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Abstract

Mitochondrial alterations are known to play a key role in the early stages of multiple
sclerosis (MS) and happen as a result of oxidative stress. These alterations are believed
to promote neuronal damage, thereby causing neuronal loss and leading to increasing
disabilities.

Here, | summarize three of our studies that aimed to investigate possible mechanisms
underlying oxidative-stress-induced mitochondrial alterations. In the first study we
investigated the influence of blocking voltage-gated axonal sodium channels and
mitochondrial calcium uniporters on mitochondrial alterations as downstream effects of
oxidative stress. This was investigated using explanted murine spinal roots as an ex vivo
model of the peripheral nervous system. In the second study and using the same model,
we evaluated the effects of teriflunomide, an approved disease-modifying treatment for
MS, on oxidatively caused mitochondrial alterations. In the third study we explored the
effects of teriflunomide on oxidative stress-induced mitochondrial alterations in acute
hippocampal slices, which represent an ex vivo model of the central nervous system.

In summary, we have proved that ion channel inhibitors and teriflunomide are beneficial
in terms of preventing oxidative-stress-induced mitochondrial alterations. Moreover, we
have contributed to the understanding of neurodegenerative pathomechanisms in an
oxidative paradigm, which might help in the future development of anti-neurodegenerative

drugs.

Zusammenfassung

Mitochondriale Veranderungen spielen bereits in friihen Stadien der Multiplen Sklerose
(MS) eine entscheidende Rolle und treten als Folge von oxidativem Stress auf. Diese
Veranderungen fordern neuronale Schaden, verursachen so den Untergang von
Neuronen und fihren zu zunehmenden Behinderungen.

Hier fasse ich drei Studien zusammen, deren Ziel es war, mdgliche Mechanismen zu
untersuchen, die den, durch oxidativen Stress ausgelosten, mitochondrialen

Veranderungen zugrunde liegen. In der ersten Studie haben wir den Einfluss der
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Blockade von spannungsgesteuerten axonalen Natriumkanalen und mitochondrialen
Kalziumuniportern auf mitochondriale Veranderungen als nachgeschaltete Effekte von
oxidativem Stress in Spinalnerven als einem ex vivo Model des peripheren
Nervensystems untersucht. In der zweiten Studie haben wir die Auswirkungen von
Teriflunomid, einem zugelassenen, krankheitsmodifizierenden Medikament zur
Behandlung der Multiple Sklerose, auf oxidativ verursachte mitochondriale
Veranderungen im selben Modell untersucht. In der dritten Studie haben wir die
Auswirkungen von Teriflunomid auf die durch oxidativen Stress hervorgerufenen
mitochondrialen Veréanderungen in akuten Hippocampusschnitten als einem ex vivo
Model des zentralen Nervensystems untersucht.
Zusammenfassend haben wir nachgewiesen, dass lonenkanalinhibitoren und
Teriflunomid die durch oxidativen Stress induzierten, mitochondrialen Verdnderungen
verhindern kénnen. DarUber hinaus haben wir das Wissen Uber neurodegenerative
Pathomechanismen in einem oxidativen Paradigma erweitert. Dies kann dazu beitragen,

in Zukunft anti-neurodegenerative Medikamente zu entwickeln.
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1 Introduction

1.1  Multiple Sclerosis: epidemiology and current treatment options

Multiple sclerosis (MS) is an autoimmune driven demyelinating and neurodegenerative
disease of the central nervous system (CNS) that affects approximately 2.8 million people
worldwide [1, 2] and about 200,000 people in Germany [3]. Usually, the onset of MS takes
place between 20 and 50 years of age; the women-to-men ratio is about 2-3:1 [4]. It is
the most prevalent cause of neurological disability in young adults [1].

Common initial clinical symptoms are paresthesia, numbness, and optic neuritis [1].
Further symptoms include weakness, bladder and bowel dysfunction, and cognitive
impairment [3, 5]. According to the 2017 McDonald criteria, demonstration of lesion
dissemination in time and space is essential for the diagnosis of MS [6]. 85% of the
patients are diagnhosed with relapsing-remitting MS (RRMS) and suffer from acute attacks
that result in cerebral or spinal damage and are followed by a period of partial or total
remission with few or no symptoms [7-9]. Around 10% of affected people suffer from
primary progressive MS (PPMS) [7, 8]. This disease course manifests with increasing
neurological impairment from the beginning of the disease [7]. About two thirds of RRMS
patients develop a secondary progressive MS form (SPMS) over time [10, 11], which is
characterized by the worsening of the clinical symptoms and irreversible neurological
disabilities [12].

During MS relapses, corticosteroids are prescribed to reduce the severity and duration of
acute inflammation [13, 14]. An alternative additional treatment is plasmapheresis [13].
Several disease-modifying treatments (DMTs) have been approved over the last years to
alter the long-term outcome of MS, the first DMTs were interferons and glatiramer acetate
e. Nowadays, according to the guidelines of the German Society of Neurology, multiple
substances are approved for treating MS, including dimethyl fumarate and teriflunomide,
sphingosine-1-receptor modulators and immune cell depleting antibodies [15]. Most of
these DMTs are prescribed during RRMS, aiming to reduce new relapses and to lengthen
the time for the development of SPMS [14]. For PPMS, only Ocrelizumab, a humanized
monoclonal antibody targeting CD20-positive cells, has been approved [16]. SPMS can
be directly targeted with a few specific DMTs, namely with Siponimod (first-line therapy)
and Mitoxantrone [14, 17].
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1.2 Neurodegeneration in MS: a story driven by mitochondria?

MS is driven by an incompletely understood, pathological autoimmune response leading
to inflammation, demyelination, and subsequent neurodegeneration in CNS [10, 18].
Genetic, environmental, and infectious factors have been suggested to contribute to MS
pathogenesis [10]. CNS invasion by peripheral immune cells largely promotes RRMS;
other pathophysiological mechanisms, especially inflammation-induced
neurodegeneration, are believed be present in early stages of the disease, but to
dominate in progressive phases of the disease [1, 9, 19]. Thus, targeting axonal damage
and the underlying neurodegenerative pathomechanisms represents a promising strategy
for future treatments.

Neuroimmune alterations and neuroinflammation are not only hallmarks in PPMS and
SPMS but also in other neurodegenerative diseases, e.g., Alzheimer’'s disease or
Parkinson’s disease [20, 21]. Understanding common pathophysiological processes
might therefore offer translational treatment options for different neurodegenerative
diseases. Throughout the last years, mitochondrial dysfunction has emerged as one
possible key player in MS that contributes to axonal loss [21-25]. Mitochondrial changes
happen in the early stages of the disease in neurons within an intact myelin sheath [26].
Mitochondria generate most of the cellular adenosine triphosphate (ATP) via oxidative
phosphorylation and control N-adenine dinucleotide (NADH) and flavin adenine
dinucleotide (FADH) production [27]. To function properly, cells depend on this “energy
currency”; especially neuronal cells with their high energy demand to match repetitive
action potential generation [28, 29]. Moreover, mitochondria are involved in cellular
calcium (Ca?") homeostasis [30], as well as in the generation of reactive oxygen species
(ROS) [31].

During a relapse of MS, activated microglia as well as CNS-invading immune cells
produce inflammatory mediators such as ROS and reactive nitrogen species [32-34].
ROS can trigger mitochondrial alterations, which are considered one of the earliest signs
of focal axonal degeneration [27, 35]. Impaired mitochondrial function itself leads to
increased chances of electron slippage during oxidative phosphorylation and thereby to
increased levels of mitochondrial ROS [36-38]. This causes a vicious cycle of ROS-

induced ROS production leading to an oxidative stress situation.
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1.3 Role ofion channels on mitochondrial alterations upon oxidative stress

Impaired mitochondria fail to provide enough ATP to properly maintain the activity of the
sodium-potassium-ATPase (Na'/K*-ATPase) and thereby restore initial ion
concentrations following action potentials [39-41]. The impaired function of Na'/K*-
ATPase may lead to Na* accumulation in axons because Na* influx through axonal
voltage-gated sodium channels (NaV) is preserved [39] (Figure 1).

The rise in intraaxonal Na* can reverse the action mode of the axonal sodium-calcium-
exchanger (NCX) [39]. Usually, NCX shifts Na* into cells and Ca?" out, but under
increased intraaxonal Na* concentration it can work in the opposite direction to

compensate for axonal Na* accumulation. As a result, the concentration of intraaxonal

Ca?* rises [39]. This whole process is schematically demonstrated in Figure 1.

activated activated
microglia T cell Na* Na*

Na*/K (el ) NeX

a'/K*-
\ ROS ATPase NaV i“ ( (:;‘Z:)e /
& (M
&
; P
Y 4 i X
& Na 4 Ca?1
J-p ATPL L ) % ~a

= N

Figure 1: Schematic overview of ion alterations in axons under oxidative stress in spinal
roots

ROS produced by activated immune cells cause ATP depletion and resulting dysfunction of
Na+/K+-ATPase. Na+ influx into axons continues via NaV during action potentials. This leads to
a rise in intraaxonal Na+ concentration. Subsequently, NCX starts working in the reverse mode,
shifting Na* out of the axon and Ca?" into the axon. A rise in intraaxonal Ca?* leads to the

accumulation of Ca?*in mitochondria; own figure
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Mitochondria serve as a buffering system for Ca?* rises [30] and several mitochondrial
enzymes are regulated by changes in Ca?* concentration within the mitochondrial matrix
[42]. Hence, arise in Ca?" concentration within mitochondria can lead to the activation of
oxidative phosphorylation and thereby ATP production [42, 43]. Most Ca?* diffuses into
mitochondria via the mitochondrial calcium uniporter (MCU) [44]. Ca?" can be released
from mitochondria via the mitochondrial sodium-calcium-exchanger (mMNCX),
mitochondrial proton-calcium-exchanger (mHCX) and the mitochondrial permeability
transition pore (MPTP) [45]. Amongst Ca?* accumulation, ROS lead to the opening of the
mPTP and can cause apoptosis or necrosis [46]. Variations of Na* and Ca?* concentration
within the axon and axonal mitochondria might thereby affect the dynamics of
neurodegeneration during oxidative stress. Hence, modulation of these systems emerges
as a plausible target to hinder neurodegenerative processes.

Our research has developed an ex vivo model of murine ventral spinal roots to investigate
oxidative-stress-induced mitochondrial alterations, namely increased mitochondrial
circularity, a decrease in mitochondrial area and length, as well as a decrease in the
percentage of moving mitochondria, mitochondrial track length, and track velocity [47,
48]. These alterations begin at the nodes of Ranvier [47], where ion channels, especially
NaV, are abundantly present [49]. Therefore, we aimed to investigate the effect of
oxidative stress on mitochondria upon inhibition of the most frequent subtypes of NaV
with tetrodotoxin (TTX) and MCU with Ruthenium 360 (Ru360) [50].

1.4 Implications of dihydroorotate dehydrogenase on oxidative-stress-induced

mitochondrial alterations

Dihydroorotate dehydrogenase (DHODH) is an essential mitochondrial enzyme in de
novo pyrimidine synthesis and its inhibition reduces the proliferation of activated T and B
cells and thereby inflammation [51]. The compound teriflunomide (TFN; Aubagio;
Genzyme, Cambridge, MA, USA) is an approved, once-daily administered, oral treatment
for RRMS [52]. It is the active metabolite of Leflunomide [53] and inhibits selectively and
reversibly the mitochondrial enzyme DHODH [53, 54]. However, it is not known whether
and how TFN affects mitochondria itself.

Therefore, we aimed to investigate whether observed neuroprotective effects of TFN also

involve mitochondrial protection. We investigated the effects of TFN on oxidatively
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stressed mitochondria in both CNS and peripheral nervous system (PNS) using murine

acute hippocampal slices (60) and spinal root explants, respectively [55].

1.5 Importance and aims of the MD PhD thesis

Oxidative stress and mitochondrial alterations are known to play a role in MS and are a
suspected link between neuroinflammatory and neurodegenerative parts of the disease
[35]. At present, the number of therapeutic approaches for the prevention and treatment
of neurodegenerative parts of MS is very limited. Therefore, specific pathomechanisms
causing neuronal death need to be identified to develop new therapeutic strategies. My
work aimed to investigate molecular pathways underlying oxidative stress-induced
mitochondrial alterations in ex vivo models of both a peripheral and central nervous
system.

My dissertation encompasses three pre-clinical studies. While Study 1 represents my
primary research project, Study 2 and Study 3 are complementary projects conducted by
Dr. Bimala Malla in the context of her doctoral thesis, to which | have contributed as co-
author.

1. In Study 1, we examined how axonal Na* and mitochondrial Ca?* channels are
involved in oxidative-stress-induced mitochondrial alterations in the ex vivo model
of murine spinal roots. Besides mitochondrial morphology and motility parameters,
we also studied mitochondrial membrane potential.

2. In Study 2, we tested the effects of TFN on mitochondrial parameters (morphology
and moaotility) in the ex vivo model of murine spinal roots in an oxidative stress
environment.

3. Study 3 evaluated the effects of TFN on neuronal mitochondria undergoing
oxidative stress in acute hippocampal brain slices. Besides mitochondrial
morphology and motility, we also investigated oxygen partial pressure, local field

potential, and neuronal ATP content.

Our research has provided a better insight into molecular mechanisms underlying
mitochondrial alterations upon oxidative stress as well as their implication in drug effects.
It also has contributed to fundamental knowledge about the involvement of changes in
ion concentration, namely Na* and Ca?", in mitochondrial alterations due to oxidative
stress. These findings might lead to the development of new treatments for progressive
MS.
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Mitochondrial dysfunction is also known to take place in other neurodegenerative
diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and
Amyotrophic Lateral Sclerosis [31]. Thus, results from our research may be applied in
other fields of neurodegenerative research.

In conclusion, we have shown that mitochondrial impairment due to oxidative stress and
alterations in ion fluxes occurs in myelinated neurons. Accordingly, axonal damage may
initiate during the early stages of MS. Our research may help to develop drugs targeting
early pathological mechanisms in neurodegenerative disease and slowing down disease

progression substantially.
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2 Methods

This chapter describes schematically the methods that were applied by myself in this
MD/PhD thesis. Detailed descriptions of all the methods are included in the Material &

Methods sections of the studies included in this thesis.

2.1 Animals

The studies were performed in strict accordance with the Directive 2010/63/EU of the
European Communities Council and of the European Parliament of 22 September 2010.
All experimental procedures were approved by the local authority on animal experiments
in Berlin (Landesamt fur Gesundheit und Soziales Berlin). The mice were housed and
maintained in a temperature-controlled environment on a 12 h light-dark cycle.

For the investigation of ion channel implication in oxidatively induced mitochondrial
alterations in ventral spinal roots, we used C57BL/6 mice of both sexes that were 8 to 10
weeks old. We used relatively young mice to rule out age-related alterations of
mitochondrial function.

For the investigation of TFN effects on mitochondria in ventral spinal roots, we used
C57BL/6 mice at least 3 weeks old.

For Study 3, using acute hippocampal slices, we used 10 days old, transgenic Tg(Thy1-
CFP/COX8A)S2Lich/J mice (mitoCFP mice) that express cyan fluorescence protein

(CFP) in neuronal mitochondria.

2.2  Spinal root extraction

For Study 1 and Study 2, we explanted murine ventral spinal roots as described by
Bros et al. as a model of the PNS [48]. Briefly, we anesthetized the mice deeply with
isoflurane before performing cervical dislocation. After exposing the spinal cord, we
explanted it together with the adherent ventral spinal roots and kept it in freshly mixed
artificial cerebrospinal fluid (aCSF) saturated with carbogen (95% oxygen (O2), 5%
carbon dioxide (COz2)) and adjusted to a pH-level of 7.3-7.4.

Finally, we separated lumbar ventral spinal roots from the spinal cord and placed them in
constantly carbogenated aCSF in a submerged incubation chamber
(Brain Slice Keeper-BSK6-6, Scientific Systems Design Inc., Ontario Canada), facilitating

division into different experimental groups.
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We first incubated the spinal roots with 300 nM MitoTracker® Orange CM-H2 CTMRos
(Life Technologies, Darmstadt, Germany) for 30 min. MitoTracker® Orange is a
fluorescent dye to label mitochondria selectively, that is only entering a fluorescent state
when diffusing into an actively respiring cell [56]. Moreover, the oxidation status of a cell
can be measured with the reduced form of this dye [56, 57]. After the incubation time, the
roots were washed with aCSF to minimize background fluorescence. Then, ventral spinal

roots were randomly assigned to the experimental groups.

2.3 Acute hippocampal slices

Acute hippocampal slices were used as a model of CNS, following a modified protocol
from Nitsch et al. [58]. Briefly, mice were decapitated, brains were removed and were cut
to 400 pym thick brain slices using a vibratome. Brain slices were kept in freshly prepared,
pH-adjusted, continuously carbogenated 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic
acid (HEPES) -aCSF. The whole procedure was performed in temperatures between 34

and 37 °C. Slices were randomly assigned to the experimental groups.

2.4  Solutions and treatments

In all studies, one chamber of the Brain Slice Keeper, that we used to administer different
treatments, was accorded to one experimental group.

To induce oxidative stress, we used hydrogen peroxide (H20:2) that was purchased at a
30% concentration (w/w in water (H20)) and contained a stabilizer. Roots were incubated
for 30 min with H202in a concentration of 100 pM for Study 1, 50 uM for Study 2, and 100
or 200 puM, depending on the experiment, for Study 3. In all studies, we applied H202
together with the solvent of the evaluated drugs to eliminate confounding effects of the
solvent itself.

In Study 1, TTX was dissolved in aCSF. aCSF served as a negative control in TTX
experiments. For Ru360, dimethyl sulfoxide (DMSO) was the vehicle and
correspondingly, we used DMSO as a negative control for Ru360 experiments. We
applied TTX in concentrations of 1 nM and 1 uM and Ru360 in concentrations of 5, 10,
and 20 uM. After the treatment, spinal roots or acute brain slices were again washed with
fresh aCSF.



Methods 11

In Study 2, we applied TFN at concentrations of 1 uM, 5 uM and 50 uM along with H20:2
for 30 min. Since TFN was dissolved in DMSO, DMSO served as a negative control in
Study 2.

In Study 3, we treated acute brain slices with 50 uM TFN+H202 and 50 uM TFN alone.
DMSO again served as a negative control. We chose the higher concentration of TFN

due to the higher thickness of acute hippocampal slices compared to spinal roots.

2.5 Laser scanning confocal and two-photon microscopy

For Study 1 and Study 2, spinal roots were immobilized with a custom-built nylon net on
a glass cover slip to minimize the impact of xy shift on our motility analysis. We then put
the cover slip in an imaging chamber containing carbogenated aCSF.

For our studies, we used inverted laser scanning confocal microscopes. TTX experiments
in Study 1 and all experiments in Study 2 were performed using an LSM7 10 microscope
(Carl Zeiss, Jena, Germany). Ru360 experiments in Study 1 were performed using a
Nikon Scanning Confocal A1Rsi+ (Minato, Japan).

In spinal root experiments (Study 1 and Study 2), MitoTracker® Orange was excited at
561 nm with a diode-pumped solid-state (DPSS) laser. Visualization of mitochondria was
performed through a 60x (Nikon Scanning Confocal A1Rsi+) or 100x (LSM 710, Carl
Zeiss) oil immersion objective. After setting a sharp image, we identified three regions of
interest (ROI). ROIs lay in axons with intact myelin sheath in both adjacent directions to
clearly visible nodes of Ranvier. They had to be at least 2 mm away from the end of the
roots. We recorded a time-lapse (60 s duration, 2 s/frame) for each ROI. We minimized
exposure time and laser power to reduce photobleaching and phototoxicity. To reduce
measurement bias, we rotated the imaging order of treatment groups in each experiment.
We used the first frame of every time-lapse video to assess mitochondrial morphology
with a semi-automated analysis tool of the Volocity®6.3 software (Perkin Elmer, Rodgau,
Germany).

