
Inverse Problems

Inverse Problems 40 (2024) 095009 (31pp) https://doi.org/10.1088/1361-6420/ad6a33

On the ensemble Kalman inversion under
inequality constraints

Matei Hanu1,∗ and Simon Weissmann2

1 Freie Universität Berlin, Fachbereich Mathematik und Informatik, 14195 Berlin,
Germany
2 Universität Mannheim, Institut für Mathematik, 68138 Mannheim, Germany

E-mail: matei.hanu@fu-berlin.de and simon.weissmann@uni-mannheim.de

Received 21 December 2023; revised 23 May 2024
Accepted for publication 1 August 2024
Published 12 August 2024

Abstract
The ensemble Kalman inversion (EKI), a recently introduced optimisation
method for solving inverse problems, is widely employed for the efficient
and derivative-free estimation of unknown parameters. Specifically in cases
involving ill-posed inverse problems and high-dimensional parameter spaces,
the scheme has shown promising success. However, in its general form, the EKI
does not take constraints into account, which are essential and often stem from
physical limitations or specific requirements. Based on a log-barrier approach,
we suggest adapting the continuous-time formulation of EKI to incorporate
convex inequality constraints. We underpin this adaptation with a theoretical
analysis that provides lower and upper bounds on the ensemble collapse, as
well as convergence to the constraint optimum for general nonlinear forward
models. Finally, we showcase our results through two examples involving
partial differential equations.

Keywords: ensemble Kalman inversion, Tikhonov regularisation,
derivative-free optimisation, convex inequality constraints

1. Introduction

Mathematical models have been employed to describe a wide range of physical, biological, and
social systems and processes, enabling the analysis and prediction of their behaviors. When
applying a model to a specific system, calibration becomes crucial, aligning the model with

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

© 2024 The Author(s). Published by IOP Publishing Ltd 1

https://doi.org/10.1088/1361-6420/ad6a33
https://orcid.org/0000-0002-6494-8971
https://orcid.org/0000-0002-5111-6658
mailto:matei.hanu@fu-berlin.de
mailto:simon.weissmann@uni-mannheim.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ad6a33&domain=pdf&date_stamp=2024-8-12
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Inverse Problems 40 (2024) 095009 M Hanu and S Weissmann

observational data. This calibration, often referred to as inversion, serves as the foundation
for various applications such as numerical weather prediction, medical image processing, and
numerous machine learning methods. In the realm of inversion techniques, two prominent
categories are variational/optimisation-based approaches and Bayesian/statistical approaches.
This work focuses on a method that bridges these two approaches—the ensemble Kalman
inversion (EKI) framework introduced in [27, 35]. EKI utilizes an ensemble Kalman-Bucy
filter iteratively to address inverse problems.

Nevertheless, the fundamental version of EKI lacks the capability to integrate additional
constraints on parameters. Such constraints frequently emerge in various applications due to
additional insights into the system. Since the estimation of the EKI is usually not feasible,
incorporating constraints into the EKI is a significant task. The subsequent discussion will
specifically address the efficient integration of convex inequality constraints to the EKI. One
approach to incorporate constraints to the EKI has been done in [14]. Here, the authors intro-
duce a projection method in the discrete-time EKI and derive a continuous-time limit. Since
the resulting continuous-time limit admits discontinuities in the right hand side, the authors
proposed a smoothed system using a log-barrier approach and derive convergence for linear
forward models.

In the following paper, we extend the log-barrier approach from [14] to a broader class
of convex inequality constraints. Moreover, we also incorporate Tikhonov regularisation and
provide a convergence analysis for nonlinear forward models.

1.1. Literature overview

From its very beginning [20], the ensemble Kalman filter (EnKF) has found extensive use in
both inverse problems and data assimilation scenarios. Its widespread application is attributed
to its easy implementation and resilience with respect to small ensemble sizes [4, 5, 25–27,
31]. Stability has been addressed in works like [40, 41], and convergence analysis, grounded in
the continuous-time limit of EKI, has been developed in [8, 9, 11, 35, 36]. However, achieving
convergence results in the parameter space often necessitates some form of regularisation. We
primarily focus on Tikhonov regularisation, extensively analyzed for EKI in [15], for instance.
Recent advancements include further analysis on Tikhonov regularisation for stochastic EKI
and adaptive Tikhonov strategies to enhance the original variant [45]. In the context of large
ensemble sizes, a mean-field limit analysis is presented in [12, 18].

The addition of constraints to the EKI has been analysed more and more in recent years,
for example [1, 24]. An extensive survey of existing methodologies for handling linear and
nonlinear constraints in Kalman-based methods is available in [2, 39]. One popular method is
to project the estimates of the EKI into the feasible set [28, 43]. The advantage of this method
that the theory can be expanded to non-linear constraints.

Many of these variations findmotivation by interpreting the updates in Kalman-basedmeth-
ods as solutions to corresponding optimisation problems. For additional insights, refer to [2].

For our analysis we consider preconditioned gradient methods that are based on [6, 7, 37,
38]. The idea of preconditioning by the sample covariance matrix is also applied in other
particle methods for inverse problems such as interacting Langevin dynamic [19, 21, 22],
Consensus based sampling [13] and Fokker–Planck dynamics [33, 34]. In these applications
the preconditioning through the sample covariance is often motivated by the property of
remaining invariant under affine coordinate transformations which is beneficial for solving
ill-conditioned optimisation problems.
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Finally, we will also incorporate covariance inflation into our algorithm. While the
ensemble collapse, which is the convergence of the particles to their mean value, leads to
an improvement in the gradient approximation, it also leads to a degeneration of the precon-
ditioner and therefore the EKI may get stuck in a solution that is far from global optimality.
Variance inflation is a tool which allows us to control the speed of the collapse [3, 40].

1.2. Preliminaries

In the present paper, we consider an inverse problem of the following form

y= G(u)+ η . (1.1)

The goal is to recover the unknown parameter u ∈ X, where y ∈ RK denotes the observed data
and η ∼N (0,Γ) is Gaussian additive observational noise with Γ ∈ RK×K symmetric positive
definite. Moreover, we consider a possibly nonlinear forward map G : X→ RK mapping from
the parameter space X to the observation spaceRK. Throughout the manuscript we assume that
the parameter space is finite dimensional given by X := Rd. We follow a minimisation based
approach to solve the inverse problem, where our goal is to find a minimiser of the Tikhonov
regularised potential

Φreg (u) :=
1
2
‖G(u)− y‖2Γ +

λ

2
‖u‖2C0

. (1.2)

Here, C0 ∈ Rd×d denotes a symmetric positive definite regularisation matrix and λ> 0 is a
regularisation parameter. Moreover, given a symmetric positive definite matrix Σ ∈ RK×K we
define the rescaled norm ‖x‖Σ := 〈x,Σ−1x〉, x ∈ RK, where 〈·, ·〉 denotes the euclidean inner
product over RK. Moreover, we will use ‖ · ‖F to denote the Frobenius norm. In the following,
assume that the observation y, the regularisation matrix C0 and the regularisation parameter λ
are given and we do not consider a parameter choice rule for λ and C0. Hence, we suppress
the dependence of Φreg on these quantities. In this work we follow the approach of applying
EKI as derivative-free optimisation method for finding a minimiser of the potential Φreg.

1.3. Inverse problem under constraints

In many practical scenarios the unknown parameter u ∈ X is subjected to physical constraints.
In what follows, we will assume that the set of feasible parameters is given as set of inequality
constraints of the form

Ω= {u ∈ X : hj (u)⩽ 0, j = 1, . . . ,m} , (1.3)

where hj : Rd → R are convex functions for all j = 1, . . . ,m. Note that one important example
would be the set of linear inequality constraints

Ω= {u ∈ X : 〈cj,u〉+ δj ⩽ 0, j = 1, . . . ,m} ,

where cj =±ej, δj ∈ R, j = 1, . . . ,m and ej denotes the j-th unit vector. Then δj denotes an
upper and lower bound on the j-th component of u. Defining hj(u) = 〈cj,u〉+ δj for all j =
1, . . . ,m we are back in the representation (1.3). Our goal is to solve the inverse problem (1.1)
under convex-constraints u ∈ Ω by solving the constrained optimisation problem

min
u∈Ω

Φreg (u) . (1.4)

We make the following assumption on the considered objective function Φreg.
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Assumption 1.1. The functional Φreg is C2(X,R+) as well as

(i) µ-strongly convex, i.e. there exists µ> 0 such that

Φreg (x1)−Φreg (x2)⩾ 〈∇Φreg (x2) ,x1 − x2〉+
µ

2
‖x1 − x2‖2, for all x1,x2 ∈ X.

(ii) L-smooth, i.e. there exists L> 0 such that the gradient ∇Φreg is global L-Lipschitz con-
tinuous:

‖∇Φreg (x1)−∇Φreg (x2)‖⩽ L‖x1 − x2‖ for all x1,x2 ∈ X .

We note that while the above assumptions are formulated globally, our theoretical analysis
requires these assumptions only locally in Ω. The smoothness property implies the following
useful descent condition

Φreg (x1)−Φreg (x2)⩽ 〈∇Φreg (x2) ,x1 − x2〉+
L
2
‖x1 − x2‖2, for all x1,x2 ∈ X

which is a standard property used to prove convergence of first order optimisation methods.
Moreover, sinceΦreg is assumed to be µ-strongly convex it also satisfies the Polyak-Łojasiewic
(PL) inequality of form

ν‖∇Φreg (x)‖2 ⩾ Φreg (x)−Φreg (x∗) ,

for some ν > 0 and all x ∈ X, where x∗ is the unique global minimiser of Φreg. We provide a
detailed derivation in lemma A.1. It is well-known that under L-smoothness and the above PL
inequality the gradient descent method converges linearly towards the unique minimiser x∗

[29].

