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ABSTRACT

Nanomaterials (NMs) offer plenty of novel functionalities. Moreover, their physicochemical
properties can be fine-tuned to meet the needs of specific applications, leading to virtually
unlimited numbers of NM variants. Hence, efficient hazard and risk assessment strategies building
on New Approach Methodologies (NAMs) become indispensable. Indeed, the design, the
development and implementation of NAMs has been a major topic in a substantial number of
research projects. One of the promising strategies that can help to deal with the high number of
NMs variants is grouping and read-across. Based on demonstrated structural and physicochemical
similarity, NMs can be grouped and assessed together. Within an established NM group, read-across
may be performed to fill in data gaps for data-poor variants using existing data for NMs within
the group. Establishing a group requires a sound justification, usually based on a grouping
hypothesis that links specific physicochemical properties to well-defined hazard endpoints.
However, for NMs these interrelationships are only beginning to be understood. The aim of this
review is to demonstrate the power of bioinformatics with a specific focus on Machine Learning
(ML) approaches to unravel the NM Modes-of-Action (MoA) and identify the properties that are
relevant to specific hazards, in support of grouping strategies. This review emphasizes the
following messages: 1) ML supports identification of the most relevant properties contributing to
specific hazards; 2) ML supports analysis of large omics datasets and identification of MoA
patterns in support of hypothesis formulation in grouping approaches; 3) omics approaches are
useful for shifting away from consideration of single endpoints towards a more mechanistic
understanding across multiple endpoints gained from one experiment; and 4) approaches from
other fields of Artificial Intelligence (Al) like Natural Language Processing or image analysis may
support automated extraction and interlinkage of information related to NM toxicity. Here,
existing ML models for predicting NM toxicity and for analyzing omics data in support of NM
grouping are reviewed. Various challenges related to building robust models in the field of
nanotoxicology exist and are also discussed.

KEYWORDS
Nanomaterial grouping;
machine learning; omics;
artificial intelligence; new
approach methodologies

1. Introduction the fine-tuning also influences their original or
expected behavior in a biological milieu including,
their uptake by cells, biodistribution, dissolution rate
and/or toxicity to humans or the environment, and
more. To overcome the need to fully characterize

each and every NM variant for all possible toxicolog-

Engineering physicochemical properties of nanoma-
terials (NMs) such as size, morphology or surface
chemistries has become common practice in order
to meet the needs of specific applications. This has
resulted in a large variety and a steadily increasing

number of different NMs or nanoforms (NFs), as
defined in specific reqgulatory frameworks (EC 2006).
However, adjusting NM physicochemical properties
does not only impact their desired functionalities but

ical outcomes, the European chemicals legislation
REACH (EC 2006) allows for grouping and read-across,
to either justify waiving specific tests or to fill in
data gaps.
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For chemicals, grouping is well established as a
‘general approach for considering more than one
chemical at the same time’ (OECD 2014a; ECHA
2008). The idea behind grouping approaches is that
chemicals which are similar enough with respect to
certain criteria (e.g. structural, physicochemical prop-
erties, etc.) can be considered as a group. Chemicals
within one group are then expected to show similar
(eco-)toxicological and/or environmental fate behav-
ior. Within this group, data gaps on toxicological
behavior for a certain member of the group can
therefore be filled by read-across using information
from the other members in the group. In general,
grouping may support risk assessment as well as
Safe(r)-and-Sustainable-by-Design (SSbD) approaches.
Groups are established initially on the basis of struc-
tural similarity, which can be based on various prin-
ciples such as common functional groups, precursors,
breakdown products or a constant incremental
change of the properties of interest across the
group (OECD 2014a; ECHA 2017). However, it then
has to be demonstrated that these structural simi-
larities result in a similar fate and/or (eco-)toxicity.
Thus, knowledge of a common toxic mechanism or
Mode-of-Action (MoA) can strongly facilitate group-
ing, since grouping always requires a proper scien-
tific justification which is mainly supported by
establishing a link between specific properties and
the toxicological endpoint of interest. In addition,
grouping is endpoint-specific meaning that group
membership may vary depending on which toxicity
endpoint is considered.

In the last decade, several grouping frameworks
have been developed for NMs, e.g. the MARINA
grouping and read-across approach (Oomen et al.
2015) or the DF4nano Grouping Framework (Arts
et al. 2015), which are comprehensively summarized
in Oomen et al. (Oomen et al. 2018) and Giusti et al.
(Giusti et al. 2019) The most recent and compre-
hensive framework is the GRACIOUS (Stone et al.
2020) grouping framework. Additional insights into
NM grouping in the context of the EU chemicals
legislation are detailed in Mech et al. (Mech et al.
2019) The most recent GRACIOUS framework is
based on a hypothesis-driven approach. It proposes
several grouping hypotheses, which link specific
physicochemical properties with specific fates and/
or toxicities, tested the hypotheses in case studies
(Ag Seleci et al. 2022; Keller et al. 2021; Ruggiero
et al. 2022; Jeliazkova et al. 2022a; Cross et al. 2022;
Song et al. 2022) and lastly, offers guiding principles
to support users to formulate their own grouping
hypotheses (Murphy et al. 2023).

Nevertheless, grouping of NMs remains a chal-
lenge. In particular, unraveling relationships between
specific physicochemical properties and toxicities is
not trivial due to the large panel of partially inter-
dependent physicochemical properties that are
needed to describe a single NM (Lynch, Weiss, and
Valsami-Jones 2014). The number-based particle size
distribution, surface functionalization or treatment,
shape or morphology as well as surface area are
certainly the most central ones (Cosnier et al. 2021;
Poulsen et al. 2016). Dissolution rate, state of
agglomeration/aggregation and surface reactivity
have also been shown to be of high relevance (EC
2018; Gutierrez et al. 2023). However, plenty of other
NM properties exist that are not tested and, several
of the NM properties are polydisperse already after
production and additionally have the potential to
change during the life cycle, depending on the envi-
ronment/biological medium in which they are sus-
pended or incorporated. This renders the
physicochemical characterization of NMs both in
their dry state and as applied, a complex task.
Overall, identifying which physicochemical parame-
ters are driving toxicity remains the key challenge
in NM grouping (Ribeiro et al. 2017; Drasler
et al. 2017).

Omics approaches are a very promising tool
which have already frequently been applied for
chemicals including NMs. Different omics layers can
be investigated, e.g. levels of gene transcription
(transcriptomics), protein abundances (proteomics)
or levels of small molecule metabolites (metabolo-
mics). Among them, transcriptomics is by far the
most studied omics level for describing the molec-
ular changes induced by NMs. This is mainly due
to the fact that transcriptomics technologies are
highly advanced, the evaluation is well standardized
and interpretation of the results is relatively straight-
forward due to the well-studied and well-annotated
state of this particular level of biological organiza-
tion (Kinaret et al. 2020; Federico et al. 2020; Serra
et al. 2020a) and well-established tools. On the
other hand, while proteomics or metabolomics are
closer to the actual phenotype, indicating the
potential for more direct causal association with the
adverse outcome (AQ), i.e. endpoint of interest, they
are more complex and do not at present have stan-
dardized protocols for the analysis and interpreta-
tion of data. The OECD reporting frameworks have
been established for both transcriptomics (OECD
20271a) and metabolomics (OECD 2021b); however,
standardized evaluation and interpretation for
metabolomics and proteomics is still lagging behind.



