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Preface 

The assessment of sequence variants, as guided by the ACMG Criteria established by 
Richards et al. in 2015, has become a standard for clinical interpretation within genomic 

medicine. This ruleset comprises several criteria corresponding to various consequences of 
mutations, enabling unified classification results. However, (i) the manual assessment of the 
ACMG criteria suffers from a lack of scalability; (ii) with the ongoing updates to the ruleset, 

exemplified by the ACGS criteria, there's a constant need for continual verification and 
review of assessments, reinforcing the need for the automation of the assessment process. 

Recent advances in bioinformatics have introduced tools such as AutoPVS1, InterVar, 
Genebe, and VarSome, designed to automate these assessments. Nevertheless, all of these 
services have certain limitations, which prevent them from being considered as complete up-

to-date automation solutions. This work proposes the development of an open-source tool 
aimed at the comprehensive automation of the ACMG criteria, overcoming the limitations of 

existing systems by ensuring up-to-date variant interpretation. 
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1 Introduction 

1.1 Motivation 
The rapid advancement in broad genetic testing, especially through exome sequencing (ES) 
and genome sequencing (GS), has led to a marked increase in the detection and analysis of 
genetic variations [1]. ES primarily enriches the coding regions of genes, enabling the 
identification of variants that directly impact the coding sequence. Conversely, GS examines 
the complete deoxyribonucleic acid (DNA) sequence, capturing both coding and non-coding 
regions, thus providing a comprehensive view of genetic variations. These technologies have 
significantly enhanced the ability to detect both small (≤ 50 base pairs) and structural (>50 
base pairs) genetic variants, leading to a substantial increase in the number of known genetic 
variants catalogued in genomic databases. 

This significant growth in sequencing capabilities, along with the increased volume of data, 
presents both opportunities and challenges in clinical settings. Clinicians now have access to 
thousands of variants per individual, but this large volume requires sophisticated analytical 
tools to accurately differentiate pathogenic variants from benign ones. Correct interpretation 
of these variants is crucial, as they are often directly linked to disease phenotypes and can 
influence treatment plans. 

The American College of Medical Genetics and Genomics (ACMG), in collaboration with the 
Association for Molecular Pathology (AMP), has established standards and guidelines for the 
clinical interpretation of sequence variants based on 28 criteria [2]. These guidelines offer a 
systematic framework for assessing the pathogenicity of variants, utilising a range of evidence, 
including population data, computational predictions, and functional analyses. Yet, the 
complexity and quantity of data produced by GS and ES, along with variations in classifications 
by different clinical experts, highlight the essential need for computational tools for automated 
variant interpretation. 

A significant challenge in implementing a unified computational algorithm is that the standards 
were initially designed for human interpretation, not for automated systems. Nonetheless, 
some recent studies have introduced quantitative thresholds for terms such as "well-known" 
and "hot-spot," facilitating the semi-automated classification of some of these criteria [3]. 
Despite significant progress, existing tools like InterVar [4], AutoPVS1 [5], and VarSome [6] 
still have notable limitations. These platforms often do not cover all ACMG criteria 
comprehensively (as seen with AutoPVS1), are challenged by the need for frequent updates 
in response to new genetic insights (as with InterVar), and their proprietary nature can hinder 
widespread adoption and customization (as with VarSome). These issues underscore the 
urgent need for an open-source tool that can integrate the latest genetic insights, provide 
comprehensive coverage of the ACMG criteria, and offer the flexibility to adapt to future 
advancements. 

1.2 Objectives 
This thesis introduces AutoACMG, an open-source software developed in response to the 
evolving challenges in genomic variant interpretation. The tool automates the application of 
the selected ACMG (American College of Medical Genetics and Genomics) criteria, and 
incorporates the latest guideline updates from the ClinGen (Clinical Genome Resource) [3,6–
11] for the automated criteria. 
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AutoACMG is designed to address the limitations of existing tools such as InterVar, which 
lacks recent updates, and VarSome, which has constraints due to being commercial software. 
AutoACMG provides a comprehensive, open-source platform that integrates the newest data 
sources and implements algorithms based on the latest guideline findings. The primary goal 
of this work is to develop a robust software tool that supports continuous updates and 
customization. The secondary goal is to evaluate AutoACMG against established 
methodologies like InterVar, AutoPVS1, and VarSome, focusing on its precision. Upon 
successful validation, AutoACMG is anticipated to be integrated into the REEV [12] software 
suite, thereby enhancing its functionality as a versatile tool for genetic variant analysis. 

1.3 Organisation 
The thesis is structured into three main sections. In Section 2, "Materials and Methods" 
fundamental terms and concepts related to the assessment of ACMG criteria are introduced. 
The technical implementation of the AutoACMG tool is described, and the methodologies 
employed for evaluating its performance against other software tools are presented. The next 
Section 3, "Results" provides a comprehensive summary of the AutoACMG tool's functionality. 
It presents the outcomes of the tool's application and includes a detailed analysis comparing 
AutoACMG to existing methodologies like InterVar, AutoPVS1, and VarSome. Finally, Section 
4, "Discussion and Outlook" evaluates the software, discusses unresolved issues and 
challenges, and outlines potential future development ideas. 

2 Materials and Methods 

2.1 Terms and Concepts 

2.1.1 Sequencing 

Genome sequencing encompasses various methodologies used to explore the entire genetic 
makeup of an organism, focusing on both coding and non-coding regions of deoxyribonucleic 
acid (DNA). This process is fundamental in identifying the genomic variations (variants) that 
may influence health and disease. Within genome sequencing, Genome Sequencing (GS) 
and Exome Sequencing (ES) are critical techniques. GS provides a comprehensive overview 
of an entire genome, offering insights into both coding regions and the vast expanses of non-
coding DNA that may regulate gene activity. ES, however, targets only the exons, or the 
sequences within genes that directly code for proteins, thus spotlighting the parts of the 
genome most likely to affect biological functions directly. 

This thesis focuses on the human genome, which is diploid with 23 pairs of chromosomes. 
Specific locations on these chromosomes are called loci, defined by their start and end 
positions. Differences at the same loci on two chromosomes (one maternal and one paternal) 
are called alleles, representing genetic diversity among individuals. Further in this thesis genes 
are defined as functional units of the genome, consisting of exons and introns, where exons 
include encoded protein segments and untranslated regions (UTR), while introns are 
noncoding and removed during RNA processing. Transcription converts genes into 
transcripts, with protein-coding genes subsequently translated into proteins. 

Zygosity is essential in genetics, describing the variation in allele pairings at a specific locus 
on a chromosome. The three primary types of zygosity are homozygous, heterozygous, and 
hemizygous. A homozygous genotype has two identical alleles at a locus, leading to 
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consistent expression of a particular trait. A heterozygous genotype has two different alleles 
at a locus, where typically the dominant trait is expressed, but it can also result in a 
combination of traits or codominance. Recessive traits require both alleles to be identical to 
be expressed. Hemizygosity occurs when only one allele is present at a locus, usually due to 
deletion or, in males, for genes on the X chromosome that lack a corresponding allele on the 
Y chromosome. 

The transcript, an RNA copy of a gene's code, is central to gene expression. It undergoes 
processing at splice sites within the gene where non-coding introns are excised and the 
coding exons are spliced together. This splicing results in a continuous messenger RNA 
(mRNA) sequence that will direct the assembly of amino acids into proteins. 

Reference genomes, like GRCh37 and GRCh38, established by the Genome Reference 
Consortium, serve as essential tools for aligning and identifying genetic variants. These 
reference genomes provide a standardised framework, allowing researchers and clinicians to 
accurately compare genetic sequences and detect variations consistently. 

2.1.2 Variants 

In genetics, variants represent differences between a donor's or patient's genome and a 
reference genome sequence. These variants are broadly classified into sequence variants 
and structural variants. Sequence variants alter a small number of nucleotides and typically 
have localised effects on the genome. Structural variants, on the other hand, involve more 
extensive changes to the DNA structure, impacting larger segments (greater than 50 base 
pairs) of the genome. These structural changes can significantly affect gene function and 
regulation by disrupting genes, altering gene dosage, or changing the spatial organisation of 
the genome, such as by destroying isolator motifs and affecting genome architecture. 
Structural variants are generally rarer due to their larger size. The exact distribution of genetic 
variants in the human genome is illustrated in Figure 1. 

Building on the general classifications of genetic variants, sequence variants include single 
nucleotide variants (SNVs), and insertions or deletions (indels). SNVs, which involve 
changes to a single nucleotide, are the most prevalent types of genetic variations and 
constitute the majority of variations observed in human genomes. Indels, which encompass 
both the addition and loss of a small number of bases, although less common, still represent 
a significant portion of sequence variants. 

In contrast, structural variants involve more substantial modifications, including deletions, 
insertions, and complex sequence alterations, and are less common than sequence variants. 
Other types of structural variants, such as substitutions, translocations, and more complex 
rearrangements, are very rare but still present in genomes. 

