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Abstract: The very limited number of structurally known thionitrosyl complexes of technetium was
increased by the synthesis of [TcII(NS)Cl3(PPh3)2] (3) and [TcII(NS)Cl3(PPh3)(OPPh3)] (4) and their
reaction products with hydrotris(pyrazolyl)borates, {HB(pzR)3}−. Similar reactions were conducted
with [TcI(NO)Cl2(PPh3)2(CH3CN)] and related rhenium thionitrosyls. Remarkably, most such re-
actions result in a rapid cleavage of the boron–nitrogen bonds of the ligands and the formation of
pyrazole complexes of the two group 7 metals. Only one compound with an intact {HB(pzR)3}−

ligand could be isolated: the technetium(I) complex [TcI(NO)Cl(PPh3){HB(pz)3}] (2). Other prod-
ucts show the coordination of one or four neutral pyrazole ligand(s) in the coordination spheres of
technetium generated by thermal decomposition of the pyrazolylborates [TcI(NO)Cl2(PPh3)2(pzH)]
(1) and [TcI(NS)Cl(pzHMe2)4]+ (5). Reactions with the corresponding thionitrosylrhenium complex
[ReII(NS)Cl3(PPh3)2] require higher temperatures and only compounds with one pyrazole ligand,
[ReI(NS)Cl2(PPh3)(pzHR)] (6a–6c), were isolated. The products were studied spectroscopically and
by X-ray diffraction.

Keywords: technetium; rhenium; nitrosyl complexes; thionitrosyl complexes; pyrazolylborates

1. Introduction

Hydrotris(pyrazolyl)borates, {HB(pzR)3}−, belong to the remarkable family of scorpi-
onates, where these tripodal ligands are accompanied by tris(pyrazolyl)methanes, {HC(pzR)3},
hydrotris(mercaptoimidazolyl)borates, {HB(imzR)3}−, (η5-cyclopentadienyl)tris(dialkyl
phosphito-P)cobaltates(III), {LOR}− (Figure 1), and related ligand systems such as nitrogen
crown ethers or thiacrown ethers. Such compounds commonly coordinate metal ions in a
facial manner. They are isolobal with Cp− ligands and have found wide recognition in vari-
ous fields of coordination chemistry [1–8]. Technetium complexes with {HB(pzR)3}− ligands
are rare and mainly concern trioxido complexes of technetium(VII) or carbonyltechnetium(I)
compounds [9–13], while the coordination chemistry of rhenium with scorpionates is more
diverse [8,10,14–19]. There are also reports about potential applications of scorpionate com-
plexes of technetium and rhenium complexes in nuclear medical procedures on the basis
of tricarbonyl compounds [19–22]. Comparable compounds with nitrosyl or thionitrosyl
units are not yet known.

In general, the chemistry of nitrosyls of the radioactive element technetium [23–45] is
not as thoroughly described as that of the stable rhenium [25,46–53]. Less is known about
the corresponding thionitrosyl complexes of both elements [54–73]. This is most probably
due to the lack of a readily available monomeric nitrogen sulfide. Although some NS+ salts
have been isolated [74–77], their synthesis is still a challenge. Only occasionally have they
been used as starting materials for the synthesis of thionitrosyl complexes [54,76,77]. Other
suitable routes for the formation of NS+ or NSCl+ ligands have been established starting
from cyclic tetrasulfur tetranitride, S4N4, or trithiazyltrichloride, (NSCl)3. Such reactions,
however, sometimes give unpredictable products. A more or less convenient access to
low-valent thionitrosyl compounds, however, is given by the addition of sulfur atoms
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to nitrido ligands whenever corresponding high-valent nitrido complexes are available.
Such reactions proceed with a variety of sulfur sources, but the use of S2Cl2 usually gives
the best and most reproduceable results. It has also been used for the synthesis of some
rhenium and technetium thionitrosyls with the metals in their “+1” to “+3” oxidation
states [66,67,69–71,73,78].
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[Tc(NO)Cl(Cp)(PPh3)] shows an extended ligand exchange chemistry. During such reac-
tions, the robust {Tc(NO)(Cp)(PPh3)}+ core is essentially retained, while a variety of inter-
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ucts of similar stability with a “fixed” {Tc(NO)(PPh3)(LOMe)}+,2+ core were obtained when 
common nitrosyltechnetium complexes such as [TcI(NO)Cl2(PPh3)(CH3CN)] or 
[TcII(NO)Cl4(MeOH)]− were exposed to the “Kläui-type” ligand {LOMe}− [39,43]. The ready 
availability of the mentioned scorpionate complexes stimulated us to perform similar re-
actions with the classical Trofimenko ligand {HB(pz)3}− (Scheme 1).  

 
Scheme 1. Subsequent reactions of [Tc(NO)Cl2(PPh3)2(CH3CN)] and [Tc(NO)Cl2(PPh3)2(pzH)] with 
K{HB(pz)3). 

The starting material [Tc(NO)Cl2(PPh3)(CH3CN)] is only sparingly soluble, but sub-
sequently dissolves during ligand exchange procedures under formation of the products. 

Figure 1. Hydrotris(pyrazolyl)borates, {HB(pzR)3}−, used in the present paper and related isolobal
ligands.

2. Results and Discussion
2.1. Nitrosyl Complexes of Technetium

Recently, the syntheses of stable nitrosyltechnetium complexes with some of the
tripodal ligands shown in Figure 1 were reported [30,43], and in particular, the Cp−

derivative [Tc(NO)Cl(Cp)(PPh3)] shows an extended ligand exchange chemistry. During
such reactions, the robust {Tc(NO)(Cp)(PPh3)}+ core is essentially retained, while a variety
of interesting reactions were observed at the vacant sixth coordination position [30–32,79].
Products of similar stability with a “fixed” {Tc(NO)(PPh3)(LOMe)}+,2+ core were obtained
when common nitrosyltechnetium complexes such as [TcI(NO)Cl2(PPh3)(CH3CN)] or
[TcII(NO)Cl4(MeOH)]− were exposed to the “Kläui-type” ligand {LOMe}− [39,43]. The
ready availability of the mentioned scorpionate complexes stimulated us to perform similar
reactions with the classical Trofimenko ligand {HB(pz)3}− (Scheme 1).
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Scheme 1. Subsequent reactions of [Tc(NO)Cl2(PPh3)2(CH3CN)] and [Tc(NO)Cl2(PPh3)2(pzH)] with
K{HB(pz)3).

