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Abstract

The COVID-19 pandemic has led to an unprecedented increase in pharmaceutical drug consumption and plastic waste dis-
posal from personal protective equipment. Most drugs consumed during the COVID-19 pandemic were used to treat other
human and animal diseases. Hence, their nearly ubiquitous presence in the soil and the sharp increase in the last 3 years led us
to investigate their potential impact on the environment. Similarly, the compulsory use of face masks has led to an enormous
amount of plastic waste. Our study aims to investigate the combined effects of COVID-19 drugs and microplastics from FFP2
face masks on important soil processes using soil microcosm experiments. We used three null models (additive, multipli-
cative, and dominative models) to indicate potential interactions among different pharmaceutical drugs and mask MP. We
found that the multiple-factor treatments tend to affect soil respiration and FDA hydrolysis more strongly than the individual
treatments. We also found that mask microplastics when combined with pharmaceuticals caused greater negative effects on
soil. Additionally, null model predictions show that combinations of high concentrations of pharmaceuticals and mask MP
have antagonistic interactions on soil enzyme activities, while the joint effects of low concentrations of pharmaceuticals
(with or without MP) on soil enzyme activities are mostly explained by null model predictions. Our study underscores the
need for more attention on the environmental side effects of pharmaceutical contamination and their potential interactions
with other anthropogenic global change factors.

Keywords Pharmaceutical products - FFP2 mask - Global change factors - Microbial activity - Environmental side effects -
Soil pollution

Introduction

On March 11, 2020, the World Health Organization declared
Coronavirus disease 2019 (COVID-19) a pandemic (WHO
2020a). As of October 2023, more than 700 million cases
have been confirmed and over 6 million deaths have been
reported globally (WHO 2023a). Because of the rapid num-
ber of cases and large number of deaths, medical doctors and
patients in many countries chose to use “repurposed” drugs
developed for other diseases hoping to prevent or cure the
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severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Despite unknown efficacy of the treatments, there
was a large global increase in the sale of medicines such as
azithromycin, ivermectin, and hydroxychloroquine (Del Fiol
et al. 2022; Schaffer et al. 2022; Urquhart 2023). Given the
enormous number of individuals needing medication, this
unprecedented public health threat has resulted in large-scale
consumption of pharmaceutical drugs in the last 3 years
(Gonzalez-Zorn 2021; Nandi et al. 2023). This was also
evident in the increased detection of these compounds in
different environmental water matrices (Domingo-Echaburu
et al. 2022; Galani et al. 2021).

Most of the drugs of choice for COVID-19 treatment have
long existed and have been used to treat other diseases of
both humans and animals. Ivermectin, for example, is one
of the most widely used drugs to control human and animal
parasites (Laing et al. 2017). Its use was also proposed for
mass drug administration (MDA) against malaria in highly
endemic regions (Chaccour and Rabinovich 2019; Omura
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and Crump 2017) as resistance to chloroquine is increas-
ing (Badhan et al. 2018). Later, it was found to inhibit the
replication of the SARS-CoV-2 virus (Caly et al. 2020).
Likewise, azithromycin, a broad-spectrum antibiotic, is
used to treat several illnesses including skin and respira-
tory infections, and is often used for the mass treatment of
trachoma (Alasmar et al. 2022; WHO 2023b). Azithromycin
was the second most prescribed antibiotic for outpatients in
the USA in 2022 (CDC 2023a). Antivirals could be among
the drugs with a significant increase in consumption during
the pandemic (Gold et al. 2022). Remdesivir was the first
antiviral drug clinically proven effective against the virus
(Beigel et al. 2020) and has since been used alongside other
antivirals to treat COVID-19 patients (CDC 2023b). While
it is imperative to combat the pressing health issues associ-
ated with the pandemic, including antimicrobial resistance,
it is also important to scrutinize other non-target effects of
massive pharmaceutical drug use. After all, abrupt increases
in pharmaceutical usage in pandemic scenarios will undeni-
ably discharge enormous amounts of these compounds into
the environment.