2.2.4 Concepts in Classification Algorithm 

In genetic analysis, cellular processes are crucial in predicting the impact of variants. Variants 
are broadly categorised into loss-of-function (LoF) and gain-of-function (GoF) groups. LoF 
variants reduce or eliminate a gene's function, often leading to significant phenotypic 
consequences, especially in essential genes. These include nonsense variants, which 
introduce premature stop codons and trigger nonsense-mediated decay (NMD) to degrade 
faulty mRNA, preventing harmful protein production. Missense variants, on the other hand, 
substitute one amino acid for another, potentially disrupting protein function. However, these 
variants can also result in synonymous DNA changes that do not alter the protein, thus 
tending to be benign. 
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Figure 1. Distribution of Genetic Variants in the Human Genome. 
1a: Size Distribution of Genetic Variants — Showcases a non-redundant spectrum of SNV and copy number 
variation (CNV) sizes with a detailed breakdown of the proportion of genomic gains to losses [13]. 
1b: Type Distribution of Genetic Variants — Illustrates the variety of genetic variants categorised by the type [14]. 

GoF variants, though rarer and harder to predict, result in increased or novel gene activity, 
sometimes causing diseases through abnormal pathway activation (Chronic Myeloid 
Leukaemia [15]). Gene-disease associations often depend on the specific type of variant 
within a gene; for instance, different conditions can arise from nonsense versus missense 
variants in the same gene. 

Additionally, certain genomic regions influence variant impact. Tandem repeat regions, where 
nucleotide motifs repeat consecutively, are linked to genetic disorders when repeat numbers 
vary (Huntington's disease [16]). Variants in UniProt domains, specific protein regions tied to 
particular functions, can significantly alter protein function and disrupt cellular processes, 
tending to be pathogenic (BRCA1-associated RING domain in BARD1 [17]). 

2.2 Theoretical Assumptions 

2.2.1 Variant Consequences 

ACMG guidelines include separate rulesets for classifying copy number variants (CNVs) [18] 
and sequence variants [2]. In this thesis, the focus is on the AutoACMG algorithm 
implementation, which is designed specifically for the classification of sequence variants. A 
critical aspect of this classification involves considering the position of the variant relative to 
the transcript structure, as this can significantly influence gene function and expression. The 
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consequences of these variants, as depicted in Figure 2, span various classes and impacts 
based on their location and nature. 

Nonsense and frameshift variants, such as "stop gained" and "frameshift" mutations, 
introduce disruptions in the protein product. Stop gained variants insert premature stop codons 
into the coding sequence, leading to truncated proteins that are often non-functional. 
Conversely, frameshift variants result from insertions or deletions whose lengths are not 
divisible by three (the length of a codon) altering the normal reading frame and profoundly 
changing the amino acid sequence and the resulting protein. 

Splicing variants affect the initial stages of protein synthesis and include changes in the 5' 
UTR regions, "start lost" mutations, and alterations at splice donor and acceptor sites. These 
variants can influence the splicing process and potentially alter the final protein product by 
modifying how exons and introns are read. "Start lost" variants specifically compromise the 
initiation of translation, by impacting the start codon of some exon. 

Other important variations within the coding sequences of exons, such as missense 
mutations, inframe insertions, and inframe deletions, can affect protein functionality to 
some extent. Missense variants change a single amino acid in the protein, while inframe 
insertions and deletions add or remove amino acids without disrupting the reading frame. 
These types of variants are generally less pathogenic compared to nonsense and frameshift 
variants but can still lead to altered phenotypes. 

Additionally, regulatory and terminal modifications such as 3' UTR variants and "stop lost" 
variants have mostly pathogenic impact on protein products. 3' UTR variants can affect gene 
regulation and mRNA stability, while "stop lost" variants extend the protein beyond its normal 
endpoint, potentially introducing new amino acid sequences with varied effects [19,20]. 

 

Figure 2. Location of various variant types relative to the transcript structure — Illustrates the positioning of 
various genetic variants within the transcript structure, highlighting how these variants correlate with gene 
function. [14] 

2.2.2 ACMG Ruleset 

To standardise the clinical interpretation of genetic variants, the American College of 
Medical Genetics and Genomics introduced standards for interpreting sequence variations 
in 2000 and 2007 [21,22]. With the rapid expansion of available genetic data, there was a clear 
need to refine these standards. In response, ACMG, in collaboration with the Association for 
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Molecular Pathology (AMP), published updated guidelines in 2015 [2]. These guidelines 
introduced a five-tiered classification system for variant interpretation—benign (B), likely 
benign (LB), uncertain significance (US), likely pathogenic (LP), and pathogenic (P). This 
system is underpinned by 28 specific criteria designed to provide a comprehensive 
assessment of variants. The sections below detail the ACMG Ruleset more extensively. 

2.2.2.1 ACMG Guidelines 

The core principle of the ACMG guidelines is to assess variants from multiple perspectives, 
ultimately classifying them into one of five categories. The 28 criteria derive from diverse data 
sources, including population data, in silico predictive data, functional data, and segregation 
data, as illustrated in Figure 3. To ensure a balanced evaluation, each criterion is assigned a 
level of evidence—Very Strong (PVS1), Strong (PS1-4), Moderate (PM1-6), or Supporting 
(PP1-5) for pathogenic assessments, and Stand Alone (BA1), Strong (BS1-4), or Supporting 
(BP1-6) for benign assessments. The weight of each criterion may be adjusted based on the 
strength of the clinical evidence presented. 

 

Figure 3. Evidence Level and Data Source Distribution of ACMG Criteria. This chart categorises ACMG criteria by 
evidence type and strength for benign (left) and pathogenic (right) assertions, detailing categories like benign strong 
(BS), benign supporting (BP), and various pathogenic levels (PM, PP, PS, PVS), along with factors such as family 
history (FH), loss of function (LOF), and minor allele frequency (MAF). [2] 

The final classification within the five-tier system is determined by a combination of these 
criteria. For instance, to achieve a classification of "Pathogenic", several configurations are 
possible: (i) One Very Strong (PVS1) and either ≥1 Strong, ≥2 Moderate, 1 Moderate plus ≥1 
Supporting, or ≥2 Supporting criteria; (ii) ≥2 Strong criteria; or (iii) 1 Strong plus either ≥3 
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Moderate, 2 Moderate plus ≥2 Supporting, or 1 Moderate plus ≥4 Supporting criteria. The 
complete methodology for these assignments is detailed in Table 1. 

Table 1. Rules for combining criteria to classify sequence variants. [2] 

Category Criteria 
Pathogenic 1 Very Strong (PVS1) AND ≥1 Strong (PS1–PS4) 
Pathogenic 1 Very Strong (PVS1) AND ≥2 Moderate (PM1–PM6) 
Pathogenic 1 Very Strong (PVS1) AND 1 Moderate (PM1–PM6) AND 1 Supporting (PP1–PP5) 
Pathogenic 1 Very Strong (PVS1) AND ≥2 Supporting (PP1–PP5) 
Pathogenic ≥2 Strong (PS1–PS4) OR 1 Strong (PS1–PS4) AND (≥3 Moderate (PM1–PM6) OR 

2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR 1 Moderate (PM1–PM6) 
AND ≥4 Supporting (PP1–PP5)) 

Likely 
Pathogenic 

1 Very Strong (PVS1) AND 1 Moderate (PM1–PM6) 

Likely 
Pathogenic 

1 Strong (PS1–PS4) AND 1-2 Moderate (PM1–PM6) 

Likely 
Pathogenic 

1 Strong (PS1–PS4) AND ≥2 Supporting (PP1–PP5) 

Likely 
Pathogenic 

≥3 Moderate (PM1–PM6) 

Likely 
Pathogenic 

2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) 

Likely 
Pathogenic 

1 Moderate (PM1–PM6) AND ≥4 Supporting (PP1–PP5) 

Benign 1 Stand-Alone (BA1) 
Benign ≥2 Strong (BS1–BS4) 
Likely Benign 1 Strong (BS1–BS4) AND 1 Supporting (BP1–BP7) 
Likely Benign ≥2 Supporting (BP1–BP7) 

2.2.2.2 Criteria Description 

Each of the 28 ACMG criteria is associated with specific attributes of a variant, based on the 
data source. Below is a brief overview of each criterion. 

PVS1: Loss of Function Variants 
PVS1 assess null and loss-of-function variants (e.g., nonsense, frameshift mutations) that 
disrupt gene function. This includes evaluation potential escape from nonsense-mediated 
decay and checking if splice site variants are in critical domains. 

PS1 Same Amino Acid Change 
PS1 assigns strong evidence if a missense variant results in the same amino acid change as 
a known pathogenic variant, unless influenced by direct DNA interaction. 

PS2/PM6: De Novo Variants 
PS2 and PM6 provide strong evidence when de novo mutations occur in dominant disorder-
linked genes and are absent in both parents, correlation with the patient’s clinical presentation. 

