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ABSTRACT
Nanomaterials (NMs) offer plenty of novel functionalities. Moreover, their physicochemical 
properties can be fine-tuned to meet the needs of specific applications, leading to virtually 
unlimited numbers of NM variants. Hence, efficient hazard and risk assessment strategies building 
on New Approach Methodologies (NAMs) become indispensable. Indeed, the design, the 
development and implementation of NAMs has been a major topic in a substantial number of 
research projects. One of the promising strategies that can help to deal with the high number of 
NMs variants is grouping and read-across. Based on demonstrated structural and physicochemical 
similarity, NMs can be grouped and assessed together. Within an established NM group, read-across 
may be performed to fill in data gaps for data-poor variants using existing data for NMs within 
the group. Establishing a group requires a sound justification, usually based on a grouping 
hypothesis that links specific physicochemical properties to well-defined hazard endpoints. 
However, for NMs these interrelationships are only beginning to be understood. The aim of this 
review is to demonstrate the power of bioinformatics with a specific focus on Machine Learning 
(ML) approaches to unravel the NM Modes-of-Action (MoA) and identify the properties that are 
relevant to specific hazards, in support of grouping strategies. This review emphasizes the 
following messages: 1) ML supports identification of the most relevant properties contributing to 
specific hazards; 2) ML supports analysis of large omics datasets and identification of MoA 
patterns in support of hypothesis formulation in grouping approaches; 3) omics approaches are 
useful for shifting away from consideration of single endpoints towards a more mechanistic 
understanding across multiple endpoints gained from one experiment; and 4) approaches from 
other fields of Artificial Intelligence (AI) like Natural Language Processing or image analysis may 
support automated extraction and interlinkage of information related to NM toxicity. Here, 
existing ML models for predicting NM toxicity and for analyzing omics data in support of NM 
grouping are reviewed. Various challenges related to building robust models in the field of 
nanotoxicology exist and are also discussed.

1.  Introduction

Engineering physicochemical properties of nanoma-
terials (NMs) such as size, morphology or surface 
chemistries has become common practice in order 
to meet the needs of specific applications. This has 
resulted in a large variety and a steadily increasing 
number of different NMs or nanoforms (NFs), as 
defined in specific regulatory frameworks (EC 2006). 
However, adjusting NM physicochemical properties 
does not only impact their desired functionalities but 

the fine-tuning also influences their original or 
expected behavior in a biological milieu including, 
their uptake by cells, biodistribution, dissolution rate 
and/or toxicity to humans or the environment, and 
more. To overcome the need to fully characterize 
each and every NM variant for all possible toxicolog-
ical outcomes, the European chemicals legislation 
REACH (EC 2006) allows for grouping and read-across, 
to either justify waiving specific tests or to fill in 
data gaps.
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For chemicals, grouping is well established as a 
‘general approach for considering more than one 
chemical at the same time’ (OECD 2014a; ECHA 
2008). The idea behind grouping approaches is that 
chemicals which are similar enough with respect to 
certain criteria (e.g. structural, physicochemical prop-
erties, etc.) can be considered as a group. Chemicals 
within one group are then expected to show similar 
(eco-)toxicological and/or environmental fate behav-
ior. Within this group, data gaps on toxicological 
behavior for a certain member of the group can 
therefore be filled by read-across using information 
from the other members in the group. In general, 
grouping may support risk assessment as well as 
Safe(r)-and-Sustainable-by-Design (SSbD) approaches. 
Groups are established initially on the basis of struc-
tural similarity, which can be based on various prin-
ciples such as common functional groups, precursors, 
breakdown products or a constant incremental 
change of the properties of interest across the 
group (OECD 2014a; ECHA 2017). However, it then 
has to be demonstrated that these structural simi-
larities result in a similar fate and/or (eco-)toxicity. 
Thus, knowledge of a common toxic mechanism or 
Mode-of-Action (MoA) can strongly facilitate group-
ing, since grouping always requires a proper scien-
tific justification which is mainly supported by 
establishing a link between specific properties and 
the toxicological endpoint of interest. In addition, 
grouping is endpoint-specific meaning that group 
membership may vary depending on which toxicity 
endpoint is considered.

In the last decade, several grouping frameworks 
have been developed for NMs, e.g. the MARINA 
grouping and read-across approach (Oomen et  al. 
2015) or the DF4nano Grouping Framework (Arts 
et  al. 2015), which are comprehensively summarized 
in Oomen et  al. (Oomen et  al. 2018) and Giusti et  al. 
(Giusti et  al. 2019) The most recent and compre-
hensive framework is the GRACIOUS (Stone et  al. 
2020) grouping framework. Additional insights into 
NM grouping in the context of the EU chemicals 
legislation are detailed in Mech et  al. (Mech et  al. 
2019) The most recent GRACIOUS framework is 
based on a hypothesis-driven approach. It proposes 
several grouping hypotheses, which link specific 
physicochemical properties with specific fates and/
or toxicities, tested the hypotheses in case studies 
(Ag Seleci et  al. 2022; Keller et  al. 2021; Ruggiero 
et  al. 2022; Jeliazkova et  al. 2022a; Cross et  al. 2022; 
Song et  al. 2022) and lastly, offers guiding principles 
to support users to formulate their own grouping 
hypotheses (Murphy et  al. 2023).

Nevertheless, grouping of NMs remains a chal-
lenge. In particular, unraveling relationships between 
specific physicochemical properties and toxicities is 
not trivial due to the large panel of partially inter-
dependent physicochemical properties that are 
needed to describe a single NM (Lynch, Weiss, and 
Valsami-Jones 2014). The number-based particle size 
distribution, surface functionalization or treatment, 
shape or morphology as well as surface area are 
certainly the most central ones (Cosnier et  al. 2021; 
Poulsen et  al. 2016). Dissolution rate, state of 
agglomeration/aggregation and surface reactivity 
have also been shown to be of high relevance (EC 
2018; Gutierrez et al. 2023). However, plenty of other 
NM properties exist that are not tested and, several 
of the NM properties are polydisperse already after 
production and additionally have the potential to 
change during the life cycle, depending on the envi-
ronment/biological medium in which they are sus-
pended or incorporated. This renders the 
physicochemical characterization of NMs both in 
their dry state and as applied, a complex task. 
Overall, identifying which physicochemical parame-
ters are driving toxicity remains the key challenge 
in NM grouping (Ribeiro et  al. 2017; Drasler 
et  al. 2017).

Omics approaches are a very promising tool 
which have already frequently been applied for 
chemicals including NMs. Different omics layers can 
be investigated, e.g. levels of gene transcription 
(transcriptomics), protein abundances (proteomics) 
or levels of small molecule metabolites (metabolo-
mics). Among them, transcriptomics is by far the 
most studied omics level for describing the molec-
ular changes induced by NMs. This is mainly due 
to the fact that transcriptomics technologies are 
highly advanced, the evaluation is well standardized 
and interpretation of the results is relatively straight-
forward due to the well-studied and well-annotated 
state of this particular level of biological organiza-
tion (Kinaret et  al. 2020; Federico et  al. 2020; Serra 
et  al. 2020a) and well-established tools. On the 
other hand, while proteomics or metabolomics are 
closer to the actual phenotype, indicating the 
potential for more direct causal association with the 
adverse outcome (AO), i.e. endpoint of interest, they 
are more complex and do not at present have stan-
dardized protocols for the analysis and interpreta-
tion of data. The OECD reporting frameworks have 
been established for both transcriptomics (OECD 
2021a) and metabolomics (OECD 2021b); however, 
standardized evaluation and interpretation for 
metabolomics and proteomics is still lagging behind. 
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While for now, it is possible to individually assess 
and report the single omics endpoints (transcrip-
tomics or metabolomics or proteomics), their com-
bined evaluation, which may be important to obtain 
a holistic view of the biological response to an 
exposure remains difficult. Thus, developing models 
that are based on omics data is also consistent with 
the major shift away from pure consideration of 
single endpoints toward a more mechanistic under-
standing which can be observed within the field of 
toxicology. In general, omics approaches yield the 
advantage that multiple endpoints are considered 
at the same time as a whole panel of cellular 
changes is measured in one single experiment, 
allowing for investigation of dependencies between 
events and endpoints.

