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ABSTRACT: Fucoidan, a sulfated polysaccharide found in algae, plays a
central role in marine carbon sequestration and exhibits a wide array of
bioactivities. However, the molecular diversity and structural complexity of
fucoidan hinder precise structure−function studies. To address this, we
present an automated method for generating well-defined linear and branched
α-fucan oligosaccharides. Our syntheses include oligosaccharides with up to
20 cis-glycosidic linkages, diverse branching patterns, and 11 sulfate
monoesters. In this study, we demonstrate the utility of these oligosaccharides
by (i) characterizing two endo-acting fucoidan glycoside hydrolases (GH107),
(ii) utilizing them as standards for NMR studies to confirm suggested
structures of algal fucoidans, and (iii) developing a fucoidan microarray. This
microarray enabled the screening of the molecular specificity of four
monoclonal antibodies (mAb) targeting fucoidan. It was found that mAb
BAM4 has cross-reactivity to β-glucans, while mAb BAM2 has reactivity to fucoidans with 4-O-sulfate esters. Knowledge of the mAb
BAM2 epitope specificity provided evidence that a globally abundant marine diatom, Thalassiosira weissf logii, synthesizes a fucoidan
with structural homology to those found in brown algae. Automated glycan assembly provides access to fucoidan oligosaccharides.
These oligosaccharides provide the basis for molecular level investigations into fucoidan’s roles in medicine and carbon
sequestration.

■ INTRODUCTION
Polysaccharides are the central metabolic fuel of the marine
carbon cycle. Annually, algae sequester petagrams of carbon
dioxide into a rich diversity of glycans.1 The unique structure
of each glycan dictates its residence time and flow within
marine ecosystems.2 Macroalgae and diatoms synthesize and
secrete fucose-containing sulfated polysaccharides, termed
fucoidan, into the environment.3,4 The structural diversity of
fucoidan poses challenges to marine bacteria, necessitating
evolution of complex enzymatic cascades for its degradation.5

Fucoidan that escapes microbial degradation can self-assemble
into particles,6 sink to the deep ocean, and store carbon for
centuries.7,8 Moreover, fucoidan also displays a range of
biological activities that are under investigation in drug
development and cosmetics.9,10 A current limitation is that
poor knowledge exists regarding the exact molecular
determinants of fucoidan that mediate a specific bioactivity
or if there are precise structures in fucoidan that best mediate
carbon sequestration.
To uncover the molecular mechanisms governing fucoidan

carbon sequestration and its bioactivities, well-defined stand-
ards are imperative. Extraction from biological systems does
not lead to homogeneous samples due to the nontemplate-
encoded nature of glycans. Consequently, chemical synthesis
stands out as a distinct method to obtain precisely defined
organic matter.11 An automated process would significantly

enhance the accessibility of defined fucoidan oligosaccharides.
These defined standards would form the basis for a variety of
investigations including: creating microarrays,12−16 delineating
the activities of carbohydrate-active enzymes (CAZymes),17−20

and serving as standards for NMR experiments.21−26

The chemical synthesis of complex glycans is challenging,11

however, advances in automated approaches have enabled
high-throughput assembly of both oligosaccharides and
polysaccharides.27,28 The automated chemical synthesis of
fucoidan oligosaccharides faces three primary challenges: (i)
the stereocontrolled formation of 1,2 cis-glycosidic bonds,29−33

(ii) the high degree of sulfation,34−37 and (iii) the high
reactivity of fucose glycosyl donors.38−40

Here, we present an automated glycan assembly (AGA)
process for synthesizing well-defined fucoidan oligosaccharides,
encompassing linear α-fucans up to 20-mers, branched
fucoidan oligosaccharides, and glycans that contain up to 11
sulfate esters. These glycans served as standards for NMR
spectroscopy, aided in delineation of CAZymes activities, and
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enabled the creation of a fucoidan microarray. Utilizing this
microarray, we elucidated the specificity of fucoidan-directed
antibodies, which, in turn, suggests brown algae-type fucoidan
motifs can be found in marine diatoms.

■ RESULTS AND DISCUSSION
Retrosynthetic Analyses and Building Block Design.