For the evaluation of changes in mitochondrial morphology, we analyzed the following
parameters:

1) shape factor (411X [Area/Perimeter?]): This is a measure of circularity ranging from
0 to 1, where 1 signifies a perfectly circular object

2) length (um)

3) area (um?) of an individual mitochondrion
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In Study 1 and Study 2, we tracked mitochondria manually using Volocity®6.3 software
(Perkin Elmer, Rodgau, Germany) to assess motility. We used a manual approach
because a former study of our laboratory has shown that automated tracking tools
underestimate track length and overestimate track velocity [62]. As in our previous
studies, any mitochondrion with a displacement of 21 ym was considered motile [47, 59].
For experiments with Ru360 and TFN, motile mitochondria were further analyzed for the
following parameters:

1) track length (um), the measure of the real distance traveled by a mitochondrion
2) velocity (um/s)

Imaging experiments in Study 3 were performed using a two-photon Laser Scanning
Microscope. Due to the increased imaging depth of this imaging technique, we were able
to investigate not only the superficial but also deeper layers of the acute hippocampal
slices [63].

2.6  Analysis of mitochondrial membrane potential

In Study 1, we also assessed mitochondrial membrane potential (MMP), an indirect
method to assess mitochondrial integrity and their ability to produce ATP. Together with
the proton gradient, MMP forms the transmembrane potential which is the driving force
in ATP production during oxidative phosphorylation [64]. We used JC-1 in the
experiments of Study 1. This dye accumulates preferably in negatively charged
mitochondria, thus with intact MMP [65]. If enough dye accumulates inside mitochondria,
the dye aggregates and those aggregates emit another fluorescence (590 nm, red
spectrum) than the non-aggregated dye (529 nm, green spectrum) [65]. Red-green ratio

normalized to the control group was considered a measure for MMP [66].

2.7 ATP assay

In Study 3, we performed an ATP assay using the Abcam ATP assay kit (Abcam,
ab83355) following the manufacturer’s protocol. Briefly, we homogenized the tissue in
ATP assay buffer sitting on ice. Then, we centrifuged at 4 °C at 13,000xg for 5 min. We
collected the supernatant in a new tube and deproteinized it with perchloric acid. ATP
standard samples in the range of 0-1 nmol as well as the samples were then incubated

with reaction-mix for 30 min.
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We performed a fluorometric detection at 535/587 nm in a plate reader (GloMax®-Multi
Detection System, Promega Corporation, Madison, WI, USA). We subtracted the sample
background in each slice, multiplied with the dilution factor as proposed by the

manufacturer and then calculated the ATP concentration [55].

2.8  Statistical analysis

The data were analyzed using different versions of Prism software (GraphPad, San
Diego, USA; Study 1 and Study 2: Prism 5.01 software, Study 3: Prism 8 Software). First,
all datasets were subjected to the D’Agostino and Pearson omnibus K-squared normality
test and the Shapiro-Wilk test for Gaussian distribution. All data fitting the criteria for
normal distribution were subsequently analyzed using either t-test (comparison of two
groups) or a one-way analysis of variance (ANOVA; comparison of more than two
groups)) with Bonferroni’s post hoc test. Comparisons between two groups of non-
parametric data were performed by the Mann-Whitney U test, comparisons between more
than two groups of non-parametric data were analyzed with the Kruskal-Wallis test for
non-parametric data followed by Dunn’s post hoc multiple comparisons test.

All data of Study 1 are shown in meant standard error of mean [60] [10]. All data of
Study 2 and 3 are given in mean  standard deviation [61]. The data of these studies are
shown as Tukey boxplots. In Tukey boxplots, the central line denotes the median, and
the lower and upper boundaries denote the 1% and 3" quartile. The whiskers denote the
data except the outliers presented as individual dots. Outliers were not included in the
analysis.

p values < 0.05 were considered significant. The significance of the data was further
depicted as = implying p <0.05, =*ximplying p<0.01, x*xximplyingp <0.001, and
sxx% implying p < 0.0001.
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3 Results

This chapter contains key results published in the studies that are included in this thesis.

3.1 Study 1: Preventing Axonal Sodium Overload or Mitochondrial Calcium

Uptake Protects Axonal Mitochondria from Oxidative Stress-Induced Alterations

In consistence with our previous publications [47, 59], incubation with 100 uM H20:2 led
to a decrease in mitochondrial length (Fig. 2c). Interestingly, we observed an increase in
mitochondrial shape factor in TTX experiments upon oxidative stress, while in Ru360
experiments 100 uM H202 did not alter mitochondrial shape factor (Fig. 2b). In TTX
experiments, we observed an increase in mitochondrial area under oxidative stress, while
in Ru360 experiments, we saw a decrease in mitochondrial area (Fig. 2d).

Inhibition of axonal Na™ influx by 100 nM TTX prevented oxidatively induced alterations
in mitochondrial morphology (Fig. 2b-d). 1 uM TTX led to no change in mitochondrial
circularity and even reinforced oxidatively induced decrease in mitochondrial length and

increase in mitochondrial area (Fig. 2b-d).
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Figure 2: Effects of TTX on oxidatively induced mitochondrial motility alterations in spinal
roots

Representative images of TTX experiments, the “i” depicts the node of Ranvier (a), quantification
of morphological alterations, shape factor, mitochondrial length and area in TTX experiments
(b-d), red lines depicting the mean and SEM, =*implyingp <0.05, =*ximplying p<0.01,
x*% implying p < 0.001, and **** implying p < 0.0001; from [50]

By inhibiting mitochondrial Ca?" uptake, we could not prevent oxidatively caused changes
in mitochondrial area (Fig. 3c). Only at the smallest concentration of 5 uM, Ru360
prevented the H202-induced increase in shape factor while 20 uM Ru360 even increased
the mitochondrial circularity (Fig.3a). With 10 uM Ru360, we prevented oxidatively
caused reduction of mitochondrial length, 20 uM Ru360 even pronounced the decrease

in length (Fig. 3b).
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Figure 3: Effects of Ru360 on oxidatively induced mitochondrial morphology alterations in
spinal roots

Quantification of morphological alterations, shape factor, mitochondrial length and area in TTX
experiments (a-c), red lines depicting the mean and SEM; =implying p < 0.05,

++ implying p < 0.01, *+x implying p < 0.001, and **** implying p < 0.0001; modified after [50]

100 pM H20:2 caused a decrease in the percentage of moving mitochondria in both TTX
and Ru360 experiments. In Ru360 experiments, we further analyzed mitochondrial track
length and mitochondrial velocity and observed a decrease under oxidative stress for both
parameters.

With 1 uM TTX, we could prevent oxidatively induced loss of mitochondrial motility, but
the percentage of motile mitochondria was still lower than in untreated spinal roots (data
not shown). With 10 and 20 pM Ru360 we could prevent all oxidatively induced alterations
in mitochondrial motility, while 5 uM Ru360 only prevented H202-induced decrease in
mitochondrial track length (Fig. 4a-c). Importantly, with 10 uM Ru360, we observed

similar motility results as in the negative control group (Fig. 4a-c).
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Figure 4: Effects of Ru360 on oxidatively induced mitochondrial motility alterations in
spinal roots

Quantification of oxidatively induced alterations of percentage of motile mitochondria,
mitochondrial track length and mitochondrial track velocity in Ru360 experiments, red lines
depicting the mean and SEM, * implying p < 0.05, *+ implying p < 0.01, ==** implying p < 0.001,
and =**x implying p < 0.0001; modified after [50]

Under oxidative stress, we discovered a reduction of JC-1 red/green ratio (Fig. 5a, b).
This signifies a reduction of mitochondrial membrane potential as a measure of
mitochondrial functionality. Both 1 yM TTX and 10 uM Ru360 prevented the oxidative

stress-induced loss of mitochondrial membrane potential (Fig. 5a, b).
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Figure 5: Effects of Ru360 on oxidatively induced alterations of mitochondrial membrane
potential in spinal roots

Representative confocal images of mitochondrial membrane quantification with JC-1 in Ru360
experiments (a), green meaning low and red meaning high mitochondrial potential; quantification
of red/green ratio normalized to the negative control (b), red lines depicting the mean and SEM;
* implying p < 0.05, ** implying p < 0.01, *** implying p < 0.001, and ***x implying p < 0.0001,
from [50]

3.2 Study 2: Teriflunomide preserves peripheral nerve mitochondria from

oxidative stress-mediated alterations

Study 2 is also part of Dr. Bimala Malla’s doctoral thesis.

In spinal roots, the concentration of both 1 uM TFN or 50 uM TFN prevented oxidative
stress-induced decrease in mitochondrial length and area (data not shown). However,
5 uM TFEN did not prevent oxidatively induced mitochondrial alterations (data not shown).
Only at a concentration of 1 uM, TFN prevented the oxidatively caused increase of
mitochondrial circularity (data not shown). Application of TEN alone resulted in a decrease
of shape factor and mitochondrial length but did not affect mitochondrial area (data not
shown).

Only 1 uM TFN prevented an oxidatively induced decrease in mitochondrial motility
(Fig. 6). Incubation with TFEN alone caused only a decrease of mitochondrial velocity (data

not shown).
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Figures 6: Effects of TFN on oxidatively induced mitochondrial motility alterations in spinal
roots

Representative images of mitochondrial motility in TFN experiments, each colored track
represents the track one mitochondrion has covered throughout the observed time period of 60 s;
modified after [59]

With H202, we observed an increase in the fluorescence intensity of MitoTracker
Orange® CMTMRos, depicting a high oxidation status. 1 uM TFN, but not 5 uM TFN or
50 uM TFN prevented this increase in ROS (data not shown).

3.3 Study 3: Teriflunomide Preserves Neuronal Activity and Protects

Mitochondria in Brain Slices Exposed to Oxidative Stress

Study 3 is also part of Dr. Bimala Malla’s doctoral thesis.
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Figure 7: Schematic overview of electrophysiology recordings and effects of TFN on
oxidatively induced alterations of electrophysiological parameters in acute hippocampal
slices

(A), representative population spike in a paired-pulse at baseline, with H,O, and H,O, + TFN
treatment (B); fold change compared to the baseline in the pO; at tissue depth in the interval of
20 pum (C); fold change compared to the baseline in pO; at the core (D); the paired-pulse ratio
(PPR) compared to the respective baseline recording of PS2 and PS1(E). Graphs are shown in
Tukey boxplots. Inside the box, ‘+' marks the mean, the box covers the 25" to the 75" quartile,
the whiskers show the minimum and the maximum of the data; *implying p < 0.05,

*+ implying p < 0.01, *+x implying p < 0.001, and **** implying p < 0.0001; from [62]

In Study 3, incubation with H202 led to a decrease in neuronal oxygen consumption in
acute hippocampal slices (Fig. 7C). Moreover, oxidative stress resulted in a depression
of synaptic transmission (Fig. 7E). 50 uM TFN prevented oxidative stress-induced
reduction of oxygen consumption as an indirect measure of cellular metabolism (Fig. 7C,
D). Reduction of ATP levels upon oxidative stress could, however, not be prevented by
50 uM TFN in acute hippocampal slices (data not shown).

In acute hippocampal slices, oxidative stress induced by 100 uM H20:2 led to a decrease
in mitochondrial length, area (Fig. 8C, D), and displacement (data not shown). This is
consistent with our data on spinal roots from previous work [47]. Unlike our findings in
spinal roots, oxidative stress in acute hippocampal slices led to an increase in
mitochondrial speed (data not shown). 50 uM TFN prevented oxidatively induced

reduction in mitochondrial area, but not in mitochondrial length (Fig. 8C, D). 50 uM TFN
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caused a reduction in mitochondrial displacement, but increased mitochondrial speed

compared to oxidatively stress slices (data now shown).
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Figure 8: Effects of TFN on oxidatively induced mitochondrial morphology alterations in
acute hippocampal slices

(A) represents an overview image of the acute hippocampal slice, mitochondrial fluorescence is
shown in green; (B) is a representative two-photon microscope image with larger magnification;
quantification of fold change in mitochondrial length (C) and mitochondrial area (D) compared to
timepoint 0 of the same slice. Graphs are shown in Tukey boxplots. Inside the box, ‘+’ marks the
mean, the box covers the 25" to the 75" quartile, the whiskers show the minimum and the
maximum of the data; *implying p < 0.05, ** implying p < 0.01, **xx implying p <0.001, and
x+x+ implying p < 0.0001; from [62]
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4 Discussion

4.1 Short summary of results

This thesis presents two models to evaluate drug effects on oxidatively stressed neuronal
mitochondria in PNS and CNS. We have shown that pharmacological inhibitors of NaV
and MCU could prevent mitochondrial alterations in the PNS model and added thereby
to the understanding of neurodegenerative pathomechanisms and their possible
prevention. We have also shown that TFN can exert beneficial effects on neuronal

mitochondrial dynamics and functionality.

4.2 Interpretation of results, embedding the results into the current state of

research and strengths and weaknesses of the included studies

The spinal root model used in Studies 1 and 2 was used to screen for mitochondrial
alterations upon therapeutic intervention and ion channel inhibition, respectively. We
have shown that this model is a suited model for investigating the morphology and motility
of axonal mitochondria [48]. One advantage of this model lies in the relatively simple
preparation and analysis of mitochondrial dynamics due to the parallel arrangement of
axons. It also preserves cytoarchitecture and the thinness of the spinal roots ensures high
availability of administered drugs [48].

We have also tested the effects of TFN in acute hippocampal slices as a model of the
CNS. Acute hippocampal brain slices are more similar to the in vivo situation; however,
they represent a more complex and more difficult-to-handle ex vivo model for monitoring
drug effects on neuronal mitochondria.

Spinal roots and acute hippocampal slices show differences in tissue thickness.
Therefore, we adjusted the applied concentrations of reagents. However, we have
observed a decrease in mitochondrial length and motile mitochondria in both models,
independently of the used H202 concentration. The concentrations used in our
experiments are high when compared to physiological, steady-state intracellular
concentrations that range from 1 to 100 nM approximately when H202 is working as a
signaling molecule [63]. However, there is a 100 to 500-fold difference between the
intracellular and extracellular space and, during inflammation, plasma H20:2 levels were
shown to rise to higher concentrations (UM range) [64]. Moreover, others have shown that

H202 concentration decreases quickly over time due to its high reactivity [65, 66].
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In both ex vivo models, oxidative stress led to a decrease in mitochondrial length [50, 59,
62]. This might be caused by oxidatively induced mitochondrial fission, which is a cellular
mechanism to clear out damaged parts of mitochondria [67-69].

Blocking NaV with 100 nM TTX prevented the decrease in mitochondrial length due to
oxidative stress (Fig. 2C). We have demonstrated in Study 1 that MCU-inhibition with
10 uM Ru360 prevented oxidative stress-induced reduction of mitochondrial length
(Fig 3b). This might be related to the Ca?*-controlled regulation of proteins involved in
mitochondrial fission (e.g. dynamin-related protein 1) [70].

Our data in Study 1 confirm the non-linear effects of alterations in Na* and Ca?*
concentrations on mitochondrial morphology, matility, and functionality [71]. Changes in
Ca®" concentration may have both stimulating (e.g., increase in mitochondrial ATP
production [72]) and detrimental effects (e.g. opening of mPTP upon excessive Ca?*
concentrations [73]). In addition, ROS regulate the transcription of enzymes and enzyme
activity by oxidizing cellular structures [32, 74, 75] and some of these mechanisms might
take place in our models. ROS, regulate the activity of MCU and NaV [76, 77], thereby
also influencing ional concentrations within axons and mitochondria, making it even more
challenging to predict how ional concentrations alter, especially in subcellular
compartments. Furthermore, with Ru360 we did not block either a reverse action model
of mMNCX that has been described to occur in metabolically inhibited cells, or
mitochondria-associated membranes (MAMs) with the endoplasmatic reticulum that also
serve to exchange Ca?* between organelles [46]. MAMs also take part in mitochondrial
fusion and fission processes [78]. Thus, we did not modulate all possible ways by which
Ca?* may enter mitochondria.

Oxidative stress led to a decrease in the percentage of moving mitochondria in Study 1.
Both 1 uM TTX and 10 uM Ru360 could prevent this oxidatively caused motility decrease
(Fig. 4). Again, Ca?* concentrations are known to play a role in regulating mitochondrial
motility, e.g., via mitochondrial Rho-GTPase 1 (Mirol), a protein linking mitochondria to
motor proteins with the help of other connector proteins [79]. Mirol is a protein on the
outer mitochondrial membrane, consisting of two GTPase parts on the N-terminal part
and EF-hand domains working as Ca?* sensors on the cytoplasmic side [80]. Mirol
usually promotes anterograde mitochondrial transport [81], but upon rising Ca?* levels a
conformational shift takes place and mitochondrial transport is halted [82, 83]. TTX may
prevent the oxidative-stress-induced decrease in motility by hindering intraaxonal Ca?*

rise. MCU itself seems to play a role in regulating mitochondrial movement and is thereby
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one possible answer to the question of how Ru360 prevents oxidatively induced decrease
in mitochondrial motility [84]. Also, it has been assumed that there is an interaction
between MCU and Mirol and that Ca?" influx via MCU may lead to the same
conformational changes of Mirol mentioned above, resulting in decreased mitochondrial
motility [85]. Since Ru360 blocks this Ca®* influx, this might be another explanation for its
motility-preserving effects.

In Study 1, we have shown that oxidative stress decreases mitochondrial membrane
potential (Fig. 5), indicating a loss in mitochondrial capacity to produce ATP. Furthermore,
in Study 3 we have directly measured ATP levels and have been able to show a reduction
under oxidative stress. Thus, we have shown that oxidative stress reduces mitochondrial
capacity to properly provide ATP.

In Study 1, 1 uM TTX prevented the decrease in mitochondrial membrane potential under
simultaneous exposition to H202 (data not shown). 1 uM TTX alone induced mitochondrial
hyperpolarization [86, 87]. One explanation for this observation could be reduced Na*
influx and subsequent reduced activity of the ATP-dependent Na'/K*-ATPase, which
leads to an intraaxonal increase of ATP. It has been described that elevated ATP levels
may lead to a reverse action mode of complex V, consuming cellular ATP content [49].
10 uM Ru360 also protected mitochondria against oxidative stress-induced reduction in
mitochondrial membrane potential (Fig. 5a, b). TFN, however, could not prevent the
oxidatively caused reduction in ATP levels in acute hippocampal slices (data not shown).
We did not succeed in the establishment of a protocol to directly measure intraaxonal and
intramitochondrial Ca?* concentrations in Study 1, neither with Fluo-4 and stimulation with
lonomycin [88] nor with a genetic mice model for Ca?" staining in central neurons
(CerTNL-15 mice) [89]. We suppose that spinal roots, which are not part of the CNS, may
not express the fluorescent marker.

Regarding the effects of TFN, we have shown that the drug directly influences
mitochondrial dynamics. The exact mechanisms remain incompletely understood and
partially contradictive: Some have discovered that TFN alters intracellular Ca?*
concentrations via store-operated calcium entry [90], while others state that TFN does
not influence neuronal Ca?" concentrations [91].