Pharmaceutical drugs are not fully metabolized in the
body. For example, up to 50-60% of antiparasitic and anti-
viral drugs are reported to be discharged via urine and feces
in their active form or as metabolites and become part of the
influents that enter sewage treatment facilities (Jjemba 2006;
Kuroda et al. 2021). However, these facilities cannot elimi-
nate pharmaceutical products and by-products (Morales-
Paredes et al. 2022; Nippes et al. 2021). They are frequently
detected in effluents suggesting persistence through the
treatment process (Tran et al. 2018). Effluents and sludge
are then disposed of in the environment where they reach
surface water and soil. Agricultural soils are contaminated
by these chemical-laden discharges when treated water is
re-used for irrigation and biosolids are applied as fertilizers
which may persist for a longer period (Borgman and Chefetz
2013; Gottschall et al. 2012; Gravesen and Judy 2020). How-
ever, they may reach the environment untreated, such as via
accidental and improper disposal of household wastes. As
several of these products are also used in veterinary medi-
cine, consequent release via animal excreta and organic ferti-
lizer application from animal manure increased the pharma-
ceutical residue in the soil (Kaczala and Blum 2016; Wohde
et al. 2016). With removal efficiencies exhibiting high vari-
ability, gradual accumulation in the environment is possi-
ble from concurrent, excessive, and continuous discharge
(Bayati et al. 2021; Morales-Paredes et al. 2022; Sui et al.
2015; Tran et al. 2018). In addition to chronic application,
many of these compounds remain relatively persistent after
discharge. Consequently, elevated levels due to accumulation
may potentially result in contamination hotspots posing a
greater risk to the environment (Loffler et al. 2005; Walters
et al. 2010). Since 2009, azithromycin has been included on

the growing list of contaminants of emerging concern by
the US Environmental Protection Agency (EPA 2009) and
by the European Union via Decision 495/2015 (European
Commission 2015; Sousa et al. 2019).

During the pandemic, the WHO employed different meas-
ures to prevent the spread of the virus. Besides early detec-
tion and treatment, the use of personal protective equipment
(PPE) like face masks was also practiced. In early 2020 when
mask use was mostly limited to medical personnel, WHO
estimated around 89 million medical masks are required
monthly (WHO 2020b). As the pandemic progressed, mask
use became a universal requirement. Although the use of
face masks effectively reduced COVID-19 cases (Leech
et al. 2022; Mitze et al. 2020), this also led to a large amount
of plastic waste being discharged (Shukla et al. 2022; F.
Wang et al. 2022). Consequently, mask microplastics (mask
MP, plastic particles <5 mm) generated from the physico-
chemical degradation of face masks eventually add to the
contamination burden in terrestrial and aquatic environments
(Fadare and Okoffo 2020; Jiang et al. 2023; Morgana et al.
2021). Protective masks are made from different plastic
materials like polypropylene, polyurethane, polyacryloni-
trile, polystyrene, polycarbonate, polyethylene, or polyester
(Aragaw 2020). Similar to pharmaceutical products, one way
microplastics (MP) can enter agricultural fields is via the
application of contaminated water for irrigation and sewage
sludge as soil amendments (Bldsing and Amelung 2018; Edo
et al. 2020). High amounts of plastic particles were found to
accumulate in agricultural soil following these agriculture
management practices (Huang et al. 2023; G. S. Zhang and
Liu 2018). A range of studies have shown the impacts of
microplastics on soil properties and functions from being
negative (De Souza Machado et al. 2018; Lozano et al.
2021a, 2021b; Zhao et al. 2021) to slightly positive (Lozano
et al. 2021a, 2021b).

While pharmaceutical drugs are gaining research interest
and are now considered emerging environmental contami-
nants (Osuoha et al. 2023), studies were mostly focused on
aquatic environments (Ebele et al. 2017; Ortiz de Garcia
et al. 2014; Richmond et al. 2017; Sui et al. 2015). Likewise,
reports on the environmental impact of COVID-19 pan-
demic-related pharmaceutical products are centered on the
detection of the compounds in aquatic systems and waste-
water treatment plants (WWTP) and the effect on aquatic
organisms (Domingo-Echaburu et al. 2022; Gwenzi et al.
2022; Kumari and Kumar 2022; Kuroda et al. 2021; Nippes
et al. 2021; Pashaei et al. 2022).

