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Notation 

Throughout this thesis a variety of mathematical symbols are used, which are listed here. 

Some of them are also introduced within the text. 

 

ℝ   A set of real numbers 

ℤ   A set of integer numbers 

∊ ℝn   Real valued vector of dimension n  

∊ ℝn ⨯ m  Real valued matrix of dimension n ⨯ m  

λ   A lower case letter is a scalar value 

v   A bold lower case letter is a vector 

M  or m  A bold upper case or bold underlined lower case letter signifies a matrix 

< x >   Pointy brackets mark the mean of a set of scalars or vectors 

𝑥̅  The overline signifies the normalization of x  to values between 0 and 1 

x T  or X T  The superscript ‘ T ’  denotes the transpose of a vector or matrix 

1 n   A vector of ones with dimension n  

I   The unity matrix 

N   Sample size 

C   Number of classes 
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1 Introduction 

Proteins play an essential role in all living organisms. They participate in almost all cellular 

activities and perform a great variety of functions. These include immune responses, 

enzymatic reaction catalysis, cell signalling, cellular transport and cell reproduction, as well as 

structural functions. The critical role of proteins is reinforced by their abundance in eukaryotic 

cells, which consist of 70 % water and 15 % proteins (Nelson et al., 2008).  

The structure of a protein defines its function. Therefore, knowledge of the protein structure 

is the fundamental basis for an in-depth understanding of its function. Proteins are linear 

chains of covalently bound amino acids, each of which has different chemical features. The 

length and composition of these chains is highly variable.  

Four different levels of protein structure are defined (Lodish et al., 2000; Nelson et al., 2008). 

The first level, the primary structure, is the sequence of amino acids in the polypeptide chain. 

The length of a protein's polypeptide chain is highly variable, ranging from the 20-amino-acid 

long cullin3 (de Paola et al., 2015) to the giant protein titin, responsible for the passive muscle 

elasticity (Labeit and Kolmerer, 1995) with a length of up to ~33000 residues. The second level 

is the secondary structure that describes the local order of a protein that is the local spatial 

Figure 1-1: The four levels of protein structure: Primary, secondary, tertiary and quaternary. Original figure by 

Mariana Ruiz Villarreal (Villarreal, 2008). 
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arrangement. The two most common classes of protein secondary structure are the α-helix 

and the β-strand. Neighbouring β-strands form β-sheets. Both α-helix and β-strand are 

stabilized through specific repeating hydrogen-bond patterns between different residues. 

The three-dimensional folding of the protein chain is described by the third level, namely the 

tertiary structure. The protein tertiary structure is stabilized on one hand by covalent 

disulphide bonds between cysteine amino acids and on the other by a combination of different 

non-covalent interactions, which include hydrogen bonds, salt bridges and the hydrophobic 

effect of protein water interactions. 

The fourth level, the quaternary structure, describes the arrangement of multiple protein 

chains and cofactors in space. Cofactors are non-peptidic chemical compounds that play a 

crucial role in protein function. Cofactors range from inorganic ions to complex organic or 

metallo-organic compounds. A prominent example is heme, a cofactor consisting of a 

porphyrin ring with a Fe2+ ion located in the centre. It is also a component of hemoglobin, the 

red pigment in blood. Haemoglobin is a protein complex of two α- and two β-chain 

haemoglobin proteins, each of which binds a heme cofactor.  

The fold of a protein is defined as the spatial arrangement of the major secondary structure 

elements consisting of α-helices and β-strands (Lodish et al., 2000). Knowledge about the fold 

is key to understanding a protein’s function. Furthermore, the fold between functionally 

similar proteins is more conserved than the amino acid sequence (Lodish et al., 2000). The 

fold is also used by the structural classification of proteins (SCOP) (Fox et al., 2014) database 

to assign a protein to a structural family. 

The experimental determination of a protein’s structure is usually done by either X-ray 

crystallography or nuclear magnetic resonance (NMR) spectroscopy. Of the two methods, 

X-ray crystallography is more widely employed. To determine a protein structure by X-ray 

crystallography, the protein sample has to be crystallized, which is an art in itself. NMR has 

the advantage that the protein can also be analysed in solution, a more natural state for most 

proteins. However, NMR is limited towards smaller sized proteins. Both methods require an 

immense investment of labour and equipment (Güntert, 2004). 

These methods stand in stark contrast to new automated genome-sequencing methods, 

which have greatly increased the number of proteins with known sequences of amino acids. 

Meanwhile, the number of known protein structures increases at a much slower pace. The 

result is a wide gap between the number of known sequences and known structures of 
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proteins. The current release (April 2015) of the protein sequence database UniProt 

(Consortium, 2014; Gasteiger et al., 2003) contains 548,208 entries, whereas the protein 

structure database (PDB) (Berman et al., 2003) contains only 108,263 entries. The discrepancy 

in size is even larger, if one considers the high degree of redundancy in the PDB (Berman et 

al., 2000).  

The structural characterization of proteins is one of the major challenges of molecular biology. 

Experimental methods are constrained by technical and resource limitations. Therefore, 

accurate methods of predicting a protein’s structure from its amino acid sequence are a 

modelling goal. An important step towards predicting the spatial atomic arrangement of a 

protein from its sequence is an accurate prediction of the protein’s secondary structure. 

Knowledge of the secondary structure would significantly reduce the number of degrees of 

freedom in tertiary structure prediction (Lesk et al., 2001). A variety of methods have been 

developed to predict a protein’s secondary structure from its sequence of amino acids, 

reaching accuracies of greater than 80 %. 

In this work a revised version of the secondary structure prediction program *SPARROW 

(Rasinski, 2011) was developed, called *SPARROW+. *SPARROW+ uses a unique vector-valued 

scoring function to solve the multiclass problem of secondary structure prediction. The aim of 

the present work is to further improve the prediction quality and to introduce a new 

confidence measure to judge the reliability of prediction. 

1.1 Protein structure 

Amino acids are the basic building blocks of proteins and in this context are usually referred 

to as amino acid residues or just residues. All amino acids share the same basic constituents, 

a primary amine and a carboxyl group. The difference is in the variable residual group. Proline 

is the only exception, because of its cyclic structure, it has a secondary amine group instead 

of a primary amine. There are 23 proteinogenic amino acids with different chemical structures 

and features (Lodish et al., 2000; Nelson et al., 2008). Only 21 of these are encoded in the 

nuclear genes. Selenocysteine and pyrrolysine are generated post-translational. 

N-formylmethionine is commonly the initial amino acid in bacterial proteins, but is often 

removed post-translational. This leaves 20 genetically encoded amino acids also referred to 

as the standard amino acids that constitute natural proteins. 
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Amino acids are connected to each other through peptide bonds. The amine group of one 

amino acid covalently binds to the carboxyl group of another through a dehydration reaction. 

Hence, a linear chain of amino acids is assembled. The peptide bond has a double bond 

character, therefore rotation around this bond is not possible at room temperature. The only 

possible backbone rotations are with respect to the ϕ ψ dihedral angles (Lodish et al., 2000). 

The end of the protein chain with a free carboxyl group is referred to as the C-terminus, while 

the end with the primary amine is called the N-terminus. Residues are indexed from the C- to 

the N-terminus, since this is the same sequence in which they are synthesized in the ribosomes. 

1.1.1 Amino acid propensities 

On account of their diverse physicochemical behaviour most amino acids have a propensity 

for a particular secondary structure class. This propensity, although it is the basis of secondary 

structure prediction, is insufficient for an accurate classification (Chou and Fasman, 1974a). 

The two amino acids glycine and proline have a distinct influence on a protein’s secondary 

structure. Both are predominantly found at the beginning or end of α-helix and β-strand, but 

rarely within them. Glycine’s lack of a sidechain allows it a great conformational freedom. 

Therefore, it is often found in regions classified as turn. Proline on the other hand, has reduced 

conformational freedom because of its cyclic structure. Furthermore, due to of its secondary  

Amino acid one letter code  Amino acid one letter code 

Alanine A  Leucine L 

Arginine R  Lysine K 

Asparagine N  Methionine M 

Aspartate D  Phenylalanine F 

Cysteine C  Proline P 

Glutamine Q  Serine S 

Glutamate E  Threonine T 

Glycine G  Tryptophan W 

Histidine H  Tyrosine Y 

Isoleucine I  Valine V 

Table 1-1: The 20 standard amino acids with the associated one letter code. 
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 amine functional group it cannot be a hydrogen-bond donor. Hence, proline is intolerant to 

both α-helix and β-strand secondary structures and is predominantly found in turn or coil  

regions (Chou and Fasman, 1978; Smith et al., 1980), where it often forms the transition 

between coil and other secondary structure classes (Chou and Fasman, 1974a; Li et al., 1996). 

The β-branched (isoleucine, threonine and valine) and aromatic (phenylalanine, tryptophan 

and tyrosine) amino acids are bulky and thus have a preference for β-strands for steric reasons. 

In a helical conformation, possible sidechain conformers could cause steric clashes with the 

protein backbone (Baldwin and Rose, 1999; Lezon et al., 2006; Srinivasan and Rose, 1999). In 

contrast, amino acids with unbranched sidechains (alanine, glutamate, leucine, lysine and 

methionine) have a propensity for helices. 

1.1.2 Protein secondary structure 

α-helix and β-strand are the most prominent but not the only secondary structure classes. 

Besides the α-helix, two additional classes of helices, 310- and π-helix, can be distinguished. 

There are also the turn, isolated β-bridge, bend and coil classes. These are the eight classes 

discriminated by the program DSSP (Kabsch and Sander, 1983), the common program for 

characterizing protein secondary structures. The properties of the different classes will be 

outlined in the following. 

1.1.2.1 Helices 

The α-helix is by far the most abundant of all helix classes. Characteristic of the helix class is a 

repeating hydrogen bonding pattern. Hydrogen bonds exist between the accepting carbonyl 

group of residue Ri and the donating amine group of residue Ri+n. The value of n depends on 

the helix class: 3 for 310-helix, 4 for α-helix and 5 for π-helix. To allow the repetition of such a 

Helix 

class 

Hydrogen bond 

Ri-Ri+n 

Translation 

per turn 

Residues 

per turn 

α-helix n = 4 1.5  Å 3.6 

310-helix n = 3 2.0  Å 3.0 

π-helix n = 5 1.15 Å 4.1 

 
Table 1-2: Properties of the three helix subclasses, α-, 310- and π-helix. Shown are the hydrogen bonding pattern, 

translation and residues per full turn. 
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hydrogen bonding pattern, the backbone must follow a tightly packed helical path, whereby 

the amino acid side chains point outwards. Characteristics of the helix classes are listed in 

Table 1-2Fehler! Verweisquelle konnte nicht gefunden werden.. 

In contrast to the abundance of the α-helix, the π-helix class is the rarest and is usually not 

found alone. In most cases it appears together with an α-helix, forming a bulge in the helix 

structure. It is assumed that π-helices form through an insertion of an additional residue into 

α-helices (Cooley et al., 2010; Hollingsworth et al., 2009; Riek and Graham, 2011). The 310-helix  

can occur in isolation, but is often found at the beginning or end of an α-helix. In stand alone 

form, 310-helices are shorter than α-helices of average length.  

1.1.2.2 β-sheet and β-strand 

The β-sheet is the second type of regular secondary structure class. A β-sheet consists of 

laterally connected β-strands, which are distinguished by a specific hydrogen bonding pattern 

and φ, ψ dihedral angles (Astbury and Woods, 1934; Pauling and Corey, 1951). In difference 

to helices, the hydrogen bonds in β-strands are not between sequentially close residues. 

Depending on the directions of the interacting chains, a β-strand is called parallel or 

antiparallel.  

1.1.2.3 Turns 

The turn class describes directional changes in the protein backbone. The connection of two 

antiparallel β-strands by two or three residues is an example of a turn. To be classified as a 

turn, a backbone hydrogen bond between the carbonyl group of Ri and the amine group of 

Ri+n must exist. The definition of the turn class is therefore similar to that of the helix class, 

such that a helix could be considered as multiple conjoined turns. Based on the backbone 

dihedrals, turns can be separated into different types. 

1.1.2.4 Isolated β-bridges 

β-bridges can be described as a β-strand of one residue length. In a way similar to turns, 

multiple conjoined β-bridges form a β-strand. A β-bridge in isolation is assigned to the isolated 

β-bridge class. 

1.1.2.5 Coil 

The coil class cannot be considered as a true class, since it describes structureless protein 

regions. Hence, residue assigned as coil cannot be assigned to any other secondary structure 
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class. Therefore, the coil class varies depending on the selection of secondary structure classes 

that are used for assigning protein secondary structures. If classes such as turn or bend are 

not considered separately, the corresponding residues usually belong to the coil class. 

Alternatively, the coil class can also be defined as φ, ψ dihedral angles different from those of 

strand or helix (Fitzkee et al., 2005). 

1.1.3 Protein secondary structure assignment 

A variety of different methods have been proposed to assign the secondary structure to a 

protein. These range from assignments based on hydrogen bonding patterns to geometrical 

considerations such as backbone dihedral angles, or combined methods. DSSP (Kabsch and 

Sander, 1983) and to a lesser extent STRIDE (Frishman and Argos, 1995) are the most used 

secondary structure assignment programs. Both employ the protein backbone hydrogen 

bonding patterns as the basis of their assignments. The difference is the method of estimating 

hydrogen bond energy. DSSP uses an electrostatic energy function, whereas STRIDE employs 

an empirical energy function. The positions of hydrogen atoms are usually not known from 

X-ray crystallography, because of the hydrogen atom’s low electron density. Hence, both 

programs estimate the hydrogen-atom positions based on backbone atom geometry, 

although the method of estimation differs between the two programs. Depending on the 

repeating hydrogen bonding patterns found, residues are assigned as helical (α-, 310-or π-helix) 

or β-strand. 

The secondary structures assigned by different methods can differ significantly, especially in 

the transition region from one secondary structure class to the other (Pylouster et al., 2010). 

Since a clear definition of secondary structure is still missing, it is difficult to compare the 

quality of different assignments (Tyagi et al., 2009).  
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1.2 Protein structure prediction 

Knowing the structure of a protein is the basis to understand its molecular function. Many 

more protein sequences are known than structures, with the difference continuously 

increasing. Methods to predict a protein’s structure from its sequence are therefore in great 

demand. 

The basis for protein structure prediction is the sequence-protein-structure paradigm, also 

referred to as the lock-and-key hypothesis (Anfinsen, 1973). According to which a protein 

achieves its biological function only by folding into a unique structure determined by its amino 

acid sequence. Although cases have been found where this hypothesis is invalid it mostly holds 

true (Dunker et al., 2008; Wright and Dyson, 1999). 

Tertiary structure prediction methods are divided into four groups (Floudas et al., 2006). The 

first group consists of the first principle methods without database information (Osguthorpe, 

2000). These are ab initio methods that aim at predicting a protein’s structure based on 

potential energy functions that describe the physics of a current conformational state and 

where only this potential function is used to predict the structure. They have the advantage 

that new structures can be found.  

The next group encompasses the first principle methods using database information (Rohl et 

al., 2004; Srinivasan and Rose, 1995). These methods are different to the first group, because 

they build the starting point structure from structural fragments found in protein databases. 

Hence, short fragments of the protein sequence are compared to fragments of known protein 

structures (Floudas et al., 2006). 

The third group of methods are the fold recognition and threading methods (Bowie et al., 1991; 

Jones et al., 1992). Here, the motivation is that structure is evolutionary more conserved than 

sequence. Thus, proteins with different sequences could have similar structures. Threading 

methods fit a protein sequence into a template structure. 

The final group of methods are the comparative modelling and sequence alignment strategies 

(Martí-Renom et al., 2000; Sanchez and Šali, 1997). These methods align the whole protein 

sequence against proteins with known structure. The spatial model is derived from the 

structure of a homologous protein. 

The first and second methods aim to predict the protein structure though simulation of the 

natural folding process. In contrast, the third and fourth methods predict a protein structure 

by comparing the sequence with available fold libraries and template structures. These 
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methods also use protein secondary structure prediction to improve fitting and alignments 

(Ginalski et al., 2003; Kelley and Sternberg, 2009; Roy et al., 2010; Solis and Rackovsky, 2004). 

1.2.1 Protein secondary structure prediction 

In comparison to protein tertiary structure prediction, the problem of secondary structure 

prediction is simpler. In the former case, a procedure is needed that provides the spatial 

positions of all residues of a protein sequence. Thus, it needs to convert information relying 

on a one-dimensional quantity, i.e. the sequence, to a three-dimensional one. Whereas in the 

latter case, the one-dimensional sequence information needs to be converted only into 

another one-dimensional quantity. 

The Chou-Fasman method was one of the first approaches to protein secondary structure 

prediction. (Chou and Fasman, 1974a; Chou and Fasman, 1974b; Chou and Fasman, 1978). 

The method is based on the analysis of relative amino acid frequencies in the different 

secondary structure classes. From these frequencies, a set of probability parameters are 

derived to describe the appearance of each amino acid in each secondary structure class. The 

method achieved an accuracy of 50-60 %. 

The GOR-method (Garnier et al., 1978) uses Bayesian statistics to predict secondary structure 

based on a model of conditional probabilities. This method improved the accuracy to 65 %. 

It has been proposed, that the theoretical limit of protein secondary structure prediction is at 

around 90 % (Dor and Zhou, 2007; Rost, 2001). The limiting factors are on one hand the 

variations in secondary structure assignments (Pylouster et al., 2010; Tyagi et al., 2009), and 

on the other hand, non-local interactions, between spatially close but sequentially distant 

residue pairs. Current state of the art methods can reach an accuracy above 80 %. The 

accuracy improvements can be attributed to the usage of sequence profiles, greater datasets 

and more sophisticated methods from machine learning, in particular artificial neural 

networks (Buchan et al., 2013; Drozdetskiy et al., 2015; Yaseen and Li, 2014). Among the most 

prominent methods are PSIPRED, C3-Scorpion and Jpred, which will be described in more 

detail in the following. 

1.2.1.1 PSIPRED 

Originally developed in 1999 (Jones, 1999) PSIPRED has been continuously updated to its most 

recent release of version 3.5. In its initial release, it was the first method to use sequence 
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profiles generated by PSI-BLAST (Altschul et al., 1997) as input, which, at this time, made it 

superior to any other method. Over the years, PSIPRED still remains one of the programs with 

the highest prediction quality and is also used at an interim stage of 3D structure prediction 

methods. 

For the prediction, PSIPRED uses two artificial neural networks. The first network generates a 

sequence-structure correlation, which the second network uses as an input to generate a 

structure-structure correlation. Both networks have a similar layout: Both are feedforward 

neural networks, with a single hidden layer and three output nodes. Yet, the absolute number 

of input and hidden nodes differs between the networks. The first network has 315 input 

nodes, which come from the size of sliding window (15) multiplied by the number of features 

(21). The sliding window gives the number of neighbouring residues, which are also taken into 

account for the prediction. The number of features is given by the number of PSI-BLAST profile 

values (20) and an additional feature for the cases is the sliding window overlaps with the N- 

or C-terminus of a sequence.  

The input layer of the second network consists of 60 nodes, given again by multiplying the 

window size (15) with the number of features (4). Here, the input features are possible 

secondary structure classes predicted in the first network (3) and the terminal overlap feature. 

The hidden layers comprises of 75 nodes in the first and 60 nodes in the second network. Since 

version 3.3, PSIPRED uses three variants of the first network, each with different weight sets, 

and averages over the outputs.  

1.2.1.2 C3-Scorpion 

Released in 2014 (Yaseen and Li, 2014), the overall setup of C3-Scorpion has many similarities 

to PSIPRED. Like PSIPRED, C3-Scorpion employs a sequence of feedforward neural networks, 

but C3-Scorpion uses an additional third network compared to the two networks used by 

PSIPRED. The major difference to PSIPRED is the usage of so-called context-based statistics as 

additional input features apart from the PSI-BLAST profiles. 

The context-based statistics are derived through the characterization of high-order 

inter-residue interactions between neighbouring residues to generate pseudo-potentials 

based on Sippl’s potentials of mean force method (Sippl, 1990). These potentials are generated 

for singlets, doublets and triplets and are an estimate of residues adopting specific secondary 

structures depending on their neighbouring residues. According to the publication, 
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C3-Scorpion significantly surpasses the prediction quality of every other method, because of 

the context-based statistics. 

As mentioned, three consecutive neural networks are used for prediction. All networks use a 

window size of 15 residues and an input feature to signify terminal overlap. The first network 

has 360 input nodes, given by the window size (15) and the input features (24). The features 

consist of the PSI-BLAST profile values (20), the terminal overlap (1) and the context-based 

scores (3). The second network uses only the output of the first as an input and has accordingly 

60 input nodes. The second network has therefore a filtering function. Finally, the third 

network is akin to the first network. The difference is the usage of modified context-based 

scores, which are set to “absolute favourable” if the probability to adopt a certain secondary 

structure given by the second network is larger than 90 %. The publication does not mention 

the number of hidden layers and the respective number of hidden nodes in the networks. 

1.2.1.3 Jpred 

The original Jpred server for protein secondary structure prediction was released in 1998 (Cuff 

et al., 1998). This server used six different, at that time, state of the art prediction methods 

and presented the results of them all. In 2000 Jpred 1 (Cuff and Barton, 2000) was released, 

which replaced the six prediction methods with the Jnet prediction algorithm. The previously 

used methods had all been made obsolete with the release of PSIPRED (Jones, 1999). Since 

then, Jpred and Jnet have been regularly updated to their most recent release Jpred 4 in 2015 

(Drozdetskiy et al., 2015). In the original Jpred 1, a combination of profiles generated with 

PSI-BLAST and amino acid frequency profiles were used as inputs. The frequency profiles were 

obtained through multiple sequence alignments. In the subsequent versions (Cole et al., 2008), 

the frequency profiles were replaced with Hidden Markov Model (HMM) profiles (Eddy, 1998). 

Jpred uses a sequence of two feedforward artificial neural networks for the prediction. Hence, 

the output of the first network is the input of the second. Like in PSIPRED and C3-Scorpion, 

the second network serves as a filter. Instead of combining different feature types into a single 

feature vector like in C3-Scorpion, the PSI-BLAST and HMM profiles are used separately. Each 

feature type is the input of an entirely different sequence of networks. The final prediction is 

the consensus of both sets of networks. The first network uses a window size of 17 residues, 

while the second network uses a larger window of 19 residues. In each network, the hidden 

layer comprises 100 nodes. The absolute number of input nodes is not explicitly mentioned. 
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1.3 Statistical classification 

The aim of statistical classification is to identify to which class or sub population an object 

belongs to, in relation to a data set containing objects whose class assignment is known. Hence, 

each object possess certain properties or features which define its class affiliation. 

Protein secondary structure prediction is a classification problem, where the residues in a 

protein sequence are classified into specific secondary structure classes. In the previous 

chapter 1.2.1, different programs were described for protein secondary structure prediction. 

Although the implementation differed considerably between the programs, at the basic level 

the setup was the same. All programs use the same approach for classification, namely 

artificial neural networks (ANN). However, ANNs are only one possible approach of a wide 

range of classification methods. This chapter will give an overview about two classification 

approaches, linear regression and artificial neural networks. 

Linear regression is a linear classifier, which classifies an object depending on the value of a 

linear combination of its features with associated weights. For a binary classification problem, 

the operation of a linear classifier would corresponds to splitting classes in the 

high-dimensional feature space with a hyperplane. Linear classifiers are broadly separated 

into generative and discriminative models. The former models the distribution of classes while 

the latter models the boundaries of them. Linear regression belongs to the discriminative 

models. Strictly speaking, the perceptron, a special type of an ANN is also a linear classifier, as 

is discussed in chapter 1.3.2.1.  

Thera are multiple reasons, why specifically these two approaches are presented. In the 

previous chapter 1.2.1, concerning protein secondary structure prediction methods, it was 

shown that ANNs enjoy a large popularity and have been successfully applied to this 

classification problem. The derivation and properties of the vector-valued classifier are closely 

related to the linear regression, as outlined in chapter 2.4.3. 

1.3.1 Linear regression 

Regression estimates continuous response variables while classification methods use discrete 

response variables. Yet, it is possible to use a regression model for classification, by providing 

a indicator matrix that details to which class a training sample belongs. To optimize the 

objective function of a regression model, the method of least-squares (Gauss, 1809; Legendre, 
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1805) is often employed. Independent of the error distribution the least-squares method is 

best linear unbiased estimator. For linear regression models, it has the advantage, that a 

unique solution is obtained. Hence, iterative approaches, as outlined for the artificial neural 

network in chapter 1.3.2.3, are not needed. 

Linear regression models are not limited to linear functions, only the parameter space has to 

be linear. This allows to utilize quadratic functions while still maintaining a unique solution of 

the objective function. Quadratic functions may allow to separate classes that are not linearly 

separable. Besides the linear regression models, also non linear regression models such as 

exponential and logistic regression models exist. In this chapter, only multivariate linear 

regression models are outlined. A simple linear regression model can be described by 

𝛼 + 𝛽1𝑥1 + ⋯ + 𝛽𝐹𝑥𝐹 + 𝜀 = 𝑦, 
(1-1) 

where α  and β 1 , … , β F  are the unknown parameters. α  is the intercept and α  the regression 

coefficients. To describe the relation with the regressors x , it is assumed that deviations from 

the expected value can be attributed to a random error ε . Often the constant term α is 

included in the set of the coefficients β , then an artificial feature x 0  =  1  has to be introduced. 