Within NM experiments, usually omics data for a 
few materials are obtained and analyzed subse-
quently (Ma et  al. 2023; Nguyen and Falagan-Lotsch 
2023). While this provides useful insights into vari-
ous biological changes in that specific experiment, 
it is difficult to derive general patterns and to 
extract which changes are most relevant in terms 
of grouping NMs with respect to a certain endpoint. 
Especially, the high-dimensional setting of omics 
experiments with the number of parameters being 
much larger than the number of samples is a major 
challenge. Here, meta-analyses may be very useful 
to counterbalance this situation. Due to data sharing 
rules in the community and corresponding journals, 
huge databases of publicly available datasets exist 
for different omics levels like the National Center 
for Biotechnology Information Gene Expression 
Omnibus (NCBI GEO) (Edgar, Domrachev, and Lash 
2002) for transcriptomics or PROteomic IDEntification 
(PRIDE) database (Perez-Riverol et  al. 2021) for pro-
teomics. While these datasets cover a wide range 
of studied effects such as those cause by drugs, 
other types of chemicals or diseases, omics datasets 
should theoretically allow integration across those 
effects. Such meta-analyses may be beneficial for 
the detection of broad biological patterns as they 
are derived from a greater knowledge base and 
noise occurring in single studies may be can-
celed out.

Machine learning (ML), a subfield of Artificial 
Intelligence (AI), may be highly valuable for address-
ing this task. The greatest advantage of ML is that 
such models are able to automatically learn patterns 
in large datasets and derive associated predictions. 
Generally, data to be modeled is described in a 
feature vector or matrix. This comprises values for 
measured input features like physicochemical 

properties or others. Additionally, a respective out-
come variable, describing for instance a certain tox-
icity outcome can be linked to the input data. ML 
algorithms range from classical linear or logistic 
regression models to more complex ones such as 
Random Forests (RFs) or Support Vector Machines 
(SVMs) and Deep Learning models like Neural 
Networks (NNs). The choice of ML algorithm used 
in a study should be based on the amount and 
complexity of the available data as well as the spe-
cific goal in order to obtain robust trustworthy 
results. In an optimal dataset for the development 
of ML models, the number of samples should be 
much larger than the number of features describing 
these samples. However, in biological settings this 
is rarely ever the case. Therefore, the main goal for 
implementing useful ML models is to find the right 
balance between model complexity and generaliz-
ability – thus, avoiding overfitting. Model complexity 
means that a model is complex enough to be able 
to describe a set of so-called training data, but at 
the same time not too complex in order to be able 
to predict outcomes for previously unseen test data 
as well. Also, there is usually a tradeoff between 
flexibility/power and interpretability/inference capac-
ity of a ML method (Gareth James, Hastie, and 
Tibshirani 2021; Gareth James et  al. 2023). This 
means that simplest methods are also the most 
easily interpretable ones, such as linear regression 
(and variants such as elastic net regression) or deci-
sion trees. More complex methods such as RF and 
SVMs are significantly less interpretable, and the 
least interpretable models are NNs and the multi-
layered deep neural networks (deep learning mod-
els). Explainable AI (XAI) is a subset of AI and ML 
techniques focused on making AI systems more 
understandable, transparent, and interpretable for 
humans. This has implications also for regulatory 
toxicology, as models should be maximally interpre-
table for reasons of transparency and governance.

Again, ML is optimally suited to aid the analysis 
of omics data for several reasons. Omics datasets 
are high-dimensional and rich in describing many 
cellular alterations within each single measurement, 
in which patterns and relationships can be detected 
and that may not be visible using traditional statis-
tical methods. However, the high dimensionality of 
the data can also be challenging. Here, moving from 
datasets limited to single experiment or materials 
toward integration of various datasets in a 
meta-analysis setting may be beneficial. In such 
cases, ML is well suited to handle the complexity 
of the datasets, unraveling the hidden interactions 
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or dependencies between molecular components. 
ML can also be used to automatically select the 
most relevant features such as transcripts, proteins 
or metabolites related to specific molecular events 
or key event (KE), thereby reducing the dimension-
ality and improving the interpretability, resulting in 
identification of potential biomarkers. ML can also 
directly be used for omics-driven predictive model-
ing. Additionally, meta-analyses are great tools for 
handling noise in the data and distinguishing true 
from random signals (Cervantes-Gracia, Chahwan, 
and Husi 2022). ML can support integration of mul-
tiple omics layers. Finally, a great advantage of ML 
methods is that they can easily be adapted by 
re-training once new data become available. Thus, 
ML models are well suited for reducing the com-
plexity of analysis of omics datasets, revealing the 
important biological traits perturbed after exposure. 
Moving forward, once NMs with similar MoAs have 
been identified, one may investigate corresponding 
similarities and differences in physicochemical prop-
erties and elucidate the most relevant properties 
for formulating a grouping hypothesis, and also to 
provide design principles for NMs with reduced haz-
ards. Advances in high-throughput transcriptomics 
facilitate the creation of large and uniform datasets 
that are ideally suited for ML and grouping appli-
cations as the available technologies reduce the 
cost of transcriptome profiling by up to 10- to 
20-fold (Ye et  al. 2018). Coupling together omics 
and high-throughput screening technologies in a 
tiered approach increases the granularity and infor-
mativeness of the data even further (Grafström et al. 

2015). XAI may also facilitates MoA discovery as it 
helps to interpret the decision made by ML models. 
In the context of transcriptomics-derived MoAs, 
tools need to be developed, in part, to conform to 
XAI principles while maximizing predictive ability 
(Boyadzhiev et  al. 2021).

Some recent reviews have summarized ML mod-
els in the NM field (Stone et  al. 2020; Lamon et  al. 
2019; Basei et  al. 2019; Furxhi et  al. 2020). However, 
they have not or only scarcely considered the 
potential of omics data in the context of NM group-
ing. The aim of this review is to provide an over-
view of existing ML models that enable complex 
data integration and analysis in support of NM 
grouping and to shed light on how omics data may 
be used in conjunction with ML models in the 
development of reliable grouping frameworks. The 
review focuses only on hazard endpoints which are 
considered relevant under REACH (see Table 1) for 
human toxicity. ML models for other endpoints like 
cytotoxicity or ecotoxicity as well as those predict-
ing NM uptake or protein corona formation are 
excluded from this review.

2.  Relevant hazard endpoints

Grouping allows waiving of tests or filling the data 
gaps related to a target substance by using data 
from a previously tested source substance. In the 
European Union, the most important overarching 
regulation for chemicals is REACH. The Annexes VI 
to XI of the REACH regulation (EC 2006) specify 
which information the manufacturers need to 

Table 1.  Relevant endpoints for human health across multiple legislations (according to Jagiello et  al. 2021, with 
modifications).
Endpoint Description

Acute toxicity Adverse effects after single dose, multiple doses given within 24 hours or inhalation exposure of 4 hours
Skin corrosion/ irritation Irreversible (corrosion) or reversible (irritation) damage to the skin
Serious eye damage/ irritation Serious eye damage: tissue damage in the eye, or serious physical decay of vision, which is not fully 

reversible within 21 days
Eye irritation: changes in the eye, which are fully reversible within 21  days

Skin sensitization Allergic response following skin contact
Mutagenicity Alteration of the structure, information content or segregation of DNA
Carcinogenicity Induction of cancer or increase of its incidence
Reproductive toxicity Adverse effects on sexual function and fertility in adult males and females or developmental toxicity in the 

offspring (before or after birth)
Specific target organ toxicity (STOT) –  

single exposure
Specific, non-lethal target organ toxicity after single exposure

STOT – repeated exposure Specific, non-lethal target organ toxicity after repeated exposure
Neurotoxicity Disruption of the nervous system
Endocrine disruption Adverse effects connected to endocrine system like developmental malformations, disorders of immune and 

nervous systems functions or increased cancer risk
Hypersensitivity / food intolerance Adverse reaction to food including or excluding the immune system
Immunotoxicity Adverse effects on the structure and function of the immune system
Phototoxicity Toxic response after exposure to environmental light
Hypersensitivity/ Food intolerance Adverse reaction of the digestive system to a substance
Toxicokinetics Behavior of a substance within the body according to ADME (absorption, distribution, metabolism and 

excretion)
Water solubility or dissolution rate in 

relevant biological media
Amount of substance that dissolves in water and relevant media like cell culture media or body fluids in a 

certain time and at a specific temperature
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provide when registering a substance. These require-
ments are dependent on the tonnage of production 
per year. Thus, higher tonnages lead to more exten-
sive toxicological testing requirements. In order to 
tackle specific information requirements for NMs, 
the REACH annexes VI to X have been updated to 
specifically consider nano-specific information needs 
(EC 2018). In addition, work is underway to modify 
or adapt test guidelines in consideration of specific 
properties and property specific effects of NMs 
(Rasmussen et  al. 2019).

Apart from REACH, other specific legislations exist 
for chemicals with specific applications, e.g. cosmetics 
(EC, 2009a), food contact materials (EC 2004) or pes-
ticides (EC, 2009b). All these regulations consider (to 
a large extent) similar toxicological endpoints. The 
relevant endpoints for several legislations for NMs 
have also been collected in the European Union 
Observatory for NMs (EUON) report on New Approach 
Methodologies (NAMs, referring to a set of innovative 
techniques or testing strategies used in toxicology 
and risk assessment to evaluate the safety of chem-
icals) for NMs (Jagiello et  al. 2022) as well as in a 
recent publication from Bleeker et  al. (Bleeker 2023) 
which intends to support harmonization of the test-
ing requirements for NMs across EU legislations. An 
overview on relevant hazard classes for human health 
under REACH or in at least two other legislations as 
described in these documents is given in Table 1.