Homo- and heterofucans represent two classes of fucoidan.
Homofucans consist of either α-(1 → 3)-linked structures or
alternating α-(1→3)−α-(1→4)-linked L-fucose linkages. On
the other hand, heterofucans do not have a defined glycan
backbone and can consist of galactose,46 mannose, or
glucuronic acid with fucose branches.47 The structural diversity
of homofucans is increased by the presence of sulfate esters,
acetylation, and saccharide modifications like galactose,

glucuronic acid, or xylose.41,48 Despite the diverse structures
within homofucans across brown algae, each species contains
distinct motifs. For instance, fucoidan from Laminaria
hyperborea primarily features α-(1→3)-linkages, accompanied
by smaller quantities of α-(1→2) and α-(1→4)-linkages.43

Presently, defining precise sulfation patterns in fucoidan
polysaccharides is technically challenging. However, Cladosi-
phon okamuranus possess a high degree of 4-O-sulfation
(Figure 1a).42

Retrosynthetic analyses identified thioglycoside building
blocks 1−5 as suitable candidates for assembling different
fucoidan oligosaccharides (Figure 1b). A constraint on the L-
fucose building block design is the requirement of non-
participating protecting groups at the 2-hydroxyl, to allow for
α-selectivity in glycosylations. Building block 1 is equipped

Figure 1. Structural diversity of fucoidan. (a) Four examples of fucoidan found in brown algae. From left: Cladosiphon okamuranus contains an α-
1,3-backbone and is known to possess a degree of 4-O-sulfation.41,42 Laminaria hyperborea is an α-1,3 linked fucan with a defined number of motifs
including those with α-1,4 and α-1,2 branches with sulfate esters primarily on C-2 and C-4.43 Fucus evanescens is an α-1,3/1,4 linked fucoidan.44

Saccharina japonica is an α-1,3 linked fucoidan known to contain β-1,4 galactopyranosyl branches.45 (b) Building blocks used in this study. (c)
Automated assembly of fucoidan hexasaccharide. (d) Representative example of HPLC traces from AGA of fucoidan hexasaccharide 6. Left trace
with a thioethyl thioglycoside, right trace with a 4-methylphenyl thioglycoside.
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with a nonparticipating benzyl ether on the 2-hydroxyl, a
temporary fluorenylmethoxycarbonyl (Fmoc) group on the 3-
O-position, and the 4-O-position was protected with a
benzoate ester. The 4-O-benzoate ester serves as a long-
range participating group (LRP) to support 1,2-cis-glycoside
formation.37,49−51 Additionally, it can be cleaved on the resin
to enable 4-O-sulfation. Building block 2 carries a 4-O-
levulinate ester (Lev) for the formation of 1 → 4 linkages and
could be utilized for precise 4-O-sulfation. Building block 3
bears a nonparticipating 2-naphthylmethyl ether (Nap)
protecting group that can be selectively removed to install 1
→ 2 linkages or 2-O-sulfate esters. Building block 4 used a Nap
ether at the 3-OH, permitting Lev and Fmoc related protecting
group manipulations elsewhere in the oligosaccharide. This
Nap ether could later be removed to proceed with the
backbone synthesis. Finally, building block 5 allowed for the
synthesis of galactopyranoside branches.
Altering the Thioglycoside Leaving Group Improves

Automated Glycan Assembly of Fucoidan Oligosac-
charides. Initially, thioethyl glycosides were used for AGA of
α-(1→3)-homofucans, resulting in significant quantities of
deletion sequences and reproducibility problems (SI Table 1,

Figure 1c and d, SI Figure 1). Efforts to enhance the efficiency
of the glycosylation by trialling different Lewis acids, varying
temperatures, and employing double coupling cycles still
produced inconsistent results (SI Table 1, entries 1−4).
Considering that fucosyl donors are often highly reactive,38,52

and coupling temperatures below −40 °C are difficult to adopt
at current automated synthesizers,53 dibutyl glycosyl phosphate
donors were tested but did not improve yields (SI Table 1,
entries 5 and 6).
Modifying thioglycoside reactivity by changing the protect-

ing groups was impractical due to the structural complexity of
the oligosaccharide targets that include branches and sulfate
esters. Instead, the thioglycoside aglycon leaving group was
modified to regulate glycosyl donor reactivity,54 which can
adjust the activation temperature of thioglycosides by as much
as +10 °C.38 Initially, 4-methylthiophenol thioglycosides were
chosen for their availability and low cost, and this was found to
enhance both the quality and reproducibility of the
glycosylation modules during AGA. Under these conditions,
no detectable deletion sequences by HPLC or MALDI-MS
were identified (Figure 1d and SI Figure 1, SI Table 1, entries
7 and 8). The optimized glycosylation modules involved N-