For a set of N  independent samples of y 1 , . . , y N  with corresponding x i 1 , … , x i F , the 

equations can be summarized by 

(
1
⋮
1

𝑥11 ⋯ 𝑥1𝐹

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑁𝐹

) (

𝛼
⋮

𝛽𝐹

) + (

𝜀1

⋮
𝜀𝑁

) = (

𝑦1

⋮
𝑦𝑁

), 
(1-2) 

which corresponds to the matrix notation 

𝑿𝜷 + 𝜺 = 𝒚, 
(1-3) 

where X ∊ ℝ N ⨯ ( F + 1 )  is the design matrix, β ∊ ℝ F + 1  the parameter vector, ε ∊ ℝ N  the error 

term and y ∊ ℝ N .  

1.3.1.1 Parameter estimation 

The coefficients summarized in the vector β  define the strength and direction of the 

respective features. For linear models, the standard approach is the method of least squares. 

According to the Gauss-Markov theorem, the best linear unbiased estimator (BLUE) for the 

coefficients of a linear regression model is the least squares estimator. In this case, best means 



1. Introduction 

14 
 

giving the lowest variance of the estimate compared to other unbiased, linear estimators. The 

assumptions of the theorem are, that the errors are uncorrelated, have mean of zero and are 

homoscedastic with finite variance. However, it is not necessary for the errors to be normal 

distributed. Biased estimators exists, that can give a lower variance, like the ridge regression 

described in context of regularization in chapter 1.3.3.  

The residual r i  of a sample i  is defined as the difference between the observed y i  and 

estimated value 𝑦̂𝑖. Hence it is given by 

𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖, = 𝑦𝑖 − 𝒙𝑖
𝑇𝜷, 

(1-4) 

and measures the distance between a data point ( x i , y i )  and the hyperplane defined by the 

model y = x i Tβ , where β  is the parameter vector. The residual assess the degree of fit 

between the actual data and the model. The sum of squared residuals or error sum of squares 

is a measure of the overall model fit 

𝐿(𝜷) = ∑ 𝑟𝑖
2

𝑁

𝑖=1

= ∑(𝑦𝑖 − 𝒙𝑖
𝑇𝜷)2

𝑁

𝑖=1

= (𝒚 − 𝑿𝜷)2 = (𝒚 − 𝑿𝜷)𝑇(𝒚 − 𝑿𝜷). 
(1-5) 

L (β )  is termed the objective function, which is to be minimized. Expanding equation (1-5) 

yields 

𝐿(𝜷) = 𝒚𝑇𝒚 − 2𝜷𝑇𝑿𝑇𝒚 + 𝜷𝑇𝑿𝑇𝑿𝜷. 
(1-6) 

Taking the vector derivative of L (β )  with respect to β , gives the normal equations of 

least-squares 

∇𝜷 ∙ 𝐿(𝜷) = 2𝑿𝑇𝒚 + 2𝑿𝑇𝑿𝜷 = 0, 
(1-7) 

respectively 

𝑿𝑇𝑿𝜷 = 𝑿𝑇𝒚, 
(1-8) 

The expression X T X  is referred to as the Gramian matrix of X , which is proportional to the 

covariance matrix. The Gramian matrix is positive semi definite and symmetric. If the inverse 

of X T X  exists, the solution of the linear equation systems is 
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𝜷 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚. 
(1-9) 

With the estimated values of β , the predicted values 𝒚̂ from the regression are given by 

𝒚̂ = 𝑿𝜷 = 𝑷𝒚, 
(1-10) 

where P = ( X ( X T X ) - 1 X T  is the projection matrix onto the space spanned by the columns of 

X . 

1.3.1.2 Alternative representation 

Alternatively, instead of merging the intercept and the regression coefficients into a single 

vector, both can be treated separately. The reasoning for the separation is that the intercept 

is independent of the features while the regression coefficients are not. Thus, no artificial 

feature has to be introduced. The separation yields for equation (1-2) 

𝛼 ∙ (
1
⋮
1

) + (
𝑋11 ⋯ 𝑋1𝐹

⋮ ⋱ ⋮
𝑋𝑁1 ⋯ 𝑋𝑁𝐹

) (
𝛽1

⋮
𝛽𝐹

) + (

𝜀1

⋮
𝜀𝑁

) = (

𝑦1

⋮
𝑦𝑁

). 
(1-11) 

In matrix notation, this corresponds to 

𝛼𝟏𝑁 + 𝑿𝜷 + 𝜺 = 𝒚, 
(1-12) 

where 1 N ∊ { 1 } N  is a vector of dimension N  that only consists of ones. The least squares of 

the matrix notation with a separate intercept parameter is defined by 

𝐿(𝛼, 𝜷) = (𝟏𝑁𝛼 + 𝑿𝜷 − 𝒚)2. 
(1-13) 

Deriving the equation with respect to the intercept parameter α  and setting it equal to zero, 

yields 

𝜕

𝜕𝑏
𝐿(𝛼, 𝜷) = 2 ∙ 𝟏𝑁(𝟏𝑁𝑏 + 𝑿𝜷 − 𝒚) = 0. 

(1-14) 

With the relation 1 N T ⋅ 1 N = N  the equation can be simplified to 

𝑁𝑏 + 𝟏𝑁𝑿𝜷 − 𝟏𝑁𝒚 = 0 
(1-15) 

Thus the intercept parameter is defined by 
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𝑏 =
𝟏𝑁

𝑇𝒚

𝑁
−

𝟏𝑁
𝑇𝑿

𝑁
𝜷. 

(1-16) 

Introducing the definition 

〈𝑦〉 =
𝟏𝑁

𝑇𝒚

𝑁
=

1

𝑁
∑ 𝒚𝑖

𝑁

𝑖

 
(1-17) 

and in analogy 

〈𝑿〉 =
𝟏𝑁

𝑇𝑿

𝑁
=

1

𝑁
∑ 𝑿𝑖

𝑁

𝑖

, 
(1-18) 

yields for equation (1-16) 

𝑏 = 〈𝑦〉 − 〈𝑿〉𝜷. 
(1-19) 

The vector derivate ∇ β  of equation (1-13) is given by 

𝛻(𝜷)𝐿 (𝜷, 𝒃) = 𝑿(𝟏𝑁𝑏 + 𝑿𝜷 − 𝒚) = 0. 
(1-20) 

Inserting equation (1-19) into equation (1-20) gives 

𝑿𝑇𝟏𝑁〈𝑦〉 − 𝑿𝑇𝟏𝑁〈𝑿〉𝜷 + 𝑿𝑇𝑿𝜷 − 𝑿𝑻𝒚 = 0. 
(1-21) 

Using the relation 

𝑁〈𝑿〉𝑇〈𝑿〉 = 𝑿𝑇𝟏𝑁〈𝑿〉 = 𝑁
𝑿𝑇𝟏𝑁

𝑁
〈𝑿〉, 

(1-22) 

and by introducing similar to equation  (1-17) and (1-18) the mean for the matrix 

〈𝑿𝑇𝑿〉 =
𝑿𝑇𝑿

𝑁
 

(1-23) 

and the vector 

〈𝑿𝑇𝒚〉 =
𝑿𝑇𝒚

𝑁
 

(1-24) 

allows to rearrange equation (1-21), yielding 



1. Introduction 

17 
 

〈𝑿〉𝑇〈𝑦〉 − 〈𝑿〉𝑇〈𝑿〉𝜷 + 〈𝑿𝑇𝑿〉𝜷 − 〈𝑿𝑻𝒚〉 = 0. 
(1-25) 

Hence, β  is defined by 

𝜷 =
〈𝑿𝑻𝒚〉 − 〈𝑿〉𝑇〈𝑦〉

〈𝑿〉𝑇〈𝑿〉 − 〈𝑿𝑇𝑿〉
, 

(1-26) 

and the normal equations (1-8) become 

(〈𝑿〉𝑇〈𝑿〉 − 〈𝑿𝑇𝑿〉)𝜷 = 〈𝑿𝑻𝒚〉 − 〈𝑿〉𝑇〈𝑦〉, 
(1-27) 

1.3.1.3 Solving the system of linear equations 

β  can be computed from the normal equations, (1-8) and (1-27), by solving the system of 

linear equations. Since the Gramian matrix X T X , is positive semi-definite and well-conditioned 

the Cholesky decomposition (Schwarz and Köckler, 2011) R T R , where R  is an upper triangular 

matrix, can be used. 

𝑹𝑇𝑹𝜷 = 𝑿𝑇𝒚 
(1-28) 

The solution is obtained in two steps. The first step is a forward substitution to solve for the 

intermediate variable z  

𝑹𝑇𝑧 = 𝑿𝑇𝒚. 
(1-29) 

The second step is a backward substitution to solve for β  

𝑹𝜷 = 𝒛. 
(1-30) 

The triangular nature of R  facilitates the substitutions 

1.3.1.4 Classification 

Linear regression functions can be used for classification by using an indicator matrix, whereby 

each class is given a specific scalar index. For a binary classification the indices are usually 

minus and plus one. This allows to assign target data depending on the sign of the linear 

regression function. However, for more than two classes the classification becomes difficult. 

One approach is to separate the multiclass problem into multiple binary problems, that can 
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be solved independently with a specific linear regression function. Hence, either pairwise  

comparisons between two classes (one-vs.-one) are made or comparisons of each class 

against all others (one-vs.-all). A disadvantage of this approach is that class can be masked. 

Masking can occur if the decision boundaries of the binary classifications overlap. A decision 

boundary defines the value of the regression function at which target data is assigned to one 

or another class. 

1.3.2 Artificial neural networks 

Inspired by biological neural networks, like the brain, artificial neural networks (ANN) are a 

family of statistical learning methods that allow approximating unknown functions. These 

unknown functions are defined by a large number of inputs and the corresponding known 

results. An ANN is a system of interconnected nodes, also called neurons. The edges between 

the nodes have a numeric weight, which is adjusted through learning. ANNs have been used 

to solve a wide variety of problems, apart from protein secondary structure prediction, such 

as computer vision or speech recognition (Hinton et al., 2012; Krizhevsky et al., 2012). 

The concept of ANNs stems from a computational model developed in 1943 (McCulloch and 

Pitts, 1943). Inspired by this work the first model of an ANN was created, called the perceptron 

(Rosenblatt, 1958; Rosenblatt, 1962). Although no clear definition of ANNs exist, a statistical 

model is called an ANN if it possess two characteristics. First, the model must contain sets of 

Figure 1-2: Artificial neural network with a single hidden layer. From three inputs, two outputs are generated. 

The annotation in each neuron shows the notation for numbering neurons and the associated parameters. 
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adaptive weights, which are adjusted through learning and second the model must be able to 

approximate non-linear functions. 

The nodes in an ANN receive inputs and generate outputs depending on these inputs. Each 

input has a specific weight, which defines its importance. The output of a node possess a 

non-vanishing value if the weighted sum of all inputs surpasses a threshold value. The output 

of a node is the input of the nodes in the next layer of neurons. Neurons can be separated into 

three types: The input, output and hidden neurons. Hidden neurons simply refer to neurons 

that are neither input nor output neurons. Input neurons, receive the input to the neural 

network. They can be understood as neurons, which only generate a specific output. Thus, 

output neurons serve as the result of the neural network, as such their outputs are not 

connected to other neurons. 

The way neurons are connected, depends on the model of the ANN. In feedforward ANNs, the 

currently most common model, the networks can be separated into distinct layers. The output 

from the neurons in one layer is the input of the neurons in the following layer. As such, 

information is fed forwards. The neurons within a layer are not interconnected, thus have no 

loops. Of course, other models of ANNs exist, which contain feedback loops, these models are 

referred to as recurrent neural networks. Figure 1-2 shows an example of a simple 

feedforward network. The network consists of three layers, the input, hidden and output layer. 

Each layer contains the neurons of the respective type. A description of feedforward neural 

networks, that also concerns the mathematical description and the algorithm to adjust the 

weights, is given in the following chapters (Nielsen, 2015). 

1.3.2.1 Perceptron 

Perceptrons are the basic form of an artificial neural network (ANN) (Rosenblatt, 1958). They 

receive several binary inputs and produce a single binary output. Figure 1-3 shows a simple 

perceptron that receives the input values x  whereby to each input belongs a weight w , the 

weights define the importance of the various input values. In order to activate a neuron the 

weighted sum of the input values has to surpass a threshold. The weighted sum can be 

expressed by ∑ 𝑤𝑖𝑥𝑖𝑖  or in vector form by the dot product w ⋅ x . The bias b  corresponds to 

the activations threshold and is defined by b = - threshold. Hence, the output y , also termed 

activation, can be described by a transfer function 
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𝑦 = {
0 if 𝒘 ∙ 𝒙+ b ≤ 0
1 if 𝒘 ∙ 𝒙+ b > 0

. 
(1-31) 

The limitation of single layer ANNs or perceptrons is their inability to separate non-linearly 

separable data. Hence, they are linear classifiers. 

1.3.2.2 Sigmoid neuron 

The disadvantage of perceptrons lies in their transfer function. Small changes in the weights 

of a perceptron can result in vastly different outputs. This is a problem for optimizing the 

weights in a learning procedure, where a small change of the weights should only lead to a 

small change in the overall result. Sigmoid neurons are similar to perceptrons, but the inputs 

are not either 0 or 1 but can be any real number in this range. Also the output is not 0 or 1 but 

given by the sigmoid function 

𝜎(𝒘 ∙ 𝒙+ b) =
1

1 + 𝑒−(𝒘∙𝒙+𝑏)
. 

(1-32) 

Using a step-function instead of a sigmoid function would make the sigmoid neuron to a 

perceptron. The critical part of the sigmoid neuron is the smoothness of the σ  function, which 

allows approximating changes in the output ∆ a , caused by changes in the weights w  or bias b , 

through 

∆𝑦 ≈ ∑
𝛿𝑦

𝛿𝑤𝑖
∆𝑤𝑖

𝑖

+
𝛿𝑦

𝛿𝑏
∆𝑏 (1-33) 
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Figure 1-3: Layout of a single perceptron. This perceptron consists of input neurons x  and a single output neuron 

(circle).To each input belongs a corresponding weight w . The output y  generated by the output neuron depends 

on whether the weighted sum of the inputs minus the bias b , of the neuron, is greater or smaller than zero. 
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1.3.2.3 Gradient descent 

Gradient descent is an optimization algorithm to find a local minimum of a function. Using an 

initial set of values for the variables of the function, gradient descent iteratively moves toward 

a set of variable values that minimize the function. The minimum is approached by iterative 

steps, which are proportional to the negative gradient at the current position. 

To minimize a model, an objective function is used to ascertain the quality of the adjusted 

values. A simple yet effective objective function is the quadratic objective function or the 

mean squared error. For the network described in section 1.3.2.2 it would have the form  

𝐿(𝑤, 𝑏) =
1

2𝑁
∑‖𝑦(𝑥) − 𝑦‖2,

𝑥

 (1-34) 

whereby, w  denotes all weights, b  is the bias, N  the sample size, y  the output and x  the input. 

y ( x )  denotes the desired output of the network using a specific input x . A more complex 

objective function is the cross-entropy function 

𝐿(𝑤, 𝑏) = −
1

𝑛
∑[𝑦 ln 𝑦 + (1 − 𝑦(𝑥)) ln(1 − 𝑦)]

𝑥

, (1-35) 

which offers the advantage that it is not affect by learning slowdown like the mean squared 

error function (Nielsen, 2015). For a description of the gradient descent method, the simpler 

expression (1-34) is considered. Generalizing and thereby merging the variables w  and b  into 

a single vector v  allows an easier description of the objective function. Thus, having a function 

with m  variables v 1 ,  … ,  v m  calculus gives the gradient difference through 

∆𝑳 ≈
𝛿𝑳

𝛿𝑣1
∆𝑣1 + ⋯ +

𝛿𝑳

𝛿𝑣𝑚
∆𝑣𝑚 

(1-36) 

Then the change Δ L  in L  produced by a small change ∆ v ≈ ( ∆ v 1 , … , ∆ v m ) T  can be described 

by the gradient vector ∇ L   

∇𝑳 = (
𝛿𝑳

𝛿𝑣1
, … ,

𝛿𝑳

𝛿𝑣𝑚
)

𝑇

 
(1-37) 

Hence ∆ L  can be written as 

∆𝑳 ≈ ∇𝑳 ∙ ∆𝒗 
(1-38) 

To achieve a negative ∆ L  
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∆𝒗 = −𝜂∇𝑳 
(1-39) 

where η  is a small, positive parameter called as the learning rate. The learning rate defines 

the speed of learning. So equation (1-38) becomes 

∆𝐿 ≈ −𝜂∇𝐿 ∙ ∇𝐿 = 𝜂‖∇𝐿‖2. 
(1-40) 

Because ∥ ∇ L ∥ 2 ≥ 0 , this guarantees that Δ L ≤ 0 , thus L should only decrease and not 

increase. Thus, the gradient of v  is 

𝑣 → 𝑣′ = 𝑣 − 𝜂∇𝐿. 
(1-41) 

For a neural network equation (1-41) it can be written as 

𝑤𝑘 → 𝑤𝑘
′ = 𝑤𝑘 − 𝜂

𝛿𝐿

𝛿𝑤𝑘
 

(1-42) 

𝑏𝑙 → 𝑏𝑙
′ = 𝑏𝑙 − 𝜂

𝛿𝐿

𝛿𝑏𝑙
 

(1-43) 

1.3.2.4 Backpropagation 

While the previous chapter described how an artificial neural network (ANN) can adjust the 

weights and biases, it was not described, how the gradient is calculated. Backpropagation 

(Rumelhart et al., 1988) is an algorithm to compute the gradient for a variety of ANN types. 

The output of an ANN is the combination of the activations of all the neurons. The activation 

of the j t h  neuron in the h t h  layer is given by 

𝑦𝑗
ℎ = 𝜎 (∑ 𝑤𝑗𝑘

ℎ 𝑦𝑘
ℎ−1 + 𝑏𝑗

ℎ

𝑘

) (1-44) 

where 𝑦𝑘
ℎ−1 are the activations from the neurons in the previous ( h - 1 ) t h  layer. In vector 

form, this translates to 

𝒚ℎ = 𝜎(𝑾ℎ𝒚ℎ−1 + 𝒃ℎ) 
(1-45) 

To facilitate the computation of y h , an intermediate quantity, the weighted input z h , is 

introduced that is given by 
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𝒛ℎ = 𝑾ℎ𝒚ℎ−1 + 𝒃ℎ. 
(1-46) 

Thus, equation (1-45) translates to y h = σ ( z h ) . The backpropagation algorithm requires two 

assumptions about the form of the objective function L  in equation (1-34). Firstly, the 

objective function can be written as an average 𝐿 =
1

𝑛
∑ 𝐿(𝑥)𝑥  over the values of the objective 

function L ( x )  for individual training samples x . Secondly, it can be written as a function of 

the outputs of the network. The former is necessary to compute the partial derivatives 

∂ L ( x ) / ∂ w  and ∂ L ( x ) / ∂ b  for a single training sample x . ∂ L / ∂ w  and ∂ L / ∂ b  are then 

recovered by averaging over all training samples. 

By computing the partial derivatives 𝛿𝐿/𝑤𝑗𝑘
ℎ  and 𝛿𝐿/𝑏𝑗

ℎ , backpropagation shows, how the 

weights and biases change the objective function. The computation of the partial derivatives 

requires another intermediate quantity 𝛿𝑗
ℎ, the error of neuron j  in layer h , given by 

𝛿𝑗
ℎ =

𝛿𝐿

𝛿𝑧𝑗
ℎ. (1-47) 

Backpropagation allows to calculate δ h  for every layer in the network and then to relate the 

error to the gradients of the weights and biases. It is based on four equations, which allow to 

calculate the error δ h  and the gradient of the objective function. The first equation concerns 

the error in the output layer H  and is given by 

𝛿𝑗
𝐻 =

𝛿𝐿

𝛿𝑎𝑗
𝐻 𝜎′(𝑧𝑗

ℎ), (1-48) 

which in matrix form translates to 

𝛿𝐻 = ∇𝑦𝐿(𝑥)⨀𝜎′(𝑧𝐻). (1-49) 

The second equation relates to the error in the next layer δ h + 1  and is defined by 

𝛿ℎ = ((𝒘ℎ+1)𝑇𝛿ℎ+1)⨀𝜎′(𝒛ℎ), 
(1-50) 

where superscript ‘T’ denotes the transpose of the matrix and ⊙  denotes the Hadamard 

product. The Hadamard product is a special multiplication of two matrices with the same 

dimension, producing another matrix where each element i j  is the product of elements i j  of 

the original two matrices. Applying the transpose weight matrix gives a measure of the error 
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at the h t h  layer. The Hadamard product then moves the error backwards through the 

activation function in layer h , giving the error in the weighted input of layer h . 

The combination of equation (1-49) and (1-50) allows to calculate the error for any layer in 

the network. First (1-49) is used to obtain δ H  then (1-50) is iteratively applied to calculate the 

errors δ H - 1 , δ H - 2  …, δ h . The third equation concerns the rate of change of the objective 

function related to any bias in the network. The error is equal to the change 

𝛿𝐿

𝛿𝑏𝑗
ℎ = 𝛿𝑗

ℎ. (1-51) 

Finally, the fourth equation relates the rate of change of the objective function to any weights 

of the network 

𝛿𝐿

𝛿𝑤𝑗𝑘
ℎ = 𝑦𝑘

ℎ−1𝛿𝑗
ℎ. (1-52) 

Here k are the neurons in layer h - 1  and j  the neurons in layer h . This equation shows, that 

weight outputs from low-activation neurons (y ≈ 0 ), learn slowly. The output layer neurons 

learn slowly in case of low (y ≈ 0 ) or high activation (y ≈ 1 ), they are then termed saturated. 

Any weights and biases to a saturated neuron learn slowly. In general, weights learn slowly if 

either the input is low-activation or the output neuron is saturated. 

The backpropagation algorithm consists of five steps: 

1. Set the activations y 1  for the input layer neurons. 

2. Feedforward by computing 𝒛ℎ = 𝒘ℎ𝒚ℎ−1 + 𝒃ℎ and 𝒚ℎ = 𝜎(𝒛ℎ) for all h = 2 , 3 , … , H  

3. Calculate the vector of the output error by 𝜹𝐻 = ∇𝑦𝐿⨀𝜎′(𝒛𝐻). 

4. Backpropagation of the error by computing 𝜹ℎ = ((𝒘ℎ+1)𝑇𝜹ℎ+1)⨀𝜎′(𝒛ℎ) for all 

h = H - 1 , H - 2 , … , 2  

5. Calculate the gradient of the objective function 
𝛿𝐿

𝛿𝑏𝑗
ℎ = 𝛿𝑗

ℎ and 
𝛿𝐿

𝛿𝑤𝑗𝑘
ℎ = 𝑦𝑘

ℎ−1𝛿𝑗
ℎ 

The procedure of the steps 2-5 is repeated for different sample sets until the termination 

criteria is reached. This can be a maximum number of iterations or the change in the mean 

square error falls below a specific value. 

1.3.2.5 Conclusion 

Artificial neural networks are a powerful approach to multiclass classification problems. Their 

setup allows capturing high order correlations between inputs. Through the introduction of 
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more hidden layers, this ability can be increased even further, also referred to as deep learning. 

Yet, the hidden layers make it difficult to interpret, what the network precisely learned, as 

such, it is somewhat a black box. Although more hidden layers increase the processing power 

and system flexibility, the system can become over specified and prone to overfitting. The 

number of parameters becomes too high. 

1.3.3 Regularization 

Regularization in statistics is a process of introducing additional information that allows to 

solve an ill-posed problem or to prevent overfitting of a model. Overfitting is the result if a 

complex model with a large number of parameters learns the noise of a dataset. The 

additional information is usually a form of penalty for complexity. Thus, regularization 

attempts to impose Occam’s razor on a solution, thereby giving preference to simpler models. 

Regularization allows to tune the level of model complexity so the models are better at 

generalizing beyond the training data set. This leads to the two requirements for 

regularization. 

First, two dataset are needed, a training dataset to adjust the model parameters and a 

validation dataset to assess the quality of the model. This can be realized through 

cross-validation. The second requirement is to use a regularization term with an associated 

tuning or regularization parameter λ . The regularization parameter is a hyperparameter that 

has to be adjusted empirically, which is often done by cross-validation. 

1.3.3.1 Cross validation 

In cross validation a dataset is partitioned into not overlapping subsets, the training and 

validation subsets. The parameters of a model are optimized with the training datasets, while 

the quality of the model is assed with the validation dataset. This procedure is repeated 

multiple times with different subsets. A models’ quality can then be determined by the 

averaged errors for the validation datasets. 