While for some of the above-mentioned end-
points such as skin corrosion/irritation or serious 
eye damage/irritation, NAMs are well established 
and NAM data is accepted for regulatory decision 
making, for other more complex endpoints, NAM 
development is still on-going. Although a push for 
replacing animal tests with validated NAMs is in full 
swing internationally (Schmeisser et  al. 2023), to 
date, toxicological testing for complex endpoints 
still largely relies on animal studies.

3.  NAMs and NAM frameworks

For many chemicals, and especially for NMs, the 
data for complex endpoints is very scarce and an 
increasing number of new materials is entering the 
market every year. Filling the data gaps and testing 
new materials using animal studies raises not only 
ethical concerns but is also limited with respect to 
time and cost efficiency. In addition, human rele-
vance of animal models is frequently questioned 
and the underlying toxicity mechanisms are often 
less obvious in animal models. Therefore, NAMs are 
becoming increasingly important for safety 

assessment in the light of the 3R principles for 
reducing, refining and replacing animal studies. 
Several NAMs exist and are based on in vitro, in 
chemico and in silico methods. This also includes 
high-throughput screening, allowing for testing of 
multiple chemicals at a time and high-content 
methods like omics approaches that enable com-
prehensive understanding of the underlying mech-
anisms (ECHA 2016).

While in vitro and in chemico methods are target-
ing the retrospective observation of NM toxicity, in 
silico models are able to predict potential hazards 
prior to development and testing and thus are well 
suited for SSbD approaches. Among the most fre-
quently used in silico methods are Quantitative 
Structure-Activity Relationship (QSAR) models. QSAR 
models establish quantitative relationships between 
relevant physicochemical properties of NMs and 
their biological activity. These relationships are rep-
resented by mathematical functions in terms of 
regression models. Various QSAR models have been 
introduced for NMs and have been reviewed in mul-
tiple publications (Ciura et  al. 2024; Li et  al. 2022; 
Burello 2017). However, QSARs usually show certain 
limitations. The mathematical relationship usually 
holds true for few materials or material classes only. 
This is called the applicability domain (Roy, Kar, and 
Ambure 2015). In addition, most QSAR models are 
developed for simple toxicity endpoints like cyto-
toxicity due to the fact that modeling complex end-
points sufficiently well is usually not feasible. 
However, such endpoints are typically not of regu-
latory relevance. Also, mechanistic explanations on 
how the descriptors used for QSARs development 
are related to the outcome are usually missing and 
thus explainability of such approaches is limited 
which again leads to the fact that QSARs do not 
generalize well across different material classes on 
which they have not been developed. More complex 
ML models and omics approaches are well suited 
to overcome these limitations.

One major advantage of some NAMs is that they 
allow unraveling toxicity mechanisms which may 
greatly improve hazard and risk assessment in the 
future. However, single NAMs may not be sufficient 
to describe an AO. Instead, a battery of NAMs may 
be required to sufficiently assess an AO. Therefore, 
NAM frameworks combining multiple individual 
NAMs are needed.

To date, several NAM frameworks have been 
developed. Within REACH, one of the most import-
ant alternatives relying on NAM frameworks is the 
concept of grouping and read-across. In grouping, 
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chemical similarity is assessed in terms of similarity 
of their physicochemical properties, their toxicity 
with respect to a certain endpoint as well as other 
properties which could be relevant in terms of their 
associated hazard. In case chemicals are similar with 
respect to all of these properties, they form a group. 
The main aim is to determine which physicochem-
ical properties are most relevant with respect to the 
studied endpoint such that for new chemicals, for 
which no toxicity assessment has been performed 
so far, one may conclude whether this new chemical 
is likely to belong to the established group and 
thus induce similar toxicity or not. For chemicals in 
general, grouping is already well established and 
frequently used in regulatory decision making, with 
structural similarities or common functional groups 
being some of the key parameters defining similar-
ity. In contrast, for NMs, the situation is much more 
complex and establishing reliable grouping 
approaches is not trivial. This stems from the facts 
that 1) the number of physicochemical properties 
needed to sufficiently describe a NM is much large 
and to date, no simple relationship between any 
single property and the toxicological outcomes has 
been consistently observed. This may also be due 
to the polydispersity of NM (or any other particle) 
in their properties, such that not all particles in one 
test preparation exhibit the exactly identical prop-
erties; 2) the NM physicochemical properties change 
during the lifecycle and/or in different environ-
ments; 3) other tasks such as exposure characteri-
zation and dose estimation are an issue; and 4) NMs 
interfere with some assay components, requiring 
optimization of existing methods or development 
of novel methods. All of this has resulted in incon-
sistencies in results and reporting, leading to an 
inability to generalize the observed results across 
NMs of similar properties.

For NM grouping approaches, one of the most 
critical questions is whether it is sufficient to estab-
lish them on the level of intrinsic physicochemical 
properties like chemical composition, primary par-
ticle size or morphology in combination with the 
toxicity data. Predictive models and grouping 
approaches based on intrinsic physicochemical 
properties describing the chemical and physical 
structures have two major advantages: 1) they can 
mostly be controlled directly during the production 
process and 2) many of the intrinsic properties can 
be measured more easily compared to extrinsic 
properties, which often require more complex meth-
odologies, which are currently not well standardized. 
However, intrinsic physicochemical properties alone 

often seem to be insufficient for determining 
whether or not NMs behave similar with respect to 
a certain toxicity endpoint in a reliable manner. 
Instead, extrinsic properties like hydrodynamic diam-
eter in relevant media, zeta potential or the forma-
tion of a protein corona, may be better suited for 
reflecting the actual biological activity of NMs. Thus, 
approaches based on such extrinsic properties may 
be superior compared to approaches based on sim-
ple physicochemical properties (Wohlleben, Mehling, 
and Landsiedel 2023) and they need to be derived 
to separate distinct NM hazard groups sufficiently 
well. However, existing grouping approaches of NMs 
are still not perfect and intrinsic as well as extrinsic 
physicochemical properties suffer from the fact that 
the applicability domain usually restricts models to 
very specific subsets of NMs. Due to all these rea-
sons, NM grouping may be viewed as a complex 
endeavor and further efforts are needed to develop 
effective grouping strategies.

Instead of purely relying on overall potency 
read-outs from in vivo or in vitro testing, informa-
tion on common MoAs or toxicity mechanisms 
may greatly advance NM grouping approaches and 
can help to justify an existing grouping hypothesis 
(OECD 2014a). Knowledge on MoAs may also aid 
some of the aforementioned challenges with 
implementing reliable NM grouping approaches. 
Especially, MoAs can provide qualitative informa-
tion on whether two NMs induce the same kind 
of changes even if the actual quantitative values 
are not directly comparable due to challenges in 
dosimetry and dispersion. In addition, they dras-
tically reduce the characterization efforts as 
instead of measuring a huge number of physico-
chemical properties, one only needs to perform 
very few omics measurements. These measure-
ments are also directly related to induced changes 
while for the physicochemical properties if and 
how they are related to toxicity is not clear. Omics 
measurements may also be helpful to separate 
different MoAs and thus solve the difficulties for 
NM grouping that result from the fact that some 
AOs in vivo or in vitro may feature different MoAs 
and in other cases, different MOAs may lead to 
the same AO. The knowledge of underlying MoAs 
can then in turn greatly advance two important 
concepts: Adverse Outcome Pathways (AOPs) and 
Integrated Approaches to Testing and Assessment 
(IATAs).

AOPs (Ankley et  al. 2010) are conceptual frame-
works which aim to causally link certain biological 
events in a sequential manner, starting from a 
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molecular initiating event (MIE), inducing multiple 
KEs and finally leading to an AO. The MIE thereby 
represents the interaction of a NM with a biomole-
cule or an event after its first interaction. That is 
followed by KEs at multiple levels of biological orga-
nization that are essential to the disease progression 
and can be measured, e.g. at the cellular, tissue or 
organ level. The AO may then be one of the end-
points mentioned in Table 1. Several AOPs have been 
proposed for chemical induced toxicity and may also 
be applicable or adaptable to NMs (Halappanavar 
et  al. 2020; Gerloff et  al. 2017; Gromelski et  al. 2022; 
Nymark et  al., 2021). One such example is AOP173 
from the AOPwiki (https://aopwiki.org/aops/173) 
which describes the development of pulmonary 
fibrosis after substance interaction with pulmonary 
resident cell membrane components, which is rele-
vant to NMs (Halappanavar 2023).