A limitation of the studies is the quantity of experimental conditions that can be compared
at once. This results from the size of the used incubation chamber and the restricted time
window, in which spinal roots and acute hippocampal slices are viable and suited for

imaging. In addition, the time window in which experiments can be conducted is limited
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to 3-4 hours, since afterward, spinal roots and acute hippocampal slices undergo
irreversible damage.
Moreover, we lack direct measurement of Ca?" concentrations to detect protective and

detrimental levels.

4.3 Implications for practice and/or future research

The next step could be the investigation of the effect of ion channel inhibition in the CNS
model. We will also include already established methods of assessing neuronal
parameters such as ATP content, oxygen consumption, and electrophysiology.
Mitochondrial morphology and motility change under oxidative stress, thus, proteins
associated with fusion and fission as well as mitochondrial transport could be affected
and show altered expression patterns. To investigate this, PCR analysis of altered protein
expression patterns could be established. Candidates for investigation could be proteins
associated with mitochondrial fusion (e.g. mitofusin 1 or 2, dynamin-related GTPases,
optic atrophy1), fission (e.g. dynamin related protein 1), movement (e.g. kinesin, dynein),
and immobility (e.g. syntaphilin) [69].

The model of acute hippocampal slices can be used to monitor mitochondrial alterations
of the CNS. However, this model cannot provide insights into the long term effects of
drugs due to the limited period (4-6 h) to image the slices [92]. Therefore, we have
established a model of chronic hippocampal brain slices in our group [93]. We have
evaluated the effects of Fingolimod and Siponimod on mitochondria in chronic slice
culture (paper in preparation).

The spinal roots model, as well as the acute and chronic hippocampal slice model, offer
ways to reduce animal experiments, a part of the 3 “R’s” (refinement, replacement and
reduction), as first described by Russell and Burch in the 1950s [94].

Finally, as the next step in pre-clinical trials, verification of observed mechanisms could
be performed in an in vivo model of MS. Several animal models exist to mimic different
aspects of MS. The most used model is experimental autoimmune encephalomyelitis
(EAE). Classically, mice are injected with an antigen (e.g., proteolipid protein, myelin
basic protein, etc.) in emulsion with complete Freund’s adjuvant, as well as pertussis toxin
in glycol buffer [95]. Alternatively, one can perform a transfer of lymphocytes that were
activated with these antigens in vitro [95]. The different forms of EAE (relapsing vs.

chronic) can be induced by choosing different mice strains [96]. Predominantly, EAE
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models represent the autoimmune part of MS [97]. Other models include demyelination
caused by viral infection or toxin-induced demyelination [98, 99].

Other groups, e.g., Kerschensteiner et al.,, have developed models to monitor
mitochondria in vivo in the spinal column [100]. In combination with murine MS models,
this might be a suited model to test the effects of ion channel inhibitors and already
developed drugs on mitochondria.

Neurodegenerative diseases are on the rise, partly because the world’s population is
getting older and neurodegenerative diseases are often age-related [101]. New drugs for
the treatment of neurodegenerative diseases and a better understanding of underlying
pathomechanisms are therefore urgently needed [102]. Since development of new drugs
is cost- and time-intensive, repurposing of already developed and approved drugs is a
valid alternative [103]. We have investigated effects of blocking axonal Na™ influx and
mitochondrial Ca?* uptake which are known to be key features in neurodegenerative
disorders [104, 105]. Understanding the implication of ional alterations in
neurodegeneration may be an essential step towards developing targeted drugs against
neuronal death. Moreover, we have added important knowledge to understanding the
effects of TFN.
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5 Conclusions

The overall aims of our studies were the identification of neurodegenerative
pathomechanisms and the evaluation of potential interventions for the targeted treatment
of neuronal loss. We have proved ion channel inhibitors and TFN to be beneficial in terms
of preventing oxidative stress-induced mitochondrial alterations.

With Study 1 of this thesis, we have shown that our PNS model is suited to monitor
alterations in Na* and Ca?* concentrations that we had hypothesized to happen
downstream of oxidative insult on neurons. We have also demonstrated that inhibition of
both NaV and MCU might prevent oxidatively induced mitochondrial alterations.

In Study 2 and Study 3, we have shown conclusively that prevention of oxidatively
induced mitochondrial alterations might be one possible mechanism by which TFEN
protects neuronal cells from degeneration. Moreover, TFN exerts its neuroprotective
effects in our CNS model via the prevention of a reduction in oxygen metabolism and

neuronal activity as well as its effects on mitochondrial dynamics.
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In neurcinflammatory and neurodegenerative disorders such as multiple sclerosis, mitochondrial damage caused by oxidative
stress is believed to contribute to neuroaxonal damage. Previously, we dem d that exp to hydrogen peroxide
(H,0,) alters mitochondrial morphalogy and motility in myelinated axons and that these changes initiate at the nodes of
Ranvier, where numerous sodium channels are located. Therefore, we suggested that mitochondrial damage may lead to ATP
deficit, thereby affecting the efficiency of the sodium-potassium ATPase and eventually leading to sodium overload in axons.
The increased intra-axonal sodium may revert the axonal sodium-calcium exchangers and thus may lead to a pathdlogical
calcium overload in the axoplasm and mitochondria. Here, we used the explanted murine ventral spinal roots to investigate
whether modulation of sodium or caldum influx may prevent mitochondrial alterations in myelinated axons during exogenous
application of H,0, inducing oxidative stress. For that, tetrodotoxin, an inhibitor of voltage-gated sodium ion channels, and
ruthenium 360, an inhibitor of the mitochondrial calcium uniporter, were applied simultaneously with hydrogen peroxide to
axons. Mitochondrial shape and motility were analyzed. We showed that inhibition of axonal sodium influx prevented
oxidative stress-induced morphological changes (ie., increase in dreularity and area and decrease in length) and preserved
mitochondrial membrane potential, which is crudal for ATP production. Blodking mitochondrial caldum uptake prevented
decrease in mitochondrial motility and also preserved membrane potential. Our findings indicate that alterations of both
mitochondrial morphology and metility in the contexts of oxidative stress can be counterbalanced by modulating
intramitochondrial ion concentrations pharmacalogically. Moreover, motile mitochondria show preserved membrane
potentials, pointing to a dose assodation between mitochondrial motility and functionality.




43

1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of
the central nervous system (CNS) that affects approximately
2.5 million people worldwide [1]. The pathological hall-
marks of MS include inflammation, demyelination, and neu-
rodegeneration; however, its pathogenesis and the
relationship between those three aspects are not completely
understood [1].

In this context, mitochondria have emerged as one of the
key players that are affected by inflammation and contribute
to neuroaxonal loss [2-4]. During neurcinflammatory
events in MS, activated CNS-invading leukocytes, as well as
microglia, are potential sources of reactive oxygen species
(ROS), mainly via increased activation of nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidases [5-8]. It is
assumed that excessive ROS production may lead to oxida-
tive stress and consequently to the inhibition of adenosine
triphosphate (ATP) production. Activation of oxidative
phosphorylation under pathological stress conditions may
also lead to increased chances of electron slippage to oxygen
and the formation of additional detrimental ROS [9-11]. In
a physiological state, cells have mechanisms to cope with
increased ROS production [12, 13]. However, sustained
inflammation and oxidative stress may lead to irreversible
damage in mitochondria and affect the survivability of the
cells [14].

To investigate the impact of oxidative stress on neuroax-
onal mitochondria, we have developed an ex vivo model to
monitor mitochondrial alterations in murine spinal roots
[15, 16]. We focused on ventral spinal roots because they
consist predominantly of efferent motor axons and are
thicker than dorsal roots making them easier to handle.
Using this model, we previously showed that oxidative stress
alters both mitochondrial morphology (increases mitochon-
drial circularity and decreases mitochondrial area and
length) and mitochondrial motility (reduces the percentage
of moving mitochondria, length of their trajectories and
their velocity) [17]. We also observed that, following an oxi-
dative insult, all these alterations consistently initiate at the
nodes of Ranvier [17].

In axons, voltage-gated sodium channels (NaV) are
mainly located near the nodes of Ranvier [18]. In the pres-
ence of oxidative stress, mitochondrial damage may lead to
reduced ATP generation [19] and the consequent failure of
the sodium-potassium-ATPase (Na*/K"-ATPase), leading
to sodium (Na®) accumulation inside the axons [20]. More-
over, in a degeneration paradigm using dorsal root ganglion
cells, it has been demonstrated that influx of Na* via NaV
contributes to intraneuronal Na® accumulation [13]. To
compensate for the excess of intracellular Na* in the pres-
ence of a dysfunctional Na“/K'-ATPase, the axonal
sodium-calcium exchanger (NCX) may start acting in a
reverse mode, causing axonal calcium (Ca®") overload [5,
13, 20].

High cytosolic Ca** concentration directly impacts mito-
chondria, which in tum are partofthe Ca** buffering system
of cells [13, 21, 22). Tightly regulated intracellular Ca**
homeostasis is crucial because an excessive mitochondrial
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Ca® uptake may lead to the opening of the permeability
transition pore (PTP), resulting in apoptosis [9, 14]. A mito-
chondrial Ca®* uniporter (MCU) transports Ca*" into the
mitochondrial matrix [19]. It has been shown that overex-
pression of MCU and subsequent mitochondrial Ca** over-
load results in neuronal death, both in vitro and in vivo [23].
Moreover, mitochondria are linked to motor proteins via
Miro-1/2, which have Ca**-sensing structures, suggesting
that mitochondrial motility is also Ca®*-sensitive [18].
Although during physiological state, a slight increase in
mitochondrial Ca** appears to directly stimulate mitochon-
drial ATP production by activating Ca**-sensitive enzymes
of Krebs’ Cycle [21], high levels of Ca** may lead to the sup-
pression of mitochondrial movement [20].

In neurcinflammation, the assumption that alteration of
ion concentrations and neuronal damage are connected is
supported by the beneficial effects of ion channel blockers
reported in experimental autoimmune encephalitis (EAE),
where blocking NaV or voltage-gated Ca** channels attenu-
ates the disease course [13, 24]. Hence, we hypothesized that
the abnormal activity of ion channels at the nodes of Ranvier
following oxidative stress may cause the observed mitochon-
drial alterations [5, 13, 24].

Thus, we investigated here if preventing Na* overload
within axons and Ca™" overload within mitochondria using
the NaV blocker tetrodotoxin (TTX) and the MCU inhibitor
ruthenium 360 (Ru360), respectively, would protect both
mitochondria and axons from oxidative-stress mediated
damage.

2. Material and Methods

2.1. Ethics Statement. All experimental procedures were
approved by the regional animal study committee of Berlin
(landesamt fiir Gesundheit und Soziales Berlin). Animal
experiments were conducted in strict accordance with Direc-
tive 2010/63/EU of the European Parliament and of the
European Council of 22 September 2010. Female and male
mice (8-10 weeks old) were used for the experiments. The
mice were housed and maintained in a temperature-
controlled environment on a 12h light-dark cycle.

2.2. Preparation and Maintenance of Ventral Spinal Roots.
Ventral spinal roots were prepared as described previously
[15]. Briefly, C57BL/6 mice were deeply anesthetized with
isoflurane before cervical dislocation. After separating the
connective tissue, the dorsal side of the spinal cord was
exposed, and the vertebrae were cut laterally from rostral
to caudal. The spinal cord was sectioned at the thoracic level
and the ventral spinal roots were cut distal to the spinal cord.
Together with the attached spinal roots, the explanted spinal
cord was then placed into artificial cerebrospinal fluid
(aCSF), saturated with carbogen (95% O, and 5% CO,),
and adjusted to a pH of 7.3-7.4. Under a dissecting micro-
scope, the lumbar ventral roots were finally selected and sep-
arated from the spinal cord. Explanted ventral roots were
maintained in aCSF, containing the following solutions:
Solution I - 124mM Na(l, 1.25mM NaH,PO, 10.0mM
Glucose, 1.8mM MgSO, 1.6mM CaCl,, 3.00mM KCI
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Solution II = 26.0 mM NaHCO,, Both solutions were mixed
immediately before use.

2.3, Induction of Qxidative Stress and Treatment Groups. All

iments were conducted in a submerged incubation
chamber (Brain Slice Keeper-BSK 6 Scientific Systems
Design Inc.,, Ontario, Canada), allowing up to five different
treatment conditions and continoous carbogen perfusion
of each submersion well thronghout the entire process.
Although the BSK 6 has 6 individual tubes to supply gas to
each of the six wells, one tube had to be used to carbogenate
the aCSF stock and therefore only 5 wells were available for
the experiments.

To assess the effect of TTX and Ru360 on mitochondrial
alterations induced by oxidative stress, we assigned spinal
roots randomly to the following experimental groups: a)
MNegative controls of TTX experiments consisted of axons
incubated with aCSF for 30 min at room temperature (RT).
MNegative contrals of Ru360 experiments consisted of axons
incubated with the corresponding solvent dimethyl sulfoxide
(DMSO) at 1 glfml (0,001%) for 30 min at RT. This concen-
tration corresponded to the one used to solve Ru3s. DMSO
does not exert an effect on investigated mitochondrial
parameters (data not shown). We also refer to the negative
groups as “untreated groups”. b) In the oxidatively-stressed
control group, ventral spinal roots were incubated with
100 M H, O, for 30 min at RT along with the corresponding
vehicle (aCSF for TTX experiments, DMSO for Ru3e0
experiments). We also refer to this group as “positive con-
trol”. ) Effects of blocking NaV channels on spinal roots
were investigated by incubating the spinal roots with
100nM or 1uM TTX along with 100 M H,0,. d) Effects
of blocking mitochondrial Ca* influx were determined by
incubation with 5, 10, or 20 uM Ru360 along with 100 .M
H,Q,.

2.4. Labeling of Mitochondria, Microscopy, and Analysis of
Mitochondrial Dynamics (Morphology and Motility). After
incubation with the treatments, transected ventral spinal
roots were washed and transferred into aCSF containing
100nM MitoTracker® Orange CMTMRos (Life Technolo-
gies, Darmstadt, Germany) dissolved in DMSO for 30 min
at RT and then washed again with fresh aCSF.

Microscopy and imaging analysis of the ventral spinal
roots were performed as previously described [15]. For
microscopy, spinal roots were placed on a glass coverslip
and transferred to an imaging chamber containing carboge-
nated aCSF. A custom-built nylon net was placed on top of
the spinal roots to prevent them from moving during image
acquisition. For all experiments, an inverted laser-scanning
confocal microscope adapted for live-cell imaging was used

iments with Na® channel blockade were imaged with
an LSM 710 (Carl Zeiss, Jena, Germany). Experiments with
Ca™ channel blockade were conducted using a Nikon Scan-
ning Confocal AlRsi+ MitoTracker® Orange was excited at
561 nm with a diode-pumped solid-state (DPSS) laser. Visu-
alization of mitochondria was performed through a 100x
(LSM 710, Carl Zeiss) or 60x (Nikon Scanning Confocal
AlRsi+) oil immersion objective. Regions of interest (ROT)

were chosen based on the following criteria: 1) cleady visible
node of Ranvier 2) well-labeled mitochondria 3) axon with
intact myelin sheath and no signs of membrane disruption
in regions adjacent to the selected ROI 4) areas at least
2mm away from the end of the roots. Scrutinizing the spinal
roots from the proximal to the distal end, three separate ROI
were chosen. For each ROL a time-lapse (60-second dura-
tion, 2sf/frame) with a resolution of 512x512 pixels was
recorded. Exposure time and laser power were reduced to
minimize photobleaching and phototoxicity.

The first frame of every time-lapse video was wsed
assess mitochondrial morphology with an automated analy-
sis ool of the Volocity®6.3 software (Perkin Elmer, Rodgan,
Germany). To determine the changes in mitochondrial mor-
phology, the following parameters were analyzed: shape fac-
tor (4nX [Area/Perimeter’]), a measure of circularity
ranging from 0 to 1, in which “1” indicates a perfect circle,
length (pum) and a.rea{pm’:l of an individual mitochondrion.
To assess maotility, mitochondria were tracked manually
using Volocity®6.3 software (Perkin Elmer, Rodgau, Ger-
many). Any mitochondrion with a displacement of =1 um
was considered “mobile”. For experiments with Ru360,
maobile mitochondria were further analyzed for track length
{pm), the measure of the real distance traveled by a mito-
chondrion, and velocity (um/s).

Under physiological and pathological conditions, mito-
chondrial populations display high heterogeneity within
one cell due to their adaption to different energetic states.
Thus, to minimize selection bias, large amounts of mito-
chondria in different axons of several experiments were ana-
lyzed and matched.

2.5, Assessment of Mitochondrial Membrane Potential. To
determine mitochondrial membrane potential, spinal roots
were stained with 20ug/ml 55 66 -tetrachloro-1,1',3,3'
-tetragthylbenzimidazolylcarbocyanine iodide (JC-1; Life
Technologies, Darmstadt, Germany) in aCSF at RT for 1h.
JC-1 accumulates in mitochondria with intact membrane
potential and negative charge. Sufficient accumulation due
to unaltered mitochondrial membrane potential leads to
the formation of | aggregates and a shift in emitted fluores-
cence from green (529 nm) to red (590nm) [25]. To mini-
mize background noise, roots were washed with fresh aCSF
before imaging. JC-1 was excited with dual illumination with
argon (514 nm) and DPSS (561 nm) lasers.

Red/green fluorescence ratio of JC-1 stained mitochon-
dria determined at a Nikon Scanning Confocal A1Rsi+mi-
croscope was used for the analysis of mitochondrial
membrane potential. Results of the red/green fluorescence
ratio of individual mitochondrion were normalized to the
average red/green fluorescence ratio of the untreated group
as established by others [26].

2.6. Statistical Analysis. Acquired data were analyzed with
Prism B Software (GraphPad, CA, USA). All datasets were
first subjected to D'Agostino and Pearson omnibus K2 nor-
mality test and Shapiro-Wilk normality test for Gaussian
distribution. Data fitting the criteria for normal distribution
were subsequently analyzed using a one-way ANOVA with
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Bonferroni’s post hoc test. Data following a non-parametric
distribution were analyzed using a Kruskal-Wallis test
followed by a Dunn’s post hoc multiple comparisons test. p
values < 0.05 were considered significant. The significance
of the data was further depicted as + implying p<0.05, +*
implying p<0.01, #++ implying p<0.001, and ##+#
implying p <0.0001. All data are shown in mean + SEM.

3. Results

3.1. Blocking Axonal Na™ Influx Prevents Oxidative Stress-
Induced Morphological Changes in Mitochondria. To investi-
gate the effect of Na” channel blockade on mitochondrial
morphology, the explanted ventral spinal roots were treated
with 100 uM H,0, alone, or 100 uM H,0, along with differ-
ent concentrations of TTX (100 nM or 1 uM). Explants were
then imaged using a confocal microscope (Figure 1(a)).
Shape factor (Figure 1(b)), mitochondrial length
(Figure 1(c)), and mitochondrial area (Figure 1(d)) were
analyzed.

