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ABSTRACT: Identifying local structural motifs and packing
patterns of molecular solids is a challenging task for both
simulation and experiment. We demonstrate two novel approaches
to characterize local environments in different polymorphs of
molecular crystals using learning models that employ either flexibly
learned or handcrafted molecular representations. In the first case,
we follow our earlier work on graph learning in molecular crystals,
deploying an atomistic graph convolutional network combined
with molecule-wise aggregation to enable per-molecule environ-
mental classification. For the second model, we develop a new set
of descriptors based on symmetry functions combined with a
point-vector representation of the molecules, encoding information
about the positions and relative orientations of the molecule. We
demonstrate very high classification accuracy for both approaches on urea and nicotinamide crystal polymorphs and practical
applications to the analysis of dynamical trajectory data for nanocrystals and solid−solid interfaces. Both architectures are applicable
to a wide range of molecules and diverse topologies, providing an essential step in the exploration of complex condensed matter
phenomena.

1. INTRODUCTION
Elucidation of the microscopic structure of molecular materials
is key to predicting and engineering their properties. Despite
significant advances in experimental techniques, following
structural transformations in condensed-phase systems with
atomistic resolution remains a challenge due to the time and
length scales involved. Computational approaches, such as
molecular dynamics (MD) simulations, have become an
invaluable tool to provide such microscopic insights, but
characterizing the structural features of a molecular system
from the simulation data is, in general, nontrivial. However,
following the dynamical evolution of local structural environ-
ments is essential when studying polymorphic transitions,
especially concerning the complex atomistic processes that
govern nucleation and growth.

A number of descriptors have been developed over the years
to capture local or global structural features, including
Steinhardt order parameters,1,2 common neighbor analysis,3−5

entropy-based fingerprints,6 smooth overlap of atomic posi-
tions,7 and atom-centered symmetry functions (SFs)8 (see also
refs 9−16 for further overviews and examples). More recently,
machine learning has been utilized to classify local environments
with both supervised and unsupervised approaches.17−28 These
machine learning models for local structure classification fall
into two broad categories: models that use handcrafted
structural features or descriptors together with a simple
classification model, and models that use only very general

information, such as atom types and distances, wherein the
models learn the structural representation and intermolecular
correlations simultaneously. The former approach is attractive in
its ostensible simplicity but relies on the development of high-
quality descriptors; the latter requires a more complex model
architecture, is less intuitive concerning the system, but is more
generally applicable. Here, graph neural network (GNN)
approaches are attractive in their generality, allowing one to
use a single flexible model for most systems. GNNs have also
been used to describe condensed-phase systems, in which the
relevant features are learned in a “ground up” fashion from basic
atomistic information.26,27,29−38

The structure characterization methods discussed above have
been primarily established in the context of atomistic
condensed-matter systems. In molecular systems, additional
challenges arise since not only the positions of the molecules but
also their relative orientation as well as conformational changes
need to be accounted for. One idea is to include this information
via a point-vector representation of the molecules where, for
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example, the center of mass denotes the molecule position and
vectors denote the absolute orientation of a given molecule, such
that these two elements can be combined into suitable
descriptors.39,40

In this work, we advance the state-of-the-art of machine
learning classification of local environments to capture the
complex structural features in molecular solids. We present two
parallel approaches, one based on handcrafted descriptors and
the other based on learned feature embeddings. The handcrafted
descriptors extend our previous work on atomistic systems19 to
molecular SFs by combining the SFs with a point-vector
representation of the molecules. For the learned embeddings, we
utilize our recently introduced molecular crystal graph model
MXtalNet41 and augment the architecture with a classification
task. The trained models are able to distinguish different local
environments in various polymorphs of complex molecular
solids with high accuracy. Furthermore, both approaches are
applicable to a wide range of systems, including clusters and
interfaces, and can provide time-resolved information regarding
melting transitions or solid−solid transformations. The
potential of our classification models is exemplified for urea
and nicotinamide, but the methods are easily extended to
arbitrary molecules. The approaches presented introduce an
essential and valuable component in the analysis and
interpretation of simulation data for molecular solids.