The starting material [Tc(NO)Cl2(PPh3)(CH3CN)] is only sparingly soluble, but sub-
sequently dissolves during ligand exchange procedures under formation of the products.
Such reactions are commonly performed under elevated temperatures to increase the reac-
tion rate. Heating was also required for the attempted reaction of [TcI(NO)Cl2(PPh3)(CH3CN)]
with K{HB(pzH)3}, since at room temperature no consumption of the starting complex
was observed irrespective of the solvents used. Upon heating in acetonitrile, however, a
red solution was rapidly formed and a non-radioactive, colorless solid precipitated. After
filtration, a red solid could be isolated (compound 1), the IR spectrum of which showed
a νNO band at 1708 cm−1. The frequency range of this absorption is a clear indicator of
the formation of a nitrosyltechnetium(I) complex, since the νNO signals of Tc(II) complexes
appear at markedly higher wavenumbers due to the lower extent of back-donation in anti-
bonding MOs of the nitrosyl ligands in such compounds. The diamagnetism of the product
is confirmed by the detection of resolved 1H NMR spectra with narrow lines and the detec-
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tion of a 99Tc NMR signal at 1217 ppm relative to TcO4
− (Figure 2). This chemical shift is

within the range that has been previously found for nitrosyltechnetium(I) compounds [27].
An analysis of the 1H spectrum indicates that it was not a simple ligand exchange reaction
with the insertion of an intact {HB(pz)3}− ligand that took place. This assumption was
confirmed by the results of an X-ray diffraction study (vide infra). The 31P NMR spectrum
of the product is characterized by a very broad line at about 35 ppm, which is accompanied
by a narrow signal at 20 ppm (most probably a minor impurity of OPPh3). The broadening
of 31P NMR lines is frequently observed in phosphine complexes of technetium when the
local symmetry around the metal atom is low. A common explanation is given by scalar
couplings with the large quadrupole moment of 99Tc (Q = –0.19 Å·10−28 m2) [80,81]. Such
interactions can cause extreme line-broadenings, which frequently make the resolution of
31P signals impossible [82–84].
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[Tc(NS)Cl(pzH)4]Cl (5Cl) (* indicates a small amount of [Tc(NS)(pzH)4]2+).

Red single crystals of compound 1 were obtained from a CH2Cl2/MeOH mixture. A
representation of the molecular structure is shown in Figure 3a. It clearly confirms the infor-
mation derived from the NMR spectra: that the potentially tripodal hydrotris(pyrazolyl)borate
ligand decomposed under the elevated temperatures used during the reaction and/or un-
der the influence of the transition metal. The product contains only one of the formed
pyrazole molecules, which is coordinated in the equatorial coordination sphere of the
resulting complex [Tc(NO)Cl2(PPh3)2(pzH)] (1) in trans position to a chlorido ligand. Linear
coordination is observed for the nitrosyl ligand, which is in agreement with all hitherto
structurally studied NO complexes of technetium and supports treatment as a NO+ unit. Re-
markably, the Tc–Cl bonds have almost the same lengths, which suggests that the structural
trans influences induced by NO+ and pyrazole ligands are similar.

Cleavage of the boron–nitrogen bonds in hydrotris(pyrazolyl)borates and related
compounds is not without precedence. It has also been observed during reactions with
other metal ions, and the released pyrazoles are commonly found as ligands in the prod-
ucts [85–89]. Such ligand decompositions are frequently observed at elevated temperatures,
as in the attempted reaction with [Tc(NO)Cl2(PPh3)2(CH3CN)]. Since all attempts at reac-
tions of K{HB(pz)3} with this almost insoluble starting material at room temperature failed,
we used the newly prepared pyrazol complex 1 as a precursor. [Tc(NO)Cl2(PPh3)2(pzH)]
(1) readily dissolves in a CH2Cl2/MeOH mixture and reacts at room temperature with
K{HB(pz)3} causing formation of the desired scorpionate complex [Tc(NO)Cl(PPh3){HB(pz)3}]
(2). Compound 2 precipitated as an orange-brown solid directly from the reaction mixture.
Single crystals of the product suitable for X-ray diffraction were grown from the same
solvents.
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The structural analysis of 2 confirmed that an intact scorpionate ligand is coordinated
to technetium in the expected tripodal mode (Figure 3b). Selected bond lengths and angles
are given in Table 1 and compared with corresponding values in the pyrazole complex
1. In the IR spectrum of 2, the νNO stretch appears at 1718 cm−1, which is close to the
value obtained for 1 and clearly confirms the “+1” oxidation state of technetium in the
product. The diamagnetism of the d6 system allows the recording of NMR spectra. Figure 3
contains the 99Tc spectrum at 1019 ppm, which is close to the signal of the nitrosyl complex
1. Both signals are relatively broad with line-widths between 3000 and 4000 Hz. Such
line-widths, however, are not unusual for technetium complexes with low local symmetry
and are explained by the large quadruole moment of 99Tc [80]. Extremely narrow signals are
usually only obtained for corresponding compounds with highly symmetric coordination
spheres, such as in octahedral [TcI(L)6]+ cations or in the tetrahedral TcVIIO4

− anion [81].

Table 1. Selected bond lengths (Å) and angles in [Tc(NO)Cl2(PPh3)2(pzH)] (1) and
[Tc(NO)Cl(PPh3){HB(pz)3}] (2).

Tc1–N10 N10–O10 Tc1–Cl1 Tc1–Cl2 Tc1–P1 Tc1–P2 Tc1–N1 Tc1–N3 Tc1–N5 Tc1–N10–O10

1 1.816(4) 0.946(4) 2.447(1) 2.443(2) 2.474(2) 2.473(1) 2.4149(4) - - 178.4(5)

2 1.764(7) 1.13(1) 2.425(2) - 2.4417(5) - 2.152(2) 2.172(1) 2.135(2) 174.3(5)

