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Abstract

This thesis investigates the complex behavior of individuals in a group and the emergence of
collective behavior through their interactions, using automatic tracking technology and novel
machine learning methods. It employs honey bee colonies as a model system to address two key
questions: how collective behavior arises in the absence of central organization, and how individual
behaviors relate to collective behavior.

The study of emergent behavior in social animals poses a significant challenge, as it is difficult
to understand how individual behaviors give rise to collective patterns. Social insect societies have
a long history as model organisms in understanding these patterns, and honey bee colonies, in
particular, offer a unique opportunity for such research. However, the large number of individuals
in a colony, along with their continuous actions and interactions, make it impractical for human
observers to study the entire colony comprehensively.

Building upon recent advancements in computer science, specifically in computer vision and
machine learning, this thesis introduces novel methods for tracking and identifying all individuals
in a honey bee colony over an extended period. This system uses machine learning and tracking
algorithms to identify individual bees, resulting in unique and extensive datasets of honey bee
trajectories. This enables the observation of large numbers of bees and their interactions over
extended periods, providing foundational data for analyzing how individual honey bee behaviors
relate to colony-level phenomena.

The resulting datasets are then used to explore how individual honey bee behaviors relate to col-
lective behavior. To that end, a novel descriptor, network age, based on the spectral decomposition
of the social interaction network, is introduced. This descriptor accurately predicts task allocation,
survival, activity patterns, and future behavior of individual bees. Detailed analysis of multiple
cohorts of bees reveals distinct developmental pathways and critical life changes. The thesis also
analyzes variation in individual behavior and task allocation over timescales from single days to
entire lifetimes. It shows how some bees consistently exhibit different movement patterns and
transition to different tasks at different ages. These analyses provide insights into how individual
honey bee behaviors may contribute to colony function.

Finally, the thesis builds upon these methods and generalizes them by analyzing lifetime data
from multiple colonies. To that end, a novel non-negative temporal matrix factorization model is
introduced. This factorization identifies the functional roles of individuals in social groups over
time, regardless of when or where they lived. The method provides a quantitative framework for
understanding heterogeneity in the behaviors and roles of individuals in complex social systems
across time and space.

In summary, this thesis makes several key contributions. First, it demonstrates that individual
behaviors and interactions can be measured on an unprecedented scale using automatic tracking
technology and machine learning methods. Second, the resulting data are used to develop models
that investigate individual honey bees’ behavior and social interactions in the context of the collec-
tive of the colony, showing that new technologies can advance our understanding of honey bees’
social organization and other complex systems. By studying social animals at the individual level,
we can better understand the mechanisms underlying collective behavior.
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1 Introduction
Alles ist Wechselwirkung — Everything is interconnectedness.

– Alexander von Humboldt, Travel Journal, August 1-5, 1803, Valley of Mexico.

The phenomenon of collective behavior, in which groups of individuals coordinate their
actions to produce emergent phenomena at the group level, has intrigued researchers for
decades. Examples of collective behavior can be seen in the synchronized movements of
flocking birds and shoaling fish and in the outcomes of democratic elections in human
societies. The dynamics of individual interactions play a crucial role in shaping such
behavior (Farine and Whitehead, 2015; Gordon, 2010; Krause et al., 2015; Pinter-Wollman
et al., 2014). Social animals, such as honey bees, are particularly adept at coordinating their
actions, even in the absence of centralized control or communication (Hölldobler et al.,
2009). However, understanding how individual behaviors give rise to collective patterns
poses a significant challenge. Recent advances in tracking technologies and machine
learning have opened up new avenues of research, providing unprecedented opportunities
to study individual behavior and interactions over extended periods. This thesis, entitled
Individuality in the hive, explores the use of automatic tracking of all individuals in a
honey bee colony and modern machine learning methods to gain insight into the role of
individuals and their interactions in the emergence of collective behavior.

Social insects have long been studied as model systems for investigating collective behav-
ior, given their complex societies and intricate modes of communication. Task allocation
in societies of social insects is hypothesized to arise from social interactions. However,
the relationship between individual roles and social networks within a colony is poorly
understood to date (Gordon, 1996; Tofts and Franks, 1992; Traniello and Rosengaus,
1997). Social interactions among individuals change depending on where and with whom
they interact, and individuals can modify their behavior based on nestmate interaction
(Pinter-Wollman et al., 2013, 2011; Seeley, 1992; Gordon and Mehdiabadi, 1999; David-
son and Gordon, 2017; Quevillon et al., 2015; Planckaert et al., 2019). Studies targeting
specific interactions, roles, or stimuli have been conducted, but without an automated
observation system, these behaviors and interactions can not be captured comprehensively,
and observations are affected by human bias.

Among social insects, honey bees stand out for their richness of behavior, enabled by a
range of sensory modalities and unique forms of communication, such as the famous wag-
gle dance. This symbolic dance is an exceptional behavior of honey bees. It is unmatched in
the insect world, allowing these insects to communicate the location of resources to other
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1 Introduction

colony members with impressive accuracy and precision (von Frisch, 1967). In addition
to their scientific importance, honey bees play a crucial role in agriculture and are of great
economic significance. The phenomenon of Colony Collapse Disorder, which has led to
the decline of honey bee populations, underscores the importance of understanding the
behavior and functioning of honey bee colonies (Oldroyd, 2007). Beekeeping, a practice
that dates back thousands of years, has provided us with valuable knowledge and tools
to study honey bees and their intriguing behaviors (Crane, 1999). For instance, standard
observation frames commonly used by beekeepers can be repurposed for scientific ob-
servation, and markers used to identify queens in hives can serve as unique identifiers of
all individuals in a colony (Wario et al., 2015). By studying honey bees in their natural
colony environment, we can better understand their complex communication and social
behavior. As honey bee colonies offer a model system to observe many individuals and
their actions and interactions over a prolonged period, they provide a unique opportunity
to study collective behavior.

Understanding the mechanisms underlying collective behavior is of fundamental im-
portance, with implications for fields such as ecology, robotics, and the social sciences
(Gordon, 2014; Rossi et al., 2021; Duan et al., 2023; Blumer, 1971) . This work posits
that to understand emergent group behaviors, we must first understand individuals and
their rich set of behaviors and social interactions within their society. By building models
that explain individual behaviors, we can study how these behaviors give rise to collective
patterns. Honey bee colonies are composed of thousands of individuals that engage in a
wide range of behaviors and modes of interaction. To build models of individual behavior
and interactions over long periods, we must first track and measure the behavior of each
individual in the colony. This presents many technical challenges, such as the ability to
distinguish and automatically track individual bees in the colony, the rapid movements of
bees, and the many interactions that occur. Additionally, bees can disappear within the
comb or leave the hive to forage, making long-term tracking challenging. Furthermore,
the colony should not be exposed to light in the visible spectrum of honey bees, making
tracking even more difficult. Once individual bees are tracked, the question arises of how
to use this data to model individual behavior within the context of colony-level behavior.
As learning to predict is closely related to understanding (Clark, 2013; Brown et al., 2020),
the success of such a model can be measured by its ability to predict future behavior based
on an individual’s actions and interactions within the colony. For instance, can we predict
an individual bee’s future task allocation based on its current behavior? There are techni-
cal challenges in building such models, using large amounts of data, and evaluating and
interpreting these models. Furthermore, such models should be able to generalize across
individuals living at different times and from different colonies. This requires developing
methods that generate consistent descriptors that capture the variability of individual
behaviors, regardless of the origin of the individual.

Previous work on tracking social animals has relied heavily on manual observation,
which is time-consuming and limited in scope. Researchers have manually followed indi-
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vidual bees in order to study food exchange interactions (Naug, 2008), colony proximity
networks (Baracchi and Cini, 2014), foraging behaviors (Biesmeijer and Seeley, 2005),
and waggle dances (Couvillon et al., 2014). However, manual tracking is limited by the
number of individuals that can be observed and the time required to analyze the data.
In recent years, computer vision software has become a popular tool for automatically
identifying and tracking animals (Krause et al., 2013; Dell et al., 2014), with tracking
the position of an animal often being sufficient to infer its behavior (Kabra et al., 2013;
Eyjolfsdottir et al., 2017; Blut et al., 2017). Tracking bees within a colony is challenging
due to their similar appearance and frequent occlusions. Therefore, marker-based insect
tracking systems have been proposed, which use a binary code for error correction, but
these systems require expensive equipment and may result in reduced accuracy and sample
rate if detections cannot be decoded (Mersch et al., 2013; Crall et al., 2015; Gernat et al.,
2018). This thesis builds upon the BeesBook tracking system (Wario et al., 2015), which
uses less expensive recording equipment than other solutions and achieves high recall and
precision in localizing tags and decoding IDs without relying on error-correcting codes by
using a unique tag design and machine learning to identify individuals (Wild et al., 2018).
However, linking detections only based on matching IDs can lead to errors, so a more
elaborate tracking algorithm is required to follow individuals robustly.

To this end, the thesis aims to go beyond the state of the art by developing and applying
novel methods to track and analyze honey bee behavior over long periods. One of the
key contributions of this work is the development of a reliable system for automatically
tracking individual honey bees in a colony, using machine learning methods to identify
and distinguish between individuals. This system is described in Chapter 3 - Tracking
All Members of a Honey Bee Colony Over Their Lifetime Using Learned Models of
Correspondence. This system makes possible the observation of large numbers of individ-
uals, their actions, and their interactions over extended periods, generating a unique and
extensive dataset that has not been possible before.

After establishing a reliable tracking system and the technical infrastructure for storing
and processing large amounts of tracking data, the focus of the subsequent works in this
thesis was on analyzing the generated datasets. Previous studies examining the behavior of
individuals in social insect societies and how it relates to the collective have primarily relied
on human observation, assigning behaviors to individuals using ethograms (Lindauer,
1952; Seeley, 1982; Seeley and Kolmes, 1991; Johnson, 2003; Siegel et al., 2013; Smith
et al., 2017; Perez and Johnson, 2019). Network analysis of social interaction networks
has shown promise as a technique for studying social animals. This is because interaction
networks can be relatively easily constructed from tracking data, and network analysis
represents each individual as embedded within the broader social structure of the group
(Krause et al., 2015; Pinter-Wollman et al., 2014; Brask et al., 2021). However, researchers
have only studied the interaction networks from a colony-wide or temporal perspective
to a limited extent (Gernat et al., 2018; Hasenjager et al., 2020), and tracking has often
been restricted to specific individuals or short intervals (Naug, 2008; Blut et al., 2017;
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1 Introduction

Siegel et al., 2013; Bozek et al., 2021). Previous research has shown that individual bees
spend most of their time in specific nest regions during each life stage, interacting with
their nestmates (Seeley, 1982; Johnson, 2010). The patterns of interaction with others
may depend on factors beyond location, such as previous interactions or genetic diversity
within the colony (Farina, 2000; Girard et al., 2011). While social interactions enable
the exchange of information and can have long-term effects on an individual’s behavior,
identifying an individual bee’s role in a colony based on its patterns of interaction is still
challenging, especially with numerous individuals and various interaction modes. Recent
advances in automated tracking such as the system described in this thesis now provide
the opportunity to obtain behavioral metrics that were previously beyond the scope of
human observation, allowing for a more comprehensive, data-driven analysis of individual
variability and inter-individual differences across different time scales (Wario et al., 2015;
Mersch et al., 2013; Crall et al., 2015; Gernat et al., 2018; Wild et al., 2018; Bozek et al.,
2021; Crall et al., 2018; Jones et al., 2020; Richardson et al., 2021).

To that end, this thesis presents novel methods of social network analysis to analyze
individual behaviors and interactions within the colony, allowing for a deeper understand-
ing of how individual behavior relates to the colony’s behavior as a whole. Chapter 4 -
Social networks predict the life and death of honey bees introduces a succinct descriptor
of an individual’s social network, called network age, which can accurately predict task al-
location, survival, activity patterns, and future behavior. This descriptor is used to analyze
the developmental trajectories of multiple cohorts of individuals in a natural setting and
identify distinct developmental pathways and critical life changes.

However, it is important to note that there is significant behavioral variability over
longer periods, among individuals, and particularly between individuals from different
colonies. Honey bee task allocation is influenced by multiple factors, including age, ge-
netics, and social interactions (Huang et al., 1994; Beshers and Fewell, 2001; Robinson,
2002; Grozinger et al., 2007; Johnson, 2008a; Cook and Breed, 2013; Cook et al., 2019).
While young bees tend to work inside the nest, and older bees tend to forage (Seeley, 1982),
individuals may switch between or perform multiple tasks, suggesting that task repertoires
are a more useful categorization than age alone for describing variation in worker behav-
ior (Seeley, 1982; Johnson, 2010; Beshers and Fewell, 2001; Jeanson and Weidenmüller,
2014). Chapter 5 - Behavioral variation across the days and lives of honey bees introduces
a quantitative framework to describe individual behavioral variation within a colony from
a single day to an entire lifetime. This analysis shows that bees differ in their spatial use,
detection, and movement, and that inter-individual differences exist in the movement
characteristics of individuals across their entire lives. Furthermore, this method reveals
that bees differ in how quickly they transition through behavioral space to ultimately
become foragers, with fast-transitioning bees living the shortest lives.

Notably, the previous analyses were conducted on a single colony, highlighting the need
for further studies to explore behavioral and social interaction dynamics across multiple
colonies. Furthermore, methods like network age are not suited to derive behavioral
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descriptors from long-term datasets. To address these limitations, the final work in this
thesis investigates whether consistent semantic embeddings that allow for the comparison
of individuals from multiple colonies and long-term recordings can be automatically
learned. In recent years, semantic embeddings have become popular in machine learning
to solve related problems by learning interpretable representations of entities based on
high-dimensional data. These methods map entities into a learned vector space, allowing
for downstream tasks such as identifying genres of movies or related words in natural
language models (Frome et al., 2013; Asgari and Mofrad, 2015; Camacho-Collados and
Pilehvar, 2018; Nelson et al., 2019; Koren et al., 2009; Mikolov et al., 2013). In the context
of social interactions, embeddings can be learned from raw data and used to understand
how environmental conditions affect behavioral changes within a group (Richardson
et al., 2021). One of the challenges of learning semantic descriptors in dynamic social
systems is that individuals’ behavior changes over time, and their interactions with others
are not consistent. While methods like network age, as introduced in Chapter 4, can also
be interpreted as a way to extract semantic embeddings from temporal snapshots of social
networks of animal societies, this approach does not capture the changes in behavior and
interactions that occur over long periods and cannot produce behavioral descriptors that
are consistent across several colonies.

This limitation is addressed in the final major contribution of this thesis. Chapter 6 -
Learning to embed lifetime social behavior from interaction dynamics demonstrates that
common factors that partially determine individuals’ roles, such as age, can be used to learn
semantically consistent functional descriptors of individual behaviors and interactions
over time in highly dynamic social systems. This work also shows that embeddings learned
from social interaction data without additional supervision can be used to reveal how
environmental conditions affect behavioral changes within the group. Non-negative
matrix factorization (NMF) is presented as a principled and scalable method to learn
embeddings from data that can be represented in matrix form, such as interaction networks,
allowing for soft clustering and the derivation of embeddings from social interaction
networks. The resulting embeddings are biologically relevant and consistent over time,
allowing for the comparison of individuals’ functional roles regardless of when or in which
colony they lived.

Overall, this thesis investigates the mechanisms underlying collective behavior in com-
plex animal societies without central organization. Specifically, it examines individual
behaviors in the context of global collective behavior. To achieve this goal, the thesis
addresses the following two overarching research questions:

1. How does collective behavior emerge in societies without central organization?

2. What is the relationship between individual behaviors and the global behavior of
the collective?
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1 Introduction

To answer these questions, the thesis studies honey bee colonies as a model system and
pursues the following three specific research aims:

1. Develop a computer vision and machine learning-based tracking system to collect
unprecedentedly detailed data on individual honey bee movement and interactions.

2. Develop analytical methods to explore individual honey bee behaviors and interac-
tions and connect them to collective colony-level behavior.

3. Generalize the findings and develop methods to analyze large datasets comprising
multiple colonies and extended periods, including non-overlapping cohorts of
individuals living in different conditions.

By studying individual honey bee behaviors, this thesis investigates how novel technologies
can enhance our understanding of complex systems and demonstrates the importance
of measuring individual-level behaviors to understand emergent collective phenomena.
The thesis focuses on developing methods to analyze complex systems and argues that
computational approaches, illustrated through the example of honey bee colonies, can
significantly advance our understanding of collective behavior. Its contributions are
supported by the release of large-scale datasets, with all methods and software made
publicly accesible.
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2 Contributions To Individual
Publications

In this section, the contributions to the individual publications according to § 7 Abs. 3 of
the doctoral regulations from 1st December 2021 are summarized:

Tracking all members of a honey bee colony over their lifetime using learned
models of correspondence (Chapter 3)
Franziska Boenisch, Benjamin Rosemann, Benjamin Wild, David Dormagen, Fernando
Wario, and Tim Landgraf.

BR and TL: Conceptualization; FB, BR, BW, DD, and TL: Methodology; FB and BR:
Software; TL: Resources, supervision, and project administration; FB, BR, and BW: Data
curation; FB, BW, DD, and TL: Writing–original draft; FB, BW, FW, DD, and TL: Writ-
ing–review and editing and visualization.

In the development of the BeesBook data processing pipeline, I was instrumental in the
first two stages: the detection and decoding of binary honey bee markers. These stages
formed the foundation for the third stage presented in this paper. I contributed to the
experimental setup of the long-term video data processing, the marking of bees, and devel-
opment of software for recording, storing, cleaning, validating, and processing this data.
Furthermore, I was responsible for integrating the results of the detection and decoding
into a database, which was crucial for the tracking stage. I contributed to the design and
development of the tracking methodolgy and implemented several evaluation metrics
and was deeply involved in the writing process. My contributions extended to creating
datasets by applying the tracking method presented in this paper to the experimental data
we recorded from 2016 to 2019.

Social networks predict the life and death of honey bees (Chapter 4)
Benjamin Wild, David M. Dormagen, Adrian Zachariae, Michael L. Smith, Kirsten S.
Traynor, Dirk Brockmann, Iain D. Couzin, and Tim Landgraf.

Conceptualization: BW, DMD, AZ, TL, MLS, KST; Methodology: BW, DMD, AZ,
TL; Software: BW, DMD; Resources, supervision: TL, DB, IDC; Project administration:
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2 Contributions To Individual Publications

TL; Data curation: BW, DMD, MLS; Writing: BW, DMD, TL, MLS, KST, IDC; Visual-
ization: BW, DMD.

I developed the concept of network age and played a key role in the development, analysis,
visualization and interpretation of the method. I was heavily involved in the design and
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3.1 Preface
The paper Tracking All Members of a Honey Bee Colony Over Their Lifetime Using Learned
Models of Correspondence presents a new approach to automatically track individual honey
bees within a colony, allowing for the observation of large numbers of individuals and
their interactions over extended periods. Previous studies of social insect behavior have
predominantly relied on manual observation, but this approach is limited by the number
of individuals that can be observed and the time required to analyze the data. The proposed
system builds upon the BeesBook tracking system (Wario et al., 2015; Wild et al., 2018) but
employs a more elaborate tracking algorithm that uses classifiers learned from annotated
data to predict the correspondence of two consecutive detections, resulting in improved
marker decoding accuracy. In addition to the proposed used of machine learning methods
to identify and distinguish between individuals, a multi-step algorithm to produce motion
paths was introduced. The system was tested on approximately 2,000 marked honey bees
over 10 weeks, and the resulting trajectories represent a unique and extensive resource for
investigating honey bee collective behavior. The paper highlights the challenges of tracking
bees within a colony, but also demonstrates the potential of computer vision and machine
learning techniques for addressing these challenges. The methods described in this paper
are foundational for the works described in the following chapters, as they enabled the
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creation of the first ever large scale honey bee trajectory dataset, containing tracks for all
bees in a colony with high temporal and spatial resolution. These data were used in the
following works to automatically quantify space use and movement characteristics of the
individuals, and to detect interaction behaviors and build temporal social networks of all
individuals in a honey bee colony.
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3.2 Author contributions

This chapter was previously published as:
Boenisch et al. (2018a) — Franziska Boenisch, Benjamin Rosemann, Benjamin Wild,
David Dormagen, Fernando Wario, and Tim Landgraf. Tracking all members of a honey
bee colony over their lifetime using learned models of correspondence. Frontiers in Robotics
and AI, 5, 2018a. URL https://doi.org/10.3389/frobt.2018.00035

This article is licensed under a Creative Commons Attribution 4.0 license.

3.2 Author contributions
BR and TL: Conceptualization; FB, BR, BW, DD, and TL: Methodology; FB and BR:
Software; TL: Resources, supervision, and project administration; FB, BR, and BW:
Data curation; FB, BW, DD, and TL: Writing–original draft; FB, BW, FW, DD, and TL:
Writing–review and editing and visualization.

3.3 Abstract
Computational approaches to the analysis of collective behavior in social insects increas-
ingly rely on motion paths as an intermediate data layer from which one can infer individual
behaviors or social interactions. Honey bees are a popular model for learning and memory.
Previous experience has been shown to affect and modulate future social interactions.
So far, no lifetime history observations have been reported for all bees of a colony. In a
previous work we introduced a recording setup customized to track up to 4000 marked
bees over several weeks. Due to detection and decoding errors of the bee markers, linking
the correct correspondences through time is non-trivial. In this contribution we present
an in-depth description of the underlying multi-step algorithm which produces motion
paths, and also improves the marker decoding accuracy significantly. The proposed solu-
tion employs two classifiers to predict the correspondence of two consecutive detections
in the first step, and two tracklets in the second. We automatically tracked ~2000 marked
honey bees over 10 weeks with inexpensive recording hardware using markers without any
error correction bits. We found that the proposed two-step tracking reduced incorrect
ID decodings from initially ~13% to around 2% post-tracking. Alongside this paper, we
publish the first trajectory dataset for all bees in a colony, extracted from ~3 million images
covering three days. We invite researchers to join the collective scientific effort to investigate
this intriguing animal system. All components of our system are open-source.

3.4 Introduction
Social insect colonies are popular model organisms for self-organization and collective
decision making. Devoid of central control, it often appears miraculous how orderly
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termites build their nests or ant colonies organize their labor. Honey bees are a particularly
popular example - they stand out due to a rich repertoire of communication behaviors
(von Frisch, 1965; Seeley, 2010) and their highly flexible division of labor (Johnson, 2010;
Robinson, 1992). A honey bee colony robustly adapts to changing conditions, whether
it may be a hole in the hive that needs to be repaired, intruders that need to be fended
off, brood that needs to be reared, or food that needs to be found and processed. The
colony behavior emerges from interactions of many thousand individuals. The complexity
that results from the vast number of individuals is increased by the fact that bees are
excellent learners: empirical evidence indicates that personal experience can modulate
communication behavior (Grüter et al., 2006; Balbuena et al., 2012; Grüter and Farina,
2009; Grüter and Ratnieks, 2011; Goyret and Farina, 2005; De Marco and Farina, 2001;
Richter and Waddington, 1993). Especially among foragers, personal experience may be
very variable. The various locations a forager visits might be dispersed over large distances
(up to several kilometers around the hive) and each site might offer different qualities of
food, or even pose threats. Thus, no two individuals share the same history and experiences.
Evaluating how personal experience shapes the emergence of collective behavior and how
individual information is communicated to and processed by the colony requires robust
identification of individual bees over long time periods.

However, insects are particularly hard to distinguish by a human observer. Tracking a
bee manually is therefore difficult to realize without marking these animals individually.
Furthermore, following more than one individual simultaneously is almost impossible for
the human eye. Thus, the video recording must be watched once per individual, which, in
the case of a bee hive, might be several hundred or thousand times. Processing long time
spans or the observation of many bees is therefore highly infeasible, or is limited to only a
small group of animals. Most studies furthermore focused on one focal property, such
as certain behaviors or the position of the animal. Over the last decades, various aspects
of the social interactions in honey bee colonies have been investigated with remarkable
efforts in data collection: Naug (Naug, 2008) manually followed around 1000 marked
bees in a one hour long video to analyze food exchange interactions. Barachi and Cini
(Baracchi and Cini, 2014) manually extracted the positions of 211 bees once per minute
for 10 hours of video data to analyze the colony's proximity network. Biesmeijer and
Seeley (Biesmeijer and Seeley, 2005) observed foraging related behaviours of a total of
120 marked bees over 20 days. Couvillon and coworkers manually decoded over 5000
waggle dances from video (Couvillon et al., 2014). Research questions requiring multiple
properties, many individuals, or long time frames are limited by the costs of manual labor.

In recent years, computer vision software for the automatic identification and tracking
of animals has evolved into a popular tool for quantifying behavior (Krause et al., 2013;
Dell et al., 2014). Although some focal behaviors might be extracted from the video
feed directly (Berman et al., 2014; Wiltschko et al., 2015; Wario et al., 2017), tracking
the position of an animal often suffices to infer its behavioral state (Kabra et al., 2013;
Eyjolfsdottir et al., 2017; Blut et al., 2017). Tracking bees within a colony is a particularly
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challenging task due to dense populations, similar target appearance, frequent occlusions
and a significant portion of the colony frequently leaving the hive. The exploration flights
of foragers might take several hours, guard bees might stay outside the entire day to inspect
incoming individuals. The observation of individual activity over many weeks, hence,
requires robust means for unique identification.

For a system that robustly decodes the identity of a given detection, the tracking task
reduces to simply connecting matching IDs. Recently, three marker-based insect tracking
systems (Mersch et al., 2013; Crall et al., 2015; Gernat et al., 2018) have been proposed
that use a binary code with up to 26 bits for error correction (Thompson, 1983). The
decoding process can reliably detect and correct errors, or, reject a detection that can not
be decoded. There are two disadvantages to this approach. First, error correction requires
relatively expensive recording equipment (most systems use at least a 20 MP sensor with
a high quality lens). Second, detections that could not be decoded can usually not be
integrated into the trajectory, effectively reducing the detection accuracy and sample rate.

In contrast to these solutions, we have developed a system called BeesBook that uses
much less expensive recording equipment (Wario et al., 2015). Figure 3.1 shows our
recording setup, Figure 3.2 visualizes the processing steps performed after the recording.
Our system localizes tags with a recall of 98% at 99% precision and decodes 86% IDs
correctly without relying on error correcting codes (Wild et al., 2018). See Figure 3.3 for
the tag design. Linking detections only based on matching IDs would quickly accumulate
errors, long-term trajectories would exhibit gaps or jumps between individuals. Following
individuals robustly, thus, requires a more elaborate tracking algorithm.

Figure 3.1: (A) Schematic representation of the setup. Each side of the comb is recorded by two 12
MP PointGrey Flea3 cameras. The pictures have an overlap of several centimeters on
each side. (B) The recording-setup used in summer 2015. The comb, cameras and the
infrared lights are depicted, the tube that can be used by the bees to leave the setup is
not visible. During recording, the setup is covered. Figures adapted from (Wario et al.,
2015).

The field of multiple object tracking has produced numerous solutions to various
use-cases such as pedestrian and vehicle tracking (for reviews see Cox (1993); Wu et al.
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Figure 3.2: The data processing steps of the BeesBook project. The images captured by the record-
ing setup are compressed on-the-fly to videos containing 1024 frames each. The video
data is then transferred to a large storage from where it can be accessed by the pipeline
for processing. Preprocessing: histogram equalization and subsampling for the local-
izer. Localization: bee markers are localized using a convolutional neural network.
Decoding: a second network decodes the IDs and rotation angles. Stitching: the image
coordinates of the tags are transformed to hive coordinates and duplicate data in regions
where images overlap are removed.
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Figure 3.3: (A) The tag-design in the BeesBook project uses 12 coding segments arranged in an
arc around two semi-circles that encode the orientation of the bee. The tag is glued
onto the thorax such that the white semi-circle is rotated towards the bee’s head. Figure
adapted from (Wario, 2017). (B) Several tagged honey bees on a comb. The round and
curved tags are designed to endure heavy duty activities such as cell inspections and
foraging trips.

(2013); Luo et al. (2021); Betke and Wu (2016)). Animals, especially insects, are harder to
distinguish and solutions for tracking multiple animals over long time frames are far less
numerous (see Dell et al. (2014) for a review on animal tracking). Since our target subjects
may leave the area under observation at any time, the animal’s identity cannot be preserved
by tracking alone. We require some means of identification for a new detection, whether it
be paint marks or number tags on the animals, or identity-preserving descriptors extracted
from the detection.

While color codes are infeasible with monochromatic imaging, using image statistics to
“fingerprint” sequences of visible animals (Pérez-Escudero et al., 2014; Kühl and Burghardt,
2013; Wang and Yeung, 2013) may work even with unstructured paint markers. Merging
tracklets after occlusions can then be done by matching fingerprints. However, it remains
untested whether these approaches can resolve the numerous ambiguities in long-term
observations of many hundreds or thousands of bees that may leave the hive for several
hours.

In the following, we describe the features that we used to train machine learning classi-
fiers to link individual detections and short tracklets in a crowded bee hive. We evaluate
our results with respect to path and ID correctness. We conclude that long-term tracking
can be performed without marker-based error correction codes. Tracking can, thus, be
conducted without expensive high-resolution, low-noise camera equipment. Instead,
decoding errors in simple markers can be mitigated by the proposed tracking solution,
leading to a higher final accuracy of the assigned IDs compared to other marker-based
systems that do not employ a tracking step.
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3.5 Description ofMethods

3.5.1 Problem statement and overview of tracking approach
The tracking problem is defined as follows: Given a set of detections (timestamp, location,
orientation and ID information), find correct correspondences among detections over time
(tracks) and assign the correct ID to each track. The ID information of the detections can
contain errors. Additionally, correct correspondences between detections of consecutive
frames might not exist due to missing detections caused by occluded markers. In our
dataset, the ID information consists of a number in the range of 0 to 4095, represented
by 12 bits. Each bit is given as a value between 0.0 and 1.0 which corresponds to the
probability that the bit is set.