2. MODEL ARCHITECTURES AND TRAINING
The general idea of our two model architectures is schematically
illustrated in Figure 1. The classification is performed for each
molecule to characterize its local structural environment. An
appropriate model should be invariant to permutations of atoms
of the same types, as well as global translations, rotations, and
inversions of the atomic coordinates, focusing only on the
structural correlations which define the respective polymorphs.
For the learned feature embedding, the positions and atom types
of a given molecule and its neighbors comprise the input to a
GNN coupled with a multilayer perceptron (MLP) to perform
classification on the final embedding. For the handcrafted
features, the atomic positions are used to construct a point-
vector representation for each molecule, which is then employed
to compute a set of molecular SFs as input to the classification
MLP. Details of the model architectures and training protocols
are given in the proceeding subsections.
2.1.Molecular Crystal GraphNetwork. For the molecular

GNN, we used a relatively straightforward GNN, similar in
geometric complexity to SchNet,42 taking interatomic distances
and atom types as inputs. This GNN encodes pairwise
interatomic distances to edge embeddings, atom types to node

embeddings, and performs graph convolutions via the Trans-
formerConv operator43 implemented in the Torch Geometric
package.44

The GNN parses a single sample in the following way, starting
with the embedding of the input nodes atom types zi

zf EMB( )i i
0 = (1)

with EMB as a learnable discrete embedding function, followed
by a fully connected layer. The edge embedding is

e rBessel( )ij ij= | | (2)

where |rij| is the distance between nodes i and j, and Bessel is the
radial embedding function from DimeNet45 with cutoff rc = 6 Å
and a basis of 32 spherical Bessel functions. A fully connected
layer is defined as FC(x) = W · x + b, with W and b as learnable
parameters. Messages are passed between nodes, conditioned on
node and edge embeddings via eqs 3 for edge → message and
(4) for node → message over N graph convolutions, with GC
being the graph convolution operation
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After each graph convolution, the node embeddings are
passed through a fully connected layer with residual connection
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t

i
t

n n
t

i
t= + (6)

with σ being the activation function (here GeLU46), D(x), a
dropout function, and x( ), the graph layer norm operation.
The final node features, corresponding to information about
each atom and its local environment, are aggregated into a single
embedding vector representing the entire molecule and input to
a two-layer activated fully connected network with layer
normalization and dropout, followed by a reshaping to the
number of possible classes. Although there are currently many
powerful graph aggregators, we find that max aggregation, i.e.,
selecting the maximum value from each feature channel, k,
across the final atomic node embeddings in each molecule, is
simple and efficient for learning the desired functions with

g fMAX ( )k
N= { } (7)

and

y gMLP( )= (8)

Figure 1. Workflow of the GNN and SF classifiers on top and bottom, respectively, including molecule representation, local embedding, and
classification. The GNN learns the features g used in the classification task, while for the SF classifier, the features g are given by the handcrafted
molecular SFs.
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with MLP being a multilayer perceptron. The class probabilities
for a molecule I being in a particular environment q are
computed via the softmax activation function

p q
y

y
(env )

exp( )

exp( )
I

q

k
C

k

= =
(9)

with C being the number of possible environments.
We found that one or two graph convolutions gave similar

performance, although more convolutions result in a larger
volume for what the model considers as a “local environment”.
The number of convolutions depends on the user’s desired
sensitivity to longer-range structural correlations, but in the
current examples, more than two convolutions resulted in
training instability and overall poor convergence. For other
hyperparameters, optimal performance was obtained with a
relatively deep embedding (256 for node and graph embed-
dings, 128 for messages), aggressively regularized with layer
norm and a dropout of 0.25 in graph convolutions, nodewise
fully connected layers, and the embedding-to-output network.
With these settings, the model converged via the Adam
optimizer to the test minimum very quickly, usually within a
few tens of epochs. Smaller models could certainly be explored,
although we generally found convergence properties to be
poorer in that regime. For further details of model construction,
see the Supporting Information and our accompanying
codebase.47

2.2. Molecular Symmetry Functions. Our second model
derives a set of descriptors for each molecule based on the
Behler−Parrinello SFs8 in combination with a point-vector
representation39,40 of the molecules. The point-vector repre-
sentations for urea and nicotinamide are illustrated in Figure 2,
where the position rI of molecule I is represented by a selected
atom (indicated by a turquoise circle in Figure 2). Vectors vI;s are
defined between two selected atoms in the molecule, such that

they can capture the relative orientations of the molecules
(indicated in orange, vI;1, and green, vI;2, in Figure 2). We utilize
four different types of molecular SFs SI. Two are akin to radial
SFs for atomistic systems but using the molecule positions rI