PS3/BS3: Functional Studies Evidence 
Functional studies demonstrating a deleterious effect on gene/protein function support 
pathogenicity (PS3), while those showing no adverse effects suggest benignity (BS3). 
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PS4, PM2, BA1, BS1, BS2: Allele Frequency Data 
Population frequency data is essential for differentiating benign from pathogenic variants. 
Common variants in healthy individuals are benign (BS1), especially if their frequency exceeds 
disease prevalence (BA1). Rare variants in the general population but prevalent in affected 
individuals are likely pathogenic (PM2). Zygosity evaluations add benign evidence for 
recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) conditions 
(BS2). High relative risk in Mendelian disorders supports pathogenicity (PS4). 

PM1: Mutational Hot Spot 
Missense variants in critical protein domains known to be essential for function are considered 
moderately pathogenic. These regions, termed mutational hot spots, have all identified 
missense variants shown to be pathogenic. 

PM3, BP2: Cis/Trans Testing 
Testing if variants occur in cis (same gene copy) or trans (different gene copies) helps assess 
pathogenicity. Two heterozygous variants in a gene for a recessive disorder, where one is 
pathogenic, indicate moderate pathogenicity for the other in trans (PM3). Conversely, finding 
the second variant in cis supports benign evidence (BP2). 

PM4, BP3: Protein Length Changes 
Alterations in amino acids, particularly in stop codons, can disrupt protein function by changing 
protein length. Moderate pathogenic evidence (PM4) is applied to large, conserved in-frame 
deletions/insertions, while smaller, non-conserved changes support benign evidence (BP3). 

PM5: Novel Missense 
A novel missense variant at the same position as another pathogenic missense change is 
moderate evidence of pathogenicity. Different amino acid changes can lead to varying 
phenotypes, and a novel change more conserved than a known pathogenic change may not 
be pathogenic. 

PP1, BS4: Segregation Analysis 
Segregation analysis determines if a genetic variant co-segregates with a disease phenotype 
within a family, indicating a potential link. Effective segregation with disease phenotypes in 
diverse families provides moderate to strong pathogenic evidence, while a lack of segregation 
strongly suggests benignity. 

PP2, BP1: Variant Spectrum 
The variant spectrum criterion considers known distributions of pathogenic and benign 
variations within a gene. For genes where missense mutations commonly cause disease and 
benign variants are rare, a novel missense change is supporting evidence for pathogenicity. 
In genes typically affected by truncating variants, missense changes are likely benign. 

PP3, BP4: In Silico Analysis 
In silico predictions are crucial in variant classification, where computational evidence must be 
carefully evaluated. Multiple computational models concurring in their predictions provide 
supportive evidence for pathogenicity or benign nature. 

PP4: Phenotype Matching 
A patient’s phenotype aligning with the clinical features of a gene can provide supportive 
evidence under specific conditions. If the phenotype closely matches a well-defined syndrome 
with minimal overlap with other conditions and the gene shows high clinical sensitivity, this 
supports the variant's pathogenicity (PP4). This can be strengthened if the gene shows limited 
benign variation in large population studies and the family history aligns with the gene's 
inheritance pattern. 
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PP5, BP6: Reputable Source Validation 
Pathogenicity classifications from reputable clinical laboratories are often cited in genetic 
databases. Recent classifications from such sources are considered supporting evidence. 

BP5: Alternate Locus Observations 
Variants observed alongside an alternative genetic cause of disease generally suggest 
benignity. In dominant disorders, a variant found with a known pathogenic variant might still 
contribute to disease severity. In recessive disorders, a novel variant's benign classification 
requires cautious interpretation and additional evidence. 

BP7: Synonymous Variants 
Synonymous variants, traditionally considered benign, require careful interpretation due to 
potential splicing impacts. These changes can disrupt gene function, particularly in genes 
where loss of function causes disease. If computational predictions and evolutionary 
conservation do not suggest splicing impact, variants are likely benign. 

The original ACMG criteria were designed for manual evaluation by experts, and certain 
criteria remain challenging to automate fully. Specifically, criteria such as PS2/PM6 (de novo 
mutations), PS3/BS3 (functional studies), PM3/BP2 (cis/trans testing), and PP1/BS4 
(segregation analysis) have not been automated due to their reliance on complex clinical data, 
experimental evidence, and familial information that require expert interpretation. 

2.2.2.3 Separate Guidelines for PVS1 

Among the ACMG criteria, PVS1 stands out for its complexity and importance in classifying 
null variants that typically cause loss of function. These include nonsense mutations, 
frameshift indels, and canonical splice site alterations, which disrupt gene function often 
through mechanisms like nonsense-mediated decay. In 2018, a decision tree was introduced 
to refine the assessment of these variants [7], evaluating factors such as the variant's gene 
location, its impact on splicing, and the presence of alternative start codons that might mitigate 
the loss of function. This tree assigns a tailored PVS1 strength rating, from "Very Strong" to 
"Supporting". 

The updated guidelines enhance PVS1 assessments by integrating criteria to determine the 
evidence strength for classifying null variants. Key considerations include whether truncating 
variants escape NMD, the location of the variant within the final exon or the last 50 base 
pairs of the penultimate exon, and the potential production of truncated proteins. These 
guidelines also emphasise assessing the biological relevance of the transcript and the 
functional significance of the affected region, evaluating the possibility of exon skipping or 
cryptic splice site use, and the necessity for detailed functional assays for variants that escape 
NMD but may still produce functional proteins. The refined guidelines introduce varying 
strengths for PVS1, supporting more precise and context-sensitive interpretations of null 
variants across different genetic contexts and diseases. 

2.2.2.4 ClinGen Modifications 

Building upon the existing American College of Medical Genetics and Genomics (ACMG) 
guidelines, the Clinical Genome Resource (ClinGen) has made several significant 
modifications to refine and update the criteria used for sequence variant interpretation. 

One of the notable changes introduced by ClinGen involves the discontinuation of the PP5 
and BP6 criteria, which were previously used to classify variants based on reputable source 
information [23]. The removal of these criteria is part of an effort to ensure that genetic variant 
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classifications are based on transparent and replicable evidence, rather than on potentially 
unverifiable sources. 

Additionally, ClinGen has introduced an exception list for the BA1 criterion [9], which is used 
to classify a variant as benign if it is common in a healthy population. The exception list clarifies 
situations where a variant previously thought to be benign due to its frequency may still be 
considered for pathogenic classification under specific circumstances, enhancing the 
accuracy of variant interpretation. 

Significant advancements have also been made in the interpretation of splicing 
recommendations [11]. ClinGen has developed guidelines that integrate both predicted and 
observed impacts on splicing, offering a more comprehensive framework for assessing 
variants that may affect RNA splicing processes. These guidelines aim to improve predictions 
of the functional effects of intronic and exonic changes that could disrupt normal splicing. 

ClinGen also has addressed the calibration of computational tools used to predict the 
pathogenicity of missense variants (PP3 and BP4) [3]. These guidelines offer a framework for 
evaluating the performance of in silico tools, aiming to standardise the use of computational 
evidence in the variant classification process. By calibrating these tools against known variant 
datasets, ClinGen seeks to enhance the reliability of predictions made regarding variant 
pathogenicity. 

2.2.2.5 VCEP Gene-Specific Curated Modifications 

The Variant Curation Expert Panels (VCEP) within ClinGen have refined the ACMG guidelines 
to improve the accuracy of sequence variant interpretation through gene-specific 
modifications. These adjustments cater to the unique characteristics of individual genes, 
providing more precise thresholds and general guidelines for criteria assessment. However, 
these VCEP guidelines are not implemented in the current version of AutoACMG due to the 
lack of machine-readable specifications. 

2.3 Data 

2.3.1 Data for Predictions 

The successful implementation of the AutoACMG tool relies heavily on comprehensive genetic 
data from various databases. For gene-focused information, OMIM (Online Mendelian 
Inheritance in Man) provides detailed gene-phenotype relationships, Decipher (DatabasE of 
genomiC varIation and Phenotype in Humans using Ensembl Resources) helps in interpreting 
variants in rare diseases, and Orphanet offers information on orphan drugs and rare diseases. 

Variant-focused databases include gnomAD (Genome Aggregation Database), which 
provides population frequency data by aggregating genome and exome sequencing data, and 
dbSNP (Single Nucleotide Polymorphism Database), which catalogues short genetic 
variations. UniProt offers extensive data on protein sequences and functions, essential for 
understanding the impact of amino acid changes. The Human Phenotype Ontology (HPO) 
provides a structured vocabulary of phenotypic abnormalities encountered in human disease, 
which is helpful for correlating genetic variations with clinical data. Additionally, dbNSFP 
integrates scores from various computational predictive tools such as REVEL, PolyPhen, 
CADD, BayesDel, PrimateAI, FATHMM, and PhyloP, all of which predict the functional 
effects of variants. 
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Access to comprehensive resources is essential for implementing the AutoACMG tool 
effectively to predict the clinical significance of genetic variants. Such diverse and extensive 
data ensures that AutoACMG's interpretations are well-supported by empirical evidence, 
thereby enhancing the reliability and utility of genetic testing in clinical and research settings. 