While for now, it is possible to individually assess
and report the single omics endpoints (transcrip-
tomics or metabolomics or proteomics), their com-
bined evaluation, which may be important to obtain
a holistic view of the biological response to an
exposure remains difficult. Thus, developing models
that are based on omics data is also consistent with
the major shift away from pure consideration of
single endpoints toward a more mechanistic under-
standing which can be observed within the field of
toxicology. In general, omics approaches yield the
advantage that multiple endpoints are considered
at the same time as a whole panel of cellular
changes is measured in one single experiment,
allowing for investigation of dependencies between
events and endpoints.

Within NM experiments, usually omics data for a
few materials are obtained and analyzed subse-
quently (Ma et al. 2023; Nguyen and Falagan-Lotsch
2023). While this provides useful insights into vari-
ous biological changes in that specific experiment,
it is difficult to derive general patterns and to
extract which changes are most relevant in terms
of grouping NMs with respect to a certain endpoint.
Especially, the high-dimensional setting of omics
experiments with the number of parameters being
much larger than the number of samples is a major
challenge. Here, meta-analyses may be very useful
to counterbalance this situation. Due to data sharing
rules in the community and corresponding journals,
huge databases of publicly available datasets exist
for different omics levels like the National Center
for Biotechnology Information Gene Expression
Omnibus (NCBI GEO) (Edgar, Domrachev, and Lash
2002) for transcriptomics or PROteomic IDEntification
(PRIDE) database (Perez-Riverol et al. 2021) for pro-
teomics. While these datasets cover a wide range
of studied effects such as those cause by drugs,
other types of chemicals or diseases, omics datasets
should theoretically allow integration across those
effects. Such meta-analyses may be beneficial for
the detection of broad biological patterns as they
are derived from a greater knowledge base and
noise occurring in single studies may be can-
celed out.

Machine learning (ML), a subfield of Artificial
Intelligence (Al), may be highly valuable for address-
ing this task. The greatest advantage of ML is that
such models are able to automatically learn patterns
in large datasets and derive associated predictions.
Generally, data to be modeled is described in a
feature vector or matrix. This comprises values for
measured input features like physicochemical
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properties or others. Additionally, a respective out-
come variable, describing for instance a certain tox-
icity outcome can be linked to the input data. ML
algorithms range from classical linear or logistic
regression models to more complex ones such as
Random Forests (RFs) or Support Vector Machines
(SVMs) and Deep Learning models like Neural
Networks (NNs). The choice of ML algorithm used
in a study should be based on the amount and
complexity of the available data as well as the spe-
cific goal in order to obtain robust trustworthy
results. In an optimal dataset for the development
of ML models, the number of samples should be
much larger than the number of features describing
these samples. However, in biological settings this
is rarely ever the case. Therefore, the main goal for
implementing useful ML models is to find the right
balance between model complexity and generaliz-
ability — thus, avoiding overfitting. Model complexity
means that a model is complex enough to be able
to describe a set of so-called training data, but at
the same time not too complex in order to be able
to predict outcomes for previously unseen test data
as well. Also, there is usually a tradeoff between
flexibility/power and interpretability/inference capac-
ity of a ML method (Gareth James, Hastie, and
Tibshirani 2021; Gareth James et al. 2023). This
means that simplest methods are also the most
easily interpretable ones, such as linear regression
(and variants such as elastic net regression) or deci-
sion trees. More complex methods such as RF and
SVMs are significantly less interpretable, and the
least interpretable models are NNs and the multi-
layered deep neural networks (deep learning mod-
els). Explainable Al (XAl) is a subset of Al and ML
techniques focused on making Al systems more
understandable, transparent, and interpretable for
humans. This has implications also for regulatory
toxicology, as models should be maximally interpre-
table for reasons of transparency and governance.

Again, ML is optimally suited to aid the analysis
of omics data for several reasons. Omics datasets
are high-dimensional and rich in describing many
cellular alterations within each single measurement,
in which patterns and relationships can be detected
and that may not be visible using traditional statis-
tical methods. However, the high dimensionality of
the data can also be challenging. Here, moving from
datasets limited to single experiment or materials
toward integration of various datasets in a
meta-analysis setting may be beneficial. In such
cases, ML is well suited to handle the complexity
of the datasets, unraveling the hidden interactions
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or dependencies between molecular components.
ML can also be used to automatically select the
most relevant features such as transcripts, proteins
or metabolites related to specific molecular events
or key event (KE), thereby reducing the dimension-
ality and improving the interpretability, resulting in
identification of potential biomarkers. ML can also
directly be used for omics-driven predictive model-
ing. Additionally, meta-analyses are great tools for
handling noise in the data and distinguishing true
from random signals (Cervantes-Gracia, Chahwan,
and Husi 2022). ML can support integration of mul-
tiple omics layers. Finally, a great advantage of ML
methods is that they can easily be adapted by
re-training once new data become available. Thus,
ML models are well suited for reducing the com-
plexity of analysis of omics datasets, revealing the
important biological traits perturbed after exposure.
Moving forward, once NMs with similar MoAs have
been identified, one may investigate corresponding
similarities and differences in physicochemical prop-
erties and elucidate the most relevant properties
for formulating a grouping hypothesis, and also to
provide design principles for NMs with reduced haz-
ards. Advances in high-throughput transcriptomics
facilitate the creation of large and uniform datasets
that are ideally suited for ML and grouping appli-
cations as the available technologies reduce the
cost of transcriptome profiling by up to 10- to
20-fold (Ye et al. 2018). Coupling together omics
and high-throughput screening technologies in a
tiered approach increases the granularity and infor-
mativeness of the data even further (Grafstrom et al.

2015). XAl may also facilitates MoA discovery as it
helps to interpret the decision made by ML models.
In the context of transcriptomics-derived MoAs,
tools need to be developed, in part, to conform to
XAl principles while maximizing predictive ability
(Boyadzhiev et al. 2021).

Some recent reviews have summarized ML mod-
els in the NM field (Stone et al. 2020; Lamon et al.
2019; Basei et al. 2019; Furxhi et al. 2020). However,
they have not or only scarcely considered the
potential of omics data in the context of NM group-
ing. The aim of this review is to provide an over-
view of existing ML models that enable complex
data integration and analysis in support of NM
grouping and to shed light on how omics data may
be used in conjunction with ML models in the
development of reliable grouping frameworks. The
review focuses only on hazard endpoints which are
considered relevant under REACH (see Table 1) for
human toxicity. ML models for other endpoints like
cytotoxicity or ecotoxicity as well as those predict-
ing NM uptake or protein corona formation are
excluded from this review.

2. Relevant hazard endpoints

Grouping allows waiving of tests or filling the data
gaps related to a target substance by using data
from a previously tested source substance. In the
European Union, the most important overarching
regulation for chemicals is REACH. The Annexes VI
to XI of the REACH regulation (EC 2006) specify
which information the manufacturers need to

Table 1. Relevant endpoints for human health across multiple legislations (according to Jagiello et al. 2021, with

modifications).