S fr r( ) e ( )I

J

R
IJ

r
1

( )
c

IJ s
2

= | |

(10)

and

S fr r r( ) cos( ) ( )I

J
IJ IJ2 c= | |

(11)

where the sum runs over all other molecules, rIJ = rJ − rI, fc is a
cutoff function (see Supporting Information for details), and η,
Rs, and κ are tunable parameters. The other two types of
molecular SFs use the molecule vectors to characterize the
relative orientation of molecule I with respect to its neighbors J
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s

J
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2
cI s J s; ;
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and
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s
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=
(13)

where v vI s J s; ;
is the angle between vectors v;s on molecules I and J,

and cos θS is another tunable parameter. The total number of
employed molecular SFs is 24 for both urea and nicotinamide.
Details of the selected molecular SFs and corresponding values
of the tunable parameters are given in Tables S1 and S2 of the
Supporting Information.

To perform classification of molecule environments, the
molecular SF descriptors are input to a rather small MLP with
two hidden layers, 25 nodes each, and the softmax activation in
eq 9 for the output layer. A larger MLP with more hidden layers
and nodes would provide greater flexibility, but due to the
simplicity of the classification task, a small network was sufficient
for our applications, making both the training and evaluation
rather fast. For further implementation details, see the SF
classifier codebase.48

2.3. Training the Models. Training data were generated by
MD simulations of all crystal polymorphs and the melt for urea
and nicotinamide. Simulations were performed using the LAMMPS

MD package49 with a general Amber force field (GAFF).50 Here,
we briefly summarize the protocol for training the classification
models. Further details regarding the MD simulations and
training are given in the Supporting Information.

The graph classifier was trained on a mix of trajectory
snapshots of periodic bulk cells approximately 20 × 20 × 20 Å3

and gas-phase spherical clusters with a diameter of ∼30 Å to give
the effect of a “surface”. Molecules are identified as being on the
surface if their local coordination number, CNI, is smaller than
20, with CNI = ∑Jθ[−(|rIJ| − Rc)], where θ is the Heaviside
function and Rc is the molecule radius plus the graph
convolution cutoff. Due to differences in the architecture of
the classification MLP, the SF classifier was trained on periodic
bulk samples alone.

We train the classification models on stable, low-temperature
snapshots of the known bulk polymorphs of each molecular
crystal, as well as on the supercooled melt state. We test the
models’ generalization performance on configurations from
higher-temperature MD simulations, with adaptation to thermal
noise standing in as a proxy for overall generalization. The

Figure 2. Point-vector representation for urea (top panels) and
nicotinamide (bottom panels) in two different polymorphs, respec-
tively. The turquoise circles indicate the positions of the molecules rI,
and the green and orange vectors, vI;1 and vI;2, characterize their relative
orientations.
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specific temperatures for each of the studied systems are
discussed together with the results below.

The graph classifier was trained until the test loss began to
increase, and the model checkpoint at the test loss minimum was
used for evaluation. Repeated retraining over several random
seeds found variations in the test loss minimum of only a few
percent between runs. We used a combined cross-entropy loss
including both the loss for the local polymorph classification for
each molecule and the molecule topology, that is, “surface” vs
“bulk”.

The SF classifier was trained until the training loss converged,
which, generally, resulted in very small test losses.

3. CLASSIFICATION OF LOCAL ENVIRONMENTS
3.1. Bulk Polymorphs of Urea and Nicotinamide. We

initially trained and applied our classification models to two
different systems, urea and nicotinamide. Urea is a relatively
small and rigid molecule which is also significantly polymorphic,
having six distinct crystal structures with a unique intermolecular
packing character51−54 (see Figure S1 of the Supporting
Information for a visualization of the respective polymorphs).
The models were trained on T = 100 K crystal samples and T =
350 K melts, and evaluation metrics were computed on samples
at 200 K for the crystal polymorphs and 350 K for the melt. At
low temperatures, the graph classifier achieves perfect accuracy

for both polymorphs and local topologies. This means that the
GNN learns an embedding where the different molecule
environments are clearly separated without overlap. This is
expected as the graph model is rather expressive, and in all the
thousands of individual molecular environments, the local
structure seen by the model should be quite similar within each
polymorph. The graph model also generalizes well to higher
temperature samples at T = 200 K, as evidenced by the
confusion matrices shown in Figure 3, meaning that larger
thermal fluctuations can be captured within the trained model.
Only urea form A shows a slightly larger classification error, with
about 9% of the samples being identified as “melt”, which might
be due to the lower stability of form A. The SF classifier also
demonstrated excellent performance on urea, achieving
comparable or better performance at polymorph classification
(F1 ≳ 0.98) to the GNN model in training and evaluation while
being lightweight and fast to run at inference. The correspond-
ing confusion matrix can be found in Figure S3 of the Supporting
Information.