Remark 1.2. Usually the strong convexity of (1.2), that we assume in assumption 1.1 can be
achieved through large enough regularisation parameter λ. However, due to this large choice
of λ the computed solution of the regularised problem might be irrelevant for the initial poten-
tial 1

2‖G(u)− y‖2Γ. There have been several discussions on the strong convexity of Tikhonov
regularisation as well as other forms of regularisations for which we refer to [17, 30].

In section 5.2, we present a nonlinear example with Tikhonov regularisation to obtain a
strongly convex potential.

Note that under assumption 1.1 the optimisation problem (1.4) is convex and therefore any
point u∗ ∈ Ω that satisfies the Karuhn-Kash-Tucker (KKT) conditions, i.e. there existsλ∗ ∈ Rm

such that u∗ ∈ Ω satisfying

• ∇Φreg(u∗)+
∑m

j=1λ
∗
j ∇hj(u∗) = 0,

• λ∗
j hj(u

∗)⩽ 0 for all j ∈ {1, . . . ,m},
• λ∗

j ⩾ 0 for all j ∈ {1, . . . ,m} and
∑m

j=1λ
∗
j hj(u

∗) = 0,

is the unique global minimiser of Φreg, also called the KKT point of (1.4).
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1.4. Our contribution

In this manuscript we will apply the EKI as derivative-free optimisation method for solv-
ing (1.2) under convex inequality constraints on u ∈ X. The EKI for solving optimisation prob-
lems under box-constraints has been introduced in [14], where the authors provide a conver-
gence analysis for linear forward operators without regularisation. The purpose of this work is
to make use of the gradient flow structure of EKI presented in [44] for extending the conver-
gence analysis of linear EKI under box-constraints to nonlinear EKI under convex inequality
constraints. Moreover, our proposed scheme allows to incorporate Tikhonov regularisation.
We make the following contribution:

• We suggest a new adaptation of EKI, enabling the integration of convex inequality con-
straints on the unknown parameters using a log-barrier penalty approach. The adaptation
incorporates Tikhonov regularisation as well as covariance inflation.

• Under strong convexity and smoothness, we provide a convergence analysis of our adapta-
tion, where we analyse feasibility, ensemble collapse and convergence to the unique KKT-
point.

• We demonstrate our findings through two examples based on partial differential equations
(PDEs). In order to keep the implementation of the proposed scheme efficient we apply an
adaptively increasing penalty parameter during the algorithm.

The paper is organised as follows. We introduce our adaptation in section 2. In section 3 we
quantify the ensemble collapse of our scheme as well as verify the feasibility of the com-
puted solutions. We analyse the convergence of our scheme in section 4; before presenting
our numerical experiments in section 5. Finally, we summarise our work with a conclusion in
section 6.

2. Ensemble Kalman inversion

We consider the EKI to solve the inverse problem (1.1), where wewill focus on the continuous-
time limit of the scheme, cp. [36]. The framework is the following.

Firstly, we define an initial ensemble u0 = (u( j)0 )j=1,...,J, u
( j)
0 ∈ X, j = 1, . . . ,J, of size J⩾ 2.

In the continuous-time formulation of EKI, the particle system ut = (u( j)t )j=1,...,J then moves
according to the dynamical system

du( j)t
dt

=−Ĉu,Gt Γ−1
(
G
(
u( j)t
)
− y
)
, j = 1, . . . ,J (2.1)

with initial state u0. Here, we have defined the following empirical means and covariances
within the particle system ut, t⩾ 0,

Ĉu,Gt :=
1
J

J∑
j=1

(u( j)t − ut)⊗ (G(u( j)t )− (G(ut)),

ut =
1
J

J∑
j=1

u( j)t , G(ut) =
1
J

J∑
j=1

G(u( j)t ) .
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Following [15] we can incorporate Tikhonov regularisation into the particle system using
the time evolution

du( j)t
dt

=−Ĉu,Gt Γ−1
(
G
(
u( j)t
)
− y
)
− Ĉ(ut)λ

1/2C−1
0 u( j)t , j = 1, . . . ,J , (2.2)

where λ> 0 and C0 ∈ Rd×d symmetric positive definite. The values correspond to the regu-
larisation parameters introduced in (1.2). We note that both dynamical systems (2.1) and (2.2)
may be implemented more efficiently by utilising the representations

Ĉu,Gt Γ−1(G(u( j)t )− y) =
1
J

J∑
k=1

〈G(u( j)t )− y,G(u(k)t − Ḡt〉Γ(u(k)t − ū) ,

Ĉ(ut)C
−1
0 u( j)t = 〈u( j)t ,u(k)t − ūt〉C0(u

(k)
t − ū) ,

which avoids the explicit computation of the sample covariance matrix.
In case of a linear forward map G the EKI dynamics (2.2) can be written as system of

gradient flows

du( j)t
dt

=−Ĉ(ut)∇Φreg
(
u( j)
)
. (2.3)

which are coupled through an adaptive preconditioner given by the empirical covariance mat-
rix Ĉ(ut). In case of a nonlinear forward operators, this representation in general only holds
approximately. Indeed, by Taylors theorem it can be justified that Ĉu,Gt ≈ Ĉ(ut)DG∗(u( j)),
where DG denotes the (Frechet) derivative of G (see [44, lemma 4.5]). It follows that (2.2)
can be viewed as derivative-free approximation of the preconditioned gradient flow (2.3) also
in the nonlinear setting. To be more precise, we make the following sufficient assumptions on
the nonlinear forward map to justify the approximate gradient flow structure of EKI.

Assumption 2.1. The forward operatorG is locally Lipschitz continuous, with constant clip >
0 and satisfies the linear approximation property

G(x1) = G(x2)+DG(x2)(x1 − x2)+Res(x1,x2) , (2.4)

for all x1,x2 ∈ X. The approximation error is bounded by

‖Res(x1,x2)‖2 ⩽ bres‖x1 − x2‖22 , (2.5)

where bres > 0 is independent of x1 and x2.

2.1. Ensemble Kalman inversion under box constraints

In the following, we will revisit the EKI Algorithm under box-constraints and modify the
formulation with the goal of minimising (1.2) under box-constraints.We refer to [14, section 3]
for more details. In the following, we consider the constrained optimisation problem

min
u∈B

Φ(u) , Φ(u) :=
1
2
‖G(u)− y‖2Γ , (2.6)

6
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whereB = {u ∈ Rd : ai ⩽ ui ⩽ bi, i = 1, . . . ,m},m⩽ d, denotes the considered box. In [14] the
authors incorporate the box-constraints into the algorithm using an element-wise projection
into the box defined as

(P (u))i =


ai, if ui < ai,

ui, if ui ∈ [ai,bi] ,

bi, if ui > bi,

i = 1, . . . ,m,

(P (u))i = ui i = m+ 1, . . . ,n.

Following the idea of projected gradient methods [6, 38], EKI under box-constraints in discrete
time proceeds by projecting the ensemble of particles into the box as introduced in [14]. The
authors define the following variables

u( j)n,p = P
(
u( j)n
)
, ūP =

1
J

J∑
j=1

(
u( j)n,p
)
, ḠP =

1
J

J∑
j=1

G
(
u( j)n,p
)
,

as well as the empirical covariance matrices

Ĉu,un,P :=
1
J

J∑
j=1

(
u( j)n,p− ūP

)
⊗
(
u( j)n,p− ūP

)
,

Ĉu,Gn,P :=
1
J

J∑
j=1

(
u( j)n,p− ūP

)
⊗
(
G
(
u( j)n,p
)
− ḠP

)
,

ĈG,Gn,P :=
1
J

J∑
j=1

(
G
(
u( j)n,p
)
− ḠP

)
⊗
(
G
(
u( j)n,p
)
− ḠP

)
,

The update formula of the EKI under box-constraints then consists of a prediction step and a
projection onto the box B.ũ

( j)
n+1,p = u( j)n,p+ Ĉu,Gn,P

(
ĈG,Gn,P + h−1Γ

)−1(
y−G

(
u( j)n,p
))

,

u( j)n+1,p = P
(
ũ( j)n+1,p

)
.

(2.7)

Taking the limit h→ 0 one obtains the continuous-time formulation of EKI under box-
constraints given by a coupled system of ODEs

(
du( j)t
dt

)
i

=


vi(u

( j)
t ), (u( j)t )i ∈ (ai,bi) ,

1[0,∞)(vi(u
( j)
t ))vi(u

( j)
t ), (u( j)t )i = ai,

1[−∞,0)(vi(u
( j)
t ))vi(u

( j)
t ), (u( j)t )i = bi,

i = 1, . . . ,m,

(
du( j)t
dt

)
i

= ui i = m+ 1, . . . ,n, (2.8)

where

vi
(
u( j)t
)
=
[
−Ĉu,Gt Γ−1

(
G
(
u( j)t
)
− y
)]

i
,

7



Inverse Problems 40 (2024) 095009 M Hanu and S Weissmann

which in the linear setting again simplifies to

vi
(
u( j)t
)
=
[
−Ĉ(ut)∇Φ

(
u( j)t
)]

i
.