2.3.2 Data Sources 

In AutoACMG, the REEV web service [12] acts as a gateway to aggregate and access genetic 
data from various databases. The "annonars" microservice pulls gene-specific and variant-
specific data from sources such as gnomAD, dbSNP, and dbNSFP, alongside computational 
scores that are critical for variant interpretation. Additionally, "mehari", another microservice 
within REEV, provides detailed transcript-specific information including HGVS notations, 
variant effect predictor (VEP) consequences, and feature tags, such as whether a transcript 
is MANE selected. 

For the resolution of sequence variants from HGVS notations, the "dotty" microservice is 
utilized, ensuring that variants are accurately interpreted based on the latest genomic 
assemblies. An essential component of variant prediction, particularly for assessing splicing 
implications, involves the MaxEnt package [24,25], which utilises RefSeq sequences for both 
GRCH37 and GRCH38. Furthermore, to aid in the identification of repetitive masked regions 
and critical functional domains within proteins, we utilise preprocessed Uniprot and 
RepeatMasker (RMSK) tracks from the UCSC genome browser [26]. 

2.3.3. Data Limitations 

In AutoACMG, although a wide range of genetic data is used for variant interpretation, certain 
types of data are not accessible, limiting the full automation of ACMG criteria. Specifically, we 
lack critical familial and clinical information such as maternity/paternity validation, functional 
studies assessing gene or protein function, prevalence differences between affected 
individuals and control groups, testing of parents to confirm de novo status of variants, 
segregation analysis within families, and detailed family medical histories. These data are 
essential for a comprehensive assessment of variant pathogenicity and typically require direct 
clinical input and validation. 

Consequently, the absence of detailed clinical and familial data limits the scope of AutoACMG, 
making it a semi-automated classification algorithm. The manual evaluation by clinicians is 
necessary for criteria PS2, PS3, PS4, PM3, PM6, PP1, PP4, BS3, BS4, BP2, and BP5. Table 
2 outlines these ACMG criteria and explains why each cannot be fully automated. 

2.4 Selection of tools 
A variety of computational tools have already been developed to automate the application 
of ACMG guidelines. Among these, AutoPVS1 has significantly influenced the implementation 
of the PVS1 criteria in AutoACMG. The methodologies and threshold definitions provided by 
the documentation of VarSome [6] and the InterVar [4] paper have also been helpful in refining 
algorithmic approaches for assessing variant pathogenicity. 

Further exploration through a Google search on July 15, 2024, for "automatic ACMG 
guidelines" reveals several other notable tools including Franklin by Genoox [27], MAGI-
ACMG [28], and GenOtoScope [29], each offering functionalities on automated guideline 
application. Another inquiry via Google Scholar using the same query highlights systems such 
as GeneBe.net [30], vaRHC [31], AutoCNV [32], CardioVAI [33], and VIP-HL [34]. Additionally, 
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a PubMed search on the same date and query found MARGINAL [35], another tool for 
automatic classification of variants in BRCA1 and BRCA2 genes. 

Table 2. ACMG Criteria Requiring Manual Evaluation. Outline ACMG criteria that require manual evaluation, 
detailing the specific data sources needed and explaining why automation is not possible for these criteria. 

ACMG 
Criteria 

Information 
Sources/Databases 

Used 

Notes on Non-Automatability 

PS2, 
PS3, PS4 

Literature and 
functional studies 

These criteria require clinical validation of variant 
pathogenicity through family studies, which cannot be 

automated due to the need for patient and family-
specific data. 

PM3, 
PM6 

Internal family 
databases 

Testing for de novo status or cis/trans phase requires 
specific parental data which is often not available in 
public databases, necessitating manual verification. 

PP1, PP4 Family studies, 
clinical reports 

Segregation analysis and phenotype correlation 
require detailed and often confidential family medical 

histories and phenotype data that are not typically 
accessible or automatable. 

BS3, BS4 Functional studies, 
clinical databases 

Functional assays and their interpretation often need 
detailed laboratory results and expert analysis to 
determine the impact on gene or protein function, 

which cannot be automated. 
BP2, BP5 Literature, clinical 

databases 
These criteria involve assessment of benign impact 

often requiring detailed clinical insights and 
longitudinal studies, which go beyond genetic data 

alone. 

The selection of comparative tools for AutoACMG was strategic, emphasising open-source 
availability, robust documentation, and ease of testing to ensure a comprehensive evaluation. 
InterVar and GeneBe stood out as the principal concurrent tools, both offering well-
documented frameworks that are accessible and testable, aligning with the open-source 
principles of AutoACMG. 

2.5 Implementation of AutoACMG 

2.5.1 Software, Tools and External Services 

In developing AutoACMG, a range of specialised software tools, programming resources, 
and external services were utilised. The project primarily employed Python 3.12, with version 
control managed through GitHub and local repositories handled using git. Continuous 
integration and deployment (CI/CD) were streamlined using GitHub Actions, automating 
workflows for improved software testing and deployment. Documentation was built using 
Sphinx and hosted on "Read the Docs", providing a comprehensive interface for both end-
users and developers. 

The command-line interface (CLI) for AutoACMG was crafted using Typer for ease of use, and 
Loguru for enhanced logging. Pydantic handled data validation from external application 
programming interfaces (APIs), ensuring data processing correctness. The software's code 
quality was maintained using MyPy for static type checking, Isort for import sorting, Flake8 for 
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coding style enforcement, and Black for code formatting. Testing was conducted using Pytest 
to manage and execute comprehensive test suites, essential for a tool like AutoACMG. 

External data and services integration was achieved through REEV microservices — 
annonars, mehari, and dotty. The annonars microservice pulled gene-specific and variant-
specific data from databases such as gnomAD, dbSNP, and dbNSFP, including computational 
scores. Mehari provided transcript-specific information like HGVS notations and VEP 
consequences, identifying if a transcript is MANE selected. The dotty microservice resolved 
sequence variants from HGVS notations based on the latest genomic assemblies. 

For domain-specific functionalities, PyTabix was utilized for searching UniProt and RMSK 
conservation domains, while SeqRepo was used for efficient data retrieval from RefSeq 
GRCh37 and GRCh38 human genomes. MaxEntpy facilitated splicing predictions using 
RefSeq sequences retrieved via SeqRepo. 

2.5.3 AutoACMG Implementation 

Software Architecture 

The AutoACMG tool is engineered to offer dual functionalities through a Command Line 
Interface (CLI) and an Application Programming Interface (API), accommodating various user 
needs. The tool's architecture is designed to facilitate the analysis of genetic variants by 
implementing the ACMG criteria through structured computational steps. 

At its core, AutoACMG operates through a series of critical steps. It begins by resolving the 
variant using a combination of regular expressions matches for canonical representations and 
the "dotty" microservice for variants expressed in HGVS (Human Genome Variation Society) 
and rsID notations, which refer to reference SNP identifiers in databases. Once the variant is 
resolved, AutoACMG methodically processes each ACMG criterion. During this prediction 
phase, necessary data is retrieved and algorithmic evaluations are conducted to classify the 
variant according to ACMG guidelines. Figure 4 graphically presents all the core functionalities 
of AutoACMG in the internal infrastructure diagram. 

Command Line Interface 

The CLI component of AutoACMG provides the "classify" command, which accepts a variant 
name as a required positional argument and an optional genome release version, defaulting 
to GRCh38 if unspecified. This interface logs detailed steps of the prediction process and 
returns the prediction result. This output includes details for each of the 28 ACMG criteria, with 
properties such as name, prediction, summary, and description. The name specifies the 
criterion, while prediction indicates its status: "met" (criteria triggered), "unmet" (criteria not 
triggered), "deprecated" (following ClinGen guidelines for PP5 and BP6), "not applicable" 
(PS1 & PM5 for missense variants only), or "not set" (prediction failure). An example of this 
prediction result can be found in Appendix under the name "Figure A1. Example output". 
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Figure 4. AutoACMG Internal Infrastructure. The diagram shows the workflow of the AutoACMG tool, where user 
inputs are processed by the AutoACMG Resolver and Dotty Microservice to resolve sequence variants, which are 
then classified by the AutoACMG Classifier using data from REEV Microservices, resulting in ACMG criteria 
prediction outputs. 

Application Programming Interface 

At the core of the API is the "AutoACMG" class, which can be initialised with parameters for 
the variant name and genome release. This class includes methods such a 
"resolve_variant", which processes and returns the sequence variant in its canonical form, 
an "predict", which performs the classification of ACMG criteria and returns the prediction 
result. 

PVS1 Criterion Implementation 

The AutoACMG tool employs a decision tree (Figure A2 in Appendix), aligned with the 2018 
guidelines for PVS1 criterion evaluation, focusing on the evidence strength for variant 
classification. This section details the implementation of key decision blocks within the tool. 

The "undergo_nmd" function assesses whether variants undergo nonsense-mediated decay 
(NMD), a key factor for evaluating PVS1 in nonsense or frameshift variants. The function 
evaluates if the variant is located in the last exon or within the last 50 nucleotides of the 
penultimate exon; variants outside these regions are predicted to undergo NMD, while those 
within are not. Details are available in Pseudocode 1. 

