Aus dem physiologischen Institut der Kgl. Tierärztlichen Hochschule zu Berlin.

Vorstand: Professor Dr. Abderhalden.

Über Fermente im Blute.

Inaugural-Dissertation

zur

Erlangung der veterinärmedizinischen Doktorwürde an der Tierärztlichen Hochschule zu Berlin.

Vorgelegt von

GEORG KAPFBERGER

1911.

Druck von Reinhold Kühn, Berlin SW. 68.

VERITAS JUSTITIA LIBERTAS Veterinärmedizinische Bibliothek FREIE UNIVERSITÄT BERLIN

Gedruckt mit Genehmigung der Königlichen Tierärztlichen Hochschule zu Berlin. Referent; Prof. Dr. ABDERHALDEN. Meinem lieben Freunde HERMANN STRENG in treuer Freundschaft. Meinem lieben Freunds
HERMANNSTRENG

Die Kohlenhydrate sind in der Natur ungemein weit verbreitet und spielen bei der Ernährung des Menschen und der Tiere eine höchst wichtige Rolle. An die Spitze derselben möchte ich den Rohrzucker rücken, der als Nahrungs- und Genußmittel bereits im grauen Altertum bekannt und geschätzt war. Man kann denselben als geradezu ideales Nahrungsmittel bezeichnen, wenn man bedenkt, wie geringe Ansprüche er bei seiner Verdauung an den Organismus stellt, wie vollständig und rasch die hydrolytische Spaltung in seine Komponenten, Traubenzucker und Fruchtzucker, vor sich geht, wie vollkommen die Assimilation geschieht und welche Menge von Energie dadurch dem Organismus zur Verfügung gestellt wird.

Neben Rohrzucker ist als ein anderer wichtiger Vertreter der Kohlenhydratgruppe der Milchzucker zu nennen. In erster Linie aber die Stärke. Die Chemie der Kohlenhydrate war lange Zeit in großes Dunkel gehüllt, bis Emil Fischer kam und uns Licht in den Aufbau derselben brachte. Ihm verdanken wir in dieser Beziehung außerordentlich viel. Jetzt verstehen wir den Abbau der komplizierten Kohlenhydrate, die durch Einwirkung der Verdauungssäfte an verschiedenen Stellen des Verdauungstractus entstehen. Der Abbau der Kohlenhydrate im Darmkanal beruht auf einer hydrolytischen Spaltung, die durch bestimmte Fermente hervorgerufen wird. Die Endprodukte stellen sich vor allem als Hexosen dar und bieten in dieser Form dem Organismus ein einheitliches Baumaterial zum Aufbau seiner Körpersubstanzen.

Wir gehen bei der Schilderung der Kohlenhydratverdauung von der Stärke, dem kompliziertesten Kohlenhydrat, aus und folgen dabei im wesentlichen dem Lehrbuch der Physiologischen Chemie von Abderhalden.

Die Stärke wird in verschiedenster Form aufgenommen und unterliegt zunächst der Wirkung des Mundspeichels, mit dem sie durch Vermittlung der Kaubewegungen zusammengebracht wird. Die Speichelwirkung ist eine Fermentwirkung. Das sogenannte Ptyalin, das übrigens im Speichel der Hunde und Katzen nicht nachgewiesen werden kann, hat diastatische Wirkung. Der Vorgang ist folgender: Die Stärke wird in Dextrine und schließlich hauptsächlich in Maltose verwandelt. Ob bei der Spaltung in Maltose noch ein besonderes Ferment wirksam ist, ist nicht erwiesen. Ebenso, ob die vielfach angeführten Zwischenprodukte wie Amylodextrin, Erythrodextrin, Achrodextrin einheitliche Substanzen darstellen, oder ob es sich dabei nur um Gemische handelt. Das Ptyalin greift Stärke besonders leicht an, wenn dieselbe zur Quellung gebracht ist, was experimentell leicht dargetan werden kann.

Nunmehr kommt die Stärke und ihr Abbauprodukt in den Magen. "Vom Magen selbst wird kein die Kohlenhydrate umwandelndes Agens abgegeben." Die Magenverdauung der Kohlenhydrate spielt eine untergeordnete Rolle. Man war lange Zeit der Ansicht, daß die Wirkung der Diastase durch die saure Reaktion des Mageninhaltes sehr schnell zu Grunde ginge, indes hat Ellenberger") dargetan, daß die Speisen, wenn sie in den Magen gelangen, erst nach lägerer Zeit von dem Magensaft durchtränkt werden.

Ganz anders liegt in dieser Beziehung die Sache bei den Wiederkäuern. Bei diesen sowie bei jenen Tieren, deren Mageneinrichtungen in physiologischer wie anatomischer Hinsicht an den Wiederkäuermagen erinnert - wir nennen Kaninchen, Einhufer, Schweine - ist die Kohlenhydratverdauung im Magen bestimmt eine ausgedehnte. Hier sind eben die Bedingungen gegeben, welche die Diastasen-Wirkung in außerordentlicher Weise begünstigen. Die Vormägen sind aufzufassen als direkte Fortsetzung des Maules. Die Speicheldiastase ist überall nachweisbar und wirkt in umfangreicher Weise. Außerdem erhält das diastatische Ferment einen besonderen Angriffspunkt dadurch, daß die Stärke durch die teils mit der Nahrung aufgenommene teils mit dem Speichel zugeführte Flüssigkeit aufquillt. Dann ist vor allem nicht außer Acht zu lassen, daß hier die günstigsten Bedingungen für die Cellulose lösenden Bakterien gegeben sind.

Die eigentliche Kohlenhydratverdauung vollzieht sich erst im Darm. Hierzu liefert die Bauchspeicheldrüse das Ferment

¹) Ellenberger: Z. Mechanismus der Magenverdauung. Pflügers Archiv Bd, 114 S, 93, 1906.

Diastase. Die noch unveränderte bezw. wenig abgebaute Stärke wird durch die Diastase in ihre Bausteine zerlegt. Valentin, Bouchardat und Sandras fanden, daß hierbei in erster Linie Maltose entstehe. Die Wirkungen der Diastase äußern sich genau wie die des Ptyalins. Röhmam führt die Spaltung der Maltose und Dextrose auf ein weiteres Enzym im Pancreassaft, die Maltase, zurück. Man spricht von einer den Milchzucker in Dextrose und Galaktose spaltenden Lactase. Hier im Darm vollzieht sich auch im wesentlichen durch das im Darmsaft enthaltene Ferment Invertin der Abbau des Rohrzuckers in seine beiden Komponenten, Traubenzucker und Fruchtzucker.

Es wäre nun noch Erwähnung zu tun, wie die Spaltung des Milchzuckers und der Cellulose vor sich geht. Über den Abbau von Milchzucker bei Tieren, die ein den Milchzucker spaltendes Ferment nicht besitzen, sind unsere Vorstellungen unklar. Sonst handelt es sich auch hier um eine Fermentwirkung. Der Milchzucker wird im Darm in seine Komponenten zerlegt.

Wesentlich anders wie bei den bereits angeführten Kohlenhydraten liegt die Sache bei der Verwertung der in Form von Cellulose dem Organismus zugeführten Kohlenhydrate. Es spielen hier die Bakterien, welche in reichlicher Menge im Darmsaft enthalten sind, die führende Rolle. Speichel-, Magen-, Pancreasund Darmsaft sind ohne Wirkung auf die Cellulose. Besonders bemerkenswert sind Beobachtungen von Ellenberger '), der zeigte. daß die Coekalflüssigkeit in Vitro Cellulose in kurzer Zeit auflöst, daß diese Eigenschaft aber verloren geht, wenn die Coekalflüssigkeit aufgekocht wird, daß sie endlich herabgemindert wird, wenn sie durch Berkefeld-Filter filtriert wird. Wie und wieweit der Abbau durch die Mikroorganismen vor sich geht, ist zur Zeit noch nicht aufgeklärt. "Es ist möglich, daß nur ein Teil von den Bakterien abgebaut wird, während ein weiterer Teil vielleicht unter der direkten Mitwirkung des Darmepithels in eine resorbierbare und assimilierbare Form übergeführt wird."