2.2. Thionitrosyl Complexes of Technetium

In contrast to the, to some extent, well-known nitrosyl chemistry of technetium [23–45],
thionitrosyl compounds of this element are rare. The general synthetic route for the
preparation of thionitrosyls, the addition of sulfur atoms to coordinated nitrido ligands,
also works for technetium. S2Cl2 is a suitable sulfur source for this approach, but reactions
with other sulfur-containing compounds such as SOCl2 [66], dithionite [72] or SCN− [62]
have also been reported for the (mostly unintended) synthesis of Tc thionitrosyls. Reactions
of (NBu4)2[TcCl6] with (NSCl)3 give the Tc(II) anion [Tc(NS)Cl4]− in good yields. The
product, however, is not stable in solution and gradually decomposes leading to the
formation of [TcVINCl4]− and elemental sulfur [73]. Since nitridotechnetium complexes
with {HB(pz)3}− ligands were not available, we decided to prepare PPh3 complexes as
starting materials. Corresponding procedures for the rhenium analogs have recently been
reported [78], and the general synthetic route can also be applied for technetium (Scheme 2).
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[TcNCl2(PPh3)2] is a sparingly soluble technetium(V) complex that found widespread
application in the synthesis of other nitrido compounds [90,91]. Reactions of this complex
with an excess of disulfur dichloride in CH2Cl2 at room temperature proceed with a rapid
dissolution of the starting material and the formation of a green solution, when performed
in an inert atmosphere. Similar observations can be made during corresponding reactions
in air: the nitrido complex readily dissolves and an initially green solution is formed,
indicating the formation of [Tc(NS)Cl3(PPh3)2] (3). Under aerobic conditions, however, the
reaction does not stop at this stage, but proceeds with the gradual formation of the red
oxidation product [Tc(NS)Cl3(PPh3)(OPPh3)] (4). As a solid, complex 3 is stable and can be
stored for several months. Solutions of compound 3, however, are sensitive to oxidation
and the mixed phosphine/phosphine oxide complex 4 can also be prepared from isolated
[Tc(NS)Cl3(PPh3)2] (3). Conversely, the addition of PPh3 to solutions of 4 and heating
re-forms compound 3 in good yields.

The course of such reactions can be estimated by the color of the reaction mixtures
(green to red or reverse). A more indicative monitor is the measurement of successive EPR
spectra of the reaction mixtures. As 4d5 “low-spin” complexes, compounds 3 and 4 are
S = ½ systems with one unpaired electron. This allows the measurement of resolved solu-
tion EPR spectra. Representative spectra of [Tc(NS)Cl3(PPh3)2] are depicted in Figure 4a,b
together with their simulations. A frozen-solution spectrum of compound 4 is shown as
the final product of the reaction sequence in Figure 4c.
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Figure 4. Solution EPR spectra of [Tc(NS)Cl3(PPh3)2] (3) in CH2Cl2 (a) at room temperature and (b) at
T = 77 K (assignment of the 99Tc lines to the parallel (∥) and perpendicular (⊥) parts of the spectrum
is indicated). (c) Frozen solution EPR spectra of a reaction sequence of 3 in CH2Cl2 under aerobic
conditions, indicating the gradual conversion of [Tc(NS)Cl3(PPh3)2] into [Tc(NS)Cl3(PPh3)(OPPh3)].

Interactions of the unpaired electron with the nuclear spin of 99Tc (I = 9/2) result in the
formation of ten-line patterns in the room temperature spectra (Figure 4a), while the spectra
of frozen solutions indicate essentially axial symmetry with well-resolved 99Tc hyperfine
lines in the parallel and perpendicular parts. The assignment of the individual lines is indi-
cated in Figure 4b. In contrast to the spectra of corresponding rhenium complexes [60,78], a
marked g value anisotropy is observed and no significant rhombic distortion of the tensor
components is detected. This may be attributed to the significantly different spin orbit cou-
pling constants of the respective central ions (λTc2+ = 950 cm−1, λRe2+ = 2100 cm−1) [92].
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Couplings due to interactions with the 31P nuclei of the coordinated phosphines are not re-
solved for the PPh3 complexes in this study. Interestingly, corresponding line-splittings are
characteristic of the parallel part lines of the frozen-solution spectra of similar nitrosyl- and
thionitrosyltechnetium(II) complexes with dimethylphenylphosphine (PMe2Ph) ligands,
where they cause doublet or triplet structures [67,70,93]. The absence of such splitting in
the EPR spectra of 3 and 4 may be caused by the somewhat broader 99Tc hyperfine lines, but
may also due to a lower extent of delocalization of the unpaired electron into ligand orbitals
of PPh3, which is indicated by the clearly larger 99Tc hyperfine couplings ATc for 3 and 4
compared with the values obtained for corresponding PMe2Ph complexes. Table 2 contains
a summary of the EPR parameters derived for the thionitrosyl complexes of the present
study, together with the values for [Tc(NS)Cl3(PMe2Ph)2], [Tc(NS)Cl3(PMe2Ph)(OPMe2Ph)]
and [Tc(NO)Cl3(PMe2Ph)2].

Table 2. EPR parameters of 3 and 4 together with the values for some other nitrosyl and thionitrosyl
complexes of Tc(II). Coupling constants are given in 10−4 cm−1.

g0 a0
Tc g∥ g⊥ A∥

Tc A⊥
Tc A∥

P Reference

[Tc(NS)Cl3(PPh3)2] (3) 2.011 164 1.955 2.0455 270 128 - This work

[Tc(NS)Cl3(PPh3)(OPPh3)] (4) 2.009 166 1.978 1.999 290 134 - This work

[Tc(NS)Cl3(PMe2Ph)2] 2.045 133 2.027 2.038 219 101 19 (a) [70]

[Tc(NS)Cl3(PMe2Ph)(OPMe2Ph)] 2.032 149 2.027 2.039 237 106 24 (b) [67]

[Tc(NO)Cl3(PMe2Ph)2] 2.045 125 2.034 2.053 215 88 19 (a) [93]
(a) Triplet, (b) Doublet.

The differences in the g values and 99Tc coupling constants between [Tc(NS)Cl3(PPh3)2]
and [Tc(NS)Cl3(PPh3)(OPPh3)] allow for ready differentiation of signals of the two com-
pounds in the respective spectra, particularly in their parallel parts, and qualitative (and
even semiquantitative) estimations do not require full spectral analyses. Thus, the course
of the gradual oxidation of one of the PPh3 ligands of 3, which is accompanied by the con-
version of 3 into 4, can be readily estimated on the basis of the clearly separated low-field
lines of the parallel parts of the spectra. This is illustrated in Figure 4c. The presence of the
EPR signals of (only) two different paramagnetic compounds (3 and 4) in the course of the
reaction is apparent, and after two hours practically all 3 is consumed during formation
of 4.

The spectral parameters discussed above reflect the structural changes that are related
to the oxidation of one PPh3 ligand. The newly formed OPP3 ligand is directed into trans
position of the NS+ ligand, while the two PPh3 ligands in 3 are coordinated trans to each
other in the equatorial coordination sphere. Such behavior is not unusual for complexes
with multiply bonded ligands, where the ligands with ‘hard’ donor atoms are arranged in
the trans position of, e.g., metal–nitrogen multiple bonds [25,29,35,43,49,67]. The structures
of the two complexes are shown in Figure 5 and selected bond lengths and angles are
summarized in Table 3.