Roughly speaking, the dynamical system (2.8) evolves similarly to EKI (2.1), but forces the
particles to stay within the box by deactivating directions pointing outside of the box at the
boundary. The resulting system of ODEs occurs with two cruical problems, which are dis-
continuities of the RHS of (2.8) and the fact that straightforward preconditioning may lead to
forcing directions which are no descent direction with respect to the potential Φ. The latter
one is a well known problem for preconditioned gradient methods [6]. To overcome this issue,
the authors propose to consider a smoothed coupled system of ODEs given by

du( j)t
dt

= τv
(
u( j)t
)
+

2m∑
i=1

1

hi
(
u( j)t
)∇hi(u( j)t ) , (2.9)

where hi(u) = ai− ui for i = 1, . . . ,m and hi+m(u) = ui− bi for i = 1, . . . ,m. The purpose of
introducing this form of smoothing is the resulting connection to the unconstrained optimisa-
tion problem

min
u∈Rd

τΦ(u)−
2m∑
i=1

log(−hi (u)) .

using a log-barrier penalty approach. Indeed, assuming that the forward model is linear and
the constraints are described by boxes, one can prove that the solution of (2.8) solves (2.10) in
the long-time limit [14, theorem 3.4]. In the following, we want to generalize this result to the
Tikhonov regularised optimisation problem under more general convex inequality constraints.

2.2. Tikhonov regularised EKI under convex inequality constraints

Motivated by the continuous-time formulation of EKI under box constraints using the
smoothed system (2.9) we are now ready to present our considered dynamical system for solv-
ing

min
u∈Ω

Φreg (u) , (2.10)

where Ω= {u ∈ X : hj(u)⩽ 0, j = 1, . . . ,m} describes our set of inequality constraints. We
emphasize that the formulation of (2.10) can also be applied to standard EKI without Tikhonov
regularisation by setting λ= 0. However, our theoretical justification crucially depends on
λ> 0.

To be more precise, we make the following assumptions on the feasible set Ω for convex
and continuously differentiable functions hj : X→ R.

Assumption 2.2. We assume that for each j = 1, . . . ,m the function hj : X→ R is convex and
continuously differentiable. Moreover, we assume that the interior ofΩ is non-empty, i.e. there
exists u ∈ X such that hj(u)< 0 for each j = 1, . . . ,m.

Remark 2.3. Note that by assumption 2.2 it follows that for any u ∈ X with hj(u) = 0 we have
that ∇hj(u) 6= 0. If ∇hj(u) = 0 for some u ∈ X with hj(u) = 0, by convexity of hj it would
follow that minu∈X hj(u) = 0, which is in contradiction to assumption 2.2.

8
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We firstly reformulate the constrained optimisation problem as unconstrained problem
using the log-barrier penalty approach

min
u∈Rd

τΦreg (u)−
m∑
i=1

log(−hi (u)) ,

where τ > 0 is a penalty parameter. This optimisation problem can equivalently be rewritten
through

min
u∈Rd

Φreg (u)− 1
τ

m∑
i=1

log(−hi (u)) , (2.11)

We define Φb(u) = Φreg(u)− 1
τ

∑m
i=1 log(−hi(u)). Observe that Φb is strongly convex in Ω

due to Φreg being strongly convex and the assumption that hi are convex. Hence, for any τ > 0
there exists a unique global minimiser uτ∗ ∈ Ω of Φb. Note that Φb(u) is not well-defined for
u /∈ Ω \ ∂Ω, and hence we are working with the convention that Φb(u) = +∞ for u /∈ Ω \ ∂Ω.
Moreover, using duality arguments one can even bound

Φreg (uτ∗)−Φreg (u∗)⩽
m
τ
, (2.12)

where u∗ denotes the unique minimiser of the constrained problem (2.10), we refer to [10,
section 11.2] for more details.

Remark 2.4. We can see in (2.12) that the computed solution from solving problem (2.11) is
approaching the true KKT point u∗ as we increase our penalty parameter τ . However, as τ
increases the computation of the minimiser of (2.11) using an iterative optimisation method
becomes more expensive. This is a well-known problem for penalty methods which is due to
small steps of the applied scheme which are needed close to the boundary in order to ensure
feasibility. Depending on the implemented optimisation scheme, one may need to check feas-
ibility in each iteration and successively decrease the step size. In practical implementations
one usually solves the optmisation problem for fixed but sequentially increasing values of the
penalty parameter τ = τk. Here, one may use the solution of the preceding experiment as initial
point for the next sequence.

We will further discuss how to apply this methodology in EKI in section 5.1. In regard to
our algorithm we propose a method to use an adaptively increasing choice of τ which keeps
the computational run-time low.

In the following, we set λ= 1 for simplicity. For solving (2.11) we incorporate the gradient
descent direction of the log-barrier penalty into the dynamical system of Tikhonov regularised
EKI leading to the dynamical system

du( j)t
dt

=
[
−Ĉu,Gt Γ−1

(
G
(
u( j)t
)
− y
)
− Ĉ(ut)C

−1
0 u( j)t

]
+

1
τ
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt) ,

(2.13)

for τ > 0 and j = 1, . . . ,J. Let us emphasize that our considered dynamical system differs
from (2.9) in more than just the additional regularisation term. Firstly, we are incorporating
the log-barrier function with respect to ūt instead of for each particle u

( j)
t . This leads structural

advantage when theoretically analysing the dynamical behavior of the ensemble mean. As
result, the feasibility of the scheme with respect to the convex inequality constraints can only

9



Inverse Problems 40 (2024) 095009 M Hanu and S Weissmann

be guaranteed for the ensemble mean. However, in practical scenarios it may be necessary to
impose feasibility for each particle which could be guaranteed by the dynamical system

du( j)t
dt

=
[
−Ĉu,Gt Γ−1

(
G
(
u( j)t
)
− y
)
− Ĉ(ut)C

−1
0 u( j)t

]
+

1
τ
Ĉ(ut)

m∑
i=1

1

hi
(
u( j)t
)∇hi(u( j)t ) .

In what follows, we will focus on the dynamical system given by (2.13). As second difference
to (2.9), we introduce a preconditioning of the gradient descent direction resulting from the
log-barrier term by the empirical covariance. This preconditioning ensures the well-known
subspace property of ensemble Kalman methods. This means, that the particle system solv-
ing (2.13) remains in the linear subspace spanned by the initial ensemble. We define

S := u⊥0 + span
{
u( j)0 − ū0, j = 1, . . . ,J

}
,

where u⊥0 = ū0 −PEū0 with the projection matrix PE = E(ETE)−1ET onto E ∈ Rd×J

denotes matrix with columns consisting of the centered initial particles, i.e. E=[
u(1)0 − ū0, . . . ,u

(J)
0 − ū0

]
. Therefore, the constrained optimisation problem (2.10) changes to

min
u∈Ω∩S

Φreg (u) , (2.14)

in case J⩽ d.

Lemma 2.5. Let (u( j)0 )j=1,...,J be the initial ensemble. Then any solution (u
( j)
t , t⩾ 0) of (2.13)

remains in the affine subspace S, i.e. u( j)t ∈ S for all t⩾ 0 and j = 1, . . . ,J.

Proof. The proof of the first term has been shown in [15]. For the latter part we obtain

1
τ
Ĉ(ut)

m∑
i=1

1
hi (ut)

∇hi (ut) =
1
τ

1
J

J∑
j=1

m∑
i=1

1
hi (ūt)

〈u( j)t − ūt,∇hi (ūt)〉
(
u( j)t − ūt

)
.

Hence, the latter term also remains in the space spanned by the centered particles and therefore
the particles remain in the affine space S .

Finally, wemake the following assumption which is necessary to ensure feasibility and even
the possibility for implementation. We need to ensure that the dynamical system is initialized
with a feasible particle system.

Assumption 2.6. We assume that the mean of the initial ensemble (u( j)0 )j=1,...,J lies in the
interior of the feasible set Ω, i.e. we assume that hi(ū0)< 0 for all i = 1, . . . ,m. Furthermore,
we assume that ‖u( j)0 ‖⩽ c for all j = 1, . . . ,J and some c> 0.

If the initial ensemble is not feasible, wemay project the particles ontoΩ. Hence, we assume
without loss of generality that assumption 2.6 is satisfied.

2.3. Covariance inflation

One fundamental key step in analysing EKI algorithms is to quantify the ensemble collapse,
which is the degeneration of the spread in the particle system. While the gradient approxima-
tion improves when the particles are close to each other, the preconditioner degenerates as well

10
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and the scheme may get stuck when being far away from the optimal solution. The dynamics
of the ensemble mean is given by

dūt
dt

=
[
−Ĉu,Gt Γ−1 (Ḡ(ut)− y)− Ĉ(ut)C

−1
0 ūt

]
+

1
τ
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt) .

For motivating EKI as derivative-free optimisation method, we split the dynamical system into
a (preconditioned) gradient flow and an approximation error, written as

dūt
dt

=
[
−Ĉ(ut)∇Φreg (ūt)

]
+

1
τ
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt)+Err
(
u(1)t , . . . ,u(J)t

)
=−Ĉ(ut)∇Φb (ūt)+Err

(
u(1)t , . . . ,u(J)t

)
.

For EKI without constraints one can indeed verify that the ensemble collapses but not too fast
[44]. As result, the approximation error Err(u(1)t , . . . ,u(J)t ) will degenerate in time, while the
lower bound on Ĉ(ut) will ensure the convergence of the scheme.