Endpoint

Description

Acute toxicity
Skin corrosion/ irritation
Serious eye damage/ irritation

Skin sensitization
Mutagenicity
Carcinogenicity
Reproductive toxicity

Specific target organ toxicity (STOT) —
single exposure

STOT - repeated exposure

Neurotoxicity

Endocrine disruption

Hypersensitivity / food intolerance
Immunotoxicity

Phototoxicity

Hypersensitivity/ Food intolerance
Toxicokinetics

Water solubility or dissolution rate in
relevant biological media

Adverse effects after single dose, multiple doses given within 24 hours or inhalation exposure of 4hours

Irreversible (corrosion) or reversible (irritation) damage to the skin

Serious eye damage: tissue damage in the eye, or serious physical decay of vision, which is not fully
reversible within 21 days

Eye irritation: changes in the eye, which are fully reversible within 21 days

Allergic response following skin contact

Alteration of the structure, information content or segregation of DNA

Induction of cancer or increase of its incidence

Adverse effects on sexual function and fertility in adult males and females or developmental toxicity in the
offspring (before or after birth)

Specific, non-lethal target organ toxicity after single exposure

Specific, non-lethal target organ toxicity after repeated exposure

Disruption of the nervous system

Adverse effects connected to endocrine system like developmental malformations, disorders of immune and
nervous systems functions or increased cancer risk

Adverse reaction to food including or excluding the immune system

Adverse effects on the structure and function of the immune system

Toxic response after exposure to environmental light

Adverse reaction of the digestive system to a substance

Behavior of a substance within the body according to ADME (absorption, distribution, metabolism and
excretion)

Amount of substance that dissolves in water and relevant media like cell culture media or body fluids in a
certain time and at a specific temperature




provide when registering a substance. These require-
ments are dependent on the tonnage of production
per year. Thus, higher tonnages lead to more exten-
sive toxicological testing requirements. In order to
tackle specific information requirements for NMs,
the REACH annexes VI to X have been updated to
specifically consider nano-specific information needs
(EC 2018). In addition, work is underway to modify
or adapt test guidelines in consideration of specific
properties and property specific effects of NMs
(Rasmussen et al. 2019).

Apart from REACH, other specific legislations exist
for chemicals with specific applications, e.g. cosmetics
(EC, 2009a), food contact materials (EC 2004) or pes-
ticides (EC, 2009b). All these regulations consider (to
a large extent) similar toxicological endpoints. The
relevant endpoints for several legislations for NMs
have also been collected in the European Union
Observatory for NMs (EUON) report on New Approach
Methodologies (NAMs, referring to a set of innovative
techniques or testing strategies used in toxicology
and risk assessment to evaluate the safety of chem-
icals) for NMs (Jagiello et al. 2022) as well as in a
recent publication from Bleeker et al. (Bleeker 2023)
which intends to support harmonization of the test-
ing requirements for NMs across EU legislations. An
overview on relevant hazard classes for human health
under REACH or in at least two other legislations as
described in these documents is given in Table 1.

While for some of the above-mentioned end-
points such as skin corrosion/irritation or serious
eye damage/irritation, NAMs are well established
and NAM data is accepted for regulatory decision
making, for other more complex endpoints, NAM
development is still on-going. Although a push for
replacing animal tests with validated NAMs is in full
swing internationally (Schmeisser et al. 2023), to
date, toxicological testing for complex endpoints
still largely relies on animal studies.

3. NAMs and NAM frameworks

For many chemicals, and especially for NMs, the
data for complex endpoints is very scarce and an
increasing number of new materials is entering the
market every year. Filling the data gaps and testing
new materials using animal studies raises not only
ethical concerns but is also limited with respect to
time and cost efficiency. In addition, human rele-
vance of animal models is frequently questioned
and the underlying toxicity mechanisms are often
less obvious in animal models. Therefore, NAMs are
becoming increasingly important for safety
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assessment in the light of the 3R principles for
reducing, refining and replacing animal studies.
Several NAMs exist and are based on in vitro, in
chemico and in silico methods. This also includes
high-throughput screening, allowing for testing of
multiple chemicals at a time and high-content
methods like omics approaches that enable com-
prehensive understanding of the underlying mech-
anisms (ECHA 2016).

While in vitro and in chemico methods are target-
ing the retrospective observation of NM toxicity, in
silico models are able to predict potential hazards
prior to development and testing and thus are well
suited for SSbD approaches. Among the most fre-
quently used in silico methods are Quantitative
Structure-Activity Relationship (QSAR) models. QSAR
models establish quantitative relationships between
relevant physicochemical properties of NMs and
their biological activity. These relationships are rep-
resented by mathematical functions in terms of
regression models. Various QSAR models have been
introduced for NMs and have been reviewed in mul-
tiple publications (Ciura et al. 2024; Li et al. 2022;
Burello 2017). However, QSARs usually show certain
limitations. The mathematical relationship usually
holds true for few materials or material classes only.
This is called the applicability domain (Roy, Kar, and
Ambure 2015). In addition, most QSAR models are
developed for simple toxicity endpoints like cyto-
toxicity due to the fact that modeling complex end-
points sufficiently well is usually not feasible.
However, such endpoints are typically not of regu-
latory relevance. Also, mechanistic explanations on
how the descriptors used for QSARs development
are related to the outcome are usually missing and
thus explainability of such approaches is limited
which again leads to the fact that QSARs do not
generalize well across different material classes on
which they have not been developed. More complex
ML models and omics approaches are well suited
to overcome these limitations.

One major advantage of some NAM:s is that they
allow unraveling toxicity mechanisms which may
greatly improve hazard and risk assessment in the
future. However, single NAMs may not be sufficient
to describe an AO. Instead, a battery of NAMs may
be required to sufficiently assess an AO. Therefore,
NAM frameworks combining multiple individual
NAMs are needed.

To date, several NAM frameworks have been
developed. Within REACH, one of the most import-
ant alternatives relying on NAM frameworks is the
concept of grouping and read-across. In grouping,
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chemical similarity is assessed in terms of similarity
of their physicochemical properties, their toxicity
with respect to a certain endpoint as well as other
properties which could be relevant in terms of their
associated hazard. In case chemicals are similar with
respect to all of these properties, they form a group.
The main aim is to determine which physicochem-
ical properties are most relevant with respect to the
studied endpoint such that for new chemicals, for
which no toxicity assessment has been performed
so far, one may conclude whether this new chemical
is likely to belong to the established group and
thus induce similar toxicity or not. For chemicals in
general, grouping is already well established and
frequently used in regulatory decision making, with
structural similarities or common functional groups
being some of the key parameters defining similar-
ity. In contrast, for NMs, the situation is much more
complex and establishing reliable grouping
approaches is not trivial. This stems from the facts
that 1) the number of physicochemical properties
needed to sufficiently describe a NM is much large
and to date, no simple relationship between any
single property and the toxicological outcomes has
been consistently observed. This may also be due
to the polydispersity of NM (or any other particle)
in their properties, such that not all particles in one
test preparation exhibit the exactly identical prop-
erties; 2) the NM physicochemical properties change
during the lifecycle and/or in different environ-
ments; 3) other tasks such as exposure characteri-
zation and dose estimation are an issue; and 4) NMs
interfere with some assay components, requiring
optimization of existing methods or development
of novel methods. All of this has resulted in incon-
sistencies in results and reporting, leading to an
inability to generalize the observed results across
NMs of similar properties.