During oxidative stress, mitochondrial shape factor
(untreated: 0.4148 +0.0060; H,O, 0.4854 +0.0074) and
area (untreated: 0.4043+0.0124 um? H,0,: 0.7557 +
0.0335 um?) increased while mitochondrial length decreased
(untreated: 1.684+ 0.0375 um; H,0, 1.5800 +0.0431 umy;
Figures 1(b) and 1(c)). All observed morphological changes
induced by oxidative stress were prevented with 100nM of
TTX (shapefactor=0.4202 +0.0079; length=1.8990 +
0.0702 um; area = 0.5247 + 0.0268 um®; Figures 1(b)-1(d)).
In contrast, 1 uM of TTX did not affect the H,0,-induced
increase in shape factor (0.5030+ 0.0072; Figure 1(b)), but
significanly  reduced length  (1.4400 +0.0362 um,
Figure 1(c)) and increased mitochondrial area in compari-
son to oxidative stress conditions (1.0150 + 0.0377ym2;
Figure 1(d)).

3.2. Blocking Axonal Na* Influx Prevents Oxidative Stress-
Induced Changes of Mitochondria Motility. Next, we per-
formed time-lapse imaging and analyzed mitochondrial
motility parameters under the above-mentioned experimen-
tal conditions (Figure 2(a)). We analyzed the percentage of
manually tracked motile mitochondria (Figure 2(b)). The
untreated group with aCSF alone showed an average per-
centage of motile mitochondria of about 16%
(15.890 + 1.395%), while in the presence of 100uM H,0,
only around 5% (5.044 +1.228%) of mitochondria were
motile (Figure 2(b)). Blocking Na* influx with 1 uM TTX
prevented the oxidative stress-induced reduction of meotile
mitochondria (11.460 + 1.826%; Figure 2(b)). The effect of
100nM TTX was not significant compared to the H,0,-
treated group (Figure 2(b)).

3.3. Blocking Mitochondrial Ca®* Uptake Prevents Oxidative
Stress-Induced Alterations of Mitochondrial Lengm Then,
we examined the influence of mitochondrial Ca** on mito-
chondrial morphology. Oxidative stress was induced again
with 100 uM H,0,. Blocking mitochondrial Ca** influx via
mitochondrial Ca** uniporter channels was performed by
simultaneous incubation of mitochondria with H,O, and
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5, 10, or 20uM Ru360. We observed that H,0, led to a
decrease in mitochondrial length (untreated: 1.9260
0.0343 um; H,0,: 1.6920 + 0.0302 um) and area (untreated:
1.0890 +0.0292 um?; H,0,: 0.9756 +0.0268 um?) com-
pared to the untreated group (Figures 3(c) and 3(d)). How-
ever, shape factor did not increase under H,O,-treatment
(untreated: 0.4703+0.0072; H,O,: 0.4841+0.0071) when
compared to the untreated group (Figure 3(b)). Blocking
mitochondrial Ca** influx with 5uM Ru360 prevented
changes in shape factor (0.4474+ 0.0090, Figure 3(b)). A
similar trend was observed in roots treated with 10uM
Ru360 (0.4741 +0.0083; Figure 3(b)). However, at 20 uM,
Ru360 induced an even more pronounced increase in shape
factor values (0.5214 +0.0095) when compared to the
H,0,-treated group (Figure 3(b)). Incubation with 5uM
Ru360 did not increase mitochondrial length compared to
the H,0,-treated group (1.881+ 0.0426 um, Figure 3(c)).
In the presence of 10uM Ru360, mitochondrial length
increased (1.7780 + 0.0390 umy; Figure 3(c)), while at 20 uM
Ru360 promoted decrease in mitochondrial length com-
pared to treatment with oxidative stress alone
(Figure 3(c)). Regarding area, we did not observe significant
alterations in either of the treatment groups (Figure 3(d)).

3.4. Blocking Mitochondrial Ca™ Uptake Prevents Reduction
of Mitochondrial Motility in Stressed Axons. To investigate
the effect of blocking MCU on oxidative stress-induced
alterations in mitochondrial motility, we incubated
explanted ventral spinal roots with DMSO alone, DMSO
plus 100 uM H,0, or with 100uM H,0, along with three
different concentrations (5, 10 or 20uM) of Ru360
(Figure 4(a)).

In the untreated group, we observed an average of 7%
(7.103% + 0.997) of moving mitochondria (Figure 4(b)).
H,0, at 100uM caused a significant reduction in motile
mitochondria (1.447% + 0.507) as well as a decrease in track
length (untreated: 8.2722+0.8433um; H,0,-treated:
2.8750 +0.6442 um) and track velocity (untreated: 0.2094
+0.0210um/s;  H,O,-treated:  0.1265 + 0.0320 um/s)
(Figures 4(a)-4(c)). H,0,-induced decrease in percentage
of motile mitochondria, mitochondrial track length, and
track velocity was prevented with 10 4M Ru360 (% of mov-
ing mitochondria: 7.393 + 1.861%; track length: 8.9410 +
0.7597 pumy; track velocity: 0.2293 + 0.0243 um/s;
Figures 4(a)-4(c)) and 20uM Ru360 (% of moving mito-
chondria: 3.549 + 1.124%; track length: 4.989 + 0.6025 umy;
track velocity: 0.1384 +0.0280 um/s; Figures 4(a)-4(c)).
However, in spinal roots treated with 5uM Ru360, only
H,0,-induced changes for track length (um, Figure 4(c))
were prevented. No effects were observed on percentage of
moving mitochondria or track velocity ((% of moving mito-
chondria: 5.205 + 1.325%; track velocity: 0.1331+ 0.0235u
m/s, Figures 4(a) and 4(d)).

3.5. Blocking Axonal Na™ Influx Prevents Oxidative Stress-
Induced Reduction of Mitochondrial Membrane Potential.
Next, we investigated whether inhibition of axonal Na*
influx may preserve mitochondrial functionality altered by
H,0,. Four groups of spinal roots were treated for 30 min
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Figure 1: Blocking axanal Na* influx with tetrodotaxin (TTX) prevents oxidative stress-induced mitochondrial morphalogy alterations. (a)
Representative ariginal images of all different experimental conditions; axans incubated with aCSF alone contained dongated mitochondria;
incubation with 100 4M H,0, led to the generation of smaller and rounder mitochondria, and some diffuse MitoTracker® distribution; axon
simultaneously incubated with 100uM H,0, and 100nM TTX contained elongated mitochondria; axon simultaneously incubated with
100uM H,0, and 1 uM TTX contained short mitochondria but with increased area. (b-d) Shape factor (b), length (c), and area (d) of
mitochondria located near the nodes of Ranvier in axons incubated with the above-mentioned treatments. Nodes of Ranvier are marked
with ared “i". *p<0.05, **p<0.01, ***p<0.001, and ****p <0.0001. The error bars represent the standard error of mean; n = 6 animals
and 22 roots; untreated 7 roots, H,0, 6 roots, H,0,+100nM TTX 4 roots, and H,0,+1 uM TTX 5 roots.

with either aCSF alone (wehicle control group), 100uM
H,0,, 100 uM H,0,+1 uM TTX or 1 uM TTX alone, respec-
tively. Since the incubation chamber permitted the simulta-
neous assessment of maximally 5 conditions, only the
1uM TTX concentration, which showed best protecting
effects in Figure 2(a), was tested in these experiments.
Treated spinal roots were then incubated for 30 min with
the ratiometric indicator JC-1. The red/green fluorescence
ratio is an indication of the mitochondrial membrane poten-

tial and thereby mitochondrial ability to produce ATP
(Figure 5(a)).

The application of 100uM H,0, resulted in a shift to
green fluorescence (0.6374 + 0.0291; Figures 5(a) and 5(b)),
as a sign of a loss of mitochondrial membrane potential.
1uM TTX applied simultaneously with 100uM H,0, pre-
vented the loss of mitochondrial membrane potential
(untreated: 1.0000 +0.0297; 1uM TTX: 1.2410 +0.0432;
Figures 5(a) and 5(b)). TTX alone led to higher
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FiGure 2: Blocking axonal Na* influx with TTX barely affects mitochondrial motility parameters altered due to oxidative stress. (a)
Representative original images of all different experimental conditions: axon incubated with aCSF alone contained multiple moving
mitochondria that cSover larger distances in the axon; 100uM H,0, induced a strong reduction of motile mitochondria; axons
simultaneously incubated with 100uM H,0, and 100nM TTX or 1 uM TTX contained more motile mitochondria, covering longer
distances. (b) Percentage of moving mitochondria per axon. Nodes of Ranvier are marked with a red "i". *p <0.05, ****p <0.0001. The
error bars represent the standard error of mean; n=6 animals and 22 roots; untreated 7 roots, HO, 6 roots, H;O,+100 nM TTX 4

roots, and H,0,+1 M TTX 5 roots.

mitochondrial membrane potential than in the untreated
group (TTX: 1.1270 + 0.0309; Figures 5(a) and 5(b)).

3.6. Blocking Mitochondrial Ca™ Uptake Prevents Oxidative
Stress-Induced Reduction of Mitochondrial Membrane
Potential. To assess effects of Ca®* uptake on mitochondrial
functionality, four groups of spinal roots were treated for
30min with either DMSO (vehicle control group), DMSO
+100uM H,0,, 100uM H,0,+10uM Ru360 or 10uM
Ru360 alone, respectively. We selected 10uM Ru360 for
these experiments because it was the concentration that
showed the best protection against oxidative stress-induced
loss of motility (Figure 4(a)). Treated spinal roots were then
incubated for 30 min with the ratiometric indicator JC-1.
The red/green fluorescence ratio is an indication of the mito-
chondrial membrane potential and thereby mitochondrial
ability to produce ATP (Figure 6(a)).

The application of 100uM H,0, resulted in a shift to
green fluorescence (0.5638 + 0.0250; Figures 6(a) and 6(b)),
as a sign of a severe loss of mitochondrial membrane poten-
tial. 10 uM Ru360 applied simultaneously with 100 uM H,0,
prevented the loss of mitochondrial membrane potential and
restored it to values close to the untreated group (untreated:
1.0000 + 0.0383; 10 uM Ru360: 0.8507 + 0.0395; Figures 6(a)
and 6(b)). With Ru360 alone, we did not observe any effects
on mitochondrial membrane potential in comparison to
DMSO treated condition (Figures 6(a) and 6(b)).

4, Discussion

Mitochondrial alterations linked to oxidative stress [9] are
reported to occur in the early stages of MS [4, 12] and are
believed to contribute to neurodegenerative processes
observed in MS patients [2, 27-29]. Therefore, mitochondria

have emerged as potential therapeutic targets to limit disease
progression [30, 31]. In this study, we investigated using an
ex vivo model of peripheral axons [17] whether the effects
of oxidative stress on mitochondria can be prevented by tar-
geting pathological ion alterations affecting, in particular, the
levels of axonal Na* and mitochondrial Ca®*.

In this model, oxidative stress was induced by a 30-
minute incubation with 100 uM H,0,, a concentration that
led to reversible structural and functional alterations in
mitochondria [32]. We observed oxidative stress-induced
decrease in mitochondrial length (Figures 1(c) and 3(c)) as
well as a decrease in the number of motile mitochondria
(Figures 2(b) and 4(b)). Additionally, consistent with our
previous reports [16, 33] and those of others describing inhi-
bition of axonal transport by oxidative stress [34-36], we
observed a decrease in both track length and track velocity
of mitochondria exposed to 100uM H,0, (Figures 4(c)
and 4(d)). The observed reduction in mitochondrial length
supports previous findings of our group [17] and may be
the consequence of an increase in the fission process, which
is induced in stressed and damaged mitochondria to get rid
of the damaged portion [37].

We also expected that oxidative stress would damage
mitochondria and reduce their functionality in our model
causing ATP depletion as it has been reported for highly
energy-dependent neuronal cells [9, 38]. We showed a
decrease in mitochondrial membrane potential under oxida-
tive stress conditions (Figures 5(a), 5(b), 6(a), and 6(b)). As
an intact mitochondrial membrane potential is an important
determinant for mitochondrial ATP production via oxida-
tive phosphorylation [39], we assumed ATP depletion in
oxidatively injured mitochondria. In a novel CNS model
established in our lab, we were indeed able to show
decreased ATP levels upon oxidative stress induced by
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Figure 3: Blocking mitochondrial Ca®* influx with Ru360 alters mitochondrial morphology. (a) Representative original images of all
different experimental conditions; axon incubated with DMSO alone showed elongated mitochondria; 100 uM H,0, induced shorter and
smaller mitochondria; axonal mitochondria exposed to 100uM H,0, and 5uM Ru360 showed slightly longer and less round
morphology than mitochondria exposed to H,0, alone; incubation with 100u4M H,0, and 10uM Ru360 led to the formation of longer
mitochondria compared with H,02 control; axon incubated with 100uM H,0, and 20uM Ru360 showed shorter mitochondria than
axidative stress control. (b-d) Mitochondrial shape factor (b), length (c), and area (d) of single mitochondria. Nodes of Ranvier are

marked with a red "i".

*p<0.05 ***p<0.001, and ****p <0.0001. The error bars represent the standard error of mean; n=7 animals

and 29 roots; DMSO 7 roots, H,0, 7 roots, H,0,+5 uM Rui360 4 roots, H,0,+10uM Ru360 7 roots, and H,0,420uM Ru360 4 roots.

100uM H,0, [33]. Thus, our paradigm of stressed mito-
chondria in explanted roots may serve in the future to exam-
ine effects of antioxidative interventions on ATP levels.

We previously reported that alterations of mitochondria
during oxidative stress initiate at the nodes of Ranvier [17].
NaVs are abundantly present at the nodes of Ranvier and
are important for saltatory conduction [40, 41]. In MS
lesions, the expression of these channels is reported to be
altered [42-44]. In this line, during exposure to H,0,, block-
ing NaV with 100 nM TTX prevented the decrease in length

and increase in shape factor and area (Figures 1(a)-1(c)). In
contrast, 1 uM TTX along with H,0, led to the generation of
short mitochondria that display however large areas
(Figures 1(b) and 1(c)). A large mitochondrial area could
reflect either detrimental swelling [45, 46] or fusion [1, 35].
We speculate that in the group treated with H,0, and
1uM TTX, transient mitochondrial fusion followed by fis-
sion as reported by Liu et al. [45] may occur. Transient
fusion seems to be central for maintaining metabolism and
motility [45]. In this line, we observed that 1 yuM TTX could
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Ficure 4 Blocking mitochondrial Ca®* uptake with Ru360 prevents oxidative stress-induced loss of mitochondrial motility. (a)
Representative original images of all different experimental conditions: axon incubated with DMSO alone contained multiple moving
mitochondria that cover larger distances in the axon; axon incubated with 100uM H,0,, showed few motile mitochondria with short
track length; simultaneous incubation with 1004M H,0, and 5 or 20uM Ru360 led to mare motile mitochondria that move longer
distances; axon simultaneously incubated with 100 M H,0, and 10uM Ru360 showed nearly normal mitochondrial motility. (b-d)
Quantification of the percentage of motile mitochondria (a), track length (b), and tradk velocity (c). Nodes of Ranvier are marked with a
red “i". *p<0.05, **p<0.01, ***p<0.001, and ****p< 0.0001. The error bars represent the standard error of mean; n = 7 animals and 29
roots; DMSO 7 roots, H,0, 7 roots, H,0,+5uM Rui360 4 roots, H,0,+10 uM Ru360 7 roots, and H,0,+20uM Ru360 4 roots.

prevent the motility decrease and the loss of membrane
potential observed in mitochondria exposed to H,0,
(Figures 2(a), 5(a), and 5(b)).

Interestingly, 1 uM TTX alone induced an elevation of
the mitochondrial membrane potential when compared to
the untreated group. This may reflect a state defined as mito-
chondrial hyperpolarization [46, 47]. We hypothesize that
the presence of TTX and the consequent reduce Na® influx
may lead to a diminished activity of the ATP-dependent
Na"/K"-ATPase and induce an increase of ATP. Thus, in
our setup, hyperpolarization may be generated by the
ATP-consuming reverse action mode of complex V [46].

The exact mechanism underlying the elevation of the mito-
chondrial membrane potential with TTX alone will be part
of future investigations.

Subsequently to Na* overload, intra-axonal Ca®* accu-
mulation occurs via reverse action mode of NCX, as
described in other studies [13, 48]. During axonal Ca®* over-
load, mitochondria may uptake Ca** and function as an
intracellular Ca** buffering system [49]. However, excessive
intramitochondrial Ca** may affect mitochondrial function
and motility. It has been shown that dynamin-related pro-
tein 1 (Drp1), responsible for mitochondrial fission, as well
as Miro, connecting mitochondria via other proteins to
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Figure 5: Blocking axonal Na* influx with TTX prevents loss of mitochondrial membrane potential. (a) Representative images of axons in
the different treatment groups. The upper left image shows mitochondrial membrane potential in untreated condition. Oxidative stress led
to loss of mitochondrial membrane potential (upper right image) and a shift to green fluorescence. TTX prevented the H,0, effects (lower
left image). The lower right image shows that the application of TTX alone led to preserved mitochondrial membrane potential. (b) Data
represent normalized values of individual mitochondria to the mean of the control group (red/greenratio = 1 £ 0.0383). ****p <0.0001.
The error bars represent the standard error of mean; n=3 animals and 12 roots; untreated 3 roots, H,0, 3 roots, H,O,+1 uM TTX 3
roots, and 1uM TTX 3 roots.
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FiGure 6: Blocking mitochondrial Ca®* uptake with Ru360 prevents loss of mitochondrial membrane potential. (a) Representative images of
axons in the different treatment groups. The upper left image shows mitochondrial membrane potential under negative contral conditions
containing mitochondria with high (red) and low (green) mitochondrial membrane potential. Oxidative stress led to loss of mitochondrial
membrane potential (upper right image) and a shift to green fluorescence. Ru360 prevented the H,0, effects (lower left image). The lower
right image shows that the application of the Ru360 alone had no effects on mitochondrial functionality compared to control group. (b) Data
represent normalized values of individual mitochondria to the mean of the control group (red/green ratio = 1+ 0.0383). ***p <0.001. The
error bars represent the standard error of mean; n=5 animals and 20 roots; DMSO 5 roots, H,0, 5 roots, H,0,+10 guM Ru360 5 roots,

and 10 4M Ru360 5 roots.
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motor proteins, are directly or indirectly controlled by Ca**
[29, 50-52]. Moreover, mitochondrial swelling seems to be
Ca™ -related, too [53]. In this case, we demonstrated that
inhibition of Ca®* influx into mitochondria with 10uM
Ru360 completely prevents oxidative stress-induced reduc-
tion of mitochondrial length and all motility parameters
(Figures 3(b) and 4(a)-4(c)). Further, with 10 M Ru360,
we observed preserved mitochondrial membrane potential
(Fi s 5(a) and 5(b)). Thus, a rise in intramitochondrial
Ca™ concentration appears to contribute to mitochondrial
alterations during oxidative stress in our model. In the
motility experiments, we observed a biphasic effect of
Ru360 with similar absolute values for 5 and 20uM and a
clearly different response for 10 M Ru360. This biphasic
effect was observed in all investigated mitochondrial motility
parameters, ie., percentage of motile mitochondria, mito-
chondrial track length, and track velocity (Figures 3(a)-
3(c)).

Our data confirm previous studies that indicated that ion
concentrations show no linear correlation with mitochon-
drial morphology, motility, or membrane potential [54,
55). While a slight increase in mitochondrial Ca* concen-
tration may increase mitochondrial ATP production and
be beneficial [55], elevated levels of mitochondrial Ca**
may lead to the opening of the PTP with possible detrimen-
tal effects [56]. In addition, PTP opening does not only
depend on ion concentrations but also on ATP/ADP levels,
mitochondrial ROS, fatty acids, and magnesium levels
[57-59]. ROS function as signaling molecules, reversibly oxi-
dizing defined structures and thereby regulating transcrip-
tion or enzyme activity [6, 31, 60-62]. ROS regulates
among others the activity of MCU [63], as well as of
voltage-gated sodium channels, including NaV1.7 [64].
These potential cellular mechanisms to cope with increased
ROS should be kept in mind when dealing with oxidative
stress and ion alterations.