One approach to realize cross-validation, is the k-fold cross-validation. In this approach a 

dataset is partitioned into k subsets. One of these is used for validation, whereas the others 

are used for training. This is then repeated k-times for all subsets. 
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1.3.3.2 Regularization terms 

For regularization, a norm λ ∥β ∥  is added to a objective function L (β ) , to minimize instead 

L (β ) + λ ∥β ∥ . Introducing a norm has the general effect that the values of small weights are 

emphasized. However, the way the weights shrink is different with each norm. Large weights 

are only allowed if they lead to considerable improvement of the objective function. It is a 

compromise of decreasing weights and minimizing the original objective function. To which of 

both aspects is given the preference, depends on the regularization parameter λ . A small λ  

minimizes the original objective function, while with a large λ  the weights are made smaller. 

If the weights are mostly small, changing a few inputs should not change the behaviour of the 

model much. Learning local noise is thereby suppressed. In contrast, a model with large 

weights may drastically change its behaviour if the input changes. Large weights allow the 

model to learn noise. Regularization constrains a model to lower complexity. Hence, these 

models are based on data patterns often occurring in the training data and are resistant to 

learn the noise of the training data.  

There are two common regularization norms L1 and L2. The L1 norm, also known as taxicab or 

Manhattan norm (Krause, 1973), is defined as the sum of absolute values of columns 

‖𝛽‖1 = ∑|𝛽𝑖|

𝑛

𝑖=1

. 
(1-53) 

The name stems from the analogy to the distance a taxi has to drive in a rectangular street 

layout to get from the origin to its destination (Milner, 2007). 

The L2 norm is also referred to as the Euclidean length. As the name implies it gives the 

Euclidean distance in an n -dimensional Euclidean space 

‖𝛽‖2 = √∑ 𝛽𝑖
2

𝑛

𝑖=1

= √𝜷 ∙ 𝜷. 
(1-54) 

Although both norms penalize large weights, the way the weights shrink is different. The L1 

norm shrinks the weights with a constant value towards 0. In contrast, using the L2 norm, the 

value by which the weights shrink is proportional to the weight itself. If a large weight has a 

major contribution to the original objective function, the L1 norm shrinks the value less than 

the L2 norm. For weights with small values, the opposite happens. Hence, the L1 norm 

concentrate a model on a small number of import weights, while other weights have zero 
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value. L1 norms are therefore a method of feature selection. L2 norms on the other hand lead 

to smaller weights in general. For L1 norms it has to be considered that derivations of 

equation (1-53) with β = 0  are not defined. Therefore, iterative training procedures have to 

be used to determine the optimal parameters. 

1.3.3.3 Tikhonov regularization 

The Tikhonov regularization (Tikhonov and Arsenin, 1977) is most commonly used 

regularization method for ill-posed problems. Ill-posed refers to problems that do not have 

the properties of a well-posed problem such as that a solution exists, the solution is unique 

and the behaviour of the solution changes continuously with the initial conditions (Hadamard, 

1902). Having system of linear equations, equation (1-3), describing an ill-posed problem 

𝒚 = 𝑿𝜷 

the least squares approach, see equation (1-5)  

‖𝒚 − 𝑿𝜷‖2, 

will lead to an over- or underdetermined system of equations. In particular using the inverse 

of A  can amplify noise, rendering the influence of near singular values very large. Introducing 

a regularization term to equation (1-8) in form of a suitably chosen Tikhonov matrix Γ  gives 

‖𝒚 − 𝑿𝜷‖2 + ‖𝚪𝜷‖2 = ‖𝒚 − 𝑿𝜷‖2 + 𝜆‖𝑰𝜷‖2, 
(1-55) 

where often a multiple of the identity matrix I  is chosen for Γ , whereby the regularization 

parameter λ  is the multiplier. The identity matrix has a value of 1 in the diagonal and 0 

elsewhere. The introduced matrix corresponds to an L2 norm, that improves the conditioning 

of the problem allowing to determine a numerical solution 

𝜷 = (𝑿𝑇𝑿 + 𝚪𝑇𝚪)−1𝑿𝑇𝒚. 
(1-56) 

 

  



1. Introduction 

28 
 

 



2. Methods 

29 
 

2 Methods 

The essential elements needed to construct a secondary structure prediction method are: 

Dataset, input data representation, classifier, scoring function and confidence measure. To 

train and validate a prediction method requires datasets. These contain protein sequences 

with known secondary structures. A requirement of the dataset is that it gives an exhaustive 

overview of the possible protein secondary structure space. Furthermore, the dataset needs 

to be non-redundant to prevent bias. The input data must also be appropriately represented. 

Not only the target residue, but also its neighbouring residues, are considered and converted 

into an amino-acid profile. Furthermore, in most cases, only three of the eight protein 

secondary structure classes are of interest. Therefore, a scheme is necessary to reduce the 

number of classes. At the core of the prediction method is the multi-class classifier, which 

assigns a secondary structure to a residue based on the input data. In the currently most 

popular protein secondary structure prediction methods, see chapter 1.2.1, artificial neural 

networks are used. In contrast, the method presented in this work, *SPARROW+, uses a 

vector-valued classifier. To assess the reliability of the predictions made by the classifier, it is 

necessary to have a confidence measure. The specifications of each component are detailed 

in this chapter. The details of implementation are also outlined. Independent of the prediction 

method, quality measures are described to compare the performance of different methods. 

2.1 Dataset 

The dataset used for learning and cross validation is the ASTRAL40 (Berman et al., 2003; 

Brenner et al., 2000; Chandonia et al., 2002; Chandonia et al., 2004; Fox et al., 2014) dataset 

in version 2.03 of SCOP (Structural Classification of Proteins) (Andreeva et al., 2014). The 

ASTRAL40 dataset is a compilation of all different structural folds found in the PDB (Protein 

Data Bank) (www.wwpdb.org) (Berman et al., 2003), whose sequence identity is lower than 

40 %. SCOP primarily classifies proteins according to their α-helix and β-strand content. 

However, there are additional classes, which are independent of the secondary-structure 

content. Using the PDB directly would result in a skewed dataset, since some proteins are 

overrepresented in the PDB. For lysozyme and its mutants, for example, hundreds of 

structures are available, which have minimal structural differences. 

http://www.wwpdb.org/
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The ASTRAL40 dataset was further processed. First, certain SCOP classes were removed from 

the dataset and special amino acids like selenocysteine and -methionine were exchanged for 

their standard amino acid counterpart. Special amino acids were removed, because they are 

ignored by BLAST and are treated as gaps. Hence, the profile generation could be improved if 

only standard amino acids are used. 

The ASTRAL40 dataset was filtered to remove certain SCOP classes (Fox et al., 2014): 

Membrane, cell surface proteins and peptides, coiled coil proteins, low-resolution proteins and 

small proteins. The amino-acid composition at the surface of membrane proteins is very 

different from those of soluble proteins, which would compromise training of the classifier. 

Hence, it will be more useful to train a classifier for membrane and soluble proteins separately. 

Coiled coil proteins are rope like entangled protein chains. The interactions between the 

chains affect the structure of the single chains but cannot be considered in the structure 

prediction. For low-resolution proteins the secondary structure assignment is unreliable, 

whereas for small proteins with a chain of fewer than 50 amino acids it is not possible to 

generate meaningful sequence profiles. 

2.2 Reduction schemes 

The secondary structure assignment program DSSP (Kabsch and Sander, 1983) assigns 

residues into one of eight different secondary structure classes, which are described in detail 

in chapter 1.1.2. In practice, the secondary structure of a protein is rarely described with all 

eight classes but usually with only three classes. The three classes consist of helix, strand and 

coil class. The level of detail provided by the eight classes is in most cases not required or 

would not give further insights. To reduce the eight-class to a three-class description requires 

the merging of classes together into super-classes. A reduction scheme defines which classes 

are merged together. 

Obviously, a variety of reduction schemes are possible, as illustrated in Table 2-1. This table 

lists reduction schemes tested during the development of *SPARROW+ (pure, mixed, all and 

mixed beta) and those of competing secondary structure prediction programs (psipred, 

scorpion and Jpred). All reduction schemes agree to merge the coil, turn and bend classes into 

the coil super-class, since all of these three classes have no similarities with either the helix or 

strand super-classes. However, there are two major differences between the reduction 
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schemes. The first difference is, which helical classes make up the helix super-class. The 

second difference is in the composition of the strand super-class, whether the 

isolated β-bridge and β-strand class are merged or not. 

The reasoning why certain classes should or should not be merged will be explained in the 

following, starting with the composition of the helix super-class. One extreme is, to merge all 

helix classes together, since they all have a very similar definition and structure. The opposite 

extreme is to put only the α-helix into the helix super-class, because the α-helix is by far the 

most frequent of all helix classes and all longer helices are exclusively α-helices. Between 

these extremes are the two cases, where the α-helix class is merged with either the 310- or the 

π-helix class. The difference between 310-helices and π-helices is, that the former can be found 

as an isolated helix, whereas the latter mostly occurs in the context of a α-helix. Interestingly, 

this difference can be used as an argument for both cases. In the first case, α- and 310-helices 

should be merged, because of their isolated existence. In the other case, α- and π-helices 

should be merged, because π-helices are only found in context of α-helices. 

The other major difference is the question, whether to merge the strand class with the 

isolated β-bridge class. On the one hand, a β-strand is defined by DSSP as a sequence of 

β-bridges, therefore both classes should be merged. On the other hand, the DSSP definition 

for β-bridges is rather weak. Isolated β-bridges can be found at arbitrary positions in a protein 

DSSP 

classes 

reduction schemes 

pure all mixed beta mix psipred scorpion Jpred 

α-helix helix 

helix 

helix helix 
helix 

helix 

helix 

310-helix 
coil 

coil coil 
coil 

π-helix helix helix coil 

β-strand strand 
strand 

isolated β-bridge coil 

coil 

coil turn 

bend 

Table 2-1: Reduction schemes for the three super-classes (helix, strand and coil). The leftmost column lists the 

eight secondary structure classes as defined by DSSP and the top row lists the reduction schemes. The cells show, 

to which super-class a DSSP class belongs in a specific reduction scheme. 
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with no structural similarities to a β-strand. Hence, isolated β-bridges should belong to the 

coil super-class. 

2.3 Input data representation 

Secondary structure classification of a specific residue is done by considering not only the 

residue of interest but also its sequentially neighbouring residues. Secondary structure classes 

result through the interactions of neighbouring residues. As such, a sequence window of a 

certain size is centred on the target residue to account for the influence of the neighbouring 

residues. The sequence window has to be limited and cannot encompass the entire protein, 

since this would result in a dramatic increase in the number of parameters necessary for the 

classifier. If the number of parameters is too large over-fitting may occur. Therefore, a sliding 

sequence window is commonly used in secondary structure prediction methods. The window 

is successively placed over every residue in a protein sequence meaning essentially the 

window slides over the sequence. The concept of the sliding window is illustrated in Figure 2-1. 

In general, symmetric windows are used. Thus, the number of neighbours is identical for both 

sides of the residue of interest. The window normally slides from the C- to the N-terminus of 

a protein sequence. For symmetrical windows, it would not make a difference if the window 

slid in the opposite direction. This would however be an issue if asymmetrical windows are 

used. Predictions with asymmetrical windows have shown no advantage over symmetrical 

ones (Bettella, 2009). 

Figure 2-1: Sliding window for secondary structure prediction. To classify a residue of an amino acid sequence, 

all neighbouring residues covered by a sequence window are also included in the classification process. After 

classification of the highlighted residue (bold letter), the window moves one residue further. 

… F G V Q V G G A S D T N Q A … 

V Q V G G A S 

Q V G G A S D 

V G G A S D T 

G G A S D T N 
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2.3.1 Representation of the sequence window 

For classification, the input data has to be represented in an appropriate mathematical format. 

Different approaches are used to represent an amino-acid-sequence vector mathematically. 

One approach is to employ orthogonal binary vectors with 20 components per residue, 

thereby every residue position of the protein sequence is described by 

𝒂 = (

𝑎1

⋮
𝑎20

) , 𝑎𝑡 ∈ {0,1} 
(2-1) 

The components of this vector are zero except the one corresponding to the amino acid type 

at a specific position of the protein sequence, where the corresponding component adopts 

the value unity. 

A sequence window covering 2 n + 1  residues can be represented by a matrix 

S ∊ { 0 , 1 } ( 2 n + 1 ) ⨯ 2 0 , where n  is the number of neighbouring residues in one direction from 

the residue of interest. For residue i  the vector takes the form 

𝑺𝑖 = (𝒂𝑖−𝑛 … 𝒂𝑖 … 𝒂𝑖+𝑛). 
(2-2) 

Results of the earlier version of the original SPARROW showed that such a simple codification 

of the amino acid sequence is insufficient (Bettella, 2009). Instead, representing the input data 

for secondary structure prediction through position specific sequence profiles  has proven to 

be a superior alternative (Rost and Sander, 1993a; Rost and Sander, 1993b). These profiles are 

used in variations by PSIPRED (Buchan et al., 2013), C3-Scorpion (Yaseen and Li, 2014) Jpred 

(Cuff and Barton, 2000) and *SPARROW+. In all cases the profiles are generated through the 

program PSI-BLAST (Position Specific Iterative-BLAST) (Altschul et al., 1997) that belongs to 

BLAST (Basic Local Alignment Search Tool) methods (Altschul et al., 1990). BLAST encompasses 

a variety of methods to analyse protein- or DNA-sequences by comparing them with sequence 

databases. This allows for the identification of sequences that resemble the query above a 

certain significance threshold. To compare sequences, BLAST uses a series of local sequence 

alignments, meaning that only small parts of sequences are compared.  

BLAST is a heuristic method, generating a lookup table for short subsequences, referred to as 

words in a query sequence. In the database search, BLAST seeks words that when aligned with 

the query and scored with a substitution matrix exceed a certain threshold. Words in the 
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database that exceed the threshold are then extended in both directions to find the optimal 

local alignment. 

Substitution matrices describe the probability that one amino acid in the sequence changes 

to a different amino acid. The probabilities for these transformations are expressed in 

log-odds scores. A score matrix S c  is defined as 

𝑆𝑐,𝑖𝑗 = log
𝑝𝑖 ⋅ 𝑀𝑖𝑗

𝑝𝑖 ⋅ 𝑝𝑗
= log

𝑀𝑖𝑗

𝑝𝑗
, (2-3) 

where M i j  is the probability that amino acid i  can be replaced by amino acid j . p i  and p j  are 

the frequencies at which the amino acids occur. The larger S c , the more likely is the 

transformation. Popular substitution matrices are the PAM (Point Accepted Mutation) (Eck 

and Dayhoff, 1966) and BLOSUM (BLOcks Substitution Matrix) (Henikoff and Henikoff, 1992) 

matrices. The PAM matrix is generated from a global sequence alignment, whereas the 

BLOSUM matrix is obtained through the alignment of sequence “blocks”. 

2.3.2 PSI-BLAST profiles 

PSI-BLAST is an iterative method commonly used to identify distant relatives of a protein. In 

the first step, a list of similar protein sequences is generated through a BLAST search. From 

this list of sequences, a profile is generated that corresponds to a mean sequence. The 

obtained profile is then used for a second query, resulting in a larger list of protein sequences. 

This list is then used to generate another profile. The process can be repeated multiple times. 

Hence, PSI-BLAST provides an amino-acid profile for every residue of the protein sequence. It 

can be represented by a profile matrix with dimension l ⨯ 2 0 , where l is the length of the 

protein sequence and 20 corresponds to the number of standard amino acids.  
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The value of an element of the profile matrix is a score describing the odds that a certain 

amino acid type occurs at the specific sequence position. The scores s i  shown in Figure 2-2 

are calculated independently for each column with 

𝑠𝑖 =  
ln (

𝑞𝑖

𝑝𝑖
)

𝜆𝑢
 

(2-4) 

where q i  are the columns target frequencies for aligned pairs of amino acids. p i  are 

background frequencies and λ u  is the statistical parameter for ungapped local sequence 

alignments.  

Positive scores stand for high probability of occurrence and negative numbers accordingly, for 

low probability. As depicted in Figure 2-2, the probabilities are position specific, an amino acid 

may have a high probability of occurrence in one position but not in the other. Because of the 

large number of sequence alignments, information about amino acid conservation can be 

obtained from the profiles. Thus, if an amino is preserved at a specific position throughout 

evolution the corresponding profile value is very high. The profiles also provide global 

information about the entire protein, since interacting amino acids are often exchanged in a 

process, called correlated mutations (Altschuh et al., 1987; Altschuh et al., 1988). Such 

correlated mutations indicate which amino acids, though sequentially distant, are structurally 

close. The residue profiles also provide information on the preference of a segment of the 

protein chain for certain types of amino acids, such as aromatic or polar amino acids. 

Index Residue 
amino acid 

A R N D C Q E G H I L K M F P S T W Y V 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

10 L 1 -1 -1 -1 -2 3 -1 1 1 0 0 0 1 -1 -2 -1 -1 -2 0 0 

11 Y -4 -5 -6 -5 -1 -6 -6 -7 -4 2 -1 -5 -3 3 -4 -3 -4 7 7 1 

12 Q -3 -3 -3 -2 -6 6 0 -1 0 -3 -4 -2 -4 1 -2 -2 -3 1 5 -1 

13 L -4 -3 -4 -2 -2 -5 -5 0 -2 1 5 -5 -2 -2 -5 -2 0 0 5 -2 

14 Q -1 -1 0 -1 -5 5 0 3 -3 -4 -4 2 -2 -5 -4 0 1 -2 -3 -3 

15 N -1 -3 4 3 -5 -1 1 4 -1 -3 -3 -2 -4 -5 -2 0 -2 -5 -1 -4 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Figure 2-2: Excerpt of a PSI-BLAST profile. The two left most columns denote the consecutive residue index and 

the amino acid at this position of the protein sequence. The remaining 20 columns show the odds for every amino 

acid type to occur at this position. The top row lists the amino acid types to which the columns correspond. 
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Therefore, the profiles contain a lot of information useful for secondary-structure prediction. 

Consequently, the vector-valued classifier of *SPARROW+ uses PSI-BLAST profiles as a 

representation of the input data. Thus, a sequence window is represented by a matrix 

P ∊ ℤ 2 0 ⋅ ( 2 n + 1 )  with 20 as the number of standard amino acids and n as the number of 

neighbouring residues in one direction of the target residue. 

2.3.3 Terminal residues  

The classifier uses a sliding window to make predictions for each residue. The sliding window 

allows for the consideration of not only the residue of interest but also its neighbouring 

residues. However, as soon as the window size is greater than one, a problem arises at the N- 

and C-terminal residues of a protein chain. At these residues, the window does not completely 

overlap with the protein sequence, illustrated in Figure 2-3. The problem is therefore, which 

values should be used for these undefined window positions. 

In the classifier version presented here, the problem of incomplete overlap is solved by using 

default profile values of -1, the most abundant profile value. However, the larger the window 

size, the more frequently the window overlaps, increasing the influence of the default values 

on the prediction quality. 

 

G G A S D T N Q A … 

? ? ? G G A S 

? ? G G A S D 

? G G A S D T 

G G A S D T N 

Figure 2-3: Incomplete window overlap at the terminal residues. A sliding window translates over an amino acid 

sequence, with the central residue highlighted in bold type. For terminal residues, the window does not 

completely overlap with the sequence. These non-overlapping window positions are shown with the character 

“?” 
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2.4 Multi-class classifier 

To solve the multi-class problem of secondary structure prediction, there are two approaches 

available. One is to separate the problem into different binary classification problems, which 

are then solved independently. The other is to solve the problem directly with a multi-class 

classifier, such as an artificial neural network (ANN) described in chapter 1.3.2. The first 

approach is already well developed with few opportunities for improvement, whereas besides 

ANNs, no multi-class classifier has gained widespread popularity. The vector-valued classifier 

presented here, is an updated version of the vector-valued classifier developed for the 

program *SPARROW (Rasinski, 2011). 

2.4.1 Two-class classification 

Normally, to solve a multi-class problem consisting of C  classes, the comparison is done by 

C  values that are connected via decision rules. Thus, the multi-class problem is split into C  

two-class problems. Two-class problems are a special case of multi-class problems, since only 

one value is sufficient for classification. It should therefore be possible to also solve a 

multi-class problem in a space of C -1 dimensions. Fisher's linear discriminant (Fisher, 1936) 

Figure 2-4: Fisher’s linear discriminant. In a two-dimensional space, target data from two different classes is 

projected on a line, defined by the normal vector g . Thus, two-dimensional data is projected into a 

one-dimensional space. In one-dimensional space the data can be classified by its relative orientation to the class 

vector y 1  and y 2 . 
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projects the multidimensional target data onto a line as illustrated in Figure 2-4. Hence, the 

classification is done in a one-dimensional space by the relative distance to the zero point. The 

position in the one-dimensional space can be described by a scalar s , which is obtained 

through the scalar product of 

𝑠 = 𝒈 ∙ 𝒙, 
(2-5) 

where g  is the vector describing the direction of the line in a two-dimensional space and x  

the input data. Classification is then done by the sign of s . In a one-dimensional space, two 

unit vectors are defined, which are y 1 = 1  and y 2 = - 1 . Both vectors have the maximal 

distance possible to each other in one-dimensional space. Classifying by the sign of s  

corresponds to a classification depending upon which product is larger, s · y 1  or s · y 2 .  

Hence, a classification function f ( x )  projects a point x ∊ ℝ n  from n-dimensional to 

one-dimensional space s = f ( x ) . Then, taking into account the products of 𝑠 with the unit 

vectors, y 1  and y 2  the classification of the point x  is defined by 

𝒙 ∈ 𝜁𝛼 ⇔ 𝛼 = max
𝑗

(𝑠 ∙ 𝑦𝑗), (2-6) 

where ζ α  denotes the class affiliation of x . Since the unit vectors y j  define each class 

completely, they are subsequently referred to as class vectors. 

2.4.2 Multi-class classification 

A solution for C  classes can be developed by generalizing the notation developed for the 

two-class classification. The data is represented by a set of vectors x i ∊ ℝ n  with 1 ≤ i ≤ N , each 

of which are assigned to a class Z = {  j | 1 j  C } . Analogous to section 2.4.1, this 

classification problem can be solved by a projection of xi into a vector space of 

(C-1)-dimensions. To project the data, a vector-valued scoring function is used given by 

𝒇: ℝ𝑛 → ℝ𝐶−1. 
(2-7) 

The classification depends on which class vector projection has the greatest overlap. This can 

be described by the scalar product of the vector-valued scoring function with the class vectors. 

Hence, the classification rule is defined as 
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𝒙 ∈ 𝜁𝛼 ⇔ 𝛼 = max
𝑗

(𝒇(𝒙) ∙ 𝒚𝑗). (2-8) 

To classify a feature vector, two things are necessary: The class vectors and the vector-valued 

function project the data into the (C-1)-dimensional space spanned by the class vectors. 

2.4.2.1 Class vectors 

Each class is defined by a single class vector. All class vectors y k  should have the following 

three properties: Firstly, each class must possess a class vector y k ∊ ℝ C - 1 . Secondly, all class 

vectors are unit vectors, or of equal length for a simple comparison using a scalar product. 

Thirdly, class vectors should have the maximal distance to each other. To achieve the 

maximum distance between C  class vectors in a (C-1)-dimensional space they must be the 

corner vectors of a regular simplex (Coxeter, 1973) or in other words they span a generalized 

tetrahedron. Figure 2-5 illustrates various regular simplexes. 

2.4.2.2 Generalized tetrahedron 

Starting from the standard Cartesian basis in an n-dimensional space ( n + 1 = C )  

{ e j , j = 1 , 2 , … , n } with e i ⋅ e j = δ i , j . The centre of geometry of the generalized tetrahedron 

is in the origin of the coordinate system. Now the vectors ( y k , k = 1 , … , n + 1 )  are constructed, 

which point from the origin of the coordinate system to the corners of the generalized 

tetrahedron. The vectors y k  are normalized to unity and obey the relation:  

𝒚𝑖 ∙ 𝒚𝑗 = −
1

𝑛
 

(2-9) 

Starting by setting y 1 = e 1 . Next,  

Figure 2-5: Two-dimensional projections of class vectors and the corresponding regular simplex for 2 to 6 classes. 

From left to right the simplexes are referred to as line segment, triangle, tetrahedron, pentachoron, hexatron. 
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𝒚2 = −
1

𝑛
𝒚1 +

√𝑛2 − 1

𝑛
𝒆2 

(2-10) 

is used. The third step yields 

𝒚3 = −
1

𝑛 − 1
(𝒚1 + 𝒚2) + 𝑎3𝒆3, 

(2-11) 

which is right, since 𝒚3 ∙ 𝒚𝑖 = −
1

𝑛−1
(1 +

1

𝑛
) = −

1

𝑛
 for i = 1 , 2 . Normalizing y 3  yields:∙ 

𝒚3 =
2

(𝑛 − 1)2
(1 −

1

𝑛
) + 𝑎3

2 =
2

𝑛(𝑛 − 1)
+ 𝑎3

2 = 1 
(2-12) 

from which follows 𝑎3 = √1 −
2

𝑛(𝑛−1)
. Hence,  

𝒚3 = −
1

𝑛 − 1
(𝒚1 + 𝒚2) + √1 −

2

𝑛(𝑛 − 1)
𝒆3. 