Sind die Kohlenhydrate nunmehr in ihre niedrigsten Bausteine zerlegt, so setzt die Resorption ein.

¹⁾ Ellenberger: Beiträge zur Frage des Vorkommens, der anatomischen Verhältnisse und der physiologischen Bedeutung des Coekums, des Processus vermiformis und des cytoplastischen Gewebes in der Darmschleimhaut, Archiv f. (Anat. und) Physiol., S. 139, 1906.

Interessant ist die Frage, ob auch komplizierte Kohlenstoffverbindungen zur Resorption gelangen. Wenn auch bei sehr kohlenhydratreicher Nahrung das Pfortaderblut dextrinähnliche Stoffe enthalten kann, wie von Mering!) gezeigt hat, ist damit doch nicht bewiesen, daß es sich um einen regelmäßigen Befund handelt. Jedenfalls sind unter normalen Umständen komplizierte Kohlenhydrate jenseits des Darmes auf den Resorptionswegen nicht anzutreffen.

Im tierischen Organismus ist der als Nahrungs- und Genußmittel so wichtige Rohrzucker bis jetzt mit Sicherheit nicht nachgewiesen worden. Sicher spielt er im intermediären Stoffwechsel keine Rolle. Damit der tierische Organismus ihn verwerten kann, muß er im Verdauungstractus hydrolytisch gespalten werden.

Fritz Voit²) zeigte, daß Rohrzucker, wenn er mit Umgehung des Darmkanals in die Blutbahn gebracht wird, nicht weiter abgebaut, sondern unverändert im Harn ausgeschieden wird. Daß dies nicht quantitativ stattfindet, beweisen die unten mitgeteilten Versuche.

Nachdem es Abderhalden gelungen war, durch eine große Versuchsreihe nachzuweisen, daß das Blut normaler Hunde nach subkutaner bezw. intravenöser Injektion von Eiweißstoffen und Peptonen die Fähigkeit gewinnt, Proteine und Peptone abzubauen, lag der Gedanke nahe, ähnliche Versuche mit den Kohlenhydraten anzustellen.

Abderhalden und Brahm³) griffen zuerst dieses Problem auf. Sie verleibten normalen gesunden Hunden, deren Blut nachgewiesenermaßen eine rohrzuckerspaltende Fähigkeit nicht besaß, mit Umgehung des Darmkanals Rohrzucker ein und konnten nach einiger Zeit in dem Blute der so vorbehandelten Tiere die gesuchte rohrzuckerspaltende Kraft nachweisen.

Mir wurde von Abderhalden die Aufgabe gestellt, die erwähnten Versuche zu wiederholen und auf andere Fragestellungen anzuwenden.

¹⁾ von Mering: Über sie Abzugswege des Zuckers aus der Darmhöhle. Archiv f. Physiologie 379.

⁹⁾ Fritz Voit: Unters, über das Verhalten verschiedener Zuckerarten im menschlichen Organismus nach subkutaner Injektion, Deutsches Arch, f, klin, Medizin, Bd, 850, S, 531, 1897.

³⁾ Abderhalden u. Brahm: Zeitschr. f. physiol, Chemie von Hoppe-Seyler, Bd. 64, S. 29, 1910.

Der Plan, den ich bei meinen Versuchen einschlug, war mir im wesentlichen durch die Resultate Abderhaldens vorgezeichnet. Wenn es dem Autor gelang zu zeigen, daß eine spezifische Reaktion nicht vorlag, so war ich berechtigt anzunehmen, daß dasselbe bei den Kohlenhydraten der Fall sei. Abderhalden hat dargetan, daß beispielsweise nach subkutaner Zufuhr von Eiereiweiß das Plasma resp. Serum nicht nur Eiereiweiß, sondern auch andere Proteine und deren Peptone spaltet. Wurde jedoch der Versuch auch auf Fette und Kohlenhydrate ausgedehnt, so zeigte sich das Serum von mit Eiweiß vorbehandelten Tieren wirkungslos. Man kann daraus folgern und sagen, daß nach parenteraler Zufuhr von Eiweiß resp. Pepton das Serum bezw. Plasma der Versuchstiere zwar nicht auf bestimmte Proteine und Peptone, wohl aber für die Gruppe der Proteine eingestellt ist.

In erster Linie mußte ich festlegen, ob nicht schon das normale Blut von gesunden Hunden im stande ist, Rohrzucker abzubauen bezw. Milchzucker zu verändern. Ich habe zu diesem Zwecke jeden Versuch, den ich anstellte, durch einen entsprechenden Kontrollversuch ergänzt, konnte aber nie derartiges beobachten; hernach verleibte ich den Versuchstieren parenteral Rohrzucker ein, stellte die spaltende Wirkung des von den Versuchstieren gewonnenen Serums fest, prüfte die Wirksamkeit auch auf Milchzucker und andere Kohlenhydrate, spritzte dann auch Milchzucker und untersuchte das Plasma resp. Serum der so behandelten Tiere auf seinen Einfluß auf Milchzucker einerseits, auf Rohrzucker und andere Kohlenhydrate andererseits.

Um das spaltende Prinzip im Serum nachzuweisen, bediente ich mich in erster Linie der optischen Methode. Bekanntermaßen dreht Rohrzucker die Ebene des polarisierten Lichtes nach rechts, von den auf dem Wege der Hydrolyse entstehenden Spaltungsprodukten dreht Traubenzucker im gleichen Sinne, während Fruchtzucker stark links drehend ist. Brachte ich nun Rohrzuckerlösung mit aktiviertem Serum oder Plasma in einem Polarisationsröhrchen zusammen und beobachtete im Apparat während bestimmter Zeitabschnitte das Drehungsvermögen und es zeigte sich dann, daß die Rechtsdrehung abnahm, und endlich in Linksdrehung überging, so war damit dargetan, daß eine Spaltung des Rohrzuckers in seine beiden Komponenten, Traubenzucker und Fruchtzucker, eingetreten war. Ähnlich verhält sich

die Sache mit dem Milchzucker und anderen in Betracht kommenden Kohlenhydraten. Die andere Methode, die eingeschlagen wurde, soll später besprochen werden. Ich behandelte die ganze Frage nach folgenden Gesichtspunkten:

 Wird nach subkutaner bezw. intravenöser Einspritzung von Rohrzucker das Blut des Versuchstieres befähigt, Rohrzucker abzubauen, und unter welchen Bedingungen am besten?

Ich injizierte 10 ccm einer 5—10% Rohrzuckerlösung subkutan. Bei intravenöser Injektion wurde die Menge auf 2 ccm reduziert. Es gelang mir, in allen Fällen eine Spaltung nachzuweisen, allerdings waren die einzelnen Sera nicht gleichwertig. Die einen Hunde reagierten schneller und stärker wie die andern. Es scheinen hier individuelle Unterschiede vorzuliegen. Wenn es Abderhalden und Brahm nicht gelang, in allen Fällen einen positiven Erfolg zu sehen, so ist der Grund vielleicht darin zu suchen, daß die Menge des einzuspritzenden Rohrzuckers zu groß war. Hierauf wandte ich meine Aufmerksamkeit folgender Frage zu:

- 2. Ist es gleichgültig, ob man mit Serum oder Plasma operiert? Ich entnahm zu diesem Zweck einem entsprechend vorbehandelten Versuchshund Blut, schied daraus durch Zentrifugieren Serum und Plasma ab und setzte Parallelversuche an. Es zeigte sich, daß das wirksame Prinzip sowohl im Plasma wie auch im Serum nachzuweisen war, nur in Rücksicht auf den Grad der Wirksamkeit beider waren Unterschiede vorhanden.
 - 3. Erstreckt sich die Wirksamkeit des Serums resp. Plasmas nach Injektion von Rohrzucker auch auf Milchzucker und andere Kohlenhydrate?