To solve the described tracking problem, we propose an iterative tracking approach,
similar to previous works (for reviews, see Luo et al. (2021); Betke and Wu (2016)). We
use two steps: 1. Consecutive detections are combined into short but reliable tracklets
(Rosemann., 2017). 2. These tracklets are connected over longer gaps (Boenisch, 2017).
Previous work employing machine learning mostly scored different distance measures
separately to combine them into one thresholded value for the first tracking step (Wu and
Nevatia, 2007; Huang et al., 2008; Wang et al., 2014; Fasciano et al., 2013). For merging
longer tracks, boosting models to predict a ranking between candidate tracklets have been
proposed (Huang et al., 2008; Fasciano et al., 2013). We use machine learning models
in both steps to learn the probability that two detections, or tracklets, correspond. We
train the models on a manually labeled dataset of ground truth tracklets. The features
that are used to predict correspondence can differ between detection level and tracklet
level, so we treat these two stages as separate learning problems. Both of our tracking steps
use the Hungarian algorithm (Kuhn, 1955) to assign likely matches between detections
in subsequent time steps based on the predicted probability of correspondence. In the
following, we describe which features are suitable for each step and how we used various
regression models to create accurate trajectories. We also explain how we integrate the ID
decodings of the markers along a trajectory to predict the most likely ID for this animal,
which can then be used to extract long-term tracks covering the whole lifespan of an
individual. See Figure 3.4 for an overview of our approach.

3.5.2 Step 1: Linking consecutive detections
The first tracking step considers detections in successive frames. To reduce the number
of candidates, we consider only sufficiently close detections (we use approximately 200
pixels, or 12mm).

From these candidate pairs we extract three features:

1. Euclidean distance between the first detection and its potential successor.
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Figure 3.4: Overview of the tracking process. The first step connects detections from successive
frames to tracklets without gaps. At time step t only detections within a certain distance
are considered. Even if a candidate has the same ID (top-most candidate with ID 42)
it can be disregarded. The correct candidate may be detected with an erroneous ID
(see t-1) or may even not be detected at all by the computer vision process. There may
be close incorrect candidates that have to be rejected (candidate with ID 43 at t+1).
The model assigns a correspondence probability to all the candidates. If none of them
receive a sufficient score the tracklet is closed. In time step t+3 a new detection with
ID 42 occurs again and is extended into a second tracklet. In tracking step 2, these
tracklets are combined to a larger tracklet or track.
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2. Angular difference of both detections’ orientations on the comb plane.

3. Manhattan distance between both detections’ ID probabilities.

We use our manually labeled training data to create samples with these features that
include both correct and incorrect examples of correspondence. A support vector machine
(SVM) with a linear kernel (Cortes and Vapnik, 1995) is then trained on these samples. We
also evaluated the performance of a random forest classifier (Ho, 1995) with comparable
results. We use the SVM implemented in the scikit-learn library (Pedregosa et al., 2011).
Their implementation of the probability estimate uses Platt’s method (Platt, 1999). This
SVM can then be used get the probability of correspondence for pairs of detections that
were not included in the training data. To create short tracks (tracklets), we iterate through
the recorded data frame by frame and keep a list of open tracklets. Initially, we have one
open tracklet for each detection of the first frame. For every time step, we use the SVM to
score all new candidates against the last detection of each open tracklet. The Hungarian
algorithm is then used to assign the candidate detections to the open tracklets. Tracklets
are closed and not further expanded if their best candidate has a probability lower than
0.5. Detections that could not be assigned to an existing open tracklet are used to begin a
new open tracklet that can be expanded in the next time step.

3.5.3 Step 2: Merging tracklets
The first step yields a set of short tracklets that do not contain gaps and that could be
connected with a high confidence. The second tracking step merges these tracklets into
longer tracks that can contain gaps of variable duration (for distributions of tracklet and
gap length in our data see Section 3.6). Note that a tracklet could consist of a single
detection or that its corresponding consecutive tracklet could still begin in the next time
step without a gap. To reduce computational complexity we define a maximum gap length
of 14 time steps (∼ 4s in our recordings).

Similar to the first tracking step, we use the ground truth dataset to create training
samples for a machine learning classifier. We create positive samples (i.e. fragments that
should be classified as belonging together) by splitting each manually labeled track once at
each time step. Negative samples are generated from each pair of tracks with different IDs
which overlapped in time with a maximum gap size of 14. These are also split at all possible
time steps. To include both more positive samples and more short track fragments in the
training data, we additionally use every correct sub-track of length 3 or less and again split
it at all possible locations. This way we generated 1.021.848 training pairs, 7.4% of which
were positive samples.

In preliminary tests, we found that for the given task of finding correct correspondences
between tracklets, a random forest classifier performed best among a selection of classifiers
available in scikit-learn (Boenisch, 2017).
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Tracklets with two or more detections allow for more complex and discriminative
features compared to those used in the first step. For example, matching tracklets separated
by longer gaps may require features that reflect a long-term trend (e.g. the direction of
motion).

We implemented 31 different features extractable from tracklet pairs. We then used
four different feature selection methods from the scikit-learn library to find the features
with the highest predictive power. This evaluation was done by splitting the training data
further into a smaller training set and validation set. The methods used were Select-K-Best,
Recursive Feature Elimination, Recursive Feature Elimination with Cross-Validation and
the Random Forest Feature Importance for all possible feature subset sizes as provided by
scikit-learn (Pedregosa et al., 2011). In all these methods, the same four features (number 1
to 4 in the listing below) performed best according to the ROC AUC score (Spackman,
1989) that proved to be a suitable metric to measure tracking results. Therefore, we chose
them as an initial subset.

We then tried to improve the feature subset manually according to more tracking-
specific metrics. The metrics we used were the number of tracks in the ground truth
validation set that were reconstructed entirely and correctly, and the number of insertions
and deletes in the tracks (for further explanation of the metrics see Section 3.6). We added
the features that lead to the highest improvements in these metrics on our validation set.
This way, we first added feature 5 and then 6. After adding feature 6, the expansion of the
subset with any other feature only lead to a performance decrease in form of more insertions
and less complete tracks. We therefore kept the following six features. Visualizations of
features 2 to 5 can be found in Figure 3.5.

1. Manhattan distance of both tracklets’ bitwise averaged IDs.

2. Euclidean distance of last detection of tracklet 1 to first detection of tracklet 2.

3. Forward error: Euclidean distance of linear extrapolation of last motion in first
tracklet to first detection in second tracklet.

4. Backward error: Euclidean distance of linear extrapolation of first motion in second
tracklet to last detection in first tracklet.

5. Angular difference of tag orientation between the last detection of the first tracklet
and the first detection of the second tracklet.

6. Difference of confidence: all IDs in both tracklets are averaged with a bitwise
median, we select the bit that is closest to 0.5 for each tracklet, calculate the absolute
difference to 0.5 (the confidence) and compute the absolute difference of these two
confidences.
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Figure 3.5: The spatial features used in the second tracking step. A) Euclidean distance between
the last detection of tracklet 1 and the first detection of tracklet 2. B) Forward error:
Euclidean distance of the extrapolation of the last movement vector in tracklet 1 to
the first detection in tracklet 2. C) Angular difference between the tag orientations of
the last detection in tracklet 1 and the first detection in tracklet 2. D) Backward error:
Euclidean distance between the reverse extrapolation of the first movement vector of
tracklet 2 to the last detection of tracklet 1.

Track ID assignment

After the second tracking step, we determine the ID of the tracked bee by calculating the
median of the bitwise ID probabilities of all detections in the track. The final ID is then
determined by binarizing the resulting probabilities for each bit with probability threshold
0.5.

Parallelization

Tracks with a length of several minutes already display a very accurate ID decoding (see
Section 3.6). To calculate longer tracks of up to several days and weeks, we execute the
tracking step 1 and step 2 for intervals of one hour and then merge the results to longer
tracks based on the assigned ID. This allows us to effectively parallelize the tracking calcu-
lation and track the entire season of ten weeks of data in less than a week on a small cluster
with less than 100 CPU cores.

3.6 Results and evaluation
We marked an entire colony of 1953 bees in a two days session and continuously added
marked young bees that were bred in an incubation chamber. In total, 2775 bees were
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marked. The BeesBook system was used to record 10 weeks of continuous image data (3
Hz sample rate) of a one-frame observation hive. The image recordings were stored and
processed after the recording season. The computer vision pipeline was executed on a Cray
XC30 supercomputer. In total, 3,614,742,669 detections were extracted from 67,972,617
single frames, corresponding to 16,993,154 snapshots of the four cameras. Please note that
the data could also be processed in real-time using consumer hardware (Wild et al., 2018).

Two ground truth datasets for the training and evaluation of our method were created
manually. A custom program was used to mark the positions of an animal and to define
its ID (Mischek, 2016). Details on each dataset can be found in Table 3.1. To avoid
overfitting to specific colony states, the datasets were chosen to contain both high activity
(around noon) and low activity (in the early morning hours) periods, different cameras
and, therefore, different comb areas. Dataset 2015.1 was used to train and validate classifiers
and dataset 2015.2 was used to test their performance.

Dataset 2015.1 2015.2
Date 18.09.2015 22.09.2015

Times 11:36; 04:51 13:36
Frames 201 (3 fps) 200 (3 fps)

Detections 18085 10945
False positives 222 (1.23%) 82 (0.75%)

Individuals 144 98

Table 3.1: Dataset 2015.1 was used for training and dataset 2015.2 for testing. The number of
detections is the number of tags localized and decoded by the deep learning approach
over all frames in the dataset. The number of false positives shows how many times the
deep learning pipeline detects a detection when there is none. The number of individuals
indicates how many different bees are present in the dataset.

Dataset 2015.1 contains 18085 detections from which we extracted 36045 sample pairs
(i.e. all pairs with a distance of less than 200 pixels in consecutive frames). These samples
were used to train the SVM which is used to link consecutive detections together (tracking
step 1). Hyperparameters were determined manually using cross-validation on this dataset.
The final model was evaluated on dataset 2015.2.

Tracklets for the training and evaluation of a random forest classifier (tracking step
2) were extracted from datasets 2015.1 respectively 2015.2 (see Section 3.5 for details).
Hyperparameters were optimized with hyperopt-sklearn (Komer et al., 2014) on dataset
2015.1 and the optimized model was then tested on dataset 2015.2.

To validate the success of the tracking, we analyzed its impact on several metrics in the
tracks, namely:

1. ID Improvement
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2. Proportion of complete tracks

3. Correctness of resulting tracklets

4. Length of resulting tracklets

To be able to evaluate the improvement through the presented iterative tracking approach,
we compare the results of the two tracking steps to the naive approach of linking the
original detections over time based on their initial decoded ID only, in the following
referred to as “baseline”. For an overview on the improvements achieved by the different
tracking steps see Table 3.2.

baseline after step 1 after step 2 perfect tracking
incorrect detection IDs 13.3% 3.9% 1.9% 0.6%
incorrect track IDs 63.5 27.2% 18.2% 8.2%
complete tracks 10.2% 26.5% 70.4% 77.6%
detections missing from
their track (deletions) 32.2% 1.38% 2.37% 0%

tracks with at least
one deletion 94.6% 26.7% 18.25% 0%

Table 3.2: Different metrics were used to compare the two tracking steps to both a naive baseline
based on the detection IDs and to manually created tracks without errors (perfect
tracking). In all cases, the baseline performs worst and the two tracking steps successively
improve the performance.

ID improvement An important goal of the tracking is to correct IDs of detections
which could not be decoded correctly by the computer vision system. Without the tracking
algorithm described above, all further behavioral analyses would have to consider this
substantial proportion of erroneous decodings. In our dataset, 13.3% of all detections
have an incorrectly decoded ID (Wild et al., 2018).

In the ground truth dataset we manually assigned detections that correspond to the
same animal to one trajectory. The ground truth data can therefore be considered as
the “perfect tracking”. Even on these perfect tracks the median ID assignment algorithm
described above provides incorrect IDs for 0.6% of all detections, due to partial occlusions,
motion blur and image noise. This represents the lower error bound for the tracking
system. As shown in Figure 3.6, the first tracking step reduces the fraction of incorrect
IDs from 13.3% to 3.9% of all detections. The second step further improves this result to
only 1.9% incorrect IDs.

Most errors occur in short tracklets (see Figure 3.7). Therefore, the 1.9% erroneous ID
assignments correspond to 18.2% of the resulting tracklets being assigned an incorrect
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Figure 3.6: Around 13% of the raw detections are incorrectly decoded. The first tracking step
already reduces this error to around 4% and the second step further reduces it to around
2%. Even a perfect tracking (defined by the human ground truth) would still result in
0.6% incorrect IDs when using the proposed ID assignment method.

median ID. This is an improvement over the naive baseline and the first tracking step with
63.5% and 27.2% respectively. A perfect tracking could reduce this to 8.2% (see Figure 3.8).

Proportionofcompletetracks Almost all gaps between detections in our ground
truth tracks are no longer than 14 frames (99.76%, see Figure 3.9). Even though large gaps
between detections are rare, long tracks are likely to contain at least one such gap: Only
around one third (34.7%) of the ground truth tracks contain no gaps and 77.6% contain
only gaps shorter than 14 frames. As displayed in Figure 3.10, the baseline tracking finds
only 10.2% complete tracks without errors (i.e. 30% of all tracks with no gaps). Step 1 is
able to correctly assemble 26.5% complete tracks (i.e. around 76.5% of all tracks containing
no gaps). Step 2 correctly assembles 70.4% complete tracks (about 90.4% of all tracks with
a maximum gap size of less than 14 frames).

Correctness of resulting tracklets To characterize the type of errors in our
tracking results, we define a number of additional metrics. We counted detections that
were incorrectly introduced into a track as insertions. Both tracking steps and the baseline
inserted only one incorrect detection into another tracklet. Thus less than 1% of both
detections and tracklets were affected.

We counted detections that were missing from a tracklet (and were replaced by a gap) as
deletions. In the baseline, 32.2% of all detections were missing from their corresponding
track (94.6% of all tracks had at least one deletion). After the first step, 1.38% of detections
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Figure 3.7: Evaluation of the tracklet lengths of incorrectly assigned detection IDs after the second
tracking step reveals that all errors in the test dataset 2015.2 happen in very short
tracklets. Note that this dataset covers a duration of around one minute.

Figure 3.8: A naive tracking approach using only the detection IDs would result in around 64%
of all tracks being assigned an incorrect ID. Our two-step tracking approach reduces
this to around 27% and 18% respectively. Due to the short length of most incorrect
tracklets, these 18.2% account for only 1.9% of the detections. Using our ID assignment
method without any tracking errors would reduce the error to 8.2%.
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Figure 3.9: Distribution of the gap sizes in the ground truth dataset 2015.2. Most corresponding
detections (i.e. 97.9%) have no gaps and can be therefore be matched by the first tracking
step. The resulting tracklets are then merged in the second step. The maximum gap
size of 14 covers 99.76% of the gaps.

Figure 3.10: A complete track perfectly reconstructs a track in our ground truth data without any
missing or incorrect detections. Even a perfect tracking that is limited to a maximum
gap size of 14 frames could only reconstruct around 78% of these tracks. The naive
baseline based only on the detection IDs would assemble 10% without errors while
our two tracking steps achieve 26.5% and 70.4% respectively.
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were missing from their track, affecting 26.7% of all tracks. After the second step, 2.37%
of all detections and 18.25% of all tracks were still affected.

We also evaluated whether incorrect detections were contained in a track in situations
where the correct detection would have been available (instead of a gap) as mismatches,
but no resulting tracks contained such mismatches.

Length of resulting tracklets The ground truth datasets contain only short
tracks with a maximum length of one minute. To evaluate the average length of the tracks,
we also tracked one hour of data for which no ground truth data was available. The
first tracking step yields shorter fragments with an expected length of 2:23 minutes, the
second tracking step merges these fragments to tracklets with an expected duration of
6:48 minutes (refer to Figure 3.11 for tracklet length distributions).

Figure 3.11: Track lengths after tracking one hour of video data at three frames per second. The
expected length of a track is 2:23 minutes after the first step and 6:48 minutes after
the second step.

3.7 Discussion
We have presented a multi-step tracking algorithm for fragmentary and partially erroneous
detections of honey bee markers. We have applied the proposed algorithm to produce long-
term trajectories of all honey bees in a colony of approximately 2000 animals. Our dataset
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comprises 71 days of continuous positional data at a recording rate of 3 Hz. The presented
dataset is by far the most detailed reflection of individual activities of the members of a
honey bee colony. The dataset covers the entire lifespan of many hundreds of animals
from the day they emerge from their brood cell until the day they die. Honey bees rely
on a flexible but generally age-dependent division of labor. Hence, our dataset reflects all
essential aspects of a self-sustaining colony, from an egg-laying queen and brood rearing
young workers, to food collection, and colony defense. We have released a three days
sample dataset for the interested reader (Boenisch et al., 2018b). Our implementation of
the proposed tracking algorithm is available online1.

The tracking framework presented in the previous sections is an essential part of the
BeesBook system. It provides a computationally efficient approach to determine the
correct IDs for more than 98% of the individuals in the honey bee hive without using
extra bits for error correction.

Although it is possible to use error correction with 12 bit markers, this would reduce
the number of coding bits and therefore the number of observable animals. While others
chose to increase the number of bits on the marker, we solved the problem in the tracking
stage. With the proposed system, we were able to reduce hardware costs for cameras and
storage. When applied to the raw output of the image decoding step, the accuracy of other
systems that use error-correction (for example Mersch et al. (2013)) may even be improved
further.

Our system provides highly accurate movement paths of bees. Given a long-term
observation of several weeks, these paths, however, can still be considered short fragments.
Since the IDs of these tracklets are very accurate, they can now be linked by matching IDs
only.

Still, some aspects of the system can be improved. To train our classifiers, we need a
sufficiently large, manually labeled dataset. Rice et al. (2015) proposed a method to create a
similar dataset interactively, reducing the required manual work. Also, the circular coding
scheme of our markers causes some bit configurations to appear similar under certain
object poses. This knowledge could be integrated into our ID determination algorithm.
The IDs along a trajectory might not provide an equal amount of information. Some
might be recorded under fast motion and are therefore less reliable. Other detections could
have been recorded from a still bee whose tag was partially occluded. Considering similar
readings as less informative might improve the ID accuracy of our method. Still, with the
proposed method there are only 1.9% detections incorrectly decoded, mostly in very short
tracklets.

The resulting trajectories can now be used for further analyses of individual honey
bee behavior or interactions in the social network. In addition to the three day dataset
published alongside this paper, we plan to publish two more datasets covering more than
60 days of recordings, each. With this data we can investigate how bees acquire information

1https://github.com/BioroboticsLab/bb_tracking
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in the colony and how that experience modulates future behavior and interactions. We
hope that through this work we can interest researchers to join the collective effort of
investigating the individual and collective intelligence of the honey bee, a model organism
that bears a vast number of fascinating research questions.
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4.1 Preface
Building upon the tracking system introduced in Chapter 3, the paper Social networks
predict the life and death of honey bees proposes a method to assess the social network of
honeybees and its effects on their development and behavior, without interfering with the
colony. Social networks can be used to understand individual roles within a colony, but the
relationship between individual roles and the social network is not well understood. This
work introduces a succinct descriptor of an individual’s social network, called network age,
which can accurately predict task allocation, survival, activity patterns, and future behavior.
A detailed analysis of the developmental trajectories of multiple cohorts of individuals in
a natural setting using network age identifies distinct developmental pathways and critical
life changes. Along with this work, the first ever large scale honey bee tracking dataset
was released (Wild et al., 2021a), opening up a broad range of future studies. This dataset
contains interaction matrices and metadata of all individuals in a single honey bee colony,
including data on their interactions, age, location, and velocity, as well as subsampled
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position information for each bee during the recording period. In summary, this work
investigates the relationship between an individual’s social network and its lifetime role
within a complex honey bee society, and introduces a low-dimensional descriptor, network
age, that allows for the prediction of task allocation, mortality, and behavioral patterns.
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4.3 Abstract
In complex societies, individuals’ roles are reflected by interactions with other conspecifics. Honey
bees (Apis mellifera) generally change tasks as they age, but developmental trajectories of individuals
can vary drastically due to physiological and environmental factors. We introduce a succinct
descriptor of an individual’s social network that can be obtained without interfering with the
colony. This ‘network age’ accurately predicts task allocation, survival, activity patterns, and future
behavior. We analyze developmental trajectories of multiple cohorts of individuals in a natural
setting and identify distinct developmental pathways and critical life changes. Our findings suggest
a high stability in task allocation on an individual level. We show that our method is versatile and
can extract different properties from social networks, opening up a broad range of future studies.
Our approach highlights the relationship of social interactions and individual traits, and provides
a scalable technique for understanding how complex social systems function.
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4.4 Introduction

In complex systems, intricate global behaviors emerge from the dynamics of interacting parts.
Within animal groups, studying interactions helps to elucidate the individuals’ functions (Farine
and Whitehead, 2015; Gordon, 2010; Krause et al., 2015; Pinter-Wollman et al., 2014). Descriptors
of individuals derived from social interaction networks have been used to investigate e.g. pair-
bonding (Psorakis et al., 2012), inter-group brokering (Lusseau and Newman, 2004), offspring
survival (Cheney et al., 2016), cultural spread (Aplin et al., 2015; Claidière et al., 2013), policing
behavior (Flack et al., 2006), leadership (Mehra et al., 2006; Sueur and Petit, 2008; Strandburg-
Peshkin et al., 2018), organization of food retrieval (Planckaert et al., 2019), the ability to affect
behavioral change (Rosenthal et al., 2015), and behavior during famine events (Sendova-Franks
et al., 2010). As our ability to collect detailed social network data increases, so too does our need to
develop tools for understanding the significance and functional consequences of these networks
(Gomez-Marin et al., 2014).

Social insects are an ideal model system to study the relationship between social interactions
and individual roles, because task allocation has long been hypothesized to arise from interactions
(Gordon, 1996; Tofts and Franks, 1992; Traniello and Rosengaus, 1997). The relationship of
individual roles within the colony and the social network, however, is not well understood. Individ-
uals, for example, can modify their behavior based on nestmate interaction (Pinter-Wollman et al.,
2013, 2011; Seeley, 1992; Gordon and Mehdiabadi, 1999), and interactions change depending on
where and with whom individuals interact (Pinter-Wollman et al., 2011; Davidson and Gordon,
2017; Quevillon et al., 2015; Planckaert et al., 2019). These studies typically target specific types of
interactions (e.g. food-exchange), specific roles within task allocation (e.g. foraging), or specific
stimuli within the nest (e.g. brood), but an automatic observation system could capture behaviors
and interactions within a colony more comprehensively and without human bias. Measuring the
multitude of social interactions and their effect on behavior, and the social networks over the
lifetime of individuals without interfering with the system (e.g., by removing individuals) is an
open problem.

In honey bees, task allocation is characterized by temporal polyethism (Naug, 2008; Baracchi
and Cini, 2014; Schneider and Lewis, 2004), where workers gradually change tasks as they age:
young bees care for brood in the center of the nest, while old bees forage outside (Seeley, 1982;
Huang and Robinson, 1996). Previous works often used few same-aged cohorts resulting in an
unnatural age distribution (Naug, 2008; Baracchi and Cini, 2014; Gernat et al., 2018; Huang and
Robinson, 1996). The developmental trajectory of individuals can, however, vary drastically due to
internal factors (i.e. genetics, ovary size, sucrose responsiveness (Amdam and Omholt, 2003; Ihle
et al., 2010; Pankiw and Page Jr., 1999; Scheiner, 2012; Wang et al., 2012, 2010; Münch et al., 2008)),
nest state (i.e. amount of brood, brood age, food stores (Dreller et al., 1999; Seeley, 1989a; Traynor
et al., 2015)), and the external environment (i.e. season, resource availability, forage success (Ament
et al., 2010; Huang and Robinson, 1995; Toth et al., 2005; Wang et al., 2016)). These myriad
influences on maturation rate are difficult to disentangle, but all drive the individual’s behavior
and task allocation. Due to the spatial organization of honey bee colonies, task changes also result
in a change of location, with further implications on the cues that workers encounter (Seeley,
1982). How and when bees change their allocated tasks in a natural setting has typically been
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assessed through destructive sampling (e.g. for measuring hormone titers of selected individuals),
but understanding how all these factors combine would ideally be done in an undisturbed system.

With the advent of automated tracking, there has been renewed interest in how interactions
change within colonies (Blut et al., 2017; Mersch et al., 2013), how spatial position predicts task
allocation (Crall et al., 2018), and how spreading dynamics occur in social networks (Gernat et al.,
2018). Despite extensive work on the social physiology of honey bee colonies (Seeley, 1995), few
works have studied interaction networks from a colony-wide or temporal perspective (Gernat et al.,
2018; Hasenjager et al., 2020). While there is considerable variance in task allocation, even among
bees of the same age, it is unknown to what extent this variation is reflected in the social networks.
In large social groups, like honey bee colonies, typically only a subset of individuals are tracked, or
tracking is limited to short time intervals (Naug, 2008; Blut et al., 2017; Siegel et al., 2013; Bozek
et al., 2021).

Tracking an entire colony over a long time would allow one to investigate the stability of task
allocation. Prior research has shown that during each life stage, an individual spends most of its
time in a specific nest region (Seeley, 1982; Johnson, 2010), interacting with nestmates, but with
whom they interact may depend on more than location alone (e.g. previous interactions, or the
genetic diversity within the colony (Farina, 2000; Girard et al., 2011)). Social interactions permit
an exchange of information and can have long-term effects on an individual’s behavior (Cholé
et al., 2019). While honey bees are well-known for their elaborate social signals (e.g. waggle dance,
shaking signal, stop signal (von Frisch, 1967; Nieh, 2010; Seeley et al., 2012)), they also exchange
information through food exchange, antennation, or simple colocalization (Balbuena et al., 2012;
Goyret and Farina, 2003). However, identifying an individual bee’s role in a colony based on
its characteristic patterns of interaction remains challenging, particularly with large numbers of
individuals and multiple modes of interaction.

In this work we investigate the relationship between an individual’s social network and its
lifetime role within a complex society. We developed a tracking method for unbiased long-term
assessment of a multitude of interaction types among thousands of individuals of an entire honey
bee colony with a natural age distribution. We introduce a low-dimensional descriptor, network
age, that allows us to compress the social network of all individuals in the colony into a single
number per bee per day. Network age, and therefore the social network of a bee, captures the
individual’s behavior and social role in the colony and allows us to predict task allocation, mortality,
and behavioral patterns such as velocity and circadian rhythms. Following the developmental
trajectories of individual honey bees and cohorts that emerged on the same day reveals clusters of
different developmental paths, and critical transition points. In contrast to these distinct clusters of
long-term trajectories, we find that transitions in task allocation are fluid on an individual level. We
show that the task allocation of individuals in a natural setting is stable over long periods, allowing
us to predict a worker’s task better than biological age up to one week into the future.
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Figure 4.1: Network age, a one-dimensional descriptor of an individual’s role within the
colony, based on an individual’s interaction pattern. Using the BeesBook auto-
mated tracking system, we obtain lifetime tracking data for individuals (a). These tracks
are used to construct multiple weighted social interaction networks (b). We aggregate
daily networks (c) to then extract embeddings that group bees together with similar
interaction patterns, using spectral decomposition (d). Finally, we use a linear transfor-
mation (e; CCA = canonical-correlation analysis) that maximizes correlation with the
fraction of time spent in different nest areas (f ) to compress them into a single number
per day called ‘network age’ (g).

4.5 Results

4.5.1 What is network age?
To obtain the social network structure over the lifetime of thousands of bees, we require methods
that will track the tasks and social interactions of many individuals over consecutive days. We video
recorded a full colony of individually marked honey bees (A. mellifera) at 3Hz for 25 days (from
2016-08-01 to 2016-08-25) and obtained continuous trajectories for all individuals in the hive
(Wario et al., 2015; Boenisch et al., 2018a). We used a two-sided single-frame observation hive with
a tagged queen and started introducing individually tagged bees into the colony approximately one
month before the beginning of the focal period (see Methods: Recording setup, data extraction,
preprocessing for details). To ensure that no unmarked individuals emerged inside the hive, we
replaced the nest substrate regularly (approx. every 21 days). In total, we recorded 1920 individuals
aged from 0 days to 8 weeks.

A worker’s task and the proportion of time she spends in specific nest areas are tightly coupled
in honey bees (Seeley, 1982). We annotated nest areas associated with specific tasks (e.g. brood area
or honey storage) for each day separately (see Methods: Nest area mapping and task descriptor), as
they can vary in size and location over time (Smith et al., 2016). We then use the proportion of
time an individual spends in these areas throughout a day as an estimate of her current tasks.

We calculated daily aggregated interaction networks from contact frequency, food exchange
(trophallaxis), distance, and changes in movement speed after contacts (see Methods: Social net-
works). These networks contain the pairwise interactions between individuals over time. For each
day and interaction type, we extract a compact representation that groups bees together with
similar interaction patterns, using spectral decomposition (Belkin and Niyogi, 2003; von Luxburg,
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2007). We then combine each bees’ daily representations of all interaction types and map them to
a scalar value (network age) that best reflects the fraction of time spent in the task-associated areas
using CCA (canonical-correlation analysis; (Hotelling, 1936; Knapp, 1978)). Note that network
age is solely a representation of the social network and not of location; the fraction of time spent
in the task-associated areas is only used to select which information to extract from the social
networks (e.g., by assigning higher importance to proximity contacts, see Section 4.13.1). Network
age can still represent an individual’s location, but only if this information is inherently present
in the social networks. Network age thus compresses millions of data points per individual and
day (1919 potential interaction partners, each detected 127 501± 50 340 times on average per
day, with four different interaction types) into a single number that represents each bee’s daily
position in the multimodal temporal interaction network. Since CCA is applied over the 25 days
of the focal period, network age can only represent interaction patterns that are consistent over
time. See Figure 4.1 for an overview and Methods: Network age - CCA for a detailed description
of the methods.

Network age is a unitless descriptor. We scale it such that 90% of the values are between 0 and
40 to make it intuitively comparable to a typical lifespan of a worker bee during summer, and
because biological age is commonly associated with task allocation in honey bees. This scaling can
be omitted for systems where behavior is not coupled with biological age.

4.5.2 Network age correctly identifies task allocation

Because of the inherent coupling of tasks and locations in a honey bee colony, we expect a meaning-
ful measure of social interaction patterns to be correlated with the individual’s spatial preferences.
We quantify to what extent network age captures this correlation by using multinomial regression
to predict the fraction of time each bee spends in the annotated nest areas (see Methods: Task
prediction models and bootstrapping). Note that while we also used these spatial preferences
to select which information to extract from the interaction networks, it is not certain whether
the spatial information is contained in the social network in the first place, and how well a single
dimension can capture it. Furthermore, the social network structure could vary over many days
with changing environmental influences, preventing the extraction of a stable descriptor. The
regression analysis allows us to compare different variants of network age to biological age as a
reference.