Often AOPs are used as a basis to establish IATAs, 
which are frameworks for evaluating complex hazard 
endpoints by integrating multiple sources of infor-
mation for studying various aspects of the toxicity 
endpoint under consideration (Nymark et  al., 2021; 
Halappanavar et  al. 2021b). A proper understanding 
of the underlying MoA and related AOPs is import-
ant for developing reliable IATAs, as they enable 
identification of the right assays reflecting KEs to 
be tested. IATAs allow integration of the different 
assay outcomes and provide information on a 
potential hazard in a weight-of-evidence manner. 

Within an IATA, different kinds of NAMs can be 
combined.

In the following sections, an overview of existing 
approaches based on ML and omics supporting NM 
grouping is given.

4.  ML And existing ML models for NMs

ML models are well suited for predicting outcomes 
with respect to NM toxicity and for selecting the 
most relevant descriptors influencing toxicity. In gen-
eral, supervised and unsupervised ML models, as well 
as some mixed types exist. In supervised models, the 
goal is to map labels assigned to each sample to 
variances observed in the input data. In the case of 
NM grouping, these labels are usually representing 
a toxicity endpoint, e.g. the outcome of an in vivo 
study or an in vitro assay. Depending on the nature 
of this response variable, ML models can be divided 
into regression models in which the outcome variable 
is continuous and classification models with discrete 
outcome variables. Instead, unsupervised models use 
unlabeled data and thus, only rely on variances in 
the input data and seek to find patterns therein. 
Additionally, semi-supervised methods and reinforce-
ment learning exist but are less frequently used. 
Semi-supervised ML methods combine labeled and 
unlabeled data thereby increasing the dataset size 
which can be used for training without the need for 
further labeling which might be time- or cost-intensive. 

Figure 1. O verview on common ML algorithms.

https://aopwiki.org/aops/173
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In reinforcement learning an agent learns an optimal 
strategy for choosing actions in a way that the 
reward obtained for a sequence of actions is maxi-
mized. An overview of frequently used ML algorithms 
(Gareth James, Hastie, and Tibshirani 2021; Gareth 
James et  al. 2023) is given in Figure 1.

To identify relevant studies, a search in Scopus 
using the following search query: TITLE-ABS-KEY 
((nanoparticle OR nanomaterial OR nanoparticles OR 
nanomaterials) AND (‘in silico’ OR computational OR 
‘machine learning’ OR ‘case study’) AND toxicity), was 
conducted. This search matched 988 publications 
of which 657 publications were tagged as primary 
publications (Stand: 11/2023). From these publica-
tions, those using a ML model to predict one of 
the relevant endpoints in Table 1 were identified. 
In addition, relevant studies from previous reviews 
on ML models in the NM field (Stone et  al. 2020; 
Lamon et  al. 2019; Basei et  al. 2019; Furxhi et  al. 
2020) were also added. An overview of the relevant 
approaches is provided in Table 2.

Except for one study, all identified approaches 
concentrate either on mutagenicity and genotoxicity 
or on STOT as the modeled endpoint. In addition, 
almost all models include supervised approaches. 
Most frequently, tree-based approaches, namely 
decision trees or RFs, are used to predict toxicity. 
Often, these are preceded by an unsupervised analysis 
using hierarchical clustering or Principle Component 
Analysis (PCA). Overall, the predictive performance of 
the models was found quite good (0.7 to 1.0). 
However, it is also easily visible from Table 2 that the 
number of available datasets is very small in most 
cases and usually not sufficient to build robust ML 
models. In addition to predicting toxicity outcomes, 
many studies also perform feature selection to reduce 
the model to only the most relevant descriptors. From 
Table 2, it becomes obvious that the selected descrip-
tors vary largely across studies. Thus, even though 
most models show relatively high predictive perfor-
mance, it may be expected that their applicability 
domain is rather limited and that they may be 
expected to be overfitted for the training data and 
therefore not generalize well to new datasets. With 
respect to selected materials, there is a strong focus 
on metal oxide NMs and multi-walled carbon nano-
tubes (MWCNTs). Other materials are not sufficiently 
covered so far and thus, cannot easily be assessed 
with the available models. As properties by which 
different material classes and materials of different 
shapes can be described may differ, integrating vari-
ous types of NMs in a common model is not 
straightforward.

5.  Omics approaches revealing NM MoA

As described before, omics data have the potential 
to support NM grouping approaches by informing 
about underlying MoAs and induced AOPs. Thus, 
this review also focuses on predictive models for 
NM toxicity which include omics data as descriptors 
as well as other omics approaches which may 
potentially support NM grouping. Therefore, all 
omics-based tools and approaches were searched 
and below, important primary NM omics studies are 
described.

Several studies have been performed to describe 
the changes induced by NMs on the level of tran-
scriptomics. Various in vitro (Bajak et  al. 2015; 
Boyadzhiev et  al. 2021; Snyder-Talkington et  al. 
2015) as well as in vivo (Halappanavar et  al. 2015; 
Chézeau et al. 2018; Poulsen et al. 2021; Decan et al. 
2016; Gosens et  al. 2021; Solorio-Rodriguez et  al. 
2023) approaches have been described. Although 
scarcer, literature on the effects of NM treatment 
on other omics layers also exists. For proteomics, 
mass spectrometry gives the most comprehensive 
results and is therefore frequently used nowadays 
(Gallud et  al. 2020; Torres et  al. 2022; Billing et  al. 
2020; Miranda et  al. 2022). Also, metabolomics 
changes are addressed in multiple studies 
(Bannuscher et  al. 2020a; Cui et  al. 2019; Chen et  al. 
2019). In addition, some approaches considered 
multiple omics layers at the same time (Bannuscher 
et  al. 2020a; Karkossa et  al. 2019; Nymark et  al. 
2015; Seidel et  al. 2021; Aragoneses-Cazorla et  al. 
2022; Dekkers 2018). While this is not a compre-
hensive list of available studies, it is already clear, 
that these several omics datasets shed light on 
molecular changes induced by various NMs in vitro 
and in vivo from different perspectives, using differ-
ent omics layers, techniques and methods, cell mod-
els, species and so on. The main question that 
remains is, how to use this existing information to 
support NM grouping. An overview of predictive 
models as well as other useful approaches will be 
given in the next section. In addition, the different 
obstacles rendering the development of omics-based 
models non-trivial are discussed.

In general, the biological model, the exposure 
pattern as well as the detection method for the 
respective omics layer may largely impact the result 
of a study. In vivo studies naturally represent the 
gold standard as they reflect the biological complex-
ity present in animals and can inform about 
long-term effects. Depending on the use of the NM 
under study different exposure scenarios may be 
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most relevant. For occupational exposure, the inha-
lation route is frequently considered to be most 
relevant. For medical applications, direct injection of 
the NMs may also be important. Within one expo-
sure route, the actual exposure scenario might also 
impact the results. As an example, studies targeting 
the inhalative route of exposure may be performed 
using inhalation, instillation or pharyngeal aspiration 
exposure as well as single or repeated doses. While 
repeated doses in an inhalation setting may reflect 
the natural occupational exposure more closely, 
other methods like instillation have the advantage 
of better control of the actual delivered amounts of 
particles (Kinaret et  al. 2017a).

While in vivo approaches may yield highly valu-
able results, they are time- and cost-intensive and 
require ethical approval for each study performed. 
Therefore, avoiding and replacing in vivo methods 
whenever possible has been a major endeavor in 
the past years. In vitro methods form one important 
pillar in this replacement. Naturally in vitro models 
can only reflect complex biological processes par-
tially. However, as long as these models show high 
predictivity for the true toxicological impacts, they 
are still sufficient for testing purposes. This predic-
tivity may critically depend on the chosen cell 
model under study. Here, cell types which are 
expected to be in direct contact with the NMs like 
lung macrophages may be expected to be most 
predictive. Also, the carcinogenic nature of most 
cell lines should be regarded as these cells might 
react substantially different from healthy cells in the 
organism.

Another advantage of in vitro omics studies is 
that they can be performed in a high-throughput 
manner and thus allow for testing of a large number 
of NMs. Here, the investigation of different omics 
layers may lead to information complementing each 
other. Optimally, the data on different omics layers 
should be derived from the very same cells in a 
multi-omics setting. Time points for the different 
omics layers should also be chosen carefully. Here, 
as an example transcriptomics changes are expected 
to happen much faster than proteomics changes 
and thus the time points for sample collection 
should differ. Also, the choice of analysis method 
and devices used may drastically change omics 
results. Here, more recent methods usually aim at 
untargeted assessment of all analytes available in 
a sample while older techniques focused on 
pre-defined analytes in a targeted manner.