(2-13) 

Thus in the last step it is 

𝒚𝑛+1 = − ∑ 𝒚𝑗

𝑛

𝑗=1

 (2-14) 

which is valid since 𝒚𝑛+1 ∙ 𝒚𝑖 = − (1 −
𝑛−1

𝑛
) = −

1

𝑛
 for i = 1 , 2 , … , n  and y n + 1  is of course also 

normalized: 

𝒚𝑛+1 ∙ 𝒚𝑛+1 = 𝑛𝒚1 ∙ 𝒚1 − 𝑛(𝑛 − 1)𝒚1 ∙ 𝒚2 = 𝑛 − 𝑛(𝑛 − 1)
1

𝑛
= 1. 

(2-15) 

Now providing the general expression for k + 1 ,  k ≥ 2 :  

𝒚𝑘+1 = −
1

𝑛 − 𝑘 + 1
∑ 𝒚𝑗 + 𝑎𝑘+1𝒆𝑘+1

𝑘

𝑗=1

, (2-16) 

which is valid, since 𝒚𝑘+1 ∙ 𝒚𝑖 = −
1

𝑛−𝑘+1
(1 +

𝑘−1

𝑛
) = −

1

𝑛
, for i = 1 ,  2 , … k . Normalizing y k + 1  

yields 

𝒚𝑘+1 ∙ 𝒚𝑘+1 =
1

(𝑛 − 𝑘 + 1)2
(𝑘 −

𝑘(𝑘 − 1)

𝑛
) + 𝑎𝑘+1

2 = 1. 
 (2-17) 

Hence 𝑎𝑘+1
2 = 1 −

𝑘

𝑛(𝑛−𝑘+1)
. 
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2.4.3 Vector-valued classification function 

Chapter 2.4 gave the definition for a multi-class classification function f ( x )   by equation (2-7) 

𝒇: ℝ𝑛 → ℝ𝐶−1, 

whereby ℝ n  is the space of the input and ℝ C - 1  of the output data. Various ways are possible 

to define a vector valued scoring function. The simplest is to define f ( x )  as a vector of C - 1  

scalar scoring functions f k ( x )  with 

𝑓𝑘: ℝ𝑛 → ℝ. 
(2-18) 

These scoring functions are applied independently to the input data x  and give the specific 

components of the projection of x  into the (C-1)-dimensional space. Hence, f ( x )  is defined 

by 

𝒇(𝒙) = (
𝑓1(𝒙)

⋮
𝑓𝐶−1(𝒙)

). 
(2-19) 

Accordingly, in the case of a C = 2  the single scalar classifier f ( x ) =f 1 ( x )  is obtained. The 

classifier is then a linear multivariate regression function described in chapter 1.3.1. 

2.4.3.1 Definition of the scoring functions 

The function type of every scoring function is arbitrary, as long as equation (2-18) is obeyed. 

Assuming only a nonlinear separability of the input data, a more complex projection is 

necessary than a function linear in parameter and feature space. A quadratic function is the 

simplest non-linear function and defined by: 

𝑓𝑘(𝒙) = 𝑓𝑘(𝒙, 𝜽𝑘) = 𝒙𝑇𝑩𝑘𝒙 + 𝒄𝑘
𝑇𝒙 + 𝑎𝑘 

(2-20) 

where, the vector θ k  contains all adjustable parameters ( B k , c k , a k )  of f k ( x ) . The Matrix 

B k ∊ ℝ n ⨯ n  describes the influence the products x i x j  have on the value of kth-scoring 

function f k ( x )  of f ( x ) . The vector c k ∊ ℝ n , defines the direct influence x i  the input data 

vector x  has on f k ( x ) . Finally, the scalar a k ∊ ℝ , the intercept, allows an of x  independent 

adjustment of the value of f k ( x ) . Therefore, equation (2-20) can be rewritten as 

𝑓𝑘(𝒙) = 𝑓𝑘(𝒙, 𝜽𝑘) = ∑ ∑ 𝐵𝑘𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ ∑ 𝑐𝑘𝑖𝑥𝑖 + 𝑎𝑘

𝑛

𝑖=1

. (2-21) 
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In the case of protein secondary structure the quadratic function has an additional advantage. 

Through the multiplication of x i x j , different window positions are correlated with each other, 

which captures the interactions between neighbouring residues. In particular the helix 

secondary structure motifs, see chapter 1.1.2.1, are defined by interactions between 

sequentially close residues. 

2.4.4 Optimization of the classifier 

The parameters θ k  of each scoring function f k ( x ,θ )  can be combined to one global 

parameter matrix Θ = (θ 1 , … ,θ C - 1 ) , containing all adjustable parameters of the 

vector-valued scoring function f ( x ) . Hence, equation (2-19) can be rewritten as 

𝒇(𝒙) = 𝒇(𝒙, 𝚯) = (
𝑓1(𝒙, 𝜽1)

⋮
𝑓𝐶−1(𝒙, 𝜽𝐶−1)

). 
(2-22) 

The parameters are determined such that the vector-valued scoring function f ( x )  projects 

an input vector x ∊ ℝn  as close as possible to the corresponding class ( j )  vector ℝ C - 1  

𝒇(𝒙𝑗,𝑛, 𝚯) ≈ 𝒚𝑗,𝑛, (2-23) 

According to the definition of the scoring function in equation (2-22), the parameters for each 

scoring function can be optimized separately. Thus  

𝑓𝑘(𝒙𝑗,𝑛, 𝜽𝑘) ≈ 𝒚𝑘,𝑗,𝑛, (2-24) 

Although equation (2-20) is a quadratic function in feature space, it is still a linear function in 

parameter space. As such, the best optimization approach for an unbiased estimator is the 

method of least squares. In chapter 1.3.1 the least squares method was used for a very similar 

problem, a linear regression function. Hence, equation (2-24) can be fulfilled by minimizing 

the objective function  

𝐿(𝜽𝑘) = ∑ ∑(𝑓𝑘(𝒙𝑗,𝑛, 𝜽𝑘) − 𝒚𝑘,𝑗,𝑛)
2

𝑁𝑗

𝑛=1

𝐶

𝑗=1

. 
(2-25) 

To determine the optimal parameters θ k , the first derivative of the objective function with 

respect to the parameter vector must be set equal to zero. 
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2.4.4.1 Linearization of the scoring function 

To simplify the calculation of the derivative, the quadratic scoring functions are linearized by 

combining the quadratic and linear terms into a single vector. The number of parameters n  of 

a scoring function f k ( x ,θ k )  is the sum of the parameters for the linear and quadratic 

features 

𝑛 = 𝑛𝑙 + 𝑛𝑞 . (2-26) 

The number of the quadratic features is less than n l 2 , since the quadratic feature matrix 

defined by 

𝑿𝑞 = 𝒙 ∙ 𝒙𝑇 , (2-27) 

is symmetric. Hence, the number of quadratic features corresponds to the lower or upper 

triangular matrix of X q  and is given by 

𝑛𝑞 =
𝑛𝑙 ∙ (𝑛𝑙 + 1)

2
. 

(2-28) 

For the total number of parameters n t o t , the intercept parameter also has to be taken into 

account, thus 

𝑛𝑡𝑜𝑡 = 1 + 𝑛𝑙 + 𝑛𝑞 . (2-29) 

Linearization of the triangular quadratic feature matrix X q  generates a feature vector, which 

is defined by 

𝒙𝑞
𝑇 = (𝑋𝑞1,1

, … , 𝑋𝑞1,𝑛𝑙
, 𝑋𝑞2,2

… , 𝑋𝑞𝑛𝑙,𝑛𝑙
). (2-30) 

The quadratic and linear feature vectors are then concatenated into a single feature vector 

given by 

𝒙𝑃
𝑇 = (𝒙𝑇 ∥ 𝒙𝑞

𝑇), 
(2-31) 

that corresponds to 
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𝒙𝑃
𝑇 = (𝑥𝑙1

, … , 𝑥𝑙𝑛𝑙
, 𝑥𝑞1

, … , 𝑥𝑞𝑛𝑞
). (2-32) 

In analogy, the same procedure holds true for the parameters of the scoring function. Since 

the feature matrix is symmetric, only the corresponding upper or lower triangular matrix has 

to be considered of the parameter matrix B . The linear quadratic parameter vector b  is 

generated by 

𝒃𝑇 = (Β1,1, … , Β1,𝑛𝑙
, Β2,2 … , Β𝑛𝑙,𝑛𝑙

). 
(2-33) 

Accordingly, the linear and quadratic parameters are all concatenated into a single parameter 

vector 

𝜷𝑇 = (𝒄𝑇 ∥ 𝒃𝑇), 
(2-34) 

which corresponds to 

𝜷𝑇 = (𝑐1, … , 𝑐𝑛𝑙
, 𝑏1, … , 𝑏𝑛𝑞

). 
(2-35) 

Using the definitions of the weight and feature vectors, the scoring function can be rewritten 

as 

𝑓𝑘(𝒙, 𝜽) = 𝑎𝑘 + 𝒄𝑘
𝑇𝒙 + 𝒙𝑇𝚩𝑘𝒙 = 𝜷𝑘

𝑇𝒙𝑃 + 𝛼𝑘. 
(2-36) 

Thus, the scoring function f k ( x ,θ )  is a linear function in the parameter as well as the feature 

space from which the feature vectors x P  originate.  

2.4.4.2 Derivation of the parameters of the scoring functions 

A different parameter set is used for each scoring function. The parameter matrix β  comprises 

all parameter vectors, yielding 

𝜷𝑇 = (𝜷1, 𝜷2, … , 𝜷𝐾𝑐). (2-37) 

Thus, the classification function is defined by 

𝒇 (𝜷, 𝜶, 𝒙𝑃𝑗,𝑛
) = 𝜷𝒙𝑃𝑗,𝑛

+ 𝜶, 
(2-38) 
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where α  is the intercept parameter vector. The parameters are determined such that the 

scoring function is as close as possible to the corresponding class ( j )  vector 

𝒇 (𝜷, 𝜶, 𝒙𝑃𝑗,𝑛
) ≈ 𝒚𝑗,𝑛. (2-39) 

In accordance with equation (2-25), equation (2-39) can be fulfilled by minimizing the loss 

function  

𝐿 (𝜷, 𝒂) = ∑ ∑ (𝒇 (𝜷, 𝜶, 𝒙𝑃𝑗,𝑛
) − 𝒚𝑗,𝑛)

2
𝑁𝑗

𝑛=1

𝐶

𝑗=1

. 
(2-40) 

Hence, for scoring function k the parameters are β k  and α k . The result of the scalar product 

in equation (2-38) is still a vector with K c  components as is f . It reads  

(𝜷, 𝒙𝑗,𝑛)
𝑇

= (𝜷1𝒙𝑃𝑗,𝑛
, 𝜷2𝒙𝑃𝑗,𝑛

, … , 𝜷𝐾𝑐𝒙𝑃𝑗,𝑛
). 

(2-41) 

Since each scoring function is a linear function in parameter space, the best approach to derive 

the optimal weights is the method of least squares. The parameter values are determined by 

setting the gradient of the objective function L  to zero. The gradient is given by the product 

of the vector derivative 𝛻𝜷𝑘
𝐿, defined by 

∇𝜷𝑘
𝐿 = (

𝛿𝐿

𝛿𝛽1
, … ,

𝛿𝐿

𝛿𝛽𝑛𝑓𝑘

)

𝑇

, 
(2-42) 

where subscript ‘k’ refers to the kth scoring functions of the vector-valued scoring function. 

The gradient of the objective function is given by 

1

2
∇𝜷𝑘

∙ 𝐿 (𝜷, 𝜶) = 

∑ ∑ [(𝑓𝑘 (𝜷𝑘, 𝛼𝑘, 𝒙𝑃𝑗,𝑛
) − 𝑦𝑘𝑗,𝑛

) ∙ ∇(𝜷𝑘) ∙ 𝑓𝑘 (𝜷𝑘, 𝛼𝑘, 𝒙𝑃𝑗,𝑛
)]

𝑁𝑗

𝑛=1

= 0,

𝐶

𝑗=1

 

(2-43) 

Taking the derivative with respect to α k  yields  
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1

2

𝜕

𝜕𝛼𝑘
𝐿 (𝜷, 𝜶) = 

∑ ∑ [(𝑓𝑘 (𝜷𝑘, 𝛼𝑘, 𝒙𝑃𝑗,𝑛
) − 𝑦𝑘𝑗,𝑛

)
𝜕

𝜕𝑏𝑘
𝑓𝑘 (𝜷𝑘, 𝛼𝑘, 𝒙𝑃𝑗,𝑛

)]

𝑁𝑗

𝑛=1

= 0.

𝐶

𝑗=1

 

(2-44) 

Note that with equation (2-38)  

∇𝜷𝑘
∙ 𝑓𝑘 (𝜷𝑘, 𝛼𝑘, 𝒙𝑃𝑗,𝑛

) = 𝒙𝑃𝑗,𝑛
𝑻 and 

𝜕

𝜕𝑏𝑘
𝑓𝑘 (𝜷𝑘, 𝛼𝑘, 𝒙𝑃𝑗,𝑛

) = 1. 
(2-45) 

Hence, equation (2-43) can be written as 

∑ ∑ [(𝜷𝑘𝒙𝑃𝑗,𝑛
+ 𝛼𝑘 − 𝑦𝑘𝑗,𝑛

) ∙ 𝒙𝑃𝑗,𝑛
]

𝑁𝑗

𝑛=1

𝐶

𝑗=1

= 0 
(2-46) 

and equation (2-44) 

𝑁 ∙ 𝛼𝑘 + ∑ ∑ (𝜷𝑘𝒙𝑃𝑗,𝑛
− 𝑦𝑘𝑗,𝑛

)

𝑁𝑗

𝑛=1

= 0.

𝐶

𝑗=1

 
(2-47) 

Accordingly, equation (2-47) can be rewritten as  

𝛼𝑘 =
1

𝑁
∑ ∑ (𝑦𝑘𝑗,𝑛

− 𝜷𝑘𝒙𝑃𝑗,𝑛
)

𝑁𝑗

𝑛=1

𝐶

𝑗=1

. 
(2-48) 

Introducing the means 

〈𝑦𝑘〉 =
1

𝑁
∑ ∑ 𝑦𝑘𝑗,𝑛

𝑁𝑗

𝑛=1

𝐶

𝑗=1

 
(2-49) 

and in analogy  

〈𝒙𝑃〉 =
1

𝑁
∑ ∑ 𝒙𝑃𝑗,𝑛

𝑁𝑗

𝑛=1

𝐶

𝑗=1

, 
(2-50) 

yields for equation (2-48)  

𝛼𝑘 = 〈𝑦𝑘〉 − 𝜷𝑘〈𝒙𝑃〉. 
(2-51) 
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These definitions allow to rearrange equation (2-46), yielding 

∑ ∑ (𝒙𝑃𝑗,𝑛
𝒙𝑃𝑗,𝑛

𝑇𝜷𝑘 − 〈𝒙𝑃〉𝒙𝑃𝑗,𝑛
𝑇𝜷𝑘 − 𝑦𝑘𝑗,𝑛

𝒙𝑃𝑗,𝑛
+ 〈𝑦𝑘〉𝒙𝑃𝑗,𝑛

)

𝑁𝑗

𝑛=1

𝐾𝑐

𝑗=1

= 0, 
(2-52) 

which can be translated to 

∑ ∑ (𝒙𝑃𝑗,𝑛
𝒙𝑃𝑗,𝑛

𝑻𝜷𝑘 − 〈𝒙𝑃〉 ∙ 𝑁〈𝒙𝑃〉𝑻𝜷𝑘 − 𝑦𝑘𝑗,𝑛
𝒙𝑃𝑗,𝑛

+ 〈𝑦𝑘〉 ∙ 𝑁〈𝒙𝑃〉)

𝑁𝑗

𝑛=1

𝐾𝑐

𝑗=1

= 0, 
(2-53) 

To further simplify the equation, the matrix  

〈𝒙𝑃𝒙𝑃
𝑇〉 =

1

𝑁
∑ ∑ (𝒙𝑃𝑗,𝑛

∙ 𝒙𝑃𝑗,𝑛
𝑇)

𝑁𝑗

𝑛=1

𝐶

𝑗=1

 
(2-54) 

and the vector  

〈𝑦𝑘𝒙𝑃〉 =
1

𝑁
∑ ∑ (𝑦𝑘𝑗,𝑛

∙ 𝒙𝑃𝑗,𝑛
)

𝑁𝑗

𝑛=1

𝐶

𝑗=1

 
(2-55) 

are defined, which yields 

(〈𝒙𝑃𝒙𝑃
𝑇〉 − 〈𝒙𝑃〉〈𝒙𝑃〉𝑇)𝜷𝑘 = 〈𝑦𝑘𝒙𝑃〉 − 〈𝑦𝑘〉〈𝒙𝑃〉 

(2-56) 

or alternatively 

〈(𝒙𝑃 − 〈𝒙𝑃〉)(𝒙𝑃 − 〈𝒙𝑃〉)𝑇〉𝜷𝑘 = 〈𝑦𝑘(𝒙𝑃 − 〈𝒙𝑃〉)〉. 
(2-57) 

Hence, equation (2-57) describes a system of linear equations 

𝑴 ∙ 𝜷𝑘 = 𝒗𝑘, 
(2-58) 

where the covariance matrix M  is defined by 

𝑴 = 〈𝒙𝑃𝒙𝑃
𝑇〉 − 〈𝒙𝑃〉〈𝒙𝑃〉𝑇 , 

(2-59) 

and the column vector v k  is given by 
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𝒗𝑘 = 〈𝑦𝑘(𝒙𝑃 − 〈𝒙𝑃〉)〉. 
(2-60) 

By solving the system of linear equations, the optimal solution for β k  is determined. This 

allows in the second step to calculate α k  through equation (2-51). The matrix M  is 

independent of the scoring function. Hence, for solving any β k , the same M  is used. In 

contrast, the vector v k  depends on the scoring function. 

The parameters of all scoring functions f k ( x ,θ k )  can be combined to one global parameter 

set Θ = {θ 1 , … ,θ ( C - 1 ) } . Thus, the set contains all parameters of the classification-function 

f ( x )  that need to be optimized. 

The optimal parameters Θ , thus those with the smallest quadratic error, are obtained by 

solving an array of linear equations. All of which use the same coefficient matrix M  but 

different right side vectors v k . Every linear equation system provides the optimal parameters 

θ k  for the kth scoring function f k ( x ,θ k )  of the classificatory function f ( x ,Θ ) . Therefore, 

the vector-valued classifier (VVC) is trained by directly calculating the parameters from the 

training dataset.  

Each of the scoring functions of the VVC corresponds to linear regression function described 

in chapter 1.3.1. For the case of two classes, the VVC is identical to a classification based on a 

linear regression function. In this case, the class vectors and indicator matrix would be equal. 

However, for three or more classes classification by linear regression and the VVC is different. 

For linear regression, multiple independent binary classifiers are trained. Each of these is 

either trained to separate one class from the others (one-vs.-rest) or to separate between two 

specific classes (one-vs.-one). In contrast, the individual scoring functions of the VVC make no 

binary classifications, the classifications is achieved through the combination of all scoring 

functions. Because of its similarities to linear regression, the VVC also shares the same 

disadvantages like masking and the sensitivity to extreme outliers. 

Like an artificial neural network (ANN), see chapter 1.3.2, the VVC is a multiclass classifier. 

Using quadratic features is roughly similar to an ANN consisting of single hidden layer. The 

difference to an ANN is that an ANN takes into account correlations of an arbitrary order 

whereas the VVC is limited to quadratic correlations. Another difference is the training process 

of both methods. The parameters of the VVC are optimized by solving a linear equation system 
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that has a unique solution. The ANN on the other hand, requires an iterative optimization 

procedure, like the back-propagation algorithm described in chapter 1.3.2.4. 

2.4.4.3 Regularization of the objective function 

To be able to solve the linear equation system defined by equation (2-57) requires the 

covariance matrix to be well-conditioned. Regularization terms are a way to obviate potential 

ill-conditioning of the matrix. Furthermore, regularization is a method to prevent overfitting 

of the model. Chapter 1.3.3 describes regularization in greater detail. For systems of linear 

equations the common approach is to introduce a suitable Tikhonov matrix Γ  as an L2 norm 

to the objective function. For Γ , a multiple of the identity matrix λ I  was chosen, yielding 

𝐿 (𝜷, 𝒂) = ∑ ∑ (𝒇 (𝜷, 𝜶, 𝒙𝑃𝑗,𝑛
) − 𝒚𝑗,𝑛)

2
𝑁𝑗

𝑛=1

𝐶

𝑗=1

+ 𝜆𝑰. 
(2-61) 

The elements of the identity matrix I  are unity along the diagonal and zero elsewhere. 

According to equation (2-61), the linear equation system defined by equation (2-57), becomes 

[〈𝒙𝑃𝒙𝑃
𝑇〉 − 〈𝒙𝑃〉〈𝒙𝑃〉𝑇 + 𝜆𝑰]𝜷𝑘 = 〈𝑦𝑘(𝒙𝑃 − 〈𝒙𝑃〉)〉, 

(2-62) 

which corresponds to the matrix notation 

(𝑴 + 𝜆𝑰)𝜷𝑘 = 𝒗𝑘 . 
(2-63) 
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2.5 Implementation of the classifier 

The vector-valued scoring classifier outlined in chapter 2.4 is the basis of the protein 

secondary structure prediction program *SPARROW+. *SPARROW+ is the successor to the 

previous version *SPARROW (Rasinski, 2011), which itself is a further development of the 

program SPARROW (Bettella et al., 2012). The name SPARROW is an abbreviation for 

Secondary structure Predicting ARRays of Optimized Weights. Figure 2-6 gives an overview of 

the implementation of the vector-valued classier. 

Similar to other secondary structure prediction programs such as PSIPRED, Jpred and 

C3-Scoprion whose prediction procedure consists of multiple consecutive steps, *SPARROW+ 

utilizes two prediction steps. The first step generates a structure-to-sequence correlation, 

which is refined in the second step. Hence, the second step is a form of post processing by 

considering structure-to-structure correlations based on the predictions for several 

neighbouring residues. Assuming, that large segments with a uniform classification are 

correctly classified, eventual single outliers are considered potentially wrongly classified 

residues. Therefore, a residue within a large segment of residues being in a different 

secondary structure class may change its class. The second step is therefore a smoothing of 

the prediction from the first step.  

Apart from the connection of input and output, both steps are entirely independent. Hence, 

different values for parameters such as number of classes or window size can be utilized. 

Concerning the number of classes, the only restriction is that the number of classes does not 

Figure 2-6: Flow diagram describing the vector-valued classifier implemented in *SPARROW+. 
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increase from the first to the second prediction step, since merging classes is easier than 

separating them (Rasinski, 2011). 

The general setup of both prediction steps is similar; both utilize a vector-valued classifier and 

a symmetric sliding window. As described in section 2.3.1 the input feature vector considers 

the number of residues defined by the window size. Hence, for the prediction of a residue also 

its neighbouring residues are taken into account. Both prediction steps utilize PSI-BLAST 

profiles from the target sequence as input features. In the first step, the profiles are quadratic 

features, in the second step they are linear features. In both steps, different feature types are 

combined. In the first step quadratic profile and linear sequence features are combined while 

in the second step a combination of quadratic structure and linear profile features is used. To 

account for the additional linear features, an additional linear term is introduced into 

equation (2-20). Because of the linearization of the scoring functions only the size of total 

feature and parameter vectors increases. Accordingly, the equations to determine the 

parameters do not change.  

2.5.1 Implementation of the first prediction step 

The first prediction step of *SPARROW+ creates a sequence to structure correlation, which is 

realized by the vector-valued classifier f : ℝ 2 0 ⨯ r + 2 0 ⨯ r → ℝ C - 1 . C  is the number of classes 

and r  is the size of the symmetric sliding window. Using a suitable learning set as defined in 

2.1 the parameters are determined according to the procedure outlined in section 2.4.4. The 

number of adjustable parameters for every scoring function f k ( x ,θ k )  in the first prediction 

step is equal to the number of the different features, as defined in equation (2-26). However, 

to account for the additional linear sequence features an additional linear term is added, 

yielding for the number of features and parameters 

𝑛𝑓𝑘(1) = 𝑛𝑷 + 𝑛𝑷(𝑞) + 𝑛𝑺. (2-64) 

As described in chapter 2.3, both, the linear profile and sequence features have the same 

dimension, and thus the same number of parameters 

𝑛𝑷 = 𝑛𝑺 = 20 ∙ 𝑟. 
(2-65) 



2. Methods 

52 
 

The number of non-redundant quadratic profile features is defined by equation (2-28), 

yielding 

𝑛𝑷(𝑞) =
(20 ∙ 𝑟) ∙ (20 ∙ 𝑟 + 1)

2
. 