To evaluate the regression fit, we use McFadden’s pseudo R2 scores R2
McF (McFadden et al.,

1973). Network age is twice as good as biological age at predicting the individuals’ location pref-
erences, and therefore their tasks (network age: median R2

McF = 0.682, 95% CI [0.678, 0.687];
biological age: median R2

McF = 0.342, 95% CI [0.335, 0.349]; 95% CI of effect size [0.332,
0.348], N=128; likelihood-ratio χ2 test p≪ 0.001, N=26 403, Table 4.2, see Methods: Statisti-
cal comparison of models for details). Network age provides a better separability of time spent
in task-associated nest areas than biological age (Figure 4.2a, example cohort in Figure 4.2c, Sec-
tion 4.13.1 for all cohorts). Network age correlates with location because of the inherent coupling
between tasks and nest areas. Still, it is not a direct measure of location: bees with the same network
age can exhibit different spatial distributions and need not directly interact (see Section 4.13.2).
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Figure 4.2: Network age is an accurate descriptor of task allocation. a The proportion of
time spent on task-associated locations in relation to biological age and network age
with each cross representing one individual on one day of her life. For a given value
on the y-axis (network age) colors are more consistent than for a given value on the
x-axis (biological age). b Z-transformed age distributions for known foragers visiting
a feeder (N=40 observed individuals). The variance in biological age is greater than
the variance in network age (boxes: center dot, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range). Corresponding biological ages are also
shown on the right y-axis (original biological age: 34.2± 7.9, original network age: 38.3
± 4.6; mean± standard deviation). c Spatial distributions of an example cohort over
time (bees emerged on 2016-07-29, 64 individuals over 25 days), grouped by biological
age (top row) versus network age (bottom row). Note how network age more clearly
delineates groups of bees than biological age, with bees transitioning from the brood
nest (center of the comb), to the surrounding area, to the dance floor (lower left area).
The shaded areas depict density percentiles (brightest to darkest: 99%, 97.5%, 95%,
80%, 70%, 20%).

While we can improve the predictive power of network age by extracting a multi-dimensional
descriptor instead of a single value (see Methods: Network age - CCA, Methods: Task prediction
models and bootstrapping for details), the improvements for additional dimensions are marginal

36



4.5 Results

compared to the difference in predictiveness between the first dimension of network age and
biological age (see Table 4.2). This implies that a one-dimensional descriptor captures most of the
information from the social networks that is relevant to the individuals’ location preferences and
therefore their tasks.

We experimentally demonstrated that network age robustly captures an individual’s task by
setting up sucrose feeders and identifying workers that foraged at the feeders (known foragers,
N=40, methods in Methods: Forager groups experiment). We then compared the biological ages
of these known nectar foragers to their network ages. We made these two quantities comparable by
z-transforming them because they do not have the same unit of measure. As expected, foragers
exhibited a high biological age and a high network age, whereas biological age exhibited significantly
larger variance than network age (Figure 4.2b; Levene’s test (Levene, 1960), performed on z-
transformed values: p≪ 0.001, N=200). Indeed, while we observed a forager as young as 12 days
old, that individual had a network age of 25.5, demonstrating that network age more accurately
reflected her task than her biological age (z-transformed values: biological age -0.46; network age
0.61).

Tagging an entire honey bee colony is laborious. However, by sampling subsets of bees, we
find that network age is still a viable metric, even when only a small proportion of individuals are
tagged and tracked. With only 1% of the bees tracked, network age is still a good predictor of task
(median R2

McF = 0.516, 95% CI [0.135, 0.705], N=128) while increasing the number of tracked
individuals to 5% of the colony results in a R2

McF value comparable to the fully tracked colony (5%
of colony tracked: median R2

McF = 0.650, 95% CI [0.578, 0.705], N=128; whole colony tracked:
median R2

McF = 0.682, 95% CI [0.678, 0.687], N=128; see Section 4.13.2). Similarly, we find
that an approximation of network age can be calculated without annotated nest areas: Network
age can be extracted in an unsupervised manner using PCA on the spectral embeddings of the
different interaction type matrices (median R2

McF = 0.646, 95% CI [0.641, 0.650], N=128, see
Methods: Network age - PCA).

4.5.3 Developmental changes over the life of a bee
Network age reveals differences in interaction patterns and task allocation among same-aged bees
(Figure 4.3a). After around six days of biological age, the network age distribution becomes
bimodal (see Methods: Quantifying when bees first split into distinct network age modes). Bees
in the functionally old group (high network age) spend the majority of their time on the dance
floor, whereas same-aged bees in the functionally young group (low network age) are found
predominantly in the honey storage area (Figure 4.3a). Transitions from high to low network age
are a rare occurrence in our colony (see Section 4.13.2).

We attribute the split on the population level to distinct patterns of individual development.
Clustering the time series of network ages over the lives of bees identifies distinct developmental
paths within same-aged cohorts. We set the number of clusters to three as this is the minimum
number of clusters that separates an early and a late transition from low to high network age in
all tested cohorts (see Methods: Network age transition clustering for further details). In the
cohort that emerged on 2016-08-01, the first developmental cluster (blue, Figure 4.3b) rapidly
transitions to a high network age (likely corresponding to foraging behavior) after only 11 days.
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Figure 4.3: Network age reveals distinct developmental paths. a Left: The median of network
ages over biological ages for all individuals that lived more than 11 days split by a
threshold on the age of 11 (T=23.07, calculated using Otsu’s method (Otsu, 1979).The
upper line contains all bees that fall above this threshold (N=832), the lower contains
all bees below that threshold (N=563). The shaded areas depict 20%, 40%, 60% data
intervals. We observe a split in network age corresponding to different tasks: The upper
heatmap (network age 30-40, biological age 20-30, 577 bees, 857 283 data points)
corresponds to the dance floor, while the lower heatmap (network age 5-15, biological
age 20-30, 381 bees, 742 622 data points) borders between dance floor and brood
nest. Right: The mean fraction of time a bee with a given network age spends on our
annotated regions throughout a day. b Lines depict the network age of individual bees
of a same-aged cohort with the colors indicating clusters of their network age over time.
Boxes summarize bees belonging to each cluster for a given day (center line, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range). c Heatmaps
showing the spatial distribution of bees in the developmental cluster 2 (orange) from
2016-08-19 to 2016-08-24. The smooth transition in network age (orange in line plot,
b) from one mode to another corresponds to a smooth transition in spatial location
(heatmaps, c). The shaded areas depict density percentiles (brightest to darkest: 99%,
97.5%, 95%, 80%, 70%, 20%).
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The second cluster (orange) transitions at around 21 days of biological age, while bees in the
third cluster (green) remain at a lower network age throughout the focal period. We see similar
splits in developmental trajectories for all cohorts, although the timing of these transitions varies
(see Methods: Network age transition clustering for additional cohorts). Such divergence in task
allocation has been previously shown in bees; factors that accelerate a precocious transition to
foraging include hormone titers (Robinson and Ratnieks, 1987), genotype (Pankiw and Page Jr.,
1999), physiology, especially the number of ovarioles (Amdam et al., 2004), and sucrose response
threshold (Scheiner et al., 2004).

The transition from low to high network age over multiple days is characterized by a gradual
shift in the spatial distribution (see example in Figure 4.3c), highlighting that an individual’s task
changes gradually. The network age of most bees is highly repeatable (median R = 0.612 95%
CI=[0.199, 0.982], see Methods: Repeatability for details), indicating task stability over multiple
days. Both findings (gradual change over a few days and high repeatability) are consistent with the
dynamics of the underlying physiological processes, such as vitellogenin and juvenile hormone,
that influence task allocation and the transition to foraging (Amdam and Page Jr, 2010).

4.5.4 Network age predicts an individual’s behavior and
future role in the colony

Network age predicts task allocation (i.e. in what part of the nest individuals will be) up to ten
days into the future. Knowing the network age of a bee today allows a better prediction of the
task performed by that individual next week than her biological age informs about her current
tasks (Figure 4.4c, binomial test, p ≪ 0.001, N=55 390, 95% CI of effect size [0.055, 0.090],
N=128, see Methods: Future predictability for details). We confirm that this is only partially due
to network age being repeatable (see Methods: Future predictability). We do note, however, that
our ability to predict the future tasks of a young bee is limited, especially before cohorts split into
high and low network age groups (Figure 4.3a). This limitation hints at a critical developmental
transition point in their lives, an attractive area for future study.

We explicitly optimized network age to be a good predictor of task-associated locations. How-
ever, we find that network age predicts other behaviors better than biological age, including an
individual’s impending death (network age: median R2 = 0.165, 95% CI [0.158, 0.172], versus
biological age: median R2 = 0.064, 95% CI [0.059, 0.068]; 95% CI of effect size [0.037, 0.039],
N=128, likelihood-ratioχ2 test p≪ 0.001, N=26 403). Biologically-young but network-old bees
have a significantly higher probability of dying within a week (80.6% N=139) than do biologically-
old but network-young bees (42.1% N=390; χ2 test of independence p ≪ 0.001 N=529; see
Section 4.13.3 for details). This is likely because a biologically-young bee with a high network age,
i.e. a bee that starts to forage earlier in life and faces more perils imposed by the outside world, is
more likely to die than a bee of the same age with a low network age. This finding is consistent with
previous work showing increased mortality with precocious foraging (Perry et al., 2015; Rueppell
et al., 2008).

We measure movement patterns of individual bees such as daily and nightly average speed,
the circadian rhythm, and the time of an individual’s peak activity. While these properties are
related to task allocation due to the diurnal nature of foraging, they are not direct measures of an
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Figure 4.4: Network age can be used to predict other properties, such as mortality and
circadian rhythms. It also predicts an individual’s future task allocation. a
An individual’s mortality on the next day based on her age (x-axes show original and
z-transformed biological age and z-transformed network age). Bees with a low network
age have lower mortality than biologically young bees; bees with a high network age have
higher mortality than biologically old bees (shaded areas: 95% bootstrap confidence
intervals for the regression estimates). b Network age can be used to predict task
allocation and future behaviors. Network age predicts the task of an individual 7 days
into the future better than biological age predicts the individual’s task the same day
(blue dotted line). Each box comprises N=12 scores from models with N=12 days of
training data (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers). c Selected properties mapped for network age
over biological age with each cross representing one individual on one day of her life.
Note that for a given value on the y-axis (network age) colors are more consistent than
for a given value on the x-axis (biological age).
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individual’s location. Network age also captures these movement patterns better than biological
age (likelihood-ratio χ2 test p≪ 0.001, N=26 403, see Table 4.1b for 95% CI of effect sizes).

To investigate whether network age is a good predictor of future task allocation and behavior
only because it captures the spatial information contained in the social network, we repeat the
analyses above using the time spent in task-associated locations as independent variables. We
find that network age, even though it was extracted using this spatial information as a guide, is
still a better predictor of an individuals’ behavior (for all dependent variables likelihood-ratio
χ2 test p≪ 0.001, N=26 403, see Location (1D) in Section 4.13.3 and Table 4.1d for 95% CI of
effect sizes). This difference in predictive power suggests that the multimodal interaction network
contains more information about an individual than spatial information alone.

While we focus on predicting tasks from network age, we can control the information we
extract from the observed social networks and derive variants of network age better suited for other
research questions. By replacing the ‘task associated location preferences’ in the final step of our
method with ‘days until death’, we extracted a descriptor that captures social interaction patterns
related to mortality. This descriptor improves the prediction of the individuals’ death dates by
31% compared to network age (median increase in R2 = 0.05; 95% CI [0.04, 0.06] N=128, see
Methods: Targeted embedding using CCA and Table 4.1c), opening up novel social network
perspectives for studies such as the risk factors of disease transmission. Similarly, we extracted
descriptors optimized to predict the movement patterns introduced in the last paragraph (for
all except ‘Time of peak activity’ likelihood-ratio χ2 test p ≪ 0.001, N=26 403, see Table 4.1c
for 95% CI of effect sizes). These targeted embeddings provide precise control over the type of
information we extract from the social networks and extend the network age method to address
other important research questions in honey bees and other complex animal societies.

4.6 Discussion
Combining automated tracking, social networks, and spatial mapping of the nest, we provide a low-
dimensional representation of the multimodal interaction network of an entire honey bee colony.
While many internal and external factors drive an individuals’ behavior, network age represents an
accurate way to measure the resulting behavior of all individuals in a colony non-invasively over
extended periods.

We use annotated location labels to select which information to extract from the social network,
but stress that network age can only contain information inherent in the social network. Therefore,
the predictive power of network age demonstrates that the social interaction network by itself
comprehensively captures an individual’s behavior. We show that network age does not only
separate bees into task groups, such as foragers and nurses, but also allows us to follow maturing
individuals as they develop. A recent work derived a social maturity index in colonies of the
social ant C. fellah (Richardson et al., in press), highlighting a strong separation of nurses and
foragers in the social network and high variability in transition timing. Similarly, network age is a
fluid measure and the age at which individuals change between the task groups is highly variable.
However, we find distinct clusters of developmental trajectories at the colony level, with some
groups entering critical developmental transitions earlier in life than others. Further investigating
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the precise combination of internal and external factors that drive those transitions is a promising
direction for future research.

These transition points are also reflected in changes in nest location, because spatial preferences,
task allocation, and interactions are inherently coupled in honey bees. However, we show that
network age is more than just a representation of location: Bees with the same network age do
not necessarily share a location in the nest, and the time spent in task-associated locations is less
predictive of an individual’s current and future behavior than network age. Additionally, we
calculate a variant of network age that is not guided by auxiliary spatial information but instead
extracts the information with the highest variance from the social networks (Network age PCA).
The PCA variant is still predictive of task allocation, suggesting that location is the predominant
signal in the social network. However, the higher predictive power of the CCA network age variant
and the targeted embeddings indicates that there is more information in the social network that
our method can extract.

In this study, we extract network age from daily aggregated interaction networks, and thereby
disregard potentially relevant intraday information. Furthermore, honey bees have a rich repertoire
of interaction behaviors, of which we only capture a subset. The inclusion of intraday data or
additional interaction types could reveal further differences between individuals (e.g., the temporal
aspects of intraday interaction networks can disentangle the contribution of different modes
of interactions (Hasenjager et al., 2020)). While we study one colony in this work, we observe
thousands of individuals and many overlapping cohorts. Our findings, in particular the existence
of distinct developmental trajectories, and the fluidity and long-term stability in task allocation on
an individual level, are consistent in all cohorts in our study. While some details, e.g. the timing
of developmental transitions, might depend on environmental circumstances, we believe that
these results transfer to other colonies. There is no straight-forward extension of the method to
extract a common embedding of social networks that do not share individuals (e.g., over different
experimental treatments or repetitions). Still, specific hypotheses can be tested using network age
as long as a treatment group is compared to a control group within each trial. For example, while
the meaning of specific values of network age can differ slightly between colonies, a group treated
with pesticides could show differences in development, as measured by network age, relative to a
control group from the same colony. Analyzing how network age changes within a day, over other
datasets with possibly other types of interactions, or how network age shifts in response to disease
pressure or experimental manipulation of age demography would be potentially fruitful areas for
future investigation, as previous work has shown that there is a relationship between pathogens
and interaction behaviors (Naug, 2008; Smith, 2012; Lecocq et al., 2016; Geffre et al., 2020).

Network age can be repurposed and extended for other research questions: We show that
(1) variants of network age capture different aspects from the social networks related to mortality,
velocity, or circadian rhythms, and (2) with a subsample of only 5% of the bees in the colony, we
can extract a good representation of the social network. This makes the method applicable to
systems with far more individuals or with much less required experimental effort for a comparable
number of individuals. Network age could be calculated in real-time, opening up a wide range
of possibilities for future research: For example, it would be possible to selectively remove bees
that have just begun a developmental change to determine their influence on colony-wide task
allocation. Sequencing individual bees could determine how known internal drivers of behavioral
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transition, like the double-repressor co-regulation of vitellogenin and juvenile hormone (Amdam
and Omholt, 2003), are reflected in the social network. Our perspective captures both internal
and external influences that impact social interactions and is thus applicable to all complex systems
with observable multimodal interaction networks. Network age can be adapted to questions that
explore social interaction patterns independent of age and division of labor, making it broadly
applicable to any social system. As such, our method will permit future research to analyze how
complex social animal groups use and modify interaction patterns to adapt and react to biotic and
abiotic pressures.

4.7 Methods

4.7.1 Recording setup, data extraction, preprocessing
We set up our observation hive on 2016-06-24, with a queen and approximately 2,000 young bees
(Apis mellifera) sourced from a local host colony. To obtain newly emerged bees, we incubated
brood from the host colony, and later from the observation colony in an incubator at 34°C. Freshly
emerged bees were marked every weekday. All bees were removed from the brood comb each day
before marking, so the maximum age in each batch of bees was 24 hours. After removing the hair
from the bees’ thoraxes with a wet toothpick, we applied shellac onto the thorax and attached a
curved, circular tag. The number of bees marked per batch varied, but never exceeded 156. Marked
bees were introduced to the colony through a backdoor entrance. After the initial marking period
(27 days, starting 2016-06-28), the video recording was started 2016-07-24 and stopped 2016-09-19.
Marking newborn bees continued approximately twice a week with the latest introduction on
2016-08-23. A total of 3,166 individuals were marked. We recorded 1920 individuals from 30
cohorts during the focal period. See Figure 4.13 for the number of bees that were alive on each
day. Bees had free access to the outside environment via a tube connected to the observation hive.
We use the BeesBook (Wario et al., 2015) recording setup (scaffold, cameras, lighting, storage,
marking procedure), however, for the experiments described here, we used custom-built IR flash
circuit boards triggered by an Arduino controller, synchronized with the high-res cameras (Mönck,
2021). Combs were imaged at 3 Hz, alternating between sides of the observation hive, to avoid low
contrast due to backlighting.

A total of 46 TB of video data was recorded and continuously moved to a network storage unit
at the North-German Supercomputing Alliance (HLRN). After the recording season, the data
was processed to detect and decode the bee markers (Wild et al., 2018) and track these detections
through time (Boenisch et al., 2018a). The output data consists of timestamps, planar positions,
three-dimensional rotations, IDs, and confidence scores, for the decoded IDs.

Two cameras were used for each side of the nest with both viewports overlapping partially. Six
reference points were marked on each comb side such that four points were visible in each of the
cameras’ recordings with the center two points visible in both cameras. Reference points were
identified and their image coordinates were extracted manually. The coordinates were then used
to calculate the homography between the comb and the image plane. The homography was then
used to rectify the tracking data which translated image coordinates to a metric reference frame,
i.e. the nest surface. See Figure 4.14 for a schematic of the setup.
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Resulting tracking data was post-processed before entering the analysis. We discarded detections
with low decoding confidence, i.e. detections that the machine vision pipeline could not reliably
decode. Remaining implausible detections (e.g. of IDs that had not been tagged yet) were removed
in an additional filter step. The distribution of the number of detections of all IDs is strongly
bimodal, the larger mode representing those bees which actually are in the observation hive, and
the smaller mode representing erroneous decodings of tags which are not present on the given day.
We use Otsu’s method (Otsu, 1979) to automatically determine the threshold which best separates
those two modes and filter out all potentially incorrect IDs. The tracking data, therefore, contains
gaps due to falsely filtering out correct detections, but also due to occlusions, such as when bees
inspect cells or depart the nest on foraging trips.

4.7.2 Forager groups experiment
Between 2016-07-28 and 2016-08-22, foragers were trained to a feeder (see Figure 4.15 for a
photo of the feeder) offering unscented sucrose solution by gradually moving it from the colony
(52.457 032, 13.296 635) to a sequence of locations ‘F1’ to ‘F4’ (see Table 4.3). For days over
which the feeder was moved, high sugar concentration was used and iteratively changed to control
the number of new foragers. Once the final locations were reached, the feeder offered the highest
concentration for 1-2 hours per day. After a minimum of three days, training to the next location in
the list was resumed. We photographed all bees landing at the location and manually transcribed the
identity and time of arrival. A list of foragers visiting the feeder is given in Table 4.4. The network
age values around the day we first observed each bee at the feeding side is given in Figure 4.16.

4.7.3 Bayesian lifetime model
The death date of an individual could ideally be computed as the first date she was not detected in
the hive. Unfortunately, this does not work in practice for two reasons. First, tags are sometimes
incorrectly decoded, and because of the number of detections we have for each day, this means
that most IDs will be detected at least a couple of times per day. Second, some bees were not visible
at all on some days, even though they are not dead yet (see Figure 4.17 for an example).

We, therefore, use a Bayesian changepoint model to robustly estimate the death dates of all
individuals. An individual is defined to be alive on all days since she emerged and was introduced
into the colony (day e) up to the change point d = e+ l, where l is the number of days she was
alive. We use a weakly informative prior N(35, 50) for the number of alive days l. We model
the probability that a bee is detected at least as often as a threshold t while she is alive and less
often than t when she is not alive, using a Bernoulli distribution. We use a Beta(5, 1) prior for
this probability because we know that, typically, an alive bee will have many detections. For the
threshold t we use an informative Beta(25, 1) prior because we know that a dead bee will have
very few detections, if any. Note that we normalize the detection counts to [0, 1] when fitting
the model, i.e. for each bee we divide the counts of daily detections by the maximum count of
detections of that tag over the entire recording period. We sample this model using pymc3 and the
NUTS sampler (Salvatier et al., 2016). For each bee, we compute 2,000 tuning samples and 1,000
samples. The date of death is determined using the mean of those last 1,000 Monte Carlo samples.

44



4.7 Methods

4.7.4 Social networks
Proximity interaction network Two bees were defined to be in proximity if their tags
were less than 2 cm from each other (~1.4 body lengths) over at least 0.9 seconds (three frames with
our recording frame rate). We construct affinity networks based on the counts of these proximity
interactions without taking the duration of each contact into account to reduce the effect of bees
resting next to each other.

Euclidean proximity networks Euclidean proximities were determined for each pair
of bees when both bees were visible. The daily average distance d between two individuals was then
transformed to two affinity matrices, the first derived by applying a Gaussian similarity function
d′ = (−d2/2γ2) with γ = max(D)/4 and the second by subtracting from the maximum
distance (d′ = max(D)− d). D is the matrix of all daily average distances on the same day.

Trophallaxisnetworks We constructed an interaction network representing trophallaxis
interactions (food exchange). To filter our data to detect trophallaxis events, we use a two-step
approach. We first use a fast logistic regression with low precision to discard most of the non-
trophallaxis encounters. We then use a slower convolutional neural network to further refine the
results with higher recall.

To train the two classification models, we manually labeled bee interactions in our dataset by
observing video sequences. To increase the fraction of positive events, we queried our data for bees
that are close to each other, and approximately facing each other. Note that we did not distinguish
the directionality or different types of trophallactic interactions.

This ground truth data contains 140 trophallaxis events out of the distinct 2,651 events in total.
For some events, we annotated a begin and end timestamp and could, therefore, use multiple
frames for the training. In total, we had 25,835 training samples, each consisting of a pair of bee
IDs, a timestamp, and a label (trophallaxis / not trophallaxis).

Because the prefiltering of the training data can introduce a sampling bias we created another
test set by labeling all possible interactions in 33 randomly sampled frames, containing a total of
15 trophallaxis events and 39,051 negative events (we use every pair of bees with a thorax distance
of less or equal than 3 cm as a possible candidate). This test set represents our data distribution
without any bias.

In the classification step, we look at all pairs of bees with their thoraxes at a distance between
0.731 cm and 1.204 cm (i.e. the 99th percentile of the positive events in the training data) together
in a frame. For a pair of bees (i, j) we have the locations of the thorax on the hive in millime-
ters (xyi, xyj) and their orientations (αi, αj). We calculate the approximate head position hi
as xyi + d ∗ [cos(αi), sin(αi)] where d=3.19 mm. We calculate their relative orientation as
[cos(αi), sin(αi)] · [cos(αj), sin(αj)]

T . We then perform logistic regression on the euclidean
distance of their thorax locations, the euclidean distance of their head locations, and their relative
orientation.

The logistic regression was trained on the manually labeled samples, setting the threshold to
get a recall of 85% at a precision of 21% (on a 20% validation test). This regression discards 62%
of the true negative samples (i.e. the specificity). For the remaining data points, those that were
classified as possible trophallaxis by the first classifier, we extract trajectories of both bees for around
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5 seconds (15 frames) around the possible trophallaxis events. We then use a convolutional neural
network, again trained on the manually labeled data.

Evaluated on the test set, the two combined filters yield a recall of 60% at a precision of 47%,
discarding 99.97% of negative samples (i.e. the specificity).

Interaction effect networks For each proximity interaction with a duration no longer
than 60 seconds (to exclude bees resting next to each other) and with a minimum gap of at least 5
seconds since the last interaction of the same two individuals, we compute the difference in mean
velocities within 30 second time windows before and after the interaction. This is done for both
partners, and so we derive four networks based on the mean and cumulative changes, each split
into negative and positive values. We use separate networks for the positive and negative values
because this allows us to define affinity matrices which can only have positive edge weights.

Temporal aggregation and post-processing of networks Time-aggregated
networks were constructed by defining the weighted edge strength as the number of times two
individuals were in proximity or engaged in trophallaxis. The networks were aggregated over
24 hours without overlap. Edges in both networks are undirected. For subsequent analyses,
all networks were represented as a square adjacency matrix with each element i, j representing
the affinity of bee i with bee j on this day, given by the interaction mode (e.g. for the network
of trophallaxis counts, a high value represents many trophallaxis interactions between the two
individuals). Each matrix is then preprocessed using a rank transform and normalized such that 0
represents the lowest affinity and 1 the highest affinity. Ties are resolved by assigning the same rank
to identical affinities.

4.7.5 Nest area mapping and task descriptor
We manually outlined the capped brood area and visible honey storage cells for every day in back-
ground images from 2016-07-30 until 2016-09-05. To obtain the open brood area, we calculated
the area of the comb that would become capped within 8 days. We extracted the background
images by extracting the first frame from every video we recorded over a specific day (approximately
one image every 5.6 minutes), and then applying a rolling median filter with window size 10 to
these images. We then calculated the modal pixel value, for every pixel, over all the median images.
For each side of the comb, we stitched together the background images from the two cameras on
that side.

To get the approximate location of the dance floor, we used the detected waggle runs of our wag-
gle dance detection system (Wario et al., 2017) that had high confidence (>=0.9) (see Figure 4.18).
As nearly all waggle detections happened on one side of the comb, we exclusively labelled this
area as the dance floor. We then fitted an ellipse to the detections using scikit-image (van der Walt
et al., 2014), which we scaled manually to not intersect with the exit area. The dance floor area was
consistent throughout the experiment, so in cases where we did not have waggle dance data for
a given day, we interpolated the dance floor area over the adjacent days. Finally, we used a kaiser
window applied over the consecutive days (window size=5, beta=5) to smooth the annotations.
We considered the region 7.5 cm around the exit tube as the nest region close to the exit.
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To generate a task descriptor for every bee, we fetched one high confidence detection (>0.9)
per bee for every minute of a day. We then counted how many of these detections per bee fell into
the annotated regions. Then we normalized these counts per bee to 1 by dividing through the
sum. This descriptor, therefore, contains the fraction of time each individual spends in each of the
annotated regions. Data points outside of the annotated areas are ignored for this descriptor but
are used in all other parts of this work. For all evaluations, we consider the brood area region to be
the sum of the annotated open and closed brood cell regions. See Figure 4.18 for an example of the
annotations.

4.7.6 Network age - From networks to spectral embeddings
to CCA

Network age is derived from the raw interaction matrices using spectral decomposition and canon-
ical correlation analysis (CCA). For each day and interaction mode, the graph of interactions
between all bees that were alive (see Methods: Bayesian lifetime model for the definition of alive
bees) on that day is retrieved as an adjacency matrix as described in Methods: Social networks.

For each preprocessed affinity matrix, spectral embeddings (Belkin and Niyogi, 2003) are calcu-
lated using the python package scikit-network. We compute the first eight embedding dimensions
(see Section 4.13.2 for an evaluation of the performance of different numbers of embeddings).

For the non-symmetric interaction effect matrices, we use bispectral decomposition (Abdi,
2007) to obtain one set of embeddings each for the rows and for the columns, to represent the two
directions of an interaction.

For different days the eigenvectors of the embeddings and therefore the embedding values
themselves can have an inverted sign. To correct this, we flip the sign of the values if the Spearman
correlation between consecutive days is negative.

For every day, we now have a high-dimensional embedding per bee. We reduce the dimen-
sionality further by applying canonical-correlation analysis (CCA). We use CCA to find a linear
transformation of the network embeddings to a three-dimensional vector that maximizes the cor-
relation to a projection of the bees’ task descriptors (as introduced in Methods: Nest area mapping
and task descriptor). We use the CCA implementation in scikit-learn (Pedregosa et al., 2011). We
use the first dimension of this vector as ‘network age’ throughout this paper, but also evaluate mul-
tidimensional variants (Network age 2D, Network age 3D) in Methods: Task prediction models
and bootstrapping, Methods: Statistical comparison of models, and Methods: Prediction of other
behavior-related measures.

For every dimension and day, we use robust scaling based on the 5th and 95th percentile of
the network age distribution. A network age of zero corresponds to the 5th percentile and 40
corresponds to the 95th percentile. This stabilizes the distribution over time and also maps the
values to a range comparable with the biological age of honey bees. We note that this scaling slightly
improves the prediction of task allocation, but that the method also works without it. We enforce
that the 5th percentile of network age corresponds to bees with a lower biological age than the
95th percentile such that biological age and network age have the same directionality.
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4.7.7 Network age - Unsupervised variant using Principal
Component Analysis

We also calculate a variation of network age that does not require the annotated location descriptors.
Instead of applying CCA to the concatenated spectral embeddings (see Methods: Network age -
CCA), we instead use Principal Component Analysis (PCA) to reduce the dimensionality. This
unsupervised network age still predicts task allocation better than biological age (see Section 4.13.2,
Methods: Task prediction models and bootstrapping for details).

4.7.8 Task prediction models and bootstrapping
To evaluate how well biological age and the different variants of network age represent an individ-
ual’s task allocation, we use these measures as features to predict the proportion of time individuals
spend in the brood area, dance floor, honey storage and near the exit (see Methods: Nest area map-
ping and task descriptor for details on the nest area mapping). We evaluate the areas individually
and in combined models. We evaluate different complexities of models (linear vs. nonlinear) and
different independent variables (e.g. network age and biological age).

To test different complexities of the relationships, we evaluate both a generalized linear model
(GLM, the default model) and a small neural network consisting of two fully connected layers
(listed as ‘nonlinear’ in Table 4.2) for each of the combinations of independent and dependent
variables. The hidden layer of the neural network has a dimensionality of 8 and uses tangens
hyperbolicus as its nonlinearity.