For NM grouping approaches, one of the most
critical questions is whether it is sufficient to estab-
lish them on the level of intrinsic physicochemical
properties like chemical composition, primary par-
ticle size or morphology in combination with the
toxicity data. Predictive models and grouping
approaches based on intrinsic physicochemical
properties describing the chemical and physical
structures have two major advantages: 1) they can
mostly be controlled directly during the production
process and 2) many of the intrinsic properties can
be measured more easily compared to extrinsic
properties, which often require more complex meth-
odologies, which are currently not well standardized.
However, intrinsic physicochemical properties alone

often seem to be insufficient for determining
whether or not NMs behave similar with respect to
a certain toxicity endpoint in a reliable manner.
Instead, extrinsic properties like hydrodynamic diam-
eter in relevant media, zeta potential or the forma-
tion of a protein corona, may be better suited for
reflecting the actual biological activity of NMs. Thus,
approaches based on such extrinsic properties may
be superior compared to approaches based on sim-
ple physicochemical properties (Wohlleben, Mehling,
and Landsiedel 2023) and they need to be derived
to separate distinct NM hazard groups sufficiently
well. However, existing grouping approaches of NMs
are still not perfect and intrinsic as well as extrinsic
physicochemical properties suffer from the fact that
the applicability domain usually restricts models to
very specific subsets of NMs. Due to all these rea-
sons, NM grouping may be viewed as a complex
endeavor and further efforts are needed to develop
effective grouping strategies.

Instead of purely relying on overall potency
read-outs from in vivo or in vitro testing, informa-
tion on common MoAs or toxicity mechanisms
may greatly advance NM grouping approaches and
can help to justify an existing grouping hypothesis
(OECD 2014a). Knowledge on MoAs may also aid
some of the aforementioned challenges with
implementing reliable NM grouping approaches.
Especially, MoAs can provide qualitative informa-
tion on whether two NMs induce the same kind
of changes even if the actual quantitative values
are not directly comparable due to challenges in
dosimetry and dispersion. In addition, they dras-
tically reduce the characterization efforts as
instead of measuring a huge number of physico-
chemical properties, one only needs to perform
very few omics measurements. These measure-
ments are also directly related to induced changes
while for the physicochemical properties if and
how they are related to toxicity is not clear. Omics
measurements may also be helpful to separate
different MoAs and thus solve the difficulties for
NM grouping that result from the fact that some
AOs in vivo or in vitro may feature different MoAs
and in other cases, different MOAs may lead to
the same AO. The knowledge of underlying MoAs
can then in turn greatly advance two important
concepts: Adverse Outcome Pathways (AOPs) and
Integrated Approaches to Testing and Assessment
(IATAS).

AOPs (Ankley et al. 2010) are conceptual frame-
works which aim to causally link certain biological
events in a sequential manner, starting from a



molecular initiating event (MIE), inducing multiple
KEs and finally leading to an AO. The MIE thereby
represents the interaction of a NM with a biomole-
cule or an event after its first interaction. That is
followed by KEs at multiple levels of biological orga-
nization that are essential to the disease progression
and can be measured, e.g. at the cellular, tissue or
organ level. The AO may then be one of the end-
points mentioned in Table 1. Several AOPs have been
proposed for chemical induced toxicity and may also
be applicable or adaptable to NMs (Halappanavar
et al. 2020; Gerloff et al. 2017; Gromelski et al. 2022;
Nymark et al., 2021). One such example is AOP173
from the AOPwiki (https://aopwiki.org/aops/173)
which describes the development of pulmonary
fibrosis after substance interaction with pulmonary
resident cell membrane components, which is rele-
vant to NMs (Halappanavar 2023).

Often AOPs are used as a basis to establish IATAs,
which are frameworks for evaluating complex hazard
endpoints by integrating multiple sources of infor-
mation for studying various aspects of the toxicity
endpoint under consideration (Nymark et al., 2021;
Halappanavar et al. 2021b). A proper understanding
of the underlying MoA and related AOPs is import-
ant for developing reliable 1ATAs, as they enable
identification of the right assays reflecting KEs to
be tested. IATAs allow integration of the different
assay outcomes and provide information on a
potential hazard in a weight-of-evidence manner.

Figure 1. Overview on common ML algorithms.
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Within an IATA, different kinds of NAMs can be
combined.

In the following sections, an overview of existing
approaches based on ML and omics supporting NM
grouping is given.

4, ML And existing ML models for NMs

ML models are well suited for predicting outcomes
with respect to NM toxicity and for selecting the
most relevant descriptors influencing toxicity. In gen-
eral, supervised and unsupervised ML models, as well
as some mixed types exist. In supervised models, the
goal is to map labels assigned to each sample to
variances observed in the input data. In the case of
NM grouping, these labels are usually representing
a toxicity endpoint, e.g. the outcome of an in vivo
study or an in vitro assay. Depending on the nature
of this response variable, ML models can be divided
into regression models in which the outcome variable
is continuous and classification models with discrete
outcome variables. Instead, unsupervised models use
unlabeled data and thus, only rely on variances in
the input data and seek to find patterns therein.
Additionally, semi-supervised methods and reinforce-
ment learning exist but are less frequently used.
Semi-supervised ML methods combine labeled and
unlabeled data thereby increasing the dataset size
which can be used for training without the need for
further labeling which might be time- or cost-intensive.


https://aopwiki.org/aops/173
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In reinforcement learning an agent learns an optimal
strategy for choosing actions in a way that the
reward obtained for a sequence of actions is maxi-
mized. An overview of frequently used ML algorithms
(Gareth James, Hastie, and Tibshirani 2021; Gareth
James et al. 2023) is given in Figure 1.

To identify relevant studies, a search in Scopus
using the following search query: TITLE-ABS-KEY
((nanoparticle OR nanomaterial OR nanoparticles OR
nanomaterials) AND (‘in silico’ OR computational OR
‘machine learning’ OR ‘case study’) AND toxicity), was
conducted. This search matched 988 publications
of which 657 publications were tagged as primary
publications (Stand: 11/2023). From these publica-
tions, those using a ML model to predict one of
the relevant endpoints in Table 1 were identified.
In addition, relevant studies from previous reviews
on ML models in the NM field (Stone et al. 2020;
Lamon et al. 2019; Basei et al. 2019; Furxhi et al.
2020) were also added. An overview of the relevant
approaches is provided in Table 2.

Except for one study, all identified approaches
concentrate either on mutagenicity and genotoxicity
or on STOT as the modeled endpoint. In addition,
almost all models include supervised approaches.
Most frequently, tree-based approaches, namely
decision trees or RFs, are used to predict toxicity.
Often, these are preceded by an unsupervised analysis
using hierarchical clustering or Principle Component
Analysis (PCA). Overall, the predictive performance of
the models was found quite good (0.7 to 1.0).
However, it is also easily visible from Table 2 that the
number of available datasets is very small in most
cases and usually not sufficient to build robust ML
models. In addition to predicting toxicity outcomes,
many studies also perform feature selection to reduce
the model to only the most relevant descriptors. From
Table 2, it becomes obvious that the selected descrip-
tors vary largely across studies. Thus, even though
most models show relatively high predictive perfor-
mance, it may be expected that their applicability
domain is rather limited and that they may be
expected to be overfitted for the training data and
therefore not generalize well to new datasets. With
respect to selected materials, there is a strong focus
on metal oxide NMs and multi-walled carbon nano-
tubes (MWCNTs). Other materials are not sufficiently
covered so far and thus, cannot easily be assessed
with the available models. As properties by which
different material classes and materials of different
shapes can be described may differ, integrating vari-
ous types of NMs in a common model is not
straightforward.