Having in mind the results of the reaction of the nitrosyl complex [Tc(NO)Cl2(PPh3)2-
(CH3CN)] with hydrotris(pyrazolyl)borate, which proceeded with B–N bond cleavages and
the formation of a product with one pyrazole ligand (Scheme 1), it appeared interesting
to perform a similar reaction with the related thionitrosyl complex 3 as well. Unlike the
nitrosyl starting material, 3 is sufficiently soluble in common solvents and, thus, the reaction
can be performed at room temperature. A potential thermal decomposition of the ligand
should be avoided in this way.
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Figure 5. Molecular structures of (a) [Tc(NS)Cl3(PPh3)2] (3) and (b) [Tc(NS)Cl3(PPh3)(OPPh3)] (4).
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Table 3. Selected bond lengths (Å) and angles in [Tc(NS)Cl3(PPh3)2] (3) and
[Tc(NS)Cl3(PPh3)(OPPh3)] (4).

Tc1–N10 N10–S10 Tc1–Cl1 Tc1–Cl2 Tc1–Cl3 Tc1–P1/P2 Tc1–O1 P1–O1 Tc1–O1–P1 Tc1–N10–
S10

3 1.78(1) 1.51(1) 2.443(3) 2.357(2) - 2.570(2) - - - 180

4 1.68(2) 1.55(2) 2.346(6) 2.368(6) 2.356(6) 2.552(7) 2.09(1) 1.50(1) 154.4(9) 174(2)

Treatment of a solution of [Tc(NS)Cl3(PPh3)2] in CH2Cl2 with a methanolic solu-
tion containing an excess of K{HB(pzMe2)3} resulted in an immediate color change from
red to brown. From this solution, the unusual product [Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4}
(5{Cl(pzHMe2)4}) could be isolated; see Scheme 3. An EPR and 99Tc NMR monitoring of
the reaction mixture confirms rapid consumption of the paramagnetic starting material,
while several NMR signals appeared. After prolonged stirring at room temperature, a 99Tc
NMR signal at 566 ppm dominated. It belongs to cation 5, as could be confirmed by a
single crystal X-ray analysis of the pale blue crystals isolated from the reaction mixture
in moderate yields. Solutions of these crystals show the same 99Tc chemical shift together
with a minor amount of a second compound in the same spectral region (see Figure 2c),
which indicates some dynamic processes in the solution. The second species might be
assigned to [Tc(NS)(pzHMe2)4]2+ or [Tc(NS)(OPPh3)(pzHMe2)4]2+ cations, since one equiv-
alent of co-crystallized triphenylphosphine oxide was found in the respective crystals.
The downfield shift of the signal of the thionitrosyl complex, compared with those of the
nitrosyl compounds shown in Figure 2, is remarkable. It is, to the best of our knowledge,
only the second 99Tc chemical shift reported for a technetium thionitrosyl complex and
it appears close to the signal found for the only other compound: [Tc(NS)Cl2(PMe2Ph)3]
(645 ppm) [71]. The difference of several hundred ppm between the values found for
the nitrosyl and thionitrosyl complexes of the present study should not be overestimated,
given the fact that the 99Tc chemical shifts observed for different nitrosyltechnetium(I)
complexes also span a range of almost 3500 ppm from +2000 to −1500 ppm, depending on
the π-acceptor properties of the other ligands [27].
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2.507 2.678 2.478 2.439     

The ready cleavage of the boron–nitrogen bonds of {HB(pzR)3}− ligands during reac-
tions with technetium complexes, even at room temperature, makes it interesting to study 
similar reactions with analogous rhenium compounds. The synthesis of a corresponding 
thionitrosylrhenium(II) complex, [Re(NS)Cl3(PPh3)2] [78], as a potential starting material 

Scheme 3. Reaction of [Tc(NS)Cl3(PPh3)2] with K{HB(pzMe2)3}.

Figure 6 depicts the solid-state structure of 5{Cl(pzHMe2)4}·OPPh3, in which [Tc(NS)Cl-
(pzHMe2)4]+ cations and {Cl(pzHMe2)4}− anions form a hydrogen-bonded network with
Cl2. . .H distances between 2.439 and 2.678 Å in the anion, while Cl1. . .H contacts between
2.687 and 2.904 Å are established. Details of this network are shown in Figure 6d and the
individual atomic distances are listed in Table 4. The experimentally observed arrangement
of the four dimethylpyrazole molecules around the chloride anion justifies treatment as a
complex anionic {Cl(pzHMe2)4}− unit. The co-crystallized triphenylphosphine oxide does
not establish bonding interactions to the complex cation or the {Cl(pzHMe2)4}− anions, as
is clearly visible in Figure 6a. The bonding situation in the [Tc(NS)Cl(pzHMe2)4]+ cation
is not exceptional, with the technetium atom in an only slightly distorted octahedral
coordination environment. As in the other thionitrosyl complexes in this study, the Tc–N–S
bond confirms the presence of a linear unit and justifies its treatment as an NS+ ligand.
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Figure 6. Solid state structure of 5{Cl(pzHMe2)4}·OPPh3 showing (a) the content of the triclinic unit
cell, (b) the [Tc(NS)Cl(pzHMe2)4]+ cation, (c) the·{Cl(pzHMe2)4}− anion and (d) the H bond network
within the [Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4} unit. Thermal ellipsoids show 50 per cent probability.

Table 4. Selected bond lengths (Å) and angles in the solid state structure of
[Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4}·OPPh3 (5{Cl(pzHMe2)4}·OPPh3).

Tc1–N10 N10–S10 Tc1–Cl1 Tc1–N1 Tc1–N3 Tc1–N5 Tc1–N7 Tc1–N10–S10 N10–Tc1–Cl1

1.733(2) 1.572(2) 2.4252(6) 2.134(2) 2.135(2) 2.147(2) 2.137(2) 179.4(2) 179.66(8)

Hydrogen Bonds

H10–Cl1 H12–Cl1 H14–Cl1 H16–Cl1 H2–Cl1 H4–Cl1 H6–Cl1 H8–Cl1

2.851 2.687 2.851 2.904 2.867 2.864 2.868 2.825

H10–Cl2 H12–Cl2 H14–Cl2 H16–Cl2

2.507 2.678 2.478 2.439

The ready cleavage of the boron–nitrogen bonds of {HB(pzR)3}− ligands during reac-
tions with technetium complexes, even at room temperature, makes it interesting to study
similar reactions with analogous rhenium compounds. The synthesis of a corresponding
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thionitrosylrhenium(II) complex, [Re(NS)Cl3(PPh3)2] [78], as a potential starting material
has recently been reported and gives an opportunity to compare the reactivity of the two
group 7 elements.