In order to obtainmore flexibility in controlling the speed of collapse from below and above,
we are going to introduce covariance inflation. In particular, we are applying the covariance
inflation introduced in [44, section 6] which inflates the particle system without changing the
dynamical behavior of the ensemble mean. Indeed, it has been observed theoretically as well
as numerically that this type of covariance inflation enhances the convergence speed.

The centered particles of (2.13) without covariance inflation satisfy

d
(
u( j)t − ūt

)
dt

=−Ĉu,Gt Γ−1
(
G
(
u( j)t
)
− Ḡ(ut)

)
− Ĉ(ut)C

−1
0

(
u( j)t − ūt

)
,

where both terms force the particles to collapse. In order to reduce the contracting forces, we
wish to relax these forces by changing the dynamical system of the ensemble spread to

d
(
u( j)t − ūt

)
dt

=−(1− ρt) Ĉ
u,G
t Γ−1

(
G
(
u( j)t
)
− Ḡ(ut)

)
− (1−βt) Ĉ(ut)C

−1
0

(
u( j)t − ūt

)
,

for ρt,βt ∈ [0,1) scaling the inflation strength. However, we aim to introduce this inflation
without changing the dynamical behavior of the ensemble mean itself, which is used as optim-
isation scheme. One possible way of achieving the covariance inflation without changing the
dynamical behavior of the ensemble mean is to consider the particle evolution of form

du( j)t
dt

= pρ,β
(
u( j)t
)
+

1
τ
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt) , (2.15)

where

pρ,β
(
u( j)t
)
=−Ĉu,Gt Γ−1

(
G
(
u( j)t
)
− y
)
− Ĉ(ut)C

−1
0 u( j)t

+ ρtĈ
u,G
t Γ−1

(
G
(
u( j)t
)
− Ḡ(ut)

)
+βtĈ(ut)C

−1
0

(
u( j)t − ūt

)
, (2.16)

with 0⩽ ρt ⩽ 1 and 0⩽ βt ⩽ 1 for all t⩾ 0. This incorporation of covariance inflation may be
seen as artificial. However, it has a good intuition from an optimisation point of view. While in

11
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the original EKI each particle is driven by its own direction, the formulation (2.15) additionally
moves each particle into a joint direction. This interpretation can be seen more clearly when
assuming ρt = βt and rewriting (2.16) by

pρ,β
(
u( j)t
)
=−(1− ρt)

[
Ĉu,Gt Γ−1

(
G
(
u( j)t
)
− y
)
+ Ĉ(ut)C

−1
0 u( j)t

]
− ρt

[
Ĉu,Gt Γ−1 (Ḡ(ut)− y)+ Ĉ(ut)C

−1
0 ūt

]
,

where the latter term is equal for all j = 1, . . . ,J. In our theoretical analysis, we will consider an
inflation factor ρt → 1 as t→∞ and turn of the inflation for the regularisation term through
setting βt = 0. Note that the presented results straightforwardly extend to βt > 0. As stated
above the evolution of the ensemble mean remains

dūt
dt

=−Ĉu,Gt Γ−1 (Ḡ(ut)− y)− Ĉ(ut)C
−1
0 ūt+

1
τ
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt)

= v(ut)+
1
τ
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt) ,

where we defined

v(ut) :=−Ĉu,Gt Γ−1 (Ḡ(ut)− y)− Ĉ(ut)C
−1
0 ūt . (2.17)

However, the evolution of the ensemble spread changes to

d
(
u( j)t − ūt

)
dt

=−(1− ρt) Ĉ
u,G
t Γ−1

(
G
(
u( j)t
)
− Ḡ(ut)

)
− Ĉ(ut)C

−1
0

(
u( j)t − ūt

)
.

We emphasize that the solutions of the inflated flow obviously still satisfy the subspace prop-
erty (see [44]). Note again, the dynamics of the centered particles with and without covariance
inflation are independent of τ , which will later lead to a speed of collapse independent of τ .
We summarize the incorporation of variance inflation in the following assumption.

Assumption 2.7. We consider the covariance inflated dynamics given by (2.16) where 0⩽
ρt < 1 with ρt → 1 as t→∞ and set βt = 0 for all t> 0.

Remark 2.8. This form of covariance inflation has been proposed in [44] to reduce the speed
of ensemble collapse, we are utilizing this approach to remain the most suitable rate of collapse
of order 1

t .
Furthermore, we highlight this effect in the numerical experiment in section 5.3, where we

compare the results using no covariance inflation, a fixed (but tuned) covariance inflation and
our proposed adaptive covariance inflation. We observe that adaptively increasing the covari-
ance inflation from 0 to 1 yields the most stable and efficient performance. As a result, we
observe significant acceleration of convergence for increasing covariance inflation and for the
adaptive approach a reduction of the computational time. We note that many other theoretical
and practical papers apply alternative forms of covariance inflation to encounter the ensemble
collapse, e.g. [16, 32].

3. Ensemble collapse and well-posedness

We define the centered particles as e( j)t = u( j)t − ūt. Next, we define the following Lyapunov
function Ve(t) = 1

J

∑J
j=1

1
2‖e

( j)
t ‖2 describing the deviation of the ensemble of particles from

12
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its mean and we will analyse its behaviour. To be more precise, we will prove that the ensemble
collapse with rate Ve(t) ∈ O(1/t).

Lemma 3.1 (upper bound). Let assumptions 2.6 and 2.7 hold. Furthermore, let
(u( j)0 )j=1,...,J ∈ Ω be the initial particle system and let (u( j)t , t⩾ 0), j = 1, . . . ,J, be a solu-
tion of (2.15). Then for all t⩾ 0 it holds true that

Ve (t)⩽
1

2σmin
J t+Ve (0)

−1 .

Proof. The outline of the proof follows similarly to [44, lemma 4.3]. The time evolution of Ve
is given by

dVe (t)
dt

=
2
J

J∑
j=1

⟨u( j)t − ūt,
d
(
u( j)t − ūt

)
dt

⟩

=− (1− ρt)
2
J2

J∑
k,j=1

⟨u( j)t − ūt,
(
u(k)t − ūt

)(
G
(
u(k)t

)
− Ḡ(ut)

)T
Γ−1

(
G
(
u( j)t

)
− Ḡ(ut)

)
⟩

− 2
J2

J∑
k,j=1

⟨u( j)t − ūt,
(
u(k)t − ūt

)(
u(k)t − ūt

)T
C−1
0

(
u( j)t − ūt

)
⟩ .

We observe that

1
J2

J∑
k,j=1

⟨u( j)t − ūt,
(
u(k)t − ūt

)(
G
(
u(k)t

)
− Ḡ(ut)

)T
Γ−1

(
G
(
u( j)t
)
− Ḡ(ut)

)
⟩= ∥Ĉu,Gt Γ−1/2∥2F

and similarly

2
J2

J∑
k,j=1

〈u( j)t − ūt,u
(k)
t − ūt〉〈u(k)t − ūtC

−1
0

(
u( j)t − ūt

)
〉= ‖Ĉt (ut)C−1/2

0 ‖2F

such that

dVe (t)
dt

=− 2(1− ρt)‖Ĉu,Gt Γ−1/2‖2F− 2‖Ĉt (ut)C−1/2
0 ‖2F

⩽− 2σmin

J

1
J

J∑
j=1

‖u( j)t − ūt‖2
2

=−2σmin

J
Ve (t)

2
,

where σmin denotes the smallest eigenvalue of C−1
0 . Then the claim follows by Lyapunov

theory.

As discussed above, in order to prove convergence of the scheme as optimisation method
we will need to lower bound the covariance matrix which is used as preconditioner. We will
provide the following lower bound on the smallest eigenvalue of (Ĉ(ut))t⩾0 which prevents
the ensemble to collapse too fast.

13
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Lemma 3.2 (lower bound). Let assumptions 2.6 and 2.7 hold. Moreover, let (u( j)0 )j=1,...,J ∈ Ω

be the initial particle system and let (u( j)t , t⩾ 0), j = 1, . . . ,J, be a solution of (2.15). Moreover,
we assume that

η0 := min
z∈S,∥z∥=1

〈z,C(u0) ,z〉> 0.

Then, for each z ∈ S with ‖z‖= 1 there exists a t◦ > 0 such that.

〈z, Ĉ(ut)z〉⩾
w

(c+wmax(k1,0))(t+ b)

for all t⩾ t◦. The constants are a=
(1−ρt◦ )c

2
lipλmaxJ

σmin
,b= Ve(0)

−1J
2σmin

,c= 2σmax, k1 =
(1−a)−ηt◦ cb
(1−a)baηt◦

and w= 1− a> 0. Here σmin and σmax denote the smallest and largest eigenvalue of C
−1
0 and

λmax denotes the largest eigenvalue of Γ.

Proof. The outline of the proof follows similarly to [44, lemma 4.4], where we include an
adaptation for allowing adaptive covariance inflation (ρt, t⩾ 0). Consider the dynamics of the
empirical covariance matrix

dĈ(ut)
dt

=
1
J

J∑
j=1

de( j)t
dt

(
e( j)t
)T

+
1
J

J∑
j=1

e( j)t

(
de( j)t
dt

)T

=−2(1− ρt) Ĉ
u,G
t Γ−1ĈG,ut − 2Ĉ(ut)C

−1
0 Ĉ(ut) .