Figure 2. Automated glycan assembly of two major types of fucoidan backbone. (a) Automated assembly of two types of fucoidan backbone, α-1,3-
linked structures and those with alternating α-1,3/α-1,4-linked L-fucose linkages. (b) Collection of fucoidan oligosaccharides synthesized.
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iodosuccinimide (NIS) and triflic acid (TfOH) with a reaction
sequence of −20 °C for 15 min, followed by 0 °C for 35 min
using five equivalents of the donor (CH2Cl2/dioxane, 2:1).
Subsequent investigations focused on assessing the stereo-

selectivity of glycosylations, on-resin methanolysis, photo-
cleavage, sulfation, and hydrogenolysis.
Automated Synthesis of Fucoidan Oligo- and

Polysaccharides. The chemical synthesis of 1,2-cis-glycosides
in a stereocontrolled fashion is not a solved problem.11,29−33

However, long-range remote assistance is useful for the
synthesis of 1,2-cis glucosides and fucosides.37,49,50 Leveraging
the optimized AGA conditions, a series of α-(1→3)-linked
fucoidan oligosaccharides, pentamer 7, hexamer 10, octamer 8,
and a 20-mer 12, were prepared (Figure 2).
Polystyrene resins were either equipped with a 5-amino-

pentanol to release glycans with a terminal amine for coupling
to microarray surfaces or a “traceless” photocleavable linker,55

which permits the synthesis of free-reducing end glycosides for
enzyme assays.56 Each coupling cycle consisted of an acidic
wash with trimethylsilyl trifluoromethanesulfonate (TMSOTf),
followed by NIS-TfOH promoted glycosylation. Subsequently,
the resin underwent incubation with a solution of acetic
anhydride (Ac2O) and methanesulfonic acid (MsOH) to “cap”
any unreacted nucleophile (Figure 2a).57 For α-(1→3)-linked
fucans, the temporary Fmoc protective group was removed
using a piperidine solution (20% in dimethylformamide) to
expose the nucleophile for the subsequent coupling cycle. The
coupling cycles were reiterated five times for 7, six times for 10,
and eight times for 8.
For the synthesis of 20-mer fucan 12, an initial assembly of a

10-mer was undertaken, monitoring the process by cleaving
and analyzing a small resin sample via MALDI-MS and
analytical HPLC (SI Figure 2a). Subsequently, the synthesis
continued to reach the targeted 1,2-cis-linked 20-mer (SI
Figure 2b and c).
The second major backbone of fucoidan comprises

alternating α-fucopyranosyl-(1→3)−α-fucopyranosyl-(1→4)
linkages. AGA of these oligosaccharides relied on the iterative
use of building blocks 1 and 2, leading to the production of
tetramer 15 and hexamer 16. During the synthesis of these
mixed linkage oligosaccharides, the Fmoc protecting group
removal module was completed by using a 20% triethylamine
solution in dimethylformamide. This method was chosen as
Lev esters can be sensitive to the treatment with piperidine.28

Smooth coupling between the axial 4-OH acceptor and

thioglycoside 1 was observed without any reactivity issues
(SI Figure 3).
The methanolysis module, employed for removing base-

labile protecting groups, was not effective under “standard
conditions”, even after extended incubation periods of 168 h
(10% 0.5 M NaOMe in anhydrous THF, 5 mL, v/v).58,59

Utilizing a reduced volume (<5%) of sodium methoxide was
necessary for efficiently removing the benzoate esters in under
16 h. Oligosaccharides larger than 10-mers necessitated
prolonged incubation periods of 70 h.
Oligosaccharides 6 and 16 were released from the solid

support using a flow-based photoreactor,60 followed by
hydrogenolysis using 5% Pd/C in THF/t-BuOH/H2O
(60:10:30, v/v/v).61,62 The two distinct fucoidan backbones
were individually purified via reverse-phase HPLC (Hypercarb,
gradient 0 to 80%, acetonitrile/water) to yield hexasaccharides
6 and 16.
NMR analysis confirmed that both fucoidan backbones were