The "in_bio_relevant_tx" function determines if a variant is in a biologically relevant 
transcript by checking for the "ManeSelect" tag, which signifies the transcript as a major 
isoform according to the MANE project. This function ensures that the variant analysis focuses 
on clinically relevant transcripts in the AutoACMG tool. 
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Pseudocode 1. Determining Nonsense-Mediated Decay (NMD) Status of Variants 

Input: variant_position, gene_name, genomic_strand, exons 
Output: True if the variant undergoes NMD, False otherwise 
Begin 
    If gene_name is "GJB2" Then 
        Return True 
    Calculate exon_lengths as (exon_end_position - exon_start_position + 1) 
for all exons 
    If single exon Then 
        Return True 
    Set nmd_cutoff as sum of exon_lengths minus the last exon and minimum 
from second last exon and 50 
    If variant_position <= nmd_cutoff Then 
        Return True 
    Else 
        Return False 
End 

The "crit4prot_func" function evaluates whether a truncated or altered region is critical for 
protein function by examining the presence of pathogenic variants downstream of the new 
stop codon. It calculates the affected region based on the variant's position within the gene's 
coding sequence and counts pathogenic variants within this region, using data from ClinVar. 
If more than 5% of the variants in this region are pathogenic, the region is considered critical. 
Further details are available in Pseudocode 2. 

Pseudocode 2. Assessing Impact on Protein Function 

Input: variant, exons, genomic_strand 
Output: True if the altered region is critical for the protein function, 
otherwise False 
Begin 
    Calculate start_pos and end_pos of the affected exon region based on 
variant, exons and strand 
    Fetch pathogenic_variants and total_variants in the range start_pos to 
end_pos 
    If total_variants is 0 Then 
        Return False  // No variant found 
    Calculate frequency of pathogenic_variants as pathogenic_variants / 
total_variants 
    If frequency of pathogenic_variants > 0.05 Then 
        Return True 
    Else 
        Return False 
End 

The "lof_freq_in_pop" function determines if the frequency of Loss-of-Function (LoF) 
variants in a gene's exon is common in the general population, by assessing their prevalence 
within the exon's genomic range. It computes the location of the exon based on the variant's 
position and counts both total LoF variants and those considered frequent. A LoF variant is 
classified as frequent if more than 10% of identified LoF variants within the region are common 
in the population. This assessment influences the application of the PVS1 criterion within the 
ACMG guidelines, as variants with high LoF frequencies may be interpreted as benign. Details 
are available in Pseudocode 3. 
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Pseudocode 3. Assessing Frequency of LoF Variants in the General Population 

Input: variant, exons, strand 
Output: True if the LoF variant frequency is greater than 0.1%, False 
otherwise 
Begin 
    Calculate start_pos and end_pos of the affected exon region based on 
variant, exons and strand 
    Fetch frequent_lof_variants and total_lof_variants in the range start_pos 
to end_pos 
    If total_lof_variants is 0 Then 
        Return False 
    Calculate frequency of frequent_lof_variants as frequent_lof_variants / 
total_lof_variants 
    If frequency of frequent_lof_variants > 0.1 Then 
        Return True 
    Else 
        Return False 
End 

The "lof_rm_gt_10pct_of_prot" function evaluates whether a Loss-of-Function (LoF) variant 
eliminates more than 10% of a protein, using the variant's position and the total protein length. 
It directly calculates the proportion of the protein affected by the variant and returns if more 
than 10% of the protein is removed, aligning with the criterion that significant deletions in 
protein structure are likely to impact function. Details are available in Pseudocode 4. 

Pseudocode 4. Evaluating if the LoF Variant Removes More Than 10% of Protein 

Input: prot_pos, prot_length 
Output: True if the LoF variant removes more than 10% of the protein, False 
otherwise 
Begin 
    Calculate percentage_removed as prot_pos / prot_length 
    If percentage_removed > 0.1 Then 
        Return True 
    Else 
        Return False 
End 

The "exon_skip_or_cryptic_ss_disrupt" function evaluates whether a genetic variant 
causes exon skipping or disrupts cryptic splice sites. For exon skipping, the function checks if 
the exon's length where the variant is located is divisible by three; if not, it predicts exon 
skipping. In the case of splice variants, it identifies potential cryptic splice sites by extracting 
the sequence around the variant and calculating MaxEnt scores. If a cryptic splice site has a 
high enough MaxEnt score to be considered significant and its distance from the variant isn't 
divisible by three, the function predicts disruption of the splice site. This detailed assessment 
helps ascertain if a variant can alter the normal splicing process, potentially leading to 
pathogenic outcomes. Details are available in Pseudocode 5. 

The "alt_start_cdn" function determines whether a sequence variant results in an alternative 
start codon in any transcript besides the primary one. This is done by comparing the start 
positions of coding sequences across various transcripts. If any transcript presents a start 
position different from the primary transcript's start codon, the function concludes that an 
alternative start codon has been introduced. Details are available in Pseudocode 6. 

The "up_pathogenic_vars" function evaluates if there are pathogenic variants upstream 
from the nearest potential in-frame start codon. It first identifies this start codon, then fetches 
and counts any pathogenic variants between this codon and the variant's position. If 
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pathogenic variants exist within this specified range, the function returns "true", indicating the 
presence of upstream pathogenic variants. This process involves checking the sequence 
orientation and calculating the range based on the first and last exons, along with the closest 
alternative start codon, to determine the correct genomic span for searching pathogenic 
variants. Details are available in Pseudocode 7. 

Pseudocode 5. Evaluating if Exon Skipping or Cryptic Splice Site Disruption Alters the Reading Frame 

Input: variant, exons, consequences, strand 
Output: True if the variant causes exon skipping or cryptic splice site 
disruption, False otherwise 
Begin 
    Calculate start_pos and end_pos of the affected exon region based on 
variant, exons and strand 
    If (end_pos - start_pos) % 3 != 0 Then 
        Return True  // Exon skipping predicted 
    // Check for cryptic splice site disruption 
    Find all cryptic_sites using MaxEnt splice site prediction 
    For each cryptic_site in cryptic_sites Do 
        If abs(cryptic_site.position - seqvar.pos) % 3 != 0 Then 
            Return True  // Cryptic splice site disruption predicted 
    Return False  // Preserves reading frame 
End 

Pseudocode 6. Evaluate possibility of alternative start codon 

Input: transcripts_info, variant 
Output: True if variant introduces an alternative start codon, False 
otherwise 
Begin 
    Choose main_transcript based on variant  // Choose MANE transcript or 
the longest one 
    For each transcript in transcripts_info Do 
        If alt_start_position of transcript != start_position of 
main_transcript Then 
            Return True 
    Return False 
End 

Pseudocode 7. Evaluate importance of upstream region 

Input: transcripts_info, variant, exons, genomic_strand 
Output: True if pathogenic variants are found upstream of the closest 
potential in-frame start codon, False otherwise 
Begin 
    Choose main_transcript based on variant  // Choose MANE transcript or 
the longest one 
    For each transcript in transcripts_info Do 
        If alt_start_position of transcript != start_position of 
main_transcript Then 
            Set alt_start_pos as alt_start_position 
            Break 
    Determine end_pos of the exon where alt_start_codon is located using 
variant, genomic_strand, and exons 
    Count pathogenic_variants in the range from alt_start_pos to end_pos 
    If pathogenic_variants > 0 Then 
        Return True 
    Return False 
End 
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Other Criteria Implementation 

Just as with the PVS1 criteria, the AutoACMG tool applies a systematic approach for predicting 
other ACMG criteria, involving accurate data parsing and algorithmic evaluation. This section 
details the algorithmic steps utilised for these predictions. 

For the PS1 and PM5 criteria, the prediction process begins by retrieving the primary variant's 
details and extracting the primary amino acid change. The tool then iterates over all potential 
alternative bases for the variant, gathering information for these alternative variants. For each 
alternative, it parses the amino acid change and assesses whether this alternative variant has 
been previously determined as pathogenic. If the amino acid change in the alternative variant 
matches that of the primary variant and is deemed pathogenic, the PS1 criterion is met. 
Conversely, if the amino acid change differs but the variant is still pathogenic, the PM5 criterion 
is applied. The detailed implementation is provided in Pseudocode 8. 

Pseudocode 8. PS1 and PM5 evaluation 

Input: variant 
Output: Prediction result for PS1 and PM5   
Begin 
    PS1, PM5 are set to False per default 
    Parse Amino Acid substitution primary_aa_change from variant 
    For each alt_base in {A, C, G, T} different from primary_aa_change Do 
        If variant with alt_base is pathogenic Then 
            Parse Amino Acid substitution alt_aa_change from variant_info 
with alt_base 
            If alt_aa_change == primary_aa_change Then 
                Set PS1 to True 
            If alt_aa_change != primary_aa_change Then 
                Set PM5 to True 
    Return PS1 and PM5 
End 

The PM1 criterion in the AutoACMG tool is predicted through an analysis of pathogenic 
variants within specific genomic ranges related to the sequence variant. The process begins 
by counting pathogenic variants in the 50 base pair proximity to the variant. If four or more 
pathogenic variants are detected within this range, the PM1 criterion is met, suggesting a 
significant likelihood of pathogenicity due to the variant's location within a hotspot. 