As mentioned previously, one of the major advan-
tages with respect to omics data is that almost all 

journals require study authors to make the raw 
datasets belonging to a publication available. 
Therefore, a large amount of data is available in 
public databases, e.g. NCBI GEO (https://www.ncbi.
nlm.nih.gov/geo/) for transcriptomic data or PRIDE 
archive (https://www.ebi.ac.uk/pride/archive/) for 
proteomic data. As ML models require large datasets 
with respect to the number of samples, reuse of 
this data to train or test models is of great value 
for developing robust approaches and has fre-
quently been applied. In addition, meta-analyses of 
several omics-based studies may also broaden the 
understanding of molecular mechanisms and MoAs 
of NMs. Predictive ML models and other useful tools 
developed in the field of omics-based NM grouping 
are summarized in Tables 3 and 4, respectively.

From the literature review performed here, we 
identified a few models that aim to predict NM 
toxicity or grouping based on omics measurements 
(see Table 3). The models use different ML algo-
rithms to predict either in vitro or in vivo outcomes 
or to directly suggest grouping on NMs. All models 
yield high predictive performances of at least 0.7 
for the validation set. To reduce the number of 
descriptors, two studies use feature selection 
(Yanamala et  al. 2019; Fortino et  al. 2022) for reduc-
ing the parameters included in the final model 
thereby improving explainability.

In addition, multiple other tools have been devel-
oped or used to support omics-based analysis of 
NM toxicity. Kohonen et  al. (Kohonen et  al. 2017) 
developed a ‘predictive toxicogenomics space’ (PTGS) 
tool which yields a predictive signature for 
drug-induced liver injury (DILI). This tool has also 
recently been applied successfully to NMs (Kohonen 
et al. 2019). Serra et  al. (Serra et  al. 2019) created 
the INSIdE NANO tools which contextualizes tran-
scriptomic changes of NMs with those induced by 
drugs, other types of chemicals and diseases. A 
similar approach is followed by Bahl et  al. (Bahl 
et  al. 2023) who developed PROTEOMAS, a harmo-
nized proteomic workflow which is applied to a case 
study in a very similar fashion. In addition, tools 
calculating benchmark doses (BMDs) based on 
omics data are also useful to support NM toxicity 
evaluation and grouping. Proposals for such tools 
have been made by Halappanavar et  al. 
(Halappanavar et  al. 2019), Gromelski et  al. 
(Gromelski et  al. 2022) and Serra et  al. (Serra et  al. 
2020b). Others have attempted to link physicochem-
ical properties of NMs to observations of changes 
in omics data. Kinaret et  al. (Kinaret et  al. 2017b) 
used coexpression networks and Bannuscher et  al. M

od
el

ed
 

en
dp

oi
nt

Re
fe

re
nc

es
St

ud
y 

ty
pe

M
od

el
 t

yp
e

Fe
at

ur
e 

se
le

ct
io

n 
pe

rf
or

m
ed

Co
m

pu
ta

tio
na

l v
al

id
at

io
n 

pe
rf

or
m

ed
St

ud
y 

de
si

gn
 /

 d
at

as
et

Se
le

ct
ed

 d
es

cr
ip

to
rs

 f
or

 b
es

t 
m

od
el

Pr
ed

ic
tiv

e 
pe

rf
or

m
an

ce
 o

f 
be

st
 

m
od

el

STOT


 – 
re

pe
at

ed
 

ex
po

su
re

(G
aj

ew
ic

z 
et

 a
l. 

20
18

)
In

 v
iv

o
D

ec
is

io
n 

tr
ee

 m
od

el
Gi

ni
 im

po
rt

an
ce

Tr
ai

ni
ng

 a
nd

 t
es

t 
se

ts
, 

m
ul

tip
le

 s
pl

its
19

 N
M

, N
o 

O
bs

er
ve

d 
Ad

ve
rs

e 
Eff

ec
t 

Co
nc

en
tr

at
io

n 
(N

OA
E

C)
 f

ro
m

 
Sh

or
t-

te
rm

 I
nh

al
at

io
n 

St
ud

y 
(S

TI
S)

, 
pr

ot
ei

n 
ca

rb
on

yl
at

io
n 

an
d 

in
tr

in
si

c 
ox

id
at

iv
e 

po
te

nt
ia

l (
Fe

rr
ic

 r
ed

uc
in

g 
ab

ili
ty

 o
f 

th
e 

se
ru

m
 a

ss
ay

)

Si
ze

, s
ur

fa
ce

 a
re

a,
 p

re
se

nc
e 

of
 a

 
co

at
in

g
Ba

la
nc

ed
 a

cc
ur

ac
y 

= 
0.

8 
fo

r 
pr

ot
ei

n 
ca

rb
on

yl
at

io
n 

an
d 

1.
0 

fo
r 

in
tr

in
si

c 
ox

id
at

iv
e 

po
te

nt
ia

l

(B
ah

l e
t 

al
. 2

01
9)

In
 v

itr
o 

/ 
in

 
vi

vo
 

(W
is

ta
r 

ra
ts

)

PCA
 

w
ith

 k
N

N
, R

F
RF

E
LOOC


V

11
 N

M
 (

m
ai

nl
y 

Si
O

2)
, p

re
di

ct
ed

 
ou

tc
om

es
: m

ac
ro

ph
ag

e 
as

sa
y 

an
d 

STI
S

, c
la

ss
ifi

ca
tio

n 
in

to
 a

ct
iv

e 
an

d 
pa

ss
iv

e

Ze
ta

 p
ot

en
tia

l, 
re

do
x 

po
te

nt
ia

l a
nd

 
di

ss
ol

ut
io

n 
ra

te
Ba

la
nc

ed
 a

cc
ur

ac
y 

= 
0.

82

(B
ah

l e
t 

al
. 2

02
0)

In
 v

itr
o 

/ 
in

 
vi

vo
 

(W
is

ta
r 

ra
ts

)

Pr
ed

ic
tio

n 
m

od
el

 b
as

ed
 o

n 
m

ul
tiv

ar
ia

te
 lo

gi
st

ic
 

re
gr

es
si

on
 w

ith
 F

irt
h’

s 
bi

as
 

re
du

ct
io

n 
m

et
ho

d

Gr
ee

dy
 s

ea
rc

h
LOOC


V

14
 N

M
 fr

om
 v

ar
io

us
 m

at
er

ia
l c

la
ss

es
, 

ca
te

go
riz

at
io

n 
ba

se
d 

on
 s

ur
fa

ce
 

re
ac

tiv
ity

, p
re

di
ct

ed
 o

ut
co

m
es

: 
m

ac
ro

ph
ag

e 
as

sa
y 

an
d 

STI
S

, 
cla

ss
ifi

ca
tio

n 
in

to
 a

ct
iv

e 
an

d 
pa

ss
iv

e

Ca
rb

on
yl

at
io

n 
as

sa
y 

po
te

nt
ia

lly
 in

 
co

m
bi

na
tio

n 
w

ith
 e

ith
er

 F
er

ric
 

re
du

ci
ng

 a
bi

lit
y 

of
 t

he
 s

er
um

 
as

sa
y 

or
 e

le
ct

ro
n 

sp
in

 
re

so
na

nc
e 

as
sy

s 
w

ith
 

5,
5-

di
m

et
hy

l-1
-p

yr
ro

lin
e-

N
-o

xi
de

Ba
la

nc
ed

 a
cc

ur
ac

y 
= 

0.
89

 f
or

 t
he

 
m

ac
ro

ph
ag

e 
as

sa
y 

an
d 

0.
83

 f
or

 S
TI

S

(M
ar

vi
n 

et
 a

l. 
20

17
)

In
 v

itr
o 

/ 
in

 
vi

vo
 

(d
iff

er
en

t 
ro

de
nt

s)

Ba
ye

si
an

 n
et

w
or

k 
(n

et
w

or
k 

st
ru

ct
ur

e 
ba

se
d 

on
 e

xp
er

t 
ju

dg
m

en
t)

/
Va

lid
at

ed
 w

ith
 

in
de

pe
nd

en
t 

da
ta

M
et

al
- a

nd
 m

et
al

-o
xid

e 
NM

s, 
ba

se
d 

on
 

in
te

rn
at

io
na

l e
xp

er
t 

co
ns

ul
ta

tio
n 

an
d 

th
e 

sc
ie

nt
ifi

c 
lit

er
at

ur
e 

(e
.g

. i
n 

vi
tro

 /
 in

 v
iv

o 
da

ta
)

El
em

en
ta

l c
om

po
si

tio
n,

 s
ur

fa
ce

 
co

at
in

g,
 s

ur
fa

ce
 a

re
a,

 
ag

gr
eg

at
io

n 
an

d 
pa

rt
ic

le
 s

iz
e

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 =

 
0.