prepared with complete α-selectivity, where the only observed
β-linkage was associated with the free-reducing end at 4.57
ppm (d, J = 7.9 Hz) in 6. Comparison of the synthetic
fucoidan oligosaccharide NMR spectra to polysaccharides
extracted from brown algae showed agreement.43 Fucoidan
oligosaccharides with α-1,3-backbone shifts occurred at ∼5.06
ppm (1H NMR) and 95.5 ppm (13C NMR), while the α-1,4-
backbone occurred at ∼4.96 ppm (1H NMR) and 100.2 ppm
(13C NMR).43 The use of the nucleophilic 5-aminopentanol
linker can lead to stereoselectivity issues.63 However, NMR
analysis of compounds 7, 8, 9, and 11−17 contain exclusively
1,2-cis linkages in NMR, with an α-linked anomeric proton at
∼4.88 ppm (1H NMR) and >98.2 ppm (13C NMR).
Automated Assembly of Sulfated Fucoidan Oligo-

saccharides. The precise pattern and degree of fucoidan
sulfation depend on a range of factors, including environmental
conditions, growth stages, and extraction methods. Moreover,
our understanding of how different sulfation patterns impact
fucoidan’s biological functions remains limited. This is in
contrast to glycosaminoglycans (GAGs), where well-defined
oligosaccharides have played a pivotal role, allowing for a
detailed molecular-level understanding of the roles that
individual sulfate groups play in modulating bioactivity.64−68

Sulfated oligosaccharides prepared via AGA to date contain
up to four sulfate esters.58,69 However, to decode glycan−
protein interactions with high fidelity, sulfated tetra- to
dodecasaccharides are ideal. Therefore, we initially targeted
the synthesis of tetrasaccharide 13 with five sulfate esters.

Figure 3. Optimization of on-resin sulfation using tetrasaccharide 13.

Table 1. On Resin Sulfation Optimization

entry solvent reagent temperature time comment reference

1 DMF NMe3·SO3 90 °C 30 min (2 cycles) incomplete 53
2 DMF NMe3·SO3 90 °C 90 min (6 cycles) incomplete 53
3 DMF:Py (1:1) Py·SO3 40 °C 12 h incomplete 58
4 DMF Py·SO3 50 °C 16 h irreproducible this work
5 DMF NEt3·SO3 50 °C 16 h irreproducible this work
6 DMF:Py (80:20) Py·SO3 50 °C 16 h complete this work
7 DMF:NEt3 (80:20) NEt3·SO3 50 °C 16 h complete this work
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AGA, followed by methanolysis, provided the tetrasaccharide
that was attached to the solid support. Two methods reported
for on-resin sulfation did not yield the desired penta-O-sulfated
compound (Figure 3, Table 1, entries 1−4, SI Figure 4).53,58

These results may be due to the low nucleophilicity of the axial
C4 hydroxyl group vs primary hydroxyl groups,53,70 or the
steric demands involved in placing several sulfate esters in
close proximity on the solid support.58

Solution-phase syntheses of sulfated glycans, such as GAGs,
can necessitate prolonged reaction times,50,64 that in turn
renders sulfation in an automated fashion not always practical
(Table 1, entries 1 and 2).53 While, a recently published on-
resin approach, conducted in plastic syringes could not provide
the precise atmospheric and temperature control necessary for
extended reaction times (Table 1, entry 3).58 Sealable silanized
microwave vials proved ideal for carrying out long sulfation
reactions in an aluminum heating block (SI Figure 16, Table 1,
entries 4−7).
In sealed microwave vials, both sulfur trioxide pyridine (Py·

SO3) and triethylamine (NEt3·SO3) complexes yielded
comparable results (Table 1, entries 4 and 5). Prebuffering
the sulfation solution with an appropriate base,71 such as
pyridine for sulfation reactions using Py·SO3, helped reduce
the batch-to-batch variability in the quality of sulfur trioxide
reagents (Table 1, entries 6 and 7).72 Even then sometimes,

multiple cycles of the sulfation module were required to
achieve full sulfation, for example, hexa- (10) and deca-
saccharides (14).
To monitor solid-phase sulfation reactions, microcleavage