In this study, we focused on the impacts of different
classes of pharmaceutical drugs mainly used during the
pandemic and their effects on soil properties, functions, and
microbial diversity. Furthermore, as they exist as a cocktail
of compounds in nature, we investigated their combined
effects and their interaction with other organic contaminants
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such as microplastics. We used a soil microcosm experiment
to test (1) how single-drug treatments differ in their effects
on soil functions and properties compared to when applied
in combination and (2) whether the addition of microplas-
tics derived from FFP2 mask in the combination will elicit
a different response. We hypothesize that pharmaceutical
drugs and mask MP will have distinct effects on soil param-
eters due to the difference in their physicochemical proper-
ties and mechanisms of action. We expect a more drastic
impact from the multiple-factor treatments. Additionally,
we hypothesized different pharmaceutical drugs and mask
MP may have synergistic or antagonistic interactions when
they are jointly applied. To the best of our knowledge, we
provide here first evidence of the impacts of COVID-19 pan-
demic-related drugs and mask MP and how their combina-
tion can alter soil functions.

Materials and methods
Pharmaceutical compounds and mask microplastics

The chemical structures and physicochemical properties of
remdesivir (antiviral), azithromycin (antibacterial), and iver-
mectin (antiparasitic) are presented in Table S2. To prepare
the stock solutions, the compounds were initially dissolved
in DMSO and subsequently added with deionized water.
From these, working solutions of low and high concentra-
tions were prepared based on available maximum reported
concentration (mrc) or maximum Environmental Concen-
tration (MEC) data for soil (Table S2). The microplastics
from FFP2 face mask (Virshields© Filtering Half Mask
VS005 FFP2 NR, Wroclaw, Poland) were isolated from the
inner layer. This layer was identified by the manufacturer as
polypropylene. These were manually cut into smaller pieces
using scissors. Further, a kitchen mill (Rommelsbacher, Ger-
many) was used to prepare even smaller and more homoge-
neous particles. The MP was briefly microwaved (3 min,
500 W) to reduce microbial populations (De Souza Machado
et al. 2018).

Experimental design

The experiment was designed with three levels of combi-
nation treatments (0, 1, 3, and 4): three different pharma-
ceutical compounds (remdesivir, ivermectin, azithromycin)
and one microplastic (polypropylene from FFP2 mask)
(Table S1). Single-factor treatments involved individual
pharmaceutical compounds and mask MP. Three-factor
treatments included all different combinations of compounds
and mask MP with either one compound or microplastic
excluded from the combination resulting in four different
combinations. The four-factor treatment included all phar-
maceutical compounds and the mask MP. In addition, each
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treatment, whether individual or in combination, included a
low and a high concentration. These pollutants belonging to
different classes are expected to deliver different effects on
soil and microbial communities due to their varying mecha-
nisms of action (Table S2). They were chosen due to their
long history of usage and were among the common drugs
of choice for COVID-19 treatment. Hence, increased detec-
tion in different matrices were reported (Chacca et al. 2022;
Morales-Paredes et al. 2022).

The experimental units were prepared using 50 ml coni-
cal tubes (Corning Inc., Corning, USA) filled with 40 g
of soil. The tubes had four vents in the cap allowing gas
exchange but layered with a hydrophobic membrane to avoid
contamination. First, the soil (Albic Luvisol) collected from
the agricultural field station of Freie Universitit Berlin (52°
28'00.9" N 13° 17' 53.8" E) was air-dried, sieved (a 2-mm
mesh size), homogenized, and stored at 4 °C. A previously
sterilized loading soil (autoclaved, 121 °C for 1 h) of about
5 g was supplemented with the corresponding pharmaceuti-
cal compounds and was allowed to evaporate. This loading
soil was used to avoid exaggerated effects of chemicals and
allow effective mixing into the soil system. Then, 0.12 g of
microplastic (0.4% w/w) was added to the remaining 35 g
of soil and mixed manually. The microplastic concentration
was determined as the upper limit concentration at which
soil experienced minimal changes in volume (De Souza
Machado et al. 2018). The loading soil was then thoroughly
mixed with the 35 g soil for 3 min. Microcosms were ran-
domly placed in an incubator set at 25 °C for 6 weeks. Soil
moisture was maintained at 60% water-holding capacity. All
treatments were replicated eight times. Ten additional tubes
were included as the control group without any pharmaceu-
tical product or microplastics. Control tubes were mixed in
the same manner as the treatment group to receive the same
amount of disturbance.