To evaluate the performance of the models for each area separately we select a sigmoid as the
link function of the GLM and the activation function of the neural network’s last layer. We then
optimize and calculate the likelihood of the data assuming a binomial distribution.

We also evaluate both models to simultaneously predict all four values of an individual’s task
allocation distribution. To this end, we choose a softmax function as the link function of the GLM
and the neural network’s final activation function. We then optimize and calculate the likelihood
of the data assuming a multinomial distribution.

For all the combinations of independent and dependent variables, we repeat the described
procedure for 128 bootstrap samples. For each model, we retrieve the final likelihood of the data
L1. We use PyTorch (Paszke et al., 2019) and the L-BFGS optimizer to obtain maximum likelihood
estimates of the models. We also always fit a null-model only consisting of the intercepts and
retrieve its likelihood L0. For each model and bootstrap iteration, we calculate McFadden’s pseudo
R2 (McFadden et al., 1973) as R2

McF = 1− ((L1)/(L0)). We then calculate the median and 95%
confidence intervals from these bootstrap samples. See Table 4.2 for an overview of the results for
all evaluated models. We test the significance of these results separately with the tests described in
Methods: Statistical comparison of models.

4.7.9 Statistical comparison of models
We use bootstrapped confidence intervals of the effect strength to investigate whether a model
based on one feature (e.g. network age) explains the dependent variables (e.g. task allocation
distributions) significantly better than the same model based on a different feature (e.g. biological
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age). Additionally, we use a likelihood ratio χ2 test to answer whether one feature (e.g. network
age) provides additional information over biological age in a combined model.

Bootstrapped confidence intervals of the effect strength We draw 128
bootstrap samples of the combined daily bee data. For each sample, we calculate either the McFad-
den’s pseudo R2 in the case of the task allocation models (see Methods: Task prediction models
and bootstrapping, Methods: Future predictability) or the R2 in the case of the other measures
(see Methods: Prediction of other behavior-related measures, Section 4.13.3) for both a model
based on biological age and the independent variable we want to compare with (e.g. network age).
For each of these paired samples, we calculate the difference in scores of the two models. From
these 128 differences, we calculate a two-sided 95% confidence interval of the effect strength. If the
null hypothesis (difference in scores is zero or less) is not contained in the confidence interval, we
can reject the null hypothesis at an alpha level of 2.5%.

Likelihood ratio test As the likelihood ratio test requires a nested model for testing, we
compare a model based solely on biological age with a model based on a combination of biological
age and the independent variable we want to compare with (e.g. network age).

We fit each model to the data and calculate the likelihoods of the data under the fitted models
(L1 for the combined model and L0 for the model based on biological age). The likelihood ratio is
given by LR = −2 ∗ ln(L0/L1). If the null hypothesis that the models are equal were true, LR
would approximately follow a chi-squared distribution with k degrees of freedom (with k=4 in
the case of the task allocation model from Methods: Task prediction models and bootstrapping
and k=1 in case of the general regression model for Methods: Prediction of other behavior-related
measures, Section 4.13.3). We use the cumulative density function of the chi-squared distribution
to calculate the p-value.

4.7.10 Repeatability
We calculate the repeatability R of the network age consisting of repeated measurements over
several days of an individual I as R(I) = V arp/(V ari + V arp) with V ari being the variance
of the network age of an individual measured over the available days and V arp being the variance
of the mean network ages of a control group. The control group consists of all bees inside the same
age span as I on all days on which the network age values for I were collected. A repeatability close
to 1 means that the individual variance is low compared to the population variance. A repeatability
close to 0 means that the individual variance outweighs the population variance.

4.7.11 Network age transition clustering
In order to cluster the transitions of different individuals in a cohort, we first collect the network
ages for every individual in a feature vector where each entry corresponds to the individual’s
network age for one day. We then do a linear inter- and extrapolation for missing values (e.g. due
to absence or the individual dying). For the cohort of bees, we calculate the euclidean distance
between each individual’s feature vector. Then we perform a hierarchical clustering using Ward’s
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method (Ward, 1963) using the Python library scikit-learn (Salvatier et al., 2016) and extract the
first three clusters. See Figure 4.19 for an example of the clustering. See Figure 4.20 for the network
age development of different cohorts and Figure 4.21 for all bees.

We fixed the number of clusters to three for visualization purposes as that is the minimum
number that showed a lagged transition from low to high network age for all cohorts. In hierarchical
clustering, cutting off the dendrogram of the agglomerative clustering at a deeper level and thus
increasing the number of clusters will further subdivide the existing clusters. Figure 4.22 gives an
example with N=5 clusters.

4.7.12 Quantifyingwhen bees first split into distinct
network age modes

We used KMeans to cluster the network age distribution of every day into two distinct clusters
corresponding to the two modes. Then we check for every bee that we observed at least once as a
young bee below the age of 6 (N=1079) at which age she first gets assigned to the higher cluster
(mean=12.33, 95% CI = [6, 25.7], median=11, N=572). We ignore bees that are never assigned to
the upper cluster (e.g. because we do not observe them for a long enough timespan). See Figure 4.23
for the distribution of biological ages.

4.7.13 Definition of circadian rhythmicity

The motion velocity of a bee was determined by dividing the euclidean distance between two
consecutive detections by the time passed (a multiple of 1

3 seconds). Any duplicate IDs were
discarded. The velocity was median filtered with a kernel size of 3 to remove outliers. See Figure 4.24
for an example of the velocity of a specific bee over multiple days.

Lomb-Scargle periodograms were computed for all individuals remaining in the dataset at any
time in the period from 2016-07-20 to 2016-09-18. For each day and individual, the Lomb-Scargle
periodogram was calculated on the motion velocities over an interval of three days, i.e. including
the preceding and following day. The circadian activity was confirmed as strong peaks at a period
of 1 day. Lomb-Scargle periodograms were computed using the Astropy package (Collaboration
et al., 2018). See Figure 4.24 for an example of a bee’s velocity and the resulting Lomb-Scargle
periodogram.

In the following analyses, we reduced computational load by fitting a single sine wave of
fixed frequency = 1/d (least-squares fit). For each fit, we extract the power as P (f) = 1 −
(SSEsine/SSEconstant) with SSEsine being the residuals (sum of squared errors) of the sine
fit and SSEconstant being the residuals (sum of squared errors) of a constant model assuming the
mean of the data.

The power, hence, reflects how much of the velocity variation can be explained by the sinusoidal
oscillation, or circadian rhythm.
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4.7.14 Targeted embedding using CCA
We show that we can extract targeted embeddings from the spectral factors of the interaction
networks that are better in predicting other properties of the individuals. To compute those
targeted embeddings, we exactly follow the methodology outlined in Methods: Network age
- CCA, but for each property (days until death, time of peak activity, circadian rhythm, day-
and nighttime velocities) we extract a one-dimensional embedding from the spectral factors that
maximizes the correlation with this property using canonical-correlation analysis.

4.7.15 Prediction of other behavior-related measures
We follow the same methodology as described in Methods: Task prediction models and bootstrap-
ping to evaluate how well the various age measures explain various properties of the individuals
with a slight adjustment: We choose the identity function as the link function of the generalized
linear model and as the activation function of the neural network’s final layer. We model the
residual distribution as a normal distribution with constant variance.

We define the ‘days until death’ as the number of days left in an individual’s life on a given
day (for a description of the automatically determined death dates see Methods: Bayesian lifetime
model). The time of peak activity and the rhythmicity of daily movement were calculated as
described in Methods: Definition of circadian rhythmicity.

For the daytime and nighttime velocities we use the same data as for the circadian rhythmicity
(see Methods: Definition of circadian rhythmicity). For the daytime velocities we use the mean of
all collected velocities between 09:00-18:00 UTC of the three-day rolling window; for nighttime
velocities, 21:00-06:00 UTC.

See Table 4.1a for an overview of the scores of different models and targets.

4.7.16 Future predictability
We evaluate how well we can predict future task allocation using network age and biological age.
To ensure that no information leak can occur, we only used supervised information from the past
and test it on future data. To do this, we first calculate the spectral factors for the entire dataset
as described in Methods: Network age - CCA. The factors are computed for each day separately,
hence no information can leak from the past to the future. We then determine the mapping from
spectral factors to network age using CCA, but only on a fixed range of days prior to the validation
window. We fix the number of days in the train set to 12 days so that we always have approximately
the same amount of training data independent of the number of days we predict into the future.
Similar to the linear mapping given by CCA, we also determine the parameters of the regression
model only on the train dataset from the same fixed time window. We train separate models for all
viable ranges of dates and for prediction from one to 11 days into the future. The linear mapping
given by the CCA and the predictive models are then applied to the spectral factors on the held-out
validation set from a time after the training data set (see Figure 4.25 for an overview about the
data handling). For this analysis, we want to evaluate how well we can predict task allocation
into the future. We estimate the effect size in R2

McF by calculating the 95% CI for the different
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time windows (see Figure 4.25, median improvement in R2
McF = 0.080, 95% CI [0.055, 0.090],

N=12).
Because the two compared models are not nested, the likelihood ratio test does not apply here.

We perform a paired binomial test using the null hypothesis that the improvement in mean squared
error in task allocation prediction is zero or less. We find that we can predict the task allocation of
an individual seven days into the future with a lower mean squared error (paired binomial test,
p≪ 0.001, N=55 390) using network age.

This is mostly caused by older bees. For young bees, there is a low amount of variance in task
allocation and network age is about as good in describing task allocation for young bees as biological
age. Furthermore, we find that we can not reliably predict future task allocation for young bees,
suggesting that either the social networks in this study are not predictive for this task or that the
future task allocation of young bees is driven by other factors. See Figure 4.26 for an overview of
the results.

The predictive power of network age cannot be fully explained by the bimodal distribution of
network age and organization of stable ‘work groups’ within the colony. We perform an additional
analysis to reject this repeatability null hypothesis by comparing how well the task allocation
prediction using networks works when simply shifting the prediction for the current day into the
future. We find that a model fitted to predict future task allocation outperforms this null model
considerably (See Figure 4.27).
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4.13 Supplementary Information

4.13.1 What is network age?
Contributions of the interaction types on network age
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Figure 4.5: Relative contributions of spectral factors to network age. For each spectral factor
derived from the interaction matrices for the different interaction types, we calculate
the relative contributions for the multidimensional variant of network age (a, blue),
network age PCA (b, orange), and the targeted embedding for mortality (c, green). A
high value signifies that the corresponding factor has a large impact on network age.

To understand the relative contributions of the different interaction types on network age, we
can visualize the coefficients of the linear mapping from the spectral factors learned by the CCA
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(or PCA, for the network age PCA variant). This also allows us to compare the three dimensions
of network age 3D against each other and the PCA variant.

There is a strong collinearity between the spectral decomposition factors derived from the
different interaction matrices (because the interaction themselves are strongly correlated, e.g. the
number of proximity interactions is correlated with the number of trophallaxis interactions).
Therefore, directly interpreting the CCA weights would yield inaccurate results and we first have
to decorrelate the spectral embeddings. We apply a PCA to the spectral embeddings, similar to the
network age PCA variant, but retain all principal components to which we then apply the CCA.
We then have two linear mappings, one from the CCA and one from the PCA. Sequential linear
mappings can be combined into one, allowing us to attribute the coefficients from the CCA to
the spectral factors, i.e. to measure to what extent each factor contributes to network age:

For spectral factors F ∈ RN×S and the linear mappings MPCA ∈ RS×S and MCCA ∈
RS×3, we calculate the contributions C ∈ RS×3: C = S−1|MPCAMCCA|. S is the total
number of spectral factors (see Methods: Network age - CCA). N is the number of bee days, i.e.
we have one set of spectral factors for each individual per day. We use the absolute value of the
contributions because the sign of the spectral factors is not informative.

We see that all interaction types contribute to network age: The first dimension of network age
is mainly based on the first spectral factor of each interaction type, with the proximity interactions
being slightly more important. Therefore, the first factor of the spectral decomposition alone
is already a good representation of task allocation. We see a similar pattern in the first principal
component of the PCA, which also explains the similarly high predictiveness of the PCA variant
regarding task allocation. In contrast, the second dimension of network age is very different from
the PCA’s second dimension. This shows that the CCA can select the relevant information from
the spectral embeddings.

For the targeted embedding of a bee’s mortality, we find that the CCA selects a more diverse set
of factors than the first dimension of network age and the first component of the PCA. This shows
that different aspects of the social network are relevant for different research questions and explains
why the PCA version of network age is much worse when predicting mortality (see Table 4.1).

Location heatmaps

To visually assess how distinctive biological age and network age are with respect to the spatial
distribution of individuals, we computed location heatmaps for single-age cohorts tracked over
the experimental window (25 days). For each individual within the cohort, we collected their daily
biological age, network age, and their positions on the comb (as in Methods: Nest area mapping
and task descriptor). Positional data for each day (a ‘bee day’) was then assigned to a heatmap as
follows: For the age heatmaps, we manually defined age intervals based on the age-thresholds given
by Seeley (Seeley, 1982) , with an additional split for middle-aged bees for which we observed a high
variance. We then assigned bee days according to these thresholds based on the bees’ ages on the
different days. The network age thresholds for the plots have been set in a way to keep the number
of bee days the same for the two plots in each column and can, therefore, differ for different cohorts.
For example, the cohort introduced on 2016-08-01 consisted of 123 bees. In the heatmap for age
0-11, there would be N=1394 bee days over the focal period in which the bees were below 12 days
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N=1394
Age 0-11

N=388
Age 12-15

N=422
Age 16-20

N=265
Age 21+

Network age -6.16-6.83 Network age 6.83-11.10 Network age 11.10-28.93 Network age 28.93-46.65

Cohort introduced on 2016-08-01a

N=1299
Age 0-11

N=306
Age 12-15

N=249
Age 16-20

N=103
Age 21+

Network age -5.46-10.60 Network age 10.60-22.67 Network age 22.67-36.74 Network age 36.74-45.12

Cohort introduced on 2016-08-02b

N=10226
Age 0-11

N=3419
Age 12-15

N=3596
Age 16-20

N=9187
Age 21+

Network age -6.16-9.06 Network age 9.06-14.01 Network age 14.01-23.48 Network age 23.48-55.18

All bees over the focal periodc

Figure 4.6: Spatial heatmaps of bees grouped by biological age and network age. a Cohort of
2016-08-01 (N=123 bees). b Cohort from 2016-08-02 (N=119 bees). c All bees over
the focal period (N=1912 bees). The shaded areas depict density percentiles (brightest
to darkest: 99%, 97.5%, 95%, 80%, 70%, 20%).

old (some bees having died). Then, we calculated the first network age thresholds in such a way,
that they would also include 1394 bee days.

The shaded areas depict density percentiles (brightest to darkest: 99%, 97.5%, 95%, 80%, 70%,
20%).

See Figures 4.6a and 4.6b for heatmaps showing the distributions of different example cohorts
that we introduced at the beginning of the focal period and Figure 4.6c for all bees.
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Network age distributions over time

While the network age distribution stays within similar bounds over time, we find that the shape
of the distribution (e.g. the proportion of individuals in the lower vs higher percentiles) changes
significantly over the experimental window, likely reflecting changes in task allocation (e.g. more
individual engaged in brood care initially and more foragers after most brood cells are capped). See
Figure 4.7 for distributions over time.

We find no strong evidence of correlations of these changes in distribution with external factors
such as the weather, but this may be due to the limited size of the recording window and is an
interesting direction for potential future research.
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Figure 4.7: Violin plots of network age distributions over the focal period. The first three
dimensions of network age are depicted. Each violin comprises one dimension of the
network age values of all individuals on a given day (the number of individuals on each
day is given in the x-axis labels; boxes: center dot, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range).
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4.13.2 Network age correctly identifies task allocation

Spatial separation of bees with similar network age

Bee ID 1196

Bee ID 2222

Figure 4.8: Two bees on 2016-08-05 with similar network ages despite occupying different
sides of the comb. The bee with the ID 1196 is 22 days old and has a network age of
15.09. Her heatmap consists of 1189 samples, each corresponding to one minute on the
focal day. The bee with the ID 2222 is 8 days old and has a network age of 14.34. Her
heatmap consists of 1284 samples, each corresponding to one minute on the focal day.
The black circle marks the location of the entrance. The shaded areas depict density
percentiles (brightest to darkest: 99%, 97.5%, 95%, 80%, 70%, 20%).

While the network age of bees is correlated with their locations, we do find examples of bees
that have approximately the same network age but occupy different locations on the comb (see
Figure 4.8 for an example). We also see that, while two bees having a similar network age is correlated
with an increase in proximity interactions, there are many bees with close network ages that do not
encounter each other inside the hive (see Figure 4.9).
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Figure 4.9: The relationship between distance in network ages and number of proximity
interactions for pairs of bees. Close network ages generally mean more interactions.
However, there are many individuals with a close network age and very few interactions.
Each point indicates one pair of individuals on one day. The line is given by a lowess
regression.
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Figure 4.10: Effects of subsampling the individuals and the number of spectral factors from
each interaction network on the task allocation prediction. a McFadden’s R2

for different fractions of subsampled individuals. While having all bees individually
marked and tracked yields the highest median score, tracking only 5% of the individuals
yields comparable results when drawing a representative subset. Each box comprises
N=128 bootstrap runs (center line, median; box limits, upper and lower quartiles;
whiskers, 1.5x interquartile range; points, outliers). b The influence of the number
of dimensions per interaction network extracted using Spectral embedding before
applying the CCA on the task allocation prediction scores (using network age 3D).
While more dimensions enable the CCA to extract more relevant information, the
overall improvement is small. The bars show the mean of N=128 bootstrap samples
per dimensionality and the error bars a bootstrap sampled 95% CI of the mean.
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Effect of subsampling bees, the dimensionality of spectral embeddings,
and only using proximity information on task prediction accuracy

Network age can be computed with a much smaller proportion of marked bees, hence allowing
one to study much larger colonies, or reducing the effort for marking individuals. To quantify
the effect of sparse sampling, we perform the following analysis. We subsample the individuals
entering the analysis and compute interaction networks only for those selected individuals, i.e. only
interactions between individuals of this subset are recorded. We then compute spectral factors and
network age as described in Methods: Network age - CCA. We find that network age is remarkably
robust in this setting. With 5% of the bees tagged, the proportion in variance explained using
network age is comparable to the case of using all individuals. Even with only 1% of the individuals
used in the analysis, network age still is a better predictor of task allocation than biological age.
This suggests that a much larger colony could be analyzed with this method without additional
effort, as long as a representative subset of the bees is tracked. See Figure 4.10a for the influence of
different subsampling fractions on the results.

Likewise, we also find that the number of spectral factors per interaction mode matrix does not
have a strong effect on the proportion of variance explained by the network age extracted from
those factors. Using more factors is computationally more expensive and produces statistically
better embeddings. However, network age computed using 32 factors explains task allocation only
marginally better compared to network age computed using 4 factors (see Figure 4.10b).

We also evaluate variants of network age that can be derived using only the spatial information of
detected individuals. To that end, we exactly follow the procedure outlined in Methods: Network
age - CCA, but discard all interaction types except for either spatial proximities (‘Euclidean proxim-
ity’ variant, see ‘Euclidean proximity networks’ in Methods: Social networks) or interaction events
derived from spatial proximity (‘Proximity events’ variant, see ‘Proximity interaction network’ in
Methods: Social networks). We find that network age derived from all interaction types outper-
forms these proximity based variants in terms of task allocation, but the variant based on proximity
events is only marginally worse (see Methods: Task prediction models and bootstrapping) and
could be used in future studies if only proximity data is available.

Change of network age mode over a week

We analyze how many bees that are assigned to either of the network age modes on day X are
assigned to the same cluster on day X+7 (clusters calculated as in Methods: Quantifying when
bees first split into distinct network age modes). Most of the bees in the upper cluster are also in
the upper cluster one week later (mean=93% 95% CI [77%, 100%], N=3698 bee days).

Bees in the lower cluster tend to stay there less (mean=56% 95% CI [0%, 96%], N=10 927 bee
days) depending on their age (see Figure 4.11).

Variability of task prediction accuracy over time

The task allocation prediction scores are not constant over time for biological age, network age,
and the unsupervised (PCA) variant of network age. Here, we show McFadden’s Pseudo R2 scores
for individual days. While there is variance in the predictability using network age, we note that on
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Figure 4.11: The consistency of network age cluster over the course of a week. (Top) We
considered every individual and day (first day) for which we had data one week later
(seventh day). We sorted them by their biological age on the first day (x-axis). Bees that
were assigned to the higher network age cluster on the first day make up the blue line,
bees from the lower cluster are depicted by the orange line. The y-axis value of each
line is the fraction of bees that are still assigned to the same cluster seven days later.
A high proportion of bees that are assigned to the higher cluster stay there over the
course of one week (blue line). There are more bees that transition from the lower
cluster to the higher one, regardless of age (orange line). (Bottom) The number of
data points (orange and blue combined) for each age.
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Figure 4.12: Stability of task allocation prediction over time. a The distribution of McFad-
den’s R2 for task allocation prediction for the different days using either network age,
the unsupervised network age (PCA), or biological age as predictors (N=25 individual
days; boxes: center dot, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range). b The same data points plotted over time.

all dates, the models based on network age yield a higher score than the models using biological age.
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On all days, the unsupervised PCA variant is more predictive than biological age with comparably
small differences to the CCA variant. See Figure 4.12 for the distribution and timeline.

4.13.3 Network age predicts an individual’s behavior and
future role in the colony

Probability of dying over the course of a week

We have shown that network age is more predictive of the remaining days to live than biological
age (see Methods: Prediction of other behavior-related measures). Here we directly compare
biologically young but functionally old bees with biologically old but functionally young bees. To
define biologically young and old, we orientate ourselves at the caste thresholds proposed by Seeley
(Seeley, 1982). To define functionally young and old we use the same thresholds for network age as
shown in the heatmaps of Figure 4.3a, because they occupy distinct locations on the comb and
therefore hold different functional roles within the colony. However, these exact thresholds are
not important as both the effect strength and the significance are high.

We sort the individuals into the two groups based on their network age and biological age. To
not count an individual twice, we only consider the last date that a bee was seen in each group. We
calculate the probability of dying P as the fraction of bees of each group we do not consider alive
after one week (see Methods: Bayesian lifetime model for more information about the death date
of a bee). We calculate a confidence interval by drawing 1000 bootstrap samples for each group.

Biologically young but functionally old bees (biological age < 11 days, network age > 30) have
a probability of dying over the course of a week of P=80.6% (bootstrap 95% CI=[74.1%, 87.1%],
N=139). Biologically old but functionally young bees (biological age > 20, network age < 15) have
a significantly lower probability of dying of P=42.1% (bootstrap 95% CI=[37.4%, 47.2%], N=390;
χ2 test of independence p≪ 0.001 N=529).

Time spent in task-associated locations as a predictor

To evaluate how well the time spent in the measured task-associated locations itself is able to predict
an individual’s behavior and future role in the colony, we derive two representations of this spatial
information and use them as predictors in the same way as network age (as described in Methods:
Prediction of other behavior-related measures, Methods: Future predictability) for predicting
mortality and movement patterns.

We use the task descriptor described in Methods: Nest area mapping and task descriptor either
directly as the independent variables in the regression models (‘Location (4D)’ in Table 4.1a) or
a 1D representation of this descriptor derived using PCA (‘Location (1D)’ in Table 4.1a). The
4D descriptor is not directly comparable to network age because of the higher dimensionality,
but serves as an upper bound on the information contained in the task descriptor. In terms of
dimensionality, the 1D representation can directly be compared to network age.

We find that this spatial information is a better descriptor of an individual’s behavior than age,
but significantly less informative when compared to network age (Table 4.1d). See Table 4.1 for an
overview of the scores and effect sizes.
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Figure 4.13: Number of bees observed during our focal period. a The number of bees per day.
Days on which we introduced new bees are indicated by a rise in the population. b
The number of days any single bee was observed during our focal period. The peak at
25 indicates bees that lived throughout the whole period.

Figure 4.14: Recording setup A one-frame observation hive stands in the center of the rig, two
high-res cameras (red), and one low-res camera (blue) observe each side of the hive.
The low-res cameras only observe the dance floor. Four infrared flashlights were used
per side (synchronized to the high-res cameras), constant red lighting illuminated the
dance floor. Adapted with permission from (Wario et al., 2015).
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Figure 4.15: Individually marked bees at a feeding site.
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Figure 4.16: Network age development of new foragers. For every visiting bee, their first visit
to a feeding station was recorded (age 12-40 days, N=40). The plot shows the network
age for these bees over the previous and next days centered on their first visit. The grey
lines give the network age of individual bees and the blue line indicates the median.
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Figure 4.17: The normalized detection counts of one bee over the recording period follow-
ing her introduction to the observation hive. The time of her death (purple dotted
line on the right) is the mean from N=1000 Monte Carlo samples from a Bayesian
changepoint model based on optimizing a detection threshold that discriminates be-
tween days that the bee was alive and days where she was probably dead.
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a

b

Figure 4.18: Ground truth data for the location-based task descriptors. a Background-
subtracted images of the two sides of the observation hive. The images from the
two cameras per side have been stitched together. The markers show the location
of the high-confidence waggle run detections for 2016-08-18. Nearly all are on one
side of the comb. The green region indicates the dance floor location. b Annotations
for 2016-08-18, used to generate task descriptors for every bee (dark blue: capped
brood, light blue: open brood, yellow: honey, light green: dance floor, dark green: exit
region).
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Figure 4.19: Agglomerative clustering of the network age over time of one cohort of bees
(emerged on 2016-08-01) Missing values (e.g. due to the death of the bee) are white.
The three colors (blue, orange, green) on the left side correspond to the clusters (1, 2,
3) in Figure 4.3b.
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Figure 4.20: The development of the network age of different cohorts over the focal period
(see individual titles for date of emergence and cohort sizes). The individuals
are grouped according to the agglomerative clustering (see legends for the number
of individuals in each cohort’s clusters). The lines depict the network age of the
individual bees and include all data points that are summarized in the boxplots for a
given day (center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range).

68



4.13 Supplementary Information

0 5 10 15 20 25 30 35 40 45
Biological age

0

10

20

30

40

50

N
et

w
or

k
ag

e

All bees

1 (N=787)

2 (N=645)

3 (N=488)

Figure 4.21: The network age development of all individuals over their age. To calculate this,
we followed a procedure analogous to clustering the cohorts but used network age
per age (instead of per date) as the bees’ feature vectors for all individuals (N=1920).
Note that there was only a subset of 25 days of data available for each individual as
some individuals were already in the hive as the focal period began and some were
introduced later. The lines depict the network age of individual bees. The number
of individuals in each cluster is given in the legend. The boxplots summarize bees
belonging to each cluster for a given day (center line, median; box limits, upper and
lower quartiles; whiskers, 1.5x interquartile range).
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Figure 4.22: Network age development with higher number of clusters (N=5). Cutting the
dendrogram at a deeper level yields more clusters that further subdivide the previous
ones. The number of individuals and the date of emergence is given in the title, the
number of individuals in each cluster is given in the legend. The boxplots summarize
bees belonging to each cluster for a given day (center line, median; box limits, upper
and lower quartiles; whiskers, 1.5x interquartile range).
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Figure 4.23: The distribution of the biological age at which a bee was first assigned to the
higher network age cluster. Starting at around age 5-7, the network age distribution
becomes bimodal.
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Figure 4.24: Calculation of circadian rhythmicity from movement data. (Left) The velocity
as raw data (grey line) and smoothed with a median filter (blue line) for one bee
over two days. The orange sine wave has a period of one day and was fitted to the
velocity data via least-squares fitting. The green line is a similar fit with a period of
two days. (Right) The corresponding Lomb-Scargle periodogram with the powers at
the one-day frequency (orange) and two-day frequencies (green) highlighted.
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Figure 4.25: Data handling for cross-validating future predictability. (Top) Depiction of the
process of training a model based on either biological age or network age to predict the
future task allocation. We make sure that we do not leak information when evaluating
future predictiveness. (Bottom) Data handling for the null hypothesis to check that
the predictiveness is not completely explained by the repeatability of network age and
task allocation for individual bees.

