step. It uses caching of trajectories and random sampling
of these cached trajectories for gradient estimation. The method is therefore considered an offline algorithm since it does not use the current
control to estimate the gradient of the actor and critic networks. We summarise this method in Algorithm 3.

We consider a replay buffer that can allocate a maximum of 106 trajectory transitions and we let the training start after 103 time steps.
Before the training phase starts the actions are chosen completely randomly and later they follow the actor policy with some exploration noise.
For the non-metastable case, the standard deviation of the exploration is chosen to be σexpl = 1.0 and the domain of the action space is set
to DA = [alow, ahigh] = [−5, 5]. For the metastable case we choose σexpl = 2.0 and DA = [−10, 10]. The clipping function is formally defined
as clip(⋅, c, d) ∶= max(min(⋅, d), c). The maximum number of time steps per trajectory is set to 103. We consider a batch size of K = 103 and

ALGORITHM 3. Model-free deterministic Policy Gradient (TD3).

1: Initialize actor network μθ and critic networks Qω1 and Qω2 .
2: Initialize corresponding target networks: θ′ ← θ, ω′1 ← ω1, ω′2 ← ω2 and choose ρp ∈ (0, 1).
3: Initialize replay buffer R.
4: Choose a batch size K, a gradient based optimization algorithm and a corresponding learning

rate λactor, λcritic > 0 for both optimization procedures, a time step size Δt and a stopping criterion.
5: Choose standard deviation exploration noise σexpl and lower and upper action bounds alow, ahigh.
6: repeat
7: Select clipped action and step the environment dynamics forward.

a = clip(μθ(s) + ϵ, alow, ahigh), ϵ ∼ N (0, σexpl).

8: Observe next state s′, reward r, and done signal d and store the tuple (s, a, r, s′, d) in the replay buffer.
9: if s′ is terminal then
10: Reset trajectory.
11: end if
12: for j in range (update frequency) do
13: Sample batch B = {(s(k), a(k), r(k), s′(k), d(k))}K

k=1 from replay buffer.
14: Compute targets (Clipped Double Q-learning and policy smoothing).

y(r, s′, d) = r + (1 − d)min
i=1,2
{Qω′ i(s

′, ã)}, ã = clip(μθ′(s) + ϵ, alow, ahigh), ϵ ∼ N (0, σtarget).

15: Estimate critic gradient∇ωL(Qμθ
ω) by

∇ωi(1
K

K
∑
k=1
(Qωi(s(k), a(k)) − y(r(k), s′(k), d(k)))

2
), for i = 1, 2.

16: Update the critic parameters ωi based on the optimization algorithm.
17: if j mod policydelayfrequency = 0 then
18: Estimate actor gradient∇θJ(μθ) by

∇θ(1
K

K
∑
k=1

Qω1(s(k), μθ(s(k)))).

19: Update the actor parameters θ based on the optimization algorithm.
20: Update target networks softly:

θ′ ← ρpθ′ + (1 − ρp)θ, ω′i ← ρpω′i + (1 − ρp)ωi, for i = 1, 2.

21: end if
22: end for
23: until stopping criterion is fulfilled.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-15

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

FIG. 4. Left panel: estimation of L2(μθ) as a function of the trajectories for the non-metastable setting β = 1. Right panel: approximated policy by the actor model after
different trajectories.

use the Adam gradient based optimization algorithm with a learning rate of λactor = λcritic = 10−4 for both the actor and critic optimization
procedures. The training takes place every ten time steps. During each training phase, the actor performs one gradient update for every
two gradient updates performed by the critic, i.e. the critic performs ten gradient updates and the actor just 5. The standard deviation of
the target noise is chosen to be σtarget = 0.2 and the Polyak averaging factor is chosen to be ρp = 0.995. The actor model is tested every 100
trajectories.

Figures 4 and 5 show the evolution of the L2 error as a function of the sampled trajectories and the policy approximation at the
end of different trajectories for the two chosen settings. The L2 error is compared with the model-based approach with one trajectory
(K = 1).

For the non-metastable settings we can see that the policy approximation agrees well with the reference policy. We observe that the
learning is quite fast. After around 2000 the L2 error is already smaller than 10−1, but after this point the error does not decrease any further.
Moreover, we observe that the model-free method learns faster than the model-based method in terms of generated data i.e., trajectories
sampled. For the more metastable scenario we can see a similar pattern. Despite the metastability of the system the method learns quite fast
and even manages to achieve a lower L2 error than the model-based approach. However, it seems that the metastability does affect the stability
of the method. Unfortunately this unstable behavior is observed for other choices of the hyperparameters of the algorithm, where the L2 error
can even blow up.