Additionally, the tool assesses whether the variant is situated within a UniProt domain, which 
is a critical region for protein function. If the variant lies within a UniProt domain, the tool then 
counts the pathogenic variants within this domain. Meeting the PM1 criterion in this context 
requires the presence of at least two pathogenic variants within the domain. The detailed 
implementation is provided in Pseudocode 9. 

Furthermore, the BS2 criterion considers the zygosity and penetrance of the variant; it is 
satisfied if the variant is observed in a healthy adult at a zygosity expected to cause disease 
if the variant were pathogenic. This evaluation involves checking the allele count and zygosity 
in genetic databases, ensuring the variant does not cause disease in a fully penetrant manner 
at an early age. The detailed implementation is provided in Pseudocode 10. 
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Pseudocode 9. PM1 evaluation 

Input: variant, variant_info   
Output: Prediction result for PM1   
Begin 
    Set PM1 to False by default 
    If variant is in mitochondrial genome Then 
        Return PM1 is False  // PM1 is not applicable 
    Count pathogenic variants in the range (variant.position - 25) to 
(variant.position + 25) 
    If pathogenic_count >= 4 Then 
        Return PM1 is True 
    Check if the variant is in a UniProt domain 
    If not in a UniProt domain Then 
        Return PM1 is False  // PM1 is not met 
    Count pathogenic variants in the UniProt domain range 
    If pathogenic_count >= 2 Then 
        Return PM1 is True 
    Else 
        Return PM1 is False 
End 

Pseudocode 10. PM2, BA1, BS1 and BS2 evaluation 

Input: variant 
Output: Prediction result for PM2, BA1, BS1, BS2   
Begin 
    Initialize PM2, BA1, BS1, BS2 as False by default 
    Retrieve allele frequency (af) for the variant 
    If af is None Then 
        Set PM2 to True  // Absent from controls 
    Else If af > 0.05 Then 
        Set BA1 to True  // Allele frequency > 5% 
    Else If af >= 0.01 Then 
        Set BS1 to True  // Allele frequency > 1% 
    Else 
        Set PM2 to True  // Allele frequency <= 1% 
    Check zygosity and penetrance 
    If af >= 0.01 and variant is observed in a healthy individual with 
relevant disorder Then 
        Set BS2 to True 
    Return PM2, BA1, BS1, BS2 
End 

The prediction of PM4 and BP3 criteria within the AutoACMG tool focuses on the type and 
location of in-frame deletions/insertions and stop-loss variants. For PM4, the tool identifies 
changes in protein length due to in-frame deletions or insertions that are not located within 
repeat regions or stop-loss variants, indicating significant alterations to protein structure that 
could affect function. If the variant causes a stop-loss, PM4 is automatically met, considering 
its potential to prolong the protein beyond its normal termination point, often resulting in 
functional disruption. 

Conversely, BP3 is triggered when in-frame deletions or insertions occur within repeat regions, 
suggesting that these alterations are less likely to impact protein function significantly due to 
their repetitive and potentially non-functional context. The tool utilises genomic libraries and 
the RepeatMasker track to ascertain the presence of a variant within these regions effectively. 
The detailed implementation is provided in Pseudocode 11. 
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Pseudocode 11. PM4 and BP3 evaluation 

Input: variant  
Output: Prediction result for PM4 and BP3   
Begin 
    Initialize PM4 and BP3 as False by default 
    If variant is a stop-loss Then 
        Return PM4 is True and BP3 is False 
    If variant is in-frame deletion/insertion Then 
        Check if the variant is in a repeat region 
        If variant is not in a repeat region Then 
            Set PM4 to True 
        Else 
            Set BP3 to True 
    Return PM4 and BP3 
End 

The prediction of PP2 and BP1 criteria within the AutoACMG tool involves evaluating the 
frequency and type of missense variants within a specific gene segment. For PP2, a missense 
variant is considered supportive of pathogenicity if it occurs within a region where missense 
mutations are frequently pathogenic relative to benign ones. Conversely, BP1 is met when the 
frequency of benign missense variants significantly exceeds pathogenic variants, indicating 
that missense changes at this location are typically benign. 

The process begins by fetching the gene transcript data to establish the range for variant 
assessment. Variants are then retrieved from this range, and each is evaluated for its 
missense consequence and clinical significance according to ClinVar records. The tool 
calculates the ratio of pathogenic to total missense variants and benign to total missense 
variants. If the pathogenic ratio exceeds a predefined threshold (0.808), PP2 is assigned, 
suggesting the region's susceptibility to harmful mutations. Similarly, if the benign ratio goes 
beyond a set threshold (0.569), BP1 is assigned, indicating that missense changes in this 
region are generally benign. The detailed implementation is provided in Pseudocode 12. 

Pseudocode 12. PP2 and BP1 evaluation 

Input: variant, transcript_info  
Output: Prediction result for PP2 and BP1   
Begin 
    Initialize PP2 and BP1 as False by default 
    Fetch transcript data for the variant 
    If consequence is not missense Then 
        Return PP2 is False and BP1 is False  // Only applicable for missense 
variants 
    Calculate start_pos and end_pos of the affected exon based on 
transcript_info 
    Count pathogenic_count, benign_count, and total_count of missense 
variants in the range start_pos to end_pos 
    Calculate pathogenic_ratio as pathogenic_count / total_count 
    Calculate benign_ratio as benign_count / total_count 
    If pathogenic_ratio > 0.808 Then 
        Set PP2 to True 
    If benign_ratio > 0.569 Then 
        Set BP1 to True 
    Return PP2 and BP1 
End 

For the prediction of PP3 and BP4 criteria within the AutoACMG tool, the approach relies on 
integrating computational predictions to assess variant pathogenicity or benign impact. PP3 is 
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supported when computational tools predict a variant to be damaging, while BP4 is supported 
when computational predictions indicate benign impact. 

The procedure begins by checking if computational tools like MetaRNN, BayesDel, and 
SpliceAI — chosen for their prior use in GeneBe — indicate a pathogenic prediction for the 
variant under consideration. If a computational tool assigns a score above a defined threshold, 
suggesting that the variant may affect the protein function or splicing, PP3 is met. Conversely, 
for BP4, the assessment checks if the tools classify the variant as benign, meaning the 
computational scores fall below a certain benign threshold, indicating that the variant is likely 
benign. 

For BP7, which evaluates synonymous variants unlikely to affect splicing, the AutoACMG tool 
checks for pathogenic variants within a 2 base pairs range. If such variants are found, BP7 is 
not met as it suggests a potential functional impact. Next, the tool assesses the proximity to 
canonical splice sites. Variants within 2bp of splice sites are excluded from BP7 due to the 
risk of splicing alterations. Lastly, the tool uses SpliceAI to predict splice site alterations. If 
SpliceAI indicates that the variant might create or disrupt splice sites, BP7 is not met. The 
detailed implementation is provided in Pseudocode 13. 

Pseudocode 13. BP7 evaluation 

Input: variant 
Output: Prediction result for BP7   
Begin 
    Initialize BP7 as False by default 
    If variant is in mitochondrial DNA Then 
        Return BP7 is False 
    Check for pathogenic variants within 2bp of the variant position 
    If pathogenic variants are found Then 
        Return BP7 is False 
    Check if the variant is within 2bp of a splice site 
    If the variant is within 2bp of a splice site Then 
        Return BP7 is False 
    Predict splice site alterations using SpliceAI 
    If the variant is a splice site alteration Then 
        Return BP7 is False 
    Return BP7 is True 
End 

2.6 Comparison and Validation 

2.6.1 Variant Selection 

To validate AutoACMG and compare its performance with other automated classification tools, 
a custom dataset of variant classifications was compiled. This dataset comprises 168 
variants, selected from the AutoPVS1 supplementary materials and the ClinGen Evidence 
Repository [36]. The ClinGen Evidence Repository provides a curated collection of variants, 
each with detailed criteria assignments, reflecting the expert-driven classification activities of 
ClinGen. In contrast, the selection from AutoPVS1 was specifically focused on variants 
relevant to the PVS1 criterion, with additional criteria incorporated based on their mentions in 
the accompanying paper. The use of these two distinct sources enhances the dataset's value, 
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allowing for a comprehensive evaluation of AutoACMG across a wide range of ACMG criteria, 
ensuring that the tool is rigorously tested on diverse and independently validated data.1 

2.6.2 Comparison with Other Softwares 

For the comparative analysis, InterVar and GeneBe were selected alongside AutoACMG, 
with VarSome excluded due to commercial restrictions. The primary focus was on evaluating 
the agreement between each tool and reference ClinGen classification using Cohen's kappa, 
similarly as highlighted in  et al. (2024) [30]. This statistical coefficient measures the inter-
annotator agreement for categorical items, such as ACMG criteria. Cohen's kappa was 
calculated for each ACMG criterion to determine the level of agreement between AutoACMG 
and each comparator tool. Standard interpretation thresholds for kappa values were used: 
values above 0.75 indicated excellent agreement, 0.60 to 0.74 indicated substantial 
agreement, 0.40 to 0.59 indicated moderate agreement, and 0.21 to 0.39 indicated fair 
agreement. 