Wir fanden folgendes: Raffinose wurde nicht gespalten, dagegen der Milchzucker konstant verändert. Des Drehungsvermögen wurde verändert, zuweilen trat zunächst eine starke Drehung nach rechts ein mit nachfolgendem Abfalle nach links. Eine Veränderung der Drehung wurde in jedem Fall beobachtet, jedoch sehr oft in verschiedenen Graden.

4. Entsteht im Blut nach parenteraler Zufuhr von Milchzucker die Fähigkeit, diesen zu verändern resp. Rohrzucker abzubauen und Raffinose anzugreifen?

Wie bei Rohrzucker konnten wir auch in diesem Falle Spaltungsvermögen nachweisen, das Milchzucker veränderte, Rohrzucker invertierte, Raffinose dagegen unverändert ließ. 5. Wann nach erfolgter subkutaner bezw. intravenöser Injektion ließ sich die Spaltung von Rohrzucker resp. Milchzucker nachweisen?

Wir gingen so vor, daß wir unseren Versuchshunden in bestimmten Zeiträumen nach erfolgter Injektion Blut entnahmen. Dann konnten wir feststellen, daß nach subkutaner Rohrzuckerinjektion in ungefähr 7—8 Stunden eine Spaltung nachweisbar war, während bei Injektion von Milchzucker das wirksame Prinzip schon früher auftrat. Gaben wir die Injektion intravenös, so wurde bereits nach einer Viertelstunde die hydrolytische Spaltung beobachtet.

6. Wie lange hält die Wirksamkeit des Serums bezw. Plasmas an?

Um diese Frage zu beantworten, ging ich in folgender Weise vor: Einem Hund wurden 10 ccm einer 5% Rohrzuckerbezw. Milchzuckerlösung subkutan injiziert. Nach einiger Zeit stellte ich das spaltende Prinzip fest, entnahm in größeren Zeitabschnitten dann wieder Blut und untersuchte aufs neue. Auf diese Weise konnte ich noch 14 Tage nach erfolgter Injektion Spaltungsvermögen nachweisen. Ich injizierte zum zweiten Mal. Jetzt konnte ich mich von der Wirksamkeit des Serums noch nach 19 Tagen überzeugen. Wurde die Injektion mehrmals rasch hintereinander wiederholt, so zeigte sich, daß das Spaltungsvermögen rasch verschwindet.

7. Können wir das spaltende Prinzip dialysieren?

Auch diese Versuche fielen positiv aus. Das Dialysat veränderte Rohrzucker resp. Milchzucker und umgekehrt. Ich dialysierte zu diesem Zwecke Serum von Hunden, denen Rohrzucker bezw. Milchzucker parenteral einverleibt worden war.

8. Ist das aktivierte Plasma bezw. Serum bei ¼stündigem Erwärmen auf 60° noch wirksam und ferner bei mehrtägigem Stehen bei ca. 4°?

Das Spaltungsvermögen erlosch beim Erwärmen des Serums resp. Plasmas auf 60°, während es nach dreitägigem Stehen bei 4° an Wirksamkeit etwas einbüßte.

Wie ich schon oben erwähnt habe, begnügte ich mich nicht damit, das Spaltungsvermögen des Blutes vorbehandelter Hunde mit Hilfe der optischen Methode nachzuweisen, sondern ich legte mir auch noch die Frage vor: 9. Ist das wirksame Prinzip auch noch auf anderem Wege nachweisbar?

Die Versuche waren zum größten Teil zu Ende gediehen, da kam uns eine Arbeit von Ernst Weinland') zur Kenntnis, in der gezeigt wird, daß nach subkutaner Injektion von Rohrzucker das Serum Rohrzucker spaltet. Weinland weist die Spaltprodukte des Rohrzuckers mittels der Trommer'schen Probe nach, außerdem durch Darstellung des Osazons. Ich kann die Angaben Weinlands durchaus bestätigen. Durch Titration mit Fehlingscher Lösung gelang es, die eingetretene Spaltung nach vorhergehender Enteiweißung quantitativ zu bestimmen. Weinland verfolgte auch die Rohrzuckerausscheidung im Harn. Ich tat das gleiche. Zu diesem Zwecke wurde einem Hunde jeden Tag die gleiche Menge Rohrzucker eingespritzt, der Harn alle 3 Stunden gesammelt und dessen Drehungsvermögen im Polarisationsapparat festgestellt. Es ergab sich folgendes: Nach der ersten Injektion drehte der Harn stark nach rechts. Hierauf folgte in ca. 12 Stunden eine Linksdrehung. Am zweiten Tage war das Verhalten ähnlich und am dritten und vierten Tage drehte der Harn bereits nach 9 Stunden nach links. Ich erweiterte diese Versuche noch dahin, daß ich den Tagesharn sammelte und sein Drehungsvermögen bestimmte. Auch hierbei ergab sich, daß der Rohrzucker im Harn nicht vollständig wieder erscheint.

Jetzt zum Schlusse steht noch die wichtigste Frage offen:

10. Wie ist das nach parenteraler Zufuhr von Rohrzucker bezw. Milchzucker im Serum resp. Plasma auftretende Spaltungsvermögen zu erklären?

Die angestellten Versuche und die früheren Beobachtungen von Weinland beweisen in einwandfreier Weise für bestimmte Kohlenhydrate das Auftreten von Fermenten im Plasma. Die Zahl der Möglichkeiten für die Entstehung dieses Fermentes ist eine sehr große. Man kann dem Gedanken Raum geben an die Neubildung von Fermenten oder auch die Abgabe von solchen. Dann wäre ferner an ein Zurücktreten von Antifermenten zu denken. Zu diesem Zwecke wurde folgender Versuch angestellt: Ein Gemisch von normalem Hundeblut und einer isotonischen Rohrzuckerlösung wurde nach 16 stündigem Stehen zentrifugiert

¹⁾ Ernst Weinland: Über das Auftreten von Invertin im Blut. Zeitschr. f. Biologie, Bd. 47, S. 279, 1905.

und das Serum auf sein Verhalten Rohrzucker gegenüber geprüft. Der Versuch verlief negativ.

Das Ergebnis meiner Untersuchungen ist im wesentlichen folgendes: Spritzt man subkutan und intravenös Hunden Rohrzucker ein, so entsteht im Blut ein Ferment, welches Rohrzucker spaltet und Milchzucker angreift. Injiziert man Milchzucker, so erweist sich das Plasma resp. Serum wirksam gegen diesen, andererseits spaltet es den Rohrzucker.

Experimenteller Teil.

Versuche zu Fragestellung 1 und 5.

Versuch 1.

Hund I wird Blut entnommen (5 Uhr) und defibriniert (3 Tage nach der ersten subkutanen Injektion von 10 ccm 10 % iger Rohrzuckerlösung), das Blut wird zentrifugiert (Serum Id) und mit dem gewonnenen Serum folgender Versuch angestellt.

Röhrchen mit 8 ccm Inhalt. 1,0 ccm Serum Id, 0,5 ccm 10% ige Rohrzuckerlös., 6,5 ccm physiologische Kochsalzlösung.

Kontrolle.								
1,0	ccm	Serum	Id,	7,0	ccm			
phy	siolog	ische Ko	ochsa	alzlö	sung.			

Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
600 abends 600 ,, 900 morgens	1/2 15 ¹ / ₂	$+0,08^{\circ} +0,07^{\circ} -0,07^{\circ}$	600 abends 630 ,, 630 morgens	1/ ₃ 15 ¹ / ₂	- 0,32° - 0,32° - 0,32°

Anmerkung: Die Anfangsdrehung ist bei den einzelnen Versuchen nicht gleich, was wohl darauf zurückzuführen ist, daß die erste Ablesung nicht immer sofort erfolgte.

Versuch 2.

Hund I wird Blut entnommen 10 Uhr (1 Tag nach der zweiten subkutanen Injektion von 10% iger Rohrzuckerlösung), das Blut wird zentrifugiert und mit dem gewonnenen Serum (Serum If) folgender Versuch angesetzt.