Ru360 is a specific inhibitor of the MCU [65, 66]. How-
ever, blocking MCU may not result in a complete inhibition
of mitochondrial Ca®* influx. As described in metabolically
inhibited cells [47], a reverse action mode of mitochondrial
Na*/Ca*-exchanger may enhance intramitochondrial Ca**
in stressed axons. Additionally, mitochondria closely inter-
act with the endoplasmic reticulum (ER), forming
mitochondria-associated membranes (MAMs) [67]. MAMs
play a role in the exchange of Ca®* or metabolites [68, 69],
mitochondrial fusion and fission processes, and induction
of apoptosis [70].

Mitochondria possess different mechanisms of Ca**
influx [71], but also of Ca®* efflux. The two most important
mechanisms are via mitochondrial Na*/Ca**-exchanger and
via 2H'/Ca®*-exchanger [71, 72]. Mitochondrial Ca®*
uptake is therefore most likely directly influenced by intra-
axonal Na* concentration because this affects mitochondrial
Ca* efflux mechanisms via mitochondrial Na®/Ca*-
exchanger. Interestingly, a reverse action mode is also
described for mitochondrial Na*/Ca* -exchanger in meta-
bolically inhibited cells [48]. Thus, blocking either axonal
Na* influx or mitochondrial Ca** uptake may likely indi-
rectly interfere with other pathways, for example via

Oxidative Medicine and Cellular Longevity

mitochondria-associated membranes (MAMSs) or mitochon-
drial Na*/Ca* -exchanger of a tightly regulated and inter-
connected Na*- Ca®*-homeostasis.

5. Limitations of the Study

One technical limitation of our setup was the restricted
number of experimental conditions that could be conducted
simultaneously within one experiment. The size of the incu-
bation chamber and the narrow time-window, in which
transplants could be imaged ex vivo, permitted only the
comparison of maximally five different culture conditions.
Therefore, using this setup, we were unable to compare
effects on mitochondria of different concentrations of inhib-
itors both in the absence and the presence of the oxidative
insult.

Therefore, using this setup, we were able to show only
effects on mitochondria of different concentrations of inhib-
itors in the oxidative stress paradigm and not in the absence
of H,0,.

Moreover, although our data indicate that modulation of
Ca*" influx with Ru360 protects mitochondria from oxida-
tive stress-induced damage, we could not define which
Ca®* concentrations are protective and which concentra-
tions are detrimental for mitochondria. Basically, we attested
that the explanted root model was not suitable for intra-
axonal Ca™ quantification using, for instance, Ca* -sensitive
dyes or roots from Ca®* reporter mice.

6. Conclusion

In conclusion, explanted murine spinal roots appear to be a
suitable model to investigate oxidative stress-induced ion
alterations affecting axonal mitochondria, in particular,
Na' and Ca®* overload. Using the model, we demonstrated
that inhibition of axonal Na® influx prevented oxidative
stress-induced alterations of mitochondrial morphology.
On the other hand, blocking mitochondrial Ca** uptake pre-
vented the oxidative stress-induced reduction of both mito-
chondrial motility and mitochondrial membrane potential,
which is crucial for ATP production.

The fact that H,0,-induced alterations in mitochondria
morphology and motility were prevented by pharmacologic
inhibitors of NaV and MCU indicates a direct participation
of Na* and Ca* on oxidative stress-mediated mitochondrial
changes. Further investigations in this direction are needed
to explore the therapeutic potential of the modulation of
Na' and Ca** ion channel for mitochondrial protection dur-
ing oxidative stress.
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Abstract Teriflunomide (TFIN) limits relapees in relapsing-remitting multiple sclerosis (REMS) by
reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydrooro-
tate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis.
Alterations of mitochondrial function as a consequence of adidative stress have been reported during
neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility
catised by oxidative stiess in peripheral axons. Here, we aimed to validate THN effects on mitochorn
dria and neuronal activity in hippocampal brain slice s, in which cellular distribution and synaptic
circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by
assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged
mitochondria in brain slices from the transgenic Thyl-CFF/COX84)S2Lich /T (mitoCFF) mice using
two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of
ATE, it preserved oxygen constmption and neuronal achvity in CNS tissue during cxidative stress.
Furthermate, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and
network mitochondria during oxidative stress. Re garding motility, TFIN accentuated the decrease in
mitochondrial displacement and increase in speed observed during oxidative stress. Importantly,
these effects were not associated with neuronal viability and did not lead to axonal damage. In
conclusion, during conditions of oxidative stress, TFI preserves the functionality of neurons and
prevents morphological and motility alterations of mitochondria.

Keywords: mitochondria; neurodegeneration; teriflunomide (TFN); oxidative stress; dihy droorotate
dehydrogenase (DHODH); multiple sclerosis; mitochondrial morphology; mitochondrial motility;
acute hippocampal slices; two-photon microscopy

1 Introduction
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease that
represents one of the most common non-traumatic incapacitating neurological diseases
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in young adults [1]. Pathologically, MS is characterized by inflammation, demyelination,
and neuroaxonal damage [1,2]. The MS course is generally characterized by an initial
relapsing-remitting MS (RRMS) phase, in which acute attacks are followed by complete or
partial recovery. Around 80-85% of the RRMS patients develops a secondary progressive
MS (SPMS) within 20-30 years after diagnosis, which is characterized by the progressive
accumulation of disability, generally independent of relapses [1,3]. About 10-15% of
patients manifest a primary progressive MS [PPMS] characterized by chronic progression
from the onset of the disease.

Although the exact disease pathogenesis remains unclear, it is assumed that an au-
toimmune attack mediated by autoreactive lymphocytes initiates the disease and leads
to neurodegenerative processes [4,5]. In this context, oxidative stress caused by the sus-
tained release of reactive oxygen and nitrogen species (ROS and NOS) by inflammatory
cells appears to be implicated in the damaging cascade inside the CNS [6-9]. Numerous
studies indicated that oxidative stress and mitochondria are the key players in neurode-
generation [9-11]. Moreover, mitochondrial alterations are considered one of the early
contributors of the disease that leads to virtual hypoxia, causing energy deficiency, ionic
imbalance, as well as tissue damage [12-14]. Hence, mitochondria could represent a target
for therapies [4,9,15-18].

Teriflunomide (TEN) is a disease-modifying drug (DMT) that has been recently ap-
proved as an oral therapy for patients with RRMS [19,20]. TEN is the active metabolite of
leflunomide, which has been widely used to treat rheumatic arthritis [21] and is known toex-
ert its effect by non-competitively and reversibly inhibiting dihydroorotate dehydrogenase
(DHODH). DHODH is a mitochondrial enzyme located on the inner mitochondrial mem-
brane that is involved in de novo pyrimidine synthesis [19,20,22,23]. DHODH-inhibition,
therefore, primarily leads to the regulation of rapidly dividing cells, reducing B and T cell
proliferation and modulating inflammation in MS [22,24,25]. Due to its immunomodulatory
potential, TFN has been implicated in RRMS.

Since TFN inhibits an enzyme that is closely associated with mitochondrial biology via
the respiratory chain, we hypothesized that treatment of MS patients with TFN may also
affect neuronal mitochondria. Although in MS, autoimmune attack is assumed to be one of
the key players lkeading to neurodegenerative processes [26], numerous studies indicate
that inflammation-induced oxidative stress in CNS leads to mitochondrial damage and
consequently, to neurodegeneration [9-11,27].

Recently, we showed that TFN could prevent alterations in mitochondrial morphology,
motility, as well as oxidation potential in peripheral spinal root explants during oxidative
stress [28]. Considering the central role of inflammation-mediated oxidative stress and
subsequent mitochondria damage in MS, we aimed here to determine whether TFN may
also affect mitochondrial functionality and dynamics in hippocampal brain slices, which
retain the complexity and physiology of central nervous system (CNS) structures and were
exposed to oxidative stress conditions [29]. Thus, we have investigated the effect of TEN
on synaptic transmission, metabolism, as well as on the dynamics of CNS mitochondria
in a model of murine acute hippocampal slices exposed to exogenous hydrogen peroxide
(H>O») that induces oxidative stress in CNS cells

2. Results
2.1. TEN Restores Tissue Respimation during Oxidative Stress

To understand the effects of TFN on the metabolic activity in the nervous tissue,
we investigated changes in oxygen partial pressure (pO,) levels in hippocampal slices at
baseline and after treatments with H,O, (200 uM) and H,O; (200 uM) + TEN (50 uM).
In vitro, changes in pO, correlates inversely with neuronal oxygen consumption and
cellular metabolism due to the constant supply with oxygen and glucose. To determine
POz, we performed a gradient descent of the oxygen electrode into the slice, which we refer
to as “steps’ from the surface with the increment of 20 um up to the core of the slice. A total
of 10 slices were analyzed in three independent experiments. As depicted in Figure 1C, the
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core was located between the depth of 240 and 280 um, after which the pO; level no longer
decreased (see methods). Thus, the depicted data covers only the descent to the core. Then,
the oxygen electrode was raised to a 100 pm depth from the surface of the slice and 15 min
of baseline activity was recorded. Immediately following the baseline recording, the H,O,
or H;O, + TEN treatment in an artificial cerebrospinal fluid (aCSF) was applied for 30 min.
Again, the steps were performed from the surface of the slice towards the core.

B
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. ad
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h Vig
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Figure 1. Electrophysiclogy recordings of pO; and local field potential in acute hippocampal slice:
(A) Left, schematic representation of hippocampal slice and the placement of stimulation, recording,
and pO; electrodes. The Schaffer collaterals were electrically stimulated in the stratum radiatum
of the cornu ammonis (CA) and the O; recording and population spikes (PS) were simultaneously
obtained between CA3 and CA1 in close vicinity. Middle upper, representation of 400 pM-thick
brain slice in interface chamber which is supplied with carbogen from surface and bottom. The pO;
decreases with each step inside the tissue up to the core (not shown in the figure), after which it
starts increasing (due to the distance from the source of oxygen, ie., from the surface and the bottom)
providing a typical depth profile, as shown in middle lower figure—the pO; measurement steps at
the interval of 20 um from the surface to the core; (B) a typical population spike in a paired pulse at
baseline, with HyO; and HO; + TFN treatment; (C) fold change in the pO; at tissue depth in the
interval of 20 pm with respect to the baseline; (D) fold change in pO; at the core with respect to the
baseline recording; (E) the paired-pulse ratio (PPR) of PS2 and PS1 with respect to the respective
baseline recordings between H,O; treatment and H>O; + TEN treatment. Graphs are shown in Tukey
boxplots. Inside the box, “+" delineates the mean. *p < 0.05,**p < 0.01

Figure 1A shows the depth profile of the O steps with the corresponding partial
pressures of oxygen. At the slice surface, pO, of ~680 mmHg corresponded to carbogen.
Figure 1C,D shows the fold change in the pO; with respect to the baseline measurement.
We observed that the pO; increased near to the core, pointing to an increase in pO, due
to a reduced oxygen consumption in H;O,-stressed tissue (1.09 £ 0.16-fold (mean =+ SD)
relative the baseline). In contrast, the pO, decreased towards the core when TFN treatment
was added (H,O, + TEN; 0.93 + 0.04 fold (mean =+ SD) relative to untreated), indicating
an increase in the consumption of oxygen in the presence of TFN with respect to HO,
treatment alone (Figure 1D,E).
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2.2 TFN Prevents Oxidative Stress-Mediated Depression of Symaptic Transmission

Furthermore, we investigated the effect of oxidative stress and TFN application
on synaptic transmission in acute hippocampal tissue. For that, stimulus-induced lo-
cal field potential (LFF) signals were recorded in CAl while stimulating the Schaffer
collaterals using a paired-pulse facilitation protocol (see methods). The amplitudes of
the population spike responses during baseline and treatment with HxO, (200 uM) or
Hz05 (200 pM) + TEN (50 pM) were measured.

Figure 1B shows a typical population spike (P5) in response to a paired-pulse stimula-
tion. The amplitudes of the population spikes were measured by subtracting the max ima
and minima of the spike. Then, we compared the short-term facilitation,/ paired-pulse ratio
{PPR}, which is the ratio of the amplitude of the second population spike (P52} to the first
population spike (F51) and normalized to the baseline recordings. We observed a depres-
sion of PFR in H,0,-stressed brain slices treatment (0.88 £ 0.14-fold (mean + 5D} relative
to the baseline}, while the presence of TFN increased the PFR (Hz0» + TFN treatment
{12 £ 0.62-fold (mean =+ SD)) relative to the baseline) (Figure 1E).

2.3. TEN Does Not Prevent Oxidative Stress-Mediated ATP Decrease in Acute Hippocampal Slices

To understand the effect on the energy metabolism of mitochondria, we investigated
the effect of TFN on ATP levels in the acute hippocampal slices exposed to oxidative stress.
Woe observed that the ATF amount in the slices treated with HaOb significantly decreased
{0.64 £ 0.16-fold (mean + SD)) with mspect to untreated controls. The treatment with TFN
along with HzOz did not affect or restore the ATP levels (0.65 + (0.03-fold (mean + 5D)).
(Figure 2).
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Figure 2. ATP levels in brain tissue exposed to oxidative stress with/out TFN treatment. Graphs are
expressed as fold change with respe ct to the baseline and shown in Tukey boxplots. Inside the box,
‘+" delineates the mean. *p < 005 and ** p < 0.0L

24, TFN Prevented Oxidative Stress-Induced Decranse in Mitochondrial Area in Acute
Hippocarmpal Slices

We have shown previously that in peripheral nerves, mitochondria exposed to oxida-
tive stress are affected even prior to the axonal damages [25,30] and that TFN prevents
these mitochondrial alterations [28]. To monitor how TFN affects changes of mitochondria
morphology during oxidative stress within the CNS, hippocampal slices from transgenic
Tg(Thy1-CFF/COX8A)S52Lich/T mice (mitoCFF mice) that express cyan fluonescence pro-
tein {CFP) in neurcnal mitochondria were imaged before (baseline image) and after the
treatment with H»O» or H»O» + TEN. Then, the values of treated slices were normalized
with their respective baseline images.
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We observed that H;O, reduced mitochondrial length (0.96 + 0.37-fold (mean =+ SD))
and that this effect was not abolished in the presence of TFN (0.97 + 0.34-fold (mean =+ SD))
(Figure 3C). However, the HOz-induced reduction of mitochondrial area was partly pre-
vented in presence of TEN treatment (data shown as mean = SD: untreated: 0.97 =+ 0.56-fold;
H;0,. 0.82 =+ 0.48-fold; and H,O, £ TEN: 0.89 + 0.47-fold) (Figure 3D) (Tables 1 and 2).
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E eee €35 T

Fold change
to 0 m

e
e o e

(area relative
e e

I
CO

3%

Figure 3. Mitochondrial morphology in brain tissue exposed to oxidative stress with/out TFN:
(A) Representative confocal image of murine hippocampal section from mitoCFP mice. The fluores-
cence of cyan fluorescence protein in mitochondria is shown in green; (B) representative two-photon
microscope image of murine hippocampal section from mitoCFP mice. Mitochondria are shown in
green; fold change in (C) mitochondrial length and (D) mitochondrial area with respect to 0 min
slice. Graphs are expressed as fold change with respect to the baseline and shown in Tukey boxplots
Inside the box, “+" delineates the mean. **** p < 0.0001.

Table 1. Mitochondrial length in acute hippocampal slices.

. All mitochondria Rod Puncta Network Large
8 Mean + SD Mean + SD Mean + SD Mean + SD Mean + SD
Untreated ~ 1.04+0.40 | 112:0.52 |: 1.02:0.43 0.96+0.45 |: 098045 |
H:0: 096:036 T |:  090:040 7 |} 101043 0.77+:050 7 l 1.08:0.43 l,i,
H20:+TFN 0.97+0.34 0.88+0.41 1.00+0.36 0.98+0.45 0.94+0.33
4+ p <0001, *** p < 0.0001.
Table 2. Mitochondrial area in acute hippocampal slices.
% All mitochondria Rod Puncta Network Large
i Mean + SD Mean + SD Mean + SD Mean +SD Mean + SD
Untreated  0.97+056 | 1.04:0.66 |: 1014065 |i  0.85:0.60 [: 0.61:0.48 [:
Hz0: 081:048 ¥ | |: 061:039 ¥ |: 091:056 Y | 050:044" l 1.05:0.76 ¥ |
H20:+TFN 0.89+0.47 v 0.63+0.40 v 0.960.51 0.92+0.62 0.91+0.60 v

*p < 0.01, % p < 0.000L



64

Int. J.Mal. Sd. 2022, 23, 1538

60f 17

2.5. TEN Did Not Prevent Oxidative Stress-Mediated Alterations in Mitochondrial Motility in
Acute Hippocampal Slices

To monitor effects of TFN on oxidative stress-induced motility alterations, we obtained
time-lapse images of the slices before (baseline image) and after the treatment with H;O,
or H;O, + TEN, as mentioned above. Mitochondrial motility-related parameters of treated
slices were normalized to their respective baseline images as explained in the methods.

In our setup, the H,0O,-induced decrease in mitochondrial displacement was further
decreased in the presence of TFN (data shownas mean + SD: H;0; treated: 1.06 =+ 0.66-fold
and H,O; + TEN treated: 0.88 £ 0.59-fold) (Figure 4A). Similarly, the H;O»- induced increase
in mitochondrial speed was further increased by TFN treatment (H;O5. 0.78 + 0.40-fold and
H,0, + TFN: 0.94 & 0.56-fold) (Figure 4B) (Tables 3 and 4).
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Figure 4. Mitochondrial motility in brain slices exposed to oxidative stress with the presence /absence
of TEN: Fold change in (A) mitochondrial displacement and (B) motility speed with respect to 0 min
slice. Graphs are expressed as fold change with respect to the baseline and shown in Tukey boxplots
Inside the box, “+" delineates the mean. “—" horizontally aligned with HyO; and TFN denotes no
Hy0; or TEN treatment. * p < 0.05,**p < 0.01, and **** p < 0.0001.

Table 3. Mitochondrial displacement in acute hippocampal slices.

Disol i All mitochondria Rod Puncta Network Large
TEpacsInen Mean + SD Mean +SD Mean + SD Mean + SD Mean + SD
Untreated  1.18:0.78 |- 1.2840.80 1.18:055 [ 1.18+0.93 1.65+1.77
H0: 1062066V |11 1244078 |1 1072060 V| 178216 | | 1024124 l 4
H:0+TFN  0.88+059 v l 0414054 ¥ l 101056 v 0904060 v ¥ 074:1.10 ¥
*p< 0.0 * p <001, **p < 0,001, and *** p < 0.0001.
Table 4. Mitochondrial speed in acute hippocampal slices.
S All mitochondria Rod Puncta Network Large
I Mean + SD Mean + SD Mean + SD Mean + SD M +SD
Untreated ~ 0.66:045 | : 0.96+0.34 |- 1.03+0.36 |: 0.98:0.80 | : 1.18+1.29
H:02 078+040 ¥ |:), 136+073 Y 1.00:035 Y |5: 1042073 Y | 1040102 |-
H:0+TEN ~ 094:055 ¥ v 1352230 1.06:039 ¥wv 121:103 ¥  075:091 ¥ ¥

“p <005, * p <0.01, *** p < 0.0001.