Finally in Fig. 6 we compare the L2 error as a function of the computation time for the two considered methods. We see that the TD3
method learns a decent control much faster than the model-based approach, especially in the metastable setting. However, we observe that at
a certain point the L2-error stops decreasing. In contrast to that, for the model-based method learning is much slower but there is a steady
decrease in the L2-error.

FIG. 5. Left panel: estimation of L2(μθ) as a function of the trajectories for the metastable setting β = 4. Right panel: approximated policy by the actor model after different
trajectories.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-16

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

FIG. 6. Estimation of L2(μθ) as a function of the computation time for the two considered methods. Left panel: non-metastable setting β = 1. Right panel: metastable setting
β = 4.

C. Discussion
Let us now compare the two different methods used above. First we focus on the ingredients needed for each application. The model-

based deterministic approach requires the model to be known. Without knowing the transition probability density this approach is not
possible. For our importance sampling application with damped Langevin dynamics the transition probability density can be approx-
imated after time discretization. However, we may be interested in general diffusion processes where this information is not given or
cannot be trusted. Alternatively the model could be learned which is indeed a current area of research in model-based RL. On the other
hand, the model-free alternative only requires knowledge of the reward function which is always the case for the importance sampling
problem.

However, this model-free approach has its implications. The method relies on a good approximation of the Q-value function especially
along the action axis because this determines the direction of the gradient that the actor will follow. Figure 7 shows the approximated Q-
value and the advantage function in the space-action discretized grid for both settings. Note that the shape of the Q-value function has the
following property: the difference between the Q-values for a given action along the state axis is orders of magnitude larger than the difference
between the Q-values for a given state along the action axis. This difference may be the cause of the observed instabilities in the model-free

FIG. 7. Critic models after the last trajectory for both settings. Left panels: approximated Q-value function Qω. Right panels: approximated optimal advantage function after
action space discretization Ah

ω(s, a) = Qω(s, a) − max
a ∈Ah

Qω(s, a) and resulting greedy policy (gray dashed).

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-17

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

TD3 method. This problem is not specific to our importance sampling application and has been addressed in the field of advantage learning;
see, e.g., Ref. 50. Advantage learning is an alternative approach to Q-learning where the advantage function is learned instead of the Q-value
function. For future work it may therefore be interesting to exploit dueling network architecture approaches51 where two separate estimators
are maintained: one for the value function and one for the advantage function.

Regarding the performance of both approaches we have seen that the model-based method gets nearer to the optimal solution in the
non-metastable settings. For high metastable dynamics this approach suffers from long running times and a high variance of the gradient
estimator.44 In our experimental analysis we observed a significant advantage of the TD3 algorithm over the deterministic reinforce algorithm
in terms of learning a reasonable control faster. Our experiments suggest several reasons for this superiority. The TD3 algorithm performs a
notably higher number of gradient steps per episode compared to the deterministic reinforce algorithm which relies on complete trajectory
sampling before each gradient update, making bootstrapping impractical. This difference in gradient steps necessitates the deterministic
gradient method to allocate considerably more memory for each update due to the extended length of trajectories. To ensure a fair comparison
we conducted experiments for the case K = 1, allowing more gradient steps per data generated. The faster convergence observed in this scenario
suggests that TD3 particularly benefits from the increased number of gradient steps especially in handling metastable problems. Another
critical aspect contributing to TD3’s effectiveness is its reliance on accurate Q-value function approximation. When the Q-value function is
well-approximated TD3’s gradient updates effectively guide the algorithm toward the optimal policy without requiring complete trajectory
sampling, unlike the deterministic gradient estimator which lacks this correction term. Furthermore, this advantage enables TD3 to pursue
off-policy learning enhancing its overall efficiency and adaptability. Moreover, TD3’s third advantage lies in its integration of exploration
mechanisms a feature absent in traditional gradient-based methods. By actively exploring the environment, TD3 efficiently uncovers novel
and potentially rewarding state-action trajectories resulting in more informed policy discovery.