must be performed, which releases minute quantities of
oligosaccharides for HPLC and MS analysis. Here, we
employed dimethylformamide (DMF) as a photocleavage
solvent, for its good swelling of polystyrene resins and its
ability to solubilize the released sulfated glycans.73,74 Released
glycans were analyzed using quadrupole time-of-flight mass
spectrometry (Q-TOF MS, SI Figure 5) and reverse-phase
HPLC (C5 Luna, 5% ACN to 100), with the HPLC analysis
only effective for oligosaccharides with fewer than six sulfate
esters (SI Figure 4).
Using these conditions (see SI, modules h1 and h2), solid-

phase sulfation from a mono- to a decasaccharide was
completed, with oligosaccharide 14 containing 11 sulfate
esters (9−11, 13, 14, and 17). 1H−13C HSQC NMR analysis
confirmed the sulfation of the 4-OH, with the carbon atoms
shifting characteristically downfield compared to nonsulfated
fucoidan oligosaccharides from 68 to 79 ppm.
Photocleavage Using a LED Lamp Allows for Parallel

Cleavage of Multiple Resins. Reported approaches for
cleaving sulfated oligosaccharides from the solid support
involve a mercury lamp flow-reactor setup, utilizing a

Figure 4. AGA of branched fucoidan oligosaccharides. (a) Synthesis of oligosaccharide 18 with a α-(1→2)-branch found in Fucus vesiculosus. (b)
Synthesis of an oligosaccharide 19 with a β-(1→4)-galactopyranoside branch found in Saccharina japonica. (c) Synthesis of oligosaccharide 20 with
a β-(1→6)−gal-β-(1→4)-galactopyranoside found in Saccharina japonica. (d) Synthesis of oligosaccharide 21 with a α-(1→4)-branch found in
Laminaria hyperborea.
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DCM−methanol mixture.58,60 This approach requires multiple
passages through the flow cell, which are required to achieve
good photocleavage results;60 this may be due to poor resin-
swelling properties of methanol.58,60 Similar results were
obtained when sulfated oligosaccharide 10 was cleaved from
the solid support using photolysis. Therefore, we alternatively
employed an LED lamp (370 nm) with DMF as a
photocleavage solvent.75,76 DMF was chosen as it can
solubilize the released amphiphilic sulfated glycans due to its
good resin-swelling properties.73,74 The LED lamp can
facilitate the parallel cleavage of multiple resins (SI Figure 6).
Following the release of the oligosaccharides from the solid

support, the crude material was subjected to hydrogenolysis
(5% Pd/C, THF/t-BuOH/H2O, 50:20:30, v/v/v), and the
sulfated glycans were purified using RP-HPLC, size-exclusion
chromatography, or a combination of both methods. The
choice of purification method depended on the number of
sulfate esters on the oligosaccharide. Glycans containing more
than five sulfate esters were best purified using a combination
of size-exclusion chromatography and HPLC. Using this
approach, a series of sulfated fucans (9-11, 13, 14, and 17)
with different backbones, lengths, and sulfation patterns was
prepared (Figure 2b).
Automated Assembly of Branched Fucoidan Oligo-

saccharides. Brown algae synthesize a diverse range of
fucoidans with distinct branching and sulfation patterns. The

utility of the AGA platform to synthesize such branched
fucoidans was demonstrated by four examples. These glycans
contain α and β branching residues and cover the branching
patterns found in fucoidan (2-OH, 3-OH, and 4-OH).

α-(1→2)-Fucopyranoside branches occur in various brown
algae species, including Cladosiphon okamuranus and Laminaria
hyperborea (Figure 1a). Therefore, we prepared hexasaccharide
18 that contains this motif (Figure 4a).48 Two cycles of
building block 3 were required to fully convert the acceptor
trisaccharide to the desired tetrasaccharide (SI Figure 11).
Selective oxidative cleavage of the Nap group facilitated
regioselective glycosylation of the 2-OH acceptor (SI Figure
12). Subsequently, the Fmoc removal and glycosylation
produced the desired protected oligosaccharide intermediate,
with HPLC displaying a major peak at 20 min (SI Figure 13).
Following methanolysis, the presence of the semideprotected
hexasaccharide was confirmed by MALDI-TOF (SI Figure 14).
Photocleavage released the oligosaccharide from the resin;
following hydrogenolysis and HPLC purification, 1.5 mg
(10%) of α-fucan 18 was isolated. NMR analysis of 18 revealed
a distinct upfield chemical shift at 5.33 ppm (d, J = 3.8 Hz,
1H), previously annotated for α-(1 → 2)-linkages in Laminaria
hyperborea,43 therefore, the synthetic oligosaccharide sup-
ported the assigned structure.
Subsequently, two Saccharina japonica motifs were synthe-