(2-66) 

Hence, the total number of features is given by 

𝑛𝑓𝑘(1) = 20 ∙ 𝑟 +
(20 ∙ 𝑟) ∙ (20 ∙ 𝑟 + 1)

2
+ 20 ∙ 𝑟. 

Taking the parts of the PSI-BLAST profile defined by the sliding window, a profile matrix 

P ∊ ℝ 2 0 ⨯ r  is obtained. The sequence matrix S ∊ ℝ 2 0 ⨯ r  is obtained in the same way. From 

these matrices the linear feature vectors x P ( l )  and x S ( l )  are generated, with the linear 

notation of the matrices for the linear profile feature vector defined by 

𝒙𝑷
𝑇 = (𝑃1,1, … , 𝑃1,20, 𝑃2,1 … , 𝑃𝑟1,20) 

(2-67) 

and accordingly for the linear sequence feature vector 

𝒙𝑺
𝑇 = (𝑆1,1, … , 𝑆1,20, 𝑆2,1 … , 𝑆𝑟1,20). 

(2-68) 

From the linear feature vector, the quadratic feature vector can be determined, given by 

equations (2-27) and (2-30). The total feature vector is the concatenation of the different 

feature vectors 

𝒙𝑓(1)
𝑇 = (𝒙𝑷

𝑇 ∥ 𝒙𝑷(𝑞)
𝑇 ∥ 𝒙𝑺

𝑇), (2-69) 

which yields 

𝒙𝑓(1)
𝑇 = (𝑥𝑷1

, … , 𝑥𝑷𝑛𝑃
, 𝑥𝑷(𝑞)1

, … , 𝑥𝑷(𝑞)𝑛𝑃(𝑞)
, 𝑥𝑺1

, … , 𝑥𝑺𝑛𝑆(𝑙)
). (2-70) 

For a residue i  a feature vector x f ( 1 ) , i  is generated, from which an output vector 

s i ( 1 ) = f ( x i ,θ )  is calculated. 

2.5.2 Implementation of the second prediction step 

Based on the output of the first prediction step, the second step generates a structure to 

structure and structure to profile correlation. Analogous to the first prediction step, a vector-
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valued classifier is used for the classification. Consequently, the classifier makes a projection 

f : ℝ ( C - 1 ) ⨯ r + 2 0 ⨯ r → ℝ C - 1 . The only major difference to the first step is the combination of 

structure and profile features. The matrices s ∊ ℝ ( C - 1 ) ⨯ r  and P ∊ ℝ 2 0 ⨯ r  describe the 

structure and the profile features of residues within the sliding window. In an analogous 

manner as in the first step, linear representations x s  and x P , of the structure and profile 

matrix are generated. The linear structure vector is given by the output of the first prediction 

step 

𝒙𝒔
𝑇 = (𝒔1,1, … , 𝒔1,𝐾𝐶(2)

, 𝒔2,1 … , 𝒔𝑟2,𝐾𝐶(2)
), 

(2-71) 

while the definition x P  is analogous to equation (2-67). The number of features of the second 

prediction step is the summation of the features. 

𝑛𝑓𝑘(2) = 𝑛𝒔 + 𝑛𝒔(𝑞) + 𝑛𝑷. (2-72) 

The number of linear profile features, given by equation (2-73), is identical to the first 

prediction step. The linear structure features are defined by 

𝑛𝒔 = (𝐶 − 1) ∙ 𝑟. 
(2-73) 

The number of non-redundant quadratic structure features is defined by equation (2-28), 

yielding 

𝑛𝒔(𝑞) =
((𝐶 − 1) ∙ 𝑟) ∙ ((𝐶 − 1) ∙ 𝑟 + 1)

2
. 

(2-74) 

The total number of features in the second prediction step is then 

𝑛𝑓(2) = (𝐶 − 1) ∙ 𝑟 +
((𝐶 − 1) ∙ 𝑟) ∙ ((𝐶 − 1) ∙ 𝑟 + 1)

2
+ 20 ∙ 𝑟. 

The total feature vector is the concatenation of the different feature vectors 

𝒙𝑓(2)
𝑇 = (𝒙𝒔

𝑇 ∥ 𝒙𝒔(𝑞)
𝑇 ∥ 𝒙𝑷

𝑇), (2-75) 

yielding 

𝒙𝑓(1)
𝑇 = (𝑥𝒔(𝑙)1

, … , 𝑥𝒔(𝑙)𝑛𝑃(𝑙)
, 𝑥𝒔(𝑞)1

, … , 𝑥𝒔(𝑞)𝑛𝑃(𝑞)
, 𝑥𝑷(𝑙)1

, … , 𝑥𝑷(𝑙)𝑛𝑆(𝑙)
). (2-76) 
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2.6 Quality measures 

To assess the prediction quality of *SPARROW+ on an arbitrary test set, a quality measure has 

to be defined. These would also allow to compare *SPARROW+ with other secondary structure 

prediction programs. To measure the prediction quality, the input vector as well as the 

classification need to be known. This together provides the information whether a residue 

was classified correctly or not. The dataset is expected to have the form 

D = { ( x i , y i ) | 1 ≤ i ≤ N }  in this case D  is an arbitrary data set used for classification consisting 

of N  residues. The prediction is done through the scalar product of f ( x ,Θ )  with the 

individual class vectors. A prediction x i ∊ D  is correct if 

𝒙𝑖 ∈ 𝜁𝜎 ∧ 𝜎 = max
𝑗

(𝒇(𝒙, 𝜽)  ∙ 𝒚𝑗) , 1 ≤ 𝜌 ≤ 𝑁𝐶  (2-77) 

2.6.1 Accuracy index QC 

The Q c -accuracy index is a simple measure of the prediction quality of a classifier on a dataset 

D . It puts the number of correct predictions into relation to the size of the dataset. With 

equation (2-77), the Q c -accuracy is defined by 

𝑄𝐾 =
∑ |{𝒙𝑖 ∈ 𝐷|𝒙𝑖 ∈ 𝜁𝜎 ∧ 𝜎 = max

𝑗
(𝒇(𝒙𝑖) ∙ 𝒚𝑗)}|𝐾

𝜎=1

𝑀
 

(2-78) 

In a similar way the Q3-accuracy of an individual class ζ σ  in the dataset D  can be calculated 

by 

𝑞𝜎 =
|{𝒙𝑖|𝒙𝑖 ∈ 𝐷 ∈ 𝜁𝜎 ∧ 𝜎 = max

𝑗
(𝒇(𝒙𝑖) ∙ 𝒚𝑗)}|

|{𝒙𝑖|𝒙𝑖 ∈ 𝜁𝜎}|
 

(2-79) 

Using the Q c -accuracy, the percentage of correctly predicted residues in the dataset can be 

calculated by multiplying with 100. 

2.6.2 Generalized Matthews correlation coefficient 

The generalized Matthews correlation coefficient (MCC) (Gorodkin, 2004) is a more 

sophisticated quality measure than the Q c -accuracy. It is an extension of the MCC (Matthews, 

1975) to multiple classes, using an extension of the Pearson’s correlation coefficient. The 
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generalized MCC is calculated through the values of a confusion matrix Ω . One element of this 

matrix is defined by: 

Ω𝜎𝜌 = |{𝒙𝑖 ∈ 𝐷 |𝒙𝑖 ∈ 𝜁𝜎 ∧ 𝜎 = max
𝑗

(𝒇(𝒙𝑖) ∙ 𝒚𝑗)|}| (2-80) 

The elements Ω σ ρ  tell how much of the input data x , belonging to class ζ σ  are also classified 

as ζ σ . The diagonal matrix elements are the correctly classified input data. In case of a perfect 

prediction each diagonal element ω σ ρ  would be identical to the size of the class ζ σ  in D . 

Hence all other matrix elements were equal to zero. Based on the confusion matrix the MCC 

value can be calculated through 

𝑅𝑁𝑐

=
∑ ∑ ∑ (Ω𝛼𝛼Ω𝛽𝛾 − Ω𝛼𝛽Ω𝛾𝛼)𝐶

𝛾=1
𝐶
𝛽=1

𝐶
𝛼=1

√∑ (∑ Ω𝛼𝛽 ∑ ∑ Ω𝛿𝛾
𝐶
𝛿=1,𝛾≠𝛼

𝐶
𝛾=1

𝐶
𝛽=1 )𝐶

𝛼=1 √∑ (∑ Ω𝛽𝛼 ∑ ∑ Ω𝛾𝛿
𝐶
𝛿=1,𝛾≠𝛼

𝐶
𝛾=1

𝐶
𝛽=1 )𝐶

𝛼=1

. 
(2-81) 

The values for R C  are in a range of - 1 ≤ R C ≤ 1 , whereby 1 corresponds to perfect classification. 

The value -1 is asymptotically reached in the extreme misclassification case of a confusion 

matrix W with all zeros but in two symmetric entries Ω ρ σ  Ω σ ρ  (Jurman et al., 2012). 

The MCC of an individual class ζ σ , with σ = α , in the dataset D  can be calculated by 

𝑟𝜎 =
∑ ∑ (Ω𝛼𝛼Ω𝛽𝛾 − Ω𝛼𝛽Ω𝛾𝛼)𝑁𝑐

𝛾=1
𝑁𝑐

𝛽=1

√∑ Ω𝛼𝛽 ∑ ∑ Ω𝛿𝛾
𝑁𝑐

𝛿=1,𝛾≠𝛼
𝑁𝑐

𝛾=1
𝑁𝑐

𝛽=1 √∑ Ω𝛽𝛼 ∑ ∑ Ω𝛾𝛿
𝑁𝑐

𝛿=1,𝛾≠𝛼
𝑁𝑐

𝛾=1
𝑁𝑐

𝛽=1

 (2-82) 
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2.6.3 Confidence measure of the vector-valued scoring function f 

To assess the reliability of a prediction a measure of confidence is needed. This measure 

should correspond to probability of correctness. For multi-class prediction the probabilities 

for every class assignment are need. The confidence measure employed by *SPARROW+ is first 

outlined for three classes and then generalized for n-classes. 

2.6.3.1 Three classes.  

The ideal class vectors for three classes are the vectors y i  in a two-dimensional space, with 

i = 1 , 2 , 3 , with y i y i = 1  and y i y j = 1 / 2  for i j . Therefore, ∑ i = 1 , 2 , 3  y i = 0   and the sum 

of the projections of f  with the y i  vanishes. If f = 0  the probabilities for the three classes are 

all equal: p 1 = p 2 = p 3 = 1 / 3 . If f = y , p i = 1  and p k = 0  k  i .  

If | f | = 1  and f y 3 = - 1  then f y 3 = 1 / 2 =  f y 2  In this case we should have p 3 = 0  and 

p 1 = 1 / 2 = p 2 . The expression  

𝑝𝑖 =
1

3
(1 + 𝒚𝑖𝒇) 

(2-83) 

fulfils for | f | = 1  and f y 3 = - 1  the conditions p 1 = 1 / 2 = p 2  and p 3 = 0 . For f = 0  it also fulfils 

p 1 = p 2 = p 3 = 1 / 3 . However, it is wrong for f = y 1 , since p 1 = 2 / 3  and p 2 = p 3 = 1 / 6 . In 

particular the latter (p 2 = p 3 = 1 / 6 )  should not happen. Alternatively, p i  can be defined by  

𝑝𝑖 = max {0,
1

3
(1 + 2𝒚𝑖𝒇)}. 

(2-84) 

y
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y
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 y
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Figure 2-7: Depiction of the generalized tetrahedron for C=3.y1,y2 and y3 are the class vectors and f is the result 

of the vector-valued scoring function. 
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As long as all three terms 1 + 2 y i f  for i = 1 , 2 , 3  are positive, the sum  

𝑃 = ∑ 𝑝𝑖

3

𝑖=1

 
(2-85) 

is unity and the p i  are properly defined probabilities. If one p i  vanishes (i.e. y i f < - 1 / 2 ) P > 1 . 

To make in these cases sure that the probabilities are normalized to unity we redefine them 

as follows: 1 

𝑝̂𝑖 =
𝑝𝑖

𝑝
. (2-86) 

For f = y 1  we have f y 2 = - 1 / 2 = f y 3  and therefore p 2 = p 3 = 0 . For f y 2 = 1 / 2 = f y 3  we have 

f e 3 = - 1 , p 3 = 0  and p 1 = 2 / 3 = p 2 . Hence, we have to use the normalized probabilities 𝑝̂𝑖. 

The whole procedure is also valid if | f | > 1 . 

For n  classes the ideal class vectors y i , obey y i y i = 1  and y i y j = - 1 / ( n - 1 )  for i  j . The 

expression analogue to equation (2-84) is  

𝑝𝑖 = max {0,
1

𝑛
(1 + (𝑛 − 1)𝒚𝑖𝒇)}. 

(2-87) 

2.6.3.2 Confidence of predicted class 

By definition the predicted class, has the highest probability p i  of all classes. Hence, the value 

of ppred is in the range 1 / n <  ppred < = 1 . Normalizing this range gives the confidence c . 

𝑐𝑝𝑟𝑒𝑑 = (𝑝𝑝𝑟𝑒𝑑 −
1

𝑛
) ∙

𝑛

(𝑛 − 1)
. 

(2-88) 
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3 Results 

This chapter describes the results of protein secondary structure predictions made with the 

program *SPARROW+. The results are separated into three parts that comprise setup, 

validation and benchmark. The setup part describes the optimization of the hyperparameters 

and the stepwise assembly of the vector-valued classifier used by *SPARROW+. An initial 

one-step classifier using only a single type of features, namely sequence profiles, is 

successively enhanced yielding finally a two-step classifier utilizing multiple feature types. The 

hyperparameters of *SPARROW+ are the class reduction scheme, size of the sliding window, 

type of BLAST database and the regularization parameter. These parameters are not 

optimized by the objective function, but can only be manually tuned by comparing the 

classifier performance on datasets not used for training. The approach here is an 8-fold 

cross-validation. After the determination of the hyperparameters, the basic setup of 

*SPARROW+ is completed. The last part of the setup phase is a description of the stepwise 

assembly of the final layout of the vector-valued classifier. This gives insights into how each 

enhancement of the classifier affects the prediction quality. The enhancements consist of an 

additional set of linear sequence features, a second prediction step and finally an additional 

set of linear profile features in the second prediction step. 

After assembling the classifier and determining its parameters, the validation part describes 

the prediction performance. This includes the prediction quality per amino acid and the 

confidence measure. The idea behind the confidence measure is to assess the ambiguity of a 

prediction. Correlating the confidence measure and the prediction quality can provide a 

quality estimate of a prediction. 

Lastly, the benchmark part describes the performance of *SPARROW+ in comparison to other 

popular protein secondary structure prediction programs. The prediction quality of all 

programs is evaluated for a number of datasets used for protein structure prediction. 

The properties of the dataset on which *SPARROW+ is trained and validated are critical. To 

assess the prediction quality of a secondary structure prediction method the Q3-accuracy and 

generalized MCC value are used, see equation (2-78) and (2-81). For the class specific 

prediction quality, equations (2-79) and (2-82) are used for the Q3-accuracy and generalized 

MCC value, respectively.  
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3.1 Dataset 

For training and validation, version 2.03 of the ASTRAL40 dataset (Berman et al., 2003; Fox et 

al., 2014) is used. The dataset is processed as described in chapter 2.1. All coiled coil, 

membrane and cell surface proteins as well as all peptides and short proteins with a length 

less than 50 residues are removed. Furthermore, special amino acids are replaced by their 

standard amino acid analogues. The filtered dataset contains 11,147 protein domains with a 

total of 2,056,403 residues. With the program DSSP (Kabsch and Sander, 1983), every residue 

is assigned into one of eight secondary structure classes. The details and secondary structure 

composition of the dataset is listed in Table 3-1. 

In the dataset, the most abundant classes are α-helix (33.4 %), β-strand (21.5 %) and coil 

(20.3 %). Apart from these three classes, only turn (11.0 %) and bend (8.6 %), whose 

definitions are closely related to that of coil, have a greater occurrence. The remaining three 

structure classes are 310-helix (3.7 %), isolated β-bridge (1.0 %) and π-helix (0.5 %). Notably, 

there is a major difference in the population of the helix classes. The α-helix population is one 

No. protein domains ASTRAL40 12,109 

No. domains filtered 11,147 

No. residues filtered 2,056,403 

Secondary structure classes Absolute no. Relative no. [%] 

α-helix 687,211 33.4 

310-helix 76,704 3.7 

π-helix 11,135 0.5 

β-strand 439,048 21.5 

Coil 417,948 20.3 

Turn 226,673 11.0 

Bend 176,643 8.6 

Isolated β-bridge 21,041 1.0 

Table 3-1: Composition of the dataset. Listed is the total size of version 2.03 of the filtered ASTRAL40 (Berman 

et al., 2003) dataset and its absolute and relative secondary structure composition. The secondary structure 

classes were assigned with DSSP (Kabsch and Sander, 1983)  
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magnitude larger than the 310-helix population and approximately two magnitudes larger than 

the π-helix population. 

The vast difference in the sizes of the class populations shows that the different classes are 

extremely unbalanced. Hence, by merging classes together a more balanced population 

distribution can be achieved.  

The amino acid composition of the dataset, shown in Figure 3-1, does not deviate from the 

amino acid frequencies of the UniProt (Consortium, 2014) database from 15.08.2015. The 

rarest amino acids are cysteine (C) and tryptophan (W), closely followed by histidine (H) and 

methionine (M). The most abundant amino acids are alanine (A) and leucine (L). 

  

Figure 3-1: Amino acid composition of the processed ASTRAL40 (Berman et al., 2003; Brenner et al., 2000; 

Chandonia et al., 2002; Chandonia et al., 2004) dataset. The figure shows, the frequency with which an amino 

acid occurs in version 2.03 of the processed ASTRAL40 dataset described in Table 3-1 in chapter 3.1.  



3. Results 

62 
 

3.2 Cross-validation 

To obtain statistical measures of the variations in prediction quality, a cross-validation is 

performed. Therefore, the filtered ASTRAL40 dataset is split into eight separate subsets of 

about equal size. One subset is designated the prediction set while the remaining subsets are 

merged into the training set. This procedure is alternated for all subsets, leading to an 8-fold 

cross-validation. 

For a successful cross-validation, the subsets need to have similar compositions of SCOP 

(Andreeva et al., 2014) classes and contain approximately the same number of residues. 

Hence, in a first step, the filtered ASTRAL40 dataset is ordered by protein size, and in a 

subsequent step, the proteins are successively distributed over the eight subsets. The 

described allocation procedure achieves a very similar secondary structure and SCOP class 

composition for the different subsets, as Figure 3-2 and Figure 3-3 respectively illustrate.  

Figure 3-2: Secondary structure composition of the complete processed ASTRAL40 (Berman et al., 2003; Brenner 

et al., 2000; Chandonia et al., 2002; Chandonia et al., 2004) dataset and its eight subsets. The secondary structure 

was assigned with the program DSSP (Kabsch and Sander, 1983). Because of its very small size, the π-helix class 

is barely visible at the top of the bars.  



3. Results 

63 
 

3.2.1 Significant differences 

In all cross validations conducted for the various setups of the vector-valued classifier, the 

same subset compositions initially generated are always used. This makes it possible to 

calculate the significance of the performance difference amongst the classifiers by means of 

the t-test with paired samples. The deviations in prediction performance are similar for all 

classifiers. Hence, the predictions for some subsets always performed better or worse. 

Therefore, the differences between some classifiers, although at times extremely small, are 

still highly significant. For results presented here, the P value of a two-tailed pairwise t-test is 

always below 0.0001.  

3.3 Setup 

The aim of the setup phase was twofold: Assessing the influence of the different 

hyperparameters and classifier enhancements on the prediction quality and the tuning of the 

hyperparameters. The hyperparameters of interest were the value of the regularization 

parameter , the size of the sliding window and the choice of the BLAST database and class 

reduction scheme. To tune the hyperparameters, only the first step of *SPARROW+ was used. 

The only input were quadratic profile features and the window size was set to 11 residues in 

Figure 3-3: SCOP (Andreeva et al., 2014) class composition of the complete dataset and its eight subsets. After 

processing the ASTRAL40 (Berman et al., 2003; Brenner et al., 2000; Chandonia et al., 2002; Chandonia et al., 

2004) dataset, only five SCOP classes remain. The classes comprise proteins consisting of α-helices (a), β-sheets 

(b), mainly parallel β-sheets (c), mainly anti-parallel β-sheets (d) and two or more domains from different classes 

(e). 
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accordance to the approach used for *SPARROW (Rasinski, 2011) to determine 

hyperparameters. After the determination of the hyperparameters, the enhancements were 

successively introduced until the classifier reached its final setup. The effect of the 

enhancements were tested on a selection of different window sizes. 

3.3.1 Regularization parameter 

Training a classifier bears the risk of overfitting, which results in a classifier perfectly able to 

recall the training dataset but unable to generalize to perform accurate predictions of 

unknown data. This problem also applies to the vector-valued classifier. The risk of overfitting 

increases with the number of adjustable parameters but can be mitigated by training datasets 

with a large sample size. Another approach to prevent overfitting is to use regularization terms, 

as described in chapter 1.3.3.2, in the optimization term of the coefficients of the scoring 

function. For the determination of the coefficients of the vector-valued classifier, see 

equation (2-63), a regularization term in the form of an L2 norm is used. The extent of 

regularization is adjusted by the regularization parameter . Increasing the value of  

diminishes the weights of insignificant features in the scoring function, allowing only 

important features to possess large weights. Besides preventing overfitting, regularization 

Figure 3-4: Influence of the regularization parameter  on prediction and recall quality. For prediction and recall, 

the first step of *SPARROW+ is used with a window size of 11 residues. The UniRef90 BLAST database is used for 

profile generation and the mixed class reduction scheme is used for super-class definition. Shown is the 

Q3-accuracy (equation (2-78)) and the generalized MCC value (equation(2-81)). 
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also prevents the occurrence of near singularities when solving the system of linear equations 

system to determine the coefficients.  

The recall and prediction quality for different  values is depicted in Figure 3-4. In the case of 

overfitting, the difference between recall and prediction quality would decrease at larger  

values. However, the quality of recall and prediction was largely unaffected by the 

regularization parameter . The difference was constant; only at  values of 0.01 was a slight 

decrease in  the difference observable. At  values greater than 1, both prediction and recall 

quality degrades equally. Thus, the choice of  has no major effect on the classification quality. 

The difference of 0.4 % in the Q3-accuracy (equation (2-78)) and 0.005 in the generalized MCC 

value (equation (2-81)) implies that a greater number of parameters are used than would be 

necessary. Yet, overfitting is prevented by a large sample size compared to the number of 

adjustable parameters. In the case of a vector-valued classifier using a window size of 11, there 

are 24,531 adjustable parameters. However, the sample size of about 1.8 106 is still nearly two 

orders of magnitude larger. For all following predictions, a  value of 0.01 is chosen, with no 

distinction between linear and quadratic features. In the second prediction step, based 

primarily on quadratic secondary structure features, a  value of 10-10 is used for all types of 

features. Such a small  is taken, since the number of parameters is greatly diminished in the 

second step. Structure features have only two dimensions compared to the twenty 

dimensions of sequence or profile features. 

3.3.2 BLAST databases 

Profile features were obtained from the position specific scoring matrices (PSSM) generated 

for a given protein sequence by the program PSI-BLAST, as described in chapter 2.3.2. Through 

a series of local pairwise sequence alignments, PSI-BLAST calculates the odds that specific 

amino acid types occur at equivalent sequence positions in a series of related proteins. A 

positive profile value of an amino acid type at a specific sequence position indicates that this 

amino acid is likely to occur at that position, whereas negative values mean it is unlikely. 

Values around zero indicate that no preference in either direction exists. Hence, the profile 

values provide information about the conservation of an amino acid type. High positive profile 

values show a high degree of conservation whereas values close to zero mean an amino acid 

is not conserved. High negative profile values indicate a form of anti-conservation. 
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To perform sequence alignments, PSI-BLAST needs to search a BLAST database. Various 

databases are available. Here, two were tested, the non-redundant (nr) (Altschul et al., 1997) 

(downloaded 19.3.2015) and the UniRef90 (downloaded 11.3.2015) BLAST databases. The 

non-redundant database is as its name implies non-redundant, therefore no sequence occurs 

more than once. The UniRef90 database clusters all protein sequences with at least 90 % 

sequence-identity together. From these clusters, one representative sequence is chosen. 

Before generating profiles with PSI-BLAST, the UniRef90 database was filtered with the 

program pfilt (Jones and Swindells, 2002) to mask coiled-coil, transmembrane and unordered 

sequence regions. These masked regions are therefore ignored by PSI-BLAST. 

The normalized profile value distribution per amino acid and BLAST database is depicted in 

Figure 3-5. The profile value distributions differs significantly between the non-redundant and 

the filtered UniRef90 BLAST databases. For most amino acids, the profile values generated via 

Figure 3-5: Normalized distribution of PSI-BLAST (Altschul et al., 1997) profile values per amino acid type 

generated from the filtered UniRef90 (Suzek et al., 2007) (black) and the non-redundant (red) BLAST database. 