VI. SUMMARY AND CONCLUSION
In this article we have shown that the stochastic optimization approach to importance sampling can be interpreted as a reinforcement

learning problem. After presenting the importance sampling problem and a brief introduction to reinforcement learning we have shown
how to formulate a MDP for the corresponding stochastic control problem. The MDP is the basic framework for reinforcement learning.
By constructing the MDP we have established a first link. We then compared the optimization approaches given for both problems. The
comparison has shown that the two optimization approaches are similar and that the optimization in the SOC case is a special case of the
reinforcement learning formulation. In the SOC case the forward model of the controlled dynamical system is explicitly given while the
reinforcement learning formulation is more general. A third connection has been shown by a detailed discussion of the algorithms developed
for the SOC case. Here we have shown that a gradient-based method already proposed in the stochastic optimal control literature can be
interpreted as the deterministic policy version of the well-known REINFORCE algorithm which turns out to be model-based. All in all, we have
made three connections. We have introduced ideas from reinforcement learning that can be applied to problems seeking optimal deterministic
policies namely DPG and its most popular variants DDPG and TD3. These algorithms are model-free policy gradient methods. They can be
applied to the importance sampling SOC problem. We have presented the application of both algorithms used in a small dimensional setting
and discussed their possible advantages and disadvantages. By applying TD3 to the SOC problem we have clearly shown that the importance
sampling SOC problem can be interpreted as a reinforcement learning problem.

The main advantage of this is that ideas from reinforcement learning can now be applied to the stochastic optimal control approach to
solving the importance sampling problem. For example reinforcement learning has already addressed the question of how to deal with the
variance of the gradient estimator. The actor-critic method has been developed to solve this problem and it has been shown that the method
achieves this goal. Especially for problems where the time evolution of the dynamical system is strongly influenced by metastable behavior
this can be very helpful to reduce the sampling effort. Furthermore, the issue of efficient data usage has been discussed in the reinforcement
learning community and various offline methods have been proposed to solve this problem. There are many other interesting ideas that have
been addressed by the reinforcement learning community. Thus, this link can be used to efficiently design good and robust algorithms for
high-dimensional settings of the importance sampling application.

We think that a combination of our model-based gradient estimator with an actor-critic design could be very interesting for the develop-
ment of algorithms with fast convergence. Another research direction for us is the application of importance sampling to high-dimensional
problems such as molecular dynamics. There is already related work exploring these ideas (see, e.g., Ref. 52). However, a stable application to
real molecules is still lacking in the literature and would be a very helpful area of application. Another interesting line of research is the com-
bination of model-free and model-based methods. As we have seen in the experiments with higher metastability learning with TD3 become
unstable at a certain point. One could use TD3 to compute a good starting point so that the metastability is reduced and then switch to
model-based optimization which seems to be much more stable. Similar ideas with pre-initialisation have been proposed in Ref. 44 where the
optimization procedure is combined with an adapted version of the metadynamics algorithm.

ACKNOWLEDGMENTS
The authors would like to thank the HPC Service of ZEDAT, Freie Universität Berlin, for computing time.53 The research of J.Q. has been

funded by the Einstein Foundation Berlin. The research of E.R.B. has been funded by Deutsche Forschungsgemeinschaft (DFG) through grant
CRC 1114 “Scaling Cascades in Complex Systems,” Project No. 235221301, Project A05 “Probing scales in equilibrated systems by optimal

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-18

© Author(s) 2024

https://pubs.aip.org/aip/jmp

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

nonequilibrium forcing.” Furthermore, we would like to thank the anonymous reviewer for his suggestions and improvements of the article
and W. Quer for his linguistic improvements.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

J. Quer: Conceptualization (lead); Investigation (equal); Methodology (lead); Software (equal); Visualization (equal); Writing – original
draft (lead); Writing – review & editing (equal). Enric Ribera Borrell: Conceptualization (supporting); Investigation (equal); Methodology
(supporting); Software (equal); Visualization (equal); Writing – original draft (supporting); Writing – review & editing (equal).

DATA AVAILABILITY

The code used for the numerical examples is available on GitHub at www.github.com/riberaborrell/rl-sde-is.