72



4.13 Supplementary Information

0 1 2 3 4 5 6 7 8 9 10 11
Number of days into the future predicted

1.0

1.2

1.4

1.6

M
ea

n
sq

ua
re

d
er

ro
ro

f
fu

tu
re

ta
sk

al
lo

ca
tio

n
pr

ed
ic

tio
n

Prediction of future task allocation using network age
Bees younger than one week

Biological age
Network age

a

0 1 2 3 4 5 6 7 8 9 10 11
Number of days into the future predicted

1:3

1:4

1:5

1:6

1:7

M
ea

n
sq

ua
re

d
er

ro
ro

f
fu

tu
re

ta
sk

al
lo

ca
tio

n
pr

ed
ic

tio
n

Prediction of future task allocation using network age
Bees older than one week

Biological age
Network age

b

0 1 2 3 4 5 6 7 8 9 10 11
Number of days into the future predicted

−0.2

0.0

0.2

0.4

0.6

M
cF

ad
de

n
P

se
ud

o
R

²
(fu

tu
re

ta
sk

al
lo

ca
tio

n)

Prediction of future task allocation using network age
Bees younger than one week

Biological age
Network age

c

0 1 2 3 4 5 6 7 8 9 10 11
Number of days into the future predicted

0:1

0:2

0:3

0:4

M
cF

ad
de

n
P

se
ud

o
R

²
(fu

tu
re

ta
sk

al
lo

ca
tio

n)

Prediction of future task allocation using network age
Bees older than one week

Biological age
Network age

d

Figure 4.26: Prediction of future task allocation for young and old bees. We distinguish
between young bees (left column, < 7 days of age) and old bees (right column, > 7
days of age). a For young bees, we find neither biological age nor network age to be
predictive. b For the old bees, network age consistently performs better than age.
c, d McFadden’s R2

McF of the future predictability for young and old bees. Each
box comprises N=12 scores from models with N=12 days of training data (center
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
points, outliers).
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Figure 4.27: Ruling out repeatability as a cause for predictiveness of network age. To check
that the predictiveness of network age for old bees is not simply due to the bimodal
distribution of the network age and its high repeatability, we compare a predictive
model based on network age (orange) with the null-hypothesis that the network age of
day X is sufficient to describe the coming days without explicitly modeling the changes.
Each box comprises N=12 scores from models with N=12 days of training data (center
line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range;
points, outliers).
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(a) R2
McF scores for dependent and independent variables and models

Days until death Time of peak activ-
ity

Strength of circa-
dian rhythm

Velocity (daytime) Velocity (night)

Age 0.06 [0.06, 0.07] 0.07 [0.07, 0.08] 0.30 [0.28, 0.30] 0.12 [0.12, 0.13] 0.21 [0.21, 0.23]
Age (nonlinear) 0.07 [-1.60, 0.08] 0.08 [0.07, 0.09] 0.31 [0.29, 0.32] 0.14 [0.13, 0.15] 0.35 [0.34, 0.36]
Network age (PCA) 0.09 [0.08, 0.09] 0.06 [0.06, 0.07] 0.45 [0.43, 0.47] 0.15 [0.14, 0.16] 0.29 [0.27, 0.30]
Location (1D) 0.10 [0.10, 0.11] 0.08 [0.07, 0.08] 0.49 [0.48, 0.49] 0.17 [0.16, 0.17] 0.31 [0.30, 0.33]
Network age (PCA, nonlinear) 0.14 [0.13, 0.14] 0.08 [0.07, 0.09] 0.51 [0.50, 0.52] 0.19 [0.19, 0.20] 0.33 [0.32, 0.34]
Location (1D, nonlinear) 0.15 [0.14, 0.16] 0.09 [0.08, 0.10] 0.51 [0.50, 0.52] 0.21 [0.20, 0.22] 0.34 [0.33, 0.35]
Network age 0.16 [0.16, 0.17] 0.10 [0.09, 0.11] 0.61 [0.61, 0.62] 0.24 [0.23, 0.25] 0.32 [0.31, 0.33]
Age + Network age 0.17 [0.16, 0.17] 0.11 [0.10, 0.11] 0.61 [0.61, 0.62] 0.24 [0.23, 0.25] 0.33 [0.32, 0.34]
Location (4D) 0.21 [0.20, 0.22] 0.10 [0.09, 0.10] 0.59 [0.58, 0.59] 0.28 [0.27, 0.29] 0.32 [0.30, 0.33]
Network age (nonlinear) 0.20 [0.19, 0.20] 0.11 [0.10, 0.11] 0.63 [0.62, 0.64] 0.27 [0.26, 0.28] 0.37 [0.36, 0.38]
Network age (2D) 0.23 [0.22, 0.24] 0.11 [0.10, 0.11] 0.62 [0.61, 0.63] 0.26 [0.25, 0.27] 0.37 [0.36, 0.38]
Location (4D, nonlinear) 0.23 [0.22, 0.24] 0.10 [0.10, 0.11] 0.62 [0.61, 0.62] 0.31 [0.30, 0.31] 0.36 [0.35, 0.37]
Network age (3D) 0.23 [0.22, 0.24] 0.11 [0.10, 0.11] 0.63 [0.62, 0.63] 0.30 [0.29, 0.31] 0.37 [0.36, 0.38]
Targeted embedding (1D) 0.22 [0.21, 0.22] 0.10 [0.10, 0.11] 0.62 [0.61, 0.63] 0.30 [0.30, 0.31] 0.41 [0.40, 0.42]
Targeted embedding (1D, nonlinear) 0.23 [0.22, 0.24] 0.11 [0.10, 0.11] 0.63 [0.63, 0.64] 0.31 [0.30, 0.32] 0.41 [0.40, 0.42]
Network age (2D, nonlinear) 0.27 [0.26, 0.27] 0.12 [0.11, 0.12] 0.63 [0.63, 0.64] 0.29 [0.28, 0.30] 0.40 [0.39, 0.41]
Age + Network age (nonlinear) 0.23 [0.22, 0.23] 0.13 [0.12, 0.13] 0.65 [0.64, 0.65] 0.30 [0.29, 0.31] 0.44 [0.43, 0.45]
Network age (3D, nonlinear) 0.27 [0.26, 0.28] 0.12 [0.11, 0.13] 0.64 [0.64, 0.65] 0.33 [0.32, 0.34] 0.40 [0.39, 0.42]

(b) Improvement in R2
McF (network age vs biological age)

Effect size [95% CI]
Dependent variable

Days until death 0.102 [0.093, 0.110]
Time of peak activity 0.031 [0.021, 0.040]
Strength of circadian rhythm 0.317 [0.308, 0.329]
Velocity (daytime) 0.116 [0.108, 0.127]
Velocity (night) 0.107 [0.093, 0.121]

(c) Improvement in R2
McF (network age vs targeted embeddings)

Effect size [95% CI]
Dependent variable

Days until death 0.050 [0.042, 0.061]
Time of peak activity 0.000 [-0.009, 0.011]
Strength of circadian rhythm 0.009 [0.000, 0.019]
Velocity (daytime) 0.065 [0.052, 0.077]
Velocity (night) 0.083 [0.072, 0.095]

(d) Improvement in R2
McF (network age vs location (1D)))

Effect size [95% CI]
Dependent variable

Days until death 0.061 [0.052, 0.069]
Time of peak activity 0.025 [0.016, 0.034]
Strength of circadian rhythm 0.127 [0.119, 0.138]
Velocity (daytime) 0.073 [0.061, 0.083]
Velocity (night) 0.008 [-0.007, 0.022]

Table 4.1: R2
McF values for different models when predicting different behavior-related metrics.

Biological age consistently performs worse than predictions based on network age. Our
method can also be applied without spatial information by optimizing the CCA for
these metrics, yielding embeddings that are strongly predictive of them while still only
using information available from the social networks (see ‘Targeted embedding (1D)’).
(Bottom) 95% bootstrap confidence intervals of the effect sizes (b) R2 values for net-
work age and biological age, c) R2

McF values for targeted embeddings and network age,
N=128).
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Brood area Dance floor Honey storage Near exit Combined

Age 0.46 [0.45, 0.47] 0.28 [0.27, 0.29] 0.00 [0.00, 0.00] 0.32 [0.31, 0.33] 0.34 [0.34, 0.35]
Age (nonlinear) 0.51 [0.50, 0.52] 0.35 [0.34, 0.36] 0.09 [0.09, 0.10] 0.41 [0.40, 0.42] 0.38 [0.38, 0.39]
Network age (1% of bees tagged) 0.58 [0.07, 0.79] 0.50 [0.08, 0.68] 0.03 [0.00, 0.21] 0.49 [0.12, 0.73] 0.52 [0.13, 0.70]
Network age (Only euclidean proximities) 0.51 [0.50, 0.52] 0.37 [0.36, 0.38] 0.17 [0.16, 0.18] 0.53 [0.52, 0.54] 0.52 [0.51, 0.52]
Network age (Only euclidean proximities,
nonlin...

0.60 [0.60, 0.61] 0.55 [0.54, 0.56] 0.20 [0.18, 0.21] 0.56 [0.55, 0.57] 0.55 [0.55, 0.56]

Network age (1% of bees tagged, nonlinear) 0.62 [0.08, 0.81] 0.58 [0.16, 0.73] 0.16 [0.03, 0.34] 0.55 [0.17, 0.77] 0.55 [0.19, 0.72]
Network age (5% of bees tagged) 0.76 [0.66, 0.83] 0.61 [0.52, 0.68] 0.03 [0.00, 0.08] 0.60 [0.52, 0.69] 0.65 [0.58, 0.70]
Network age (PCA) 0.80 [0.79, 0.80] 0.53 [0.52, 0.54] 0.00 [0.00, 0.00] 0.58 [0.57, 0.59] 0.65 [0.64, 0.65]
Network age (PCA, nonlinear) 0.80 [0.80, 0.80] 0.61 [0.60, 0.62] 0.27 [0.26, 0.28] 0.66 [0.65, 0.66] 0.66 [0.66, 0.67]
Network age (Only proximity events) 0.79 [0.79, 0.80] 0.64 [0.64, 0.65] 0.03 [0.03, 0.03] 0.60 [0.59, 0.60] 0.67 [0.67, 0.68]
Network age (5% of bees tagged, nonlinear) 0.77 [0.63, 0.83] 0.66 [0.58, 0.73] 0.24 [0.15, 0.32] 0.67 [0.57, 0.73] 0.67 [0.59, 0.72]
Network age 0.80 [0.80, 0.81] 0.63 [0.63, 0.64] 0.03 [0.03, 0.04] 0.61 [0.60, 0.62] 0.68 [0.68, 0.69]
Age + Network age 0.81 [0.80, 0.81] 0.63 [0.63, 0.64] 0.10 [0.09, 0.11] 0.61 [0.60, 0.62] 0.69 [0.69, 0.69]
Network age (Only proximity events, nonlin-
ear)

0.81 [0.80, 0.81] 0.68 [0.67, 0.69] 0.32 [0.31, 0.32] 0.68 [0.67, 0.69] 0.70 [0.69, 0.70]

Network age (nonlinear) 0.82 [0.81, 0.82] 0.68 [0.67, 0.69] 0.33 [0.32, 0.33] 0.69 [0.69, 0.70] 0.71 [0.70, 0.71]
Age + Network age (nonlinear) 0.82 [0.82, 0.83] 0.69 [0.68, 0.69] 0.36 [0.35, 0.37] 0.70 [0.69, 0.70] 0.72 [0.71, 0.72]
Network age (2D) 0.84 [0.84, 0.85] 0.65 [0.64, 0.65] 0.46 [0.45, 0.46] 0.64 [0.63, 0.64] 0.73 [0.73, 0.74]
Network age (2D, nonlinear) 0.85 [0.85, 0.85] 0.69 [0.69, 0.70] 0.49 [0.48, 0.50] 0.70 [0.70, 0.71] 0.74 [0.74, 0.75]
Network age (3D) 0.84 [0.84, 0.85] 0.71 [0.70, 0.71] 0.46 [0.45, 0.47] 0.70 [0.70, 0.71] 0.76 [0.75, 0.76]
Network age (3D, nonlinear) 0.86 [0.85, 0.86] 0.75 [0.74, 0.75] 0.50 [0.49, 0.51] 0.76 [0.76, 0.77] 0.77 [0.77, 0.77]

Table 4.2: R2
McF median scores and bootstrapped 95% CI for different combinations of indepen-

dent variables in the rows and dependent variables in the columns. We evaluated the
following independent variables: different dimensionalities of network age (‘Network
age’, ‘Network age (2D)’, ‘Network age (3D)’, see Methods: Network age - CCA), net-
work age derived without supervision (‘PCA’, see Methods: Network age - PCA), with
a subsample of the bees (‘1% of bees tagged’ and ‘5% of bees tagged’, see Section 4.13.2),
and based only on spatial proximity (‘Euclidean proximities’ and ‘Proximity events’).
The likelihood ratio test was evaluated for the combined models (e.g. ‘Age + Network
age’, see Methods: Statistical comparison of models).

Feeder GPS coordinate Distance from hive

F1 52.455726, 13.294224 217m
F2 52.454866, 13.293092 338m
F3 52.454547, 13.291737 430m
F4 52.453682, 13.292841 451m

Table 4.3: GPS coordinates and distances from the hive for the feeders used in the forager group
experiment.
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Date Location Forager bees observed at feeder

2016-08-01 Hive-F1 135, 199, 217, 220, 228, 233, 253, 319, 392, 539, 727, 818,
845, 860, 1110

2016-08-02 F1 135, 217, 233, 253, 648, 845, 860
2016-08-03 F1 135, 228, 233, 253, 392, 648, 845, 860
2016-08-04 F1 220, 228, 233, 392, 648, 710, 885
2016-08-05 F1 135, 220, 228, 233, 392, 644, 648, 710, 769, 885, 931
2016-08-08 F1-F2 199, 319, 337, 392, 555, 644, 710, 769, 885, 1593
2016-08-09 F1-F2 199, 319, 337, 392, 555, 644, 648, 710, 769, 785, 885, 912,

1122, 1362, 1518, 1593, 2031
2016-08-10 F1-F2 199, 319, 337, 392, 648, 769, 885, 1122, 1362, 1593, 2031
2016-08-11 F2 199, 319, 337, 392, 644, 769, 785, 885, 1122, 1362, 1518,

1593, 2031
2016-08-12 F2 199, 319, 337, 392, 769, 785, 885, 1122, 1362, 1518, 1593,

2031
2016-08-14 F2 199, 319, 337, 392, 555, 644, 710, 769, 785, 885, 1232, 1362,

1518, 1593, 2031
2016-08-16 F2 199, 319, 337, 710, 769, 885, 912, 1122, 1362, 1518, 1593,

2031
2016-08-17 F2 199, 319, 337, 644, 710, 769, 885, 912, 1122, 1518, 1593, 2031
2016-08-18 F2 199, 319, 337, 644, 769, 885, 912, 1122, 1518, 2031
2016-08-19 F2 319, 710, 885, 1593, 2031
2016-08-22 F2-F3 319, 644, 710, 885, 1593, 2031
2016-08-23 F3 1180, 1197, 1232, 1471, 1593, 1662, 1714, 1799, 2031, 2106,

2984
2016-08-24 F3 1180, 1197, 1232, 1471, 1593, 1714, 1793, 1799, 2031, 2106,

2984
2016-08-25 F4 1180, 1197, 1714, 1793, 1799, 2031, 2106

Table 4.4: Tag IDs and locations observed forager bees during the forager group experiment.
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5.1 Preface
The previous works discussed in Chapter 3 and Chapter 4 were based solely on data collected from
the BeesBook recording system in Berlin. While this approach allowed for the creation and analysis
of honey bee tracking datasets that were unprecedented in their scope, one major limitation was that
it did not allow for the generalization of findings beyond this one recording setup. To address this
issue, a fruitful collaboration was established, resulting in the development of another recording
system in the Max Planck Institute of Animal Behavior in Konstanz. This new automated tracking
system was used in the paper titled Behavioral Variation Across the Days and Lives of Honey Bees, in
which we obtained long-term data on more than 4,100 bees across 16 age-matched cohorts tracked
within an observation hive for more than 50 days throughout a summer.

In addition to obtaining new data, we also introduced a novel analysis framework to describe
behavioral variation at different timescales, with a focus on the individuals’ space use within the
colony. Our analysis revealed that, at the scale of a single day, bees exhibited varying patterns
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5 Behavioral variation across the days and lives of honey bees

in their use of space and movement, with older and younger bees showing different behavioral
patterns. When we investigated the bees’ entire lifetimes, we found that some bees consistently
exhibited different movement patterns and transitioned to dance floor/outside activities at different
ages. Overall, this work provides a more comprehensive understanding of honey bee behavior
across different temporal scales, and highlights the importance of multi-site data collection for
generalizable findings in the field of animal behavior. It is worth noting that the hardware design
and software of the automated tracking system are open access and open source, thus enabling
other research groups to replicate and expand upon this work in different locations.
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5.2 Author Contributions

This chapter was previously published as:
Smith et al. (2022a) — Michael L. Smith, Jacob D. Davidson, Benjamin Wild, David M. Dormagen,
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5.2 Author Contributions
Methodology: MLS, JDD, BW, DD, TL, IDC; Investigation: MLS, JDD, TL, IDC; Fieldwork:
MLS; Software: BW, DMD, TL; Visualization: JDD; Supervision: TL, IDC; Writing-original
draft: MLS, JDD; Writing-review and editing: MLS, JDD, BW, DMD, TL, IDC.

5.3 Summary
In honey bee colonies, workers generally change tasks with age (from brood care, to nest work, to
foraging). While these trends are well-established, our understanding of how individuals distribute
tasks during a day, and how individuals differ in their lifetime behavioral trajectories, is limited.
Here, we use automated tracking to obtain long-term data on 4,100+ bees tracked continuously
at 3Hz, across an entire summer, and use behavioral metrics to compare behavior at different
timescales. Considering single days, we describe how bees differ in space use, detection, and
movement. Analyzing the behavior exhibited across their entire lives, we find consistent inter-
individual differences in the movement characteristics of individuals. Bees also differ in how quickly
they transition through behavioral space to ultimately become foragers, with fast-transitioning
bees living the shortest lives. Our analysis framework provides a quantitative approach to describe
individual behavioral variation within a colony from single days to entire lifetimes.

5.4 Introduction
Social insect colonies are comprised of individual organisms that form a cooperative entity to
propagate their genes (Seeley, 1989b; Wilson and Sober, 1989; Smith and Szathmary, 1995). To
survive, grow, and reproduce, a colony must navigate the same biotic and abiotic challenges as
unicellular and multicellular organisms, but coordination must now occur at the level of individual
workers (Hölldobler et al., 2009). Social insect colonies lack centralized control, but across the
ants, bees, termites, and wasps, tasks are instead self-organized among workers, whether genetically,
physiologically, spatially, or temporally (Gordon, 1996; Mersch et al., 2013; Seeley, 1982; Beshers
and Fewell, 2001; Oster and Wilson, 1978; Porter and Tschinkel, 1985; Jeanne, 1986; Jeanne et al.,
1988; Frumhoff and Baker, 1988; Robinson et al., 1989; Fewell and Page, 1993; O’Donnell and
Jeanne, 1995; Naug and Gadagkar, 1998; Oldroyd and Fewell, 2007; Robinson et al., 2009a; Jandt
and Dornhaus, 2009; Baudier et al., 2020). Understanding how individuals combine to form a
collective provides insights into the evolutionary drivers of organization across biological scales
(Smith and Szathmary, 1995; Davidson et al., 2021).
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Figure 5.1: Long-term honey bee tracking (A) Bees were individually marked with barcodes, and
tracked using the BeesBook tracking system (Boenisch et al., 2018a). (B) An example
map of the observation hive, with colors to denote different nest substrates. Dots
overlaid on the map show trajectories of three representative bees with short trajectories
selected from 11 August 2018: (black) young bee, age 6 days; (purple) middle-aged bee,
age 16 days; (white) old bee, age 26 days. Nest exit/entrance at the lower right corner.

A key challenge for highly-integrated collective systems, such as eusocial insects, is how to
allocate tasks among the individual units. While a fixed allocation strategy may be efficient in stable
environments, a flexible approach allows colonies to respond to changing conditions (Gordon,
2014, 2016). Responsive (and decentralized) changes in task allocation can arise, for example, from
individuals with different response thresholds for task-specific stimuli (Bonabeau et al., 1997),
individuals selecting tasks based on current need or availability (Tofts, 1993; Jeanne L, 1996),
state-dependent probabilities to switch or remain in a current task (Gordon, 1999; Goldsby et al.,
2012), age, developmental, or physiological task engagement (Seeley, 1982; Cook et al., 2019;
Robinson et al., 1989; O’Donnell and Jeanne, 1993), or a combination of these mechanisms
(Johnson, 2010). These mechanisms can also depend on the type of task: non-specialized tasks
may be distributed widely among colony members, whereas tasks requiring certain physiological
abilities may be restricted to specific individuals (Johnson, 2003; Robinson et al., 2009b). Across
social insect species, how and when tasks are allocated among individuals represents a balance
between robustness and flexibility in colony function (Charbonneau and Dornhaus, 2015).

In colonies of the Western honey bee Apis mellifera individuals perform different tasks according
to multiple factors, including developmental state, genetics, and behavioral feedback mediated by
social interactions (Huang et al., 1994; Beshers and Fewell, 2001; Robinson, 2002; Grozinger et al.,
2007; Johnson, 2008a; Cook and Breed, 2013; Cook et al., 2019; Wild et al., 2021b). This gives rise
to a general tendency for young bees to care for brood in the center of the nest, middle-age bees to
perform various tasks throughout the nest, and old bees to forage outside and advertise food sites
with waggle dances on the dance floor (Seeley, 1982). Within these general trends, individuals may
switch between tasks, or perform multiple different tasks in a day; therefore, individual behavior
is better described with “task-repertoires” — groups of tasks that are similar behaviorally and/or
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spatially (Seeley, 1982; Johnson, 2010). Although task repertoires vary with age, an age-based
categorization does not account for variation among individuals throughout their lives, or how
previous social and/or environmental experiences may influence task allocation (Beshers and Fewell,
2001; Jeanson and Weidenmüller, 2014; Wild et al., 2021b).

While previous studies have relied on human observation to assign behavior to individuals using
ethograms (e.g. Lindauer (1952); Seeley (1982); Seeley and Kolmes (1991); Johnson (2003); Siegel
et al. (2013); Smith et al. (2017); Perez and Johnson (2019)), recent advances in automated tracking
make it possible to extract behavioral metrics beyond the scope and scale of human observation
(e.g. continuous location and instantaneous speed) (Wario et al., 2015; Mersch et al., 2013; Crall
et al., 2015; Gernat et al., 2018; Wild et al., 2018; Bozek et al., 2021; Crall et al., 2018; Jones et al.,
2020; Richardson et al., 2021). This allows one to move from general trends to detailed, long-term,
quantification of behavior. The use of quantitative metrics to characterize behavior enables a
data-driven approach to investigate the causes and consequences of individual variability and
inter-individual differences across timescales.

In this study, we present data and analyze the behavior of 4,100+ honey bees across 16 age-
matched cohorts tracked within an observation hive for 50+ days throughout a summer (July-
October 2018). We define an analysis framework using behavioral metrics calculated from the
motion data that quantify bees’ space use, detection, and movement. We use this framework
to examine behavioral variation among age-matched bees, as well as variation in the behavioral
trajectories of individuals over lifetimes. This analysis framework enables a quantitative comparison
of the behavior of thousands of individuals at different timescales.

5.5 Results

5.5.1 Long-term tracking of individually-marked bees
We tagged and tracked over 4,100 individuals, 3 times per second (3 Hz), day and night for 50+ days
during summer 2018 using the using the BeesBook tracking system (Boenisch et al., 2018a) (Figure
5.1A). Newborns were introduced to the 3-frame observation hive every 4-6 days, in cohorts of
200-600 bees. Each time a new cohort was introduced, we recorded the comb contents in the
observation hive (as in Smith et al. 2016) to map the honey stores, brood nest, and dance floor. The
dance floor is an area typically near the next exit, where foragers advertise food sites with waggle
dances (Seeley, 1995). These content maps allow us to determine the context of the spatio-temporal
patterns of activity exhibited by bees throughout their lives, in the context of their changing social
and structural nest environment (Figures 5.1B and S1).

To quantify the activity of individual bees on a given day, we compute multiple behavioral
metrics, which describe space use (time on honey, brood areas, and dance floor, and median exit
distance), detection (time observed, time outside, number of outside trips, and number of dance
floor visits), and movement (median speed, speed circadian coefficient, dispersion, and fraction of
the nest visited). See Figure 5.3 for a visual depiction of these metrics, and see Methods and Table
5.1 for a complete description of how each is computed.

At any given time, bees on honey storage and brood areas tend to be younger than bees on the
dance floor (Figure 5.2A). This trend is consistent with the well-established sequence of young
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workers performing within-nest tasks, and old workers foraging outside (Seeley, 1982; Robinson,
1992). As individuals age, they spend more time on the dance floor, but we observe considerable
differences among bees within the same age-matched cohort on any given day (Figures 5.2B, S2).

5.5.2 Individual behavior during a single day
In this section we examine single-day behavioral variation. We use the term “behavioral day” to
refer to the behavior of a single bee on a single day. Quantitatively, a behavioral day refers to
the behavioral metrics shown in Figure 5.3 calculated on a single day for a single bee. Note that
individual bees have multiple “behavioral days” that make up their life, and may exhibit different
behavior on different days – in this section we describe differences in individual behavioral days
irrespective of individual identity, and then in the next section we use the known identity of each
bee to compare how individuals change their behavior over time. For consistency in comparing
behavior, we focus the analysis on the 50-day period during which new cohorts were added every
4-6 days. In this time period, the dataset includes a total of 53,032 behavioral days, which are from
4,193 tracked bees.

We use principal component analysis (PCA), clustering, and visualization methods to describe
the space of behavioral variation (Valletta et al., 2017). Note that this does not assign specific
activities (e.g. fanning) to individuals over time, like an ethogram, but instead uses behavioral
metrics computed from the barcode-tracking data to identify patterns and similarities in behavior
among behavioral days. The behavioral metrics include time on honey, brood, and dance floor
areas, exit distance, time observed, time outside, number of outside trips, number of dance floor
visits, median speed, speed circadian coefficient, dispersion, and fraction of the nest visited; these
12 metrics represent space use, detection, and movement and are graphically depicted in Figure 5.3
and defined in full detail in Table 5.1.

PCA extracts the dominant axes of behavioral variation, i.e. the relative weightings of the
behavioral metrics that explain the largest percentage of variance in the data matrix. To perform
PCA, we first arrange the data in a matrix structure, normalize each metric so that all can be
compared in the same standardized units, and then calculate the PCA decomposition. In the
day-data matrix Mij , each row i = 1...53, 032 is for a single behavioral day (i.e. a single tracked
bee on a single day), and the columns j = 1...12 are for each behavioral metric. The data matrix is
normalized following standard procedures by subtracting the mean and dividing by the standard
deviation of each column. With this, the total variance is simply the matrix norm and is equal
to the number of metrics, i.e. ||Mij || = 12, and the percentage of variance explained can be
computed using the remaining variance after subtracting a particular pattern from the data matrix
(Valletta et al., 2017; Jolliffe, 2002). Because of the normalization, positive/negative weightings in
the PCA components represent higher/lower values of a metric with respect to the average across
all behavioral days.

We find that the first 3 principal components represent important axes of variation among
behavioral days. The first PCA component explains the largest amount of variance (28.8%), and is
strongly weighted by space use: in particular, time on the dance floor and low exit distance (Figure
5.4A). The second PCA component accounts for 19.8% of the variance and is strongly weighted
by fraction of the nest visited and dispersion, which are two complementary metrics that reprents
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Figure 5.2: Bee nest usage histograms and changes with age. See also Figure S2. (A) Substrate
usage histograms with respect to age. (B) Cohort distributions of dance floor usage with
age. Colors represent the different cohorts, ordered chronologically by birthday, with
corresponding alphabetical names. Lines show the mean and the shaded area shows
the standard deviation across bees in each cohort. The transparency is proportional to
the fraction of bees in a cohort that lived to a certain age.

how wide-ranging a bee is, regardless of where it tends to be located in the nest (see Figure 5.3 and
Table 5.1 for descriptions of how these metrics are defined). The third PCA component (12.3% of
the total variance) is most strongly weighted by speed and time spent on brood.

The first 3 components explain 60.9% of the total variance of all behavioral metrics included in
the normalized data matrix (Mij), with the first component accounting for 28.8%. In comparison,
the total amount of variance explained by age alone is only 9.2%, and that by age & cohort is only
17% (see Table 5.2). This demonstrates that although there are indeed consistent trends among bees
as they age, as well as differences across cohorts, age and cohort alone are insufficient to account
for the full range of behavioral variation in the data. We therefore use a more general method to
describe the dominant daily behavioral differences among bees.

To visualize the multi-dimensional range of variation in the data matrix (Mij), we use t-
distributed stochastic neighbor embedding (t-SNE; Maaten and Hinton 2008). Each “data point”
in this embedding is a single behavioral day. Because it is initialized with the first two PCA compo-
nents, the global structure of the t-SNE embedding corresponds to the first two PCA components,
but the local structure can represent higher-order PCA components (Figure 5.4B). This embedding
is therefore a useful visual aid to display the range of single-day behavioral variation in a compact
yet meaningful way.

We apply Ward hierarchical clustering (Ward, 1963; Valletta et al., 2017) to group behavioral
days with similar behavioral metrics. Examining the dendogram structure and the within-cluster
variance as a function of number of clusters, we find that distinct behavioral clusters do not exist
in our data (Figure S3) However, with this clearly in mind, we can still employ clustering tools
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Figure 5.3: Metrics used to quantify behavior of tracked bees. We use 12 behavioral metrics
to quantify the behavioral of individual bees. These are grouped in metrics describing
space use (time spent on honey, brood, and dance floor areas, and median exit distance),
detection (time observed, time spent outside the nest, number of outside trips, and
number of dance floor visits), and movement (median speed, speed circadian coefficient,
dispersion, and fraction of the nest visited. See Table 5.1 and Methods for further details
on how each metric is computed.

to aid in the comparison, visualization, and thus the understanding, of the trends we see in the
behavioral metrics of bees on different days (Figure 5.4C). To this end, we focus on the 5-cluster
result as a practically-useful grouping to describe dominant trends in the data, as represented by
differences in the first 3 PCA components.

Each data point in Figure 5.4B represents the behavioral metrics calculated for a single bee on a
single day; a “behavioral day” (see Figure 5.3 for behavioral metrics). Cluster 1 (blue) represents
behavioral days that have a high dance floor use and time outside, with higher activity during
the day (higher than average speed circadian coefficient), and the highest median age. Similar
to cluster 1, cluster 2 (orange) represents behavioral days in which bees spent time close to the
exit; however, in contrast to cluster 1, cluster 2 behavioral days have particularly high number of
outside trips and dance floor visits, with visits to multiple areas of the nest, not just the dance floor
and exit frame - see histograms in Figure 5.4C. Cluster 3 (green) represents behavioral days in
which bees have the highest distance to the exit and time spent on honey areas, in comparison with
other clusters. Cluster 4 (red) represents behavioral days associated with middle-aged bees, with
metrics representing slow, localized behavior, mostly on empty-comb "border" regions of the nest
(hence the lower than average time on both honey and brood areas). Cluster 5 (purple) represents
behavioral days with higher than average speed and dispersion, as well as a higher than average time
on brood areas.

These groupings illustrate the dominant differences among behavioral days. While cluster 1
and cluster 2 behavioral days represent similar space use, they have differences in detection and
movement; both represent behavioral days where bees exited the nest, but cluster 1 represents more
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time outside, while cluster 2 represents more trips and visits to places in the nest other than just
the dance floor. Clusters 3, 4, and 5 are similar in detection (these behavioral days are mostly inside
the nest), but differ in space use and movement. Cluster 3 behavioral days are farthest from the
exit and have the highest average time on honey areas, while cluster 4 behavioral days have high
time spent on areas that border brood and honey, and cluster 5 has high time spent on brood areas.
Cluster 3 and 4 behavioral days have lower movement speeds, while cluster 5 has higher speeds.
Although there is much overlap in the age distributions, cluster 3 behavioral days have the lowest
median age (4 days), clusters 2, 4, and 5 have intermediate values (median ages of 9, 8, and 10 days,
respectively), and cluster 1 the highest median age (15 days) (Figure 5.4D).

5.5.3 Behavioral variation over lifetimes
In this section we use individual identities to compare lifetime behavioral trajectories among
individual bees. Bees are known to change their behavior over time due to internal processes such
as physiological development, interactions with other bees, and environmental factors (Johnson,
2003, 2010; Robinson, 1992; Wild et al., 2021b; Amdam and Omholt, 2003). To quantitatively
compare how different bees change behavior as they age, we use a procedure similar to that used
for behavioral days. However, now instead of a single day, each data point represents the entire life
of an individual bee — we refer to this as a “bee-life”. Quantitatively, a bee-life is defined by the
behavioral metrics for each day of the bee’s life (i.e. the series of behavioral days that make up an
individual’s life).