5. Omics approaches revealing NM MoA

As described before, omics data have the potential
to support NM grouping approaches by informing
about underlying MoAs and induced AOPs. Thus,
this review also focuses on predictive models for
NM toxicity which include omics data as descriptors
as well as other omics approaches which may
potentially support NM grouping. Therefore, all
omics-based tools and approaches were searched
and below, important primary NM omics studies are
described.

Several studies have been performed to describe
the changes induced by NMs on the level of tran-
scriptomics. Various in vitro (Bajak et al. 2015;
Boyadzhiev et al. 2021; Snyder-Talkington et al.
2015) as well as in vivo (Halappanavar et al. 2015;
Chézeau et al. 2018; Poulsen et al. 2021; Decan et al.
2016; Gosens et al. 2021; Solorio-Rodriguez et al.
2023) approaches have been described. Although
scarcer, literature on the effects of NM treatment
on other omics layers also exists. For proteomics,
mass spectrometry gives the most comprehensive
results and is therefore frequently used nowadays
(Gallud et al. 2020; Torres et al. 2022; Billing et al.
2020; Miranda et al. 2022). Also, metabolomics
changes are addressed in multiple studies
(Bannuscher et al. 2020a; Cui et al. 2019; Chen et al.
2019). In addition, some approaches considered
multiple omics layers at the same time (Bannuscher
et al. 2020a; Karkossa et al. 2019; Nymark et al.
2015; Seidel et al. 2021; Aragoneses-Cazorla et al.
2022; Dekkers 2018). While this is not a compre-
hensive list of available studies, it is already clear,
that these several omics datasets shed light on
molecular changes induced by various NMs in vitro
and in vivo from different perspectives, using differ-
ent omics layers, techniques and methods, cell mod-
els, species and so on. The main question that
remains is, how to use this existing information to
support NM grouping. An overview of predictive
models as well as other useful approaches will be
given in the next section. In addition, the different
obstacles rendering the development of omics-based
models non-trivial are discussed.

In general, the biological model, the exposure
pattern as well as the detection method for the
respective omics layer may largely impact the result
of a study. In vivo studies naturally represent the
gold standard as they reflect the biological complex-
ity present in animals and can inform about
long-term effects. Depending on the use of the NM
under study different exposure scenarios may be
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most relevant. For occupational exposure, the inha-
lation route is frequently considered to be most
relevant. For medical applications, direct injection of
the NMs may also be important. Within one expo-
sure route, the actual exposure scenario might also
impact the results. As an example, studies targeting
the inhalative route of exposure may be performed
using inhalation, instillation or pharyngeal aspiration
exposure as well as single or repeated doses. While
repeated doses in an inhalation setting may reflect
the natural occupational exposure more closely,
other methods like instillation have the advantage
of better control of the actual delivered amounts of
particles (Kinaret et al. 2017a).

While in vivo approaches may yield highly valu-
able results, they are time- and cost-intensive and
require ethical approval for each study performed.
Therefore, avoiding and replacing in vivo methods
whenever possible has been a major endeavor in
the past years. In vitro methods form one important
pillar in this replacement. Naturally in vitro models
can only reflect complex biological processes par-
tially. However, as long as these models show high
predictivity for the true toxicological impacts, they
are still sufficient for testing purposes. This predic-
tivity may critically depend on the chosen cell
model under study. Here, cell types which are
expected to be in direct contact with the NMs like
lung macrophages may be expected to be most
predictive. Also, the carcinogenic nature of most
cell lines should be regarded as these cells might
react substantially different from healthy cells in the
organism.

Another advantage of in vitro omics studies is
that they can be performed in a high-throughput
manner and thus allow for testing of a large number
of NMs. Here, the investigation of different omics
layers may lead to information complementing each
other. Optimally, the data on different omics layers
should be derived from the very same cells in a
multi-omics setting. Time points for the different
omics layers should also be chosen carefully. Here,
as an example transcriptomics changes are expected
to happen much faster than proteomics changes
and thus the time points for sample collection
should differ. Also, the choice of analysis method
and devices used may drastically change omics
results. Here, more recent methods usually aim at
untargeted assessment of all analytes available in
a sample while older techniques focused on
pre-defined analytes in a targeted manner.

As mentioned previously, one of the major advan-
tages with respect to omics data is that almost all

NANOTOXICOLOGY (&) 383

journals require study authors to make the raw
datasets belonging to a publication available.
Therefore, a large amount of data is available in
public databases, e.g. NCBI GEO (https://www.ncbi.
nlm.nih.gov/geo/) for transcriptomic data or PRIDE
archive (https://www.ebi.ac.uk/pride/archive/) for
proteomic data. As ML models require large datasets
with respect to the number of samples, reuse of
this data to train or test models is of great value
for developing robust approaches and has fre-
quently been applied. In addition, meta-analyses of
several omics-based studies may also broaden the
understanding of molecular mechanisms and MoAs
of NMs. Predictive ML models and other useful tools
developed in the field of omics-based NM grouping
are summarized in Tables 3 and 4, respectively.

From the literature review performed here, we
identified a few models that aim to predict NM
toxicity or grouping based on omics measurements
(see Table 3). The models use different ML algo-
rithms to predict either in vitro or in vivo outcomes
or to directly suggest grouping on NMs. All models
yield high predictive performances of at least 0.7
for the validation set. To reduce the number of
descriptors, two studies use feature selection
(Yanamala et al. 2019; Fortino et al. 2022) for reduc-
ing the parameters included in the final model
thereby improving explainability.

In addition, multiple other tools have been devel-
oped or used to support omics-based analysis of
NM toxicity. Kohonen et al. (Kohonen et al. 2017)
developed a ‘predictive toxicogenomics space’ (PTGS)
tool which vyields a predictive signature for
drug-induced liver injury (DILI). This tool has also
recently been applied successfully to NMs (Kohonen
et al. 2019). Serra et al. (Serra et al. 2019) created
the INSIdE NANO tools which contextualizes tran-
scriptomic changes of NMs with those induced by
drugs, other types of chemicals and diseases. A
similar approach is followed by Bahl et al. (Bahl
et al. 2023) who developed PROTEOMAS, a harmo-
nized proteomic workflow which is applied to a case
study in a very similar fashion. In addition, tools
calculating benchmark doses (BMDs) based on
omics data are also useful to support NM toxicity
evaluation and grouping. Proposals for such tools
have been made by Halappanavar et al.
(Halappanavar et al. 2019), Gromelski et al.
(Gromelski et al. 2022) and Serra et al. (Serra et al.
2020b). Others have attempted to link physicochem-
ical properties of NMs to observations of changes
in omics data. Kinaret et al. (Kinaret et al. 2017b)
used coexpression networks and Bannuscher et al.
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(Bannuscher et al. 2020b) and Karkossa et al.

c w
- % 2 ‘@ - 2 .
22 =5 _ L—?g %f (Karkossa et al. 2019) used Weighted Gene
‘S v = 4 = > = . .
53|g5¢ n £ 58 £x Correlation Network Analysis (WGCNA) (Langfelder
us|35s 225 =3 .
go182 £ 2 °54 ég and Horvath 2008). Jagiello et al. developed a QSAR
> = [Shg=t g - . .
£ “é’ ET s ! v8g o9 models for predicting transcriptomic pathway level
[ O\ v _ c = . .
g2 S%cg g £z 8 e 2 response (Jagiello et al. 2021). A complete list of
st~ 3 c 9 o= . o . .
25225 = 822 753 identified approaches with more details is shown
Eg| 2= 3 £ i . . . .
281555 & 2825 8y in Table 4. In addition, this table also lists several
CeElgsBEY =282 E£o% ; i
sElgeassg <w&s> 214 meta-analyses which may provide useful datasets
o a a <<

for further model development or validation.