72
 fo

r 
ha

za
rd

 
po

te
nt

ia
l a

nd
 0

.7
1 

fo
r 

bi
ol

og
ica

l e
ffe

ct
(S

he
eh

an
 e

t 
al

. 
20

18
)

In
 v

itr
o 

/ 
in

 
vi

vo
 

(d
iff

er
en

t 
ro

de
nt

s)

Ba
ye

si
an

 n
et

w
or

ks
 (

co
m

bi
ne

d 
w

ith
 w

ei
gh

t-
of

-e
vi

de
nc

e 
w

ith
 M

CD
A 

(m
ul

ti-
cr

ite
ria

 
de

ci
si

on
 a

na
ly

si
s)

 
m

et
ho

do
lo

gy
)

/
Va

lid
at

ed
 w

ith
 

in
de

pe
nd

en
t 

da
ta

Se
e 

M
ar

vi
n 

et
 a

l. 
(M

ar
vi

n 
et

 a
l. 

20
17

)
Se

e 
M

ar
vi

n 
et

 a
l. 

(M
ar

vi
n 

et
 a

l. 
20

17
)

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 =

 
0.

67

(D
re

w
 e

t 
al

. 
20

17
)

In
 v

iv
o 

(d
iff

er
en

t 
ro

de
nt

s)

Do
se

-re
sp

on
se

-m
od

el
in

g,
 

hi
er

ar
ch

ica
l c

lu
st

er
in

g,
 R

F 
re

gr
es

sio
n 

(fo
r 

in
iti

al
 

po
te

nc
y 

cla
ss

 a
ss

ig
nm

en
t) 

an
d 

RF
 c

la
ss

ifi
ca

tio
n 

(fo
r 

pr
ed

ic
tio

n)

M
ea

n 
sq

ua
re

d 
er

ro
r

Ex
te

rn
al

 v
al

id
at

io
n 

se
t

D
at

a 
co

lle
ct

ed
 f

ro
m

 2
5 

in
 v

iv
o 

st
ud

ie
s, 

va
rio

us
 m

at
er

ia
ls,

 
pu

lm
on

ar
y 

in
fla

m
m

at
io

n 
in

 
ro

de
nt

s, 
m

at
er

ia
ls

 c
la

ss
ifi

ed
 in

to
 

fo
ur

 p
ot

en
cy

 g
ro

up
s

D
en

si
ty

, s
ur

fa
ce

 a
re

a,
 a

nd
 d

ia
m

et
er

Ba
la

nc
ed

 a
cc

ur
ac

y 
= 

0.
8

(F
ur

xh
i a

nd
 

M
ur

ph
y 

20
20

)
In

 v
itr

o
RF

In
fo

rm
at

io
n 

ga
in

 
an

al
ys

is

k-
fo

ld
 c

ro
ss

 v
al

id
at

io
n 

an
d 

ex
te

rn
al

 v
al

id
at

io
n 

se
t

N
eu

ro
to

xi
ci

ty
 p

re
di

ct
io

n
Ex

po
su

re
 d

os
e 

an
d 

du
ra

tio
n,

 
to

xi
co

lo
gi

ca
l a

ss
ay

, c
el

l t
yp

e,
 

ze
ta

 p
ot

en
tia

l

Ac
cu

ra
cy

 =
 0

.9
8

(G
er

na
nd

 a
nd

 
Ca

sm
an

 2
01

4)
In

 v
iv

o 
(d

iff
er

en
t 

ro
de

nt
s)

Re
gr

es
si

on
 t

re
es

 a
nd

 R
F

M
ea

n 
va

ria
nc

e 
re

du
ct

io
n

10
-fo

ld
 c

ro
ss

-v
al

id
at

io
n

M
et

a-
an

al
ys

is
 a

cr
os

s 
17

 C
N

Ts
, 

po
ly

m
or

ph
on

uc
le

ar
 n

eu
tr

op
hi

ls,
 

m
ac

ro
ph

ag
es

, l
ac

ta
te

 
de

hy
dr

og
en

as
e,

 a
nd

 t
ot

al
 

pr
ot

ei
n 

m
od

el
ed

 s
ep

ar
at

el
y;

 
re

fle
ct

 im
m

un
e 

re
sp

on
se

 a
nd

 
ce

ll 
m

em
br

an
e 

da
m

ag
e 

an
d 

de
at

h

po
ly

m
or

ph
on

uc
le

ar
 

ne
ut

ro
ph

ils
 +

 m
ac

ro
ph

ag
es

: 
m

ed
ia

n 
di

am
et

er
, m

as
s 

m
od

e 
ae

ro
dy

na
m

ic
 d

ia
m

et
er

, a
nd

 
co

ba
lt 

co
nt

en
t; 

la
ct

at
e 

de
hy

dr
og

en
as

e:
 s

ho
rt

 m
ed

ia
n 

le
ng

th
, c

ob
al

t 
co

nt
en

t;
to

ta
l p

ro
te

in
: g

eo
m

et
ric

 v
ar

ia
bl

es
, 

m
ed

ia
n 

le
ng

th
 a

nd
 m

ed
ia

n 
di

am
et

er
, a

nd
 m

as
s 

m
od

e 
ae

ro
dy

na
m

ic
 d

ia
m

et
er

R2  b
et

w
ee

n 
0.

83
 f

or
 

ne
ut

ro
ph

ils
 a

nd
 

0.
95

 f
or

 t
ot

al
 

pr
ot

ei
n

(G
er

na
nd

 a
nd

 
Ca

sm
an

 2
01

6)
In

 v
iv

o 
(d

iff
er

en
t 

ro
de

nt
s)

RF
, M

on
te

 C
ar

lo
 r

es
am

pl
in

g 
te

ch
ni

qu
e

M
ea

n 
va

ria
nc

e 
re

du
ct

io
n

O
ut

-o
f-b

ag
 e

rr
or

M
et

a-
an

al
ys

is
 o

f 
pu

lm
on

ar
y 

na
no

pa
rt

ic
le

 t
ox

ic
ity

, 
co

nc
en

tr
at

io
n 

of
 L

D
H

 o
r 

th
e 

nu
m

be
r 

of
 P

M
N

s 
in

 
br

on
ch

oa
lv

eo
la

r 
la

va
ge

 fl
ui

d;
 

CN
T,

 T
iO

2, 
Si

O
2, 

Zn
O,

 M
nO

Va
rie

s 
w

ith
 m

od
el

ed
 m

at
er

ia
l 

cl
as

se
s, 

to
ta

l m
as

s 
m

or
e 

im
po

rt
an

t 
th

an
 a

ll 
ph

ys
ic

oc
he

m
ic

al
 p

ar
am

et
er

s

R2  =
 0

.9
7

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/pride/archive/


384 A. BAHL ET AL.

(Bannuscher et  al. 2020b) and Karkossa et  al. 
(Karkossa et  al. 2019) used Weighted Gene 
Correlation Network Analysis (WGCNA) (Langfelder 
and Horvath 2008). Jagiello et  al. developed a QSAR 
models for predicting transcriptomic pathway level 
response (Jagiello et  al. 2021). A complete list of 
identified approaches with more details is shown 
in Table 4. In addition, this table also lists several 
meta-analyses which may provide useful datasets 
for further model development or validation.

6.  The value of AI for supporting NAMs

AI is a subfield of computer science in which algo-
rithms and models are developed to mimic cogni-
tive functions of human intelligence, such as 
learning and problem-solving. AI can aid risk assess-
ment of NMs in various ways, especially by auto-
mating and improving commonly used processes. 
The major field of classical ML mainly dealing with 
pattern recognition and predictive modeling has 
already been introduced in detail above. However, 
this type of modeling and pattern recognition is 
only one part of existing AI methods. Other appli-
cations of AI may also be relevant for risk assess-
ment of NMs and are briefly introduced below.

6.1.  Automated (meta)data extraction and linked 
data

One important task in risk assessment is to gather 
all available data on the NM under study. This is a 
difficult and time-consuming task as data might be 
spread across various databases, tables or even be 
only present in scientific publications as unstruc-
tured texts. AI may support this task in terms of 
data and text mining using automated information 
retrieval and Natural Language Processing (NLP). 
Different approaches for mining chemical and bio-
logical data have been developed in the past. Swain 
and Cole developed the ChemDataExtractor for 
automated extraction of chemical information from 
scientific literature (Swain and Cole 2016). Also 
tmChem (Leaman, Wei, and Lu 2015) can perform 
chemical named entity recognition from texts. In 
addition, CD-REST (Xu et  al. 2016) is able to extract 
chemical-induced disease relations from literature. 
This automated data extraction may support inte-
gration of individual findings across multiple pub-
lications which was not obvious previously. Also, 
relationships between diseases and genes (Lever 
et  al. 2019) or proteins and drugs (Zheng et  al. 
2019) could be identified by text mining approaches. Ta
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Similar approaches may also be used in the field of 
nanotoxicology. Especially, with recent develop-
ments in the field of Large Language Models (LLMs) 
this field is expected to be of major relevance in 
future research. Integration of such LLMs with 
knowledge graphs may further support data retrieval 
and storage in a structured way. This may also aid 
the curation of databases with respect to toxicolog-
ical results as well as metadata. In addition, linking 
different databases holding certain information on 
NMs may also be facilitated by LLMs due to auto-
mated recognition of similar terms and alternative 
naming. As an example, AI may be useful for linking 
NM-specific information stored in databases like 
eNanoMapper (Jeliazkova et  al. 2015) to omics data-
bases like GEO or PRIDE in an efficient way even if 
the naming schema and underlying ontologies dif-
fer. In the broader context of risk assessment, tox-
icity information may be automatically integrated 
with other information such as their intended use 
or information based on different exposure scenar-
ios. This may also be useful in terms of prioritization 
of NMs to be investigated and ML models may be 
developed specifically for this task. Additionally, if 
trained well, AI models can evaluate multiple risk 
factors and dependencies between them simulta-
neously. This may be of high value when evaluating 
complex mixtures of NMs or chemicals.