REFERENCES
1E. Fournié, J.-M. Lasry, J. Lebuchoux, P. L. Lions, and N. Touzi, “Applications of Malliavin calculus to Monte Carlo methods in finance,” Finance Stochastics 3, 391–412
(1999).
2J. Quer, L. Donati, B. G. Keller, and M. Weber, “An automatic adaptive importance sampling algorithm for molecular dynamics in reaction coordinates,” SIAM J. Sci.
Comput. 40, A653–A670 (2018).
3N. Berglund, “Kramers’ law: Validity, derivations and generalisations,” Markov Process. Relat. Fields 19, 459–490 (2013).
4F. Cérou, A. Guyader, and M. Rousset, “Adaptive multilevel splitting: Historical perspective and recent results,” Chaos 29, 043108 (2019).
5T. Leliévre, M. Rousset, and G. Stoltz, Free Energy Computations (Imperical College Press, 2010); https://www.worldscientific.com/doi/pdf/10.1142/p579.
6T. Lelièvre and G. Stoltz, “Partial differential equations and stochastic methods in molecular dynamics,” Acta Numer. 25, 681–880 (2016).
7O. Valsson and M. Parrinello, “Variational approach to enhanced sampling and free energy calculations,” Phys. Rev. Lett. 113, 090601 (2014).
8W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Applications of Mathematics (U.S. Government Printing Office, 1993).
9C. Hartmann and C. Schütte, “Efficient rare event simulation by optimal nonequilibrium forcing,” J. Stat. Mech. 2012, P11004.
10E. Weinan, J. Han, and A. Jentzen, “Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic
differential equations,” Commun. Math. Stat. 5, 349–380 (2017).
11N. Nüsken and L. Richter, “Solving high-dimensional Hamilton–Jacobi–Bellman PDEs using neural networks: Perspectives from the theory of controlled diffusions
and measures on path space,” Partial Differ. Equ. Appl. 2, 48 (2021).
12E. Weinan, J. Han, and A. Jentzen, “Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine learning,” Nonlinearity 35, 278 (2021).
13M. Zhou, J. Han, and J. Lu, “Actor-critic method for high dimensional static Hamilton–Jacobi–Bellman partial differential equations based on neural networks,” SIAM
J. Sci. Comput. 43, A4043–A4066 (2021).
14J. Han, M. Nica, and A. R. Stinchcombe, “A derivative-free method for solving elliptic partial differential equations with deep neural networks,” J. Comput. Phys. 419,
109672 (2020).
15C. Martin, H. Zhang, J. Costacurta, M. Nica, and A. Stinchcombe, “Solving elliptic equations with Brownian motion: Bias reduction and temporal difference learning,”
Methodol. Comput. Appl. Probab. 24, 1603–1626 (2022).
16K. Fackeldey, M. Oster, L. Sallandt, and R. Schneider, “Approximative policy iteration for exit time feedback control problems driven by stochastic differential equations
using tensor train format,” Multiscale Model. Simul. 20, 379–403 (2022).
17D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J.
Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree
search,” Nature 529, 484–489 (2016).
18D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “Mastering
chess and shogi by self-play with a general reinforcement learning algorithm,” arXiv:1712.01815 (2017).
19W. B. Powell, “From reinforcement learning to optimal control: A unified framework for sequential decisions,” in Handbook of Reinforcement Learning and Control
(Springer International Publishing, Cham, 2021), pp. 29–74.
20H. Wang, T. Zariphopoulou, and X. Zhou, “Reinforcement learning in continuous time and space: A stochastic control approach,” J. Mach. Learn. Res. 21, 1–34 (2020).
21R. S. Sutton and A. G. Barto, in Reinforcement Learning: An Introduction, 2nd ed. (The MIT Press, 2018).
22D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,“Deterministic policy gradient algorithms,” PMLR 32, 387–395 (2014), https://proceedings.
mlr.press/v32/silver14.html.
23C. Hartmann, L. Richter, C. Schütte, and W. Zhang, “Variational characterization of free energy: Theory and algorithms,” Entropy 19, 626 (2017).
24C. Hartmann, C. Schütte, and W. Zhang, “Model reduction algorithms for optimal control and importance sampling of diffusions,” Nonlinearity 29, 2298–2326 (2016).
25E. Vanden-Eijnden and J. Weare, “Rare event simulation of small noise diffusions,” Commun. Pure Appl. Math. 65, 1770–1803 (2012).
26C. Hartmann and L. Richter, “Nonasymptotic bounds for suboptimal importance sampling,” SIAM/ASA J. Uncertain. Quantification 12, 309–346 (2024).
27C. Hartmann, R. Banisch, M. Sarich, T. Badowski, and C. Schütte, “Characterization of rare events in molecular dynamics,” Entropy 16, 350–376 (2013).
28H. Van Hasselt, “Reinforcement learning in continuous state and action spaces,” in Reinforcement Learning: State-Of-The-Art (Springer, 2012), pp. 207–251.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-19

© Author(s) 2024

https://pubs.aip.org/aip/jmp
http://www.github.com/riberaborrell/rl-sde-is
https://doi.org/10.1007/s007800050068
https://doi.org/10.1137/17m1124772
https://doi.org/10.1137/17m1124772
https://doi.org/10.1063/1.5082247
https://www.worldscientific.com/doi/pdf/10.1142/p579
https://doi.org/10.1017/s0962492916000039
https://doi.org/10.1103/physrevlett.113.090601
https://doi.org/10.1088/1742-5468/2012/11/p11004
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/s42985-021-00102-x
https://doi.org/10.1088/1361-6544/ac337f
https://doi.org/10.1137/21m1402303
https://doi.org/10.1137/21m1402303
https://doi.org/10.1016/j.jcp.2020.109672
https://doi.org/10.1007/s11009-021-09871-9
https://doi.org/10.1137/20M1372500
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature16961
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.mlr.press/v32/silver14.html
https://doi.org/10.3390/e19110626
https://doi.org/10.1088/0951-7715/29/8/2298
https://doi.org/10.1002/cpa.21428
https://doi.org/10.1137/21M1427760
https://doi.org/10.3390/e16010350
https://doi.org/10.1007/978-3-642-27645-3_7

Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

29M. L. Puterman, in Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed. (John Wiley and Sons, Inc., USA, 1994).
30B. Recht, “A tour of reinforcement learning: The view from continuous control,” Annu. Rev. Control, Robot., Autonom. Syst. 2, 253–279 (2019).
31R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning with function approximation,” in Advances in Neural
Information Processing Systems, edited by S. Solla, T. Leen, and K. Müller (MIT Press, 1999), Vol. 12.
32Y. Li, “Deep reinforcement learning,” arXiv:1810.06339 (2018).
33C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn. 8, 279–292 (1992).
34V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv:1312.5602
(2013).
35H. van Hasselt, “Double q-learning,” in Advances in Neural Information Processing Systems, edited by J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta
(Curran Associates, Inc., 2010), Vol. 23.
36H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-learning,” in Proceedings of the 30th AAAI Conference on Artificial Intelligence,
AAAI’16 (AAAI Press, 2016), pp. 2094–2100.
37Y. Jia and X. Zhou, “Q-learning in continuous time,” J. Mach. Learn. Res. 24, 1–61 (2023), https://jmlr.org/papers/v24/22-0755.html.
38R. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Mach. Learn. 8, 229–256 (1992).
39J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region policy optimization,” PMLR 37, 1889–1897 (2015), https://proceedings.mlr.press/v37/
schulman15.html.
40J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage estimation,” arXiv:1506.02438 [cs.LG]
(2018).
41J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv:1707.06347 (2017).
42L. Weng (2018). “A (long) peek into reinforcement learning,” https://lilianweng.github.io/posts/2018-02-19-rl-overview/.
43D. J. Higham, “An algorithmic introduction to numerical simulation of stochastic differential equations,” SIAM Rev. 43, 525–546 (2001).
44E. Ribera Borrell, J. Quer, L. Richter, and C. Schütte, “Improving control based importance sampling strategies for metastable diffusions via adapted metadynamics,”
SIAM J. Sci. Comput. 46, S298–S323 (2024).
45J. Peters, “Policy gradient methods,” Scholarpedia 5, 3698 (2010), Revision #137199.
46H. C. Lie, “Fréchet derivatives of expected functionals of solutions to stochastic differential equations,” arXiv:2106.09149 (2021).
47T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv:1509.02971
[cs.LG] (2019).
48S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” (2018).
49D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980 (2014).
50L. Baird and A. Moore, “Gradient descent for general reinforcement learning,” in Advances in Neural Information Processing Systems, edited by M. Kearns, S. Solla, and
D. Cohn (MIT Press, 1998), Vol. 11.
51Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling network architectures for deep reinforcement learning,” PMLR 48, 1995–2003
(2016), https://proceedings.mlr.press/v48/wangf16.html.
52T. Leliévre, G. Robin, I. Sekkat, G. Stoltz, and G. V. Cardoso, “Generative methods for sampling transition paths in molecular dynamics,” ESAIM: Proc. Surveys 73,
238–256 (2023).
53L. Bennett, B. Melchers, and B. Proppe, “Curta: A general-purpose high-performance computer at ZEDAT,” Freie Universität Berlin, 2020.

J. Math. Phys. 65, 083512 (2024); doi: 10.1063/5.0140665 65, 083512-20

© Author(s) 2024

https://pubs.aip.org/aip/jmp
https://doi.org/10.1146/annurev-control-053018-023825
https://doi.org/10.48550/arXiv.1810.06339
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.48550/arXiv.1312.5602
https://jmlr.org/papers/v24/22-0755.html
https://doi.org/10.1007/BF00992696
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/abs/1506.02438
https://doi.org/10.48550/arXiv.1707.06347
https://lilianweng.github.io/posts/2018-02-19-rl-overview/
https://doi.org/10.1137/s0036144500378302
https://doi.org/10.1137/22M1503464
https://doi.org/10.4249/scholarpedia.3698
https://doi.org/10.48550/arXiv.2106.09149
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v48/wangf16.html
https://doi.org/10.1051/proc/202373238