sized, one featuring a β-(1 → 4)-galactopyranoside branch, and

Figure 5. Synthetic fucoidans as tools for marine glycobiology. (a) Mapping the reactivity of BAM monoclonal antibodies with a fucoidan
microarray. Shown is the 1:50 antibody dilution. (b) Left gel shows the activity of GH107_P5A on fucoidan from L. hyperborea by CPAGE. Right
gel demonstrates the activity of GH107_P5A on synthetic α-1,3 fucan oligosaccharide 10. (c) Left gel is the activity of GH107_P5A on fucoidan
from L. hyperborea by CPAGE. Right gel shows the activity of GH107_Wv323 on synthetic α-1,3 fucan oligosaccharide 10. Enzyme incubations
were complete at 1 μM for 0, 1, and 24 h with each lane containing ∼4 μg of the initial substrate. The products resulting from enzymatic
degradation are separated according to the size and degree of sulfation and visualized with Stains-All.
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the other presenting a more extended gal-β-(1→6)−gal-β-(1→
4) branching pattern.77 AGA of pentasaccharide 19 relied on
building blocks 1 and 2 to construct the tetrasaccharide
backbone (Figure 4b). Following the removal of the 4-O-Lev
ester, galactosylation was completed using the dibutyl
phosphate donor 5 (TMSOTf, −35 °C for 5 min → −20
°C for 30 min, 5.5 equiv).78 HPLC analysis revealed a major
peak at 32 min for the pentasaccharide (SI Figure 9). To
assemble glycan 20 with the gal-β-(1 → 6)-gal-β-(1 → 4)-
branch, AGA utilized building blocks 1 and 2, alongside 4,
containing a 3-Nap ether, permitting future extension of the
fucan backbone following the assembly of the galactose chain
(Figure 4c). HPLC analysis of the hexasaccharide displayed a
major peak at 30.52 min (SI Figure 10). Following
methanolysis, photocleavage, hydrogenolysis, and HPLC
purification yielded glycans 19 (0.9 mg, 8%) and 20 (0.5
mg, 4%). NMR analysis of 19 showed a β-(1 → 4)-linkage at
4.52 ppm (d, J = 7.3 Hz, 1H), while 20 contained an additional
β-linkage at 4.32 ppm (SI Table 2).
Heptasaccharide 21 contains an α-(1 → 4)-fucopyranosyl

branch found in Laminaria hyperborea (Figure 1a, Figure 4d).43

This oligosaccharide was assembled using building blocks 1
and 2, with the Lev ester on 2 allowing the synthesis of the α-
(1→4)-branch. Microcleavage analysis at the pentasaccharide
stage revealed a single major peak at 22.2 min in the HPLC (SI
Figure 7). Subsequently, the two Fmoc protecting groups were
removed, and two coupling cycles of 1 produced the protected
branched oligosaccharide (SI Figure 8). Methanolysis prior to
photolytic release from the solid-phase was followed by
hydrogenolysis. Reverse-phase HPLC (Hypercarb, 0 to 80
H2O) yielded 1.6 mg (10%) of the α-(1→4)-containing fucan
21. NMR analysis of 21 revealed a 1,2-cis-linked oligosaccaride,
with the anomeric carbon of the α-(1→4)-linkage occurring at
5.15 ppm (d, J = 4.0 Hz, 1H), downfield of the α-(1→3)-
backbone linkages (SI Table 2).43

Synthetic Glycan Defines the Activity of Two endo-
Fucoidan Hydrolases. The microbial degradation of
fucoidan involves hundreds of enzymes.5,79 Enhancing our
understanding of fucoidan-active CAZymes and their substrate
tolerances will advance our mechanistic understanding of how
certain fucoidan structures resist degradation, leading to
carbon sequestration. Furthermore, characterized enzymes
can serve as biocatalytic assays to assist in the detection and
quantification of fucoidan in the environment.80,81