2.3. Thionitrosyl Complexes of Rhenium

[Re(NS)Cl3(PPh3)2] is a dark red complex that is sufficiently soluble in CH2Cl2 to
conduct reactions at room temperature. The treatment of a solution of the complex in this
solvent with K{HB(pz)3} at room temperature results in a color change and an orange-
brown solution is formed, from which a colorless solid (KCl) precipitates. After filtration
and chromatography over a silica column, a green and a pale purple fraction can be isolated.
The solids isolated from both fractions show identical IR spectra and solutions of the purple
compound gradually change in color to green, which indicates a rapid conversion into
this stable product of the reaction. It is formed as the sole product when the reaction
mixture is heated under reflux. Finally, grayish green single crystals are obtained from such
solutions. They have the composition [Re(NS)Cl2(PPh3)2(pzH)] (6a), and similar products
were obtained when substituted hydrotris(pyrazole)borates were used (Scheme 4).
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Scheme 4. Reactions of [Re(NS)Cl3(PPh3)2] with hydrotris(pyrazolyl)borates and their products.

No evidence was found for an ongoing ligand exchange or the formation of rhenium
complexes with more than one pyrazole ligand. This is a clear difference to reactions
of corresponding technetium compounds, where the corresponding 1:1 ligand exchange
product was obtained for the nitrosyl complex, while the entire equatorial coordination
sphere was occupied by pyrazole ligands in the thionitrosyl complex 5. Lower reaction
rates and consequently the isolation of products with “incomplete ligand exchange” is not
unusual for couples of structurally equivalent 4d and 5d transition metal complexes and
have also been observed for series of rhenium and technetium complexes, e.g., during the
replacement of carbonyl ligands with isocyanides [94,95].

The formation of rhenium(I) complexes is not completely unexpected and is in line
with the reduction of the [Tc(NS)Cl3(PPh3)2] starting material during the reaction with
{HB(pzMe2)3}. The nature of the reducing agent, however, is not completely clear for both
reactions. Most probably, it is related to the degradation of the tripodal ligand, but the
oxidation of PPh3 also cannot be completely ruled out.

Figure 7 depicts the structures of the [Re(NS)Cl2(PPh3)2(pzHR)] complexes. Selected
bond lengths and angles are summarized in Table 5. The main structural features of the
rhenium compounds are very similar and close to the bonding situation in the technetium
complex 1. The thionitrosyl units are essentially linear, as is expected for NS+ ligands. The
rhenium atoms possess only slightly distorted octahedral coordination spheres with the
chlorido ligands in trans positions to the thionitrosyl and the pyrazole ligands. Intramolec-
ular hydrogen bonds are established between the heterocyles and the chlorido ligand trans
to the NS+ group.
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Table 5. Selected bond lengths (Å) and angles in [Re(NS)Cl2(PPh3)2(pzH)] (6a),
[Re(NS)Cl2(PPh3)2(pzHMe2)] (6b) and [Re(NS)Cl2(PPh3)2(pzHPh)] (6c).
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6c 1.98(2) 1.36(2) 2.441(8) 2.449(4) 2.18(2) 2.501 175(2) 171(1) 124.4

3. Materials and Methods

Unless otherwise stated, reagent-grade starting materials were purchased from com-
mercial sources and either used as received or purified following standard procedures.
Solvents were dried and distilled prior to use. [Tc(NO)Cl2(PPh3)2(CH3CN)] and [Re(NS)Cl3-
(PPh3)2] were prepared as described in the literature [26,78].

3.1. Radiation Precaution

All synthetic work with the long-lived isotope 99Tc was performed in a laboratory
approved for the handling of radioactive material. The glass walls of the flasks pro-
vide appropriate protection from the primary beta emission of 99Tc. Secondary X-rays
(bremsstrahlung) become important only when larger amounts of the compounds are
handled as solids. All personnel working in this project were permanently monitored for
potential contamination.

3.2. Syntheses

[Tc(NO)Cl2(PPh3)2(pzH)] (1). [Tc(NO)Cl2(PPh3)2(CH3CN)] (50 mg, 0.065 mmol) was
suspended in 4 mL acetonitrile and solid K{HB(pz)3} (20 mg, 0.08 mmol) was added. The
mixture was heated under reflux for 1 h. During this time, the sparingly soluble starting
materials dissolved. The resulting red solution was filtered and the solvent was removed
in vacuum. Red crystals were obtained by slow diffusion of MeOH into a CH2Cl2 solution
of the product. Yield: 25 mg, 45%. IR (KBr, cm−1): 3315(w), 3055(w), 2918(w), 2851(w)
1708(vs, NO), 1481(w), 1435(m), 1259(w), 1130(w), 1091(m), 1053(w), 744(m), 694(s), 514(s).
1H NMR (CDCl3, ppm): 10.69 (br, 1H, NH), 7.43–7.38 (m, 12H, PPh3), 7.18–7.13 (m, 6H,
PPh3), 7.09–7.05 (m, 12H, PPh3), 6.68 (d, 1H, pz), 6.54 (s, 1H, pz), 5.65 (s, 1H, pz). 99Tc NMR
(CDCl3, ppm): 1217 (ν1/2 = 4000 Hz).

[Tc(NO)Cl(PPh3)(HB(pz)3}] (2). [Tc(NO)Cl2(PPh3)2(pzH)] (25 mg, 0.03 mmol) was
dissolved in 2 mL MeOH. K{HB(pz)3} and 5 drops of CH2Cl2 were added. The mixture was
stirred for 3 h at room temperature under an argon atmosphere. An orange-brown solid
deposited from this solution upon standing overnight in a refrigerator. This precipitate
was dissolved in CH2Cl2 and overlayered with MeOH. Orange-brown crystals formed
upon slow diffusion of the solvents. Yield: 14 mg, 75%. IR (KBr, cm−1): 3429(br), 3055(w),
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2920(w), 2486(w), 2372(w), 1718(vs, NO), 1627(w), 1506(w), 1481(w), 1433(w), 1404(m),
1309(m), 1274(w), 1213(m), 1116(m), 1093(w), 1051(s), 989(w), 752(m), 696(m), 619(w),
526(m), 503(w). 1H NMR (CDCl3, ppm): 7.78 (d, 1H, pz), 7.68 (d, 1H, pz), 7.56 (d, 2H, pz),
7.39–7.26 (m, 15H, PPh3), 6.91 (d, 1H, pz), 6.27 (d, 1H, pz), 6.20 (t, 1H, pz), 5.89 (t, 1H, pz),
5.78 (t, 1H, pz). 99Tc NMR (CDCl3, ppm): 1019 (ν1/2 = 3400 Hz).