We again use PCA and clustering to describe behavioral variation among bee-lives. To do this, we
arrange the data into a three-dimensional matrix form to represent individual behavioral metrics for
each day of a bee’s life. The bee-life data matrix is of the form Bαtj , where α is for individual bees,
t is an index over the days of the bee’s life, and j is for the different behavioral metrics (these are the
same as used in the per-day analysis; see Figure 5.3). The life-PCA decomposition considers each
beeα as a single input entry; the components can thus represent both consistent lifetime differences
in behavioral metrics, as well as changes in behavior over time (Figures 5.5A, S4A). Note that due to
the high-dimensional input (i.e all behavioral metrics over multiple days), each PCA component in
the lifetime analysis represents a comparatively smaller fraction of the variance, as compared to the
per-day analysis shown previously in Figure 5.4. The first two life-PCA components nonetheless
represent strong trends in the data (Figure S4B), and we focus our interpretations on these first
two life-PCA components.

The first life-PCA component predominantly represents an overall difference in movement
activity across the whole lifetime of a bee (Figures 5.5A, S4A). Positive projections of lifetime
data onto the first life-PCA component represent bees with higher movement activity (higher
dispersion and fraction of nest visited), and negative projections represent lower movement activity
than average. The second life-PCA component represents differences in space use - both averaged
across a lifetime, as well as changes with age (Figures 5.5A, S4A). Positive projections of lifetime
data onto the second life-PCA component represent an early transition to increased dance floor
use and time outside, while negative projections represent a lesser or later increase in these metrics.

Applying hierarchical clusterical to group bee-lives with similar behavior, the dendogram struc-
ture (Figure S4C) and the within-cluster variance (Figure S4D) suggest a continuous range of
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Figure 5.4: Differences in observed single day behavior. See also Figure S3. (A) The first three
components from the PCA decomposition of individual bee behavioral metrics on a
given day. (B) t-SNE embedding of behavioral days, colored by the projection values
along each PCA component dimension. The t-SNE is initialized with the first two PCA
component projections, and therefore the global structure of the t-SNE embeddings
aligns with these projections. (C) Distributions of behavioral days using 5 clusters,
showing behavioral metrics and average nest location histograms. Colors highlight the
different groups on the t-SNE embedding (center). Nest histograms reflect the layout
of the observation hive, sample shown at the bottom right for reference, and in Figures
5.1B, S1. (D) Age distributions of each behavioral day cluster.
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variation in lifetime behavior. As with the per-day results, we therefore use clustering as a descrip-
tive tool. We use a 5-cluster grouping to describe, compare, and visualize differences in the lifetime
behavior of bees along the dominant two life-PCA components (Figure S4E). To visualize these
groups, we show each bee as a single data point projected on the first two life-PCA components
(Figure 5.5B), the lifespan of bees in each cluster (Figure 5.5C), the distribution of values of be-
havioral metrics averaged over the lifetime of bees in each cluster (Figure 5.5D), and the average
behavioral changes with time as projected onto the behavioral day embedding (Figure 5.5E). Life
cluster 1 includes bees with average movement activity levels, but with late transitions to dance
floor/outside activity. Conversely, life cluster 3 bees are similar in their average movement activity
(i.e. a similar projection onto life PCA 1 compared to cluster 1 bees), but show an earlier transition
to dance floor/outside activity. The average projection on the behavioral day embedding further
demonstrates this trend: while bees in clusters 1 and 3 on average move through similar regions of
behavioral space (both move "left-to-right", going roughly through the middle of the behavioral
day embedding space), life cluster 3 bees change their behavior at younger ages than life cluster 1
bees (Figure 5.5E).

A similar comparison differentiates life cluster 4 and 5 bees; although bees in both of these
clusters have higher than average movement activity over their lifetimes (i.e. positive projections
onto life PCA 1), life cluster 4 bees transitioned at older ages to dance floor/outside activity in
comparison with life cluster 4 bees. Life cluster 2 bees have the lowest movement activity (negative
projection onto life PCA 1), and average transition ages. Bees in life clusters 3 and 5 - i.e. those that
transitioned to dance floor/outside activities at younger ages - had shorter lifespans than bees in
the other life clusters (Figure 5.5C).

While there is no correlation between the two PCA projections (this is true by definition of the
PCA calculation), the points representing the individual bees are not uniformly distributed on the
PCA axes (Figure 5.5B). High movement activity bees (life clusters 4&5; positive projection on
life-PCA 1) have a higher variance in observated rates of transitioning, compared to slow/localized
bees (life cluster 1; negative projection on life-PCA 1). This means that while overall movement
characteristics are not correlated with when a bee transitions to outdoor-related activities, high
movement activity bees tend to be at the extremes of the distribution (i.e. the earliest or the latest
to transition bees are fast). Slow/localized bees have average ages of behavioral transitions and a
lower variance among individuals.

The results of the bee-life analysis show that individuals exhibit lifelong behavioral consistencies:
those with positive projections onto life PCA 1 (e.g. those in life cluster 4) tend to move faster and
visit more areas of the nest over their entire lives, and individuals with negative projections onto
life PCA 1 (e.g. those in life cluster 2) tend to move more slowly and visit less areas of the nest over
their entire lives (5.5D). We also find that individuals differ in the timing of their developmental
transitions (Figure 5.5E): individuals with positive projections onto life PCA 2 (e.g. those in life
clusters 3 and 5) transition at younger ages to outside activities in comparison with individuals
with negative projections onto life PCA 2 (e.g. those in life clusters 1 and 4). Moreover, we see that
the timing of behavioral transitions is related to longevity: individuals who transitioned to outside
activities at earlier ages lived shorter lives (Figure 5.5C).
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Figure 5.5: Behavioral differences across a bee’s entire life. See also Figure S4. (A) PCA
decomposition of bee-lives shows the dominant modes for how the behavioral metrics
change over time. Plots show each PCA mode plotted in terms of behavioral metrics,
using normalized quantities with the same units as in Figure 5.4 (i.e. zero represents
the mean of the behavioral metric across all behavioral days). Points are colored by the
age corresponding to each metric (see Figure S4A for an expanded plot). (B) A plot of
individual bee-lives projected onto the first two PCA modes. Each point represents
the life of a single bee. The colors correspond to a 5-cluster division, identified via
Ward hierarchical clustering, and the labels describe the different life-PCA axes. (C)
Distributions of number of days lived for bees in each life cluster. Note that bees are
only included if they lived at least 10 days. (D) The distribution of the lifetime average
of each behavioral metric among individual bees, grouped by bee-life cluster. The x-axis
is the average of each quantity during a bee’s life, in units of standard deviations from
the mean of all behavioral days. (E) The average lifetime behavioral “trajectory” of
behavioral days in each life cluster, projected onto the behavioral day embedding space.
This is determined by averaging the metrics of bees of a certain age in each cluster and
projecting these averages onto the behavioral day t-SNE embedding shown in Figures
5.4C, (Poličar et al. (2019); see Methods). Points and connecting lines are colored by
age.
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5.6 Discussion

Using individual tracking data from 4,100+ honey bees, we calculated behavioral metrics from
the motion data and defined an analysis framework to describe behavioral variation at different
timescales. At the timescale of a single day, bees differed their space use, detections, and movement,
as quantified by the behavioral metrics shown in Figure 5.3. Although some behavioral patterns
are more associated with older bees (e.g. behavioral day cluster 1), and others with younger bees
(e.g. behavioral day cluster 3), we see considerable overlap in the age distributions associated with
different behavioral days (Figure 5.4). Looking at the entire lives of individuals, bees predominantly
differed in their movement patterns (speed/dispersion; Life-PCA 1), and the age at which they
transitioned to dance floor/outside activities (Life-PCA 2) (Figure 5.5). We found that across entire
lifetimes, some individuals exhibit consistently different movement characteristics – in particular,
consistently higher (or lower) dispersion across nest areas over their entire lives (Figure 5.5).

Behavioral differences among individuals may enable eusocial insect colonies to be flexible in
response to changing conditions, yet robust to the maintenance of other colony functions (Jandt
and Gordon, 2016; Garrison et al., 2018). Individual tracking of bumblebees has revealed consistent
differences in movement activity (Crall et al., 2018; Jandt and Dornhaus, 2009) – in particular,
in the overall spatial area occupied by an individual (i.e. dispersion). Other work has shown, for
example, that bumblebees differ in thermoregulation response thresholds (Jandt and Dornhaus,
2014), ants show consistent differences in exploratory behavior (Maák et al., 2020), and honey bees
differ in dance activity in response to the same food source (George and Brockmann, 2019). It is
important to note that the colony response is an emergent outcome of the many individuals, where
each individual also adjusts their behavior in response to the behavior of others (e.g. Ulrich et al.
(2021)). In general, the distribution of individual behavioral traits within a eusocial insect colony
is expected to affect colony function, because the colony is the reproductive unit that selection
acts upon (Jeanson and Weidenmüller, 2014; Jandt and Gordon, 2016). However, the effect of
inter-individual variation may depend on the specific function. For example, while the effect of
inter-individual differences in response thresholds on overall bumblebee colony thermoregulation
behavior is unclear (Jandt and Dornhaus, 2014), variation in body size among bumble bee workers
in a colony has been linked to enhanced comb production (Holland et al., 2021), and other work
with ants has demonstrated that the distribution of individual traits affects colony foraging behavior
(Kolay et al., 2020). To understand the effects of inter-individual variation on colony performance,
it is therefore important to consider both the specific colony function as well as the ecological
context (Davidson et al., 2021; Gordon, 2016).

It is well-known that there is a genetic basis for behavior in honey bees (Robinson et al., 1989;
Fewell and Page, 1993; Calderone and Page, 1988; Page and Robinson, 1991; Calderone and Page,
1991; Junca et al., 2019; George et al., 2020), which likely also applies to lifetime behavior. The
cohorts used in this study came from naturally-mated colonies; each source colony has a different
queen, and while some cohorts came from the same source colony (see Figure S5), workers in a
given source colony also represent multiple different patrilines (queens mate with 12± 6 drones;
(Tarpy et al., 2004)). To examine precisely the extent to which our results have a genetic basis,
future work could compare behavior from single-drone inseminated queens, or use genomic
sequencing to determine each worker’s patriline (Junca et al., 2019). Patriline diversity is important
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for colony-level function (Jones et al., 2004; Seeley and Tarpy, 2007; Mattila and Seeley, 2007;
Mattila et al., 2012)); whether a diversity in “bee-lives” (i.e. differences in movement characteristics
and behavioral transitioning ages; Figure 5.5) contributes to colony function is unknown.

In our analysis, we find that bees differ in both movement characteristics and the age at which
they transition to spending time on the dance floor and outside of the nest (Figures 5.5, S4).
Previous work has noted how age is not the only factor that determines task allocation and behav-
ioral transitions; social interactions, colony state, and environmental conditions also play a role
(Johnson, 2010; Beshers and Fewell, 2001; Jeanson and Weidenmüller, 2014; Wild et al., 2021b).
While we see differences in space use with age, in our analysis of movement characteristics, we find
that average speed tends to increase with age but dispersion does not (Figure S2. For example, while
age explains 9.2% of the variance of all metrics together, age explains only 0.6% of the variance in
dispersion. The amount explained by age is 14.4% for speed, and as much as 23.1% for median exit
distance (see Table 5.2). We also note that precocious foraging, which is similar to the “early-to-
transition” individuals that we observe, can be induced via hormone treatments (Robinson et al.,
1989), infection (Woyciechowski and Moroń, 2009), colony demography (Huang and Robinson,
1996), or even pesticide exposure Hesselbach et al. (2020), but here we see that such individuals
exist even in unmanipulated colonies, similar to (Wild et al., 2021b). In wasps, differences in the
age at which individuals transition to different tasks has also been observed (Jeanne et al., 1988).
Across cohorts, individuals from cohort N did tend to show more early-to-transition behavior
than bees in other cohorts (Figure S5) but further experiments would be needed to show whether
such differences are driven by genetic or environmental factors.

Our study uses a large observation hive (3-frames; 7252 cm2 of surface area), which is larger
and can house more bees than other studies using automated tracking of honey bees (e.g. Bozek
et al. (2021); Jones et al. (2020); Wild et al. (2021b,b). It is possible that nest size influences task
allocation or transition rates; for example, workers in smaller colonies may transition between
tasks more frequently (Jeanne, 1986; Dornhaus et al., 2012)). The observation hive was designed
to mimic natural conditions and provide sufficient space for spatially separated comb-use areas
(e.g. a dance floor that does not overlap with brood). Still, it is smaller than a natural nest (mature
natural nests can have 13369± 1174 cm2 of comb surface area; Smith et al. (2016)). We note that a
systematic comparison of how nest structure influences behavior should consider not only size,
but also nest geometry (e.g. Pinter-Wollman (2015)).

Previous work has used ethograms to define categorical age-based labels such as nurses, middle-
aged bees, and foragers (Lindauer, 1952; Seeley, 1982; Seeley and Kolmes, 1991; Johnson, 2010,
2008a,b). While such labels have the advantage of being easy to interpret, manually assigning
behavioral tasks has multiple disadvantages, including: limited reproducibility (ethogram interpre-
tations depend on the observer), behavioral descriptions must fit into pre-defined categories, and
scaling issues (tracking multiple bees simultaneously, or over long time-periods, can be infeasible).
Although automated tracking methods address these issues, simple trajectory data may not always
be of direct biological or functional relevance (Krause et al., 2013). In the current study, for ex-
ample, we incorporate maps of the nest structure to extract additional biological information for
a given spatial positioning (e.g. the individual is located atop brood, versus on the dance floor).
With honey bees, tasks are often location-specific, such that, for example, bees found on the brood
area are typically doing brood care (Seeley, 1982). However, using location to infer task is an
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assumption, and some tasks, such as fanning, may not be location-specific. This is an inherent
tradeoff with high-throughput methods like automated tracking. An important area for future
work is to compare and relate the results of automated tracking methods, to approaches that use
ethograms to manually assign behavior and task repertoires (e.g. cell cleaning, fanning, waggle
dances) (Lindauer, 1952; Seeley, 1982; Smith et al., 2017; Perez and Johnson, 2019; Mattila et al.,
2012).

Recent work has combined barcode tracking with supervised machine learning methods to
automatically identify specific behavioral events (Jones et al., 2020; Gernat et al., 2023). These
approaches apply convolutional neural networks (CNNs) to video data to identify a specific
behavior of interest (e.g. egg-laying), which can be associated with the known identities of tracked
bees through the barcode positions. Gernat et al. (2023) trained their CNN to detect trophollaxis
events, and Jones et al. (2020) to detect egg-laying events and when bees exited for outside trips.
These are supervised methods which require training and specified behavior to identify, and thus
have focused on a few types of behavioral events which could be reliably identified. Alternatively,
recent work has combined general methods of pose estimation with barcode tracking and applied
this to bumblebees (Smith et al., 2022b); such pose estimation data could be used with unsupervised
methods in order to identify complex behavioral patterns without training or a-priori specification
(Berman et al., 2014; Graving and Couzin, 2020). In contrast to these approaches, which use
smaller colonies and shorter tracking periods of 2-7 days (Jones et al., 2020; Gernat et al., 2023;
Smith et al., 2022b), in this study we extract only trajectory data from barcode tracking, which
enables the analysis of thousands of bees during their entire lifetimes in a timespan of several
months. Future work can merge these approaches or choose the methods most appropriate to
specific bioloical questions, by combining aspects of supervised identification of behavioral events,
unsupervised behavioral classification from pose estimation, and behavioral metrics calculated
from trajectory data.

Automated tracking makes it possible to obtain long-term datasets for thousands of individuals,
making it possible to investigate individual variation at an unprecedented scale. Our long-term
tracking results present a detailed picture of how individuals in a colony differ in their behavior
from day-to-day and over entire lifetimes, and establishes an analysis framework that can quantify
these differences and how they may contribute to colony function.

5.6.1 Limitations of the study
In this study, we analyzed the data of thousands of honeybees tracked using barcodes in an obser-
vation hive over an entire summer. While we examine variation among behavioral days and across
the lifetimes of individual bees, we note that the metrics used to quantify behavior are restricted to
quantities that can be calculated from the trajectory data (see Figure 5.3 for behavioral metrics).
As such, these metrics do not directly represent biologically-relevant behavioral patterns, such as
foraging, cell cleaning, or fanning, that are typically identified with manual observation. Future
work could examine how the behavioral metrics calculated from trajectory data are correlated with
such manual assignments of behavior.

Although we examined the behavior of thousands of bees from multiple age-matched cohorts,
our data are from a single observation hive over a single summer. Given that the colony had free
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access to forage outside, and that behavior can change with environmental factors, we can expect
results to differ quantitatively from year-to-year. Nonetheless, we expect that observed qualitative
trends would be similar for such a repeated experiment. Future work would be needed to test the
repeatability and robustness of the observed trends, given the colony-level sample size.
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5.10.1 Resource availability
Lead contact

Information and requests for resources should be directed to and will be fulfilled by the Lead
Contact, Michael L. Smith (mls0154@auburn.edu).

Materials availability

The study did not generate new unique reagents

Data and code availability

• The data and code needed to reproduce the results in this publication are available at:

github.com/jacobdavidson/bees_lifetimetracking_2018data.

• The full dataset associated with tracking bees during summer 2018 is deposited at Zenodo
and is publicly available. The DOI is doi.org/10.5281/zenodo.6045860 and is also listed in
the Key Resources table. This full dataset includes the x-y trajectories, behavioral metrics
calculated at different time intervals (1-hour, 5 minute, and 1 minute intervals), and comb
maps.

• Any additional information required to reanalyze the data reported in this paper is available
from the lead contact upon request.

5.10.2 Experimental model and subject details
Newborn worker bees were sourced from colonies headed by naturally mated queens from the
University of Konstanz apiary. Individual age-matched cohorts were selected from eight different
source colonies: cohorts A, H, M from colony c1; cohort D from colony c2; cohorts B, I, N from
colony c3; cohort L from colony c4; cohorts C, E, K from colony c5; cohorts F, G from colony c6;
cohort O from colony c7; cohorts J, P from colony c8.

5.10.3 Method details
Observation hive and nest maps

This research was conducted at the University of Konstanz, Germany (47.6894N, 9.1869E). On
10 June 2018, the observation hive was installed with a single queen, 2,000 unmarked workers,
and three frames of mixed brood and honey ("Deutsche-Normal" frames: 395 x 225 mm, obser-
vation hive: 490 x 742 mm; note that this observation hive is the largest, to date, to be used for
automated tracking in honey bees (Wario et al., 2015; Bozek et al., 2021; Boenisch et al., 2018a;
Wild et al., 2021b)). From 16 July to 3 Septempter 2018, every 4-6 days, we individually marked
and introduced 200-600 newborn honey bees to the observation hive (total bees tagged: 5,343).
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Although tracking data was obtained continuously until 9 October 2018, we perform our analysis
on a focus observation period of 16 July - 3 September, during which new cohorts were regularly
introduced. Newborns were hatched overnight in an incubator kept at 34◦C and 50 %RH, and
marked the following morning with individual BeesBook tags (Wario et al., 2015; Boenisch et al.,
2018a). Tags are printed on paper and attached to the thorax of bees, and remain attached for
their whole lives. From 16 July to 3 Sept 2018 (50 days) we recorded the observation hive at 3
frames per second using four Basler acA4112-20um cameras fitted with Kowa LM25XC lenses and
the recording software Motif (Loopbio GmbH). The colony was illuminated with infrared light
(850nm 3W LED’s), which is invisible to honey bees (Peitsch et al., 1992). The entire recording
rig (observation hive, cameras, lighting) was kept in the dark, to mimic the natural conditions of
the honey bee nest. Workers had free access to forage outside, through a entrance tunnel (2-cm
diameter). To keep track of the colony’s weight, the observation hive was kept on a scale which
logged its weight every hour (10g sensitivity, Wolf Waagen GmbH). To create a map of the nest,
every 4-6 days we traced the contents of the observation hive onto plastic sheets by outlining the
following: honey storage, pollen storage, brood, empty comb, wooden frames, peripheral galleries,
and dances observed on the dance floor (as in (Smith et al., 2016); Figures 5.1B, S1). These plastic
sheets were then scanned with an architectural scanner (Ruch-Medien, Konstanz), and digitized.
By overlaying the bee trajectories upon the maps, we determined what type of nest environment
an individual experienced (Figure 5.1B).

5.10.4 Quantification and statistical analysis
Data processing and behavioral metrics

Using the BeesBook system (https://github.com/BioroboticsLab/pipeline), the raw image data
were processed to detect and decode the individually marked bees (Wild et al., 2018; Boenisch et al.,
2018a; Wild et al., 2021b). For each individual, its tag id, id detection confidence, position, and
orientation were tracked over time, and stored in a PostgreSQL database. The death date of each
marked individual was estimated using a Bayesian changepoint model (as in (Wild et al., 2021b)).
This method accounts for a low rate of erroneous detections in bees that have already died, and
time periods when individuals are observed less frequently or not at all (e.g. while foraging). An
individual’s death date was used as a cutoff for including data in subsequent calculations.

We chose metrics that represent space use within the nest (time on honey, brood, or dance
floor, and exit distance), detection (time observed, time outside, number of outside trips, and
number of dance floor visits), and movement/spatial localization (speed, circadian coefficient,
dispersion, fraction of nest visited). Although some of these metrics are correlated (Figure S3A),
they nonetheless represent different aspects of behavior, and we use the approach of combining
multiple different metrics in order to obtain results that are robust to inclusion of specific metrics,
as well as any particular parameter choices associated with each metric.

We processed the trajectory data to obtain the quantities used in the subsequent analyses by
first averaging over 1-hour time bins and saving the quantities of interest for each individual bee.
The 1-hour bins were used to speed up processing the large amount of data. All data points used
in the analysis were above a detection confidence threshold of 0.8, and we calculated behavioral
metrics for each bee that had a minimum of 10 detections in that hour. For time observed, number
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5.10 STAR Methods

of outside trips, and number of dance floor visits, the per-day value is a sum across hours. The
circadian coefficient is determined using the per-hour median speed over the coarse of a day. For
the other 8 metrics, the per-day quantity is calculated as a weighted average across the hours in the
day, where weightings are done according to the amount of time observed in that hour.

Table 5.1 shows a summary with definitions of all metrics used. Further details regarding
calculations of substrate usage, circadian coefficient, and trips are described here.

Substrate usage is calculated using the comb substrate maps shown in Figure S1, grouping
together capped and young brood into a single category. Note that dances were observed only
within a limited time range (pink circles in Figure S1), but all occurred in a similar area. Defining
the dance floor based on only direct observations would be overly restrictive, so we defined the
dance floor area using a convex hull that contains all dances over the entire observation period
(dashed pink line in Figure S1). Because the comb contents changed over time, and were not
measured each day, we calculated substrate usage by a weighted average from values calculated
using the substrate maps on the measurement days before and after the day in consideration. To
illustrate this procedure, consider the day July 18, which has the closest measurement days of July
16 and 21. Denote the comb map from July 16 as A, and the comb map on July 21 as B. We first
use the trajectory coordinates of the bee on July 18 to calculate two different approximate usage
fractions: SA

i , which is the fraction of time spent on substrate i as determined using map A, and
SB
i , which is the fraction of time spent on substrate i as determined using map B. The estimated

substrate usage fraction for July 18 is calculated is calculated as a weighted average of these values:

fi = wAS
A
i + wBS

B
i ,

where for this example the weights are wA = 0.6 and wB = 0.4, because the first comb mea-
surement day is closer than the second to July 18. The nest comb contents over time were also
determined by this same linear interpolation method between nest content measurement days.

The circadian coefficient is calculated as the correlation of median speed over the day with a
daily rhythm that follows the sun. We approximate the daily rhythm with a sine curve of sin((h−
m)/(2π)), where h is the hour of the day, and m is chosen so that the maximum of the curve
coincides with the highest sun position of the day, which was approximately 13:30 CEST during
the observation period. The circadian coefficient is then calculated as

C =

∑24
h=1 sh sin

(
h−m
2π

)∑24
h=1 sh

,

With this normalization the coefficient satisfies−1 ≤ C ≤ 1, where the extreme values only occur
if the bee is not observed for the whole day. Positive values represent higher speed or only being
observed during the day, while negative values represent higher speed or only being observed at
night.

A bee’s barcode is not always detected when it is in the observation hive, for example if the
bee is upside-down or in a dense crowd of other bees. Because of this, we used both detection
and exit distance to estimate when a bee was outside. The time outside and number of outside
trips are estimated by first calculating the time observed and median exit distance in 1-minute bins
over the coarse of a day. A bee is then estimated to have exited the nest in a time bin texit if the
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Metric Definition and description

Honey, Brood, Dance
floor

Fraction of observed time spent on these substrates, as defined
using the comb maps of Figure S1. For days when the comb
was not measured, we used a weighted average with the closest
measurement days.

Exit distance

Median shortest path distance to the exit (which is located
in the lower right corner), accounting for possible routes to
switch sides, but not adding any extra distance for a switch of
sides

Time observed
Total time observed in a day, calculated as the total number
of detections with confidence interval over the 0.8 detection
threshold, divided by the frame rate of 3 frames per second.

Time outside An estimate of the total amount of the time a bee spends
outside during a day.

Number of outside trips An estimate of the number of times a bee exited the nest in a
day.

Number of Dance floor vis-
its

The number of times that a bee entered the dance floor from
another substrate

Median speed
Median speed during time observed, omitting instances where
the bee switched sides of the comb, as well as when the time
between detections was > 1 second

Circadian coefficient

A representation of how activity levels change with the time
of day; positive values represent higher observed speeds dur-
ing the day, while negative values represent higher speeds at
night.

Dispersion

Root mean square distance from the centroid of the x-y co-
ordinates, calculated by considering motion in a 2D plane in
the hive (i.e. neglecting whether the bee was detected on the
front or the back of the observation hive).

Fraction nest visited

After dividing the nest area into discrete spatial bins of
2cm×2cm (the same grid size used in the spatial histograms
shown in Figure 5.4), this is the fraction of bins with at least
one detection. Note that the body size of a bee is approx. 1
cm.

Table 5.1: Behavioral metrics used in the analysis. See text for precise descriptions of how substrate
usage (honey, brood, dance floor), circadian coefficient, and time outside/outside trips
are calculated.
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time observed in texit is less than a threshold of tobs=2 sec., and if the median exit distance in time
bin texit − 1 is less than a threshold dexit=18.75 cm (1500 pixels). The bee is considered to have
re-entered in bin tenter if the time observed in tenter is greater than or equal to tobs. The values
tobs and dexit are analysis parameters, and the results can depend strongly on the choice of dexit;
we choose the value of 18.75cm to represent a feasible median exit distance for a bee traveling to
the exit during a 1-minute period. With these results, we determine multiple instances of exit and
re-entry times during the course of a day, and use this to calculate the number of outside trips (the
number of times a bee is estimated to have exited the nest), as well as the time outside.

Note that dispersion and fraction of the nest visited are two complementary metrics which
both represent how wide-ranging each bee is, regardless of where it tends to be located in the nest.
While dispersion and fraction of the nest visited give similar results for continuous exploratory
movement, they can yield different trends for other cases; for example, bursty movement can
yield high fraction of nest visited yet low dispersion, while directed, straight-line back-and-forth
movement can yield low fraction of the nest visited yet high dispersion.

PCA and clustering on single day metrics

Using the behavioral metrics (Table 5.1), we create a data matrix Mij , where each row i represents
one behavioral day, and columns j = 1...12 are the different quantities. A behavioral day is only
included if that bee was alive on the given day and had more than 1,000 detections over the whole
day. This represents a total time observed of 5.5 minutes during a day; using this removes 7201
behavioral days with few detections (results are qualitatively similar whether these are included
or not). In addition, we do not include bees on the first day they were introduced, because on
this day there were not observed for a full 24 hours. With this criteria i = 1...53, 032 behavioral
days are included in the analysis. Although the total number of tagged bees was 5,343, the bees in
cohorts A-F were tagged before filming began, and some died before 16 July. Due to this, and after
filtering, we include data from a total of 4,193 unique bees in the analysis (the number is 4,229
before filtering for few detections).

Note that the nest contents – in particular the size of the honey and brood areas – change over
time (Figure S1). We account for these changes in order to focus on variation among the activity of
bees in the nest at a given time, instead of changes in substrate usage that result from a different
nest composition. For honey and brood areas, we account for this by subtracting the nest content
fraction from the individual bee substrate usage fraction for each day. The dance floor is unaffected,
since it is defined as the same area over the course of the observation period.

Following standard procedures, we normalized the data matrix M so that the column mean is
zero and the column standard deviation is 1. We then performed principal component analysis
(PCA) on the resulting matrix to obtain the components shown in Figure 5.4A. The result of
PCA is a matrix Uij , where i represents behavioral days and j = 1...12 for the PCA components
(corresponding to the total number of behavioral metrics).

Next, we perform Ward hierarchical clustering, implemented in Python in the package
scipy.cluster.hierarchy, to obtain the results shown in Figures 5.4 and S3.
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5 Behavioral variation across the days and lives of honey bees

Ward clustering minimizes the overall within-cluster variance. We write this as variance fraction:
for n clusters, this is calculated as

W (n) =
1

∥M∥2
n∑

q=1

∑
i∈q

∑
k

(
Mik − ⟨Mjk⟩j∈q

)2
, (5.1)

where ⟨·⟩j∈q represents an average over the indices j that are elements of cluster q, and ∥M∥2 =∑
i,j M

2
ij is the squared magnitude of the data matrix. This is shown in Figure S3.

We use t-SNE embedding (Maaten and Hinton, 2008) implemented in openTSNE (Poličar et al.,
2019), with parameters of perplexity=30 and n_iter=1000, and initial conditions set by the first
two PCA dimensions to obtain the behavioral day embeddings shown in Figure 5.4. This package
enables the mapping of new data to existing embeddings, which we used to show the average
bee-life trajectories on top of the behavioral day embedding (Figure 5.5E).