6.2.  Data curation

Data curation is of utmost importance for develop-
ing reliable approaches and models for NM toxicity 
(Alves et  al. 2021). However, if performed manually 
this is a highly time-consuming task with numerous 
challenges as shown in various projects before. AI 
may provide useful tools to facilitate this task 
(Martín et  al. 2023). Here, anomaly detection is one 
of the most well-known information enrichment 
techniques which enables identification of outliers 
or patterns differing from the rest of the data in an 
automated way. Suitable models may significantly 
speed-up the identification of inconsistencies in the 
data. In addition, NLP may also improve the detec-
tion of data gaps in registration dossiers for NMs 
on the market in the context of regulatory process 
optimization by automated screening strategies. At 
the same time, recommendations based on histor-
ical data may automatically be generated. In addi-
tion to advantages in time consumption, AI methods 
are also less prone to errors compared to humans 
processing large amounts of data, given that the 
input data is of high quality. While not every 

published study can be considered as high quality, 
AI methods can directly support the identification 
of quality issues and assess the data quality. 
Anomaly detection is one very prominent example 
of data quality checks and is frequently supported 
by computational tools like Isolation Forests (Liu 
et  al. 2008) or autoencoders (Shvetsova et  al. 2021).

6.3.  Image analysis

Another field which provides great opportunities 
for the application of AI is the field of image anal-
ysis. Automated image analysis may be enabled by 
deep learning approaches like convolutional neural 
networks. An example of such an approach has 
been provided by Aversa et  al. (Aversa et  al. 2018) 
who automatically identified NMs in Transmission 
Electron Microscopy/Scanning Electron Microscope 
images and derived their size and number. In addi-
tion, Karatzas et  al. (2020) used deep learning mod-
els to predict the effects of NMs on Daphnia magna. 
Similar approaches may also be derived from videos 
instead of images. However, the main challenge for 
image recognition is that large datasets need to be 
labeled before training the model.

6.4.  Support during omics data analysis

Omics data are especially useful in the context of 
AI as usually many datasets are publicly available 
and, in addition, integration of NM-specific data 
with other chemicals or traits is comparatively easy. 
Thus, they allow to obtain more comprehensive 
insights into the underlying biological consequences 
of NM treatment. One of the most common appli-
cations of AI to omics data is the identification of 
potential biomarkers (Michelhaugh and Januzzi 
2022). LLMs, in turn, could also support the inter-
pretation of the identified biomarkers by quickly 
searching for existing literature and extracting rel-
evant information and context. Similarly, one may 
also elucidate information on perturbed molecular 
pathways, affected targets or common patterns 
induced by treatment with different NMs. These 
developments are supported by the fact that LLMs 
like chatGPT can access databases such as GenBank, 
Ensembl and Gene Ontology, KEGG, Reactome, GEO 
or ArrayExpress thereby directly being able to con-
nect the various information stored in these 
resources (Ng et  al. 2023). The integration across 
different omics layers is another field which may be 
supported by AI. Commonly, ML and Deep Learning 
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algorithms are applied in the context of multi-omics 
integration (Picard et al. 2021; Biswas and Chakrabarti 
2020). In predictive ML models, omics data may also 
be used to infer links between physicochemical 
properties, molecular changes and toxicity which 
may support regulatory decision making or SSbD 
strategies. Especially, explainability is an important 
area of research allowing for new insights into out-
comes of AI models thereby probably enhancing 
their acceptance in the field of toxicology (Santorsola 
and Lescai 2023).

Apart from all these advantages, AI models are 
highly dependent on the quality and amount of 
underlying data. Training AI models requires large 
datasets of high-quality data which are relevant for 
the studied question and are not subject to biases. 
One important limiting factor is data availability. 
Therefore, the implementation of the FAIR (findable, 
accessible, interoperable and reusable) principles is 
a key factor in the development of reliable AI mod-
els (Jeliazkova et  al. 2021).

7.  Remaining challenges and future 
requirements

7.1.  Data  availability

The first and most critical challenge in developing 
robust NM grouping frameworks is the limited avail-
ability of data. Any grouping approach can only be 
generalizable to different kinds of NMs if it was 
developed based on NMs belonging to different 
classes and property combinations. This requires 
many datasets to be available and to be comparable 
to each other in a way that they can be integrated. 
Especially, ML models can only make robust predic-
tions if they have been trained on large sets of data 
containing as much variability as possible (Duan, 
Edwards,  and Dwivedi  2019).  Although 
high-throughput omics technologies are facilitating 
the generation of ever larger training data sets even 
by academic researchers, no single project will be 
able to generate sufficiently extensive datasets, and 
data reuse is the only option. In order to allow 
proper data reuse, the FAIR data principles (Jeliazkova 
et  al. 2021; Wilkinson et  al. 2016) should be con-
sidered when publishing any results. Briefly, the 
principles refer to e.g. clear and harmonized use of 
persistent identifiers, and that data as well as cor-
responding metadata can easily be found by both 
humans and machines at the same time. Data 
should also be accessible, either openly or through 
means of authorization or authentication depending 

on the need for restriction or not. Furthermore, data 
should be interoperable in order to allow for inte-
gration across highly diverse data sets. Overall, the 
principles guide in terms of making data reusable 
in the sense that descriptions of the data and meta-
data are sufficiently detailed to allow for reproduc-
ibility, automated assessments of, for example, data 
quality and large-scale integration allowing for novel 
interpretation opportunities.

7.2.  Unique identification of NMs

Another central question in the case of NMs, which 
is directly related to the FAIR data principles, is 
how to uniquely identify a specific NM. Each NM 
has a multitude of different physicochemical prop-
erties which may also change during their lifecy-
cle. Small changes in few of these properties may 
have large impacts on the toxicity outcome. Even 
for benchmark materials, variations may occur if 
they are obtained from different batches. Therefore, 
it is important to know exactly which NF was stud-
ied in a certain experiment in order to be able to 
interpret and reuse data. Due to the complexity 
of NMs, this is, however, not straightforward. Some 
attempts have been made to structure the nomen-
clature in such a way that each NM can be 
uniquely identified, e.g. the NInChI (Lynch et  al. 
2020) or labeled with a unique identifier even to 
the level of new batches, e.g. the European 
Materials Registry (van Rijn et  al. 2022). These first 
approaches will have to be fine-tuned in the 
future and, importantly, also must be established 
within the community such that this information 
will be provided along with published data.

7.3.  Reliability of data

Reliability of studies on NMs is another important 
factor. The main challenge for NMs is their handling 
during experiments. Especially, dispersion stability is 
a major issue as usually NMs are highly reactive and 
thus tend to agglomerate or interact with compo-
nents in their surrounding environment like proteins 
from the medium they are dispersed in. The best 
way of dispersing NMs is still a matter of debate and 
thus is handled differently among researchers. In 
addition, there are no standardized ways on how to 
perform certain measurements of physicochemical 
properties or toxicity assays. Many of the OECD test 
guidelines are not yet adapted for NMs (Rasmussen 
et  al. 2019; Bleeker 2023). For some of the 
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toxicological assays, interferences of the assays with 
the tested NMs may occur and suitable replacements 
are not always available at the time being. All these 
uncertainties, missing adaptations to NMs and lacking 
standardizations lead to high variability of the result-
ing measurements and contradictory results in exist-
ing literature and renders integration of results from 
different studies a difficult task. In addition, only few 
NMs have been tested in in vivo studies and thus 
adapting NAMs such that they reflect the in vivo 
situation is not trivial.

In silico methods critically depend on data quality 
of the underlying experimental data. While especially 
ML models are capable of capturing very complex 
relations and interactions, they can, by definition, not 
be better than the underlying data. Thus, if the 
experimental results are not reliable, also developed 
models cannot be of high quality. Instead, data with 
low technical error levels allow for models which can 
reliably detect underlying patterns in the data. 
Quality criteria for NM experimental data have been 
introduced (Marchese Robinson et  al. 2016; 
Comandella et  al. 2020; Basei et  al. 2022; Shao, 
Beronius, and Nymark 2023) and can guide scientists 
as well as modelers in judging the reliability of exper-
imental data and thus allowing for subsequent robust 
model development.