6. The value of Al for supporting NAMs

Al is a subfield of computer science in which algo-
rithms and models are developed to mimic cogni-
tive functions of human intelligence, such as
learning and problem-solving. Al can aid risk assess-
ment of NMs in various ways, especially by auto-
mating and improving commonly used processes.
The major field of classical ML mainly dealing with
pattern recognition and predictive modeling has
already been introduced in detail above. However,
this type of modeling and pattern recognition is
only one part of existing Al methods. Other appli-
cations of Al may also be relevant for risk assess-
ment of NMs and are briefly introduced below.

Study design
Biological system: BEAS-2B, Jurkat and THP-1 cells and BALF of

female C57BL/6 mice
Exposure: in vivo — oropharyngeal aspiration, repeated dose

regimen, one concentration, one time point, in vitro — one concentration,

Exposure: oropharyngeal aspiration, two doses, two time points
one time point

Eight different types of NM, certain pathways included into BN
Fe,0, nanoparticles doped with increasing amounts of cobalt, modeling

Biological system: various human cell lines
Exposure: multiple concentrations and different time points

Biological system: BALF of male C57BL/6J mice
inflammation, cytotoxicity and genotoxicity Biological system: BALF of

female C57BL/6J mice Exposure: intracheal instillation, single dose

regimen, two doses, two time points
31 industrially relevant ENMs, metals / metal oxides and carboneous

Carboneous NMs, pulmonary toxicity (BALF) in mice
training and 30% test set materials, mRNA, miRNA, proteins and protein corona, EC10, classification

based on cytotoxicity and neutrophil infiltration

6.1. Automated (meta)data extraction and linked

ks — data
© < S
£ S
4] ° ] ~ . . . .

E gl . = = One important task in risk assessment is to gather
° g 3 ¢ < all available data on the NM under study. This is a
g|_S8sgs S - . . .

g 225 %% 5 difficult and time-consuming task as data might be

“— .= c .= — .
2 2|dELSS s spread across various databases, tables or even be
v © —_ . . of . .
'; § T 3 w28 = only present in scientific publications as unstruc-
SegFE £ - |
£ gv- >§§ £ tured texts. Al may support this task in terms of
3 - S s data and text mining using automated information
_Z" gs5g £§§ retrieval and Natural Language Processing (NLP).
295 & . . . .

Gl 82¢ w 285 Different approaches for mining chemical and bio-
§ = & & logical data have been developed in the past. Swain
5 £ S B and Cole developed the ChemDataExtractor for
+ @ S - 2 © - . . . .

s I Egse S . gc automated extraction of chemical information from
= Zle .2 2<c © = ~; . . g . .

L 3l c S & . £ = cE25958 scientific literature (Swain and Cole 2016). Also
o o|.2 == SO 2L ERG o .
- =% <SERe 3EE5E2¢ tmChem (Leaman, Wei, and Lu 2015) can perform
oy = . . g
3 < T = < chemical named entity recognition from texts. In
o ~ ep .

€ e S = = addition, CD-REST (Xu et al. 2016) is able to extract

I © = . . . . .
= K —gﬂ T 5 °a chemical-induced disease relations from literature.
== ©

g § g Sg £9 S This automated data extraction may support inte-
pre} > © = o . . . . . . .
g 5 = e = gration of individual findings across multiple pub-
£ g lications which was not obvious previously. Also,
: g2 g g relationships between diseases and genes (Lever
M ~ e IS £
2 I g S et al. 2019) or proteins and drugs (Zheng et al.
] §|& 2 2 2019) could be identified by text mining approaches.
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Similar approaches may also be used in the field of
nanotoxicology. Especially, with recent develop-
ments in the field of Large Language Models (LLMs)
this field is expected to be of major relevance in
future research. Integration of such LLMs with
knowledge graphs may further support data retrieval
and storage in a structured way. This may also aid
the curation of databases with respect to toxicolog-
ical results as well as metadata. In addition, linking
different databases holding certain information on
NMs may also be facilitated by LLMs due to auto-
mated recognition of similar terms and alternative
naming. As an example, Al may be useful for linking
NM-specific information stored in databases like
eNanoMapper (Jeliazkova et al. 2015) to omics data-
bases like GEO or PRIDE in an efficient way even if
the naming schema and underlying ontologies dif-
fer. In the broader context of risk assessment, tox-
icity information may be automatically integrated
with other information such as their intended use
or information based on different exposure scenar-
ios. This may also be useful in terms of prioritization
of NMs to be investigated and ML models may be
developed specifically for this task. Additionally, if
trained well, Al models can evaluate multiple risk
factors and dependencies between them simulta-
neously. This may be of high value when evaluating
complex mixtures of NMs or chemicals.

6.2. Data curation

Data curation is of utmost importance for develop-
ing reliable approaches and models for NM toxicity
(Alves et al. 2021). However, if performed manually
this is a highly time-consuming task with numerous
challenges as shown in various projects before. Al
may provide useful tools to facilitate this task
(Martin et al. 2023). Here, anomaly detection is one
of the most well-known information enrichment
techniques which enables identification of outliers
or patterns differing from the rest of the data in an
automated way. Suitable models may significantly
speed-up the identification of inconsistencies in the
data. In addition, NLP may also improve the detec-
tion of data gaps in registration dossiers for NMs
on the market in the context of regulatory process
optimization by automated screening strategies. At
the same time, recommendations based on histor-
ical data may automatically be generated. In addi-
tion to advantages in time consumption, Al methods
are also less prone to errors compared to humans
processing large amounts of data, given that the
input data is of high quality. While not every

published study can be considered as high quality,
Al methods can directly support the identification
of quality issues and assess the data quality.
Anomaly detection is one very prominent example
of data quality checks and is frequently supported
by computational tools like Isolation Forests (Liu
et al. 2008) or autoencoders (Shvetsova et al. 2021).

6.3. Image analysis

Another field which provides great opportunities
for the application of Al is the field of image anal-
ysis. Automated image analysis may be enabled by
deep learning approaches like convolutional neural
networks. An example of such an approach has
been provided by Aversa et al. (Aversa et al. 2018)
who automatically identified NMs in Transmission
Electron Microscopy/Scanning Electron Microscope
images and derived their size and number. In addi-
tion, Karatzas et al. (2020) used deep learning mod-
els to predict the effects of NMs on Daphnia magna.
Similar approaches may also be derived from videos
instead of images. However, the main challenge for
image recognition is that large datasets need to be
labeled before training the model.