2.6. TEN Prevented the Oxidative Stress-Promoted Decrease in Length of Network Mitodhondria
and Size of Puncta-Shaped and Network Mitochondria in Acute Hippocampal Slices

We know that mitochondria are dynamic organelles that can change their shape, rang-
ing from punctuate structures to tubular networks depending on the cellular needs. Hence,
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we processed the images and segmented the fluorescent mitochondria into four different
morphological categories: rod-shaped, puncta-shaped, network, and large mitochondria.
Morphological parameters of mitochondria in treated slices were renormalized to their
respective baseline images (Figure 5).

Rod

Puncta Network Large

Figure 5. Morphoty pes of mitochondria in murine acute hippocampal slices during oxidative stress
with/out TFN. Representative segmented image of rod-shaped, puncta-shaped, network, and large
mitochondria respectively (A-D). Representative image of an individual rod (E), puncta (F), and
network (G) mitochondria.

To evaluate the morphological parameters of mitochondria in treated slices, data
were normalized to their respective baseline images. We showed that oxidative stress
reduced the length of rod-shaped, network, and large mitochondria, while the addition
of TNF prevented these alterations in network and large types but not in rod-shaped
mitochondria (Figure 6A-D) (in rod-shaped mitochondria shown as mean + SD; untreated:
1.12 + 0.52 length and 1.04 & 0.66 area; H,O,: 0.90 + 0.41 length and 0.62 + 0.39 area; and
H0; + TFN: 0.88 = 0.41 length and 0.64 & 0.40 area) (Tables 1 and 2).

TEN also prevented H;O,- induced area reduction in puncta, network, and large
(here only a trend) forms (Figure 6E-H). Again, in rod-shaped mitochondria, TEN has no
effects on H,O,-promoted size reduction. In the case of puncta-shaped mitochondria, there
was no difference in the length (data shown as mean =+ SD: untreated: 1.03 = 0.43; H05:
1.01 + 0.43; H;O; + TFN: 1.00 = 0.36); however, mitochondria became smaller (data shown
as mean =+ SD: untreated: 1.02 £ 0.65; H,O,: 0.91 + 0.57) after exposure to HO,. TEN-
treatment prevented the reduction of mitochondrial size (0.96 £ 0.52). Similarly, TFIN- treat-
ment could prevent reduction in length and size of network-shaped mitochondria induced
by H>0; (data shown as mean =+ SD: untreated: 0.96 =+ 0.46 length, 0.85 + 0.60 area; HO5:
0.77 = 0.51 length, 0.51 =+ 0.45 area; H,O; + TFN: 0.99 £ 0.45 length, 0.93 £ 0.62 area). In
contrast, H,O, induced the increase in length and size of large mitochondria (data shown
as mean *+ SD: untreated: 0.98 + 0.46 and 0.61 =+ 0.48 area; H,O,: 1.08 + 0.44 length
and 1.05 £ 0.76 area). TFN prevented the oxidative stress-related increase in length but
not the area of large mitochondria (data shown as mean + SD: 0.95 + 0.33 length and
0.91 + 0.61 area) (Tables 1 and 2).
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Figure 6. Morphological alterations in different mitochondrial morphotypes during induced oxidative
stress with /out TFN. Fold change in length of rod-shaped (A), puncta-shaped (B), network (C), and
large mitochondria (D) during oxidative stress with/out TFN relative to 0 min slices. Fold change in
area of rod-shaped (E), puncta-shaped (F), network (G), and large mitochondria (H) during oxidative
stress with/out TFN relative to 0 min slices. Graphs are expressed as fold change with respect to
the baseline and shown in Tukey boxplots Inside the box, “+’ delineates the mean. ‘—" horizontally
aligned with HO, and TEN denotes no H,O, or TFN treatment. ** p < 0.01, *** p < 0.001, and
W p < 0.0001

2.7. TEN Enhanced Mitochondrial Speed in Puncta-Sh Mitochondria in Acute Hi, 1
Slices Exposed to Oxidative Stress pest el ppocampe

Similarly, we investigated the motility parameters using the time-lapse images (Figure 7).
We observed that TFN reduced the displacement of all mitochondrial forms as shown in
Figure 7A-D (data shown as mean =+ SD: untreated: 1.08 + 0.8 (rod), 1.18 + 0.55 (puncta),
1.19 &+ 0.93 (network), 1.65 = 1.77 (large); H>O, + TEN: 0.42 & 0.55 (rod), 1.01 £ 0.57
(puncta), 0.91 =+ 0.60 (network), and 0.75 = 1.11 (large)). Additionally, in case of rod-
shaped and network mitochondria, it accentuated the effect of H,O, (data shown as
mean = SD: 1.08 £ 0.68 (rod), 1.08 & 0.60 (puncta), 1.78 & 2.16 (network), and 1.02 £ 1.25
(large)) (Table 3). Furthermore, TFN enhanced the effect of H>O,, increasing the speed in
puncta-shaped and network mitochondria and decreasing speed of the large morphoty pe
(Figure 7E-H) (data shown as mean =+ SD: untreated: 0.73 + 0.38 (rod), 078 =+ 0.43 (puncta),
0.44 & 0.31 (network), 1.18 £ 1.29 (large); H>O2: 0.85 & 0.60 (rod), 0.91 % 0.37 (puncta),
0.94 £ 0.65 (network), 1.05 = 1.03 (large); H,O, + TEN: 0.56 £ 0.51 (rod), 1.07 £ 0.39
(puncta), 1.01 & 0.76 (network), and 0.75 = 0.91 (large)) (Table 4).
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Figure 7. Motility alterations in different mitochondrial morphotypes during induced oxidative stress
with /out TFN: Fold change in displacement of rod-shaped (A), puncta-shaped (B), network (C), and
large mitochondria (D) during oxidative stress with/out TFN relative to 0 min slices. Fold change
in transportation speed of rod-shaped (E), puncta-shaped (F), network (G), and large mitochondria
(H) during oxidative stress with/out TFN relative to 0 min slices. Graphs are expressed as fold
change with respect to the baseline and shown in Tukey boxplots. Inside the box, ‘+" delineates the
mean. ‘'~ horizontally aligned with H,O, and TFN denotes no HyO, or TEN treatment. * p < 0.05,
**p <0.01,**p < 0,001, and ¥*** p < 0.0001

3. Discussion

Mitochondrial alteration during inflammation is one of the major factors that con-
tribute to neurodegeneration in inflammatory diseases such as MS. Thus, besides the
importance of controlling inflammation, MS treatments should also aim at protecting mito-
chondria from damage [17]. In this context, we have investigated the therapeutic potential
of the DHODH inhibitor TEN, an approved drug for the treatment of RRMS [19,20], on
both neuronal and mitochondrial protection. Using a model in peripheral root explants,
we have previously shown that mitochondria become shorter and rounder, and were less
motile, during oxidative stress [28,30]. Importantly, using this model of peripheral nerves,
we recently demonstrated that TEN could prevent the morphologic alterations of axonal
mitochondria caused by oxidative stress [28]. To understand the effect of TFN on neuronal
activity and neuronal mitochondria within the CNS, we used here acute hippocampal sec-
tions from transgenic mice that express CFP in neuronal mitochondria. To induce oxidative
stress on neurons, slices were treated with H,O,, and the effects of TFN on H;O,-mediated
neuronal and mitochondria changes were investigated. In the CNS slice model, TFN was
used at a concentration of 50 WM. Using peripheral spinal root explants, we have already
previously shown that TEN prevented oxidative stress-induced mitochondrial alterations at
1 uM concentrations [28]. However, since in the CNS sections the TFN dissolved in DMSO
had to penetrate to depths of 50-100 um, 50 uM of TFN was used to ensure sufficient
diffusion into the tissue slices.

Our findings with electrophysiological recordings of pO; and LFP revealed that TEN
treatment could prevent the reduction of oxygen consumption and synaptic transmission
upon the induced oxidative insult. An increment in pO; with respect to the baseline
recording during oxidative stress (Figure 1C,D) suggested a decrease in the consumption
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of oxygen, and hence, slower oxidative metabolism in the tissue. TFN could prevent this
effect (Figure 1D), as pO, decrease corresponds to increased oxygen consumption, and
hence, suggests a restoration of the metabolic activity.

In addition, in the tissue exposed to oxidative stress we observed a decrement in LFP,
clearly signaling the depression of neuronal firing. This is in line with the report of Ohashi
etal,, 2016, which showed H;0O;-induced reduction in neuronal excitability in ventral horn
neurons [31]. The depression in neuronal firing was prevented by TFN (Figure 1E). Impor-
tantly, inhibition of DHODH by TFN does not seem to cause depletion in neuronal activity.
DHODH is associated with the mitochondrial respiratory chain, and according to Scialo
etal., 2017, DHODH reduces ubiquinone in the process of the conversion of dihydroorotate
during pyrimidine biosynthesis. Evidence shows that when ubiquinone becomes over-
reduced, it can cause reverse electron transfers that are associated with excessive ROS
production and causes Complex V to stop producing ATP [32]. Thus, DHODH-inhibition
with TFN might affect mitochondrial respiratory chains/ electron transport chains (ETC)
and preserve neuronal functions. Moreover, we could not discount that these observations
may be mediated by DHODH-independent effects of TFN, since it has been well established
that TEN can inhibit different kinases at concentrations higher than 50 uM [20]. In our
model, TEN does not cause any neuronal or tissue damage, however, based on the recent
reports of existence of the de novo pathway for pyrimidine synthesis in the adult brain, we
cannot exclude that in other contexts, TFIN may affect neuronal cells by altering pyrimidine
biosynthesis, [33].

Additionally, we observed that the amount of ATP decreases during oxidative stress,
as already reported in the context of neuroinflammation [26,34]. ATP depletion could
not be prevented by TFN in our set-up (Figure 2). However, diminished amounts of
ATP do not appear to affect neuronal activity. This could mean that with TFN treatment,
ATP synthesis has decreased either in response to acute stress or as a result of increasing
mitochondrial movement. Another possible explanation could be that ATP consumption
increased without negatively affecting the mitochondrial electron transport chain (ETC).

Furthermore, looking at the mitochondrial dynamics, we observed a reduction in
mitochondrial length and area in acute hippocampal slices exposed to oxidative stress
(Figure 3C,D), which is in line with our previous observations in peripheral root ex-
plants [28,30]. TEN reduced the length of mitochondria but not their area, implying
changes in mitochondrial morphology, but not necessarily fragmentation. In consistent
with this, a segregated morphological analysis of puncta, rod, network, and large mito-
chondria indicated an increase in networks rather than fragmentation (Figure 3C,D and
Figure 6A-D). Thus, in consistent with our reports on peripheral root explants [28], TEN
could prevent both oxidative stress-induced reductions in the mitochondrial area and frag-
mentation of mitochondria in acute brain slices. However, within the CNS, TEN promoted
a reduction in mitochondrial displacement [28]. Interestingly, an increment of speed was
observed during both oxidative stress alone and with TFN treatment along with oxidative
stress (Figure 4A B), suggesting the differences in mitochondrial dynamics in different
tissue types.

To better understand which alterations of mitochondrial dynamics occur during the
treatments, we categorized mitochondria in four different morphological categories. It is
wellestablished that, depending upon the cellular demand, mitochondria undergo fusion,
fission, or biogenesis, and adopt a variety of forms or stages as part of mitochondrial
homeostasis [35]. Mitochondrial shape could reflect different functional stages associated
for instance with ATP generation, mitochondrial DNA segregation, calcium buffering,
and the removal of damaged portions from mitochondria or mitophagy [36—41]. In this
context, we observed a decrease in the length and area of rod-shaped and network mi-
tochondria during oxidative stress (Figure 6A,C,E,G), suggesting that mitochondria are
undergoing fragmentation, probably to eliminate depolarized mitochondria as a com-
pensatory mechanism to increase the number of healthy functional mitochondria during
stress situations [41]. On the other hand, the network mitochondria that are formed due
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to mitochondrial fusion [37,39,40] (Figure 5C,G) are important for buffering the damages,
to get rid of the damaged portions, and distribution of functional portions [40,41]. The
formation of large networks in response to stress was demonstrated in 2009 by Tondera
etal. Importantly, the authors showed that this process of stress-induced mitochondrial
hyperfusion (SIMH) is associated with an elevated production of mitochondrial ATP and
represents an adaptive pro-survival response against stress [42]. Van der Bliek, 2009, further
suggests that the fate of mitochondria is determined by the level of stress. While low stress
might lead the mitochondria into SIMH, high and prolonged stress might promote the
apoptotic fragmentation path [35]. Thus, TEN seems to reduce stress induced by H>O; on
neurons via DHODH-inhibition. The changes affecting network mitochondria may also
lead to deficient ATF, also observed under oxidative stress, since, depending upon energy
demand, mitochondria may form a network and get involved in ATP synthesis [36,38].

Additionally, during oxidative stress, the length and area increased for large mito-
chondria (Figure 6D,H), suggesting mitochondrial swelling. In general, large, and intensely
fluorescent mitochondria indicate mitochondrial swelling and mitochondria undergoing
mitophagy [37,39] (Figure 5D). Thus, the observed oxidative stress-mediated mitochondrial
fragmentation and swelling within the CNS tissue suggests that mitochondria are unable to
recover and do undergo degradation [37,39]. The addition of TFN during oxidative stress
prevented oxidative stress-induced reduction in size of puncta-shaped mitochondria, and
the reduction of both the length and size of network mitochondria (Figure 6B,EG). It could
be that TEN either prevented mitochondrial fission or promoted mitochondrial fusion to
buffer the damages during oxidative stress. Moreover, the polarization of mitochondria
seems to be maintained, as depicted by their ability to fuse [41] and form networks with
TEN treatment. This is consistent with the findings by Miret-Casals et al. on mitochondrial
fusion and elongation during DHODH-inhibition and limitation in the respiratory chain in
proliferating cells [43].

Regarding mitochondrial motility, we observed during oxidative stress a significant
reduction in the displacement of puncta-shaped mitochondria (Figure 7B), and an incre-
ment in the speed of rod-shaped, puncta-shaped and network mitochondria (Figure 7E-G),
implying short distance mitochondrial transportation, in consistent with our observation
in peripheral root explants [28]. However, oxidative stress induced comparatively faster
mitochondrial movement with respect to the untreated slices (Figure 7E-H). This observa-
tion differs from the slow transport observed in peripheral root explants upon oxidative
stress [25]. As we observed an increase in mitochondrial networks, the mitochondria that
might fuse together to form networks might not need to travel longer and faster. TEN did
not prevent these alterations but, apparently, induced an additional decrease in displace-
ment and increase in the speed of puncta-shaped mitochondria, probably because they
were forming the networks. Moreover, it has been reported that other factors, such as the
depolymerization of cytoskeletal systems, may lead to impaired mitochondrial transporta-
tion. In this context, Zhang etal., 2018, demonstrated a H>O,- induced depolymerization of
B-actin filaments in neuronal cell lines incubated for 24 h with 200 uM H;0O; [44]. Such an
effect is, however, very improbable in our experimental brain slices, which were incubated
for only 30 min with H;O».

Our study presents several limitations. Although the concentrations of HO; and
TEN added to the brain sections were known, and in the case of H,O, could be considered
as unphysiological, the exact concentration of both substances at the depths at which we
imaged the slices remained undetermined and are probably much lower. Moreover, the
measurement of activity of DHODH in our experiment would have given more confirmative
value to our existing results. Furthermore, we performed a two-dimensional analysis of
the mitochondria, which may lead to errors in the estimations of shape and motility.
However, since images under H;0; stress and/or TEN conditions were corrected for
time and compared to their corresponding baseline images, we consider that the errors
introduced by the 2D analyses were minimized. An additional limitation is that, due to
extremely high amounts of measured mitochondria, the semi-automated analysis could
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not be accurately confirmed by manual analysis. Additionally, we were unable to precisely
determine mitochondrial boundary for the measurement using manual analysis, unlike in
pixel-based measurements performed by the semi-automated analysis.

In summary, preventing the depletion of the oxidative metabolism and the alterations
in mitochondrial motility might contribute to the preservation of neuronal firing in neuronal
tissue treated with TFN during oxidative stress. We believe that the depletion of ATP does
not necessarily mean energy failure but may reflect an enhanced consumption of ATP or
slight shortcoming of ATP synthesis, while still maintaining the ETC as well as neuronal
activity. In this context, as mentioned before, TFN may not negatively affect ETC when
applied alone or together with hydrogen peroxide [45], but it seems to efficiently buffer
mitochondrial damage, which could protect mitochondria against degradation. Thus, TEN
seem to protect CNS tissue from oxidative damage. The protective effect seems to be
mediated by its ability to prevent decrease in oxygen metabolism and neuronal activity,
and its effect on mitochondrial dynamics.

4. Materials and Methods
4.1. Experimental Design and Settings

All the experiments were performed on the acute hippocampal slices of murine brain.
The investigation of oxygen metabolism and synaptic transmission was performed simulta-
neously in an interface recording chamber with a continuous flow of carbogenated aCSE
After the initial baseline recording, the slices were treated with TEN and/or H,O, and
the second recordings were performed. For the analysis, after-treatment recordings were
normalized to the baseline recordings. For the ATP assay, we treated acute hippocampal
slices in continuously carbogenated HEPES aCSE For the investigation of mitochondrial dy-
namics, we prepared acute hippocampal slices from mitoCFP mice brains and continuously
supplied carbogenated HEPES aCSF to the slices. Mitochondrial images were taken using
a two-photon microscope. Initial control images of mitochondria in the region of interest
were captured. Then, the second images of the same region of interest were captured after
the treatment. After-treatment analyses were normalized to the initial control images.

4.2. Experimental Animals and Ethics Statement

WT C57BL/ 6 mice were obtained from the Research Institute for Experimental Medicdne—
Forschungseinrichtungen fiir Experimentelle Medizin (FEM) at the Charité- Universitdtsmedi-
zin (Berlin, Germany). Breeding of transgenic Tg(Thy1-CFP/COX8A)S2Lich/] mice (mi-
toCFP mice) that express cyan fluorescence protein (CFP) in neuronal mitochondria was
conducted at the FEM under specific pathogen-free conditions. All experimental proce-
dures were conducted in strict accordance with Directive 2010/63/EU of the European
Parliament and of the Council of 22 September 2010 and were approved by the Regional
Animal Study Committee of Berlin, (LAGeSo-Landesamt fiir Gesundheit und Soziales
Berlin), approvals ID: G0101-14 and T0002-10.

4.3. Preparation of Acute Hippocampal Sections

A quantity of 400 pm-thick acute brain slices were prepared based on the modified
protocol from Nitsch et al., 2004 [29]. Hippocampal sections were obtained by slicing the
2/3rd of the caudal cerebral region. The intermediate hippocampal sections were used for
the imaging experiments, as sections with comparable sizes could be generated from this
region. Once the slices were obtained, the hippocampal region was dissected, preserving
the hippocampal formation using the scalpel and the light microscope.