Additionally, the analysis included counting True Positives, False Positives, and False 
Negatives for each criterion across the three algorithms. Based on these counts, metrics such 
as Precision, Recall, and F-score were calculated to further compare the tools' performance. 
Precision measures the proportion of true positive results among all positive results predicted 
by the tool, reflecting the accuracy of the positive predictions. Recall indicates the proportion 
of true positive results among all actual positive cases, demonstrating the tool’s ability to 
identify positive cases. The F-score is the harmonic mean of Precision and Recall, providing 
a balanced measure that considers both false positives and false negatives. Detailed 
calculations are presented in Figure 5. 

 

Figure 5. Formulas for calculating Precision, Recall, and F1-score. 

3 Results 

3.1 Comparative Analysis of Algorithms 
The agreement level between the results of each algorithm and the reference ClinGen 
assertions for individual ACMG criteria are presented with Cohen's kappa values in Table 3. 
This analysis considered only the presence of the criteria, without accounting for differences 
in reported strength levels. 

AutoACMG showed excellent agreement for criteria such as PVS1 (0.976) and PM4 (1.0), 
reflecting its robust implementation for these well-defined criteria. However, for criteria like 
PM2 and PP2, the kappa values were lower (0.19 and -0.012, respectively), highlighting areas 
for further refinement. GeneBe consistently outperformed both AutoACMG and InterVar 
across most criteria, indicating the benefits of its more comprehensive approach by 
implementation of separate VCEP modifications. 

 
1 The complete list is available at the following link: https://github.com/bihealth/auto-
acmg/blob/main/src/bench/comparison_criteria_custom.csv 
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Table 3. Cohen’s Kappa Values for ACMG Criteria. This table presents Cohen's kappa values for each ACMG 
criterion, comparing the level of agreement between AutoACMG, InterVar, and GeneBe tools with the ClinGen 
reference assertions. The kappa values indicate the degree of concordance, categorised into different levels of 
agreement: excellent (≥0.75), substantial (0.60-0.74), moderate (0.40-0.59), and fair (0.21-0.39). The table also 
includes information on the number of variants and their respective genes used for the evaluation of each criterion, 
as well as the number of variants with specific VCEP modifications. 

Criteria Number 
of 
variants 

VCEP 
modifications 

Number 
of genes 

GeneBe 
Kappa [%] 

AutoACMG 
Kappa [%] 

Intervar 
Kappa 
[%] 

PVS1 24 9 (37,5%) 8 97,5 97,6 25,6 
PS1 12 8 (66,7%) 7 90,3 69,8 0 
PM1 48 48 (100%) 16 94,2 58,7 28,9 
PM2 105 87 (82,9%) 21 95,1 19,4 37,2 
PM4 3 0 (0%) 1 100 100 0 
PM5 33 24 (72,7%) 14 96,3 81,7 9,4 
PP2 48 40 (83,3%) 12 97,1 -1,2 -6,3 
PP3 71 32 (45,1%) 23 100 79,7 62,4 
BA1 37 37 (100%) 18 94,9 26,8 8,2 
BS1 15 15 (100%) 7 88,7 31,5 -8,4 
BS2 22 22 (100%) 9 97,4 38,9 8,7 
BP1 15 1 (6,7%) 2 100 -1,2 32,3 
BP3 3 0 (0%) 1 100 100 0 
BP4 33 31 (93,9%) 16 100 41,3 60,8 
BP7 22 17 (77,3%) 12 100 26,6 78,3 

Table 4 presents the performance metrics — Precision, Recall, and F1-score — offering a 
detailed view of each tool's accuracy and reliability in variant classification. AutoACMG 
demonstrated high precision for PVS1 (0.96), PM4 (1.0), BA1 (1.0), and BP3 (1.0), indicating 
high specificity for these criteria. The precision for these criteria is attributed to their strict 
definitions, minimising the likelihood of false positive predictions when the necessary data is 
available. In contrast, InterVar's precision for PM4 (N/A) and BP3 (N/A) was significantly lower 
due to the lack of correct positive predictions. GeneBe performed near excellent for all the 
criteria. 

For recall, AutoACMG showed high values for PVS1 (1.0), PP3 (0.901), BP3 (1.0), and BP7 
(1.0), indicating its effectiveness in covering positive predictions for these criteria. However, 
the high recall for BP7 was achieved at the cost of a high number of False Positive predictions, 
likely due to the high number of variants with VCEP specifications in the testing dataset. The 
F1-score, which balances both precision and recall, provides a comprehensive measure of 
performance. AutoACMG achieved high F1-scores for PVS1 (0.99) and PM4 (1.0), indicating 
a well-rounded performance in these criteria. GeneBe's F1-scores were consistently high, 
particularly for PM2 (0.981) and PP2 (0.979), demonstrating its superior overall performance. 
InterVar, on the other hand, showed lower F1-scores across most criteria, reflecting its 
comparatively lower reliability in variant classification. 

In summary, while AutoACMG excelled in several key criteria, particularly for PVS1, PM4, and 
BP3, GeneBe showed overall superior performance across a broader range of criteria. 
InterVar generally lagged behind in both precision and recall, emphasising the importance of 



Table 4. Evaluation Metrics for ACMG Criteria. This table details the performance metrics for AutoACMG, InterVar, and GeneBe in predicting ACMG criteria. Metrics 
include Precision, Recall, and F1-score values for each criterion. The extended version of metrics can be found in Appendix under the name “Table A3. Evaluation 
Metrics for ACMG Criteria”. 

Criteria GeneBe AutoACMG InterVar 

Precision 
[%] 

Recall 
[%] 

F1 [%] Precision 
[%] 

Recall 
[%] 

F1 [%] Precision 
[%] 

Recall 
[%] 

F1 [%] 

PVS1 100 95,8 97,9 96 100 99 100 16,7 28,6 

PS1 100 83,3 90,9 69,2 75 72 N/A 0 N/A 

PM1 95,8 95,8 95,8 62,5 83,3 71,4 40,5 93,8 56,6 

PM2 97,2 99 98,1 84,6 31,4 45,8 73,9 80,9 73,2 

PM4 100 100 100 100 100 100 N/A 0 N/A 

PM5 94,3 100 97,1 87,1 82 84,3 100 6,1 11,4 

PP2 100 95,8 97,9 0 0 N/A 17,6 6,3 9,2 

PP3 100 100 100 86,4 90,1 88,3 69,8 94,4 80,2 

BA1 94,8 97,3 96 100 18,9 31,8 100 5,4 10,3 

BS1 92,9 86,7 89,7 26,5 86,7 40,6 0 0 N/A 

BS2 95,7 100 97,8 37,2 72,7 49,2 21,1 18,2 20 

BP1 100 100 100 2,4 6,7 3,3 26,3 100 41,7 

BP3 100 100 100 100 100 100 N/A 0 N/A 

BP4 100 100 100 55,2 48,5 51,6 85,7 54,5 66,7 

BP7 100 100 100 26,2 100 41,5 85 77,3 81 
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updating the software and adapting it to newer guidelines, such as ClinGen and VCEP 
modifications. 

4 Discussion and Outlook 

4.1 Interpretation of Results 
AutoACMG predictions generally showed higher accordance with the reference assertions 
than InterVar but did not reach the excellent results of GeneBe. This difference is particularly 
evident in criteria like PM2 and PP2, where AutoACMG's kappa values were notably lower 
(0.19 and -0.012, respectively). The reduced performance in these criteria can be attributed 
to the absence of gene-specific thresholds defined by VCEP modifications, which were not 
implemented in AutoACMG. Similarly, the BA1, BS1 and PM2 criteria, which requires 
consideration of population frequency data, benefits significantly from VCEP's gene-specific 
cutoffs that were applied in GeneBe but not in AutoACMG. 

Furthermore, in criteria such as BP7, AutoACMG showed a high recall (1.0) but at the expense 
of precision (0.262), leading to a lower F1-score. This outcome suggests that while AutoACMG 
effectively identifies all true positives, it also generates a higher rate of false positives, likely 
due to the lack of splicing scores, used for splicing alteration assessment. In contrast, 
AutoACMG excelled in criteria with strict definitions, such as PVS1 (with an F1-score of 0.99), 
where the robust implementation of null variant rules led to high accuracy. 

In summary, while AutoACMG demonstrates strong performance in well-defined criteria, its 
overall accuracy is limited by the absence of VCEP-specific guidelines, as seen in the 
comparison with GeneBe, which implements these gene-specific modifications more 
effectively. This highlights the need for further refinement and integration of VCEP rules to 
enhance the precision and reliability of AutoACMG. 