Measurement of response variables

The following response variables were measured: physi-
cal properties (pH, water-stable soil aggregates), micro-
bial activity (soil respiration, FDA hydrolysis), microbial
abundance (bacteria and fungi), and nutrient cycling (litter
decomposition and enzyme activities). Soil respiration was
measured as CO, concentration (ppm h™' g~! soil) using an
infrared gas analyzer (LI-6400XT, LI-COR Inc., Bad Hom-
burg, Germany) at different time points (days 5, 28, and 42).
All other response variables were measured at the end of the
incubation period. Soil pH was measured with 0.01 M CaCl,
solution using a pH meter (Knick, Germany). Water-stable
soil aggregates were measured using a wet sieving appa-
ratus (Eijkelkamp, Giesbeek, the Netherlands) following
an established protocol (Kemper and Rosenau 1986; Liang
et al. 2019). Litter decomposition was determined using
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prepared nylon bags filled with green tea leaves (Lipton
Green Tea Sencha, Japan). The loss in the litter dry weight
during the incubation was used to calculate the decomposi-
tion rate. Four enzymes essential for nutrient cycling were
measured namely, B-glucosidase (cellulose degradation),
B-D-cellobiosidase (cellulose degradation), N-acetyl-f-
glucosaminidase (chitin degradation), and phosphatase
(organic phosphorus mineralization) using a high-through-
put microplate assay. Likewise, fluorescein diacetate hydro-
lase (FDA) was measured to represent general soil micro-
bial activity. Microbial abundance was also measured using
quantitative polymerase chain reactions (QPCR) with CFX
96 Real-Time System (BioRad Laboratory, Hercules, USA).
First, soil DNA was extracted using DNeasy PowerSoil Pro
Kit (Qiagen GmbH, Germany) following the manufacturer’s
instructions. Bacterial DNA was amplified using the uni-
versal primers 515F (5'-GTGCCAGCMGCCGCGGTAA-
3") and 806R (5'-GGACTACHVGGGTWTCTAAT-3") (Xu
et al. 2022), while for fungal DNA, fITS7 (5'- GTGART
CATCGAATCTTTG-3’) and the ITS4 primers (5'-TCCTCC
GCTTATTGATATGC-3") were used (Ihrmark et al. 2012).
A more detailed procedure is available in the Supplementary
Information.

Statistical analysis

All data analysis and visualization were done in R (v4.3.1;
R Core Team 2023). The effect sizes and 95% confidence
intervals (Cls) of single and multiple factor treatments were
estimated by a bootstrap method with 10,000 permutations.
Plots that visualize the effect sizes and distributions of raw
data of every treatment group were generated. Positive effect
means the measured response variable was higher in the
treatment compared to the control. The negative effect indi-
cates the opposite. Generalized linear model (glm) followed
by a multiple comparison test using the Dunnett’s test with
the glht() function in the R package “multcomp” (Hothorn
et al. 2008) were used to simultaneously compare each
treatment with the control (Dunnett 1955). Model residu-
als were checked for normality and heteroscedasticity. The
relationships among the different response variables were
analyzed using principal component analysis and presented
as biplot. The prcomp() function in the basic “stats" package
was used for this purpose. To test the potential interactions
of multiple-factor treatments on soil properties, three null
model assumptions (additive, multiplicative, and domina-
tive) were employed (Schifer and Pigott 2018) to estimate
the joint effects of multiple factor treatments based on their
component factors’ effect sizes. In the additive assumption,
joint factor effects are estimated by adding up all component
factor effect sizes. In the dominative case, the joint effect of
multiple factors is equal to the overriding factor with largest
absolute effect size. In the multiplicative assumption, com-
bined effects are calculated by multiplying the proportional

changes of single-factor effects on control. All null models
assume that there is no interaction among factors. The inter-
actions among factors are detected based on the deviation
of actual data from the null model predictions. If the actual
joint effect is significantly different from any of the three
null model predictions, we consider that there is synergistic
or antagonistic interaction among the component factors.
Plots were generated with the ggplot2 package (Wickham
2016).