6.4. Support during omics data analysis

Omics data are especially useful in the context of
Al as usually many datasets are publicly available
and, in addition, integration of NM-specific data
with other chemicals or traits is comparatively easy.
Thus, they allow to obtain more comprehensive
insights into the underlying biological consequences
of NM treatment. One of the most common appli-
cations of Al to omics data is the identification of
potential biomarkers (Michelhaugh and Januzzi
2022). LLMs, in turn, could also support the inter-
pretation of the identified biomarkers by quickly
searching for existing literature and extracting rel-
evant information and context. Similarly, one may
also elucidate information on perturbed molecular
pathways, affected targets or common patterns
induced by treatment with different NMs. These
developments are supported by the fact that LLMs
like chatGPT can access databases such as GenBank,
Ensembl and Gene Ontology, KEGG, Reactome, GEO
or ArrayExpress thereby directly being able to con-
nect the various information stored in these
resources (Ng et al. 2023). The integration across
different omics layers is another field which may be
supported by Al. Commonly, ML and Deep Learning



algorithms are applied in the context of multi-omics
integration (Picard et al. 2021; Biswas and Chakrabarti
2020). In predictive ML models, omics data may also
be used to infer links between physicochemical
properties, molecular changes and toxicity which
may support regulatory decision making or SSbD
strategies. Especially, explainability is an important
area of research allowing for new insights into out-
comes of Al models thereby probably enhancing
their acceptance in the field of toxicology (Santorsola
and Lescai 2023).

Apart from all these advantages, Al models are
highly dependent on the quality and amount of
underlying data. Training Al models requires large
datasets of high-quality data which are relevant for
the studied question and are not subject to biases.
One important limiting factor is data availability.
Therefore, the implementation of the FAIR (findable,
accessible, interoperable and reusable) principles is
a key factor in the development of reliable Al mod-
els (Jeliazkova et al. 2021).

7. Remaining challenges and future
requirements

7.1. Data availability

The first and most critical challenge in developing
robust NM grouping frameworks is the limited avail-
ability of data. Any grouping approach can only be
generalizable to different kinds of NMs if it was
developed based on NMs belonging to different
classes and property combinations. This requires
many datasets to be available and to be comparable
to each other in a way that they can be integrated.
Especially, ML models can only make robust predic-
tions if they have been trained on large sets of data
containing as much variability as possible (Duan,
Edwards, and Dwivedi 2019). Although
high-throughput omics technologies are facilitating
the generation of ever larger training data sets even
by academic researchers, no single project will be
able to generate sufficiently extensive datasets, and
data reuse is the only option. In order to allow
proper data reuse, the FAIR data principles (Jeliazkova
et al. 2021; Wilkinson et al. 2016) should be con-
sidered when publishing any results. Briefly, the
principles refer to e.g. clear and harmonized use of
persistent identifiers, and that data as well as cor-
responding metadata can easily be found by both
humans and machines at the same time. Data
should also be accessible, either openly or through
means of authorization or authentication depending
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on the need for restriction or not. Furthermore, data
should be interoperable in order to allow for inte-
gration across highly diverse data sets. Overall, the
principles guide in terms of making data reusable
in the sense that descriptions of the data and meta-
data are sufficiently detailed to allow for reproduc-
ibility, automated assessments of, for example, data
quality and large-scale integration allowing for novel
interpretation opportunities.

7.2. Unique identification of NMs

Another central question in the case of NMs, which
is directly related to the FAIR data principles, is
how to uniquely identify a specific NM. Each NM
has a multitude of different physicochemical prop-
erties which may also change during their lifecy-
cle. Small changes in few of these properties may
have large impacts on the toxicity outcome. Even
for benchmark materials, variations may occur if
they are obtained from different batches. Therefore,
it is important to know exactly which NF was stud-
ied in a certain experiment in order to be able to
interpret and reuse data. Due to the complexity
of NMs, this is, however, not straightforward. Some
attempts have been made to structure the nomen-
clature in such a way that each NM can be
uniquely identified, e.g. the NInChl (Lynch et al.
2020) or labeled with a unique identifier even to
the level of new batches, e.g. the European
Materials Registry (van Rijn et al. 2022). These first
approaches will have to be fine-tuned in the
future and, importantly, also must be established
within the community such that this information
will be provided along with published data.

7.3. Reliability of data

Reliability of studies on NMs is another important
factor. The main challenge for NMs is their handling
during experiments. Especially, dispersion stability is
a major issue as usually NMs are highly reactive and
thus tend to agglomerate or interact with compo-
nents in their surrounding environment like proteins
from the medium they are dispersed in. The best
way of dispersing NMs is still a matter of debate and
thus is handled differently among researchers. In
addition, there are no standardized ways on how to
perform certain measurements of physicochemical
properties or toxicity assays. Many of the OECD test
guidelines are not yet adapted for NMs (Rasmussen
et al. 2019; Bleeker 2023). For some of the
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toxicological assays, interferences of the assays with
the tested NMs may occur and suitable replacements
are not always available at the time being. All these
uncertainties, missing adaptations to NMs and lacking
standardizations lead to high variability of the result-
ing measurements and contradictory results in exist-
ing literature and renders integration of results from
different studies a difficult task. In addition, only few
NMs have been tested in in vivo studies and thus
adapting NAMs such that they reflect the in vivo
situation is not trivial.

In silico methods critically depend on data quality
of the underlying experimental data. While especially
ML models are capable of capturing very complex
relations and interactions, they can, by definition, not
be better than the underlying data. Thus, if the
experimental results are not reliable, also developed
models cannot be of high quality. Instead, data with
low technical error levels allow for models which can
reliably detect underlying patterns in the data.
Quality criteria for NM experimental data have been
introduced (Marchese Robinson et al. 2016;
Comandella et al. 2020; Basei et al. 2022; Shao,
Beronius, and Nymark 2023) and can guide scientists
as well as modelers in judging the reliability of exper-
imental data and thus allowing for subsequent robust
model development.

7.4. Standardization and regulatory acceptance
of omics data

Some of the uncertainties induced by grouping based
on physicochemical properties and toxicity data alone
can be overcome by adding omics data as these add
an additional layer of mechanistic understanding.
However, omics data often lack sufficient comparability.
This is mainly because different measurement devices
and analysis pipelines are in use. Therefore, also in the
case of omics data harmonization and standardization
of data reporting and analysis workflows are of utmost
importance. The transcriptomic (OECD 2021a) and
metabolomic (OECD 2021b) reporting frameworks
developed by the OECD are highly valuable tools in
this context. These frameworks define certain informa-
tion that needs to be provided for transcriptomic and
metabolomic experiments thereby supporting the
implementation of the FAIR data principles.