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum 1f, 0,5 ccm 10% ige Rohrzuckerlös., 7,5 ccm physiologische Kochsalzlösung.

Kontrolle.

1 ccm Serum If, 7,0 ccm physiologische Kochsalzlösung.

Zeit der Ablesung	Abgelesene Drehung	Zeit der Ablesung	Abgelesene Drehung	
13. Mai 12 ¹⁵	+ 0,220	1215	- 0,31°	
400	+ 0,200	400	- 0,31°	
700	+ 0,200	700	- 0,310	
14. ,, 1015	+ 0,130	1015	- 0,31°	
1115	$+0.08^{\circ}$	1115	- 0,31°	
430	$+$ 0,04 $^{\circ}$	450	- 0,310	
15. ,, 11 30	- 0,02°	1130	- 0,31°	
17. ,, 1100	- 0,20°	1100	- 0,319	

Versuch 3.

Hund III, Blut entnommen (11 Tage nach der zweiten subkutanen Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 %ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung. Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösnng.

Zeit der Ablesung		Stunden nach dem Einfüllen Abgelesene Drehung		Zeit der Ablesung	Abgelesene Drehung	
28. Juni	1100		+ 0,050	1100	- 0,170	
	1200	1	0,000	1200	- 0,170	
	400	5	0,000	400	- 0.170	
	680	71/2	- 0,030	630	$-0,17^{\circ}$	
29. "	1145	243/4	trübe	1145	- 0,170	
	400	29	-0.06°	400	- 0,170	
30. "	1115	481/4	- 0,07°	1115	- 0,120	
	500	54	-0,080	500	- 0,170	
1. Juli	930	70	-0.080	930	- 0,170	
	445	761/4	- 0,09°	445	-0,170	
2. "	945	931/4	- 0,110	915	-0.17°	

Versuch 4.

Hund III, Blut entnommen 1115 (11 Tage nach der ersten Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

	der	Stunden nach dem Einfüllen	Abgelesene Drehung	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
13. Ju	ni 600		+ 0,030	600	ne	-0.16°
14.	9:10	151/3	+ 0,03°	980	151/2	-0.16°
	400	22	trübe	400	22	- 0,16°
15. ,	, 330	451/2	,,	330	451/2	$-0,16^{\circ}$
- 01	600	48	"	600	48	- 0,16°
16. ,	, 1280	661/3	- 0,02°	1230	661/2	- 0,16°
	530	711/2	- 0,02°	530	711/2	- 0,16°
17. ,	1000		- 0,03°	1000	88	- 0,16°

Versuch 5.

Hund III, Blut entnommen 8 Uhr (14 Tage nach der ersten Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
16.	Juni 530	-	+ 0,030	530	TANK BIT	- 0,160
17.	. 1000	161/2	0,02°	1000	161/2	- 0,16°
	1200	181/2	0,000	1200	181/2	- 0,160
	415	223/4	- 0,010	415	223/4	$-0,16^{\circ}$
	630	25	- 0,02°	630	25	$-0,16^{\circ}$
18.	, 1000	401/2	0,030	1000	401/2	$-0,16^{\circ}$
	130	44	- 0,030	130	441/2	- 0,16°

Versuch 6.

Hund I, Blut entnommen 10 Uhr (11 Tage nach der zweiten Einspritzung).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 10 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

	Zeit der Lblesung	Stunden nach dem Einfüllen	Abgelesene Drehung	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
24.	Mai 1200	_	+0,370	1200	-	- 0,160
	330	31/2	+ 0,320	330	31/2	- 0,16°
	510	51/4	+ 0,310	513	51/4	- 0,16°
	615	61/4	+ 0,31°	615	61/4	- 0,16°
25.	, 1115	231/4	+ 0 300	1115	231/4	- 0,16°
	400	28	+ 0,230	460	28	$-0,16^{\circ}$
	515	291/4	+0,220	515	291/4	-0.16°
	730	311/2	+0,190	730	311/2	- 0,16°
26.	" 11 ¹⁵	471/2	-0,05°	1115	471/2	- 0,16°
	1215	481/4	-0,040	1215	481/4	- 0,16°
	300	51	- 0,01°	300	51	- 0.16°
	400	52	- 0,02°	400	52	- 0,16°
	530	531/2	- 0,03°	530	531/2	$-0,16^{\circ}$
	645		- 0,040	615	541/4	$-0,16^{\circ}$

Versuch 7.

Hund III, Blut entnommen (15 Tage nach der ersten Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

		71
Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
17. Juni 6 ³⁰ 18. " 10 ⁹⁰ 1 ³⁰	- 15 ¹ / ₂ 19	$+0,03^{\circ}$ $-0,01^{\circ}$ $-0,01^{\circ}$
20. " 100 21. " 1100 430	66 ¹ / ₂ 88 ¹ / ₂ 94	- 0,01° - 0,03° - 0,05°

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
630	_	- 0,160
1000	151/2	- 0,160
130	19	- 0,16°
100	661/2	-0,160
1100	881/9	- 0,160
430	94	- 0,160

Versuch 8.

Hund IV, Blut entnommen 4 Uhr (31/4 Stunden nach der intravenösen Injektion von 2 ccm 10% iger Rohrzuckerlösung).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit der Ablesung	Stunden nach dem Einfüllen		Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
22. Juni 5	30	+ 0,070	530	-	- 0,180
23. " 12	30 19	- 0,01°	1230	19	- 0,180
5	30 25	- 0,030	530	24	- 0,18°
24. " 9	30 40	-0,040	930	40	- 0,18°
5	471/2	- 0,05°	500	471/2	-0.18°
25. " 9	30 64	- 0,070	930	64	-0.18°
26. , 10	45 891/4	- 0,08°	1045	891/4	- 0,18°

Versuch 9.

Hund II, Blut entnommen 1030 (1 Tag nach der zweiten subkutanen Injektion), zentrifugiert.

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 10 % ige Serum 0,5 ccm, 7,5 ccm physio-Rohrzuckerlösg., 7,0 ccm NaCl. logische Kochsalzlösung.

Kontrolle.

Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
19. Mai 415		+ 0,250	415		- 0,15°
600	13/4	+ 0,250	600	13/4	- 0,15°
20. " 1015	17	+0,230	1015	17	- 0,15°
1200	183/4	+0,220	1200	188/4	- 0,150
515	25	+ 0,220	518	25	- 0,15°
700	263/4	+ 0,220	700	263/4	- 0,17°
21. " 945	411/2	-0,210	915	411/2	-0,15°
1200	438/4	- 0,21°	1200	433/4	- 0,150
23. " 1000	893/4	+ 0,140	1000	893/4	$-0,15^{\circ}$
380	951/4	$+0.14^{\circ}$	340	951/4	- 0,150

Versuch 10.

Hund II, Blut entnommen (2 Tage nach der zweiten subkutanen Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 10 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

er	Stunden nach dem	Abgelesene	Zeit der	Stunden	
	Einfüllen	Drehung	Ablesung	nach dem Einfüllen	Abgelesene Drehung
700	-	+ 0,150	700	-	- 0,18°
945	143/4	-0,140	945	148/4	- 0,180
1200	17	- 0,140	1200	17	- 0,180
1000	63	+ 0,020	1000	63	- 0,180
380	681/2	+ 0,010	330	681/2	- 0,18°
580	701/2	- 0,01°	530	701/2	- 0,18°
1115	881/4	- 0,02°	1115	881/4	- 0,180
1118	1121/4	- 0,07°	1115	1121/4	- 0,180
115	1361/4	- 0,090	1115	1361/4	- 0,180
-	700 945 200 000 330 530 115 118	700 — 945 143/4 200 17 000 63 330 681/2 530 701/2 115 881/4 1121/4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Versuch 11.

Hund III, Blut entnommen 830 (2 Tage nach der ersten Injektion).