Results

Effects on microbial activity (soil respiration
and FDA hydrolysis)

We measured soil respiration at different time points (days
5, 28, and 42). Day 5 showed the highest respiration rates,
while days 28 and 42 were substantially lower. On days 5
and 28 (Figure S1A and C, respectively), significant reduc-
tions were observed under the multiple-factor treatments
while single-factor treatments had neutral effects. On day
42 (Fig. 1a), soil respiration was inhibited in both the single-
factor and the multiple-factor treatments. In all measure-
ments, we found no difference in response between low and
high concentrations of chemical pollutants. There were no
distinct differences in null model assumptions (additive,
multiplicative, and dominative) (Fig. 1b). We also evaluated
overall microbial activity by FDA hydrolysis (Fig. 1c). We
found an overall decrease regardless of whether the com-
pounds were added individually or in combination. Exclud-
ing mask MP (RAI) in the combination did not improve the
effect. There were significant differences between the actual
data and null model assumptions (ARMP-low and AIMP-
high), and the FDA activity of these treatments was higher
than the predictions (Fig. 1d). Despite the changes observed
in these proxies for soil microbial activities, litter decom-
position was marginally affected, only showing a slightly
higher decomposition rate in the treated soil compared to
the control (Figure S4A).

Effects on soil processes

We found that multiple-factor treatments negatively
affected the p-glucosidase activity more strongly than the
single-factor treatments (Fig. 2a). Remarkably, among the
multiple-factor treatments, it was less affected in the no
mask MP treatment (RAI). There were no distinct differ-
ences between actual data and null model assumptions
(Fig. 2b). The single-factor treatment of each pharma-
ceutical compound showed neutral effects on phosphatase
activity, while MP treatment significantly inhibited
the enzyme activity (Fig. 2c). In the multiple-factor
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Fig. 1 Effects of the individual treatment (remdesivir, R; azithromy-
cin, A; ivermectin, I; mask microplastic, MP) and combinations of
pharmaceutical drugs and microplastics on soil respiration measured
on day 42 (a) and FDA hydrolysis (c). Density plots (a and ¢) display
the data distributions with raw data shown as dots. Unpaired mean
(effect magnitude) is presented as circles or arrows with correspond-
ing 95% confidence intervals (effect precision) presented as vertical
lines. Negative and positive effects are presented as arrows pointing
downwards and upward, respectively while neutral effects are pre-
sented as circles. Lighter hue indicates low concentration and darker

treatments, the phosphatase activity showed decreasing
trends in the treatment with MP and high concentrations of
pharmaceuticals (AIMP, ARMP, and RAIMP). Conversely,
no MP treatment (RAI) at low concentration significantly
increased phosphatase activity. We also found no signifi-
cant differences in null model assumptions (Fig. 2D). In
the case of both B-D-cellobiosidase (Fig. 2e) and N-acetyl-
B-glucosaminidase (Fig. 2g) activities, high-concentration
treatments showed an increasing trend in all treatments.
In the single-factor treatment, both enzymes were sig-
nificantly higher compared to the control group at high
concentrations of R and A but significantly lower at low
concentration of I. The multi-factor treatments showed
the negative effects at low concentrations. This signifi-
cant reduction was not observed when MP was excluded
from the multi-factor treatments. In addition, there were
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hue indicates high concentration. Null models were used to predict
the impacts of multiple-factor treatments on soil processes using
individual treatment effects (b and d). Error bars of multiple factor
interactions in the null model plots were generated by boot-strapped
values with 1000 iterations. Null models for low-concentration and
high-concentration treatments are presented in the upper and lower
panels, respectively. Factor levels are displayed in different colors:
- control; pm- single-factor; g -three-factor; and pgg- four-factor treat-
ments

significant differences between the actual data and the null
model assumptions (Fig. 2f and h).