7.5. Obtaining robust models

Finally, the question on how to combine and com-
pare NM-related data in order to obtain robust
models is another important aspect for grouping of

NMs. Here, different aspects need to be taken into
consideration: 1) Different measures of similarity
exist and can be applied. A number of tools for
quantifying similarity between NMs were recently
compared by Jeliazkova et al. (Jeliazkova et al.
2022b) However, the different measures have dif-
ferent advantages and disadvantages and may even-
tually lead to different results. The use of
high-dimensional omics datasets may even pose
additional challenges in this regard; 2) Instead of
focusing solely on NMs, integration with other more
extensively studied effects like those from drugs,
other types of chemicals or diseases may be sup-
porting the acceptance of a certain grouping
hypothesis as they may provide additional insights.
While this is complicated with regards to physico-
chemical properties as those may be very different
between NMs and other traits, on the level of omics
data this approach seems to be reasonable. ML
models like those based on transfer learning may
be very valuable in this context; 3) Al in general is
expected to form an important pillar in the gener-
ation of robust models as it will not be feasible to
search, evaluate and integrate the huge and
ever-increasing amount of data available manually;
and 4) Once ML models have been developed on
well-standardized data and methods, extensive val-
idation is indispensable. The quality of a developed
model may also be assessed based on certain cri-
teria. For QSAR models, the OECD has published
recommendations for determining the quality of
developed models (OECD 2014b) as well as a cor-
responding QSAR assessment framework (OECD
2023). Such evaluation criteria are urgently needed
in order to guarantee the use of high-quality mod-
els. These evaluation criteria may be used or adapted
for more general ML and omics-based approaches
to assess their robustness.

8. Conclusion
8.1. ML Models for NM grouping

ML is a valuable tool supporting NM grouping.
Especially, the ability to extract the most important
parameters describing toxicity in an automated,
objective fashion is of great use. The extracted prop-
erties can then be used to determine the similarity
of NMs. ML models can aid NM grouping approaches
in several ways: 1) ML models are able to derive
information and patterns from complex and
high-dimensional datasets which cannot be easily
detected by human inspection. Thus, they may



capture more complex interactions between physi-
cal, chemical, and biological properties and can
potentially enable more accurate classification and
grouping of NMs; 2) ML models can predict the
behavior of NMs under different conditions which
may reduce time and cost when assessing safety,
toxicity, and environmental impact of NMs and may
guide SSbD approaches; 3) ML models are very time
and cost efficient. Once a model is trained, incoming
data for new NMs can usually be processed very
quickly; and 4) ML can also aid the discovery of
new properties or applications of NMs by identifying
common patterns or correlations in large datasets.
In addition, combining supervised and unsupervised
approaches may also be important. While the pre-
diction task of models is usually based on labeled
data and supervised approaches, the advantage of
unsupervised methods is that they can also use the
large pool of unlabeled data to search for patterns
or reduce dimensionality. As dataset size is of high
relevance with respect to developing robust ML
models with a large applicability domain, this is a
very useful and recommended strategy.

8.2. Omics for NM grouping

Usually, NM grouping approaches are initially based
on measured physicochemical properties or some-
times calculated descriptors. The advantage of
directly linking physicochemical properties with
toxicity is that one obtains information on how
NMs need to be manipulated to make them safer,
e.g. in SSbD approaches. However, limitations with
respect to the generalizability and applicability
domain have frequently been discussed and can
also be observed from the different models pre-
sented in this review. This is because the impor-
tance of certain properties largely varies with the
material types and shapes under study. Also, sim-
ilar effects may be obtained from NMs with very
different physicochemical properties. Omics
approaches are very well suited to overcome these
limitations as they yield additional mechanistic
insights which can support NM grouping.
Nevertheless, there are a few challenges which
need to be overcome in order to successfully inte-
grate omics results into NM grouping approaches.
Especially, FAIRification of NM omics data, harmo-
nization and standardization of measurements and
analyses workflows, the definition of similarity and
validation of findings are major fields in which
improvement is still required in order to achieve
robust models and regulatory acceptance. Once
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these hurdles are successfully tackled, omics
approaches are a very promising source of infor-
mation for supporting NM grouping. This is con-
firmed by the first approaches which obtained very
good predictive performance when including omics
data in the prediction models for NM toxicity.
Thereby, omics approaches hold a number of ben-
efits for NM grouping approaches: 1) Omics data
provide detailed information about biological
effects and interactions of NMs. This may aid the
formulation and testing of a grouping hypothesis
and thus support regulatory bodies in making
informed decisions regarding the safety of NM; 2)
While grouping approaches based on physicochem-
ical properties suffer from the fact that these prop-
erties may change depending on their surrounding
medium as well as over time, omics provide a more
direct read-out of the actual state of the NM that
was seen by the cells. In combination with ML,
patterns and relationships not evident from tradi-
tional analysis methods may be detected; and 3)
If well performed and analyzed, omics experiments
are directly comparable among studies and thus
well suited for meta-analyses. This does not only
hold true within studies on different NMs but
instead meta-analyses including other traits like
drugs, other types of chemicals and so on are also
possible. The fact that a huge number of such
omics datasets is publicly available including raw
data as well as metadata, is very promising for the
implementation of robust ML models, whose per-
formance largely depends on the amount of avail-
able data.

8.3. Al for NM grouping

Al in general will be unavoidable in the context of
developing reliable grouping approaches to cope
with the wealth of information available. The com-
plexity of the task of finding suitable NAMs for NM
toxicity assessment leads to a high number of
potential applications of different Al methods.
Especially NLP is expected to have a great influence
on future data processing and retrieval. The follow-
ing tasks have high potential for support by NLP:
(1) automated review and data extraction from sci-
entific literature which may also include automated
generation of databases; (2) finding patterns, trends
and inconsistencies in research papers or datasets;
(3) standardization of terminologies; (4) compliance
of research documents with regulatory standards;
and (5) automated annotation and generation of
metadata within databases. However, while Al may
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provide very helpful tools for obtaining information
in an efficient and objective manner, human judg-
ment will be of utmost importance and should not
be underestimated. This may especially be import-
ant in terms of plausibility considerations, contex-
tual interpretation, decision making, quality checks
or results with high uncertainties.

8.4. Recommendations for future research
investment

In order to implement ML and omics techniques
successfully in the process of NM grouping, stan-
dardization of test methods including dispersion
protocols and quality assessment followed by appro-
priate data curation of produced data are urgently
needed in order to allow comparison between
results from different studies. In line with that, raw
data should be made available to the community
once they are published and they should be accom-
panied by sufficient metadata. This may be sup-
ported by further refinement of file and model
sharing formats, ontologies, terminologies and data
quality assessment tools specific for the needs in
the field of NMs. Along these lines, it is also of high
relevance to find a solution for unambiguous nam-
ing of NMs which allows direct comparison of the
data. New developments in Al, especially in the field
of LLMs can aid the curation and linkage of existing
databases. More reliable and comparable data will
automatically support the implementation of more
robust ML models with a larger applicability domain.
At the same time, it will be necessary to enhance
the explainability of ML models in order to derive
a grouping hypothesis that can also be tested for
validation purposes. Here, ML algorithms need to
be explored and adjusted with respect to methods
and insights that allow for interpretation of the out-
come. While it is important to increase the explain-
ability of the model itself, also unraveling the
underlying MoA will support the hypothesis formu-
lation. Here, more omics studies on NMs and
meta-analyses will be highly useful for extracting
predictive signatures that can be used in hazard
assessment. Once predictive signatures and thus
relevant transcripts, proteins or metabolites have
been identified, targeted testing of only these enti-
ties will be possible allowing for high-throughput
screening.
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