As a second example, we chose nicotinamide as a more
challenging molecule. Nicotinamide is larger than urea and more
flexible with internal degrees of freedom that allow for
polymorphs consisting of different conformers of the molecule.
Nine polymorphs of nicotinamide have been experimentally
crystallized55,56 (see Figure S2 of the Supporting Information for
a visualization of the respective polymorphs). Despite this

Figure 3. Confusion matrices for the graph classifier on the (a) polymorphs and (b) topologies of urea at 200 K for crystals and 350 K for the melt.
Micro F1 scores = 0.969, 0.960.

Figure 4. Confusion matrices for the graph classifier on the (a) polymorphs and (b) topologies of nicotinamide at 350 K. Micro F1 scores = 0.875,
0.922.
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significant added complexity in the molecular system, the
performance of our classification models is again very good. As
with urea, the training samples, both crystal polymorphs at 100
K and supercooled melts at 350 K, are essentially perfectly
learned. The model also generalizes well to the high-temperature
test samples of crystal polymorphs at 350 K. The corresponding
confusion matrix for the GNN classifier is shown in Figure 4.
The F1 score for nicotinamide at high temperatures is slightly
worse than that for urea, 0.875 compared to 0.969, which reflects
the increased flexibility in the thermal fluctuations at this even
higher temperature. This is, however, not a fundamental
limitation of the model as, when retrained with samples at
both 100 and 350 K, the accuracy again approaches 100%.

We see that the generality and high capacity of the GNN
model allow it to classify each polymorph and local topology
without the need for model customization of any kind. Likewise,
the SF classifier performs excellently on the nicotinamide
polymorphs (see Figure S4 of the Supporting Information for
the corresponding confusion matrices). This indicates that the
chosen set of molecular SFs provides suitable descriptors to
capture the additional complexity and flexibility in nicotinamide
crystal polymorphs and melts.

One interesting point is that the GNN classifier exhibits
somewhat lower performance on the nicotinamide high-
temperature samples compared to the SF classifier when both
are trained on low-temperature crystals and high-temperature
melts alone. From the confusion matrices in Figure 4, it becomes

clear that the accuracy loss of the graph classifier is primarily due
to overprediction of the melt state. For a model trained only at
100 K and evaluated at 350 K, this should perhaps not be
surprising. The larger thermal fluctuations in inter- and
intramolecular degrees of freedom increase the general similarity
of bulk crystals to the melt, and they are interpreted as such by
the model. The fact that we do not see this effect as strongly in
the SF classifier results indicates that the handcrafted descriptors
are quite robust to fluctuations yet sensitive enough to achieve
high classification accuracy.

To gain a better understanding of the learned and handcrafted
features in our molecular graph and SF classifiers, respectively,
we compare the corresponding embedding spaces. In Figure 5,
the embedding spaces of the representations and final layer
activations for urea are visualized using the t-distributed
stochastic neighbor embedding (t-SNE).57 Figure 5a shows
that the molecular representation learned by the GNN already
separates the different polymorphs of urea reasonably well. The
quality of the handcrafted SFs is obvious when examining the t-
SNE of the SF inputs in Figure 5c, which cluster essentially
perfectly before applying any learned transformations. Figure
5b,d show the t-SNE of the final layer activations for the GNN
and SF classifier, respectively. The class separation is excellent,
as expected from the very high classification accuracy observed
for both models.

The t-SNE visualization of the embedding spaces for
nicotinamide is shown in Figure 6. Both the learned and

Figure 5. T-distributed stochastic neighbor embedding (t-SNE) of urea samples from the (a) 256-dimensional graph embedding (output of eq 7), (b)
256-dimensional final layer activation, (c) 24 SFs, and (d) 25-dimensional SFC final layer activation; samples are taken from three different
temperatures of 100, 200, and 350 K.