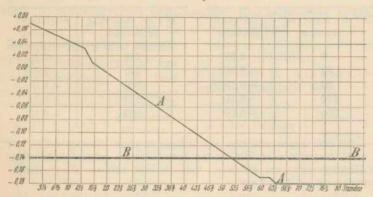
Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 7,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit d Ablesi		Stunden nach dem Einfüllen	Abgelesene Drehung	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
4. Juni	1100	-	$+0,03^{\circ}$	1100	-	- 0,16°
	12^{00}	1	$+0,03^{\circ}$	1200	1	- 0,16°
5. ,,	1200	25	+ 0,01°	1200	25	- 0,16°
6. ,,	930	461/2	- 0,01°	930	461/0	- 0,16°
	400	53	- 0,020	400	53	-0,16°
	7^{00}	56	0,040	700	56	-0,16°
7. ,,	1000	71	- 0,05°	1000	71	- 0,16°
	400	77	- 0,05°	400	77	- 0,16°

Versuch 12.

Hund III, Blut entnommen 1100 (8 Tage nach der ersten Injektion).


Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zelt Ables		Stunden nach dem Einfüllen	Abgelesene Drehung	Zeit der Ablesung	Stunden nach dem Einfüllen	Abgelesene Drehung
10. Jun	i 700		+ 0,070	700		- 0,16°
11. ,,	930	141/2	+ 0,030	930	141/9	- 0,16
	1100	16	+0,010	1100	16	- 0,16
13. ,,	1000	63	- 0,200	1000	63	- 0,16°
	1230	651/2	- 0,200	1230	651/2	$-0,16^{\circ}$
	400	69	- 0,21	400	69	-0,160
	630	711/2	- 0,21°	630	711/2	- 0,160
14. ,,	930	861/3	- 0,21°	910	861/4	- 0.16

Versuch 13.

Hund III, mit Rohrzucker vorbehandelt. Blut entnommen 7 Tage nach der Injektion.

Versuch:

0,5 ccm Serum, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiologische Kochsalzlösung. Kurve A. Kontrollversuch: 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung. Kurve B.

Versuche zu Fragestellung 2.

1 ccm 10% ige Rohrzuckerlösung,

1 , Serum vom Rohrzuckerhund,

5 " physiologische Kochsalzlösung.

(Hund, 6250 g, erhielt 0,5 ccm einer 5% igen Rohrzuckerlösung subkutan. Blutentnahme 16 Stunden nach erfolgter Injektion.)

Zeit der Ablesung in Minuten	Abgelesene Drehung	Zeit der Ablesung in Minuten	Abgelesene Drehung	
0	+031°	240	- 0,170	
30	+0,300	300	+0,100	
60	+ 0,350	360	+0,080	
120	+ 0,320	520	- 0,020	
160	- 0,240	600	-0.08°	
200	+ 0,23°			

1 ccm 10% ige Rohrzuckerlösung,

1 " Plasma vom Rohrzuckerhund,

5 " physiologische Kochsalzlösung.

(Hund, 62,50 g, erhielt 0,5 ccm einer 5%igen Rohrzuckerlösung subkutan. Blutentnahme 16 Stunden nach erfolgter Injektion.)

Zeit der Ablesung in Minuten	Abgelesene Drehung	Zeit der Ablesung in Minuten	Abgelesene Drehung	
0	+ 0,280	240	+0,160	
30	+ 0,26°	310	+0,080	
60	+ 0,220	360	+ 0,01"	
120	+ 0,210	525	- 0,01°	
200	+ 0,190	600	- 0,12	

Die Ablesungen erfolgten aus äußeren Gründen ziemlich selten. Es ist nicht ausgeschlossen, daß in den Zwischenzeiten größere Änderungen des Drehungsvermögens auftraten. Versuche mtt kürzeren Beobachtungsintervallen deuten darauf hin.

Versuche zu Fragestellung 3.

Versuch 1.

Hund III, mit Rohrzucker vorbehandelt. Blut entnommen 5 Uhr (15 Tage nach der ersten Injektion). Das gewonnene Serum ließen wir unter folgenden Bedingungen auf Milchzucker wirken.

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Milchzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit der Ablesung	Abgelesene Drehung	Zeit der Ablesung	Abgelesens Drehung
18. Juni 630	+ 0,240	630	- 0,169
19. ,, 1010	+ 0,210	1000	- 0,150
130	$+0,20^{\circ}$	130	- 0,160
20. ,, 100	+ 0,20°	100	- 0,16°
21. ,, 1100	+ 0,200	1100	- 0,16°
330	+ 0,200	430	- 0,16

Versuch 2.

Hund III, mit Rohrzucker vorbehandelt. Blut entnommen 11 Uhr (7 Tage nach der ersten Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Milchzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit der Ablesung	Abgelesene Drehung	Zeit der Ablesung	Abgelesene Drehung
10. Juni 700	+ 0,120	700	- 0,16°
11. ,, 930	+ 0,100	930	- 0,16°
1130	- 0,09°	1100	- 0,16°
13. ,, 1000	+ 0,080	1000	- 0,16°
1230	-0,080	1230	- 0,16°
400	+0,080	400	0,16°
630	+0,08°	630	- 0,16°
14. ,, 930	+0,080	930	- 0,16°

Versuch 3.

Hund III, mit Rohrzucker vorbehandelt. Blut entnommen (11 Tage nach der ersten Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Milchzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit der Ablesung	Abgelesene Drehung	Zeit der Ablesung	Abgelesene Drehung
13 Juni 600	-0,120	610	-0,160
14. ,, 950	0,089	950	- 0,16"
400	-0,080	400	- 0,160
15. ,, 300	- 0,080	330	- 0,160
600	$+0.08^{\circ}$	600	- 0,160
16. ,, 1230	- 0,080	1230	- 0 16°
530	+ 0,080	580	-0,160
17. ,, 1000	+ 0,080	1000	- 0,16°

Versuch 4.

Hund III, mit Rohrzucker vorbehandelt. Blut entnommen 8 Uhr (14 Tage nach der ersten Injektion).

Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 ccm 5 % ige Milchzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit der Ablesung	Abgelesene Drehung	Zeit der Ablesung	Abgelesene Drehung
16. Juni 530	+ 0,210	540	- 0,160
17. ,, 1000	-0,210	1000	-0,160
1200	+0,180	1200	- 0,160
415	- 0,18°	416	- 0,16°
630	+ 0,180	630	- 0,16°
18. ,, 1000	- 0,170	1000	- 0,160
130	- 0,17°	130	- 0,16°

Versuch 5.

Hund I, mit Rohrzucker vorbehandelt. Blut entnommen 10 Uhr (20 Tage nach der zweiten Injektion)

Röhrchen mit Inhalt. 0,5 ccm Serum, 0,5 ccm 10 %ige Milchzuckerlösung, 7,0 ccm physiologische Kochsalzlösung.

Kontrolle. 0,5 ccm Serum, 7,5 ccm physiologische Kochsalzlösung.

Zeit der Able	sung Abgelesene Drehung	Zeit der Ablesung	Abgelesene Drehung
1. Juni 7	00 -0,140	700	- 0,160
	45 0,130	845	-0,160
11		1110	-0,16
1	00 + 0,100	100	-0,160
4	00 -0.090	400	- 0,16°
6	00 + 0,080	600	- 0,160
7	00 -0,080	700	- 0,160
3. , 10	00 -0,080	1000	- 0,160
11	30 + 0,08°	1130	- 0,160
- 4	0,080	400	- 0,160
4. ,, 9	- 0.080	900	- 0,160
	- 0.080	1100	- 0,160
12	-0,080	1200	- 0,160

Versuch 6, mit kürzeren Beobachtungsintervallen. Hund, 6300 g Körpergewicht, mit Rohrzucker vorbehandelt. Blut entnommen 16 Stunden nach der Injektion von 5 ccm einer 10% igen Rohrzuckerlösung.

0,5 ccm 5%ige Milchzuckerlösung,

1,0 ,, Serum,

5,0 " physiologische Kochsalzlösung.