Next let z ∈ S with ‖z‖= 1, then we note that

〈z, dĈ(ut)
dt

z〉=−2(1− ρt)‖ĈG,ut z‖2Γ − 2‖Ĉ(ut)z‖C0 . (3.1)

Observe that

‖ĈG,ut z‖2Γ ⩽ ‖ĈG,ut z‖2‖Γ−1‖⩽ ‖ĈG,ut z‖2λmax ,

where λmax denotes the largest eigenvalue of Γ−1. We apply Cauchy-Schwarz and Hölder’s
inequality to derive the following bound

∥ĈG,uz∥2 = ⟨ĈG,uz, ĈG,uz⟩= ⟨1
J

J∑
j=1

⟨u( j) − ū,z⟩⟩
(
G
(
u( j)

)
− Ḡ

)
,
1
J

∑
i=1

⟨u(i) − ū,z⟩⟩
(
G
(
u(i)

)
− Ḡ

)
⟩

=
1
J2

J∑
i,j=1

⟨u( j) − ū,z⟩⟨u(i) − ū,z⟩⟨G
(
u( j)

)
− Ḡ,G

(
u(i)

)
− Ḡ⟩

⩽ 1
J2

J∑
i,j=1

⟨u( j) − ū,z⟩⟨u(i) − ū,z⟩∥G
(
u( j)

)
− Ḡ∥∥G

(
u(i)

)
− Ḡ∥

=

1
J

J∑
j=1

⟨u( j) − ū,z⟩∥G
(
u( j)

)
− Ḡ∥

2

⩽


1
J

J∑
j=1

⟨u( j) − ū,z⟩2
 1

2
1
J

J∑
j=1

∥G(u( j))− Ḡ∥2
 1

2


2

,
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which implies that

‖ĈG,ut z‖2Γ ⩽ c2lipλmaxVe (t)〈z,C(u)z〉 ,

since

〈u( j) − ū,z〉2 = zT
(
u( j) − ū

)(
u( j) − ū

)T
z.

We denote by ηt the smallest eigenvalue of Ĉ(ut) and by ϕ(t) the corresponding unit-norm
eigenvector. We will show that ηt > 0 for all t⩾ 0. The following holds

0=
d‖ϕ(t)‖2

dt
= 2〈ϕ(t) , dϕ(t)

dt
〉 ,

and hence,

dηt
dt

=
d〈ϕ(t) , Ĉ(ut)ϕ(t)〉

dt

=〈ϕ(t) , dĈ(ut)ϕ(t)
dt

〉+ 〈dϕ(t)
dt

, Ĉ(ut)ϕ(t)〉

=〈ϕ(t) , dĈ(ut)
dt

ϕ(t)〉+ 2ηt〈
dϕ(t)
dt

,ϕ(t)〉

⩾− 2(1− ρt)c
2
lipVe (t)λmax〈ϕ(t) , Ĉ(ut)ϕ(t)〉− 2σmax‖Ĉ(ut)ϕ(t)‖2,

=− 2(1− ρt)c
2
lipVe (t)λmaxηt− 2σmaxη

2
t

⩾−
2(1− ρt)c2lipλmax

2σmin
J t+Ve(0)−1

ηt− 2σmaxη
2
t ,

where we used in the third step the symmetry of Ĉ(ut) and in the last lemma 3.1. Hence we
have an ODE of the form

dηt
dt

⩾− at
t+ b

ηt− cη2t ,

where at =
(1−ρt)c

2
lipλmaxJ

σmin
,b= Ve(0)

−1J
2σmin

,c= 2σmax. Since ρt → 1 as t→∞, there exists a t◦ such
that at ⩽ a ∈ (0,1) for all t⩾ t◦. The solution of the ODE

dx(t)
dt

=− a
t+ b

x(t)− cx(t)2

is given by

x(t) =
1− a

c(t+ b)+ (1− a)k1 (t+ b)a
, x(0) = ηt◦ > 0 ,

where k1 is chosen such that the initial condition is satisfied (see lemma A.3). Since a ∈ (0,1)
we have that x(t)> 0 for all t⩾ 0. Hence, we can run our ODE in time and choose t◦ as our
initial starting point. For such values of a we have that (t+ b)a ⩽ (t+ b) such that we obtain
the lower bound

x(t)⩾ 1− a
c(b+ t)+ (1− a)max(k1,0)(t+ b)

=
w

(c+wmax(k1,0))(t+ b)
,
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where w= 1− a> 0, which guarantees by comparison argument that

ηt ⩾
w

(c+wmax(k1,0))(t+ b)

for all t⩾ t◦.

Remark 3.3. We emphasize that the constants describing the upper and lower bound of the
ensemble collapse as well as t◦ from lemma 3.2 are independent of the penalty parameter τ .

Our next result shows that any solution u(t) of (2.15), remains in the feasible set Ω for all
t⩾ 0 and therefore, there exists a unique global solution.We provide the proof of the statement
in appendix A.2.

Proposition 3.4 (existence). Let assumptions 1.1, 2.1, 2.2, 2.6 and 2.7 hold and let
(u( j)0 )j=1,...,J be the initial particle system. We assume that the feasible set is bounded, i.e. that
there exists R> 0 such that Ω⊆ BR(0). Moreover, we assume that ‖∇hi(u)‖⩽ C(R) for
some constant C(R)> 0 depending on R and all u ∈ BR(0). Then the mean of any solution
(u( j)t , t⩾ 0) of (2.15) remains in the feasible set Ω, i.e. ūt ∈ Ω for all t⩾ 0. Moreover, there
exists a unique solution of (2.15).

Due to proposition 3.4 under assumption 2.6 the mean of computed solutions is always
feasible and bounded. Hence, we also obtain that ‖u( j)t ‖⩽ B for some B> 0, all t⩾ 0 and
j = 1, . . . ,J.

4. Gradient flow structure and convergence analysis

The dynamics of the particles given by the RHS of (2.2) can be approximated by the precon-
ditioned gradient flow

−Ĉ(ut)∇Φreg
(
u( j)
)
.

This approximation is getting more precise, as the ensemble collapse is happening [44, lemma
4.5, lemma 6.4]. We consider in the following the approximation of (2.13) for the mean of our
particles given in [44, lemma 6.4].

Lemma 4.1 (gradient flow approximation). Consider the ensemble {u( j)t , j = 1, . . . ,J} and
assume that assumption 2.1 holds, then the mean of the particles satisfies

‖Ĉu,Gt Γ−1 (Ḡt− y)− Ĉ(ut)∇Φ(ū)‖⩽ b1J
√
Φ(ū)Ve (t)

3
2 , (4.1)

where b1 is independent of J.

We are now ready to formulate our main result of convergence.

Theorem 4.2 (main convergence). Suppose that assumptions 1.1, 2.1, 2.2, 2.6 and 2.7 are
satisfied. Let u∗τ be the unique global minimiser of (2.11), let (u

( j)
0 )j=1,...,J ∈ Ω be the initial

particle system with J> d and let (u( j)t , t⩾ 0), j = 1, . . . ,J, be a solution of (2.15). Then there
exist c1,c2 > 0 and t̄⩾ 0 such that

Φb (ūt)−Φb (uτ∗)⩽
(

c1
t+ c2

) 1
γ

,
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for all t⩾ t̄, where γ := c+wmax(k1,0)> 0 is independent of t and τ . The constants c, w and
k1 are defined in lemma 3.2. In particular, we have that

lim
t→∞

Φb (ūt)−Φb (uτ∗) = 0 .

Proof. Define V(t) = Φb(ūt)−Φb(uτ∗) and Err(t) = Ĉu,Gt Γ−1(Ḡt− y)− Ĉ(ut)∇Φ(ū), then
we have

dV(t)
dt

= 〈∇Φb (ūt) ,
dūt
dt

〉

= 〈∇Φb (ūt) ,
[
−Ĉu,Gt Γ−1 (Ḡ(ut)− y)− Ĉ(ut)C

−1
0 ūt

]
+

1
τ
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt)〉

= 〈∇Φb (ūt) ,−Err(t)〉

+ 〈∇Φb (ūt) , Ĉ(ut)

(
−∇Φ(ūt)−C−1

0 ūt+
1
τ

m∑
i=1

1
hi (ūt)

∇hi (ūt)

)
〉

= 〈∇Φb (ūt) ,−Err(t)〉+ 〈∇Φb (ūt) ,−Ĉ(ut)∇Φb (ūt)〉 .

The first term can be approximated by Cauchy–Schwarz and using (4.1)

〈∇Φb (ūt) ,−Err(t)〉⩽ ‖∇Φb (ūt)‖‖Err(t)‖⩽ ‖∇Φb (ūt)‖b1J
√
Φ(ūt)Ve (t)

3
2

⩽ ‖∇Φb (ūt)‖b1J
√
clip‖ūt‖Ve (t)

3
2 .