Figure 6. t-SNE of nicotinamide samples from the (a) graph embedding (output of eq 7), (b) final layer activation, (c) SFs, and (d) SFC final layer
activation at temperatures of 100 and 350 K. Embedding dimensionality is the same as in Figure 5.
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handcrafted embedding spaces in Figure 6a,c show imperfect
classwise separation between the various polymorphs in
nicotinamide. This again underscores the increased challenge
in characterizing structural environments in more complex and
flexible systems. In particular, samples from the melt seem to
cover a wide range and are less clustered in the embedding
spaces. We also see greater separation of samples from the same
crystalline polymorphs in Figure 6a,b, including bifurcation of
some classes, corresponding to the different sampled temper-
atures and topologies. The overlap between the melt and crystal
embeddings visible in Figure 6a,b is also consistent with the
GNN classifier confusing some crystalline polymorphs mainly
with the melt, as seen in Figure 4. Nevertheless, the final learned
representations in Figure 6b,d show again a very good separation
between the different polymorph classes, even for the high-
temperature samples.
3.2. Analyzing Molecular Simulations. An ability to

characterize local environments reliably in unknown structures
will be particularly useful when analyzing and interpreting
trajectory data from molecular simulations. In the following, we
discuss two examples: the stability of gas-phase nanocrystals at
different temperatures and the migration of an interface during a
solid−solid transformation in a molecular crystal.
3.2.1. Dynamical Structure Characterization of Molecular

Clusters. The GNN classifier trained on the bulk polymorphs of
nicotinamide is used to identify the local environments of
nicotinamide molecules in small nanocrystals. We set up
spherical clusters of nicotinamide form I with a diameter of 34
Å containing 148 molecules. MD simulations for the clusters in
vacuum are run at T = 100 and 350 K (further simulation details
are given in the Supporting Information). In Figure 7, the

structural evolution of the nicotinamide nanoclusters at these
two temperatures is shown, obtained using the graph classifier.

Since the classifier provides information for each molecule
individually, we can separate our analysis for molecules that are
in the core region of the clusters, Figure 7a,c, and at their
surfaces, Figure 7b,d. At 100 K, the nanocluster clearly keeps its
crystalline structure over the entire simulation time. While the
majority of molecules in the core region are identified as
nicotinamide form I, molecules at the surface are partially
classified as melt or others, which is expected since the structural
environment at the surface is significantly different from the
bulk. At 350 K, the crystalline cluster quickly melts starting from
the surface. Within a few picoseconds, molecules at the surface
are identified as liquid with a handful labeled as others. The core
region melts a little more slowly with a few molecules initially
remaining as form I and others. After approximately 500 ps, the
cluster appears to be completely melted with only a small
number of core molecules identified as others.

Despite not having been trained on clusters in vacuum or
mixtures of polymorphs, the performance of our graph classifier
in the analysis of the simulation data is sensible and very
informative, allowing us to evaluate the structural stability and
the onset of melting as a function of temperature.
3.2.2. Time Evolution of Solid−Solid Phase Boundaries.

Pushing our analysis tools even further, we apply our
classification models to track the position of the interface
between two different polymorphs of urea during a solid−solid
transformation. A semicoherent interface between forms I and
IV of urea is set up by pairing both phases along the [001]
direction. The xy-dimensions parallel to the interface are fixed,
resulting in 1.7% compression in x and 1.4% strain in y of urea I
and 2.8% compression in x and 0.8% strain in y of urea IV,

Figure 7.Time evolution of the number of molecules classified as form I, melt, or other (a,b) at 100 and (c,d) at 350 K. The analysis is shown separately
for high-coordination “core” molecules in (a) and (c) and low-coordination “surface” molecules in (b) and (d). Vertical dashed lines identify the time
points for the cluster snapshots, with molecules colored according to their most probable form. Snapshots were visualized using OVITO.58
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respectively. Periodic boundary conditions are applied in all
dimensions, keeping molecules at one of the interfaces fixed, and
simulations are run in the NPzT ensemble at T = 100 K (further
simulation details are given in the Supporting Information).

In Figure 8, the analysis of the structural transformation using
the graph classifier is shown. Initially, the system is mainly
composed of urea form I (green molecules) in the top half of the
simulation cell with some form IV at the bottom. Molecules at
the interface between the two polymorphs are primarily
identified as “others” due to deviations in their local environ-
ments from the pure bulk polymorphs. Since within the chosen
setup form I is rather unfavorable, transformation to form IV
rapidly takes place over a few hundred femtoseconds, which is
indicated by the continued increase of molecules identified as
form IV and decrease of form I in the top graph of Figure 8.