Variance fraction explained

To compute the fraction of the total variance explained by age, cohort, or a combination of factors,
we use the same procedure as in Eq. 5.1, but instead generalize to use some grouping {G} instead
of a certain number of clusters. The grouping {G} can be defined to include bees of a certain
age, bees of a certain cohort, or both of these (bees of a certain cohort having a certain age). The
variance fraction for all metrics is then calculated as

W ({G}) = 1

∥M∥2
∑

q∈{G}

∑
i∈q

∑
k

(
Mik − ⟨Mjk⟩j∈q

)2
. (5.2)

For a certain metric k, this is simply

W ({G}, k) = 1∑
iM

2
ik

∑
q∈{G}

∑
i∈q

(
Mik − ⟨Mjk⟩j∈q

)2
. (5.3)

Bee-life

We use the behavioral metrics (Figure 5.3) computed over multiple days in order to compare the
lifetime behavioral trajectories of individual bees. The results in Figure 5.4 treat each day for each
bee separately, and each row of M represents one behavioral day. Building on this notation, we
know that a bee’s life is made up of multiple behavioral days. To ask about bee-lives with similar
patterns and changes of activity as a bee ages, we filter and transform the data, and perform PCA
on the behavioral metrics of each bee over time.

Individual bees have different lifespans; because of this, we did not include all bees in the lifetime
analysis, but only those that were observed for at least 10 days. To compare lives we also need to a set
a maximum value of the number of days to compare; we use a maximum of 25 days as value that is
representative of the lifetime behavioral changes of bees. Since PCA cannot be performed if values
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Variance explained by grouping (percentage)
Metric Age&Cohort Age Cohort

Honey 11.0 3.9 5.8
Brood 7.7 2.9 1.7
Dance floor 26.6 19.3 2.7
Exit distance 28.7 23.1 2.6
Time observed 27.1 17.1 14.2
Time outside 15.3 10.6 2.1
Num. outside trips 12.6 5.9 2.1
Num. dance floor visits 12.7 2.7 4.6
Median speed 27.0 14.4 6.8
Speed circadian coeff. 10.4 6.1 2.4
Dispersion 9.9 0.6 6.8
Fraction nest visited 14.5 3.7 10.1

All data and metrics 17.0 9.2 5.2

Table 5.2: Amount of single-day behavioral variation explained by cohort and age. This is
calculated by subtracting the conditional average of each metric from the normalized
behavioral day data matrix, where the conditional averages are calculated using groupings
of age&cohort, age, or cohort. Values are shown for each metric using Eq. 5.3, as well as
all metrics combined (Eq. 5.2.
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5 Behavioral variation across the days and lives of honey bees

are missing (which occurs, for example, after a bee has died), we use per-age average values of each
metric to fill in missing values of the behavioral metrics for the purposes of PCA and clustering.

The tensor Bαtj is used to represent bee-lives, where α is for individual bees, t is an index over
the days in the bee’s life, which goes from 0 to lα, where lα is the total number of days the bee
lived, and j = 1...12 is an index over the component values of M. To analyze how different one
bee’s life is from another’s, we must consider that all bees did not live for the same number of
days. Because of this, we use a parameter Amax = 25 for the maximum age used in the bee-life
analysis. Because some bees did not live a total of Amax days, and even if a bee was alive there
could be some days where it was not detected by the tracking system, we only include bees for the
lifetime analysis that had Dmin = 10 days or more in the behavioral day data matrix. With these
criteria, and also only keeping bees from cohort G onward, i.e. bees with birthdates within the
observation period, we include 2027 bees in the bee-life analysis. We note that Amax and Dmin

are analysis parameters and quantitatively affect results, although we found that different values
of these parameters lead to qualitatively similar interpretations in the differences among bee-lives.
We used averages to fill in values of the bee-life matrix for the purposes of PCA and clustering,
because PCA cannot be calculated on a matrix that has missing values. Let htj = ⟨Bαtj⟩α, where
the notation ⟨·⟩α represents an average over the index α, denote the average behavioral metrics for
each day of the lives of bees that were observed. For a bee that was dead or not observed on day t of
its life, we fill these values by setting Bαtj |bee α dead or not observed on day t = htj . We use htj instead
of zeros to fill values for the bee-life distance metric, because although the column average of M
is zero, the average conditional on the age of the bee is nonzero, and therefore filling with zeros
would bias the results. After this filtering and processing, we use the bee-life matrix Bαtj as input
to PCA and clustering, to obtain the results shown in Figure 5.5.

We obtain that PCA 1 explains 11.4% of the total variance, PCA 2 explains 8.4% of the total
variance, and further components explain a smaller fraction of the total variance (Figures 5.5, S4).
Note that because the input is high-dimensional, with Amax ∗ 12 = 300 columns, the fraction of
the variance explained by any single mode is relatively small, with an average at 0.31%, and therefore
the first two modes represent strong patterns in the data because they are very high above this
average variance fraction.

We use Bαtj as input to Ward hierarchical clustering obtain the clusters shown in Figure 5.5,
and use a 5 cluster grouping to highlight differences along the first two dominant life PCA modes
(Figure S4).
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5.11 Supplemental figures
07-16 (Day 0) 07-21 (Day 5) 07-26 (Day 10) 07-31 (Day 15) 08-05 (Day 20)

08-11 (Day 26) 08-15 (Day 30) 08-20 (Day 35) 08-25 (Day 40) 08-29 (Day 44)

Honey
Brood

Empty comb
Pollen stores

Dances observed
Dance floor (combined)

Wooden frames
Peripheral galleries

10 cm

Figure S1: Comb contents over the observation period. Figure shows the nest contents and
tracings. The pink dashed line in each shows the “combined dance floor”, which is
defined as a convex hull that contains the locations of all observed dances. The relative
locations of the nest contents remained stable throughout the experiment, with honey
stored at the top of the nest, brood reared in the center, and a dance floor at the bottom
of the nest, near the nest entrance.
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5 Behavioral variation across the days and lives of honey bees

Figure S2: Substrate and other quantities with age. See also Figure 5.2. Cohorts are indicated
by the different colors for each plot. (A) Fraction of time spent on honey and brood.
The gray line and shaded area shows the mean and standard deviation of the amount of
honey or brood in the nest over time. (B) Fraction of time on honey and brood relative
to nest contents, determined by subtracting the average contents of the nest for a given
day. (C) Other behavioral metrics with age.
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Figure S3: Correlation between single-day quantity values, PCA variance explained, and
behavioral day clustering results. (A) Pearson (ranked) correlation coefficient shown,
for all behavioral metrics as well as age. Blue indicates a positive correlation, and red
indicates a negative correlation; the values of the correlation coefficient are shown for
each pair of quantities. (B) Variance explained per behavioral day PCA component.
Dashed line shows the variance per input column of Mij , i.e. the contribution of each
behavioral metric to the total variance. (B) Clustering dendogram and (D) average
remaining variance as a function of the number of clusters (Eq. 5.1). In both, the dashed
line shows the distance cut-off for a 5-cluster division.
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Figure S4: Behavioral day embeddings and metrics for different numbers of clusters. Each
row corresponds to results for a certain number of clusters as obtained using Ward
hierarchical clustering, and colors highlight the different clusters. (Left) t-SNE embed-
dings, where each point represents the behavioral metrics calclated for a single bee on a
single day (see Figure 5.3 for metrics). (Right) distributions of behavioral metrics for
behavioral days in each cluster. See Figure S3C for the clustering dendogram. Figure
5.4 in the main text shows results for 5 clusters.
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Figure S5: Lifetime PCA decomposition and clustering. (A) The first two life-PCA modes
plotted in terms of behavioral metrics with age, using normalized quantities with the
same units as Figure 5.4 (i.e. zero represents the mean of a certain behavioral metric across
all behavioral days). (B) Variance explained per bee-life PCA component. Dashed line
shows the variance per input column of Bαtj , i.e. the contribution of each behavioral
metric j for a bee with age tdays to the total variance. (C) Clustering dendogram and (D)
average remaining variance as a function of the number of clusters. In both, the dashed
line shows the distance cut-off for a 5-cluster division. (E) Life-PCA embedding values,
obtained by projecting lifetime behavioral metrics onto the lifetime PCA decomposition
shown in A and Figure 5.5A.
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Figure S6: Lifetime embedding and average metrics for different numbers of clusters. Each
row corresponds to results for a certain number of clusters as obtained using Ward
hierarchical clustering, and colors highlight the different clusters. (Left) Bee-life data
projected onto the first two PCA modes, where each point represents the life of a single
bee. (Right) Distributions of the lifetime average of each behavioral metric among
individual bees, grouped by cluster. As in Figure 5.5D, where results for 5 clusters are
shown, the x-axis is the average of each quantity during a bee’s life, in units of standard
deviations from the mean of all behavioral days. Colors highlight the different groupings
on the embeddings shown at the left. See Figure S4C for the clustering dendogram.
Figure 5.5 in the main text shows results for 5 clusters.

108



5.11 Supplemental figures

Figure S7: Cohort and source colony distributions of lifetime behavior. The distribution of
life-PCA embeddings for bees that were included in the lifetime analysis. Note that only
cohorts from G onward are included in the lifetime analysis, because these bees have
birthdates within the observation period. The life-PCA modes 1 and 2 are shown in
Figure 5.5. (A) Per-cohort distributions of lifetime PCA 1 and 2 projections. Cohorts
are sorted chronologically, with birthdate and associated source colony shown in the
label. (B) Per-source colony distributions of lifetime PCA 1 and 2. Associated cohorts
are listed in the label.
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6.1 Preface
Chapter 3 introduced a tracking system that allowed for the creation of honey bee datasets with
high accuracy and unprecedented scale. In Chapter 4, this tracking system was used to derive and
analyze data acquired in the Berlin recording setup, while in Chapter 5, the same system was used
in the setup in Konstanz. These two works established new quantitative approaches to understand
individual behavior in the colony based on their social network and behavioral metrics.

However, these two approaches were not suitable for analyzing data acquired from several
colonies or over extended periods in a combined analytical framework. To address this issue, the
paper entitled Learning to Embed Lifetime Social Behavior from Interaction Dynamics introduces a
new method to identify the functional roles of individuals in social groups over time, using several
datasets of lifetime trajectories of individually-marked honey bees acquired using the recording
setups in Berlin and Konstanz.

The method is based on the common factors that partially determine the roles individuals take
and uses this dependency as an implicit bias to learn a temporally consistent representation of
functional roles from social interaction networks. This work introduces a principled temporal
matrix factorization model that jointly learns the average developmental path and structured
variations of individuals in the social network over their entire lives.

The resulting embeddings are biologically relevant and consistent over time, allowing for the
comparison of individuals’ functional roles regardless of when or in which colony they lived.
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Project administration: TL; Data curation: BW, DMD; Writing: BW, DMD, MLS, TL; Visualiza-
tion: BW.

6.3 Abstract
Interactions of individuals in complex social systems give rise to emergent behaviors at the group
level. Identifying the functional role that individuals take in the group at a specific time facilitates
understanding the dynamics of these emergent processes. An individual’s behavior at a given
time can be partially inferred by common factors, such as age, but internal and external factors
also substantially influence behavior, making it difficult to disentangle common development
from individuality. Here we show that such dependencies on common factors can be used as an
implicit bias to learn a temporally consistent representation of a functional role from social inter-
action networks. Using a unique dataset containing lifetime trajectories of multiple generations of
individually-marked honey bees in two colonies, we propose a new temporal matrix factorization
model that jointly learns the average developmental path and structured variations of individuals
in the social network over their entire lives. Our method yields inherently interpretable embed-
dings that are biologically relevant and consistent over time, allowing one to compare individuals’
functional roles regardless of when or in which colony they lived. Our method provides a novel
quantitative framework for understanding behavioral heterogeneity in complex social systems.

6.4 Introduction
Animals living in groups often coordinate their behavior, resulting in emergent properties at the
group level. The dynamics of the inter-individual interactions produce, for example, the coherent
motion patterns of flocking birds and shoaling fish, or the results of democratic elections in human
societies. In many social systems, individuals differ consistently in how, when, and with whom they
interact. The way an individual participates in social interactions and therefore contributes to the
emergence of group-level properties can be understood as its functional role within the collective
(Farine and Whitehead, 2015; Gordon, 2010; Krause et al., 2015; Pinter-Wollman et al., 2014).
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6.4 Introduction

Technological advances have made it possible to track all individuals and their interactions,
ranging from social insects to primate groups (Mersch et al., 2013; Gernat et al., 2018; Boenisch
et al., 2018a; Mathis et al., 2018; Graving et al., 2019; Pereira et al., 2019). These methods produce
datasets that have unprecedented scale and complexity, but identifying and understanding the
functional roles of the individuals within their groups has emerged as a new and challenging
problem in itself. Social network analysis of interaction networks has proven to be a promising
approach because interaction networks are comparatively straightforward to obtain from tracking
data, and the networks represent each individual in the global context of the group (Krause et al.,
2015; Pinter-Wollman et al., 2014; Brask et al., 2021; Wild et al., 2021b).

In most social systems, the way individuals interact changes over time, due to new experiences,
environmental changes, or physiological conditions. Furthermore, groups themselves also tend to
change, both in size and composition (Gordon and Mehdiabadi, 1999; Davidson and Gordon,
2017; Naug, 2008; Aplin et al., 2015; Sendova-Franks et al., 2010; Ament et al., 2010). Despite
these changes over time, an objective measure of the functional role should identify individuals that
serve a similar function (e.g. a guard versus a forager). Unfortunately, we are now facing a recursive
definition of function: We are trying to derive the function of an individual from the network, but
the network itself is also a function of the individuals’ behavior (and other factors). Still, consider a
group-living species in which only a subset of individuals engage in nursing duties. If we analyze the
networks of different groups of the same species in different environmental conditions and group
sizes, we still expect an objective measure of function to be shared among individuals engaged in
nursing, regardless of these confounding factors. How can we extract such an objective measure
from a constantly changing network of interactions without a fixed frame of reference?

In many social systems, individuals share common factors that partially determine the roles
they take. For example, an individual’s age can have a strong influence on behavior. In humans,
factors such as socioeconomic status are comparatively easy to measure yet determine behavior
and, therefore, interactions to a large extent. If individuals take on roles partially determined by
a common factor, can we use this dependency to learn an objective measure of function? Here,
we show that such common factors are a powerful inductive bias to learn semantically consistent
functional descriptors of individuals over time, even in highly dynamic social systems.

In recent years, methods that automatically learn semantic embeddings from high-dimensional
data have become popular. These methods map entities into a learned vector space. For example,
in natural language models, a word can be represented as a vector, such that specific regions
in the manifold of learned embeddings correspond to words with similar meaning. Similarly,
recommender systems can learn meaningful embeddings of users and items, for example, movies,
such that similar entities cluster in the manifold of learned embeddings (Frome et al., 2013; Asgari
and Mofrad, 2015; Camacho-Collados and Pilehvar, 2018; Nelson et al., 2019).

Such embeddings are usually learned from the data without additional supervision. In rec-
ommender systems, a movie’s genre is usually not given in a dataset of user ratings, yet the genre
can be identified given the learned embeddings (Koren et al., 2009). This capability of learning
embeddings from raw data and using them in downstream tasks is desirable in datasets of social
interactions, where raw data is often abundant but labels are hard to acquire. Furthermore, em-
beddings are interpretable. For example, vector arithmetic of word embeddings can be used to
understand how semantic concepts the natural language model has learned from the data relate to

113



6 Learning to embed lifetime social behavior from interaction dynamics

each other (Mikolov et al., 2013). For entities that change over time, trajectories of embeddings
can be analyzed, i.e., how one entity changes within the learned manifold of embeddings. Such
analyses can, for example, reveal how environmental conditions such as resource availability affect
behavioral changes within the group (Richardson et al., 2021; Smith et al., 2022a).

Most real-world networks have a hierarchical organization with overlapping communities,
and thus soft community detection algorithms are often used to group and describe entities
(Richardson et al., 2021; Palla et al., 2005; Ahn et al., 2010). Non-negative matrix factorization
(NMF) is a principled and scalable method to learn embeddings from data that can be represented
in matrix form, such as interaction networks. NMF has an inherent soft clustering property and is
therefore well suited to derive embeddings from social interaction networks (Ding and He, 2005).
If the embeddings allow us to predict relevant behavioral properties, they serve our understanding
as semantic representations.

In symmetric non-negative matrix factorization (SymNMF), the dot products of any two indi-
viduals’ embeddings (factor vectors) reconstruct their interaction affinity (Wang et al., 2011; Shi
et al., 2015), see Figure S1 a and b). However, this algorithm has no straightforward extension in
temporal settings where the interaction matrices change over time. The interaction matrices at
different time points can be factorized individually, but there is no guarantee that the embeddings
stay semantically consistent over time. The dot product is permutation invariant, therefore fac-
torization can result in different embeddings depending on the optimization method being used,
or noise in the data. Consider the hypothetical case of two groups of animals of the same species
with two tasks, guards and nurses. Factorizing the interaction matrices of both groups will likely
reveal two clusters, but there is no guarantee that the same cluster will be assigned to the same task
for both groups. The same problem can occur in the case of only one group with new animals
emerging and some dying over time without any changes in the distribution of tasks on the group
level. In this case, the embeddings are not semantically consistent over time. The prediction of
relevant behavioral properties will deteriorate, and individuals cannot be meaningfully compared
against each other.

Several approaches to extend NMF to temporal settings have been proposed in a variety of
problem settings. Previous work proposed factorization methods for time series analysis (Yu
et al., 2016; Mackevicius et al., 2019), while others focus on the analysis of communities that are
determined by their temporal activity patterns (Gauvin et al., 2014). Jiao and coworkers consider
the case of communities from graphs over time and enforce temporal consistency with an additional
loss term (Jiao et al., 2017). Several previous works represent network embeddings as a function of
time (Yu et al., 2017a) and (Yu et al., 2017b), but the meaning of these embeddings can still shift
over time. Temporal matrix factorization is similar to the tensor decomposition problem, which has
many proposed solutions, see review by (Kolda and Bader, 2009). In particular, time-shifted tensor
decomposition methods have been used in multi-neuronal spike train analysis, when recordings of
multiple trials from a population of neurons are available (Mørup et al., 2008; Williams, 2020).

We approach this problem in the honey bee, a popular model system for studying individual and
collective behavior (Elekonich and Roberts, 2005). Honey bees allocate tasks across thousands of
individuals without central control, using an age-based system: young bees care for brood, middle-
aged bees perform within-nest labor, and old bees forage outside (Seeley, 1982; Johnson, 2010).
While age is a good predictor for the task of an average bee, individuals often deviate drastically from
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Figure S1: For a daily snapshot of a temporal social network, symmetric NMF is able to extract
meaningful factor representations of the individuals. Colors represent the interaction
frequencies of all individuals (a). The age-based division of labor in a honey bee colony is
clearly reflected in the two factors - same-aged individuals are likely to interact with each
other (b). For long observation windows spanning several weeks, the social network
changes drastically as individuals are born, die, and switch tasks (c). Here, we investigate
how a representation of temporal networks can be extracted, such that the factors
representing individuals can be meaningfully compared over time, and even across
datasets.

this common developmental trajectory due to internal and external factors. Honey bee colonies are
also organized spatially: brood is reared in the center, honey and pollen are stored at the periphery,
and foragers offload nectar near the exit. Therefore, an individual’s role is partially reflected in its
location, which provides the unique opportunity to evaluate whether learned embeddings based
on the interaction data alone are meaningful.

A recent work proposes a method based on spectral decomposition to extract a semantic embed-
ding (Network age) from honey bee interaction matrices and shows that these embeddings can be
used to predict task allocation, survival, activity patterns, and future behavior (Wild et al., 2021b).
The method proposed here is conceptually similar but solves several remaining challenges. Here,
we introduce Temporal NMF (TNMF), which yields consistent semantic embeddings even for
individuals from disjoint datasets, for example, data from different colonies, or for long-duration
recordings that contain multiple lifetime generations.

TNMF jointly learns a) a functional form of the average trajectory of embeddings along the
common factor, b) a set of possible functional deviations from the average trajectory, and c) for
each individual, a soft-clustering assignment (individuality embedding) to these deviations. We
show that these representations can be learned in an unsupervised fashion, using only interaction
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Figure S2: Overview of the method: We learn a parametric function describing the mean life
trajectory m(c(t, i)) and a set of basis functions of individual variation b(c(t, i)),
where c(t, i) is the age of individual i at time t (a). For each individual, an embedding
is learned consisting of one scalar per basis function that scales the contribution of the
respective basis function - this vector of weights makes up the individuality embedding
of an individual (b). The mean trajectory m(c(t, i)) plus a weighted sum of the basis
functionsb(c(t, i)) constitute the lifetime trajectory of each individual (c). At each time
point, factors can be extracted from the individual lifetime trajectories (d) to reconstruct
the interaction affinity between individuals (e). Note that the lifetime trajectories are
functions of the individuals’ ages, while interactions can occur at any time t.

matrices of the individuals over time. We analyze how well the model is able to disentangle common
development from individuality using a synthetic dataset. Furthermore, we introduce a unique
dataset containing lifetime trajectories of multiple generations of individually-marked honey bees
in two colonies. We evaluate how well the embeddings learned by TNMF capture the semantic
differences of individual honey bee development by evaluating their predictiveness for different
tasks and behaviorally relevant metrics compared to several baseline models proposed in previous
works.

6.5 Materials andMethods

6.5.1 Temporal NMF algorithm

SymNMF factorizes a matrix A ∈ RN×N
+ such that it can be approximated by the product FF T ,

where F ∈ RN×M
+ and M ≪ N :

F̂ = argmin
F≥0

∥∥A− FF T
∥∥2 Ai,j ≈ f(i) · f(j)T f(i) = Fi,: f(i) ∈ RM

+ (6.1)
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When applied to social networks, f(i) can represent the role of an entity within the social network
A (Wang et al., 2011; Shi et al., 2015) - however, in temporal settings, factorizing the matrices for
different times separately will result in semantically inconsistent factors.

Here we present a novel temporal NMF algorithm (TNMF ) which extends SymNMF to
temporal settings in which A ∈ RT×N×N

+ changes over time t. We assume that the entities
i ∈ {0, 1, . . . , N} follow to some extent a common trajectory depending on an observable
property (for example the age of an individual). We represent an entity at a specific point in time t
using a factor vector f+(t, i) such that

Ât,i,j = f+(t, i) · f+(t, j)T Â ∈ RT×N×N
+ f+(t, i) ∈ RM

+ (6.2)

In contrast to SymNMF, we do not directly factorize At to find the optimal factors that re-
construct the matrices. Instead, we decompose the problem into learning an average trajectory
of factors m(c(t, i)) and structured variations from this trajectory o(t, i) that depend on the
observable property c(t, i):

f(t, i) = m(c(t, i)) + o(t, i) f+(t, i) = max(0,f(t, i)) (6.3)

c : NT×N → N m : N→ RM
+ o : NT×N → RM

This decomposition is an inductive bias that allows the model to learn semantically consistent
factors for entities, even if they do not share any data points (e.g., there is no overlap in their
interaction partners), as long as the relationship between functional role and c(t, i) is stable. Note
that in the simplest case c(t, i) = t, TNMF can be seen as a tensor decomposition model, i.e. the
trajectory of all entities is aligned with the temporal dimension t of A. In our case, c(t, i) maps to
the age of individual i at time t.

While many parameterizations for the function o(t, i) are possible, we only consider one
particular case in this work: We learn a set of individuality basis functions b(c(t, i)) (shared among
all entities) that define a coordinate system of possible individual variations and the individuality
embeddings ϕ, which capture to what extent each basis function applies to an entity:

o(t, i) =
K∑
k=0

ϕi,k · bk(c(t, i)) ϕ : RN×K bk : NT → R (6.4)

where K is the number of learned basis functions. This parameterization allows us to disentangle
the forms of individual variability (individuality basis functions) and the distribution of this
variability (individuality embeddings) in the data.

We implement the functions m(c(t, i)) and b(c(t, i)) with small fully connected neural net-
works with non-linearities and several hidden layers. The parameters θ of these functions and the
entities’ embeddings ϕ are learned jointly using minibatch stochastic gradient descent:

θ̂, ϕ̂ = argmin
θ,ϕ

∥∥∥A− Â
∥∥∥2 (6.5)
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6 Learning to embed lifetime social behavior from interaction dynamics

Note that non-negativity is not strictly necessary, but we only consider the non-negative case
in this work for consistency with prior work (Wang et al., 2011; Shi et al., 2015). Furthermore,
instead of one common property with discrete time steps, the factors could depend on multiple
continuous properties, i.e. c : RT×N → RP , e.g. the day and time in a intraday analysis of social
networks.

We find that the model’s interpretability can be improved using additional regularization terms
without significantly affecting its performance. We encourage sparsity in both the number of used
factors and individuality basis functions by adding L1 penalties of the mean absolute magnitude
of the factors f(t, i) and basis functions b(c(t, i)) to the objective. We encourage individuals’
lifetimes to be represented with a sparse embedding using anL1 penalty of the learned individuality
embeddings ϕ.

We also introduce an optional adversarial loss term to encourage the model to learn embeddings
that are semantically consistent over time, i.e. to only represent two entities that were present in
the dataset at different times with different embeddings if this is strictly necessary to factorize the
matrices A. We jointly train a discriminative network d(ϕi) that tries to classify the time of the first
occurrence of all entities based on their individuality embeddings ϕ. The negative cross-entropy
loss of this model is added as a regularization term to equation 6.5 in a training regime similar to
generative adversarial networks (Goodfellow et al., 2020). Note that a high cross-entropy loss of
the discriminative network d(ϕi) implies that the distribution of individuality embeddings ϕ is
consistent over time.

We implemented the model using PyTorch (Paszke et al., 2019) and trained it in minibatches
of 256 individuals for 200 000 iterations with the Adam optimizer (Kingma and Ba, 2015). We

calculate the reconstruction loss
∥∥∥At − Ât

∥∥∥2 only for valid entries, i.e., we mask out all matrix
elements where one of the individuals is not alive at the given time t. The code of our reference
implementation is publicly available: [Link redacted during peer review to preserve anonymity]

6.5.2 Data
Synthetic data

We created synthetic datasets using a generative model of interactions based on a common latent
trajectory of factors and groups with structured variations from this trajectory. We compute the
number of interactions between two individuals as the dot product of their latent factors and
additive Gaussian noise. Using these datasets we can evaluate whether the model successfully
converges and is able to correctly identify which individual belongs to which latent group, even in
the presence on high amounts of observational noise. While we believe that such a latent structure
exists in most complex social systems, it is not directly observable, and thus, for data from a real
system, we can only evaluate the model on proxy measures (see section 6.5.3) that are observable.

We model a common lifetime trajectory of factors using a smoothed Gaussian random walk
in R+ with σwalk = 1 for the steps of the random walk and σsmoothing = 10 for the Gaussian
smoothing kernel. See Figure S3 a) for one example of a generated lifetime trajectory with three
factors. We then randomly create latent groups by creating smoothed Gaussian random walks
that define how these groups differ from the common lifetime trajectory. See Figure S3 b) for the
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Figure S3: Example of one synthetic dataset. a) Common lifetime trajectory of all entities. b) The
lifetime trajectory of one latent group. c) The factors of one individual in the dataset of
the latent group visualized in b. d) Generated interaction matrix for one day.

lifetime trajectory of one latent group. For each group, we also define different expected mean
lifetimes. We set the average lifetime of an entity to 30 days with a standard deviation of 10 days.
We then randomly assign 1024 individuals to those latent groups and also assign random dates of
emergence and disappearance of these individuals in the dataset. We then compute the individual
factor trajectories for each individual, as can be seen in Figure S3 c). Finally, for 100 days of
simulated data, we generate interaction matrices by computing the dot products of the factors of
all individuals (Figure S3 d).

We then measure how well the individuality embeddings ϕ of a fitted model match the true
latent groups from the generative model using the adjusted mutual information score (Nguyen
et al., 2009). Furthermore, we measure the mean squared error between the ground truth factors
and the best permutation of the factors f+. We evaluate the model on 128 different random
synthetic datasets with increasing Gaussian noise levels in the interaction tensor.

Honey bee data

Honey bees are an ideal model system with a complex and highly dynamic social structure. The
entire colony is observable most of the time. In recent years, technological advances have made it
possible to automatically track individuals in entire colonies of honey bees over long periods of
time (Wario et al., 2015; Gernat et al., 2018; Boenisch et al., 2018a). We analyze a dataset obtained
by tracking thousands of individually marked honey bees at high temporal and spatial resolution,
covering entire lifespans and multiple generations.

Two colonies of honey bees were continuously recorded over a total of 155 days. Each individual
was manually tagged at emergence, so the date of birth is known for each bee. Timestamps,
positions, and unique identifiers of all (N=9286) individuals from these colonies were obtained
using the BeesBook tracking system (Wario et al., 2015; Boenisch et al., 2018a; Wild et al., 2021b).
See Table 6.1 for dates and number of individuals. Temporal affinity matrices were derived from this
data as follows: For each day, counts of proximity contact events were extracted. Two individuals
were defined to be in proximity if their markers’ positions had an euclidean distance of less than
2 cm for at least 0.9 seconds. The daily affinity between two individuals i and j based on their
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6 Learning to embed lifetime social behavior from interaction dynamics

counts of proximity events pt,i,j at day t was then computed as: At,i,j = log(1 + pt,i,j), A ∈
RNt×Ni×Ni , where Nt is the number of days and Ni the number of individuals in the dataset.

The datasets also contains labels that can be used in proxy tasks (see section 6.5.3) to quantify if
the learned embeddings and factors are semantically meaningful and temporally consistent.

The datasets are open access and available under the Creative Commons Attribution 4.0 Interna-
tional license: [Link redacted during peer review to preserve anonymity].

Dataset Dates Days Individuals Interaction pairs

BN16 2016-07-23 to 2016-09-17 56 2443 43 174 748
BN19 2019-07-25 to 2019-11-01 99 6843 167 366 381

Table 6.1: The honey bee datasets contain the number of proximity-inferred interactions extracted
from tracking data of all individuals in two long-term recordings spanning a total of 155
days and 9286 individuals.

In both datasets, we define c(t, i) as the age in days of an individual i at time t.