4.2 Technical Limitations and Challenges 
The AutoACMG tool, while robust, faces several technical limitations and challenges that need 
to be addressed to enhance its predictive accuracy and reliability. One significant limitation is 
the quality and completeness of data obtained from external APIs. For example, the lower 
performance in criteria such as BA1 (stand-alone, common variant), BS1 (frequent in control 
population), and PM2 (absent from controls) can be attributed to the high number of genes 
with special thresholds defined in VCEP rules. The reliance on default thresholds rather than 
gene-specific cutoffs, as specialised by experts in corresponding VCEPs, underscores the 
need for more context-aware algorithms. 

Additionally, some criteria in AutoACMG rely on preset thresholds that could benefit from 
further tuning and refinement. For instance, the PM1 criterion (variant in a hotspot region) and 
PP2 criterion (missense variants in genes with a low rate of benign missense variation) 
showed lower concordance, indicating that the current thresholds might not be optimal. Fine-
tuning these thresholds based on more extensive datasets and expert input could significantly 
improve the predictive performance of these criteria. 

In summary, the main technical limitations and challenges faced by AutoACMG include the 
need for better data quality from APIs, the necessity of refining thresholds for certain criteria 
(implementation of VCEP rules), and the lack of detailed algorithmic descriptions for others. 
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Addressing these issues will be crucial for improving the tool's performance and reliability in 
clinical genetic variant analysis. 

4.3 Future Work 

4.3.1 Criteria Prediction Improvements 

Future work will focus on implementing VCEP gene-specific rules to enhance the accuracy of 
AutoACMG's predictions. This will involve integrating these specialised guidelines to improve 
the reliability of the tool for a wider range of genetic variants. Secondly, refining thresholds for 
criteria such as PM1 and PP2 will be a priority, ensuring that the tool's predictions align more 
closely with expert assessments and current research findings. Lastly, efforts will be directed 
toward improving the implementation of the BP7 criterion by validating and incorporating more 
advanced splicing alteration detection tools. These enhancements will collectively ensure that 
AutoACMG continues to provide precise and reliable genetic variant classifications. 

4.3.2 Technical Perspectives 

Finally, integrating the AutoACMG package into the REEV software tool will streamline its 
usage and enhance its capabilities, offering users a comprehensive solution for genetic variant 
analysis. This integration will utilise REEV's robust infrastructure to facilitate more efficient 
data retrieval and variant classification, significantly improving upon the current use of 
InterVar. 

Abbreviations 

ES: Exome sequencing 
GS: Genome sequencing 
RNA: Ribonucleic acid 
DNA: Deoxyribonucleic acid 
ACMG: American College of Medical Genetics and Genomics 
AMP: Association for Molecular Pathology 
ClinGen: Clinical Genome Resource 
UTR: Untranslated regions 
mRNA: Messenger RNA 
GRC: Genome Reference Consortium 
SNV: Single nucleotide variant 
indel: Insertion or deletion 
CNV: Copy number variation 
LoF: Loss-of-function 
GoF: Gain-of-function 
NMD: Nonsense-mediated decay 
B: Benign 
LB: Likely benign 
US: Uncertain significance 
LP: Likely pathogenic 
P: Pathogenic 
PVS: Pathogenic very strong 
PS: Pathogenic strong 
PM: Pathogenic moderate 
PP: Pathogenic supporting 
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BA: Benign stand alone 
BS: Benign strong 
BP: Benign supporting 
VCEP: Variant Curation Expert Panels 
VEP: Variant effect predictor 
MANE: Matched Annotation from NCBI and EMBL-EBI 
CI/CD: Continuous integration and deployment 
CLI: Command-line interface 
API: Application programming Interface 
TP: True positives 
FP: False positives 
FN: False negatives 
N/A: Not applicable 
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Appendix 

Figure A1. Example output of AutoACMG prediction. Original file can be found at: 
https://github.com/bihealth/auto-
acmg/blob/main/src/bench/NM_000257.3(MYH7)%3Ac.3036C%3ET_output.csv 

{ 
   "pvs1":{ 
      "name":"PVS1", 
      "prediction":"<AutoACMGPrediction.NotSet":1>, 
      "summary":"", 
      "description":"PVS1 prediction failed." 
   }, 
   "ps1":{ 
      "name":"PS1", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Error occurred during PS1/PM5 prediction. Error: No valid 
primary variant information for PS1/PM5 prediction.", 
      "description":"" 
   }, 
   "ps2":{ 
      "name":"PS2", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "ps3":{ 
      "name":"PS3", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "ps4":{ 
      "name":"PS4", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "pm1":{ 
      "name":"PM1", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Counting pathogenic variants in the range of 50bp.The 
range is 23892794 - 23892844. => 
                Found 0 Pathogenic variants. => 
                Found less than 4 pathogenic variants.Checking if the 
variant is in a UniProt domain. => 
                Check if the variant is in a UniProt domain. 
                Counting pathogenic variants in the UniProt domain. The 
range is 23892755 - 23892932. => 
                Found less than 2 pathogenic variants in the UniProt 
domain. PM1 is not met.", 
      "description":"" 
   }, 
   "pm2":{ 
      "name":"PM2", 
      "prediction":"<AutoACMGPrediction.Positive":5>, 
      "summary":"Check allele frequency for the control population. 
      Allele frequency: 0.001873719971626997.Allele frequency <= 1%: PM2 is 
met.Check zygosity.", 
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      "description":"" 
   }, 
   "pm3":{ 
      "name":"PM3", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "pm4":{ 
      "name":"PM4", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Check consequences of the variant for PM4. 
                Variant consequence is not indel or stop-loss. PM4 and BP3 
are not met.Check if the variant is in a repeat region. 
                Variant is in a repeat region.", 
      "description":"" 
   }, 
   "pm5":{ 
      "name":"PM5", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Error occurred during PS1/PM5 prediction. Error: No valid 
primary variant information for PS1/PM5 prediction.", 
      "description":"" 
   }, 
   "pm6":{ 
      "name":"PM6", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "pp1":{ 
      "name":"PP1", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "pp2":{ 
      "name":"PP2", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Fetching transcript data. => 
            Error occurred during PP2 and BP1 prediction. Error: Transcript 
data is not fully set. Cannot initialize the PVS1 class.", 
      "description":"" 
   }, 
   "pp3":{ 
      "name":"PP3", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Checking Scores. => 
            An error occurred during prediction. Error: Missing dbNSFP 
data.", 
      "description":"" 
   }, 
   "pp4":{ 
      "name":"PP4", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "pp5":{ 
      "name":"PP5", 
      "prediction":"<AutoACMGPrediction.Depricated":4>, 
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      "summary":"", 
      "description":"" 
   }, 
   "ba1":{ 
      "name":"BA1", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Check allele frequency for the control population. 
            Allele frequency: 0.001873719971626997. 
            Allele frequency <= 1%: PM2 is met.Check zygosity.", 
      "description":"" 
   }, 
   "bs1":{ 
      "name":"BS1", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Check allele frequency for the control population. 
            Allele frequency: 0.001873719971626997. 
            Allele frequency <= 1%: PM2 is met.Check zygosity.", 
      "description":"" 
   }, 
   "bs2":{ 
      "name":"BS2", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Check allele frequency for the control population. 
            Allele frequency: 0.001873719971626997. 
            Allele frequency <= 1%: PM2 is met.Check zygosity.", 
      "description":"" 
   }, 
   "bs3":{ 
      "name":"BS3", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "bs4":{ 
      "name":"BS4", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "bp1":{ 
      "name":"BP1", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"", 
      "description":"" 
   }, 
   "bp2":{ 
      "name":"BP2", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "bp3":{ 
      "name":"BP3", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Check consequences of the variant for PM4. 
            Variant consequence is not indel or stop-loss. PM4 and BP3 are 
not met.Check if the variant is in a repeat region. 
            Variant is in a repeat region.", 
      "description":"" 
   }, 
   "bp4":{ 
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      "name":"BP4", 
      "prediction":"<AutoACMGPrediction.Negative":6>, 
      "summary":"Checking Scores. => 
            An error occurred during prediction. Error: Missing dbNSFP 
data.", 
      "description":"" 
   }, 
   "bp5":{ 
      "name":"BP5", 
      "prediction":"<AutoACMGPrediction.NotAutomated":3>, 
      "summary":"", 
      "description":"" 
   }, 
   "bp6":{ 
      "name":"BP6", 
      "prediction":"<AutoACMGPrediction.Depricated":4>, 
      "summary":"", 
      "description":"" 
   }, 
   "bp7":{ 
      "name":"BP7", 
      "prediction":"<AutoACMGPrediction.Positive":5>, 
      "summary":"Checking for pathogenic variants in the range of 2bp. => 
            No pathogenic variants found in the range of 2bp. => 
            Checking for proximity to splice site. => 
            Variant is not within 2bp of a splice site. => 
            Predicting splice site alterations using SpliceAI. => 
            Variant is not a splice site alteration. BP7 is met.", 
      "description":"" 
   } 
} 
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Figure A2. PVS1 Decision Tree. Outlines criteria for PVS1 classification including 
considerations for in silico splicing predictions and nonsense-mediated decay (NMD). Details 
factors like splice site proximity and functional importance of gene domains. [7]  
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