[Tc(NS)Cl3(PPh3)2] (3). (a) [TcNCl2(PPh3)2] (71 mg, 0.1 mmol) was suspended in 25 mL
of dry CH2Cl2 under an atmosphere of dry argon. S2Cl2 (0.3 mL) was added and the
mixture was stirred for 15 min at room temperature. The color of the mixture turned from
orange-red to green. All volatiles were removed in vacuum and the resulting green residue
was carefully washed with n-hexane and diethyl ether. The product was dissolved in
CH2Cl2 under an atmosphere of dry argon and overlayered with n-pentane. Keeping this
mixture in a refrigerator gave green crystals after diffusion of the solvents. Yield: 51 mg,
65%. (b) [Tc(NS)Cl3(PPh3)(OPPh3)] (39 mg, 0.05 mmol) was dissolved in 5 mL CH2Cl2
under an atmosphere of dry argon and PPh3 (130 mg, 0.5 mmol) was added. The mixture
was heated under reflux for 30 min. The color of the solution changed from red to green.
After concentration of the solution and addition of 100 mL cold diethyl ether, a green
precipitate was formed. Filtration and crystallization from CH2Cl2/n-hexane gave green
crystals. Yield: 33 mg, 85%. IR (KBr, cm−1): 2970(w), 2922(w), 2857(w), 1630(m) 1474(m),
1429(s), 1387(vs, NS), 1227(w), 1186(w), 1163(w), 1088(m), 1051(w), 988(w), 972(w), 914(w),
881(w), 810(w), 743(m), 692 (s), 605(w), 513(s), 455(w). EPR (RT, CH2Cl2) g0 = 2.011; a0

Tc =
164 × 10−4 cm−1. EPR (77 K, CH2Cl2): g∥ = 1.955, g⊥ = 2.0455; A∥

Tc = 270 × 10−4 cm−1,
A⊥

Tc = 128 × 10−4 cm−1.
[Tc(NS)Cl3(PPh3)(OPPh3)] (4). (a) [TcNCl2(PPh3)2] (50 mg, 0.07 mmol) was suspended

in 15 mL CH2Cl2 and an excess of S2Cl2 (0.3 mL) was added. The mixture was heated under
reflux in air. The sparingly soluble starting material gradually dissolved and the initially
green solution changed its color to red. The progress of the reaction could be monitored by
subsequent recording of EPR spectra. After the disappearance of the signals of compound
3, which was normally observed after 30 min., all volatiles were removed in vacuum and
the red residue was carefully washed with n-hexane and diethyl ether. Crystallization from
CH2Cl2/n-hexane gave red crystals. Yield: 42 mg, 76%. (b) [Tc(NS)Cl3(PPh3)2] (39 mg,
0.05 mmol) was dissolved in CH2Cl2 and heated in air for approximately 30 min. The
progress of the reaction could be monitored by EPR and red crystals of the product could be
obtained as described above. Yield: 36 mg, 90%. IR (KBr, cm−1): 2053(w), 2968(m), 2922(m),
1630(m), 1578(w), 1476(m), 1433(s), 1393(m), 1315(w), 1244(s, NS), 1146 (vs, PO), 1126(vs),
1082(s), 933(w), 922(w), 880(w), 752(m), 721(s), 691(s), 536(vs). EPR (RT, CH2Cl2) g0 = 2.009;
a0

Re = 166 × 10−4 cm−1. EPR (77 K, CH2Cl2): g∥ = 1.978, g⊥ = 1.999; A∥
Tc = 290 × 10−4

cm−1, A⊥
Tc = 134 × 10−4 cm−1.

[Tc(NS)Cl(pzH)4]{Cl(pzH)4} (5{Cl(pzH)4}). [Tc(NS)Cl3(PPh3)2] (50 mg, 0.06 mmol) was
dissolved in 10 mL CH2Cl2 and a solution of K{HB(pzHMe2)3} (143 mg, 0.12 mmol) in 3 mL
MeOH was added. The color of the mixture immediately changed from red to brown. After
stirring for 6 h at room temperature, all volatiles were removed in vacuum and the residue
was washed with n-hexane and extracted with 5 mL CH2Cl2. N-hexane (5 mL) was added
and pale blue single crystals were obtained after storing the mixture in a refrigerator. Yield:
24 mg, 38%. IR (KBr, cm−1): 3171(m), 3127(m), 3063(m), 3022(m), 3953(s), 2922(s), 2772(s),
2713(s), 2658(s), 2583(m), 2529(s), 2372(m), 2284(m), 1647(w), 1599(vs), 1558(s), 1518(w),
1468(w), 1410(vs), 1371(w), 1290 (vs, NS), 1161(vs), 1119(s), 1024(s), 986(m), 849(vs), 806(m),
758(w), 723(s), 689(s), 586(s), 536(vs), 482(w). 1H NMR (CDCl3, ppm): 10.53 (s, 8H, NH),
6.10 (s, 4H, CH complex), 5.95 (s, 4H, CH anion), 2.40 (s, 12H, CH3 complex), 1.91 (s, 12H,
CH3 anion). 99Tc NMR (CDCl3, ppm): +566 (ν1/2 = 1860 Hz).

[Re(NS)Cl2(PPh3)2(pzH)] (6a). [Re(NS)Cl3(PPh3)2] (100 mg, 0.12 mmol) was dissolved
in 30 mL CH2Cl2 and a suspension of K{HB(pz)3} in 20 mL CH2Cl2 was added. The mixture
was heated under reflux for 1 h. The color of the solution changed to greenish yellow and a
colorless solid precipitated. After filtration, the volume of the reaction mixture was reduced
to 10 mL and the same amount of n-hexane was added. A pale green solid formed upon
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slow concentration of this solution. The crude product was purified by chromatography
via a silica column with a CH2Cl2/n-hexane mixture (9:1, v/v) as mobile phase. The
major product was first eluted as a green fraction, followed by a pale purple fraction.
Concentration of the green fraction gave a microcrystalline product. Yield: 85 mg, 61%.
Elemental analysis: Calcd. for C39H34Cl2N3P2ReS: C, 52.3; H, 3.8; N, 4.7; S, 3.6%. Found: C
53.0; H, 4.9; N, 4.9; S, 3.1%. IR (ATR, cm−1): 3273(w), 1481(m), 1432(s), 1339(m), 1259(s, NS),
1171(vs), 1154(m), 1128(s), 1090(s), 1046(s), 997(w), 913(w), 767(w), 741(s), 691(vs), 617(w),
598(m), 589(w). 1H NMR (CD2Cl2, ppm): 10.73 (s, 1H, NH); 7.61–7.22 (m, 30H, PPh3); 7.03
(t, 1H, pz); 6.98 (t, 1H, pz); 5.44 (dd, 1H, pz). 31P NMR (CD2Cl2, ppm): –1.6 (s). ESI+ MS:
m/z = 918.095 [M+Na]+ (calcd. 918.077), 934.067 [M+K]+ (calcd. 934.052).