6.5.3 Evaluation
Reconstruction: We measure how well the original interaction matrices A can be reconstructed
from the factors. We do not require the model to reconstruct the interaction matrices as well
as possible because we only use the reconstruction as a proxy objective to learn a meaningful
representation. Still, a high reconstruction loss could indicate problems with the model, such as
excessive regularization.
Consistency: We measure to what extent the individuality embeddings ϕ change over time.
For each model, we train a multinomial logistic regression model to predict the source cohort
(date of birth) and calculate the area under the ROC curve (AUCcohort) using a stratified 100-
fold cross-validation with scikit-learn (Pedregosa et al., 2011). The baseline models do not learn
an individuality embedding; therefore we compute how well the model can predict the cohort
using the mean factor representation of the individuals over their lives. We define consistency as
1 − AUCcohort of this linear model. Note that a very low temporal consistency would indicate
that the development of individual bees changes strongly between cohorts and colonies, which we
know not to be true.
Mortality and Rhythmicity: We evaluate how well a linear regression model can predict the
mortality (number of days until death) and circadian rhythmicity of the movement (Wild et al.,
2021b) (R2 score of a sine with a period of 24 h fitted to the velocity over a three-day window).
These metrics are strongly correlated with an individual’s behavior (e.g. foragers exhibit strong
circadian rhythms because they can only forage during the daytime; foragers also have a high
mortality). We follow the procedure given in (Wild et al., 2021b) and report the 100-fold cross-
validated R2 scores for these regression tasks.
Time spent on different nest substrates: For a subset of the data, from 2016-08-01 to 2016-08-
25, nest substrate usage information is also available. This data contains the proportion of time
each individual spends in the brood area, honey storage, and on the dance floor. This data was
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6.6 Results

previously published and analyzed (Wild et al., 2021a,b). The task of an honey bee worker is strongly
associated with her spatial distribution in the hive. We therefore expect a good representation of
the individuals’ functional role to correlate with this distribution.

For this data, we expect the factors f+ and individuality embeddings ϕ to be semantically
meaningful and temporally consistent if they reflect an individual’s behavioral metrics (mortality
and rhythmicity) and if they do not change strongly over time (measured in the consistency metric).

6.5.4 Baseline models

Biological Age: Task allocation in honey bee is partially determined by temporal polyethism.
Certain tasks are usually carried out by individuals of about the same age, e.g. young bees are usually
occupied with nursing tasks. We therefore use the age of an individual as a baseline descriptor.

Symmetric NMF: We compute the factors that optimally reconstruct the original interaction
matrices using the standard symmetric NMF algorithm (Shi et al., 2015; Kuang et al., 2015), for
each day separately, using the same number of factors as in the TNMF model.

Optimal permutation SymNMF: We consider a simple extension of the standard SymNMF
algorithm that aligns the factors to be more consistent over time. For each pair of subsequent days,
we consider all combinatorial reorderings of the factors computed for the second day. For each
reordering, we compute the mean L2 distance of all individuals that were alive on both days. We
then select the reordering that minimizes those pairwise L2 distances and greedily continue with
the next pair of days until all factors are aligned. Furthermore, we align the factors across colonies
(where individuals cannot overlap) as follows: we run this algorithm for both datasets separately
and align the resulting factors by first computing the mean embedding for all individuals grouped
by their ages. As before, we now select from all combinatorial possibilities the reordering that
minimizes the L2 distance between the embeddings obtained from both datasets.

Tensor decomposition: We also compare against a constrained non-negative tensor decomposition
model with symmetric factors F ∈ RN×M

+ and temporal dynamics constrained to the diagonals,
i.e. D ∈ RT×M×M

+ and Dt = diag(dt), dt ∈ RM
+ .

Ât = FDtF
T (6.6)

F̂ , D̂ = argmin
F ,D

T−1
T∑
t=0

∥∥∥At − Ât

∥∥∥2 (6.7)

Temporal NMF models: We evaluate variants of the temporal symmetric matrix factorization
algorithms proposed by (Jiao et al., 2017) and (Yu et al., 2017a).

For the tensor decomposition and temporal NMF baselines, we follow the procedure given
above for the Optimal permutation SymNMF to find the optimal reordering to align the factors
obtained by applying models to the two datasets separately.
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Figure S4: AMI score and mean squared error between true factors and the best permutation of
learned factors for increasing noise levels. The median values over 128 trial runs are
shown.

6.6 Results

6.6.1 Synthetic data
We find that for low levels of noise, our model can identify the truth group assignments with
high accuracy, and are still significantly better than random assignments even at very high levels
of noise (see figure S4). Note that for this experiment, we evaluated a model with the same
hyperparameters as used in all plots in the results section (see Table 6.2) and a variant without
explicit regularization except theL1 penalty of the learned individuality embeddingsϕ (λembeddings,
because this regularization is required to meaningfully extract clusters), which was set to 0.1.

6.6.2 Honey bees
Mean lifetime model: The model learns a sparse representation of the developmental trajectory
of a honey bee in the space of social interactions. Only two factors are effectively used (they exceed
the threshold value of 0.01). These factors show a clear trend over the life of a bee, indicating that
the model captures the temporal aspects of the honey bee division of labor (See Figure S5).
Interpretability of factors: To understand the relationship between the factors and division
of labor, we calculate how the factors map to the fraction of time an individual spent on the
brood area, honey storage, or dance floor (where foragers aggregate). Time spent on these different
substrates is a strong indicator of an individual’s task. The factor f1, which peaks at young age
(Figure S5), correlates with the proportion of time spent in the brood area, while a high f0 indicates
increased time spent on the dance floor. Therefore, the model learned to map biologically relevant
processes.
Individuality basis functions and individuality embeddings: Due to the regularization of
the embeddings, the model learns a sparse set of individuality basis functions. As encouraged by the
model, most individuals can predominantly be described by a single basis function. That means
that while each honey bee can collect a unique set of experiences, most can be described with a
few common individuality embeddings which are consistent across cohorts and colonies. In the
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Figure S5: a) Mean lifetime trajectories according to m(c(t, i)). The model learns a sparse repre-
sentation of the functional position of the individuals in the social network. f0 (blue)
mostly corresponds to middle-aged and older bees, and f1 (orange) predominantly
describes young bees. Only factors with a mean magnitude of at least 0.01 are shown.
b) Even though the model uses only these two factors, it is still expressive enough to
capture individual variability, as can be seen in randomly sampled individuals’ lifetime
trajectories. c) The individual factors f+ and the proportion of time the individuals
spent on different nest substrates. The strong correlation indicates that the learned
factors are a good representation of the individuals’ roles in the colonies. Note that the
factors have been divided by their standard deviation here for ease of comparability.

context of honey bee division of labor, the basis functions are interpretable because the factors
correspond to different task groups. For example, b12(c(t, i)) (accounting for≈ 10.7% of the
individuals) describes workers that occupy nursing tasks much longer than most bees.
Evaluation: We verify that the learned representations of the individuals are meaningful (i.e., they
relate to other properties of the individuals, not just their interaction matrices) and semantically
consistent over time and across datasets using the metrics described in the section Evaluation.
We compare variants of our model with different adversarial loss scaling factors and factor L1

regularizations, the baseline models, and the individuals’ ages. We expect a good model to be
temporally consistent and semantically meaningful. All variants of our model outperform the
baselines in terms of the semantic metrics Mortality and Rhythmicity, except for the (Yu et al.,
2017a) model, which performs comparably well in the Mortality metric. The adversarial loss term
further increases the Consistency metric without negatively affecting the other metrics. A very
strong adversarial regularization (see row with λadv = 1 in Table 6.2) prevents the model from
learning a good representation of the data. See Table 6.2 for an overview of the results.
Scalability: The functions m(c(t, i)) and b(c(t, i)) are learned neural networks with non-
linearities. The objective is non-convex and we learn the model parameters using stochastic gra-
dient descent. Optimization is therefore slower than the standard NMF algorithms that can be
fitted using algorithms such as Alternating Least Squares (Kim et al., 2014). We found that the
model converges faster if the reconstruction loss of the age based model m(c(t, i)) is additionally
minimized with the main objective in equation 6.5. Due to the minibatch training regime, our
method should scale well in larger datasets. Small neural networks were sufficient to learn the
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Model

Method Variant
∥∥∥A− Â

∥∥∥2 ↓ Consistency ↑ Mortality ↑ Rhythmicity ↑

Age - - - 0.02 0.20
SymNMF Vanilla 0.9 0.18 0.01 0.02
SymNMF Optimal permutation 0.9 0.12 0.09 0.35
Tensor decomposition - 1.36 0.03 0.06 0.09
DNMF (Jiao et al., 2017) γ = 0.1 0.9 0.19 0.02 0.05
DNMF (Jiao et al., 2017) γ = 1 1.15 0.15 0.01 0.04
s-TMF (Yu et al., 2017a) β = 0.01, d = 5 1.59 0.03 0.17 0.06

TNMF No regularization 1.21 0.17 0.30 0.48
TNMF λadv = 0, λf = 0.01 1.26 0.18 0.10 0.40
TNMF λadv = 0.1, λf = 0.01 1.28 0.35 0.20 0.42
TNMF λadv = 1, λf = 0.01 1.88 0.5 0.03 0.25
TNMF λadv = 0, λf = 0.1 1.31 0.19 0.09 0.38
TNMF λadv = 0.1, λf = 0.1 1.33 0.37 0.10 0.42

Table 6.2: The evaluation metrics for TNMF and the baseline models described in section 6.5.3.
Note that the SymNMF model reconstruction loss can be seen as a lower bound for
the matrix factorization models considered here, and imposing a temporal structure
or regularization causes all models to explain less variance in the data. However, for all
models except TNMF this does not result in a significant increase of the other metrics.
The underlined model is used in all plots in the results section.

functions m(c(t, i)) and b(c(t, i)) in our experiments. Most of the runtime during training is
spent on the matrix multiplication f+(t, i) · f+(t, j)T and the corresponding backwards pass.
Tradeoff between temporal consistency and semantic meaningfulness: We performed
a grid search over the hyperparameters λf, λadv, λbasis, and λembeddings (see Table 6.3) to evaluate
whether models can only be either semantically meaningful or temporally consistent. For this
analysis, we define Semantic meaningfulness as the sum of the Rhythmicity and Mortality metrics
introduced in section 6.5.3. We find that models that are very temporally consistent fail to learn
semantically meaningful information. Interestingly, the models with the best tradeoff between the
two metrics are almost as semantically meaningful as those models with low temporal consistency
and the highest semantic meaningfulness. This analysis suggests that regularization encourages the
model to only represent different individuals differently if this is strictly necessary to factorize the
data.

6.7 Discussion
Temporal NMF factorizes temporal matrices with overlapping and even disjoint communities by
learning an embedding of individuals as a function of a common factor, such as age, and a learned
representation of the individuals’ individuality. This explicit dependency on a common factor that
partially determines the function of an individual constitutes an inductive bias. We show that the
model learns semantically consistent representations of individuals, even in challenging cases, such
as the datasets analyzed in this work.
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Figure S6: Left: Hierarchical clustering of individuality embeddings: Most individuals strongly
correspond to a single individuality basis function, making it easy to cluster their life-
time social behavior (i.e. each individual has a high value in a single dimension for their
individuality embedding). Because each cluster is strongly associated with a specific
individuality basis function, and because each basis function is interpretable (Figure S5),
these blueprints of lifetime development can also be intuitively understood and com-
pared. Right: TSNE plots of the individuality embeddings colored by cluster (left)
and the maximum circadian rhythmicity of an individual during her lifetime (right),
indicating that the embeddings are semantically meaningful.

The individual components of the model are straightforward to visualize and interpret. The
learned individuality embeddings ϕ can be understood as soft-cluster assignments relating to the
whole lifetime of an individual, while the factor vectors f+(t, i) can be interpreted as cluster
assignments of the individuals at a specific point in time, i.e. two individuals with similar factor
vectors are likely to interact if they exist in the same group at the same time. Furthermore, the
model encourages sparsity, making the results easier to interpret because the model only uses as
many factors and clusters as necessary.

We identified a crucial trade-off that comes with temporal consistency: For a specific point in
time, the ability to predict behaviorally relevant attributes will likely be worse for a model that
learns temporally consistent representations compared to a non-consistent model with the same
capacity. Conversely, in more challenging cases, e.g. when taking long periods of time or data
from disjoint communities into consideration, temporally consistency is indispensable for a good
representation. Furthermore, we found that models can be temporally consistent, semantically
meaningful, or both; selecting the correct model requires an inductive bias, but regularization of
the model also influences the results.

On the honey bee dataset, TNMF obtains biologically meaningful lifetime trajectories with
promising prospects for experimental application. TNMF may help advance our understanding of
the colony function and the interplay between environmental factors and individual and collective
responses. The method presented here offers a way to investigate the impact of stress factors, such
as pesticides, parasitic mites, and agricultural monoculture, on the social structure of colonies.
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6.8 Ethics Statement
German law does not require approval of an ethics committee for studies involving insects.

6.9 Supporting information

6.9.1 Model details and hyperparameters
Regularization terms

Rembeddings = λembeddingsN
−1
i

Ni∑
i=0

K∑
k=0

|ϕi,k| (6.8)

Rf = λfN
−1
i

Ni∑
i=0

Nt∑
t=0

f+(t, i) (6.9)

Rbasis = λbasisN
−1
a

Na∑
a=0

K∑
k=0

|bk(a)| Na = 60 (6.10)

where Na can be any number higher than the oldest individual in the dataset at any time.

Radv = λadvN
−1
i

Ni∑
i=0

log

(
exp(d(ϕi)c[i])∑Nd
d exp(d(ϕi)d)

)
(6.11)

where d(ϕi) is the probability distribution returned by the discriminative network, c[i] the day
the entitity i emerged in the dataset, and Nd the number of days in the dataset.

See appendix 6.9.2 for an ablation study of the effect of these regularization term on the results.

Network architecture

We use the following neural network architecture for the functions m(c(t, i)), b(c(t, i)), and
d(ϕi):

Linear(Nin, Nh)→ LReLU→ Linear(Nh, Nh)→ LReLU︸ ︷︷ ︸
Nl-times

→ Linear(Nh, Nout)

where Linear is an affine transformation f(x) = Ax+ b and α = 0.3 for the Leaky ReLU acti-
vation function. For m(c(t, i)) and b(c(t, i)): Nin = 1 (the individuals’ ages). For m(c(t, i)):
Nout = M and for b(c(t, i)): Nout = MK . For d(ϕi): Nin = K and Nout = Nlabels.

Hyperparameters

The scaling factors for the regularization losses (see Table 6.3) were manually selected by increasing
each factor until it prevented the model from converging (i.e. the reconstruction loss of the full
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Table 6.3: Hyperparameters used in the evaluated models (if not stated otherwise)

Parameter Value Description

Nl 3 Number of hidden layers
Nh 64 Hidden layer size
M 8 Number of factors
K 16 Number of individuality basis function
Nlabels 100 Number of cohorts
Nbatch 128 Minibatch size
Nsteps 100 000 Number of training iterations
λf 0.1 Factor L1 regularization
λadv 0.1 Factor L1 regularization
λbasis 0.01 Basis function L1 regularization
λembeddings 0.1 Embedding L1 regularization

model f+(t, i) did not improve on the age model m). This initial set of hyperparameters was then
manually refined such that each regularization loss was still effective (e.g. the factor regularization
loss Lf reduced the total number of factors effectively used by the model). Overfitting was not
a concern because the model is fitted unsupervised and the goal of the hyperparameter selection
was to find a set of parameters that is sparse and interpretable, and not to increase the predictive
capabilities of the learned factors.

Model fitting

The model was fitted using a single GPU (GeForce RTX 2080 Ti). A training run consisting of
200 000 minibatches finished in about six hours. Due to overhead in data loading and prepro-
cessing, up to three training runs could be executed in parallel without negatively affecting the
runtime.
Algorithm 1: Training loop

for b = 0 to Nsteps do
Draw minibatch of Nbatch random individuals
Compute Ât,i,j ∀t for individuals i, j in minibatch
Compute model training loss: equation 6.5 + regularization
Update parameters for m(c(t, i)), b(c(t, i)), and d(ϕi)

Compute l̂i = d(ϕi) for individuals i in minibatch
Compute discriminator training loss
Update parameters for d(ϕi)

end for
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6 Learning to embed lifetime social behavior from interaction dynamics

6.9.2 Ablation study
As highlighted in section 6.6, the regularization terms Rf and Radv improve the semantic meaning-
fulness and temporal consistency of the model. Here we present an ablation study that shows the
effects of the regularization terms on the sparseness and interpretability of the learned factors and
embeddings, and how the adversarial term influences the distribution of the learned embeddings.
While the regularization terms increase the methodological complexity of the model, we argue that
they improve the interpretability of the results.
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Figure S7: A model trained without the regularization terms Rembeddings, Rf, Rbasis, and Radv. The
model uses all eight factors, and many of them are strongly correlated (left). Most
individuals personality offsets are a function of multiple embeddings (right).
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Figure S9: The regularization terms Rembeddings and Rbasis introduce sparseness in the embeddings
(right), and also slightly decorrelate the factor trajectories (left).

Adversarial regularization

Figure S10: Scatter plots of the individuality embeddings ϕ (reduced to two dimensions using
TSNE) for two models trained without (left) and with adversarial (right) regularization.
The color encodes the dataset of the individuals (Dark = BN16, Bright = BN19). The
model with adversarial regularization learns to embed the individuals from two different
colonies that never interacted with each other in a joint individuality embedding space.

6.9.3 Baseline models

We implemented SymNMF, and models proposed in (Jiao et al., 2017) and (Yu et al., 2017a) in
PyTorch and compare them to our method. Following the notation given in (Yu et al., 2017a), we
list the degree of the fitted polynomial as d, and the regularization parameter as β. For the model
proposed by (Jiao et al., 2017), we list the regularization as γ. For SymNMF, the Aligned variant
refers to the Aligned symmetric NMF described in section 6.5.4.

We only evaluate the non-negative and symmetric variants of the models for consistency with
our method. For all baselines, we only list the hyperparameters with the best results that we were
able to obtain.
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Figure S11: A grid search over the hyperparameters reveals that models can be temporally consis-
tent, semantically meaningful, or both. Semantic meaningfulness is the sum of the
Rhythmicity and Mortality metrics introduced in section 6.5.3. The arrow points to
the model with the best tradeoff.

Temporal reordering of factors for baseline models

Algorithm 2: Temporal reordering of factors for baseline models
for d = 0 to Ndays do

Fresult < −
if d == 0 then

Fprevious_reordered ← Precomputed SymNMF factors of day 0
else

Fcurrent ← Precomputed SymNMF factors of day d
min_loss← 0
Fbest ← Fcurrent
for all permutations p of orderings of factors [0..M ] do

Fcurrent_reordered ← Fcurrent reordered by permutation p
if (Fcurrent_reordered − Fprevious_reordered)

2 < min_loss then
min_loss← (Fcurrent_reordered − Fprevious_reordered)

2

Fbest ← Fcurrent_reordered
end if

end for
Fprevious_reordered ← Fbest

end if
Fresult.insert(Fprevious_reordered)

end for
return Fresult
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6.9.4 Learned basis functions and individual trajectories
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Figure S12: a) Magnitude of factor offsets for the five most common individuality basis functions
over age bk(c(t, i)). The percentage of individuals that most strongly correspond
to the individual basis functions is shown in the column titles. More than 60% of
the individuals strongly correspond to one of the five basis functions shown here.
b) Because the basis functions describe individuality offsets from the mean lifetime
trajectory, it may be easier to interpret them by visualizing individual examples. For
each of the basis functions (top row), we show a lifetime trajectory of an individual
that corresponds to that basis function (bottom row). Note that individuals can die or
disappear at any time (solid lines). The mean lifetime trajectories are shown as dotted
lines in the background.
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7 Discussion

This thesis entitled Individuality in the hive investigates the emergence of collective behavior in
social animals, focusing on honey bee colonies as a model system. It poses two primary research
questions: how does collective behavior arise in animal societies without central organization,
and how do individual behaviors contribute to collective outcomes? To address these questions,
this study introduces methods to track individual honey bees and analyze their behaviors and
interactions within the colony. The following discussion reviews the key findings emerging from
this work.

The first paper, entitled Tracking All Members of a Honey Bee Colony Over Their Lifetime
Using Learned Models of Correspondence (Chapter 3), introduces a novel method for automatically
tracking individual honey bees within a colony, which enables the observation of large numbers
of individuals and their interactions over extended periods. The proposed system uses machine
learning techniques to identify and distinguish between individuals and employs an elaborate
tracking algorithm, resulting in a unique and extensive trajectory dataset for investigating honey
bee collective behavior. The paper demonstrates the potential of computer vision and machine
learning techniques for addressing the challenges of tracking bees within a colony. It also estab-
lishes foundational methods for subsequent works that utilize this dataset to measure space usage,
movement patterns, and social interactions of every individual in a honey bee colony.

The second paper, entitled Social networks predict the life and death of honey bees (Chapter 4),
explores the relationship between individual behaviors and the emergence of collective behavior in
honey bee colonies. This paper proposes a method to evaluate the social network of honey bees
and its impact on their development and behavior. This method introduces a concise descriptor
termed network age, which effectively predicts task allocation, survival, activity patterns, and future
behavior. A detailed analysis of the developmental trajectories of multiple cohorts of individuals
in a natural setting using network age identifies distinct developmental pathways and critical life
changes. Along with this work, the first-ever large-scale honey bee tracking dataset was released,
opening up a broad range of future studies (Wild et al., 2021a). The third paper, entitled Individual
variation in behavior and task allocation in honeybee colonies (Chapter 5), focuses on the behavioral
variation of individuals with the collective across their days and lives. The study uses behavioral
metrics to compare the individual’s behavior at different timescales and describes how bees differ
in space use, detection, and movement at the scale of a single day and how some bees consistently
exhibit different movement patterns and transition to dance floor and outside activities at different
ages throughout their entire lifetimes. This quantitative analysis of individual behavioral variation
within a colony offers insights into the relationship between individual behaviors of honey bees
and how they may contribute to colony function. The data used in this study was likewise made
publicly accessible as an open-access data set (Smith et al., 2022c).
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The fourth paper, entitled Learning to Embed Lifetime Social Behavior from Interaction Dy-
namics (Chapter 6), addresses a significant limitation of previous analyses in this thesis. While
the previous studies created and analyzed honey bee tracking datasets of unprecedented scale and
detail, they were each limited to a single recording setup and used methods unsuitable for analyzing
data acquired from multiple colonies or over extended periods. To address this issue, the paper
introduces a new method that identifies the functional roles of individuals in social groups over
time using several datasets of lifetime trajectories of individually marked honey bees acquired
from different recording setups. The method uses a temporal matrix factorization model that
jointly learns the average developmental path and structured variations of individuals in the social
network over their entire lives. The resulting embeddings allow for the comparison of individuals’
functional roles regardless of when or in which colony they lived and provide a novel quantitative
framework for understanding behavioral heterogeneity in complex social systems across time and
space. This work represents a significant methodical advance in the study of collective behavior in
honey bee colonies and provides a principled method to investigate the underlying mechanisms
and principles that govern the emergence of such behavior.

In summary, the thesis has investigated the emergence of collective behavior in complex animal
societies without central organization and the relationship between individual behaviors and
the global behavior of the collective. By using honey bees as a model organism, the thesis has
demonstrated the potential of computer vision and machine learning techniques in tracking and
analyzing individual honey bees’ movements and interactions, revealing insights into the social
organization of honey bee hives and their collective behavior. Specifically, the thesis has introduced
novel methods for automatically tracking individual honey bees, assessing their social network,
analyzing their behavioral variation, and identifying their functional roles in social groups over time.
These methods provide a foundation for future studies and contribute to a better understanding
of the importance of studying individual behaviors to understand collective phenomena.

While this thesis significantly advances our understanding of emergent behavior in social animals,
it is not without limitations. One of the main limitations is the strong focus on methods and
individual behavior. While these methods are applied to explain collective behavior, future studies
could more directly study collective behavior to provide a comprehensive understanding of its
underlying mechanisms. Additionally, the study relies solely on observational data, and no specific
interventions or further experiments are conducted to study specific behaviors or phenomena in a
controlled setting. Another limitation is the reliance on honey bees as the sole model organism to
investigate collective behavior. While honey bees are an excellent model organism, the findings
may not be entirely generalizable to other social animals. Moreover, the study’s setup, which
relies on computer vision and identification markers attached to individuals’ thoraxes, means that
not all bees can be detected at all times, particularly outside the colony. Additionally, the system
cannot capture many sensory modalities relevant to bee social behavior, such as olfactory signals
or vibrations. Another significant area for improvement in the study is the technological barrier
to employing these methods. Setting up the recording system, tracking algorithm, and accessing
the necessary storage and compute resources is not straightforward and requires collaboration
between biologists and computer scientists. Likewise, data analysis using the proposed methods
is technically challenging due to the scope of the data and the complexity of data analysis. Thus,
analyzing the large and complex datasets requires expertise from both biologists and computer
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scientists, leading to results based on data acquired from only two recording sites in Berlin and
Konstanz. While the data collected from these sites provides valuable insights, the results may not be
entirely generalizable to other contexts or settings. In conclusion, while this thesis provides valuable
insights into the emergent behavior of social animals, it is essential to recognize its limitations.
The study’s focus on methods and individual behavior, its reliance on observational data, and
the use of honey bees as the sole model organism may limit the generalizability of the findings.
Additionally, the technological and data analysis challenges associated with the study may prevent
the broad adoption of these methods in other settings. Nonetheless, the thesis provides a solid
foundation for future research to build upon, and the study’s findings have significant implications
for understanding the mechanisms underlying collective behavior.

There are several potential directions for future work building on the limitations and contribu-
tions of this thesis. First, while honeybees have been used as a model organism in this study, it would
be beneficial to apply the presented methods to investigate the collective behavior of other social
animals, such as ants or termites, to assess the generalizability of the methods and findings. Second,
while this thesis provides a comprehensive analysis of honey bee behavior in a natural setting,
future studies could explore the effects of specific interventions or controlled experiments on the
emergent behavior of a colony. For instance, researchers could investigate the effect of removing
specific individuals or modifying the social network on the collective behavior of a colony. Such
interventions would help identify the key factors that drive the emergence of collective behavior.
Likewise, the effect of external stressors such as heat or insecticides on the colony’s social network
and task allocation could be measured (Insolia et al., 2022). Furthermore, biomimetic robots could
be used to directly interfere and interact with, e.g., the honey bee waggle dance communication,
thus allowing researchers to directly interfere in the communication of forage sites and measure the
effect on the social interaction networks (Landgraf et al., 2012; Koenig et al., 2020). Third, future
work could explore the potential of other sensory modalities, such as vibrations or olfactory signals,
to complement the visual tracking system employed in this thesis (Uthoff et al., 2023). This could
provide a more complete picture of the social interactions within a colony and offer insights into the
role of non-visual cues in the emergence of collective behavior. Furthermore, the effects of genetic
and transcriptomic variation on individual behavior and the social interactions within the colony
could be directly measured using modern sequencing techniques (Jones et al., 2020). Fourth,
while the methods proposed in this thesis represent a significant technological advancement, there
is still room for improvement in accuracy and efficiency. For example, incorporating additional
machine learning techniques or developing new tracking algorithms that can handle more complex
environments could further enhance the quality of the data and reduce the computational burden
of data analysis, e.g., by directly learning the optimal design of identification markers to improve
detection accuracy in the specific recording setup and conditions in an observation hive. Finally,
while the results of this study shed light on the mechanisms underlying collective behavior in
honeybee colonies, further research is needed to investigate the potential applications of these
methods. For instance, circadian rhythms are of fundamental importance in many biological
processes (Kondo et al., 1994; Bell-Pedersen et al., 2005), yet much of the existing research studying
these rhythms has been limited by small sample sizes, short observation periods, and unrealistic
conditions (Bloch et al., 2013). Furthermore, methods developed in this thesis could be applied
beyond the research of collective intelligence: For example, the Temporal Nonnegative Matrix
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Factorization (TNMF) introduced in Chapter 6 could be applied to many settings in which matrix
factorization is commonly used, such as recommender systems, network analysis, audio processing,
bioinformatics, and more.

To conclude, this thesis has provided insights into the emergence of collective behavior in social
animals, and introduced novel methods for automatically tracking individual honey bees, assessing
their social network, analyzing their behavioral variation, and identifying their functional roles.
The presented findings have shed light on the social organization of honey bee hives and their
collective behavior, demonstrating the importance of studying individual behaviors to understand
collective phenomena in complex systems.
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Zusammenfassung der Ergebnisse

In dieser Dissertation wird das kollektive Verhalten von sozialen Tieren untersucht, wobei Ho-
nigbienenkolonien als Modellsystem dienen. Die Arbeit behandelt zwei grundsätzliche Fragestel-
lungen: die Ursprünge des kollektiven Verhaltens in sozialen Tiergesellschaften und die Rolle
individueller Verhaltensweisen in dem kollektiven Verhalten. Vier publizierte Arbeiten tragen zur
Arbeit bei:

Die erste Arbeit stellt eine auf Machine Learning basierte Methode zur Verfolgung einzelner
Honigbienen in einer Kolonie über ihre Lebenszeit vor. Dies ermöglicht die Analyse einer großen
Anzahl von Individuen und ihrer Interaktionen und bildet die Grundlage für die nachfolgenden
Arbeiten.

Die zweite Arbeit analysiert in das Verhältnis zwischen dem individuellem und kollektiven
Verhalten in der Kolonie. Es führt eine Methode namens network age ein, mit dem die Aufga-
benzuteilung, Überleben und Aktivitätsmuster von Individuuen auf Grundlage ihres sozialen
Netwzwerkes vorhergesagt werden kann. Die Ergebnisse zeigen, dass soziale Netzwerke innerhalb
der Kolonie die individuelle Entwicklung und das Verhalten erheblich beeinflussen.

Die dritte Arbeit konzentriert sich auf die Verhaltensvariationen einzelner Honigbienen. Mittels
quantitativer Analysen wird untersucht, wie individuelle Verhaltensweisen zur Gesamtfunktion
der Kolonie beitragen. Die unterschiedlichen Verhaltensmuster von Bienen in innerhalb eins Tages
und über ihr gesamtes Leben hinweg werden analysiert.

Die vierte Arbeit stellt eine neue Methode vor, die die Analyse von Daten über mehrere Kolonien
über sehr lange Zeiträume ermöglicht. Die Methode ist ein temporales Matrixfaktorisierungsmo-
dell, mit dem die funktionalen Rollen von Individuen in sozialen Gruppen zu identifiziert werden
können. Dieser Ansatz ermöglicht die quantitative Analyse von Verhaltensweisen und Rollen von
Individuen in komplexen sozialen Systemen über Zeit und Raum hinweg.

Zusammenfassend entwickelt die Arbeit neuartige Methoden zur Verfolgung, Analyse und
zum Verständnis individueller und kollektiver Verhaltensweisen in Honigbienenkolonien. Diese
Beiträge tragen nicht nur Erforschung des Verhaltens sozialer Insekten bei, sondern bieten auch
eine Grundlage für zukünftige Forschungen zum Verständnis kollektiven Verhaltens in komplexen
Systemen.
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