Zeit der Ablesung in Minuten	Abgelesene Drehung	Zeit der Ablesung in Minuten	Abgelesene Drehung
0	+0.260	180	+ 0,24
30	+ 0,250	240	+0,180
60	- 0.28°	300	+ 0,160
90	+- 0,320	380	+ 0,120
120	+ 0,270	550	+ 0,120

Versuch 7.

1 ccm 10% ige Milchzuckerlösung,

1 " Serum vom Rohrzuckerhund,

5 " physiologische Kochsalzlösung.

(Hund von 6400 g Körpergewicht erhielt 10 ccm einer 0,5% igen Rohrzuckerlösung subkutan, Blut nach 16 Stunden entnommen)

Zeit der Ablesnng in Minuten	Abgelesene Drehung	Zeit der Ablesung in Minuten	Abgelesene Drehung
0	+ 0,380	190	+ 0,280
35	+ 0,300	250	+ 0,260
85	+ 0,35°	310	+ 0,240
120	+ 0,350	430	+ 0,200

Versuch 8.

1 ccm 10% ige Milchzuckerlösung,

1 " Serum vom Rohrzuckerhund,

5 " physiologische Kochsalzlösung.

(Hund, 5400 g, erhielt 0,5 ccm einer 5% igen Rohrzuckerlösung subkutan.)

Zeit der Ablesung in Minuten	Abgelesene Drehung	Zeit der Ablesung in Minuten	Abgelesene Drehung
0	+0,260	190	+ 0,200
35	+0,230	250	+ 0,160
85	+ 0,280	310	+0,140
120	-0,250	430	+ 0,04°

Versuche zu Fragestellung 4.

Versuch 1.

Hund IV, mit Milchzucker vorbehandelt, Blut entnommen 10 Uhr (12 Tage nach der zweiten Injektion). Das gewonnene Serum ließen wir unter folgenden Versuchsbedingungen auf Milchzucker, Rohrzucker und Raffinose wirken.

Röhrchen mit 8 ccm lnhalt, 0,5 ccm Serum, 0,5 " 5%ige Milchzuckerlösg., 7,0 ccm physiol, Kochsalzlösung		Röhrchen mit 8 ccm Inhalt, 0,5 ccm Serum, 0,5 , 5 bige Rohrzuckerlösg., 7,0 ccm physiol. Kochsalzlösung		Röhrchen mit 8 ccm Inhalt. 0,5 ccm Serum, 0,5 , 5% ige Raffinoselösung, 7,0 ccm physiol, Kochsalzlösung		Kontrolle: 0,5 ccm Serum, 0,5 , physiol. Kochsalzlösung	
Zeit der Ablesung	Abgeles. Drehung	Zeit der Ablesung	Abgeles. Drehung		Abgeles. Drehung		Abgeles. Drehung
9. Juli 200 11. " 1000 13. " 1100	- 0,02 - 0,05 - 0,06	2.0 10 ²⁰ 11 ⁰⁰	- 0,07 - 0,17 - 0,22	200 1000 1100	+0,10 +0,10 +0,10	2 ⁹⁰ 10 ⁹⁰ 11 ⁹⁰	- 0,16 - 0,16 - 0,16

Versuch 2.

Hund IV, mit Milchzucker vorbehandelt. Blut entnommen am 7. Juni, 4 Uhr (5 Stunden nach der ersten Injektion). Das gewonnene Serum ließen wir auf Milchzucker und Rohrzucker unter folgenden Versuchsbedingungen wirken.

Röhichen m Inha 0,5 ccm Serui 5% ige Milc lösung, 7,0 cc Kochsalzi	lt. m, 0,5 ccm hzucker- m physiol.	Röhrchen m Inhal 0,5 ccm Serun 5%ige Rohl lösung, 7,0 cc Kochsalzi	t. n, 0,5 ccm rzucker- m physiol.	Kontrolle: 0,5 ccm Serum, 7,5 " physiol, Kochsalzlösung		
Zeit der Ablesung			Abgeles. Drehung	Zeit der Ablesung	Abgeles, Drehung	
7. Juni 800 8. ,, 900 1100 400 600 9. ,, 1100	+ 0,12 + 0,09 + 0,09 + 0,08 + 0,08 + 0,08	9. Juni 3 ¹³ 7 ⁰⁰ 10. ,, 9 ⁰⁰ 11 ⁰⁰	+ 0,02 + 0,01 - 0,13 - 0,14	315 700 930 1100	- 0,16 - 0,16 - 0,16 - 0,16	

Versuch 3.

1 ccm 10 %ige Milchzuckerlösung,

1 ,, Serum vom Milchzuckerhund,

5 " physiologische Kochsalzlösung.

(Hund, 3500 g, erhielt 0,5 ccm einer 5 %igen Milchzuckerlösung. Blutentnahme 16 Stunden nach erfolgter Injektion.)

Zeit der Ablesung in Minuten	Abgelesene Drehung	Zeit der Ablesung in Minuten	Abgelesene Drehung	
0	+ 0,360	300	+ 0,320	
45	-0,370	360	+ 0,280	
120	+ 0,390	450	+ 0,210	
170	+ 0,450	510	+0,160	
240	-0,41°			

Versuch 4.

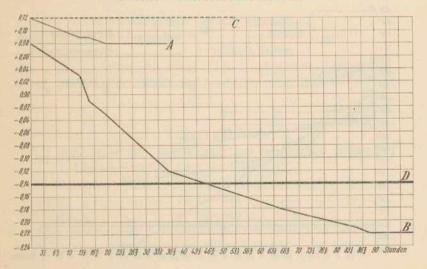
1 ccm 10% ige Milchzuckerlösung,

1 " Serum Milchzuckerhund,

5 " physiologische Kochsalzlösung.

(Hund von 700 g Gewicht erhielt 10 ccm einer 0,5% igen Milchzuckerlösung subkutan, Blut nach 16 Stunden entnommen.)

Zeit der Ablesung in Minuten	Abgelesene Drehung	Zeit der Ablesung in Minuten	Abgelesene Drehung + 0,28°	
0	+ 0,880	190		
35	+0,300	250	+ 0,260	
85	$+0.35^{\circ}$	310	+ 0,240	
120	+ 0,350	430	+ 0,200	

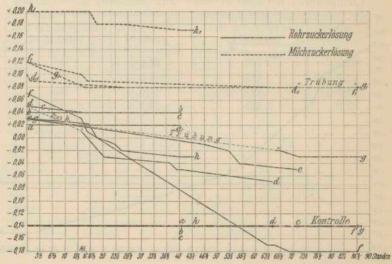

Versuch 5.

Hund IV, mit Milchzucker vorbehandelt. Blut entnommen 6 Uhr (7 Stunden nach erfolgter subkutaner Injektion). Das gewonnene Serum ließen wir auf Milchzucker und Rohrzucker unter folgenden Versuchsbedingungen wirken.

In 0,5 ccm Se 5%ige M lösung, 7,0	mit 8 ccm halt, rum, 0,5 ccm ilchzucker- ccm physiol, ilzlösung	Röhrchen Inha 0,5 ccm Seru 5%ige Rol lösung, 7,0 c Kochsala	nit, im, 0,5 ccm irzucker- cm physiol,	Kontrolle: 0,5 ccm Serum, 7,5 physiol. Kochsalzlösung	
Zeit der Abgeles, Ablesung Drehung		Zeit der Ablesung	Abgeles, Drehung	Zeit der Ablesung	Abgeles. Drehung
A D CHARL C	00 + 0,12	800	+0,08	800	- 0.16
8, , 9	00 + 0,09	900	+0,02	900	- 0,16
11	00 + 0,09	1100	- 0,01	1100	- 0,16
4	00 - 0,08	400	-0,03	400	-0,16
6	00 + 0,08	600	- 0,04	600	-0,16
9. " 11	00 + 0,08	1100	-0,12	1100	-0,16
10. " 3	00 + 0,07	300	-0,18	300	-0,16
7	00 + 0,07	700	- 0,19	700	-0,16

Versuch 6.