For the second term we obtain through lemma 3.1 and the PL-inequality, for which we give
more details in lemma A.1,

−〈∇Φb (ūt) , Ĉ(ut)∇Φb (ūt)〉⩽−ηt‖∇Φb (ūt)‖2 ⩽−2µηt
(
Φb (ūt)−Φb (uτ∗)

)
,

where ηt > 0 denotes the smallest eigenvalue of Ĉ(ut). Using Young’s inequality it follows
that ‖∇Φb(ūt)‖⩽ 1

2‖∇Φb(ūt)‖2 + 1
2 , such that we obtain

dV(t)
dt

⩽−ηt‖∇Φb (ūt)‖2 + ‖∇Φb (ūt)‖b1J
√
clip‖ūt‖Ve (t)

3
2

⩽− w
(c+wmax(k1,0))(t+ b)

‖∇Φb (ūt)‖2

+

(
1
2
‖∇Φb (ūt)‖2 +

1
2

)
b1J
√
clipB

(
1

2σmin
J t+Ve (0)

−1

) 3
2

for all t⩾ t◦, where we have used lemma 3.2. For sufficiently large t̄⩾ 0 we have that

1
2
‖∇Φb (ūt)‖2

b1J√clipB

(
1

2σmin
J t+Ve (0)

−1

) 3
2

− w
2(c+wmax(k1,0))(t+ b)

⩽ 0 ,
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for all t⩾ t̄, such that

dV(t)
dt

⩽− w
2(c+wmax(k1,0))(t+ b)

‖∇Φb (ūt)‖2 +
1
2
b1J
√
clipB

(
1

2σmin
J t+Ve (0)

−1

) 3
2

⩽− wµ
(c+wmax(k1,0))(t+ b)

V(t)+
1
2
b1J
√
clipB

(
1

2σmin
J t+Ve (0)

−1

) 3
2

for all t⩾max{̄t, t◦}. Using Gronwall’s lemma we obtain that

V(t) = Φb (ūt)−Φb (uτ∗)⩽
(

c1
t+ c2

) 1
γ

,

for all t⩾max{̄t, t◦}, where γ := c+wmax(k1,0) is independent of t and τ .

Remark 4.3. The assumption J> d in theorem 4.2 is rather constraining, and usually not ful-
filled in practical situations. However, in the case J⩽ d we have observed that the well-known
subspace property lemma 2.5 is satisfied. In that case we can consider convergence to a KKT-
point u∗ of (2.14) and the results in theorem 4.2 can be generalized straightforwardly to this
setting. We refer to section 4.3 in [44] for more details.

5. Numerical experiments

We now conduct two numerical experiments to test our methodology. In the first experiment,
we aim to estimate the source term in a 1D parabolic PDE, using measurements obtained from
its solution. However, this experiment is a linear inverse problem, therefore we incorporate a
non-linear perturbation term into the potential (1.2). Subsequently, in the second experiment,
our goal is to estimate the log-diffusion coefficient in a 2D elliptic PDE once again using
measurements of its solution. In the implementationwe solve equation (2.15) usingMATLABs
ODE solver ode45.

5.1. Implementation of the penalty approach

We conclude the latter experiment with an implementation of an adaptive penalty parameter
τ . Let u∗ be the KKT-point of (2.10) and uτ∗ ∈ Rd the unique global minimiser of Φb. Then the
error (2.12) decreases as the penalty parameter τ increases.

We will compute the solutions of (2.15) for several fixed penalty parameters τ and compute
the errors to u∗ in the parameter space as well as the observations space. In proposition 3.4
we have verified that each solution of (2.15) remains feasible for fixed τ . However, in numer-
ical implementations this cannot be guaranteed anymore. Depending on the chosen numerical
solver onemay need to validate feasibility in each discretisation step and successively decrease
the applied step size. Indeed, we observe that the ODE (2.15) becomes more and more stiff
with increasing τ . Hence, our applied ODE solver has to take smaller step sizes in order to
ensure feasibility and the algorithm becomes computationally slow. Taking this into account,
we also consider an adaptive choice of the penalty parameter τ , which is increasing over time,
when solving the ODE (2.15) in section 5.3.1. To be more precise, we consider the dynamical
system
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du( j)t
dt

= pρt,0
(
u( j)t
)
+

1
τt
Ĉ(ut)

m∑
i=1

1
hi (ūt)

∇hi (ūt) , (5.1)

with (τt)t⩾0 denoting our adaptive penalty parameter choice with limt→∞ τt =∞. We will
observe in section 5.3.1 that this approach leads to significant reduction of the overall run-
time.

5.2. Pseudolinear example

In the following section, we present a nonlinear examplewith Tikhonov regularisation to obtain
a strongly convex potential. The example is based on a linear forward model where we add
a nonlinear perturbation to the model leading to a nonlinear inverse problem. The magnitude
of the nonlinear term is controlled by some ε> 0. Then the regularisation parameter can be
chosen depending on ε, i.e. λ(ε), such that we can keep the regularisation at a low level and
still obtain a strongly-convex functional by controlling the magnitude of the nonlinear term.

We consider an inverse problem of the form (1.2) where G(u) = Au+
ε [sin(u1), . . . ,sin(uK)]

T, where A ∈ RK×K is symmetric and positive semi-definite and
ε> 0. We assume that supu∈Ω ‖u‖⩽ B and let Amax =maxi,j |Ai,j|, ymax =maxi |yi|. For
λ > ((4+B)amax + ymax)ε+ ε2, the Tikhonov regularised loss function

Φreg (u) =
1
2
‖G(u)− y‖2 + λ

2
‖u‖2

is strongly convex and L-smooth, see lemma A.2.
For the linearmodelAwe consider a one-dimensional heat equation given by the differential

equation

∂u(x, t)
∂t

− ∂2u(t,x)
∂x2

= f(x) (t> 0,x ∈ (0,1))

u(0,x) = 0 (x ∈ (0,1))

u(t,0) ,u(t,1) = 0 (t⩾ 0) .

We aim to recover the forcing f given observations of the solution at specific grid points.
For this we introduce the solution operator of the PDE L= d

dt −
d2

d2x and an equidistant
observation operator on [0,1]×R⩾0 defined as O : H1

0([0,1],R)→ RK,(p(·)) 7→ O(p(·)) =
(p(x1), . . . ,p(xK))

T. Here p ∈ H1
0([0,1],R) denotes a solution operator of the PDE. Then the

forward operator is given by A=O◦ L−1, and the inverse problem is respectively

u= Af+ η,

where η ∼N (0,Γ), with Γ = 0.12IdK.
The forcing is assumed to follow a Gaussian distribution with zero mean and covariance

given by C0 := C(s, t) = σ2 exp(− |s−t|2
Lsc

), where (s, t) ∈ [0,1]× [0,1]. In this expression, σ2 is
set to 10 and Lsc is set to 0.1. To simulate the random field, we employ a Karhunen-Loève
(KL) expansion truncated after 12 terms. Specifically, we express f(x,ω) as follows:

f(x,ω) =
8∑

i=1

λ
1/2
i ei (x)ξi (ω) .
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Figure 1. Ensemble collapse in the form of Ve(t) of the particles for the EKI (red) and
EKI with CC (green line represents fixed covariance inflation; blue line increasing cov-
ariance inflation). The black dotted line depicts the rate t−1.

Here, λi represents the largest eigenvalues of C(s, t), ei(x) denotes the corresponding eigen-
functions, and ξi are standard normal distributed random variables. Furthermore we draw our
initial ensemble from the same random field bymaking J= 10 independent draws from f(x,ω).
Note that the generated solution of the EKI will lie in f⊥0 + E , where E is the linear span of
the centered initial ensemble and f⊥0 = f̄(0)−PE f̄(0). For the simulation, we use a spatial step
size of h= 0.01, hence we have 99 interior points and therefore the state space dimension is
d= 99, a time step size of ∆= 0.05, and only solved for one step size into the future.

We draw the initial forcing f† from f(x,ω) and compute our observations by solving the
PDE given this forcing.

We impose convex constraints (CC) in the form of an upper bound on the norm of our
solution, i.e. we set h(u) = 1

2‖u‖
2
C0
− 1

2‖f
†‖C0 and require h(u( j)t )⩽ 0 for all j = 1, . . . ,J and

t⩾ 0.
We compare our solution to the optimum of (2.11), where we use, MATLABs optimisation

tool fmincon. Additionally to the CC, we also impose the constraint of the subspace property,
i.e. we search a solution in f⊥0 + E . For this to be satisfied, the computed solution u has to
satisfy the equation PEu= f⊥0 , where PE is the projection onto E . We solve the ODE (2.15)
until T= 106 and use ode45 as solver. We use τ = 104 and a regularisation factor of β= 0.01.

Furthermore, we consider three different types of covariance inflation

• Increasing covariance inflation ρt = 1− 1
log(t+exp(1)) .

• Constant covariance inflation ρt = 0.8 for all t⩾ 0.
• No variance inflation, i.e. ρt = 0 for all t⩾ 0.

Figure 1 depicts the ensemble collapse of the particles in the form Ve(t) = 1
J

∑J
j=1

1
2‖e

( j)
t ‖2.

We can see that the ensemble collapse for all methods with convex constraints happen with the
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Figure 2. Absolute error of computed solutions in the parameter (left) and observation
space (right). The red line illustrates the EKI, the green dash-dotted line EKI with CC
and constant covariance inflation of ρt = 0.8, the blue dashed line considered an increas-
ing covariance inflation of ρt = 1− 1

log(t+exp(1)) and the pink line represents no level of
variance inflation, i.e. ρt = 0.

same rate t−1 as imposed by lemma 3.1. All three methods perform similarly well and only
differ from the EKI due to constants.