The particular amino acid is specified by one letter code and the dashed line marks a profile value of zero. Profile 

values can vary between -17 and 14.  
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the non-redundant database often have a distinct maximum at values of -1 or 0. In addition, 

the shape of the distributions is narrow and skewed negatively. However, most aromatic 

amino acids (phenylalanine (F), tyrosine (Y) and tryptophan (W)) as well as cysteine (C) and 

proline (P) have a much broader distribution with a second maximum.  

Profile value distributions obtained from the UniRef90 database are mostly broader and the 

maximum occurs at more negative profile values. This is especially pronounced for charged 

amino acids and their amine counterparts, i.e. asparagine (N) and glutamine (Q). One can 

discriminate those with a well-defined maximum (Asparagine (N) and histidine (H)) and those 

without (Arginine (R), aspartate (D), glutamine (Q), glutamate (E) and lysine (K)). The hydroxyl 

(Serine (S) and threonine (T)) and the aliphatic amino acids (Alanine (A), glycine (G), isoleucine 

(I), leucine (L) and valine (V)) show the fewest differences to the nr profile value distributions. 

The shape for methionine (M) is also very similar for both databases and is only shifted to 

more negative values for the UniRef90 profiles. 

All aromatic amino acids (Phenylalanine (F), tryptophan (W) and tyrosine (Y)) as well as 

cysteine (C) and histidine (H) show major losses in positive profile values and a distinct 

maximum at negative values. However, the opposite, a gain of positive values, albeit minimal, 

could only be observed for glycine (G). 

Figure 3-6: Prediction quality achieved with the filtered UniRef90 (Suzek et al., 2007) and the non-redundant 

BLAST databases. For prediction, the first step of *SPARROW+ is used with a window size of 11 residues. The 

mixed class reduction scheme is used for super-class definition. Shown is the Q3-accuracy (equation (2-78)) and 

the MCC value (equation (2-81)) for the total data as well as for the three super-classes helix, strand and coil 

separately. 
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The similar shapes of the distributions of positive profile values show that the extent of 

conserved amino acids is equal for both BLAST databases. The shift of profile values from 

around zero to more negative values suggests a more pronounced anti-conservation in 

UniRef90 profiles. In contrast, profiles from the nr database lack the distinction between 

anti-conservation and not conserved. Taking the overall occurrence of the amino acids into 

account, see Figure 3-1, most of the rarest occurring amino acids (C, W, H, P, Y, F, M) have 

more positive values in the nr profiles. Since the nr database is non-redundant, it contains far 

more sequences with high similarity to each other, which could inflate the odds for rare amino 

acids to occur. The major differences in profile value distribution between the nr and filtered 

UniRef90 BLAST databases manifests in significant prediction quality differences. A higher 

prediction quality is achieved using the filtered UniRef90 BLAST database. The Q3-accuracy 

(equation (2-78)) is 1 % and the generalized MCC value (equation (2-81)) 0.1 higher. 

Considering the individual super-classes, the usage of the filtered UniRef90 database leads to 

an equally higher accuracy for the helix and strand super-classes but not the coil super-class. 

Yet, the gains in the MCC value are similar for all three super-classes.  

Hence, although the number of true positive coil classifications did not change, the number of 

true positive helix and strand classifications increased by reducing the number of false positive 

coil classifications. Apparently, the more distinct difference between not conserved and 

anti-conservation of the filtered UniRef90 profiles facilitated the separation of the helix and 

strand super-classes from the coil super-class. 

3.3.3 Secondary structure class reduction schemes 

In the most common secondary structure assignment program DSSP (Kabsch and Sander, 1983) 

a residue is assigned to one of eight different secondary structure classes. The eight classes 

comprise the three helix classes α-, 310-, π-helix and the classes β-strand, turn, bend, isolated 

β-bridge and random coil. Commonly, only three classes are used, namely helix, strand and 

coil. In chapter 2.2, class reduction schemes are introduced to reduce the eight secondary 

structure classes to three super-classes. To merge the different classes, a variety of class 

reduction schemes are possible. A selection of common class reduction schemes is shown 

Table 2-1 in chapter 2.2. 

The choice of the class reduction scheme influences the prediction quality, as Figure 3-7 

illustrates. The total prediction quality differs by about 2 % in Q3-accuracy (equation (2-78)) 
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between the different schemes. The mixed class reduction scheme yields the overall best 

results. Especially the coil super-class achieves the highest quality in this scheme. The beta mix, 

psipred, scorpion and Jpred class reduction schemes have in common, that both the β-strand 

and isolated β-bridge class belong to the strand super-class. Although not obvious by the Q3-

accuracy, the MCC value (equation (2-81)) shows that this results in a lower prediction quality 

for the strand super-class. 

In protein crystallography, the 310-helix is often associated with the helix super-class. The 

question of which class to merge the 310-helix with is not a trivial one. For whichever 

super-class is chosen, 310-helices should predominantly be classified as being part of the 

chosen super-class, whether it is helix or coil. Merging the 310-helix class with the coil 

super-class leads to fewer misclassifications than merging it with the helix super-class, as 

shown in Figure 3-8. If the 310-helix is part of the coil super-class, the classifications are up to 

80 % correct. In contrast, if it is part of the helix super-class, only about 40 % are correctly 

classified. Thus, the 310-helix seems to have more in common with the coil than with the helix 

super-class. The higher prediction quality of the Jpred class reduction scheme compared to 

the psipred scheme shows, that α- and 310-helix should not be in the same super-class. In 

contrast, having the π- and α-helix in the same super-class improves prediction quality, as 

Figure 3-7: Prediction quality of different class reduction schemes. A description of the class reduction schemes 

is given in Table 2-1 in chapter 2.2. The class reduction schemes of the alternative methods PSIPRED (Jones, 

1999), C3-Scorpion (Yaseen and Li, 2014) and Jpred (Cuff and Barton, 2000) are also provided. For prediction, the 

first-step of *SPARROW+ with a window size of 11 residues is used and the UniRef90 BLAST database is used for 

profile generation. Shown is the Q3-accuracy (equation (2-78)) and the MCC value (equation (2-81)) for the total 

data as well as for the three super-classes helix, strand and coil. 
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evident by the prediction quality differences between the pure and mixed to the all, psipred 

and scorpion class reduction schemes. Interestingly, the strand super-class always has the 

lowest Q3-accuracy but a higher MCC value than the coil super-class, which achieves high 

Q3-accuracy. Hence, the coil super-class prediction has a high ratio of true positives but also 

of false positives.  

In summary, the following assumptions are supported: Firstly, there are major differences 

between α- and 310-helix, and secondly, despite their related names, isolated β-bridges and 

β-strands have little in common. The mixed class reduction scheme outperforms every other 

class reduction scheme in terms of prediction quality. Hence, this class reduction scheme is 

used for all further predictions described in the following chapters. 

3.3.4 Window size 

The window size is a critical classifier parameter, which has a direct impact on the prediction 

quality. The window size defines how many neighbouring residues are considered in the 

classification. In previous works (Bettella, 2009), it could be shown, that the prediction quality 

and window size are correlated non-linearly. While overall, a larger window improves 

prediction quality, the rate of improvement decreases with successively increasing window 

size. A larger window size might improve prediction quality by capturing more residue 

interactions within the window. However, with increasingly larger window sizes, the 

Figure 3-8: Distribution of 310-helix class classifications into the three super-classes depending on different class 

reduction schemes. A description of the class reduction schemes is given in Table 2-1 in chapter 2.2. 
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computational demands grow geometrically, illustrated in Figure 3-9. Hence, achieving high 

prediction quality with small window sizes is of major interest.  

Figure 3-10 illustrates, that the window size has indeed a major influence on the prediction 

quality. As expected, a larger window size results in a higher prediction quality. The plots 

suggest a logarithmic dependency between the prediction quality and window size. 

Interestingly, even a window size of 1 is sufficient to achieve a Q3-accuracy (equation (2-78)) 

of nearly 60 % and a generalized MCC value (equation (2-81)) of 0.35. Hence, the central 

Figure 3-10: Prediction quality using linear and quadratic PSI-BLAST profile features as a function of window size. 

For prediction the first-step of *SPARROW+ utilizing the UniRef90 BLAST database for profile generation and the 

mixed class reduction scheme is used for the super-class definition. Shown is the Q3-accuracy (equation (2-78)) 

and the MCC value (equation (2-81)) for the total data as well as for the three super-classes helix, strand and coil. 

Figure 3-9: Logarithm of the number of parameters (equal to number of features) as a function of window size 

for the first step of *SPARROW+.  
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residue of the sliding window contains most of the information to which super-class a residue 

might belong to. 

Since helical structures form through local interactions, small window sizes are already 

enough for an adequate prediction quality of the helix super-class. Strand structures, however, 

form through space global intra-protein interactions, which explains the greater window size 

necessary to accurately predict the strand super-class. The coil super-class is a very diverse 

class, since it encompasses a large number of the eight different DSSP classes. Some of the 

coil subclasses like turn or 310-helix are defined by local interactions. Hence, smaller windows 

are enough for an adequate prediction. Other subclasses like bend and random coil are 

essentially defined as structureless. Thus, they would potentially need larger window sizes for 

a proper description.  

3.3.5 Classifier enhancement 

Besides optimizing parameters like the BLAST database or the class reduction scheme, the 

classifier itself can also be enhanced. In the previous sections, the classifier consisted of a 

single prediction step using linear and quadratic profile features. To improve the prediction 

quality, enhancements are introduced: A second prediction step is added, which uses the 

Figure 3-11: Prediction quality of the first step of *SPARROW+ using quadratic sequence or profile features. For 

the predictions, a window size of 11 residues is used and the mixed class reduction scheme for the super-class 

definition. The profiles are generated with the UniRef90 BLAST database. Shown is the Q3-accuracy (equation 

(2-78)) and the MCC value (equation (2-81)) for the total data as well as for the three super-classes helix, strand 

and coil separately.  
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secondary structure scores from the first step as input features. Also, additional linear input 

features in both prediction steps are introduced. In the first step, linear sequence features are 

added, followed by linear profile features in the second step. As previously mentioned, the 

window size is a critical classifier parameter concerning the demand on CPU time and memory. 

Accordingly, reducing the prediction quality differences between window sizes would be 

highly beneficial. The classifier enhancements are therefore tested on a wide range of window 

sizes. 

 

Figure 3-12: Prediction quality of the first step of *SPARROW+ using additional linear sequence features as input 

(top) and the prediction quality difference to the corresponding classifier without these additional features 

(bottom). The classifier utilizes the UniRef90 BLAST database for profile generation and the mixed class reduction 

scheme for the super-class definition. Shown is the Q3-accuracy (equation (2-78)) and the MCC value (equation 

(2-81)) for the total data as well as for the three super-classes helix, strand and coil separately. 
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3.3.5.1 Additional sequence feature 

As described in chapter 2.3.2, profile features are generated by pairwise sequence alignments 

between sequentially related proteins. The information contained in each profile entry 

incorporates global information about the entire protein sequence not just a specific position. 

Accordingly, the application of profile features dramatically increases protein secondary 

structure prediction quality compared to using only sequence features.  

Figure 3-11 shows the difference between predictions with sequence and profile features. All 

super-classes gain prediction quality, with the highest gains made for the strand super-class. 

The total difference is about 15 % for Q3-accuracy (equation (2-78)) and 0.35 for the 

generalized MCC value (equation (2-81)).  

Introducing sequence features therefore seems to be a paradox. However, the advantage 

sequence features might have over profile features is their specificity. To be meaningful, 

sequence profiles must be generated from related proteins. If the proteins in the sequence 

alignment are too different, the obtained scores can be shifted towards profile values close to 

zero. The situation is similar to the difference between the filtered UniRef90 and the 

non-redundant BLAST databases described in section 3.3.2. In this situation, sequence 

information is advantageous, because it is specific for the respective protein. 

As shown in Figure 3-12, the additional linear sequence features lead to an overall 

improvement in prediction quality, except for a window composed of a single residue. For all 

window sizes greater than one, the Q3-accuracy gains are in the range of 0.5 %. The 

super-classes benefit differently from the sequence feature. Q3-accuracy gains are similar for 

both helix and strand. Interestingly, the gains for strand are highest at a window size of 9 

residues. At larger or smaller window sizes, the gains are lower. In contrast, for coil, the gains 

are very similar for all window sizes. 

The difference in Q3-accuracy and MCC value improvement for the coil super-class can again 

be attributed to a loss in false positive coil predictions. Improving the rate of true positive 

predictions of the other two classes also improved the coil class. 

3.3.5.2 Second prediction step 

The output of a secondary structure prediction can be used as the input for a consecutive 

prediction step. This allows correlations between predicted secondary structures to be taken 

into account. Correlating predictions from different positions in the sliding window can 
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smoothen the prediction. If the central position in the sliding window belongs to a different 

super-class than the majority of the surrounding positions, it can be reclassified to fit the 

surroundings. Considering the predictions of neighbouring residues can also be interpreted as 

an indirect increase of the window size. The second prediction step is a form of post processing.  

Figure 3-13 shows that a subsequent prediction step has indeed a major positive effect on the 

prediction quality. However, the extent depends very much on the window size. The smaller 

the window, the larger the yield from the second prediction step, whereby the relation is 

non-linear. The exception to this relation is the window size of one, where similarly to adding 

linear sequence features, no gains are achieved at all. The overall result of the second 

prediction step is a reduction of the prediction quality difference between window sizes. 

Considering the individual super-classes, the effects are quite different. Regarding the results 

of the Q3-accuracy (equation (2-78)), at a window size of 3 the strand super-class gains more 

than 5 % Q3-accuracy, while a window size of 17 leads to a slight loss in Q3-accuracy. For the 

helix super-class, the effect is similar but not as pronounced with only a 3 % increase at a 

window size of three. Yet, for the coil super-class, the gains are low at a smaller window size, 

only about 2.5 % at a size of 3, yet are still positive with 1 % at a window size of 17. At window 

sizes of 7 and 9, the Q3-accuracy improvements are nearly identical for all super-classes. 

The improvement of prediction for the MCC value (equation (2-81)) is slightly different. Except 

for a window size of 1, the MCC value improves for all super-classes. The overall trend is similar 

to the trend of the Q3-accuracy. At smaller window sizes the gains are higher than at larger 

window sizes. In contrast to the Q3-accuracy, the relative MCC value difference between 

super-classes is similar at all window sizes. The super-class that improves the most is the helix 

super-class, followed by the strand and then the coil super-class. 
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Figure 3-13: Prediction quality of the second step of *SPARROW+ (top) and the prediction quality difference to 

the first step (bottom). The second prediction step utilizes solely the output of the first step as input. For 

prediction, the classifier utilizes the UniRef90 BLAST database for profile generation and the mixed class 

reduction scheme for the super-class definition. Shown is the Q3-accuracy (equation (2-78)) and the MCC value 

(equation (2-81)) for the total data as well as for the three super-classes helix, strand and coil. 
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Figure 3-14: Prediction quality of the second step of *SPARROW+ using additional linear PSI-BLAST profile 

features as input (top) and the prediction quality difference to the corresponding classifier without these 

additional features (bottom). For prediction, the classifier utilizes the UniRef90 BLAST database for profile 

generation and the mixed class reduction scheme for the super-class definition. Shown is the Q3-accuracy 

(equation (2-78)) and the MCC value (equation (2-81)) for the total data as well as for the three super-classes 

helix, strand and coil separately. 
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3.3.5.3 Additional profile feature 

As in the first prediction step, additional linear features can also be added in the second 

prediction step. Adding sequence features in the first step enables correlations between 

profile and sequence features to be considered. In the second step, linear profile features are 

added, yielding structure to profile feature correlations. The addition of linear profile features 

in the second step has broadly a similar effect as adding linear sequences features in the first 

step. As illustrated in Figure 3-14, the prediction quality improves, but the extent depends on 

the window size. The larger the window size, the smaller the improvement. More specifically, 

at a window size of 17 adding linear profile features no longer improves prediction quality. 

However, there is one major distinction between the first and second prediction step. The 

addition of linear profile features in the second step also improves the prediction quality for 

window sizes of one.  

3.3.5.4 Overall impact of prediction enhancements 

Figure 3-15 shows the prediction quality difference between the second prediction step of 

*SPARROW+ with additional input features and the first prediction step without those. A 

general trend that all enhancements have in common is that the gains in prediction quality 

decrease with larger window sizes. At a window size of 3 the Q3-accuracy (equation (2-78)) 

Figure 3-15: Prediction quality difference of the second step of *SPARROW+ with additional sequence and profile 

features and first step using only PSI-BLAST profile features. For prediction, the classifier utilizes the UniRef90 

BLAST database for profile generation and the mixed class reduction scheme for the super-class definition. Shown 

is the Q3-accuracy (equation (2-78)) and the MCC value (equation (2-81)) for the total data as well as for the three 

super-classes helix, strand and coil separately. 
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improves by about 5 %, while at a window size of 17 the improvements are less than 1 %. For 

the MCC value (equation (2-81)) the trend is similar. Hence, enhancing the classifier has less 

impact on the prediction quality for larger window sizes.  

The trend by which the prediction quality improves is similar for all super-classes. Considering 

the MCC value, the helix super-class always improves most from classifier enhancements, 

followed in the majority of cases by the strand super-class. At a window size of 11, the 

improvements for coil and strand are identical and at a window size of 17, coil even improves 

more. Apart from windows of one or three residues, the MCC value difference is larger 

between the helix and strand super-classes than between the strand and coil super-classes. 

However, when considering the Q3-accuracy, the strand super-class improves the most, 

followed by the helix and lastly the coil super-classes. Similar to the MCC value, the trend of 

Q3-accuracy improvement changes at a window size of 11 residues. The improvement is nearly 

identical for all super-classes at this window size. At larger window sizes of up to 17 residues, 

the trends observed for smaller windows are reversed.  

3.4 Validation 

After assembling the final setup of the vector-valued classifier, as described in the previous 

part, the performance of *SPARROW+ can now be analysed. Two aspects are of interest, the 

prediction quality for individual amino acids and the reliability of the confidence measure 

defined in chapter 2.6.3.2. Amino acids have distinctly different properties, which result in 

Figure 3-16: Super-class frequencies per amino acid type in the processed Astral40 (Berman et al., 2003; Brenner 

et al., 2000; Chandonia et al., 2002; Chandonia et al., 2004) dataset using the mixed class reduction scheme.  
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prediction quality variations between the amino acids. The confidence measure is an internal 

reliability measure. Correlating it with the Q3-accuracy makes it also an external measure.  

3.4.1 Amino acid preferences 

Amino acids have different properties and biological functions defined by their chemical 

structure, described in chapter 1.1.1. These differences, as discussed in chapter 3.3.2, induce 

the different shapes of the BLAST profile value distributions. In addition, the occurrence of 

amino acids is not uniform for all protein secondary structure classes. Thus, in certain classes, 

some amino acids are predominantly found. In fact, most amino acids have a preference to 

occur in a specific super-class, as Figure 3-16 illustrates. Asparagine (N), aspartate (D), glycine 

(G) and proline (P) frequently occur in coil, while isoleucine (I) and valine (V) prefer strand. 

The helix super-class is preferred by alanine (A), glutamic acid (E) and leucine (L). These results 

agree with literature findings described in section 1.1.1. Amino acids with a large side chain, 

like isoleucine (I), phenylalanine (F), tryptophan (W), and tyrosine (Y) prefer the strand class 

for steric reasons. Similarly, amino acids with a small side chain, like alanine (A), glutamine (Q) 

and glutamate (E) prefer the helix class. Glycine (G) and proline (P) are often found at the 

boundaries of different secondary structures. G because of its conformational freedom and P 

for its lack of it.  

Figure 3-17: Prediction quality for each of the 20 standard amino acids with *SPARROW+. For the predictions, a 

window size of 17 residues and the mixed class reduction scheme were used. Shown is the Q3-accuracy (equation 

(2-78)) for the total dataset and for the three super-classes.  
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The variations in the profile value distributions and the frequency per super-class also 

influence the prediction quality, as shown in Figure 3-17. The total prediction Q3-accuracy 

(equation (2-78)) varies between the amino acid types. Histidine (H) and cysteine (C) have the 

lowest and alanine (A) and glycine (G) the highest Q3-accuracy. The amino acid specific 

differences in Q3-accuracies are even more pronounced for the individual super-classes. The 

Q3-accuracy in strand is low for proline (P), whereas it is high for phenylalanine (F).  

It is generally difficult to predict strand accurately, which is in agreement with the findings 

shown before. Strand is the smallest super-class and the prediction quality is particularly bad 

for amino acids rarely found in strand. This is further compounded if the amino acid occurs 

infrequently also in the other super-classes. Proline is an example for this case, as it is found 

rarely, particularly in strand. Although, not as rare as proline: N, D and G are also rarely found 

in strand, thus displaying a low predication quality for strand.  

3.4.2 Confidence measurements 

In chapter 2.6.3 a confidence measure was defined to estimate the reliability of the 

classifications made by *SPARROW+. The confidence is based on a probability measure to 

approximate the probability that a residue belongs to a certain super-class. By definition, the 

probability is always highest for the predicted super-class. In the case of three super-classes, 

the minimal probability for the predicted class must be greater than 1/3. The confidence is the 

normalization of the interval 1/3-1 to 0-1. By this definition, the confidence can be considered 

as an internal measure of the prediction reliability. As such, it should correlate with actual 

prediction quality measures, Q3-accuracy (equation (2-78)) and MCC value (equation (2-81)). 

Plotting the prediction quality as a function of the confidence, depicted in Figure 3-18, shows 

that such a correlation exists. The prediction quality is proportional to the confidence level. 

The standard deviation of the Q3-accuracy and generalized MCC value is highest at a low 

confidence level, becoming successively smaller with increasing confidence. The highest 

standard deviation is 5 % for the Q3-accuracy and 0.05 for the generalized MCC value.  

Apart from the correlation between prediction quality and confidence, the distribution of the 

probability measure is of interest. In particular the differences between correct (true positive 

and true negative) and incorrect (false positive and false negative) classifications. As 

Figure 3-19 shows, the distributions for correct and incorrect classifications are distinctly 

different. The probability distributions for correct classifications have a low spread and the 
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maxima are at the extreme values of 0 and 1. Interestingly, for true positive classifications, the 

probability distribution is nearly uniform in a probability range from 0.55 to 0.95. In contrast, 

the distributions for the incorrect classifications have a larger spread and the maxima are at 

mid-range probability values, of 0.35 and 0.5. The probability distribution is similar for all 

super-classes, both for correct and incorrect classifications. Only the strand super-class has a 

slightly higher frequency at mid-range probability levels, for both true and false positive 

classifications. 

The wide spread and the position of the maxima of distributions for the incorrect 

classifications suggests, that the projections of a score vector on the different class vectors of 

each super-class all have a similar length. This can only occur, if the scores obtained from the 

prediction are all close to zero. 

Overall, the probability measure developed for the vector-valued classifier is a good measure 

to assess prediction reliability. The low population of incorrect classifications at high 

probability levels further reinforces the reliability of the vector-valued classifier and the 

confidence measure. Incorrect and correct classifications have major distribution differences, 

Figure 3-18: Prediction quality as a function of confidence (equation (2-88)). The Q3-accuracy (equation (2-78)) 

and generalized MCC value (equation (2-81)) are calculated from 100 randomly chosen samples for each 

confidence interval. The mean and standard deviation are obtained by repeating the calculations 50 times. For 

the predictions, the final two-step classifier of *SPARROW+ with additional sequence and profile features is 

utilized. The mixed class reduction scheme for the super-class definition and a sliding window of 17 residues is 

used. 
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45 % of the correct classifications have a confidence above 0.8, while only 9 % of the incorrect 

classifications are above this confidence level. 

3.4.2.1 Correlation between confidence and Q3-accuracy 

As mentioned in the previous section, correlating the confidence with the prediction quality 

measures would allow the validity of the prediction to be estimated even for an individual 

residue. Hence, using a polynomial function of the fourth order, the Q3-accuracy was fitted to 

the confidence. For the fitting, the 8th subset of the filtered ASTRAL40 dataset was used. The 

Q3-accuracy cannot be calculated from a single prediction, but only from a set of predictions. 

Therefore, the confidence range from 0 to 1 was separated into smaller confidence intervals. 

Figure 3-19: Histograms of the probability measure (equation (2-84)) of positive (solid line) and negative (dashed 

line) classifications. Shown are the distributions for false positive and negative classifications (top) and for true 

positive and negative classifications (bottom). The total and super-class specific distributions are displayed. The 

histogram consists of 25 bins covering a probability measure interval from 0 to 1. The bin counts were normalized 

to 1 for the positive and negative plots separately. For the predictions, the final two-step classifier of *SPARROW+ 

with additional sequence and profile features is utilized. The mixed class reduction scheme for the super-class 

definition and a sliding window of 17 residues is used. 
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For each interval, predictions were performed for a set of 100 randomly chosen residues and 

the corresponding confidence values were monitored. The quality measures were calculated 

from these random samples. This procedure was repeated 50 times for each confidence 

interval to obtain the mean value and standard deviation. In accordance with Figure 3-18, 

Figure 3-20 shows that the Q3-accuracy strongly correlates with the confidence measure. 