Hund IV, mit Milchzucker vorbehandelt. Blut entnommen (6 Stunden nach de rersten Injektion). Das gewonnene Serum ließen wir auf Milchzucker, Rohrzucker, Raffinose wirken und erhielten untenstehende Kurven.


Die Füllung der Röhrchen	war wie folgt:
Kurve A.	Kurve B.
0,5 ccm Serum,	0,5 ccm Serum,
0,5 ,, 10 lige Rohrzuckerlösg,	0,5 " 5% ige Rohrzuckerlösg,
7,0 " physiol. Kochsalzlösung.	7,0 " physiol. Kochsalzlösung.
Kurve C. 0,5 ccm Serum, 0,5 ,, 5 % ige Raffinoselösung, 7,0 ,, physiol. Kochsalzlösung.	Kurve D. 0,5 ccm Serum, 7,5 ,, physiol. Kochsalzlösung.

Versuche zu Fragestellung 5.

Versuch 1.

Versuchsreihe mit Hund III (Rohrzuckerhund).

Serum	a				vor	der	1. 1	njektion
-17	b	1	Stunde n	ach		22	1.	27
11	c	4	Stunden	**		12	1.	22
	d	6	77	29		20	1.	11
	e	2	Tage	**		55	1.	,,
,,	f	7	-,	22		**	1.	**
alle .	g	11		"		*	1.	- V
"	h	14	"	22		"	1.	"
39	i	6		*		37	2.	**

Es wurden injiziert 10 ccm 5% ige Rohrzuckerlösung, und zwar 1. am 2. Juni

2. " 17. "

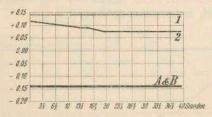
Der Inhalt der Polarisationsröhrchen war folgender:

Serum 0,5 ccm Physiol Kochsalzlösg. 7,0 ,, 10 % ige Rohrzuckerbezw. Milchzuckerlsg. 0,5 ,,

Serum 0,5 ccm Physiol Kochsalzlösg. 7,5 , 8.0 ccm

Kontrolle.

Versuch 2.


1. Juni. Hund IV, mit Milchzucker vorbehandelt (subkutan).

1. Blut entnommen (vor der Injektion),

8,0 ccm

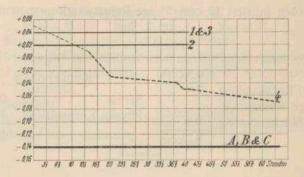
2. " (1 Stunde nach der Injektion).

Die gewonnenen Sera ließen wir auf Milchzucker wirken, es ergaben sich untenstehende Kurven.

Die Versuchsbedingungen waren folgende:
Röhrchen I. u. 2 mit 8 ccm Inhalt. Kontrollen A und B.

Röhrchen 1 u. 2 mit 8 ccm Inhalt. 0.5 ccm Serum.

0,5 ccm Serum,

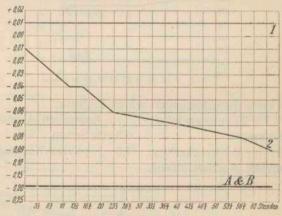

0,5 "10% ige Milchzuckerlösg.7,0 "physiol. Kochsalzlösung.

0,5 " 10% ige Milchzuckerlösg. 7,5 " physiol. Kochsalzlösung.

Versuch 3.

- Juni Hund III, vorbehandelt mit Rohrzucker (subkutan)
 Blut entnommen (vor der Injektion),
 - 2. " (1 Stunde nach der Injektion),
 - 3. " " (4 Stunden " " "),
 - 4. " " (6 Stunden " " ").

Die gewonnenen Sera ließen wir auf Rohrzucker wirken. Die Versuchsbedingungen waren folgende:


Versuch 4.

Hund IV, mit Rohrzucker behandelt (intravenös).

1. Blut entnommen (vor der Injektion),

2. " " (1/4 Stunde nach der Injektion).

Die gewonnenen Sera ließen wir auf Rohrzucker wirken; es ergaben sich untenstehende Kurven.

Die Versuchsbedingungen waren folgende:

Röhrchen 1 und 2, mit

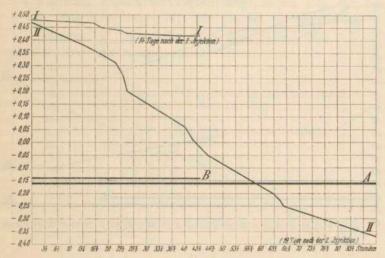
8 ccm Inhalt.

0,5 ccm Serum,

0,5 " 5% ige Rohrzuckerlösg., 7,0 " physiol.Kochsalzlösung.

Kontrollen A, B und C. 0,5 ccm Serum,

7,5 ,, physiol. Kochsalzlösung.


Versuche zu Fragestellung 6

(vgl. auch bei Fragestellung 1).

1. Hund III, mit Rohrzucker vorbehandelt (subkutan). Blut entnommen (14 Tage nach der ersten Injektion).

2. Hund I, mit Rohrzucker vorbehandelt (subkutan). Blut entnommen (19 Tage nach der zweiten Injektion).

Das gewonnene Serum ließen wir auf Rohrzucker wirken. Die Röhrchen I und II mit 8 ccm Inhalt.

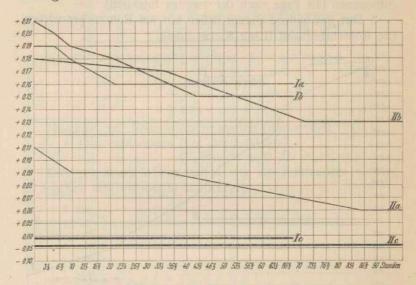
Röhrchen 1 u. 2 mit 8 ccm Inhalt. 0,5 ccm Serum,

0,5 " 5% ige Rohrzuckerlösg., 7,0 " physiol.Kochsalzlösung.

Kontrollen A und B. 0,5 ccm Serum, 7,5 " physiol. Kochsalzlösung.

Versuche zu Fragestellung 7.

Versuch mit Dialysat I und II.


Í.

18. Juni. In einem Meßzylinder mit 10 ccm Wasser wird eine Fischblase mit 10 ccm Serum IIIi (gut spaltend!) gegeben. Der Meßzylinder verbleibt dann 2 Tage im Eisschrank. Mit dem so erhaltenen Dialysat wird folgende Versuchsreihe angesetzt.

Röhrchen Ia. 1,5 ccm Dialysat, 0,5% ige Rohrzuckerlösung, 6,0 ccm physiol. Kochsalzlösung.

Röhrchen Ib. 1,5 ccm Dialysat, 0,5 ccm 5 % ige Milch-zuckerlösung, 6,0 ccm physiol. Kochsalzlösung.

Röhrchen Ic. 1,5 ccm Dialysat, 6,5 ccm physiol. Kochsalzlösung.

II.

11. Juli. In einen Meßzylinder mit 8 ccm Wasser wird eine Fischblase mit 8 ccm Serum IVh (gut spaltend!) gegeben. Das Ganze verbleibt 3 Tage lang im Eisschrank. Mit dem so erhaltenen Dialysat wird folgende Versuchsreihe angesetzt.

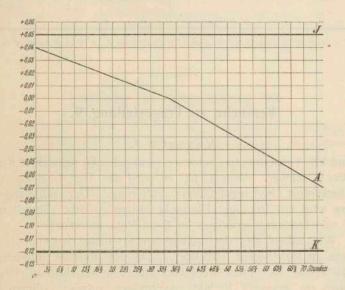
Röhrchen IIa. 1,0 ccm Dialysat, 0,5 ccm 5 % ige Rohrzuckerlösung, 6,5 ccm physiol. Kochsalzlösung.

Röhrchen IIb. 1,0 ccm Dialysat, 0,5 ccm 5 % ige Milchzuckerlösung, 6,5 ccm physiol. Kochsalzlösung.

Röhrchen II c. 1,0 ccm Dialysat, 7,0 ccm physiol. Kochsalzlösung.