CAZymes of the glycoside hydrolase family 107 (GH107)
cleave in midchain glycosidic bonds of algal fucoidans.82 All
current GH107 members are endo-fucoidanases targeting
either α-1,3 or α-1,4 fucosyl linkages. Several α-1,4-endo-
fucoidanases have been functionally validated, e.g., MfFcnA
from Marinif lexile fucanivorans and Mef1 from Allomuricauda
eckloniae, for which also protein structures were obtained.83,84

On the other hand, only one α-1,3-endo-fucoidanase has been
characterized.85

GH107_P5AFcnA from Psychromonas sp. SW5A displays
activity against fucoidan from Laminaria hyperborea�a
fucoidan consisting predominantly of sulfated α-1,3-linked
fucan�while it is inactive on fucoidans with alternating α-1,3/
α-1,4-linked fucan backbone.43,83 This suggests that
GH107_P5AFcnA is an α-1,3-endofucoidanase but requires
functional validation. Therefore, we used the synthetic α-(1→
3) fucan oligosaccharide 10 to test the activity of
GH107_P5AFcnA. Recombinant, purified GH107_P5AFcnA
was obtained as previously described,83 and the enzyme was

incubated with fucoidan and oligo 10. Enzyme activity and
product formation were assayed over time by CPAGE (Figure
5b). The results show that GH107_P5AFcnA degrades both
fucoidan from L. hyperborea as well as oligo 10 and confirms
that the enzyme cleaves α-1,3-linked sulfated fucan. Next, we
used the protein sequence of GH107_P5AFcnA to search for
homologue enzymes at National Center for Biotechnology
Information (NCBI). A putative GH107 (WP_179351272)
from the marine flavobacterium Winogradskyella vidalii showed
59% identity (>90% coverage) with GH107_P5AFcnA.
Genomic studies have linked Winogradskyella spp. to fucoidan
utilization, but so far this has not been biochemically verified.86

We found that pure recombinant GH107 from W. vidalii
displayed similar activity as GH107_P5AFcnA against
fucoidan and α-1,3-linked sulfated fucan oligosaccharide
(Figure 5c). As such, both enzymes are α-1,3-endo-
fucoidanases that are able to initiate the degradation of
fucoidan derived from L. hyperborea.
According to the CPAGE results, both GH107s show

activity against fucoidan after 1 h, whereas longer incubation
time is needed to degrade the oligosaccharide. This suggests
that the enzymes prefer substrates with longer glycan chains or
different sulfation patterns than 10�structures that seem to
occur in the native fucoidan. For example, fucoidan from L.
hyperborea can be C2 sulfated in addition to C4.43 Never-
theless, we demonstrate here the α-(1→3)-fucan specificity of
two GH107 fucoidanases derived from marine bacteria. These
results demonstrate the utility of synthetic oligosaccharides in
the discovery and characterization of fucoidan-degrading
enzymes.
Glycan Microarrays Map Specificity of Fucoidan-

Directed Antibodies. Understanding the relationship
between the structure of fucoidans and their functional
properties is challenging due to the heterogeneity of
polysaccharides extracted from algae. Therefore, we con-
structed a glycan microarray to investigate the binding of
protein to our synthetic fucoidan library. Amine-functionalized
fucoidan oligosaccharides along with two control β-(1→3)-
glucans, 22 and 23, were covalently attached to N-
hydroxylsuccinimide (NHS)-functionalized glass slides. Each
glycan was printed in quadruplicate at a concentration of 100
μM using a robotic printer.
The binding specificity of four monoclonal antibodies

(mAbs) targeting fucoidan, BAM1−BAM4, was investigated.
These antibodies allow the visualization of algae and diatom
cell walls.3,4,12 Furthermore, they aid in the environmental
detection and quantification of fucoidan in seawater and
sediments.3,4,7 A limitation of these antibodies is that their
epitopes are not precisely defined.12