However, the specific shape of the plot differs per super-class. The plots for the helix and coil 

super-classes have a steep slope, similar to a logarithmic function. In contrast, the plot for the 

strand super-class has a shallow slope and suggests a linear correlation between confidence 

and Q3-accuracy (equation (2-78)). At a confidence of 1.0, an Q3-accuracy of 95 % is achieved 

Figure 3-20: Correlation between confidence (equation (2-88)) and the Q3-accuracy (equation (2-78)) for the 

total data and the individual super-classes. Each plot shows a confidence histogram (black), the sampled 

Q3-accuracy (blue) and the fitted fourth order polynomial (red). The confidence histograms consist of 30 bins 

and are normalized to 1. The Q3-accuracy is calculated from 100 randomly chosen samples within a confidence 

interval. The mean value and standard deviation are obtained by repeating the Q3-accuracy calculations 50 times. 

Shown is Q3-accuracy of the second step of *SPARROW+ using linear sequence features as additional inputs in 

the first step and linear profile features in the second. The mixed class reduction scheme for the super-class 

definition and a sliding window of 17 residues is used.  
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for the helix and strand super-classes, whereas only 93 % is reached for the coil. The 

confidence distribution also varies depending on the super-class. In agreement with the 

previous findings, the Q3-accuracy variation is in all cases larger at low confidence levels. 

Interestingly, for the helix and coil super-classes, the Q3-accuracy plot has a kink at a 

confidence level around 0.25. Furthermore, for all super-classes, the distributions are similar 

to the true positive distribution shown in Figure 3-19. Hence, they all share a maximum at a 

confidence of 1.0. However, the maximum is more pronounced for the helix super-class than 

for the strand super-class. For both, the helix and coil super-classes the distribution is uniform 

from a confidence of 0.3 onwards, whereas for the strand super-class it declines beyond this 

value. Accordingly, the distribution of the strand super-class has similarities to the distribution 

of the false positive, which also displays a decrease at a higher confidence.  

Figure 3-20 shows that the Q3-accuracy can be fitted to the confidence. Q3-accuracy and 

confidence are, apart from small variations, in good agreement. At a confidence above 0.7, 

classifications as helix or coil are to 90 % correct. The differences in the Q3-accuracy plots 

between super-classes, suggest using super-class specific fitting functions instead of a general 

one.  
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3.5 Benchmark 

To assess the prediction quality of *SPARROW+, it is benchmarked against other popular 

secondary structure prediction methods: C3-Scorpion (Yaseen and Li, 2014), Jpred 

(Drozdetskiy et al., 2015) and PSIPRED (Buchan et al., 2013; Jones, 1999) as well as against its 

predecessor *SPARROW (Rasinski, 2011). Chapter 1.2.1 gives an overview about all methods 

apart from *SPARROW. For the benchmark, the newest downloadable versions of C3-Scorpion, 

PSIPRED and *SPARROW were utilized (April 2015). Since no download version is available for 

Jpred, the web interface was used. For each downloaded program, the necessary BLAST 

database was generated according to the specifications provided in the documentation or 

corresponding publication. Hence, for C3-Scorpion the non-redundant (downloaded 

19.3.2015) and for PSIPRED and *SPARROW the UniRef90 (downloaded 11.3.2015) database 

was used for PISIBLAST profile generation. Both BLAST databases were filtered of 

transmembrane and unordered proteins with the program pfilt (Jones and Swindells, 2002). 

In their respective training processes, all three programs used different class reduction 

schemes to reduce the eight DSSP (Kabsch and Sander, 1983) classes to the three super-classes 

helix, strand and coil. The different class reduction schemes are described in Table 2-1 in 

chapter 2.2. 

Figure 3-21: Super-class composition of the CASP9, 10 and 11 datasets with different class reduction schemes. 

Protein secondary structures in the datasets were assigned by DSSP (Kabsch and Sander, 1983) into one of eight 

classes. Subsequently, the eight classes were reduced to three super-classes helix, strand and coil using the class 

reduction schemes mixed, psipred, scorpion and Jpred. For a detailed description of the class reduction schemes, 

see Table 2-1 in chapter 2.2. 



3. Results 

87 
 

To calculate the prediction quality for each program, the predictions were compared with 

reference data sets of secondary structures. The secondary structures were determined by 

DSSP, whereby the eight DSSP classes were reduced to the three super-classes, according to 

the class reduction scheme defined for each program. For the benchmark, *SPARROW+ uses 

a two-step prediction with additional sequence features in step one and additional profile 

features in step two. The sliding window size is set to 17 residues and the mixed class reduction 

scheme is used. For profile generation the UniRef90 database was used. The benchmark 

consists of four datasets, which are three CASP datasets and an ASTRAL40 subset.  

3.5.1 CASP datasets 

CASP is the Critical Assessment of protein Structure Prediction, a regular contest to assess the 

prediction quality of protein structure prediction programs, in particular 3D structure 

prediction. The CASP contest allows reliable measures for a numerical assessment of predicted 

protein structure models to be established. The structures used in the CASP datasets were 

previously not available to the public, and were released only after the corresponding contest 

has ended. Therefore, the datasets can be used for fully blind testing (Moult et al., 2014). For 

this benchmark the CASP datasets from the years 2010 (CASP9), 2012 (CASP10) and 

2014(CASP11) were used (Kryshtafovych et al., 2011; Kryshtafovych et al., 2014). The 

ASTRAL40 dataset (version 2.03) used to train *SPARROW+ is older than the CASP11 dataset. 

Figure 3-22: Prediction quality of different protein secondary structure prediction programs for the CASP9, 10 

and 11 datasets. Q3-accuracy (equation (2-78)) and the MCC value (equation (2-81)) are used as quality measures. 
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Hence, there is no overlap of structures between both sets. The number of residues is similar 

for all three CASP datasets. CASP9 contains 23,654, CASP10 22,627 and CASP11 19,200 

residues.  

All CASP datasets have a very similar super-class composition as illustrated in Figure 3-21. The 

coil super-class is the largest class making up 40 %. Second is the helix super-class with more 

than 30 % and finally, the strand super-class makes up around 20 %. For the psipred and 

scorpion class reduction schemes the helix super-class is around 3 % larger, because the 

310-helix class belongs to the helix super-class, whereas in the mixed and Jpred schemes this 

class belongs to the coil super-class. The strand super-class is about 1 % larger for the psipred, 

scorpion and Jpred class reduction schemes, which accounts for the isolated β-bridge class 

included in the strand super-class. Accordingly, the coil super-class is largest for the mixed 

class reduction scheme, with a difference of 1 to 3 % to the other schemes. The composition 

of the secondary structure classes of the considered CASP datasets agrees with the ASTRAL40 

dataset, see chapter 3.2.  

The trend in prediction quality is similar for all CASP datasets as Figure 3-22 illustrates. 

*SPARROW+ outperforms every other method in all datasets. The difference to the second 

best method in all datasets, PSIPRED, is 1 to 1.5 % Q3-accuracy (equation (2-78)) and 0.01 to 

0.02 in the value of the generalized MCC (equation (2-81)). The overall trend is also similar for 

all datasets, the quality differences are always in the same relative range. C3-Scorpion 

achieves a much higher prediction quality compared to Jpred in the CASP9 dataset, but not in 

the CASP10 or 11 datasets. The prediction quality of C3-Scorpion declines over the datasets 

from more than 81 % Q3-accuracy to just above 80 %. With the exception ofC3-Scorpion, all 

programs perform best in the CASP10 dataset. In contrast to C3-Scorpion, the prediction 

quality of Jpred is quite similar in the CASP9 and 10 datasets. Yet, the quality is always lower 

compared to C3-Scorpion. The CASP11 dataset is apparently the most difficult dataset, since 

apart from *SPARROW, all other methods have the worst performance for this dataset. This 

suggests, that the proteins contained in this dataset have a low sequence similarity to proteins 

with known structures, making the generation of meaningful profiles and hence predictions 

difficult. *SPARROW has the worst prediction quality of all methods, the only exception being 

in the CASP11 dataset where the quality is slightly higher than that of Jpred.  
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To analyse the prediction quality per super-class, all CASP datasets were combined into one 

dataset, see Figure 3-23. Apart from the C3-Scorpion, the relative prediction quality between 

the programs is similar for all CASP datasets, only the absolute values differ. The combination 

increases the sample size making statistics more viable. As expected, the total prediction 

quality corresponds to the mean of the three CASP datasets as Figure 3-22 illustrates. 

*SPARROW+ has the highest Q3-accuracy with nearly 83 %, followed by PSIPRED with 81.5 %. 

C3-Scorpion reaches a Q3-accuracy of 81 % and Jpred slightly more than 80 %. The Q3-accuracy 

of *SPARROW is just below 80 %. For the MCC value the order is identical, with differences 

between the programs being around 0.01. *SPARROW+ achieves an MCC value of more than 

0.73, Jpred of 0.69 and *SPARROW of only 0.68. 

While the total prediction quality varies only slightly between the programs, the prediction 

quality for the individual super-classes is in parts dramatically different. Yet, all programs show 

also a few common trends. For all considered prediction tools, the coil super-class has the 

lowest MCC value while still achieving a high Q3-accuracy. For *SPARROW+ and PSIPRED the 

Q3-accuracy is actually the highest of all super-classes. In contrast, the helix super-class 

achieved both a high Q3-accuracy and MCC value. The strand super-class has the lowest 

Q3-accuracy but still a moderate MCC value. Apart from these similarities between the four 

programs, there are also major differences.  

Figure 3-23: Prediction quality per super-class of different protein secondary structure prediction programs for 

a combined dataset consisting of CASP9, 10 and 11. Q3-accuracy (equation (2-78)) and the MCC value (equation 

(2-81)) are used as quality measures. 
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*SPARROW+ achieves the highest prediction quality of all programs for both the helix and coil 

super-classes. The high quality of the helix class shows that it is well defined with minimal 

overlap. However, the coil super-class has a great discrepancy between the Q3-accuracy and 

MCC value, which suggests that the class overlaps with another, most likely the strand 

super-class. While the MCC values for the coil and strand super-classes are similar in 

*SPARROW, the Q3-accuracy differs considerably. For the coil super-class, a Q3-accuracy of 

88 % is achieved, whereas for the strand super-class only 70 % are reached. Hence in 

*SPARROW+, the coil and strand super-classes overlap and the coil is overestimated at the 

cost of the strand super-class. PSIPRED reaches the highest prediction quality for the strand 

super-class and the lowest Q3-accuracy for the helix super-class compared to the other 

programs. However, the MCC value for the helix super-class in PSIPRED is comparable to 

C3-Scorpion and Jpred. Having on one hand, the discrepancy of the helix Q3-accuracy and MCC 

value, and on the other, the high Q3-accuracy yet low MCC value for the coil class, suggests an 

overestimation of the coil class at the expense of the helix class for PSIPRED. The performance 

of C3-Scorpion is similar to that of PSIPRED. The major difference is that the helix and coil 

super-class accuracies are reversed. Yet, this reversal is not reflected in the MCC value. 

C3-Scorpion has the worst Q3-accuracy for the coil class. Jpred achieves a high prediction 

quality for the helix and a high Q3-accuracy for the coil super-class. However, Jpred also has 

Figure 3-24: Prediction quality of different protein secondary structure prediction programs for an Astral40 

subset. For *SPARROW+ the subset is either included in the training process (recall) or not (prediction). 

Q-accuracy (equation (2-78)) and the MCC value (equation (2-81)) are used as quality measures. 
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the worst prediction quality for the strand super-class. This implies a major overlap between 

strand and coil, because of an overestimation of the coil class. 

The MCC value for the helix and coil super-classes is very similar between PSIPRED, 

C3-Scorpion and Jpred. The major difference is the MCC value. Interestingly, the class 

reduction schemes of each program, as described in Table 2-1, are identical concerning the 

strand super-class. All programs include β-strand and the isolated β-bridge class into the 

strand super-class. The difference in MCC value could be caused by different weighting of the 

classes during the training process. 

3.5.2 ASTRAL40 2.03 subset 

The combined CASP dataset only contains 65,481 residues and may be a selection of more 

unusual proteins. Therefore, the methods PSIPRED, C3-Scorpion and Jpred are also tested on 

a subset of the ASTRAL40 dataset used in the cross validation of *SPARROW+. The 8th subset, 

which contains 256,267 residues, is arbitrarily chosen. It can be assumed, that other methods 

have at least to some degree, used parts of the ASTRAL40 dataset version 2.03 in their learning 

process. For example, Jpred is trained on the ASTRAL40 dataset version 2.04, which has 

overlaps with the 2.03 version. Hence, for these methods, a benchmark based on this subset 

is not only prediction but also recall. Also, *SPARROW was trained on the ASTRAL40 dataset 

version 1.71. The difference in quality for recall (trained data) and true prediction is 

demonstrated showing recall and prediction data for *SPARROW+.  

Comparing Figure 3-24 and Figure 3-23 shows that the overall performance of the different 

programs is very similar for the ASTRAL40 subset and the combined CASP dataset. 

*SPARROW+ has the highest prediction quality, followed by PSIPRED. Interestingly, Jpred 

achieves a higher prediction quality in this benchmark than C3-Scorpion. The prediction 

quality for the former is actually worse than in the combined CASP benchmark. In contrast, all 

other programs show an improvement of prediction quality. That Jpred was trained on the 

ASTRAL40 dataset version 2.04, can explain the advantage of Jpred over C3-Scorpion. The 

Astal40 subset is more recall than prediction for Jpred. The prediction quality variation 

between the ASTRAL40 subset and the combined CASP dataset of PSIPRED, Jpred and 

*SPARROW is in the range of the difference between the *SPARROW+ recall and prediction 

data. 
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4 Discussion 

Knowledge about the structure of a protein is critical for understanding its function. New 

sequencing methods have widened the gap between the number of known sequences and 

known structures. Computational methods for protein structure prediction are therefore in 

high demand. The secondary structure of a protein describes its local order and local spatial 

arrangement. The prediction of protein secondary structure can be an intermediate step to 

predict the complete spatial geometry of a protein. 

Protein secondary structure prediction is a multi-class classification problem. Although eight 

secondary structure classes are defined by the widely popular program DSSP (Kabsch and 

Sander, 1983), usually only three secondary structure classes are discriminated. These are 

α-helix, β-strand and coil. Chapter 1.1.2 gives an overview over the secondary structure 

classes and chapter 1.1.3 about the assignment. 

A variety of methods have been developed for protein secondary structure prediction, some 

of the currently most popular ones are described in chapter 1.2.1. All these methods have in 

common that they utilize an artificial neural network (ANN) for prediction. In chapter 1.3.2 

the properties und modes of operation of ANNs are explained. In this thesis an alternative 

method for secondary structure prediction was developed, the program *SPARROW+, which 

is a general overhaul of the program *SPARROW (Rasinski, 2011). Like its predecessor, 

*SPARROW+ uses a vector-valued classifier (VVC) for prediction. The VVC consists of two 

consecutive prediction steps, where the input of the second step is the output of the first. In 

each step a set of linear regression functions is used whose number (C-1) is one less than the 

number of secondary structure classes C. Each class is defined by a class vector in a 

(C-1)-dimensional space. The class vectors point to the corners of a regular simplex in the 

(C-1)-dimensional space. Chapter 2.4.2.1 describes the class vectors, chapter 2.4.3 a general 

VVC and chapter 2.5 the concrete implementation of the VVC into *SPARROW+. 

In the results section it was analyzed, how the choice of the learning conditions, also called 

hyperparameters, affect prediction quality and how each enhancement of a single-step 

classifier improves prediction quality. The most important hyperparameters are given by the 

type of the BLAST (Altschul et al., 1990) database and the class reduction scheme. The former 

is used to generate profile features with the program PSI-BLAST (Altschul et al., 1997) and the 

latter determines, which of the eight secondary structure classes defined by DSSP (Kabsch and 
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Sander, 1983) are merged together to obtain only three super-classes. The results for different 

hyperparameters are described in chapter 3.3.2 and chapter 3.3.3 respectively. The results of 

the stepwise enhancement of single-step classifier using only profile features to a two-step 

classifier utilizing combinations of different feature types in each step is depicted in 

chapter 3.3.5. Compared with other state-of-art secondary structure prediction methods, 

*SPARROW+ has a superior prediction quality in test sets. Described in chapter 3.5, 

*SPARROW+ surpasses the so far best available method PSIPRED (Jones, 1999) generally by 

about 1.5 % in the Q3-accuracy (equation (2-78)) and 0.02 in the MCC (equation (2-81)). 

Finally, to assess the prediction quality of the VVC a confidence measure was developed. 

Correlating the confidence with the prediction quality shows, that both are proportional to 

each other. Hence, the confidence allows to estimate the prediction quality, as shown in 

chapter 3.4.2. In the following, some of the previously mentioned aspects of *SPARROW+ are 

discussed in more detail. 

4.1 Super-class distinction 

To assess the prediction quality, two quality measures are used, the Q3-accuracy 

(equation (2-78)) and the MCC (equation (2-81)), which both are defined in chapter 2.6. To 

evaluate the prediction quality of a super-class, both measures have to be taken into account. 

For more than two classes, the class specific Q3-accuracy only considers the true positive 

classifications, thus the false positives are not included. Accordingly, a high Q3-accuracy does 

not necessarily imply a good classification, because a class could be overestimated at the 

expense of the other classes. However, the Q3-accuracy is still a measure easy to grasp. In 

contrast, the MCC considers both true and false positive classifications, which makes it a more 

robust measure but also more difficult to interpret. In combination, the Q3-accuracy and MCC 

allow to analyze the prediction quality of a super-class. 

*SPARROW+ differentiates three secondary structure super-classes, namely helix, strand and 

coil. The Q3-accuracy and MCC are quite different for all classes. Considering the individual 

super-classes, the coil super-class shows conspicuous results. In all figures, a high Q3-accuracy 

is achieved for the coil super-class, which can reach about 90 %. Yet, at the same time the 

MCC is much worse, being on par with the strand super-class that achieves a much lower 

Q3-accuracy. 
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Hence, the coil super-class is overestimated at the expense of the strand super-class. This can 

be explained by the different weighting of the super-classes, which naturally given by the sizes 

of the classes in the training sets. The weight of a super-class indirectly determines the number 

of parameters used for the prediction of this class. The greater the weight, the larger the 

number of parameters. As such, the weight is a measure of the relevance or importance of 

the different super-classes. In the current version of *SPARROW+, the weight of super-class is 

determined by its size in the training set. Hence, the larger coil super-class has a greater weight 

than the smaller strand super-class. Therefore, *SPARROW+ assigns more parameters to the 

coil, than to the strand super-class.  

The discrepancy between Q3-accuracy and MCC for the coil super-class and the generally low 

prediction quality for the strand super-class imply that the number of parameters for the 

strand class is insufficient. This problem may be further enhanced, since the strand super-class 

seems to be the most difficult class for prediction, primarily because β-strands are often 

stabilized by other β-strands forming H-bonds between backbone units that are spatial close 

but sequentially distant. In addition, the difference between recall and predication shown in 

chapter 3.3.1 for the adjustment of the regularization parameter can also be attributed to the 

large number of parameters used for the coil super-class. 

The helix super-class is unaffected by an overlap with the coil super-class. There are two 

reasons for this: Firstly, helices are defined by short range interactions, which can be captured 

by a sliding window. Secondly, the helix super-class is larger than the strand super-class, 

making up about one third of the three super-classes, resulting in correspondingly larger 

weight. Hence, through the localized nature and large weight the number of parameters is 

sufficient to predict the helix super-class with high quality. 

4.2 Hyperparameters 

A variety of hyperparameters need to be adjusted to optimize the performance of 

*SPARROW+. Among these, the choice of the BLAST database and the class reduction scheme 

proved to be the most crucial. The BLAST database is necessary for PSI-BLAST to generate the 

sequence profiles, the most important feature type and the class reduction scheme defines 

which DSSP classes are merged together into the three super-classes. 
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4.2.1 Sequence profiles 

Two different databases were used for sequence profile generation, the non-redundant and 

the UniRef90 BLAST database filtered with the program pfilt (Jones and Swindells, 2002). The 

former contains all non-redundant protein sequences and the latter only sequences with a 

maximum sequence identity of 90 % and no transmembrane, low complexity, coiled-coil or 

compositional biased sequence regions. From these databases very different sequence 

profiles are generated, which affect the prediction quality, as shown in section 3.3.2. Profiles 

generated from the UniRef90 BLAST database improved the Q3-accuracy by 1 % and the MCC 

by 0.02 as compared to the usage of profiles from the non-redundant BLAST database. 

The removal of sequentially highly similar proteins as well as transmembrane or unordered 

proteins from the BLAST database improved the prediction quality. Hence, higher quality 

profiles could be generated from the filtered UniRef90 BLAST database. Filtering the database 

and reducing the number close homologs helps to circumvent problems that can occur with 

iterative search methods such as PSI-BLAST (Cuff et al., 1998). Although these methods make 

it possible to find distant sequence homologies. However, these methods have major 

problems with multidomain proteins and proteins with regions of compositional bias. The 

former can cause that weak but relevant homologies are obscured because of common 

conserved protein domains. The latter are sequences containing low-complexity regions, such 

as coiled coils and transmembrane regions. These can cause an explosion of the search rather 

than a convergence because of the lack of any strong sequence signals. In contrast, premature 

convergence can occur if the profile generation is too strict only including very similar 

sequences. Hence, only sequences with the same domain organization are included but not 

homologues with different domain combinations (George and Heringa, 2002). 

A general problem with iterative searches is “matrix migration” or “profile wander”, which 

occurs when non-related homologs enter the search resulting in the loss of truly homologous 

sequences found in earlier iterations. This problem is particularly dangerous, if the 

non-related homolog belongs to a large family. A problem unique to PSI-BLAST is a loss of 

information because for profile generation only the highest scoring regions in a search are 

used, ignoring less conserved regions (George and Heringa, 2002). 

Another critical source of errors for iterative methods, such as PSI-BLAST, is homologous over-

extension (HOE), accounting for the largest fraction of PSI-BLAST errors. HOE occurs, if due to 

inaccurate domain alignments, parts of non-homologous domains are included in the profile 
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that is used for the next search iteration. Thus, the signal from the original homology is 

suppressed. High alignment scores, which involve HOE may nevertheless correspond to true 

homologies. Hence, HOE can occur regardless of the chosen alignment threshold. Since HOEs 

are no statistical errors, they cannot be fixed by better statistics (Gonzalez and Pearson, 2010). 

HOE also explain, why profiles generated from manually curated alignments, such as Pfam 

(Finn et al., 2014), perform better than those generated from iterative searches, like PSI-BLAST, 

against the non-redundant BLAST database (Stojmirović et al., 2008). Sequences in the 

non-redundant database contain partial domains, which are primarily responsible for HOE, 

leading to a reduction in profile quality. 

4.2.2 Class reduction schemes 

The most popular program for protein secondary structure assignment, DSSP, discriminates 

eight different secondary structure classes. The different class are described in chapter 1.1.2 

and how they are assigned by DSSP is explained in chapter 1.1.3. However, for most 

applications, only three different secondary structure classes are of interest: Helix, strand and 

coil. Since these classes are the combination of different DSSP classes, they can be referred to 

as super-classes. 

As shown in chapter 2.2, there is no clear definition as to how the eight DSSP classes should 

be combined to the super-classes. The choice of the class reduction scheme has a major effect 

on the prediction quality, as the results in chapter 3.3.3 illustrate. The mixed class reduction 

scheme used in *SPARROW+ achieved the overall best prediction quality. Assigning the 

310-helix and isolated β-bridge to the coil instead of helix and strand super-classes, proved to 

be advantageous. The disadvantage is a further increase of the already large coil super-class, 

giving it even more weight. 

4.2.3 Window size and classifier enhancements 

The choice of the BLAST database and the class reduction scheme are parameters to improve 

the quality of the input data, which indirectly improves the overall performance of the 

vector-valued classifier (VVC). Parameters to directly influence the prediction quality of the 

VVC is the size of the sliding window or classifier enhancements. The former defines the  
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number of neighboring residues considered in a prediction and the latter comprises additional 

linear features or a second prediction step. 

The prediction quality increases logarithmically with the window size, as Figure 3-10 shows. 

All enhancements improve the prediction quality, whereby the extent depends on the specific 

enhancement and window size. In general, all enhancements provide the greatest 

improvement at a smaller window size. At the largest considered window size of 17, 

improvements are minimal. Hence, enhancing the classifier allows to achieve with a smaller 

window size a similar prediction quality as with larger window sizes.  

The number of adjustable classifier parameters is primarily determined by the window size. 

As Figure 3-9 depicts, the number of parameters increases geometrically with the window size. 

Accordingly, classifiers utilizing large windows have dramatically more parameters, making 

them computationally and resource demanding. In more practical terms, the triangular 

covariance matrix needed for training the VVC, see chapter 2.4.4.2, has a size of 13 gigabyte 

(GB) for a window size of 17 and of only 2.2 GB for a window size of 11 residue positions. 