Effects on soil microbial abundance

Bacterial and fungal abundance were not significantly
affected by the treatments. Although bacterial abundance
tended to be slightly lower under the treatment conditions
compared to the control (Figure S2A), and fungal abundance
had the opposite trend (Figure S2B), there was no change in
the bacteria to fungi ratio (Figure S2C).

Effects on soil physicochemical properties

Soil pH was significantly lower compared to the control
group when pollutants were present (Figure S3A). The
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Fig.2 Effects of the individual treatment (remdesivir, R; azithro-
mycin, A; ivermectin, I; mask microplastic, MP) and combinations
of pharmaceutical drugs and microplastics on soil enzymes (a, b, c,
d, e, f, g, h). Density plots (a, c, e, and g) display the data distribu-
tions with raw data shown as dots. Unpaired mean (effect magnitude)
is presented as circles or arrows with corresponding 95% confidence
intervals (effect precision) presented as vertical lines. Negative and
positive effects are presented as arrows pointing downwards and
upward, respectively while neutral effects are presented as circles.

Null Models

Lighter hue indicates low concentration and darker hue indicates high
concentration. Null models were used to predict the impacts of mul-
tiple-factor treatments on soil processes using individual treatment
effects (b, d, f, and h). Error bars of multiple factor interactions in the
null model plots were generated by boot-strapped values with 1000
iterations. Null models for low-concentration and high-concentration
treatments are presented in the upper and lower panels, respectively.
Factor levels are displayed in different colors: - control; - single-
factor; pu-three-factor; and g- four-factor treatments
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reduction was more pronounced in the single-factor treat-
ments than in the three- or four-factor treatments. The actual
data deviate significantly from the null model assumptions
(Figure S3B). Conversely, there was no remarkable effect
on water-stable aggregation under any treatment conditions
(Figure S4B).

Correlation among proxies for soil health
and functions

The general relationships among the different parameters
and individual samples were evaluated using principal com-
ponent analysis (Fig. 3). Microbial activities measured as
soil respiration and FDA hydrolysis positively correlated
with microbial abundance. Enzyme activities and litter
decomposition, on the other hand, had a negative correla-
tion with soil physical properties (i.e., pH and WSA). There
was also a clear separation of treatment effects in the ordina-
tion space mirroring the combined responses of parameters
assessed here.
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Discussion

Our study focuses on the individual and combined effects
of COVID-19 pandemic—related drugs and microplas-
tics derived from FFP2 masks on known proxies of soil
health and functions. Results show that these pollutants
can elicit changes in measured soil parameters when
applied individually and in combination. Although there
are many previous studies reporting the impacts of phar-
maceutical drugs and mask microplastics in the environ-
ment, our study investigated the joint effects of COVID-19
pandemic-related drugs and mask MP on different soil
processes and functions.

We investigated soil microbial activities by measuring
soil respiration and FDA hydrolysis activity. Soil respi-
ration measurements were taken at three different time
points to compare the effects of short-term and long-term
exposure. The substantial decline in soil respiration over
time may be related to the general decrease in microbial
activity due to substrate depletion (Hartley et al. 2008;

Treatment
X Control

X R
A
|
MP

& *+o D> J00

RAIMP

2 4

PCA1 (20.4%)