Microarray analysis of BAM1 and BAM3 revealed no
binding to any fucoidan oligosaccharides on the array,
suggesting interactions with structural epitopes not present
in the current library (Figure 5a). mAb BAM4 demonstrated
no binding to any fucoidan structures on the array but did
display reproducible binding to a β-(1→3)-glucan tetrasac-
charide 22 and 23 β-(1→3)-glucan tetrasaccharide with a
central β-(1→6)-branch (Figure 5a; SI Figure 15).
In the case of mAb BAM2, binding was observed to sulfated

fucoidan oligosaccharides 11, 9, 13, 14, and 17 (Figure 5a).
Low level binding to glycan 11, a monosaccharide with a di-
3,4-O-sulfation pattern, was only observed at a higher
concentration of mAb BAM2, suggesting that this di-O-
sulfated monosaccharide poorly represents the BAM2 epitope.
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While binding to α-(1→3)-fucoidan oligosaccharides (9, 13,
and 14) with 4-O-sulfate esters and a terminal di-3,4-O-
sulfation pattern provided more robust binding across a range
of concentrations (SI Figure 15). mAb BAM2 also bound
weakly to sulfated fucoidan oligosaccharide 17, with an α-(1→
3)−α-(1→4)-linked backbone. Collectively, this suggests that
these 4-O-sulfated oligosaccharides contain the BAM2
epitope.14,86

Binding of BAM2 to Thalassiosira weissf logii Sug-
gests the Diatom Synthesizes a Fucoidan Structurally
Similar to Those in Brown Algae. The formation of sinking
particles in the ocean promotes carbon sequestration, and
microalgal polysaccharides are involved in this process. Recent
findings, utilizing the fucoidan-specific monoclonal antibodies
BAM1 and BAM2, have revealed that diatoms Chaetoceros spp.
and Thalassiosira weissf logii produce fucose-containing sulfated
polysaccharides (FCSP). These polysaccharides form particles
that promote aggregation, sinking, and, consequently, carbon
sequestration.4,87 FCSP is a broad term used to imply the
presence of fucoidan-like structures but does not refer to a
particular structure.
Analysis of polysaccharide extracts from the diatom

Thalassiosira weissf logii using microarrays suggested the
presence of distinct fucoidan that was reactive to BAM2 but
not BAM1 (Figure 6a),87 implying that diatom species

synthesize diverse fucoidan structures. In this study, we
mapped the specificity of the mAb BAM2, and hypothesized
that this means T. weissf logii produces a fucoidan with either α-
(1→3)-linked fucose or alternating α-(1→3)−α-(1→4)-linked
fucose and 4-O-sulfation. Microscopy analysis of diatom cells
post-roller tank experiments, which were employed to induce
aggregation, revealed the presence of the BAM2 fucoidan
epitope surrounding the diatom cell aggregates.87 Furthermore,
here we demonstrate that individual diatom cells produce this

fucoidan epitope and present it on their cell surfaces (Figure
6b).
The presence of structures known for their carbon

sequestration capacity, within a globally distributed diatom
suggests that the synthesis of molecules is more common than
previously assumed. Detailed analysis of the glycans present in
marine ecosystems will allow for a deeper understanding of the
marine carbon cycle. In this process, structurally defined
synthetic oligosaccharides served as a missing link in various
existing tools, including enzymatic, immunological, and
spectroscopic methods.

■ CONCLUSIONS
Automated glycan assembly provides access to fucoidan
oligosaccharides, reaching lengths of up to 20-mers, with
diverse branching patterns, and up to 11 sulfate esters.
Modulating the reactivity of building blocks, by altering the
thioglycoside aglycon from an alkyl to a less reactive aryl
group, enabled the synthesis of the oligosaccharides. NMR
experiments confirmed that these synthetic fucoidan oligo-
saccharides contain structural features that are found in brown
algae. A synthetic oligosaccharide also enabled the character-
ization of two GH107 endo-fucoidanases from marine bacteria,
with both enzymes capable of degrading α-(1→3)-linked
fucoidan sulfated oligosaccharides. A fucoidan microarray was
used to map the specificity of four monoclonal antibodies
(mAbs) directed toward fucoidan. The mAb BAM4 was
discovered to have cross-reactivity toward β-(1→3)-glucans,
both with and without β-(1→6)-glucose branches. The mAb
BAM2 bound to fucoidan oligosaccharides with α-(1→3)- and
α-(1→3)−α-(1→4)-linkages bearing 4-O-sulfate esters. This
molecular understanding of mAb BAM2 specificity provides
evidence that Thalassiosira weissf logii, a globally abundant
diatom, synthesizes fucoidan structurally similar to that found
in brown algae. Synthetic fucoidan oligosaccharides are tools to
investigate fucoidan’s roles in carbon sequestration and
medicine.
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