[Re(NS)Cl2(PPh3)2(pzHMe2)] (6b). The compound was prepared and purified as de-
scribed for complex 6a with K{HB(pzMe2)3}. Grey-green needles. Yield: 35 mg, 33%.
Elemental analysis: Calcd. for C41H38Cl2N3P2ReS: C, 53.3; H, 4.2; N, 4.6; S, 4.6%. Found: C
53.2; H, 3.9; N, 4.4; S, 4.3%. IR (ATR, cm−1): 3280(w), 1570(w), 1481(w), 1433(m), 1273(m,
NS), 1174(s), 1093(m), 1028(w), 1020(w), 918(w), 815(m), 748(m), 692(vs). 1H NMR (CD2Cl2,
ppm): 10.45 (s, 1H, NH); 7.63–7.60 (m, 12H, PPh3); 7.29–7.25 (m, 18H, PPh3); 1.87 (s, 3H,
CH3); 1.84 (s, 3H, CH3). 31P NMR (CD2Cl2, ppm): −3.4 (s). ESI+ MS: m/z = 923.119 [M]+
(calcd. 923.120), 946.109 [M+Na]+ (ber.: 946.108), 962.089 [M+K]+ (calcd. 962.082), 1869.229
[2M+Na]+ (calcd. 1869.223), 1885.204 [2M+K]+ (calcd. 1885.197).

[Re(NS)Cl2(PPh3)2(pzHPh)] (6c). The compound was prepared as described for com-
pound 6a with K{HB(pzPh)3}. The workup was performed without column chromatography
via crystallization from CHCl3. Pale green crystals. Yield: 82 mg, 73%. Elemental analysis:
Calcd. for C45H38Cl2N3P2ReS: C, 55.6; H, 3.9; N, 4.3; S, 4.3%. Found: C 55.3; H, 3.8; N, 4.2;
S, 3.9%. IR (ATR, cm−1): 3276(w), 3061(w), 1586(w), 1574(w), 1558(w), 1481(m), 1435(s),
1349(w), 1267(w, NS), 1182(m), 1170(s) 1126(m), 1091(s), 1027(w), 998(w), 959 (w), 919(m),
849(w), 801(m), 469(m), 741(s), 690(vs), 658(s), 617(m). 1H NMR (CD2Cl2): 11.01 (s, 1H,
NH), 7.63–7.71 (m, 12H, Ph(PPh3)), 7.28–7.37 (m, 3H, Ph(pz)), 7.22–7.30 (m, 18H, Ph(PPh3)),
6.94–7.01 (m, 2+1H, Ph(pz), CH), 6.00 (s, 1H, CH). 31P NMR (CD2Cl2, ppm): –2.3 (s). ESI+
MS: m/z = 971.145 [M]+ (calcd. 971.119), 994.136 [M+Na]+ (calcd. 994.108), 1010.112 [M+K]+

(calcd. 1010.082).

3.3. Spectroscopic and Analytical Methods

IR spectra were measured as KBr pellets on a Shimadzu IR Affinity-1 spectrometer
(Shimadzu, Kyoto, Japan) (technetium compounds) or with a Thermo Scientific Nicolet
iS10 ATR spectrometer (ThermoFisher Scientific, Madison, WI, USA) (rhenium complexes).
The NMR spectra were recorded on JEOL 400 MHz spectrometers (JEOL, Kyoto, Japan). An
aqueous solution of KTcO4 was used as reference for the 99Tc spectra. ESI mass spectra were
measured with an Agilent 6210 ESI-TOF (Agilent Technology, Santa Clara, CA, USA) mass
spectrometer. All MS results are given in the form of m/z assignment. Elemental analysis
of carbon, hydrogen, nitrogen, and sulfur were determined using a Heraeus vario EL
elemental analyzer (Elementar, Langensebold, Germany). Combustion analyses could not
be conducted for the radioactive technetium compounds for radiation protection reasons.

3.4. X-ray Crystallography

The intensities for the X-ray determinations were collected on a STOE IPDS-2T (STOE,
Darmstadt, Germany) with Mo/Kα radiation. Numerical absorption corrections were
carried out by X-RED32 [96]. Structure solution and refinement were performed with the
SHELX programs [97,98] included in the WinGX [99] program package or OLEX2 [100].
Hydrogen atoms were calculated for the idealized positions and treated with the ‘riding
model’ option of SHELXL. Since some of the compounds crystallized together with disor-
dered solvent molecules (partially close to special positions), refinements of such structures
were undertaken with the removal of disordered solvent molecules using the solvent mask
option of OLEX2. Details are given in the Supplementary Materials. The representation of
molecular structures was prepared using the program MERCURY [101].
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4. Conclusions