Brain slices were continuously supplied with carbogen (95% O, and 5% CO;) in
HEPES artificial cerebrospinal fluid (HEPES aCSF) (in mM: 92 NaCl, 2.5 KCl, 1.25 NaH,POy,
30 NaHCO;, 20 HEPES, 25 Glucose, 5 Sodium ascorbate, 2 Thiourea, 3 Sodium pyruvate,
2 MgCl,, 2 CaCl,). The solutions were freshly prepared, and the pH adjusted between 7.3
and 74. The whole procedure was performed in temperatures between 34 and 37 °C.
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To induce oxidative stress, acute slices were incubated for 30 min with hydrogen
peroxide (Hz0;) dissolved in aCSE In our previous studies, 200 pM H; O3 induced mito-
chondrial damage [30], while 50 uM Hz20: induced only mitochondrial alterations [28].
Giilden et al, 2010, reported minimal cytotoxicity in cells cultured with 100 or 200 pM
HzOs for 1 h [46]. Hence, in our CNS model, we used 100 pM H;O» for incubation in
submerged chamber during mitochondrial imaging experiments to ensure diffusion of
H30; inside the 400 pm-thick brain slices. Since, H>(O> concentrations are known to quickly
decrease after short period of time [46,47], 200 pM H;O5 was used in the interface chamber
during the electrophysiology experiments to ensure adequate HyO» availability to the slices
in air-water interface, unlike in submerged chamber where the slices are inside the solution.
The other treatment groups were DMSO (0.0005%), HzO; (100 uM) +DMSO (0.0005%), and
HzO5 (100 pM), along with TEN (50 uM) and TFN (50 uM) alone. DMS0 was used as a
vehicle control for TEN.

4.4, Simultaneous Electrophysiology and Oxygen Partial Pressure (pO2) Recordings in
Hippocarmpal Slices

Hippocampal slioes (400 pum thickness) were prepared using a Leica VT1200 5 vi-
bratome (Leica, Wetzlar, Germany), as mentioned above. The slices were stored in an
interface chamber and continuously supplied with freshly prepared and carbogenated
aC5F (in mM: 129 NaCl, 21 NaHCOy, 10 Glucose, 3 KCl, 1.25 NaH,PO,, 1.6 CaCl,, and
1.8 MgCly) for at least 90 min before the investigation (temperature ~34 “C). To induce
oxidative stress, 200 pM H:(s was added to the bath solution for 30 min.

Stimulus-induced population spikes (PS) and pO; were recorded using a glass micro-
electrode filled with 154 mM NaCl and a Clark-style oxy gen electrode (tip diameter: 10 pm;
Unisense, Aarhus, Denmark), respectively. Both electrodes were placed in the stratum
pyramidale of the CA1 area while simulation (2 pulses of 100 ps duration with a 50 ms
interval every minute) was performed with a stimulation electrode placed in the stratum
radiatum between CA3 and CA1 using a Master 8 system (A.M.PL, Jerusalem, Israel).
To measure changes in neurcnal respiration, the pO; electrode was advanced in 20 pm
steps through the slices using a calibrated micromanipulator (Marishige, Tokyo, Japan).
In the in vitro condition, pO, distribution depends on cellular Oy-consumption since O,
diffusion and solubility are constant [48]. Typically, a vertical Or-gradient can be measured,
from the surface till the core of the slice, the depth in which pOs ceases to decrease. For
electrophysiology measurements, baseline measurements were performed at 100 pm below
the tissue surface for 15 min before and after 30 min treatment with H,O, and H,O, + TEN,
Analog signals were digitalized using a Powerl401 and recorded using Spike 2 software
{Cambridge Electronic Design Limited, Cambridge, UK) for the recording. Offline analysis
of the data was performed using Spike2.

4.5, Adenosine Triphosphate (ATP) Assay

After the treatment of the slices, ATF assay was performed using the Abcam ATP
assay kit (Abcam, ab83355) according to the manufacture’s protocol. Briefly, the tissue
was homogenized in ATP assay buffer and centrifuged at 13,000 g for 5 min. Then, the
supernatant was collected and deproteinization with perchloric acid (PCA) was performed.
ATF standards, in the range of 0 to 1 nmol, as well as samples, were then incubated with
reaction-mix for 30 min. The flucrometric detection was performed at 535/587 nm in a
Plate reader {G]aMaxd:'—Multi Detection System, Promega Corporation, Madison, WI, USA).
The calculation of the amount of the ATP in each slice was performed after the subtraction
of the sample background and with the multiplication of the dilution factor, as described in
the protocol by the manufacture.
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4.6. Mitochondrial Imaging Using Two-Photon Laser Scanning Microscope in Acute
Hippocampus Sections

To image mitochondria in slices prepared from the mitoCFP transgenic mouse (Tg{Thy1-
CFP/COX8A)S2Lich/]), an 830nm excitation wavelength and photomultiplier at 525 nm
with 50 nm bandwidth was selected.

At first, a region of interest (ROI) was selected and a time-lapse image stack of 30 steps
with intervals of 3.6 s was obtained. Then, aCSF along with treatment was added without
moving the objective or the holding chamber. A fter 30 min, the same region was imaged
again with same setting. This procedure was repeated with each single treatment group.

4.7. Image Analysis of Mitochondrial Morphology and Dynamics in Acute Hippocampal Slices

Huygens deconvolution Scientific Volume Imaging software (SVI, The Netherlands)
was applied for the restoration of mitochondrial images obtained with two-photon mi-
croscopy. Images were opened in Huygens professional X11 and enabled automatic compu-
tation of point spread function (PSF). Then, the images were inspected with the logarithmic
vertical mapping function. Once, the PSF was computed, the Classic Maximum Likelihood
Estimation (CMLE) algorithm was applied to obtain effectively deconvolved images.

were corrected for the background noise and image movement using Fiji Is Just
Image] (Fiji) software [49,50]. The correction of the movement of the images was conducted
using StackReg plugin [51]. After the preprocessing of the images, segmentation of mito-
chondria was preformed using Trainable Weka segmentation plugin in Image J software.
All the automation for the analysis was controlled and supervised by the experimenter.

For morphology analysis, the corrected images were first segmented with Trainable
Weka segmentation plugin in Image J software [52]. A few mitochondria and backgrounds
were selected in each image for the plugin to train itself. However, the segmentation output
was not satisfactory; subsequently, the plugin was given more examples of mitochondria
and backgrounds. Then, the probability map of the segmented mitochondria was used
for the analysis with Volocity 6.3 software (Perkin Elmer, Rodgau, Germany). In Volocity
software, the mitochondria were identified based on the fluorescence intensity threshold
against the background and noises, and the measurements for the length and area of the
selected objects were extracted.

For motility analysis, from the corrected images, five random ROIs within the image
were selected. Then, each ROI was separately processed into Track mate plugin [53] for
tracking mitochondrial transport (Supplementary Videos S1and S2. The measurements of
mitochondrial speed and displacement were extracted for further analysis).

4.8. Statistical Analysis

The data were analyzed with the Prism software (GraphPad, San Diego, CA, USA).
First, the Gaussian distribution of the variables was confirmed using all the three normality
tests— KS, D"Agostino and Pearson omnibus, and Shapiro-Wilk. Non-normally distributed
data were treated as non-parametric. Comparisons between the two groups were per-
formed by t-test for the normal parametric data. Comparisons between two groups of
non-parametric data were performed by Mann-Whitney U test. Comparison between more
than two groups were analyzed with one-way analysis of variance and with Kruskal-Wallis
test for non-parametric data followed by Dunn's post hoc test. All the data are shown
as mean =+ SD. The data are shown as Tukey boxplot where the central line denotes the
median; the lower and upper boundaries denote the 1st and 3rd quartile, and the whiskers
denote the data except the outliers presented as individual dots. The outliers were not
included in the analysis. p values < 0.05 were considered significant. The significance of
the data was further depicted as * p < 0.05,** p < 0.01,*** p < 0.001, and *** p < 0.0001.

5. Conclusions

Here, we conclude that TEN conftributes to mitochondrial protection during oxidative
stress. The drug might influence mitochondrial bioenergetics by reversibly limiting the
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reduction of flavin mononucleotide (FMN) via DHODH and thus, electron transport in the
ETC [54]. This in turn reduces ROS production, as ETC is one of the major ROS producers,
while the intracellular antioxidants work against the extracellular ROS. Additionally, due to
the presence of multiple electron donor complexes, the ETC is not completely shut off. Thus,
TEN does not significantly depress the ATP synthesis and helps maintain mitochondrial
dynamics and neuronal activity.

Supplementary Materials: The following supporting information can be downloaded at: hitps:
//www.mdpi.com/ article /10.3390/ijms23031538/s1.
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Teriflunomide preserves peripheral
nerve mitochondria from oxidative
stress-mediated alterations

Bimala Malla, Samuel Cotten, Rebecca Ulshoefer, Friedemaﬂnn Paul, Anja E. Hauser,
Raluca Niesner, Helena Bros* and Carmen Infante-Duarte* ()

Abstract: Mitochondrial dysfunction is a common pathological hallmark in various
inflammatory and degenerative diseases of the central nervous system, including multiple
sclerosis (MS). We previously showed that oxidative stress alters axonal mitochondria,
limiting their transport and inducing conformational changes that lead to axonal damage.
Teriflunomide (TFNJ, an oral immunomodulatory drug approved for the treatment of relapsing
forms of MS, reversibly inhibits dihydroorotate dehydrogenase (DHODH). DHODH is crucial
for de novo pyrimidine biosynthesis and is the only mitochondrial enzyme in this pathway, thus
conferring a link between inflammation, mitochondrial activity and axonal integrity.

Here, we investigated how DHODH inhibition may affect mitochondrial behavior in the context
of oxidative stress. We employed a model of transected murine spinal roots, previously
developed in our laboratory. Using confocal live imaging of axonal mitochondria, we showed
that in unmanipulated axons, TFN increased significantly the mitochondria length without
altering their transport features. In mitochondria challenged with 50 uM hydrogen peroxide
(H,0,) to induce oxidative stress, the presence of TFN at 1pM concentration was able to
restore mitochondrial shape, motility, as well as mitochondrial oxidation potential to control
levels. No effects were observed at 5pyM TFN, while some shape and motility parameters were

restored to control levels at 50puM TFN.

Thus, our data demonstrate an undescribed link between DHODH and mitochondrial dynamics
and point to a potential neuroprotective effect of DHODH inhibition in the context of oxidative

stress-induced damage of axonal mitochondria.

Keywords: dihydroorotate dehydrogenase [DHODH), mitochondria, mitochondrial dynamics,
neurodegeneration, oxidative stress, teriflunomide (TFN]
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory
disease of central nervous system (CNS) that
affects more than 2.5 million people worldwide.!
In MS, inflammation, demyelination and neuro-
degeneration are considered to contribute to dis-
ease development.??® It is assumed that in MS, a
misguided immune response against the CNS is
initiated and orchestrated by autoreactive T cells,
leading to progressive demyelination, oligoden-
drocyte injury and axonal loss,45 that affect not
only the white but also the grey matter.®

The mechanisms by which neuroinflammation
and myelin damage lead to neurodegeneration
have not been fully elucidated; however, the sus-
tained release of reactive oxygen species (ROS)
and nitrogen species (NOS) by macrophages and
activated microglia during inflammation appears
to contribute to the damaging cascade.”™ Also in
cortical lesions, dempyelination appears to be
associated with excessive oxidative damage.!®
Mitochondrial pathology and subsequent focal
axonal injury appears also to be triggered by
inflammation-associated ROS and NOS and to
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be independent of demyelinating processes.!!
Axonal mitochondrial damage is an early sign of
neurodegeneration that precedes and contributes
to focal and reversible alterations in axon mor-
phology. The alterations of the mitochondrial
function within axons have been proposed to
occur in the early stages of the disease, even
before demyelination,'’s!? and to precede neu-
ronal death.13-16 In autopsied tissue from chronic
progressive MS, respiratory deficient neurons
were detected both in white and grey matter.
Respiration deficits were shown to be caused by
multiple deletions of mitochondrial DNA, prob-
ably subsequent to inflammation and oxidative
stress, that contributed to an enhanced suscepti-
bility of axons and neurons to additional damag-
ing insults.!?7 In this line, we and others have
shown that oxidative stress disrupts the trans-
port of mitochondria in the axon.!4!® Hence,
mitochondrial dysfunction is considered as one
of the major contributors of neuroaxonal dam-
age in MS.

With regard to MS management and treat-
ment, teriflunomide (TFN) (Aubagio; Genzyme,
Cambridge, MA, USA) is a once-daily oral
immunomodulatory drug for the treatment of
patients with relapsing forms of MS.1® TEN has
been shown to reduce relapse events and increase
the periods of remission.20,21

TFN seems to exert its therapeutic effect by non-
competitively and reversibly inhibiting the mito-
chondrial respiratory chain-associated enzyme
dihydroorotate dehydrogenase (DHODH).2225
DHODH is involved in de novo pyrimidine bio-
synthesis, thus limiting lymphocytic proliferation
and inflammation. However, whether the inhibi-
tion of DHODH alone may affect neuronal mito-
chondria remains uncertain. Importantly, a very
recent retrospective, single-center, observational
study indicated that the effect of TFN in reduc-
ing cortical grey matter atrophy is superior to the
effect of the anti-oxidative and anti-inflammatory
dimethyl fumarate.?® Moreover, it has been
reported that TFN penetrates into the CNS and
exerts its effect directly within the brain.?? Thus,
TFN may indeed have the potential to affect
axonal mitochondria directly.

To explore the possible effects of TFN on the
nervous system, we have used in this study a pre-
viously established model of explanted spinal
roots, in which we had shown that mitochondria

undergo a series of alterations in response to oxi-
dative stress.!828

In patients treated daily with 14 mg TFN, aver-
age steady-state maximum TFN concentration
(Cpae) in plasma is 168 uM.?° The half maxi-
mum concentration (ICs,) for interaction of
TFN with human DHODH is 1puM??! and
50-100uM is considered sufficient to inhibit
protein tyrosine kinase #nz vitro.2%*! Moreover, a
study assessing the effect of TFN on eryptosis
indicated that concentrations ranging from 3.7
to 37uM TFN might compensate oxidative
stress-mediated erythrocyte changes in wvitro.??
In rats, it has been shown that after one single
injection of 10ug/g TEN, approximately 2-4%
of the blood concentration was found in the
brain (~2.5-4.1pM).*° Although an extrapola-
tion to the human reality is not exact, we could
suppose in treated patients a TFN concentra-
tion within the nervous system of about 3—-7 pM.
Therefore, in our study, we investigated the
effect of TEN on oxidative stress-induced mito-
chondrial alterations in murine root explants
using three different TFN concentrations, 1 uM,

5uM and 50 uM.

We show that TFN is able to prevent mitochon-
drial alterations induced by hydrogen peroxide
(H,0,), suggesting that TFEN has additional ther-
apeutically relevant properties related to mito-
chondrial protection in axons.?!

Materials and methods

Ethics

All experimental procedures were approved by
the local authority on animal studies in Berlin
(Landesamt fiir Gesundheit und Soziales
Berlin; ID: T0002/10). Animal studies were
performed in strict accordance with the
European Communities Council Directive of
22 September 2010 (2010/63/EU).

Solutions and drugs

Explanted roots were bathed in artificial cerebro-
spinal fluid (aCSF) containing the following:
solution I: 124mM sodium chloride (NaCl),
1.25mM  sodium  dihydrogen phosphate
(NaH,PO,), 10.0mM glucose, 1.80 mM magne-
sium sulphate (MgSO,), 1.60 mM calcium chlo-
ride (CaCl,), 3.00 mM potassium chloride (KCl);

joumals.sagepub.com/home/taj
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soluton II: 26.0mM sodium bicarbonate
(NaHCO,). Solutions I and II were mixed imme-
diately before use. Hydrogen peroxide (H,O,;
30% wiw in H,O, with a stabilizer) and dimethyl
sulfoxide (DMSO) were purchased from Sigma-
Aldrich. To induce oxidative stress, explanted
roots were incubated with 50uM of H,0, dis-
solved in aCSF for 30 min. TEN was applied at
different concentrations along with H,O, for
30 min. TFN was provided in powder form by the
manufacturer (Sanofi Genzyme), which was dis-
solved in DMSO and stored at —20°C.

Preparation of veniral spinal roots

Ventral spinal roots were prepared as described in
our previous work.!82,33 Briefly, C57BL/6 mice
at least 3weeks of age were anesthetized with iso-
flurane prior to cervical dislocation. After separat-
ing the connective tissue and exposing the dorsal
side of the spinal cord, an initial sectioning was
made at the thoracic level, which proceeded in a
rostral to caudal direction until the last vertebrae.
The spinal cord was lifted gently to expose the
ventral roots, which were cut distal to the spinal
cord but before the formation of the peripheral
nerves. The explanted spinal cord with attached
roots was transferred to aCSF saturated with car-
bogen (95% oxygen [O,]; 5% carbon dioxide
[CO,)). Under a dissecting microscope, lumbar
ventral roots of at least 0.8 cm were selected and
separated from the spinal cord.

Labeling of mitochondria

All experimental incubations were conducted in a
submerged incubation chamber (Brain Slice
Keeper- BSK6-6; Scientific Systems Design Inc.,
Ontario, Canada), which allows for multiple treat-
ment conditions and continuous carbogen perfu-
sion of each submersion well. Transected ventral
spinal roots were transferred to fresh aCSF con-
taining 300 nM, MitoTracker CMTMRos orange
(Life Technologies, Darmstadt, Germany) for
30min and washed with aCSF.

Confocal microscopy

Explanted ventral roots were placed onto a glass
coverslip and transferred to an imaging chamber
filled with carbogenated aCSF. To prevent move-
ment of the roots during imaging, a custom-built
net was placed on the top of the roots.2® For all
imaging experiments, we used an inverted

laser-scanning confocal microscope adapted for
live cell imaging (LSM 710; Carl Zeiss, Jena,
Germany). MitoTracker Orange was excited with
a diode-pumped solid state (DPSS) laser at
561 nm. After finding the middle of the root,
3 X 60-sec videos (2sec/frame) with a resolution
of 512 X 512 pixels were acquired in three sepa-
rate regions of interest (ROI) according to the fol-
lowing criteria: (a) there was a clearly defined
node of Ranvier; (b) there were visibly labeled
mitochondria; and (c) the areas were no closer
than 0.2cm from the ends of the roots. Typically,
the first ROI was located at the middle of the
root, whereas the following two were to the right
and left of the middle region.

Analysis of mitochondrial dynamics
Mitochondrial morphology was assessed using an
automated analysis function of the Volocity 6.3
software (Perkin Elmer, Rodgau, Germany). The
first frame of every video was used for analysis.
Shape factor, a measure of circularity ranging
from 0 and 1 (closer to ‘0’ was a longer mitochon-
drion, whereas ‘1’ was a perfect circle), length
(um) and area of individual mitochondria were
quantified for assessing change in mitochondrial
morphology.

Mitochondrial transport was quantified in terms
of the number of moving mitochondria, veloc-
ity, displacement, and track length of moving
mitochondria. Displacement is the measure of
shortest distance in pm, covered by a mitochon-
drion; it was measured as a straight line from
the start to the end position during the 30
frames. Track length is the measure of real dis-
tance path longitude followed by the mitochon-
drion. Mitochondria were tracked manually
using Volocity 6.3 software (Perkin Elmer,
Rodgau, Germany). Any mitochondrion with a
displacement of at least 1um was considered
‘mobile’. Measurements from three ROI were
averaged for each root.

In total, 15 different mice in 15 independent
experiments were investigated. Depending on the
quality of the explants, at least five independent
roots and 15 ROI per culturing condition were
included into the analysis (usually up to three dif-
ferent ROI per root). Specifically, 39 and 44 ROI
were analyzed for the untreated group and H,0,
treated groups, respectively; 15-21 ROI were
used to investigate treatments with H,O, + TFN.
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Figure 1. Teriflunomide (TFN) affected mitochondrial shape and length in untreated root explants.