Here, again, the utility of accurate local environment
classification is clearly evidenced as subtle changes in local
spacing and orientations of molecules can be seen to correspond
to the transformation between distinct polymorphs, in this case
forms I and IV of urea. Interestingly, we also see that the
conversion from form I to IV is not perfect as some defects are
left in the wake of the phase boundary as it moves upward
through the sample.

4. CONCLUSIONS
We have introduced two machine learning-based approaches for
the classification of local structural environments in molecular
solids. Both the GNN classifier with learned feature embeddings
and the SF classifier with handcrafted descriptors identify

molecular environments in various bulk polymorphs with high
accuracy. While the performance of the two machine learning
models is comparable for the studied systems, there are
differences in their practical applications.

The GNN model can be used for most molecular systems “out
of the box” with minimal customization but may require
hyperparameter tuning to achieve good generalization. Due to
its flexibility and expressive power, with the model presented
here containing 356,000 parameters, the GNN classifier is
somewhat sensitive to overfitting the training data. Again, one
could train a smaller GNN model at the empirically observed
cost of slower convergence to inferior evaluation minima. Still,
the model evaluates relatively quickly with 35 training iterations,
each comprising some hundreds of molecules per second on a
V100 GPU compute and ∼1 per second on a single CPU.
During evaluation, the current performance bottleneck is more
often the conversion from MD trajectory output files into the
appropriate data format for the GNN model than the model
forward pass itself, with 500 trajectory frames of 20 Å3 bulk
systems taking usually only several minutes to analyze.

The performance of the SF classifier strongly depends on the
handcrafted input features. The molecular SFs proposed here do
provide the flexibility to capture complex environments in
molecular solids but need to be carefully chosen for each new
system. This includes both the point-vector representation of
the respective molecule and the tunable parameters of the SF.

For larger and more flexible molecules, it might be necessary
to expand the molecular SFs to explicitly account for
conformational changes, for example, by introducing SFs that

Figure 8. Time series of the molecule-wise composition of a system with a moving interface between forms I and IV of urea. In the top graph, only
molecules in the central region of the simulation cell, highlighted in bold in the snapshots below, are included. Vertical dashed lines correspond to the
time points from which the snapshots were sampled, with molecules colored according to their assigned polymorph. Snapshots were visualized using
OVITO.58
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depend on different vectors in the same molecule, e.g.,
corresponding to rigid fragments within the molecule. As with
any handcrafted descriptor, this requires a certain level of insight
and intuition about the system to be studied. Furthermore, it is
desirable to keep the number of molecular SFs small since
calculating the input descriptors is the main computational cost
when evaluating the SF classifier; that is, a careful selection of
new SFs is crucial. The GNN classifier is more general and can
be straightforwardly upgraded with more sophisticated geo-
metric features, convolutional methods, or global aggregators to
capture longer-range intra- and intermolecular dependencies
efficiently within a given system. Today, such architectural
improvements are relatively well understood and adoptable “off
the shelf”.

Both models are trivially parallelizable as they only require
information about a given molecule and its environment and are
reasonably computationally cheap for postprocessing molecular
simulation data. For on-the-fly usage of local environment
information, for example, in enhanced sampling, both methods
introduce a computational overhead compared to standard MD.
The evaluation of the GNN classifier will generally be slower
than the evaluation of a simple empirical force field due to the
added computational complexity and, correspondingly, will
increase the computational cost. The added cost of the SF
classifier is dominated by the choice and number of descriptors,
while evaluating the simple classification MLP is negligible. For
smaller and simpler molecules, the SF classifier is, therefore,
computationally more efficient than the GNN. For larger and
more complex molecules, the situation might reverse as the set of
required molecular SFs becomes larger and more complex. In
simulations employing more accurate and costly interaction
potentials, e.g., machine learning potentials, the evaluation of
either classifier will only marginally contribute to the overall
computational cost.

Our tools are also applicable to multicomponent systems,
such as cocrystals, and can be used to identify defects, such as
impurities, vacancies, surfaces, or interfaces. The main challenge
in these more complex scenarios is the preparation of labeled
training data for the supervised learning task.

The two classification models presented in this study provide
a general approach for the analysis and interpretation of
simulation data in molecular solids. This will be particularly
useful for the study of structural transformations, including
nucleation and growth. Additionally, information about the local
environment can be used to construct collective variables used in
enhanced sampling of structural transformations, as we have
shown previously for atomistic systems.19,20 We expect that the
characterization of local structural motifs using classification
models will become an essential tool in the simulation of
molecular solids as these models are easy to train and extremely
versatile.
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