Most of the conducted reactions of common nitrosyl and thionitrosyl complexes
of technetium and rhenium with hydrotris(pyrazolyl)borate ligands result in B–N bond
cleavage and the formation of pyrazole complexes. The number of pyrazole ligands in
the products is variable and ranges from one (in most of the studied cases) to four in
the thionitrosyl cation [Tc(NS)Cl(pzHMe2)4]+. In only one exceptional case, the reaction of
[Tc(NO)Cl2(PPh3)2(pzH)] with K{HB(pz)3} at room temperature, was the coordination of
an intact hydrotris(pyrazolyl)borato ligand observed. Generally, it can be concluded that
any thermal stress to such reaction mixtures results in degradation of the respective ligand
systems. The decomposition is most probably metal-driven or at least metal-supported,
since the uncoordinated ligands, e.g., K{HB(pz)3} or K{HB(pzMe2)3}, are synthesized in
melts at temperatures >200 ◦C [102,103].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29163865/s1: Table S1.1: Crystallographic data and data
collection parameters. Figure S1.1. Ellipsoid representation of the structure of [Tc(NO)Cl2(PPh3)2(pzH)]
(1)·CH2Cl2. The thermal ellipsoids are set at a 50% probability level. Hydrogen atoms are omit-
ted for clarity. Table S1.2. Selected bond lengths (Å) and angles (◦) in [Tc(NO)Cl2(PPh3)2(pzH)]
(1). Figure S1.2. Ellipsoid representation of the molecular structure of [Tc(NO)Cl(PPh3){HB(pz)3}]
(2) including the positional disorder between the Tc–Cl and Tc–N–O bonds. The thermal ellip-
soids are set at a 50% probability level. Hydrogen atoms are omitted for clarity. Table S1.3.
Selected bond lengths (Å) and angles (◦) in [Tc(NO)Cl(PPh3){HB(pz)3}] (2). Figure S1.3. Ellip-
soid representation of [Tc(NS)Cl3(PPh3)2] (3). The thermal ellipsoids are set at a 50% probability
level. Hydrogen atoms are omitted for clarity. Table S1.4. Selected bond lengths (Å) and angles
(◦) in [Tc(NS)Cl3(PPh3)2] (3). Figure S1.4. Ellipsoid representation of [Tc(NS)Cl3(PPh3)(OPPh3)]
(4) including the positional disorder between the Tc–N–S and Tc–Cl bonds. The thermal ellip-
soids are set at a 50% probability level. Hydrogen atoms are omitted for clarity. Table S1.5.
Selected bond lengths (Å) and angles (◦) in [Tc(NS)Cl3(PPh3)(OPPh3)] (4). Figure S1.5. Ellip-
soid representation of [Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4} (5{Cl(pzHMe2)4})·(OPPh3). The thermal
ellipsoids are set at a 50% probability level. Table S1.6. Selected bond lengths (Å) and angles
(◦) in [Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4} (5{Cl(pzHMe2)4})·(OPPh3). Figure S1.6. Ellipsoid repre-
sentation of [Re(NS)Cl2(PPh3)2(pzH)] (6a)·0.5(CH2Cl2) including positional disorder for the NO
and Cl3 ligands of the central molecular axis. The thermal ellipsoids are set at a 50% proba-
bility level. Table S1.7. Selected bond lengths (Å) and angles (◦) in [Re(NS)Cl2(PPh3)2(pzH)]
(6a)·0.5(CH2Cl2). Figure S1.7. Ellipsoid representation of [Re(NS)Cl2(PPh3)2(pzHMe2)] (6b). The ther-
mal ellipsoids are set at a 50% probability level. Table S1.8. Selected bond lengths (Å) and angles (◦)
[Re(NS)Cl2(PPh3)2(pzHMe2)] (6b). Figure S1.8. Ellipsoid representation of [Re(NS)Cl2(PPh3)2(pzHPh)]
(6c) including positional disorder between the NS and the Cl1 atom ligands. The thermal ellip-
soids are set at a 50% probability level. Table S1.9. Selected bond lengths (Å) and angles (◦)
in [Re(NS)Cl2(PPh3)2(pzHPh)] (6c). Figure S2.1: IR (KBr) spectrum of [Tc(NO)Cl2(PPh3)2(pzH)]
(1). Figure S2.2: 1H NMR spectrum of [Tc(NO)Cl2(PPh3)2(pzH)] (1) in CDCl3. Figure S2.3: 31P
NMR spectrum of [Tc(NO)Cl2(PPh3)2(pzH)] (1) in CDCl3. Figure S2.3: 99Tc NMR spectrum of
[Tc(NO)Cl2(PPh3)2(pzH)] (1) in CDCl3. Figure S2.4: IR (KBr) spectrum of [Tc(NO)Cl(PPh3){HB(pz)3}]
(2). Figure S2.5: 1H NMR spectrum of [Tc(NO)Cl(PPh3){HB(pz)3}] (2) in CDCl3. Figure S2.6: 31P
NMR spectrum of [Tc(NO)Cl(PPh3){HB(pz)3}] (2) in CDCl3. Figure S2.7: 99Tc NMR spectrum of
[Tc(NO)Cl(PPh3){HB(pz)3}] (2) in CDCl3. Figure S2.8: IR (KBr) spectrum of [Tc(NS)Cl3(PPh3)2]
(3). Figure S2.9: Solution EPR spectrum of [Tc(NS)Cl3(PPh3)2] (3) in CH2Cl2 at room temperature.
Figure S2.10: Solution EPR spectra of [Tc(NS)Cl3(PPh3)2] (3) in CH2Cl2 at T = 77 K. Figure S2.11:
IR (KBr) spectrum of [Tc(NS)Cl3-(PPh3)(OPPh3)] (4). Figure S2.12: Solution EPR spectrum of
[Tc(NS)Cl3(PPh3)(OPPh3)] (4) in CH2Cl2 at room temperature. Figure S2.13: Solution EPR spec-
tra of [Tc(NS)Cl3(PPh3)(OPPh3)] (4) in CH2Cl2 at T = 77 K. Figure S2.14: IR (KBr) spectrum of
[Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4} (5{Cl(pzHMe2)4})·(OPPh3). Figure S2.15: 1H NMR spectrum of
[Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4} (5{Cl(pzHMe2)4})·(OPPh3) in CDCl3. Figure S2.16: 99Tc NMR spec-
trum of [Tc(NS)Cl(pzHMe2)4]{Cl(pzHMe2)4} (5{Cl(pzHMe2)4})·(OPPh3) in CDCl3. Figure S2.17: IR (ATR)
spectrum of [Re(NS)Cl2(PPh3)2(pzH)] (6a). Figure S2.18: 1H NMR spectrum of [Re(NS)Cl2(PPh3)2-
(pzH)] (6a) in CD2Cl2. Figure S2.19: 31P NMR spectrum of [Re(NS)Cl2(PPh3)2(pzH)] (6a) in CD2Cl2.
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Figure S2.20: ESI+ mass spectrum of [Re(NS)Cl2(PPh3)2(pzH)] (6a). Figure S2.21: IR (ATR) spectrum
of [Re(NS)Cl2(PPh3)2(pzHMe2)] (6b). Figure S2.22: 1H NMR spectrum of [Re(NS)Cl2(PPh3)2(pzHMe2)]
(6b) in CD2Cl2. Figure S2.23: 31P NMR spectrum of [Re(NS)Cl2(PPh3)2(pzHMe2)] (6b) in CD2Cl2.
Figure S2.24: ESI+ mass spectrum of [Re(NS)Cl2(PPh3)2(pzHMe2)] (6b). Figure S2.25: IR (ATR) spec-
trum of [Re(NS)Cl2(PPh3)2(pzHPh)] (6c). Figure S2.26: 1H NMR spectrum of [Re(NS)Cl2(PPh3)2(pzHPh)]
(6c) in CD2Cl2. Figure S2.27: 31P NMR spectrum of [Re(NS)Cl2(PPh3)2(pzHPh)] (6c) in CD2Cl2.
Figure S2.28: ESI+ mass spectrum of [Re(NS)Cl2(PPh3)2(pzHPh)] (6c).
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