[a) Representative confocal picture of the mitochondria within single axons in an untreated peripheral root explant and (b]
treated with TFN. The node of Ranvier is located on the left side shown with an asterix [*]. Scale bar: S5pm. [c] Shape factor
[circularity), [d] length and (e] area of mitochondria. The mitochondrial shape and length is significantly less round and

longer after treating the axons with TFN (50 uM).

Graphs are shown in Tukey box plots, where the central line denotes the median; the lower and upper boundaries denote the
first and third quartile, and the whiskers denote the spread of the data.

Inside the box, '+ delineates the mean.
ns, not significant statistically.
*p <0.05, **p <0.01.

For the morphological investigations, the number
of mitochondria in the selected ROI were 2586,
2860, 1306, 875 and 1550 for untreated, H,O,-
treated, H,0, + TFN (1uM), H,0, + TEN
(5uM) and H,0, + TFN (50 uM), respectively.
Analyses of motility included 201, 70, 83, 52 and
64 motile mitochondria for each of the above-
mentioned groups.

For the comparison of untreated wversus TFN-
treated nerves, four independent experiments
were performed. Analyses include 12 ROI per
condition. In total, 568 and 672 individual mito-
chondria were analyzed, respectively.

Quantification of relative change in intracellular
ROS

The fluorescence intensity of the MitoTracker
Orange was quantified as a measure of intracel-
lular ROS as described by Kweon et al.,> The
images obtained from confocal microscopy were
used for the quantification of mitochondrial fluo-
rescence intensity using Image J software.

Statistical analysis and data representation

The data were analyzed with Prism 5.01 software
(GraphPad, CA, USA). All datasets were sub-
jected first to D’Agostino and Pearson omnibus

K2 normality test for Gaussian distribution. All
data fitting the criteria for a normal distribution
were subsequently analyzed using a one-way
analysis of variance (ANOVA) with Bonferroni’s
post hoc test. All data following a non-parametric
distribution were analyzed using a Kruskal-Wallis
test followed by a post hoc Dunn’s multiple com-
parisons test. All data are given in mean * SD.

Data are shown in Tukey box and whisker plots.
The box and whisker plot shows simultaneously
the minimum, first quartile, mean (+), median
(dissecting line inside the box), third quartile, and
maximum of the data set. Whiskers indicate vari-
ability outside the upper and lower quartiles.
Qutliers are plotted as individual dots that are in
line with whiskers. The mean+ SD wvalues are
given in the corresponding tables.

Results

TFN altered mitochondrial dynamics in

peripheral root explants

We labelled peripheral root mitochondria with
MitoTracker Orange and the explants were imaged
for morphological investigation (Figure la, b).
Then, the effects of TFN on mitochondrial mor-
phology and transport in unmanipulated explanted
roots were investigated. Explanted roots were

joumnals.sagepub.com/hame/taj
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Figure 2. Teriflunomide [TFN] reduced mitochondrial velocity without influencing motile number, trajectory
length and displacerment of mitochondria in untreated root explants.

[al Number of moving mitochendria per reot during 1 min in untreated versus TFN-treated roots, [b] velocity of mitachondrial
transport, [c] length of the mitochondrial trajecteries and [d] displacement [final position minus initial position] of

mitochondria.

Graphs are shown in Tukey boxplots, where the central line denotes the median; the lower and upper boundaries denote the
first and third quartile, and the whiskers denote the spread of the data. Inside the box, '+’ delineates the mean.

ns, not significant statistically.
*p< 0.05.

incubated in the presence or absence of 50pM
TFM. TFN treatment resulted in a statistically sig-
nificant decrease in mitochondrial circularity
(Figure 1c) and an increase in mitochondrial length
(Figure 1d). There were no significant changes
mitochondrial area (Figure le) after TFN treat-
ment compared with the untreated controls.

For mitochondrial motility, TFN did not signifi-
cantly change the number of motile mitochon-
dria (Figure 2a) as well as the distance covered
by the mitochondria (Figure 2c, d). However, it
induced a significant reduction of the mean
velocity of mitochondrial transport (Figure 2b).
Corresponding statistical information is summa-
rized in Table 1.

TFN prevented oxidative siress-induced
morphological changes in mitochondria
We previously reported that oxidative stress leads
to substantal changes to both morphology and

transport of axonal mitochondria.’® Here, we
inveatigated whether TFN, applied together with
H,0,, would be able to prevent these effects. We
treated the roots with 50 uM H,0, (both groups
containing the vehicle DMS0O), and 3 different
concentrations of TFM: 1, 5 and 50uM in aCSF
(Figure 3a—e). We analyzed a total of 39 untreated
ROI, 44 ROI treated with H,0,, and 18, 15 and
21 ROI weated with 1 pM, 5pM and 50 pM TFN
in the presence of 50pM H,0,, respectively,
from 15 independent experiments. Consistent
with our previous findings, we observed that
treatment with 50pM H,0,; induced an overall
increase of mitochondral circularity and a cor-
responding decrease in mitochondral length and
area. In particular, mitochondria were signifi-
cantly more circular (Figure 3f), shorter (Figure
3g) and smaller (Figure 3h) than their untreated
counterparts.

In the presence of 1 pM TFN, the zhape factor
of the mitochondria was reduced, that is,

journals.sagepub.com/hameftaj
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Table 1. Summary of morphology and motility parameters of mitochondria in untreated and teriflunomide-treated peripheral root

explants.
n= Shape Length Area No. of motile  Velocity Trajectory Displacement
factor (pm) (pm?) mitochondria (pm/s) length ([pm)  (pm)
Untreated 39 052+021 1.75%+1.52 0.77+086 4.72+1.67 036+007 7.77+ 326 5.46+239
TEN (50pM] 12 0.48+023 1.89+167 066082 383206 0.24+0.15 551+349 3.71x243
Mann-Whitney test o : =01 =>0.1 ' 0.1 =0.1

Values are shown as mean * SD.
*p<0.05; **p<0.01
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Figure 3. Mitochondrial morphology altered during oxidative stress with/out teriflunomide [TFN] treatment.

Representative image of mitochondria in (a) untreated, (b) hydrogen peroxide [H;0,)-treated, and [c, d, and e] H;0,-TFN-treated, where TFN was 1,
5and 50pM, respectively, in murine peripheral root explants. Scale bar: 10pm. [f] Change in mitochondrial shape factor, (gl length, and [h] area of
mitochondria in the presence of H,0; with orwithout TFN.

Graphs are shown in Tukey boxplots, where the central line denotes the median; the lower and upper boundaries denote the 1st and 3rd quartile, and
the whiskers denote the spread of the data. Inside the box, '+’ delineates the mean.

'p <0.05, "'p <0.01, ™p < 0.001.
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Table 2. Summary of shape factor, length and area of mitochondria under H,0; treatment alone, and with 50 pM H;0; in the

presence of 1uM, 5pM and 50 uM teriflunomide.

n= Shape KW test Length KW test Area (pm?) KW test
factor (pm])
Untreated 39 053+0.22 T 1.82+1.79 T 0.69+0.92 T
H,0,-treated 4d 058+ 0.21 1.49 +1.29 0.57+0.65
H,0, + TFN (1pM) 18 0.57+0.21 1 * 1.66 +1.50 l o 0.67+0.85 l -
H,0, + TFN (5uM) 15 059+0.19 >01  1.43%129 >0.1  0.51+0.69 >0.1
H,0, + TFN (50 uM) 21 0.59+0.21 501 Leb=1.42 0.75+0.93

KW, Kruskal-Wallis; H;0,, hydrogen peraxide.
Values are shown as mean =SD.
*p<0.05; **p < 0.01; ***p <0.001.

mitochondria became elongated or rod-shaped
(Figure 3f). In contrast, no effects were
observed at higher concentration of TFN.
Moreover, the lowest and highest TFN con-
centrations (1uM and 50uM) induced a sig-
nificant increase in mitochondrial length
(Figure 3g) and area (Figure 3h), in compari-
son with the mitochondria exposed to H,0,
alone. Paradoxically, treatment with 5pM
TFN with 50 uM H,0,, showed no statistically
significant effect on H,0,-induced morpholog-
ical alterations (Figure 3f-h) (0.59+0.19
shape factor, 1.43*1.29um length, and
0.51 +0.69 um? area; Kruskal-Wallis test fol-
lowed by Dunn’s post hoc test p>0.1 in all
cases).

Corresponding statistical information is summa-
rized in Table 2.

TFN prevented oxidative siress-induced

changes in mitochondrial motility

To investigate TFN effects on mitochondrial
motility, roots were treated either with aCSF,
50 uM H,0, (both groups containing DMSO) or
50uM H,0, in the presence of three different
concentrations of TFN: 1, 5 and 50 uM (Figure
4a—e). We observed that H,0, treatment led to
an overall decrease in the number of motile
mitochondria (Figure 4f). In addition, the mov-
ing mitochondria had lower mean velocity
(Figure 4g), trajectory length (Figure 4h), and
displacement (Figure 4i) than the untreated
mitochondria.

Again, the lowest and highest TFN concentration
(1pM and 50pM) restored the motility-related
parameters to control levels, except for the mito-
chondrial velocity with 50 uM TFN, when com-
pared with the mitochondria exposed to H,0,
alone; for the number of moving mitochondna
(Figure 4f), velocity (Figure 4g), trajectory
(Figure 4h), and displacement (Figure 4i). In
contrast, 5pM TFN had no effect. Corresponding
statistical information is summarized in Table 3.

TFN prevented change in mitochondrial

oxidation potentialin peripheral nerve explants
during oxidative stress

MitoTracker Orange CMTMRos is a reduced,
non-fluorescent dye that fluoresces on oxidation.
Thus, in conditions of high oxidative stress, mito-
chondria acquire higher fluorescence intensity.34
We observed that fluorescence intensity was
higher in H,O,-treated roots compared with
untreated controls (Figure 5). In the presence of
1 puM TFN, the fluorescence intensity in the mito-
chondria was reduced, approaching the values of
the untreated axons (Table 4), suggesting that the
H,0,-mediated increase in the oxidation poten-
tial could be prevented by TFN. In contrast, no
effect was observed at 5 or 50uM TFN.
Corresponding statistical information is summa-
rized in Table 4.

Discussion
While current treatments for MS focus on
reducing inflaimmation via modulation of the
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Figure 4. Mitochondrial motility altered during oxidative stress with or without teriflunomide (TFN) treatment.
A representative image of mitochondrial tracking in (a) untreated, (b) hydrogen peroxide [H;0,)-treated, and [c,
d, and e] H,0,-TFN treated where TFN was 1, 5 and 50 pM, respectively, in murine peripheral root explants. (f]

Number, (g velocity, (h) trajectory, and (i) displacement of mitochondria.
Graphs are shown in Tukey boxplots, where the central line denotes the median; the lower and upper boundaries denote the
first and third quartile and the whiskers dencte the spread of the data. Inside the box, '+’ delineates the mean.

*p <0.05; **p<0.01; ***p<0.001.
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Table 3. Summary of mitochondrial motility, velocity, displacementand trajectory length under H;0, treatment alone, and along with
different concentrations of teriflunomide.

n= # motile KWtest Velocity KWtest  Trajectory KW test Displacement KW test
mitochondria (pm/s) length (pm)
{axon) (pm)
Untreated 39 4.85+3.72(39) T o 0.29+0.14 T 677343 T e 459+216 T e
H,0,- 44 152+1.71(39) 015+0.14 3.53+3.67 230+ 260
treated l l l l
H,0, + TFN 18 4.71+3.08(21) ** 030013 = 6.13+259 & 4.37+1.97 o
[1pM)
H,0, + TFN 15 3.08+2.75(12) >0.1 023+0.17 >0.1 5.61+3.69 >0.1 387+29 >0.1
(5uM]
H0, + TEN 21 427+234(15) ¥**  026+013 Y =01 ¢84=215 Y**  475+145 B
[50 pM]
KW, Kruskal-Wallis; H;0;, hydrogen peroxide.
Values are shown as mean =5SD.
“p<0.05; **p <0.01; **p <0.001.
20 . i 40
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Figure 6. Teriflunomide [TFN] at 1pM altered the oxidation potential of mitochondria, reducing oxidative MitoTracker Orange
fluorescence intensity Fluorescence intensity of MitoTracker Orange staining depicting significant reduction of oxidation potential of
1puM TEN. [b] MitoTracker Orange fluorescence intensity at 1, 5 and 50 pM TFN treatment during oxidative stress in comparison with

untreated and H,0,-treated roots.

*Statistical significance with p value < 0.05.

Table 4. Summary of mean fluorescence intensities of mitochondria.

n= MitoTracker fluorescence (AU) Mann-Whitney test
Untreated 39 7.35+4.76 *
H,0,-treated 44 11.49 +6.44 T
H,0, + TFN [1pM) 18 7.48 %275 l b
H,0, + TFN [5pM) 15 10.22 + 6.45 =01
H,0; + TFN (50 pM) 21 1.27+4.79 >0.1

AU, arbitrary units.
Values are shown as mean =SD.
“p<0.05.
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immune system,?*5 there is a general lack of
treatment targeting inflammation-promoted
neurodegeneration,”* which iz an integral
component of disability progression.’™”® As
early mitochondrial alterations are reported in
inflaimmatory neurodegenerative diseases,511-16
the maintenance of mitochondrial integrity
could be a key goal to achieve neuronal protec-
tion during neurcinflammation.® Here, we
hypothesized that TFMN, due to itz ability to
inhibit DHODH,# an enzyvme functionally
linked with complex III activity of the mito-
chondrial respiratory chain,®! may influence
mitochondrial stability in the context of oxida-
tive stresz. To test our hypothesis, we used our
previously established model of murine
explanted ventral roots, in which the morphol-
ogy and the transport of mitochondria can be
analyzed within peripheral axons. 1828

After excluding any relevant effect of DMSO (the
dilution wehicle), in both untreated and H,O,-
treated mitochondria (Supplemental Figures
1-2), we investigated the effect of TFN treatment
in unmanipulated or oxidative stress-exposed spi-
nal root explants.

Interestingly, in non-stressed roots, TFMN seems
to promote mitochondrial fusion, induce mito-
chondrial elongation (Figure 1d, e), and reduce
mitochondrial velocity (Figure 2b). Mitochondrial
fusion is important for the formation of mito-
chondrial networking thar assists in reshuffling
and redistributing the mitochondrial content. 4243
Thus, the inhibition of DHODH and subsequent
effects on complex IIT of the electron transport
chain (ETC) and respiration® may promote
mitochondrial fusion as an attempt to redistribute
the electron transport complexes that are still
capable of maintaining the proton gradient and
synthesizing adenosine triphosphare (ATP).

In contrast, during oxidative stress, we observed a
reduction in mitochondrial length and =size, which
is indicative of fragmentation/fission of mitochon-
dria that might undergo mitophagy. Mitochondrial
fission has also been proposed to increase the
number of mitochondria and their cellular distri-
bution in order to meet the increasing energy
demands of the cell.¥% Although mitochondrial
fission i= extensively discussed in terms of
mitophagy as well as apoptosis,®% intensive
mitochondrial fission may translate into mito-
chondrial failure and the strategy to optimize

mitochondrial functionality before undergoing
apoptosis. It also serves to get rid of damaged,
irreparable mitochondrial parts. 547 Importantly,
in the presence of 1M and 50pM TFEFN, reduc-
tion in mitochondrdal length and area due to oxi-
dative insult could be prevented (Figure 3g, h).
Intensive fragmentation during oxidative stress
could not be prevented with 5uM TFN.

Further, consistent with previous findings, we
observed a reduced mitochondrial motility during
oxidative stress,'®'® that is, reduced trajectories
and transport velocity. The impairment of mito-
chondrial transport was preserved with TFN
treatment. In axons, around 10-30% of miro-
chondria are motile, while more than 70% remain
stationary.4®¥ This motile and stationary pool of
mitochondria is dependent on the current energy
demands of the cell ¥ In additon, disrupted
motlity could lead to impairment of mitochon-
drial fuzion.64851 Thus, TFMN may promote
fusion by influencing the motility. On the other
hand, it has been proposed that inhibition of
DHODH by TFN may reduce the total amount
of ROS in the cell.’? Thus, TFN-mediated ROS
reduction may also lead indirecty to an increaszed
motlity of stressed mitochondria.

Along this line, to assess the effects of TFN on ROS
in our system, we monitored the fluorescence inten-
sity of MiwTracker Orange CMTMRos (zee
Methods).? As expected, fluorescence intensity of
CMTMRos significantly increased with H,O, treat-
ment, while inhibition of DHODH with 1 uM TFN
reduced the ROS level (Figure 5). As complex ITT
of the ETC i= considered one of the major contrib-
uters to ROS formation, its compromised actvity
in the presence of TFN might reduce ROS produc-
tion in mitochondria in peripheral spinal root
explants. 5pM and 50pM TFN could not effec-
tively reduce ROS, which might be attribured to
the inhibition at higher concentrations of additional
signaling pathways including tvrosine kinases.>?

On the other hand, the intermediate dose of 5pM
TFN showed no effects on HyOy-induced shape
or motility changes. Why, in our experimental set-
up a dose effect is missing, remains uncertain. The
high varability of our data, which is intrinsic to
the nature of mitochondrial dynamics and reflects
the heterogeneity of the mitochondrial population
in both physiological and diseased conditions,
could have contributed to mask a true dose effect.
To minimize thizs problem, several experiments
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with large amounts of mitochondria were analyzed
(see Methods section). Moreover, depending on
its concentration, TFN may function by a differ-
ent mode of action. While low TFN concentra-
tions are effective in inhibiing DHODH
(1-1.5pM), concentratons needed to achieve
DHODH-independent effects such as inhibiton
of protein tyrosine kinase or cyclooxygenase-2 are
much higher (50-200uM).2® However, little is
known about the mode of action of intermediate
concentrations. One could speculate that in our
model, TEN at 5pM may achieve partially known
or yet undefined DHODH-independent effects
that rather counterbalance the beneficial effects
observed at 1uM, while at 50uM DHODH-
dependent and independent mechanisms may
synergize against dysfunctions observed under
oxidative stress. Future experiments using long-
living explants are needed to evaluate to what
extent TFN effects at different concentration are
DHODH-dependent and thus reversible.

OQOur previous data on root explants demon-
strated that mitochondrial alterations caused by
oxidative stress precede axonal damage.!® Now,
we show that these alterations could be pharma-
cologically reversed iz vitro by TFN. Targeting
dysfunction of axonal mitochondria should
become one of the key goals in drug develop-
ment not only for MS but also for other classic
neurodegenerative disorders such as Parkinson’s
or Alzheimer diseases.34 In this line, we showed
in the animal model of MS a protective effect of
epigallocatechin-3-gallate (EGCG),3556 a poly-
phenol, that among others, inhibits the forma-
tion of ROS and protects neurons.5%58 Also
dimethyl fumarate, used to treat MS, prevents
oxidative stress-related mitochondrial dysfunc-
tion, apoptosis and autophagy in murine oligo-
dendrocytes in vitro.>° Importantly, endogenous
substances currently being investigated in MS
may be exploited as therapeutics due their mito-
protective capacities, such as high dose biotin,°
vitamin D®! or octadecaneuropeptide, a neuro-
trophic peptide produced principally by astro-
cytes, which is able to counteract oxidative
stress-induced alterations.52

In summary, our present findings suggest a protec-
tive effect of TFN on axonal mitochondria exposed
to oxidative stress. Investigations expanding on
these findings are needed to determine whether
mitochondrial protection at the axonal level can be
translated into protection of axons and neurons.
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