Fig. 3 Principal component analysis (PCA) projecting the correlation
between the tested soil parameters and the samples under the differ-
ent treatment conditions. Samples under the different treatment con-
ditions are distributed in the two-dimensional space represented by
principal component axes 1 and 2 explaining 20.4 and 15% of vari-
ance, respectively. The soil parameters representing physico-chemi-
cal, enzymatic, and microbiological activities include soil pH, water-
stable aggregates (WSA), B-glucosidase (gluco), p-D-cellobiosidase
(cello), phosphatase (phos), N-acetyl-p-glucosaminidase (NAGase),
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FDA hydrolysis (FDA), litter decomposition (decom), soil respira-
tion (resp_D5, resp_D28, resp_D42), and microbial abundance (bac-
teria and fungi). Arrows indicate direction and weight of variables.
Colored dots represent different treatments regardless of concentra-
tion: control, remdesivir, R; azithromycin, A; ivermectin, I; mask
microplastic, MP and their combinations (AIMP, RIMP, ARMP, RAI
and RAIMP). Data distribution by factor level is indicated by concen-
tration ellipses: .— control; | - single-factor;  -three-factor; and

- four-factor treatments
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Olinger et al. 1996), toxicity of the pharmaceuticals, and
the leachates from mask MP (Kim et al. 2020). We found a
general trend across all time-point measurements, showing
that inhibition was stronger under the multiple-factor treat-
ments than the single-factor treatments. Null model testing
of day 28 measurement indicated a synergistic interaction
between pharmaceuticals and mask MP, resulting in more
pronounced inhibition under AIMP, ARMP, and RIMP
but not in the no MP treatments (RAI). Longer exposure
(day 42) to the treatments further resulted in significant
reductions both in single-factor treatments and multiple-
factor treatments. These results support earlier findings on
the negative effects of pharmaceutical products particu-
larly antimicrobials (Butler et al. 2011; Cycon et al. 2019;
Girardi et al. 2011; W. Zhang et al. 2019) and microplas-
tics (Lozano et al. 2021a; Zhao et al. 2021). Respiration
data is further supported by the decrease in FDA hydrol-
ysis, another known indicator of soil microbial activity,
suggesting a potential reduction in microbial biomass
(Schniirer and Rosswall 1982). However, in treatments of
high concentrations of AIMP and low concentrations of
ARMP, FDA hydrolysis was comparable to the control
group. Null model testing indicates potential factor inter-
action, resulting in reduced negative effects compared to
the individual components. This pattern was not obtained
in other combinations; hence, it is difficult to make general
predictions of the effects of multiple-factor treatments.
The addition of pharmaceuticals and microplastics to the
soil may affect the microbial community and their activi-
ties (Lopez et al. 2021; Wu et al. 2021). In our study, there
were no significant changes in the abundances of both bac-
teria and fungi. This did not conform with previous reports
that antibiotic addition lowered bacterial abundance while
increasing fungal abundance and biomass (Demoling et al.
2009; Tang et al. 2020). Antivirals were also found to cause
changes in community structure with bacterial diversity
being reduced (Slater et al. 2011). The neutral effects we
obtained in this study may have been due to the concen-
trations used. Also, microbial biodegradation may have
rendered these compounds and their metabolites non-toxic
(Maldonado-Torres et al. 2018; Narayanan et al. 2023).
Although bacterial abundance tended to be slightly lower
in the treated soil than in the control and fungal abundance
tended to be slightly higher, there is no evidence that the
abundance ratio between these two groups have changed
(Figure S2C). Similarly, litter decomposition rate was not
significantly affected by the treatments, likely because fun-
gal-to-bacterial ratio remains unaltered. Previous reports
have linked the increase in soil fungal:bacterial ratio to
increased litter decomposition, emphasizing the significant
contribution of fungi to this important soil process (Malik
et al.2016; M. Zhang et al. 2021). Despite the unaltered
microbial abundance, the significant changes in metabolic