7.4.  Standardization and regulatory acceptance 
of omics data

Some of the uncertainties induced by grouping based 
on physicochemical properties and toxicity data alone 
can be overcome by adding omics data as these add 
an additional layer of mechanistic understanding. 
However, omics data often lack sufficient comparability. 
This is mainly because different measurement devices 
and analysis pipelines are in use. Therefore, also in the 
case of omics data harmonization and standardization 
of data reporting and analysis workflows are of utmost 
importance. The transcriptomic (OECD 2021a) and 
metabolomic (OECD 2021b) reporting frameworks 
developed by the OECD are highly valuable tools in 
this context. These frameworks define certain informa-
tion that needs to be provided for transcriptomic and 
metabolomic experiments thereby supporting the 
implementation of the FAIR data principles.

7.5.  Obtaining robust models

Finally, the question on how to combine and com-
pare NM-related data in order to obtain robust 
models is another important aspect for grouping of 

NMs. Here, different aspects need to be taken into 
consideration: 1) Different measures of similarity 
exist and can be applied. A number of tools for 
quantifying similarity between NMs were recently 
compared by Jeliazkova et  al. (Jeliazkova et  al. 
2022b) However, the different measures have dif-
ferent advantages and disadvantages and may even-
tually lead to different results. The use of 
high-dimensional omics datasets may even pose 
additional challenges in this regard; 2) Instead of 
focusing solely on NMs, integration with other more 
extensively studied effects like those from drugs, 
other types of chemicals or diseases may be sup-
porting the acceptance of a certain grouping 
hypothesis as they may provide additional insights. 
While this is complicated with regards to physico-
chemical properties as those may be very different 
between NMs and other traits, on the level of omics 
data this approach seems to be reasonable. ML 
models like those based on transfer learning may 
be very valuable in this context; 3) AI in general is 
expected to form an important pillar in the gener-
ation of robust models as it will not be feasible to 
search, evaluate and integrate the huge and 
ever-increasing amount of data available manually; 
and 4) Once ML models have been developed on 
well-standardized data and methods, extensive val-
idation is indispensable. The quality of a developed 
model may also be assessed based on certain cri-
teria. For QSAR models, the OECD has published 
recommendations for determining the quality of 
developed models (OECD 2014b) as well as a cor-
responding QSAR assessment framework (OECD 
2023). Such evaluation criteria are urgently needed 
in order to guarantee the use of high-quality mod-
els. These evaluation criteria may be used or adapted 
for more general ML and omics-based approaches 
to assess their robustness.

8.  Conclusion

8.1.  ML Models for NM grouping

ML is a valuable tool supporting NM grouping. 
Especially, the ability to extract the most important 
parameters describing toxicity in an automated, 
objective fashion is of great use. The extracted prop-
erties can then be used to determine the similarity 
of NMs. ML models can aid NM grouping approaches 
in several ways: 1) ML models are able to derive 
information and patterns from complex and 
high-dimensional datasets which cannot be easily 
detected by human inspection. Thus, they may 
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capture more complex interactions between physi-
cal, chemical, and biological properties and can 
potentially enable more accurate classification and 
grouping of NMs; 2) ML models can predict the 
behavior of NMs under different conditions which 
may reduce time and cost when assessing safety, 
toxicity, and environmental impact of NMs and may 
guide SSbD approaches; 3) ML models are very time 
and cost efficient. Once a model is trained, incoming 
data for new NMs can usually be processed very 
quickly; and 4) ML can also aid the discovery of 
new properties or applications of NMs by identifying 
common patterns or correlations in large datasets. 
In addition, combining supervised and unsupervised 
approaches may also be important. While the pre-
diction task of models is usually based on labeled 
data and supervised approaches, the advantage of 
unsupervised methods is that they can also use the 
large pool of unlabeled data to search for patterns 
or reduce dimensionality. As dataset size is of high 
relevance with respect to developing robust ML 
models with a large applicability domain, this is a 
very useful and recommended strategy.

8.2.  Omics for NM grouping

Usually, NM grouping approaches are initially based 
on measured physicochemical properties or some-
times calculated descriptors. The advantage of 
directly linking physicochemical properties with 
toxicity is that one obtains information on how 
NMs need to be manipulated to make them safer, 
e.g. in SSbD approaches. However, limitations with 
respect to the generalizability and applicability 
domain have frequently been discussed and can 
also be observed from the different models pre-
sented in this review. This is because the impor-
tance of certain properties largely varies with the 
material types and shapes under study. Also, sim-
ilar effects may be obtained from NMs with very 
different physicochemical properties. Omics 
approaches are very well suited to overcome these 
limitations as they yield additional mechanistic 
insights which can support NM grouping. 
Nevertheless, there are a few challenges which 
need to be overcome in order to successfully inte-
grate omics results into NM grouping approaches. 
Especially, FAIRification of NM omics data, harmo-
nization and standardization of measurements and 
analyses workflows, the definition of similarity and 
validation of findings are major fields in which 
improvement is still required in order to achieve 
robust models and regulatory acceptance. Once 

these hurdles are successfully tackled, omics 
approaches are a very promising source of infor-
mation for supporting NM grouping. This is con-
firmed by the first approaches which obtained very 
good predictive performance when including omics 
data in the prediction models for NM toxicity. 
Thereby, omics approaches hold a number of ben-
efits for NM grouping approaches: 1) Omics data 
provide detailed information about biological 
effects and interactions of NMs. This may aid the 
formulation and testing of a grouping hypothesis 
and thus support regulatory bodies in making 
informed decisions regarding the safety of NM; 2) 
While grouping approaches based on physicochem-
ical properties suffer from the fact that these prop-
erties may change depending on their surrounding 
medium as well as over time, omics provide a more 
direct read-out of the actual state of the NM that 
was seen by the cells. In combination with ML, 
patterns and relationships not evident from tradi-
tional analysis methods may be detected; and 3) 
If well performed and analyzed, omics experiments 
are directly comparable among studies and thus 
well suited for meta-analyses. This does not only 
hold true within studies on different NMs but 
instead meta-analyses including other traits like 
drugs, other types of chemicals and so on are also 
possible. The fact that a huge number of such 
omics datasets is publicly available including raw 
data as well as metadata, is very promising for the 
implementation of robust ML models, whose per-
formance largely depends on the amount of avail-
able data.

8.3.  AI for NM grouping

AI in general will be unavoidable in the context of 
developing reliable grouping approaches to cope 
with the wealth of information available. The com-
plexity of the task of finding suitable NAMs for NM 
toxicity assessment leads to a high number of 
potential applications of different AI methods. 
Especially NLP is expected to have a great influence 
on future data processing and retrieval. The follow-
ing tasks have high potential for support by NLP: 
(1) automated review and data extraction from sci-
entific literature which may also include automated 
generation of databases; (2) finding patterns, trends 
and inconsistencies in research papers or datasets; 
(3) standardization of terminologies; (4) compliance 
of research documents with regulatory standards; 
and (5) automated annotation and generation of 
metadata within databases. However, while AI may 
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provide very helpful tools for obtaining information 
in an efficient and objective manner, human judg-
ment will be of utmost importance and should not 
be underestimated. This may especially be import-
ant in terms of plausibility considerations, contex-
tual interpretation, decision making, quality checks 
or results with high uncertainties.

8.4.  Recommendations for future research 
investment

In order to implement ML and omics techniques 
successfully in the process of NM grouping, stan-
dardization of test methods including dispersion 
protocols and quality assessment followed by appro-
priate data curation of produced data are urgently 
needed in order to allow comparison between 
results from different studies. In line with that, raw 
data should be made available to the community 
once they are published and they should be accom-
panied by sufficient metadata. This may be sup-
ported by further refinement of file and model 
sharing formats, ontologies, terminologies and data 
quality assessment tools specific for the needs in 
the field of NMs. Along these lines, it is also of high 
relevance to find a solution for unambiguous nam-
ing of NMs which allows direct comparison of the 
data. New developments in AI, especially in the field 
of LLMs can aid the curation and linkage of existing 
databases. More reliable and comparable data will 
automatically support the implementation of more 
robust ML models with a larger applicability domain. 
At the same time, it will be necessary to enhance 
the explainability of ML models in order to derive 
a grouping hypothesis that can also be tested for 
validation purposes. Here, ML algorithms need to 
be explored and adjusted with respect to methods 
and insights that allow for interpretation of the out-
come. While it is important to increase the explain-
ability of the model itself, also unraveling the 
underlying MoA will support the hypothesis formu-
lation. Here, more omics studies on NMs and 
meta-analyses will be highly useful for extracting 
predictive signatures that can be used in hazard 
assessment. Once predictive signatures and thus 
relevant transcripts, proteins or metabolites have 
been identified, targeted testing of only these enti-
ties will be possible allowing for high-throughput 
screening.
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