Versuche zu Fragestellung 8.

Versuch 1.


Versuch mit inaktiviertem Serum.

Ein gut spaltendes Serum (IVh) wird eine Viertelstunde lang einer Temperatur von 60° ausgesetzt.

Röhrchen A. 0,5 ccm Serum IVh, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiol. Kochsalzlösung.

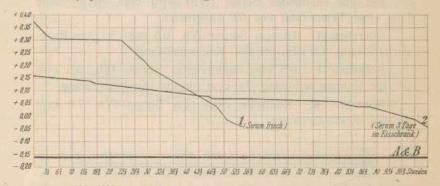
Röhrchen I. 0,5 ccm inaktiviertes Serum IVh, 0,5 ccm 5 % ige Rohrzuckerlösung, 7,0 ccm physiol. Kochsalzlösung.

Röhrchen K. Kontrolle. 0,5 ccm Serum IVh, 7,5 ccm physiol. Kochsalzlösung.

Versuch 2.

Hund I, mit Rohrzucker vorbehandelt. Serum 1 (frisch), Serum 2 (3 Tage im Eisschrank).

Die Sera, die beide von ein und demselben Blute stammen, ließen wir auf Rohrzucker wirken.


Die Röhrchen waren, wie folgt, gefüllt:

Röhrchen 1 und 2, 8 ccm Inhalt. 0.5ccm Serum.

0,5 ,, 5 % ige Rohrzuckerlösg., 7,5 ,, physiol. Kochsalzlösung.

Kontrollen A und B, 0,5ccm Serum.

7,5 " physiol. Kochsalzlösung.

Versuche zu Fragestellung 9.

Versuch 1.

Hund VII, Terrierhündin, schwarz-weiß gefleckt, schwarzer Kopf, 10450 g schwer. Vom 5. Juli an wird das Tier 4 mal am Tag katheterisiert, bei regelmäßiger Fütterung. Der aufgefangene Harn wird mit 10 % iger Bleizuckerlösung entfärbt, filtriert und auf sein Drehungsvermögen im 5-cm-Rohr untersucht.

Wir haben aus der gefundenen Drehung den Gehalt des Harns an Rohrzucker berechnet. Da der normale Hundeharn meist etwas nach links dreht und außerdem der Harn an einigen Tagen ein geringes Reduktionsvermögen aufwies, können die Zahlen keinen Anspruch auf absolute Genauigkeit machen.

Datum	Gewicht des Hundes g	Subkutane Injektion	Stunden	Menge des Urins ccm	Ausgeschieden Rohrzucker g
5. Juli	7950	20 ccm 5 % ige Rohrzucker- lösung 8 %	1/2 3 51/2 83/4 111/2	390 25 21 25 19	0 0,04 0,04 0,01 0

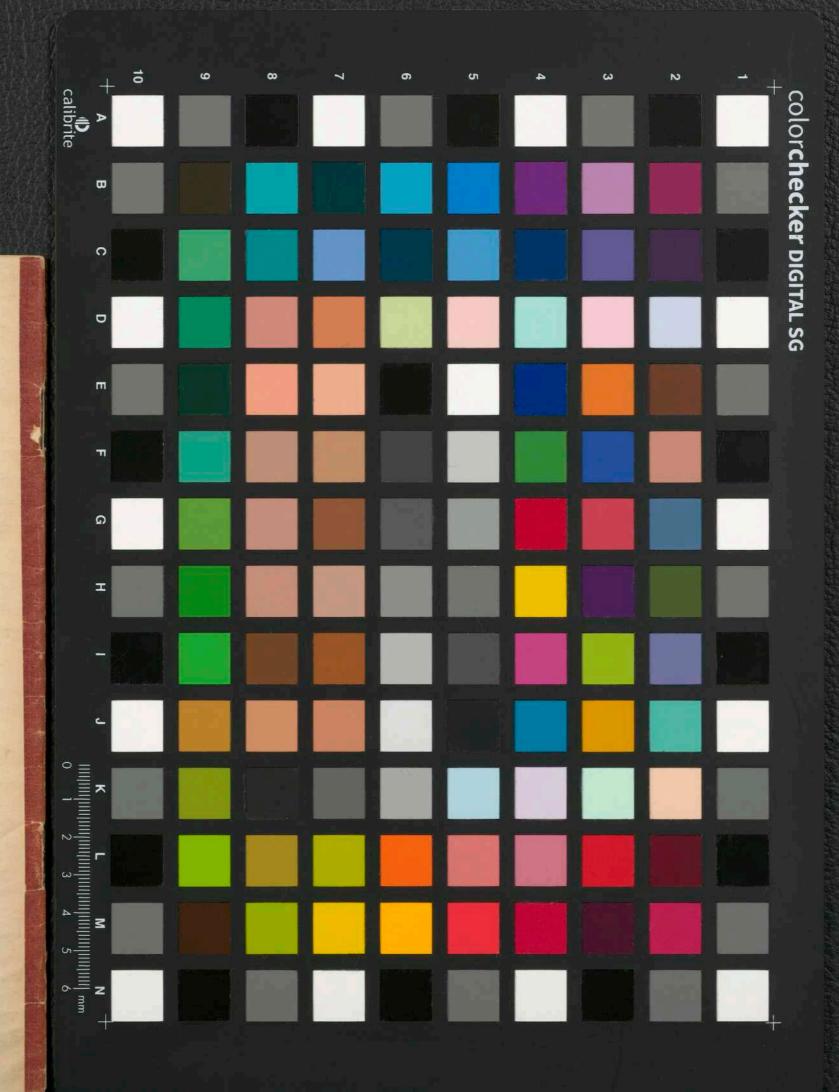
Datum	Gewicht des Hundes g	Subkutane Injektion	Stunden	Menge des Urins ccm	Ausgeschieden Rohrzucker g
6. Juli	7900	20 ccm 5 % ige Rohrzucker- lösung 8 %	1/2 3 51/2 8 11	157 33 22 19 15	0 0,04 0,03 0,01 0
7. Juli	7800	20 ccm 5 % ige Rohrzucker- lösung 8 %	1/ ₂ 3 5 ¹ / ₂	127 19 12	0 0,03 0,03
8. Juli	7770	20 ccm 5 % ige Rohrzucker- lösung 9 30	1/ ₃ 1 ³ / ₄ 3 ⁸ / ₄ 6 ¹ / ₂ 7 ³ / ₄	105 31 23 11 6	0 0,03 0,03 0 0

Versuche zu Fragestellung 10.

Es trat in keinem Versuche eine Spaltung ein, gleichgültig, ob der Rohrzucker kurze oder längere Zeit mit dem Blute in Berührung geblieben war.

Lebenslauf.

Ich, Georg Kapfberger, wurde am 31. August 1887 in Regensburg als Sohn des Treppenbaumeisters Georg Kapfberger nnd seiner Ehefrau Magdalena geb. Eckl geboren. Ich absolvierte Juli 1907 das Kgl. Neue Gymnasium zu Regensburg und bezog dann die Kgl. Tierärztliche Hochschule zu München, wo ich Ostern 1909 die naturwissenschaftliche Vorprüfung ablegte. Im Wintersemester 1909 siedelte ich an die Tierärztliche Hochschule zu Berlin über und erlangte daselbst am 5. August 1911 die Approbation als Tierarzt.



Lebenslauf.

Ich, Georg Kapfberger, wurde am 31. August 1887 in Regensburg als Sohn des Treppenbaumeisters Georg Kapfberger nnd seiner Ehefrau Magdalena geb. Eckl geboren. Ich absolvierte Juli 1907 das Kgl. Neue Gymnasium zu Regensburg und bezog dann die Kgl. Tierärztliche Hochschule zu München, wo ich Ostern 1909 die naturwissenschaftliche Vorprüfung ablegte. Im Wintersemester 1909 siedelte ich an die Tierärztliche Hochschule zu Berlin über und erlangte daselbst am 5. August 1911 die Approbation als Tierarzt.