activities suggest potential shifts in microbial community
structure when exposed to these contaminants. Pharmaceu-
tical products used in this study represent different classes
(i.e., antiviral, antibacterial, and antiparasitic) with differ-
ent mechanisms of action. Therefore, their presence in the
soil samples can support certain functional groups while
suppressing or inhibiting others (Izabel-Shen et al. 2022).
Rillig et al. (2019) also found that microbial communities
lost species, favoring stress-tolerant species when exposed
to increasing numbers of global change factors. Microor-
ganisms that are relatively more tolerant to the added anti-
microbials may take advantage of the compounds as nutri-
ent sources (Butler et al. 2011). For example, in our study,
the addition of nitrogenous azithromycin and remdesivir
had a positive effect on N-acetyl-B-glucosaminidase, an
N-acquiring enzyme. -D-cellobiosidase also appeared to be
stimulated by high concentrations of the treatments whether
applied as single or in combination. In both enzymes, high
concentrations of pharmaceuticals with or without mask MP
showed potential antagonistic interaction in the multiple-
factor treatments as indicated by the null model testing,
resulting in reduced negative effects. On the contrary, the
treatments may be toxic to sensitive soil microbes (Cheng
et al. 2021; Lagos et al. 2023; Rodriguez-Gonzalez et al.
2023). The growth and metabolism of target species (e.g.,
antibiotics against bacteria) may have been suppressed
by the addition of the compounds or by the toxic leachate
from the mask MP resulting in lower enzymatic activities
(Kim et al. 2020). The inhibitory effect of mask MP was
evident in the B-glucosidase and phosphatase activities. In
both enzymes, mask MP caused significant reduction when
added as a single factor whereas this effect was not seen in
the multiple-factor treatment where mask MP was excluded
(i.e., RAI). This aligned with previous findings on the nega-
tive effects of microplastics on enzymatic activities due to
their ability to change soil physicochemical properties (Yu
et al. 2020; Zhao et al. 2021).

Single-factor treatments tend to lower soil pH possibly
due to the innate pH of the compounds as exemplified by
remdesivir, a highly acidic drug (Kumar et al. 2021). How-
ever, this negative effect tends to lessen under multiple-
factor treatments. As biodegradation and biotransformation
of the compounds take place, this can further alter soil pH
(Carter et al. 2016). Consequently, soil pH modification may
potentially affect soil processes, such as enzyme activities
(Frankenberger and Johanson 1982). In our study, PCA
results showed the inverse relationship between soil pH and
enzymatic activities. N-acetyl-p-glucosaminidase and j3-D-
cellobiosidase, in particular, are stimulated at lower soil pH
under the single-factor treatments. Conversely, the increase
in soil pH in the multiple-factor treatments resulted in lower
enzymatic activities. Soil pH also contributes to the sorp-
tion and persistence of pollutants in the system and how it
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will further impact soil health (Campillo-Cora et al. 2020;
Chien et al. 2018; Franco et al. 2009; Kicinska et al. 2022;
Y. Xu et al. 2021). While studies on microplastic effects
on soil properties and functions have been building up in
recent years, there is limited information on the effects of
pharmaceutical products on soil aggregate formation and
stability. Our study did not show any remarkable change in
soil aggregation under treatment conditions. Considering the
potential negative effects of pharmaceuticals on soil biota
(L. Wang et al. 2019) and the significant contribution of the
latter on soil aggregation (Lehmann et al. 2017), we see a
need for further investigation, particularly on multiple-factor
effects to bridge this gap.

Conclusion

Our study uncovers the environmental effects of several
materials connected to fighting the COVID-19 pandemic.
We investigated the impacts of COVID-19 pharmaceutical
drugs coupled with polypropylene microplastics from FFP2
masks on soil functions and properties. Given that pharma-
ceuticals and microplastics are continuously discharged into
the environment, these products are ubiquitous and often
occur as a complex mixture rather than isolated compounds.
We found that pharmaceutical drugs and microplastics when
applied individually can alter soil properties like pH, respira-
tion, and important enzymes related to nutrient cycling. For
some compounds, toxicity may not be clear when applied
individually, but their combination may have substantial
effects emphasizing the stronger effects of multiple factors in
soil. Elevated concentrations of pharmaceuticals in soil such
as in pandemic scenarios, may also lead to stronger inter-
actions, either synergistically or antagonistically, between
these compounds and other pollutants including microplas-
tics. This underscores the importance of considering not
only the direct impacts of pharmaceutical compounds but
also their interactions with other pollutants when assess-
ing environmental risks. Furthermore, this may aid policies
geared towards One Health, recognizing the interdependence
of human, animal, and environmental health. Recommenda-
tions may include enhancing waste treatment processes and
establishing guidelines for the safe reuse of treated water and
sludge in agriculture.
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