 Apart from smoothing a secondary structure profile, predicted in the first step classifier, the 

second prediction step can also be interpreted as an implicit increase of the window size, as 

illustrated in Figure 4-1. For example, a two-step classifier using a window size of five residues, 

considers the same number of residues for the prediction as a single-step classifier with a 

Figure 4-1: Implicit increase of the size of the sliding sequence window through second prediction step. For the  

prediction, a two-step classifier with a window size of 5 considers the same residues as a single-step classifier 

with a window size of 9. For the prediction of the window of the second-step of the two-step classifier the 

predictions for the windows of the first step are a perquisite. The residue to be classified is highlighted in bold 

type. 
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window size of 9. This implicit increase of the window size through the second prediction step 

can also explain, why the second step yields little improvement even for much larger windows. 

As seen in Figure 3-14 the improvement of prediction performance with an increased window 

size becomes minimal. However, using a larger window in the first prediction step, provides 

additional correlations, which cannot be obtained by the second prediction step.  

Both prediction steps are independent, their only connection is through the structure features. 

These are the output of the first and the input of the second step. Accordingly, different 

parameter values, such as for instance for the window size can be used in both steps. A greater 

window size in the second step would not be as computationally expensive as in the first step, 

since *SPARROW+ utilizes quadratic structure and linear profile features in the second step. 

The structure features have much fewer dimensions, only 3, compared to the 20 dimensions 

of the profile features. Increasing the window size in the second step could further increase 

the quality improvements made by the second step. In particular VVCs using a small window 

in the first step should benefit from this.  

4.3 *SPARROW+ compared to other methods 

In chapter 3.5 the performance of *SPARROW+ was compared with other popular secondary 

structure prediction methods, namely PSIPRED (Jones, 1999), C3-Scorpion (Yaseen and Li, 

2014) and Jpred (Cuff and Barton, 2000). Chapter 1.2.1 gives an overview of these methods. 

In all test sets *SPARROW+ achieved superior results than any of the other methods. 

*SPARROW+ has many differences to the compared methods, which are also quite different 

between themselves. Foremost, *SPARROW+ utilizes a vector-valued classifier (VVC), instead 

an artificial neural network (ANN) for prediction. Despite the different prediction method all 

methods have some parameters in common. All methods use a class reduction scheme to 

reduce the eight DSSP classes to three super-classes, a BLAST database to generate sequence 

profiles with PSI-BLAST and a sliding sequence window. However, the value of these 

parameters differs widely. The different class reduction schemes are listed in Table 2-1, 

showing that the major difference between all methods is the definition of the helix 

super-class. In contrast to the three compared methods, the mixed class reduction scheme 

used by *SPARROW+ is the only one to assign the isolated β-bridge to the strand instead of 

the coil-class. The results in chapter 3.3.3 show the significant influence that the class 
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reduction scheme has on the prediction quality. Concerning the BLAST database, only 

*SPARROW+ and PSIPRED use the same setup in form of a filtered UniRef90 database. Jpred 

also uses the UniRef90 database, but unfiltered. C3-Scoprion on the other utilizes the non-

redundant database but filtered. The size of the sliding window is 17 for *SPARROW+ and Jpred 

and 15 for the other two methods. However, Jpred increases the window size to 19 in its 

second prediction step. 

All these differences make it difficult to pinpoint the particular reasons for the variations in 

prediction quality and what precisely makes *SPARROW+ superior to the compared methods. 

Of all compared methods, PSIPRED is the closest competitor to *SPARROW+, in all test sets it 

achieved the second best prediction quality. Notably, the Q3-accuracy for the strand 

super-class is always higher than the result of *SPARROW+ highlighting the weakness of 

*SPARROW+, discussed in section 4.1. Compared to C3-Scorpion and Jpred, *SPARROW+ has 

more differences to them, than to PSIPRED. The similarities range from the choice of the BLAST 

database to the primary input features. 

All parameters of *SPARROW+ were optimized to achieve the highest prediction quality. As 

such, it is likely that the prediction quality difference is the sum of all optimizations. Hence, 

for secondary structure prediction the vector-valued classifier is comparable if not superior to 

artificial neural networks. 

4.4 *SPARROW+ compared to its predecessor 

The predecessor to *SPARROW+, is *SPARROW (Rasinski, 2011). Both programs are closely 

related, foremost by using a vector-valued classifier for secondary structure prediction. 

However, there is also a range of differences, beginning with the layout of the prediction 

method. As described in chapter 2.5, *SPARROW+ utilizes two-prediction steps, whereby the 

input of each step is combination of different features types. Profile and sequence feature 

types in the first and structure and profile features types in the second step. While the 

vector-valued classifier of *SPARROW also consist of two-steps, there is also an additional 

third step in form of an ANN. Another difference is that *SPARROW only uses a single feature 

type in each step. Profiles in the first and structure feature types in the subsequent steps. 

*SPARROW can work with different class reduction schemes, such as the loose (The helix 

super-class consists of the 310-, α-, and π-helix classes) and pure (Only the α-helix class is part 
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of the helix super-class) schemes, albeit the best results were achieved with the pure scheme. 

At the time of the development of *SPARROW, the pure scheme led to a similar class 

composition than the mixed scheme used in *SPARROW+. The schemes are described in 

chapter 2.2. The only difference is, whether to include the π-helix in the helix (mixed) or coil 

(pure) super-class. The reason for the similar composition is due to a bug in the secondary 

structure assignment method DSSP that was corrected in 2011. Before that, nearly all 

π-helices were assigned as α-helices (Cooley et al., 2010; Zacharias and Knapp, 2014). Hence, 

in the original ASTRAL40 dataset used for *SPARROW, only 0.2 % π-helices are found, whereas 

in the ASTRAL40 dataset used for *SPARROW+ the frequency is 0.5 %. Another difference 

between *SPARROW+ and its predecessor is the type BLAST database used for learning, since 

*SPARROW generates its sequence profiles using an unfiltered non-redundant BLAST database. 

The results in chapter 3.5 show that *SPARROW+ is vastly superior to *SPARROW in all test 

sets. The difference is more than 3 % Q3-accuracy and about 0.05 for the MCC. Actually, 

*SPARROW shows the worst performance of all methods. This somewhat contradicts to the 

results documented for *SPARROW. In cross validation *SPARROW achieved a Q3-accuracy of 

82.8 % and an MCC of 0.73. On a special test set the Q3-accuracy is 81.5% and the MCC 0.71. 

The set consisted of protein domains from the ASTRAL40 dataset version 1.73 that have at 

most of sequence identity to protein domains from the 1.71 version of the dataset. 

Why the prediction quality listed in here differs widely from the documented results is unclear. 

One factor could be the BLAST database, since the BLAST database used originally for the 

training *SPARROW could not be reconstructed, because BLAST databases are continuously 

updated and enlarged. As documented in chapter 3.3.2, different BLAST databases can lead 

to different profiles and affect prediction quality. However, explaining the large difference 

solely with differences in the BLAST database seems unreasonable. An additional explanation 

could also be that for an unknown reason *SPARROW has become defunct. But, even the 

documented prediction quality of *SPARROW, which is higher than the actual one, is inferior 

to *SPARROW+. One approach to comprehend the quality difference, is to compare the 

prediction quality of *SPARROW after the first prediction step with those of *SPARROW+ 

utilizing only a single-step classifier using only profile features. In this approach, the setup of 

the vector-valued classifiers is identical only some parameters differ. *SPARROW+ reaches in 

the described setup a Q3-accuracy of 83.0 % and an MCC of 0.73. In contrast, the Q3-accuracy 

and MCC for the first step of *SPARROW is 81.5 % and 0.70 respectively. Hence, already in the 
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first prediction step both programs show major quality differences. The parameters that differ 

between them are the type of BLAST database, the training dataset and the reduction scheme. 

As previously mentioned the differences in the reduction scheme should play a negligible role. 

Concerning the training set, *SPARROW used the old version 1.71 of the ASTRAL40 dataset 

without filtering. The training data for *SPARROW+ is from the newer version 2.03 of the 

ASTRAL40 dataset and was filtered, as described in chapter 2.1. The results suggest that an 

unfiltered training data set contains too much noise that interferes with the training. The last 

parameter is the BLAST database whose significant influence on the prediction quality is 

discussed in chapters 4.2.1 and in chapter 4.3 in context of other prediction methods. It is 

unclear which BLAST database *SPARROW used, but it is safe to assume that it was not filtered. 

Filtering the training data and the BLAST database has thus resulted in an enormous increase 

in prediction quality. 

While the additional steps of *SPARROW yield a quality gain of about 1.3 % Q3-accuracy, the 

second step and feature combination yield only very small improvements. It is a similar 

tendency as observed for different window sizes. Enhancements of the classifier were much 

more beneficial for smaller than larger windows. In other words, the higher the original quality, 

the lower are the gains through further enhancements. Furthermore, a Q3-accuracy beyond 

82 % is by itself very difficult to achieve. Taking into account the little gains made by the 

enhancements used in *SPARROW+ it seems unlikely that including a third step, like in 

*SPARROW, would led to a significant further improvement if any. 
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5 Conclusions and Outlook 

The protein secondary structure prediction program *SPARROW+ presented here, achieves a 

prediction quality that is superior to the other state-of-the-art method, such as PSIPRED 

(Buchan et al., 2013), C3-Scorpion (Yaseen and Li, 2014) and Jpred (Cuff et al., 1998). For 

secondary structure prediction, *SPARROW+ utilizes an optimized version of the vector-valued 

classifier developed for its predecessor *SPARROW (Rasinski, 2011). The vector-valued 

classifier consists of two consecutive prediction steps, whereby each step consists of multiple 

linear regression functions using a set of class vector as an indicator matrix. The output of the 

first step is part of the input of the second step. The classes are defined by class vectors that 

represent the corners of a regular simplex, whereby the number of corners is equal to the 

number of classes. *SPARROW+ enhanced the prediction performance of the vector-valued 

classifier compared to the original *SPARROW by using a combination of features in each of 

the two prediction steps and by optimizing the hyperparameters, such as the choice of the 

BLAST database used for generation of the sequence profile features.  

The enhancements to the vector-valued classifier improved prediction quality albeit the 

extent is highly dependent on the size of the sliding window. The more neighboring residues 

are taken into account with a larger window, the smaller, yet still significant, is the effect. 

Compared to other secondary structure prediction methods, *SPARROW+ achieves a higher 

overall prediction quality in all test sets. However, the prediction quality for the three 

super-classes helix, strand and coil is slightly unbalanced. While higher prediction quality is 

attained for the helix and coil super-classes compared to any other method, the results for the 

strand super-class are slightly worse. *SPARROW+ overestimates the coil at expense of the 

strand super-class. 

The confidence measure developed to assess the reliability of predictions of the vector-valued 

classifier correlates with the prediction quality. Furthermore, the distribution of correct and 

incorrect classifications with respect to the confidence is significantly different. The higher the 

confidence, the greater the number of correct classifications. The confidence allows to 

estimate the prediction quality, whereby estimates should be made for each super-class 

separately. 

As discussed, hyper parameters such as the BLAST database and class reduction scheme are 

not unique to *SPARROW+ but are used by every secondary structure prediction method. 
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Accordingly, other methods could also be improved be utilizing the parameter values 

developed for *SPARROW+. 

Although *SPARROW+ is currently the secondary structure prediction method that achieves 

the highest prediction quality, there are of course opportunities for further improvement. 

Some aspect are outlined in the following sections. It is also planned to make *SPARROW+ 

available as a web service and a downloadable executable. 

5.1 Weight optimization 

In the current version of *SPARROW+, the relevance or weight of a super-class is determined 

by its size. Hence, the larger coil super-class has a greater weight than the smaller strand 

super-class. The size of the weights define the effective numbers of parameters used for the 

prediction of the super-classes. The greater the weight, the higher the effective number of 

parameters. Therefore, *SPARROW+ assigns more parameters to the coil than to the strand 

super-class. Accordingly, the prediction quality for the strand super-class is the worst of all 

super-classes, as discussed in chapter 4.1. 

In order to improve the prediction quality for the strand super-class, the super-class weights 

must be treated as another hyperparameter and manually adjusted. However, to increase the 

weight of the strand super-class the weights of the other super-classes must be reduced. The 

best approach would be to primarily reduce the weight for the coil super-class. The coil 

super-class consists of secondary structure classes, which are not well defined, rendering an 

explicit recognition difficult, while an implicit recognition that identifies the other two classes 

may be easier to accomplish.  

5.2 Improvement of the sequence profiles 

Sequence profiles are the primary input for *SPARROW+. The profiles are generated with 

PSI-BLAST (Altschul et al., 1997) from a BLAST (Altschul et al., 1990) database, as described in 

chapter 2.3.2. The results in chapter 3.3.2 show that the choice of the BLAST database directly 

influences the prediction quality, whereby the so far best results were achieved with the 

UniRef90 (Suzek et al., 2007) BLAST database. Thus, improving sequence-profile quality would 

allow to further improve prediction quality. As discussed previously in chapter 4.2.1 PSI-BLAST 
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can exit an alignment prematurely, if too many sequence with high sequence identity are 

found. This could still be the case for the UniRef90 database. An approach to circumvent this 

problem would be to utilize the UniRef50 database. 

5.3 Predictions of more than three classes 

A total of eight different secondary structure classes are defined by the program DSSP. 

However, apart from special applications, only three classes are of interest. These are the 

α-helix, β-strand and random coil classes. The remaining classes are merged with these three. 

Accordingly, most secondary structure prediction programs, including *SPARROW+, make 

predictions for these three classes. However, *SPARROW (Rasinski, 2011), the predecessor of 

*SPARROW+, was successfully used to predict all eight DSSP classes. *SPARROW and 

*SPARROW+, both, use a vector-valued classifier for secondary structure prediction, 

accordingly *SPARROW+ could easily be enhanced for predictions of more than three classes. 

As described in chapter 2.4.4.2 the vector-valued classifier is trained by solving systems of 

linear equations. The number of linear equation systems corresponds to the number of classes. 

The difference between the systems is the vector on the right-hand side and the class vectors. 

Hence, to predict more than three classes, the only requirements would be to generate new 

class vectors and right-hand side vectors. Regardless of the number of classes, the same 

covariance matrix is used. Hence, the computationally most expensive aspect of the 

vector-valued classifier would stay the same.  

Apart from the three classes commonly used and the eight classes defined by DSSP, class 

reduction schemes to four or six classes are another reasonable approach. Four classes would 

allow to separate the 310-helix class from the coil super-class into a separate class. The 

310-helix class is a well-defined class that also occurs in sufficient frequencies to train the 

classifier. The turn and bend classes might be more frequent, but do not have such a rigorous 

definition as the 310-helix class, see chapter 1.1.2. Using six instead of the total of eight classes 

can be useful namely if the bend class (involving bending in the protein backbone) and the 

isolated β-bridge class (poorly defined) of DSSP are merged with the coil class (Zacharias and 

Knapp, 2014).  
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5.4 Secondary structure profiles as input data 

The transition from one protein structure class to another is rather continuous than discrete. 

Residues in the transition regime between two secondary structure classes possess properties 

of both classes. In particular, helix structures, described in chapter 1.1.2.1, can show such 

mixed classes. The π-helix for example is nearly exclusively found within α-helices. 

Furthermore, at the end of a helix the terminal residues are often partly helix and partly turn 

or coil. 

The problem is that in most cases only an absolute secondary structure assignment is 

performed. Hence, although multiple secondary structure classes would apply, only one is 

selected and the other classes are disregarded. The rules for class selection are defined by the 

different protein secondary structure assignment methods. Accordingly, the majority of the 

differences between assignment methods are due to these problems as described in 

chapter 1.1.3. 

The reduction to a single assignment has two major disadvantages, particularly for secondary 

structure prediction. The first problem is that one secondary structure class is given 

preference over another. Thus, an arbitrary hierarchy of secondary structure classes is 

established. The second problem is that information is lost especially about the transition 

zones between secondary structures. 

Incorporating the information about all secondary structure classes applicable to a specific 

residue could improve prediction quality. Particularly predictions for more than three classes 

should benefit from this approach. Hence, the vector-valued classifier should be trained based 

on secondary structure profiles. As it is, this already applies for the second prediction step that 

uses the output from the first prediction step as input.  

Secondary structure profiles could be obtained from intermediate steps of the secondary 

structure assignment methods DSSP (Kabsch and Sander, 1983) and PSSC (Zacharias and 

Knapp, 2014). In this intermediate step, these methods provide the information about all the 

secondary structure classes found for a specific residue. 
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5.5 Terminal residue feature type 

At terminal residues an incomplete overlap of the sliding window and the protein sequence 

occurs, as described in chapter 2.3.3. In the current version, *SPARROW+ uses default values 

for those positions. In case of sequence and profile features -1 and for structure features 0. 

Another approach to circumvent the problem of incomplete overlap is to introduce a new 

terminal feature type in addition to the default values. The terminal feature type would signal, 

if the position in the sliding window is still on the sequence or already beyond the terminal 

residue. Such a feature type would also allow to differentiate between N- and C-terminal 

incomplete overlap. As described in chapter 1.2.1, such a feature type was successfully 

implemented in other programs (Cuff and Barton, 2000; Jones, 1999; Yaseen and Li, 2014). 
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6 Summary 

Knowing a proteins structure is an essential prerequisite for understanding its function. The 

rate of protein sequencing greatly exceeds the rate by which protein structures can be 

experimentally solved. Methods to predict the protein structure based on the sequence are 

therefore in great demand. The prediction of the protein secondary structure is the first step 

in predicting the spatial structure. In addition, the knowledge of the secondary structure 

allows to characterize a protein into a structure category. 

In this work a new protein secondary structure prediction method, *SPARROW+, is presented. 

*SPARROW+ is a further development of its predecessor *SPARROW (Rasinski, 2011). Like its 

predecessor, a vector-valued classifier is used for prediction. The vector-valued classifier 

allows to project high dimensional input data into a low dimensional classification space. 

Through the relative orientation of the vector-valued classifier to class vectors, input data are 

classified.  

*SPARROW+ consists of two consecutive prediction steps. Based on a target sequence a 

PSI-BLAST (Altschul et al., 1997) sequence-profile is generated, which together with the 

protein sequence is the input of the first prediction step. The results of secondary structure 

prediction from the first step and the PSI-BLAST profile are the combined input for the second 

prediction step. 

*SPARROW+ achieves a Q3-accuracy of 84 % for the ASTRAL40 (Fox et al., 2014) dataset and 

an at least 1 % higher Q3-accuracy than the respective second best method for the CASP9, 10 

and 11 datasets. Hence, *SPARROW+ is currently superior to all presently available methods, 

like PSIPRED (Buchan et al., 2013). 

In its current form, *SPARROW+ overestimates the coil class, the largest secondary structure 

class, at the expense of the strand class, which is the smallest class. This results in a high 

Q3-accuracy for coil and low one for strand. However, the Matthews Correlation Coefficient 

(MCC) (Gorodkin, 2004) is similar for both classes. 

During the Development of *SPARROW+ central parameters with a major influence on the 

prediction quality could be identified. To these parameters belong the choice of the BLAST 

(Altschul et al., 1990) database for the generation of the sequence profiles with PSI-BLAST and 

the class reduction scheme to reduce the eight DSSP (Kabsch and Sander, 1983) classes to 

three. Using the UniRef90 (Suzek et al., 2014) BLAST database containing only homologs with 
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90 % sequence identity and filtering it with pfilt (Jones and Swindells, 2002) to remove 

transmembrane and unordered proteins, improved prediction quality. *SPARROW+ uses a 

class reduction scheme that accounts for the peculiarities of DSSP and new insights concerning 

the π-helix secondary structure. 

During the implementation of the enhancements of *SPARROW+ it became obvious that the 

size of the sequence window is of critical importance for the prediction quality. The gains in 

prediction quality through enhancements of the vector-valued classifier, such as a second 

prediction step or the combination different types of input data, depend on the window size. 

The smaller the considered sequence window, the greater the corresponding gains in 

prediction quality. Therefore, the enhancements reduce the prediction quality gained with an 

increase of the window sizes. 

Specifically for the vector-valued classifier of *SPARROW+ a multiclass confidence measure 

was developed. The confidence can be correlated to prediction quality measures allowing to 

predict them. From a confidence of 0.8 a Q3-accuracy of 90 % can be expected. Furthermore, 

the vector-valued classifiers show different confidence distributions for true and false-positive 

classifications. 
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Zusammenfassung 

Kenntnisse über die Struktur eines Proteins sind von größter Bedeutung um dessen Funktion 

zu verstehen. Die Geschwindigkeit mit der Proteinsequenzen bestimmt werden überschreitet 

bei weitem die Rate mit der Proteinstrukturen experimentell gelöst werden. Deshalb sind 

Methoden, um die Proteinstruktur an Hand seiner Sequenz vorherzusagen, sehr gefragt. Die 

Vorhersage der Sekundärstruktur von Proteinen ist der erste Schritt, um dessen 

dreidimensionale räumliche Struktur vorherzusagen. Weiterhin erlaubt die Kenntnis über die 

Sekundärstruktur eines Proteins dessen Zuordnung in eine Faltungsklasse. 

In dieser Arbeit wird ein neues Programm, *SPARROW+, zur Vorhersage der Sekundärstruktur 

von Proteinen vorgestellt. *SPARROW+ ist die Weiterentwicklung seines Vorgänger 

*SPARROW (Rasinski, 2011). Wie sein Vorgänger wird für die Vorhersage ein vektorwertiger 

Klassifikator verwendet. Dieser Klassifikator erlaubt hoch dimensionale Eingangsdaten in 

einen niedrig dimensionalen Raum zu projizieren. Die Klassifizierung der Eingangsdaten 

erfolgt durch die relative Orientierung des vektorwertigen Klassifikators zu Klassenvektoren.  

*SPARROW+ besteht in zwei aufeinander folgenden Vorhersageschritten. Aus der 

Eingangssequenz wird ein PSI-BLAST (Altschul et al., 1997) Profil generiert, welches zusammen 

mit der Sequenz die Eingabe für die erste Stufe ist. Die Vorhersage der ersten Stufe und das 

PSI-BLAST Profil sind die kombinierten Eingangsdaten für die zweite Stufe. 

*SPARROW+ erreicht eine Q3-Genauigkeit von 84 % auf dem ASTRAL40 (Fox et al., 2014) 

Datensatz und erzielt auf den CASP9, 10 und 11 Datensätzen eine 1 % höhere Q3-Genauigkeit 

als die jeweilige zweitbeste Methode. *SPARROW+ ist hiermit allen anderen aktuellen 

Methoden wie z.B. PSIPRED (Buchan et al., 2013) überlegen. 

In seiner derzeitigen Form überschätzt *SPARROW+ den Anteil der Coil-Strukturen, die größte 

Sekundärstrukturklasse, auf Kosten von Strand, der kleinsten Klasse. Dies führt zu einer hohen 

Q3-Genauigkeit für Coil und einer niedrigen für Strand, wobei der Matthews Correlation 

Coefficient (MCC) (Gorodkin, 2004) für beide Klassen ähnlich ist.  

Bei der Entwicklung von *SPARROW+ konnten zentrale Parameter ermittelt werden, welche 

einen großen Einfluss auf die Vorhersagequalität haben. Zu diesen Parametern gehören die 

Wahl der BLAST (Altschul et al., 1990) Datenbank für die Generierung der Sequenzprofile mit 

PSI-BLAST und das Reduktionsschema um die acht DSSP (Kabsch and Sander, 1983) Klassen 

auf drei zu reduzieren. Bei der BLAST Datenbank zeigte sich das eine Reduzierung der 
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Homologen von 100 auf 90 % durch Verwendung der UniRef90 (Suzek et al., 2014) Datenbank, 

sowie das Entfernen von Transmembran und ungeordneten Proteinen mittels pfilt (Jones and 

Swindells, 2002), die Vorhersagequalität erhöht. *SPARROW+ verwendet ein 

Reduktionsschema, welches die Eigenheiten von DSSP sowie Erkenntnisse bezüglich der 

π-Helix berücksichtigt. 

Bei der Implementierung von Erweiterungen für *SPARROW+ zeigte sich, dass für die 

Vorhersagequalität die Größe des Sequenzfensters von entscheidender Bedeutung ist. Der 

Gewinn an Vorhersagequalität durch Erweiterungen des vektorwertigen Klassifikators durch 

eine zweite Stufe oder die Kombination von verschiedenen Typen von Eingangsdaten ist 

abhängig von der Fenstergröße. Je kleiner das Fenster desto größer ist der Gewinn an 

Genauigkeit der Vorhersage. Allerdings reduzieren diese Erweiterungen die Verbesserungen 

der Vorhersagequalität mit zunehmender Fenstergröße.  

Speziell für den vektorwertigen Klassifikator von *SPARROW+ wurde ein Multi-Klassen 

Konfidenzmaß entwickelt. Die Konfidenz lässt sich mit Vorhersagequalitätsmaßen korrelieren 

und ermöglicht so eine Vorhersage von selbigen. Ab einer Konfidenz von 0.8 ist eine 

Q3-Genauigkeit von 90 % zu erwarten. Weiterhin zeigt sich, dass der vektorwertige 

Klassifikator unterschiedliche Konfidenzverteilungen aufweist für richtig und falsch-positive 

Klassifikationen. 
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