In figure 2we illustrate the error in the parameter space and observation space. The solutions
computed by all methods with convex constraints converge to the KKT point uτ∗ , whereas the
EKI without constraints does not converge, since it does not take the constraints into account.
Furthermore, we note that the methods with a positive amount of covariance inflation perform
similarly well. In regard to the performance of the algorithms this is an important observation
since the ODE (2.15) get stiffer with higher value of covariance inflation and therefore also
computationally slower. Since the experiment with ρt = 0.8 is performing similarly well as
with ρt = 1− 1

log(t+exp(1) one should preferably implement a fixed value of covariance infla-
tion. Moreover, we note that the experiment without variance inflation, converges up until time
T= 1e4 similarly fast as the experiments with variance inflation, but slows down afterwards.

In the left image of figure 3 we illustrate the computed solutions. We only illustrate the
solution computed with ρ= 0.8, the dashed-green line, since it is very similar to the one for
increasing covariance inflation and the one without variance inflation. We can see that that it is
visually identical to the KKT-point uτ∗ , whereas the EKI solution, has more discrepancies. This
can also be seen in the right image, where we illustrate the weighted norm of the solutions. The
dotted black line, illustrates the upper bound, i.e. 1

2‖f
†‖C(s, t). We can see that the norms of all

three solutions with CC (blue, green and pink line) increase over time but after reaching the
upper bound they stay below this bound, whereas the EKI does not satisfy the bound, which
explains why the error in figure 2 does not decrease.

5.3. 2D-Darcy flow

We consider the following elliptic PDE{
−∇ · (exp(u)∇p) = f, x ∈ D

p= 0, x ∈ ∂D
, (5.2)
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Figure 3. Estimated computed solutions (left) andweighted norm of the of the computed
solutions (right).

where D= (0,1)2 denotes the domain. Given observations of the solution p ∈ H1
0(D)∩

H2(D) := V , our objective is to estimate the unknown diffusion coefficient u† ∈ C1(D) = X.
Additionally, we assume that the scalar field f ∈ R is known and define an observation operator
for K randomly chosen points in X , i.e. O(p) = (p(x1), . . . ,p(xK)).

The observations are represented by the equation

y=O (p)+ η .

The noise on our data, denoted by η is assumed to be Gaussian, representing a realisation of
N (0,Γ), where Γ = 0.12IdK.

Thus, our inverse problem is given by

y= G (u)+ η ,

where G =O◦G andG : X→ RK denotes the solution operator of the PDE (5.2). We solve the
PDE on a uniform mesh of the size 32× 32 using a FEM method with continuous, piece wise
linear finite element basis functions. Consequently, the parameter space is of size d= 1024.
As prior belief distribution we consider the random field

u(x,ω) =
s∑

i=1

λ
1/2
i ei (x)ξi (ω) ,

where λi =
(
π2(k2j + l2j )+ τ 2

)−α
and ei(x) = cos(π x1kj)cos(π x2lj)with τ = 0.01,α= 2,s=

25,(kj, lj)j∈{1,...,s} ∈ {1, . . . ,s}2. The variables ξi are i.i.d standard normal variables.
We select our underlying groundtruth by drawing u† from the prior distribution.

Furthermore, we consider Box-constraints (BC) in the form of upper and lower bounds on
the solution, i.e. the solutions have to satisfy (u( j)t )i ∈ [a,b], where a=minu† + 0.3|minu†|
and b=maxu† − 0.3|maxu†| for all j = 1, . . . ,J, t⩾ 0 and components i = 1, . . . ,d.

Again we use MATLABs optimisation tool fmincon to compute the KKT point of (2.11)
and solve the ODE (3.1) with ode45. We compare different levels of covariance inflation to
illustrate the effect of adding the inflation, we choose
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Figure 4. Absolute error of computed solutions in the parameter (left) and observation
space (right). The red line illustrates the EKI, the green lines EKI with BC and different
levels of constant covariance inflation, where the level increases for a darker shades of
green, the blue line uses increasing variance inflation in the form of ρt = 1− 1

(0.1 t+1)1/4

and the pink line has no variance inflation.

(i) Increasing covariance inflation ρt = 1− 1
(0.1 t+1)1/4 .

(ii) Constant covariance inflation ρt = 0.1 for all t⩾ 0.
(iii) Constant covariance inflation ρt = 0.5 for all t⩾ 0.
(iv) Constant covariance inflation ρt = 0.8 for all t⩾ 0.
(v) Constant covariance inflation ρt = 0.95 for all t⩾ 0.
(vi) No variance inflation, i.e. ρt = 0 for all t⩾ 0.

The particle size is set to J= 10 and therefore, the approach seeks a solution in the subspace
u⊥0 + span{u( j)0 − ū0, j = 1, . . . ,J}.

We set a fixed penalty parameter τ = 104, a regularisation factor of β= 0.01 and compute
the solutions up until T= 106.

In figure 4 we can see similarly to the experiment in section 5.2 that the errors to the KKT
point uτ∗ of (2.11) of the methods with BC perform similarly well and both converge to 0,
whereas the original EKI does not converge. Furthermore, we can see that with an increasing
amount of variance inflation the convergence rate also increases. However, the closer the fixed
variance inflation factor ρt = ρ is set to 1, the more involved is the computation and the ODE
solver ode45 takes a longer execution time. We emphasize that the adaptive choice ρt → 1 can
significantly reduces this execution time.

Figure 5 illustrates the estimated solutions of our methods. We can see that the EKI (bottom
left) is outside the bounds, whereas our method with BC satisfies both upper and lower bound
and looks very similar to the KKT-point obtained by MATLABs fmincon solver.

5.3.1. Adaptive penalty parameter. For our last experiment with adaptive penalty parameter
we consider a mesh of the size 6× 6, since we have to compute the solutions for several differ-
ent values of τ , which is computationally expensive. Therefore, we have d= 36. We take the
same upper and lower bounds as above. Furthermore, we compute the solution of (5.1) until
time T= 105 and consider fixed covariance inflation of the magnitude ρt = 0.7. We consider
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Figure 5. Estimated solutions of the EKI (bottom left) and EKI with BC, where ρt =
1− 1

(0.1 t+1)1/4 (bottom right) and optimiser (upper right). Upper left illustrates the true

solution u†. The grey planes illustrate the upper and lower bound.

Figure 6. Absolute error of computed solutions in the parameter (left) and observation
space (right). The red line depicts the EKI. The dotted/dashed blue lines illustrates the
EKI with BC for different fixed values of τ ∈ {1,10,100,1000,10000}. The dashed
green line depicts the error of the the Box-constraints algorithmwith adaptive increasing
τ .

five different fixed penalty parameters τ ∈ {1,10,100,1000,10000} and one adaptive pen-
alty parameter, τ(t) = t+ 1 to compare this solution with the one for the highest fixed penalty
parameter, τ = 10000. The remaining variables are the same as above.

In figure 6 we illustrate the errors in the parameter space and observation space to the
KKT-point u∗. We can see that as the fixed penalty parameter τ increases, the error decreases
as described by equation (2.12). Furthermore, for the adaptive choice of τ we can see that in
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the beginning the error vanishes slower then for fixed τ = 10000, but reaches the same error
level at T= 105.

This results indicates that the adaptive choice of penalty parameter is a suitable alternative,
since it results in a less stiff ODE that needs to be solved. The computational time of the
adaptive choice was 4-times faster than the fixed penalty parameter.

6. Conclusion

Based on a log-barrier approach we introduced an adaptation of the EKI that allows the incor-
poration of convex inequality constraints for nonlinear forward problems. Through the inclu-
sion of Tikhonov regularisation as well as covariance inflation we provided a convergence
analysis for our method, which includes the quantification of the ensemble collapse as well
as convergence as optimisation method. Our numerical experiments confirmed the results. In
one experiment we consider a nonlinear forward problem given as linear problem with addi-
tional nonlinear perturbation. The magnitude of nonlinearity affects the amount of regularisa-
tion needed to obtain a strongly convex objective function and thus, satisfies our assumptions
needed for theorem 4.2. In our second numerical experiment we considered the 2D-Darcy flow
and showcased a method to address the problem of large penalty parameters that are needed
in barrier-methods.

For future work we look to apply convex inequality constraints into subsampling
approaches for the EKI [23]. Moreover, it would be interesting to incoporporate the proposed
approach to particle based sampling methods such as the ensemble Kalman sampler [21].
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Appendix

A.1. Proofs of lemmas

Firstly, we show that strong convex functions fulfil the PL—inequality

Lemma A.1. Let Φ : Rd → R be strongly convex, then Φ satisfies the PL-inequality, i.e.

ν‖∇Φ(x)‖2 ⩾ Φ(x)−Φ(x∗) ,
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for ν = 1
2µ > 0 and all x ∈ Rd, where x∗ is a stationary point.

Proof. Since Φ is strongly convex, there exists a µ> 0 such that

Φ(y)⩾ Φ(x)+ (y− x)∇Φ(x)+
µ

2
‖y− x‖2, ∀x,y ∈ Rd

which implies

Φ(x)−Φ(y)⩽ 〈x− y,∇Φ(x)〉− µ

2
‖x− y‖2. ∀x,y ∈ Rd.

Note that ‖a− b‖2 = ‖a2‖− 2〈a,b〉+ ‖b‖2 for all a,b ∈ Rd. Therefore, we have 〈a,b〉−
1
2‖a

2‖= 1
2‖b

2‖− 1
2‖a− b‖2. Setting a= (x− y)

√
µ and b= 1√

µ∇Φ(x), we obtain

Φ(x)−Φ(y)⩽1
2
‖ 1
√
µ
∇Φ(x)‖2 − 1

2
‖(x− y)

√
µ− 1

√
µ
∇Φ(x)‖2

⩽ 1
2µ

‖∇Φ(x)‖2.

Hence, Φ satisfies the PL-inequality with constant 1
2µ .

The next statement considers our applied inverse problem based on a linear forward model
with nonlinear perturbation. It provides sufficient conditions for the Tikhonov regularized loss
function Φreg to be strongly convex.

Lemma A.2. Consider the potential (1.2) where G(u) = Au+ ε [sin(u1), . . . ,sin(uK)]
T, where

A ∈ RK×K and ε> 0. Further, assume that supu∈Ω ‖u‖⩽ B and let Amax =maxi,j |Ai,j|, ymax =
maxi |yi| and λ > ((4+B)amax + ymax)ε+ ε2, then the Tikhonov regularised loss function

Φreg (u) =
1
2
‖G(u)− y‖2 + λ

2
‖u‖2

is strongly convex and L-smooth.

Proof. The Jacobian JG of G is given by

JG(x) =
(
AT+ εdiag(cos(x1), . . . ,cos(xK)

)
.

Hence, the ith row and jth component of the row have the following structure

(JG (x))i,: = ATi,: + ε [0, . . . ,cos(xi) , . . . ,0]

(JG (x))i,j = Ai,j+ εcos(xi)δij,

where δi,j denotes the Kronecker symbol. Hence, we have

(
∂Φ

∂x

)
i

=
K∑
j=1

(Aj,i+ εcos(xi)δij)(Aj,:x+ εsin(xj)− yj) .

And therefore, we obtain for the entries of the Hessian
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∂2Φ

∂xi∂xl
=

K∑
j=1

(−εsin(xi)δijδil)(Aj,:x+ εsin(xj)− yj)

+
K∑
j=1

(Aj,i+ εcos(xi)δij)(Aj,l+ εcos(xj)δjl)+λ

= (−εsin(xi)δil)(Ai,:x+ εsin(xi)− yi)

+
K∑
j=1

Aj,iAj,l+
K∑
j=1

Aj,iεcos(xj)δjl

+
K∑
j=1

εcos(xi)δijAj,l+ ε2 cos(xi)
2
δil+λ.

Thus, the entries of the Hesse-Matrix are given by

(HΦreg))i,l

=

{∑K
j=1A

2
j,i− εsin(xi)

(
Ai,:x+ εsin(xi)− yi

)
+ 2Ai,iεcos(xi)+ ε2 cos(xi)

2 +λ, if i = l,∑K
j=1Aj,iAj,l+Al,iεcos(xl)+Ai,lεcos(xi), if ̸= l.

We can split the Hessian into two parts:

(HΦreg)) = ATA+Mε,λ ,

where

Mε,λ =

{
−εsin(xi)(Ai,:x+ εsin(xi)− yi)+ 2Ai,iεcos(xi)+ ε2 cos(xi)

2
+λ, if i = l,

εcos(xl)+Ai,lεcos(xi) , if i 6= l.

Since ATA is positive semi-definite we continue to show thatMε,λ is positive definite. We start
by lower bounding the diagonal elements of (Mε,λ) by

(Mε,λ)i,i ⩾−ε(AmaxB+ ε+ ymax)− 2Ai,iε+λ,

where Amax =maxi,j |Ai,j|, ymax =maxi |yi| and B= supx∈Ω ‖x‖<∞. On the other side, we
can bound the off-diagonal elements by

K∑
l=1

|(Mε,λ)i,l |⩽ 2Amaxε.

Hence, by assumption we have for all i ∈ {1, . . . ,K}

(Mε,λ)i,i ⩾−ε(AmaxB+ ε+ ymax)− 2Ai,iε+λ > 2Amaxε⩾
∑
i ̸=j

|(Mε,λ)i,j | .

Therefore, Mε,λ is positive definite and by that also HΦreg . Furthermore, we can upper bound
the diagonal elements of Mε,λ by

(Mε,λ)i,i ⩽ ε(AmaxB+ ε+ ymax)+ 2Ai,iε+ ε2 +λ.

Hence, all entries of HΦreg are bounded, implying the L-smothness of Φreg.
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The next lemma provides the solution of the ODE needed to derive the lower bound on the
ensemble collapse in lemma 3.2.

Lemma A.3. Let a,b,c> 0 then the solution of the ODE

dx(t)
dt

=− a
t+ b

x(t)− cx(t)2 (A.1)

is given by

x(t) =
1− a

c(t+ b)+ (1− a)k1 (t+ b)a
, x(0) = x0 > 0 , (A.2)

where k1 is chosen such that the initial condition is satisfied.

Proof. The proof follows the ideas of lemma A.3 in [42]. We show that that (A.2) solves the
ODE:

dx(t)
dt

=−
(1− a)

(
c+ a(1− a)k1 (t+ b)a−1

)
(
c(t+ b)+ (1− a)k1 (t+ b)a

)2
=

(
− c+ a(1− a)k1 (t+ b)a−1

c(t+ b)+ (1− a)k1 (t+ b)a

)(
1− a

c(t+ b)+ (1− a)k1 (t+ b)a

)

=

(
−c+ ca− ca+ a(1− a)k1 (t+ b)a−1

c(t+ b)+ (1− a)k1 (t+ b)a

)
x(t)

=

(
−ca+ a(1− a)k1(t+ b)a−1 + c(1− a)

c(t+ b)+ (1− a)k1(t+ b)a

)
x(t)

=

(
−

a(t+ b)
(
c+(1− a)k1(t+ b)a−1

)
(t+ b)(c(t+ b)+ (1− a)k1(t+ b)a)

− cx(t)

)
x(t)

=

(
− a
t+ b

− cx(t)

)
x(t) ,

which is in the needed form of (A.1).

A.2. Proof of the feasibility and unique existence of solution

Proof of proposition 3.4. Without loss of generality we assume that m= 1, i.e. there is only
one inequality constraint h(u)⩽ 0. The evolution of h(ūt) is given by

dh(ūt)
dt

= 〈∇h(ūt) ,
dūt
dt

〉= 〈∇h(ūt) ,v(ut)〉+
1
τ

1
h(ūt)

〈∇h(ūt) , Ĉ(ut)∇h(ūt)〉 ,

where v is defined in (2.17). Let T > 0, then for any solution (ūt)t∈[0,T], h(ūT) can be represented
by

h(ūT) = h(ū0)+
ˆ T

0

(
〈∇h(ūt) ,v(ut)〉+

1
τ

1
h(ūt)

〈∇h(ūt) , Ĉ(ut)∇h(ūt)〉
)
dt .

Suppose there exists T1 > 0 such that h(ūT1)> 0. Since we initialize with h(ū0)< 0 by con-
tinuity of solutions and continuity of h, it follows that there exists tmin ∈ (0,T1) such that
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h(ūtmin) = 0 and h(ūt)< 0 for all t< tmin. Moreover, again by continuity it follows that there
must exists δ > 0 such that

〈∇h(ūt) ,v(ut)〉+
1
τ

1
h(ūt)

〈∇h(ūt) , Ĉ(ut)∇h(ūt)〉> 0 (A.3)

for all t ∈ (tmin − δ, tmin) and therefore, also ∇h(ūt) 6= 0 for all t ∈ (tmin − δ, tmin). Remember,
by assumption 2.2 we also have that ∇h(ūtmin) 6= 0, see remark 2.3. Next, for s ∈ [0, tmin) we
consider

v(us)⩽ ‖Ĉu,Gs ‖F‖Γ−1‖F (‖Ḡs‖+ ‖y‖)+ ‖Ĉ(us)‖F‖C−1
0 ‖F‖ūs‖.

We can approximate the covariance Ĉu,Gs by the following

‖Ĉu,Gs ‖F 2 ⩽

1
J

J∑
j=1

‖e( j)s ‖2
1

J

J∑
j=1

‖G
(
u( j)s
)
− Ḡs‖2


using a same argumentation as in proof of lemma 3.2. We approximate the first term by

1
J

J∑
j=1

‖e( j)s ‖2 = Ve (s)⩽ Ve (0)

and the second factor by

1
J

J∑
j=1

‖G
(
u( j)s
)
− Ḡ‖2 ⩽ c2lipVe (s)⩽ c2lipVe (0) ,

where we used lemma 3.1. Hence, we have ‖v(us)‖⩽ B for all s ∈ [0, tmin] and some B> 0.
Similarly, using that ‖∇h(u)‖⩽ C(R), we have that |〈∇h(ūs),v(us)〉|⩽ B for s ∈ [0, tmin] and
some constant B. Finally, we observe that

1
τ

1
h(ūs)

〈∇h(ūs) , Ĉ(us)∇h(ūs)〉< 0

for all s ∈ [0, tmin), since 〈∇h(ūs), Ĉ(us)∇h(ūs)〉> 0 using lemma 3.2. Therefore, using

lim
ε→0

1
h(ūtmin−ε)

=−∞

since h(ūtmin−ε)↗ 0 for ε→ 0, and ∇h(ūt) 6= 0 for all t ∈ (tmin − δ, tmin], we obtain

lim
ε→0

〈∇h(ūtmin−ε) ,v(utmin−ε)〉+
1
τ

1
h(ūtmin−ε)

〈∇h(ūtmin−ε) , Ĉ(utmin−ε)∇h(ūtmin−ε)〉=−∞

which is in contradiction to (A.3). For the second part, we know by local Lipschitz-continuity
that locally there exists a unique solution of (2.15). Hence, as the local solution remains in Ω
it is also a global solution.
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