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Abstract
We have recently introduced MAPLE (MAximum Parsimonious Likelihood Estimation), a new pandemic-scale phylo
genetic inference method exclusively designed for genomic epidemiology. In response to the need for enhancing 
MAPLE’s performance and scalability, here we present two key components: (i) CMAPLE software, a highly optimized 
C++ reimplementation of MAPLE with many new features and advancements, and (ii) CMAPLE library, a suite of 
application programming interfaces to facilitate the integration of the CMAPLE algorithm into existing phylogenetic 
inference packages. Notably, we have successfully integrated CMAPLE into the widely used IQ-TREE 2 software, 
enabling its rapid adoption in the scientific community. These advancements serve as a vital step toward better pre
paredness for future pandemics, offering researchers powerful tools for large-scale pathogen genomic analysis.
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Introduction
Phylogenetic analysis plays a vital role in genomic epidemi
ology, as exemplified during the COVID-19 pandemic 
(Gonzalez-Reiche et al. 2020; Lu et al. 2020; Hodcroft 
et al. 2021; Vöhringer et al. 2021). Phylogenetic tools 
help unveil the origins and transmission of pathogens, 
monitor the emergence of new variants, and inform vac
cine development. For instance, the widely used IQ-TREE 
2 software (Minh et al. 2020) has been at the core of the 
COVID-19 pandemic response, being employed, for ex
ample, in Nextstrain (Hadfield et al. 2018). To deal with 
the pandemic, we recently introduced MAPLE (De Maio 
et al. 2023), a novel likelihood-based phylogenetic 
inference method tailored for genomic epidemiological 
analyses. To address the ever-looming threat of new pan
demics, the need for further improvements regarding 
both the performance and scalability of MAPLE has be
come increasingly apparent.

Here, we present CMAPLE, a C++ reimplementation of 
MAPLE highly optimized for performance and scalability. 
CMAPLE is 3-fold faster and more memory efficient 
than MAPLE, reducing the runtime to analyze 200,000 
SARS-CoV-2 sequences (McBroome et al. 2021) using 
one CPU core from 2.4 d to 19 h. Notably, CMAPLE can re
construct a phylogenetic tree of 1 million SARS-CoV-2 
genomes, taking 11 d and 15.4 GB RAM. Additionally, 
we incorporate a plethora of new protein models (Minh 

et al. 2021; Dang et al. 2022) to improve CMAPLE’s 
versatility in analyzing a broader spectrum of pathogen 
genomic data. We also developed a suite of application 
programming interfaces (APIs) and have successfully in
corporated CMAPLE into IQ-TREE version 2.3.4.cmaple 
(https://github.com/iqtree/iqtree2/releases). Additionally, 
we developed an adaptive mechanism that automatically 
selects CMAPLE or IQ-TREE search algorithms to minimize 
the runtime. These advancements facilitate rapid dissem
ination and widespread adoption of CMAPLE.

To efficiently control pandemics, authorities need to 
make urgent decisions, such as applying new preventive 
measures to tackle new virus variants. CMAPLE enables a 
quicker and more accurate tracking of transmission and 
discovery of new variants and mutations, which is critical 
for public health decisions, vaccine designs, and better pre
paredness for future pandemics.

In the following, we highlight the improvements and 
key new features in CMAPLE and discuss a few potential 
directions for further enhancements.

The Overall Workflow of the CMAPLE Tree 
Search Algorithm
CMAPLE is a C++20 reimplementation of the MAPLE algo
rithm (v0.1.4) implemented in Python. MAPLE takes ad
vantage of low sequence divergence in pathogen data to 
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optimize memory usage. More specifically, MAPLE com
presses an input sequence alignment in FASTA or 
PHYLIP format into the so-called MAPLE format (De 
Maio et al. 2023), which represents each sequence by a 
set of the differences to a reference sequence. The refer
ence sequence can be specified by users or automatically 
computed from the input alignment as the consensus se
quence. This results in a very compact data structure, and 
we have taken a similar approach for the phylogenetic like
lihood vectors, allowing much faster (although more ap
proximate) likelihood calculation than the standard 
Felsenstein’s (1973) pruning algorithm. Our new imple
mentation of CMAPLE focuses on further reducing mem
ory allocation operations, optimizing memory access 
patterns, and minimizing CPU cache misses.

The CMAPLE algorithm involves three main steps: (1) 
building an initial tree using the sample placement algo
rithm (see below), (2) optimizing the tree topology using 
SPR moves (Felsenstein 1989; Swofford and Olsen 1990), 
and finally (3) optimizing the branch lengths. Users can 
choose to skip steps 2 and 3 (-search fast) to speed up 
the analysis, in which case CMAPLE operates like USHER 
(Turakhia et al. 2021). CMAPLE also supports updating a 
user-provided input tree, which might not contain all 
taxa. In this case, the first step of CMAPLE will add the 
missing sequences to the existing tree using the placement 
algorithm, and then the second step only applies SPR 
moves to the newly added sequences. Users can choose 
to skip it (-search fast) or to perform a thorough search 
considering all SPR moves (-search exhaustive).

CMAPLE Implementation and Performance 
Optimization
In general, high-performance computing and optimization 
is a very broad topic with multiple factors such as hard
ware capabilities, programming language, compiler ver
sion, choice of algorithm, and data structure, to name a 
few. We applied many code optimization techniques to 
enhance the time and memory efficiency of CMAPLE. In 
brief, while implementing the MAPLE algorithm, we tried 
to leverage optimization techniques such as SIMD for ma
trix and vector operations, compact data structures (for 
tree nodes) with minimal padding, and optimal cache-line 
efficiency (hot/cold splitting), using bit fields and devirtua
lization where possible. We also tried to minimize 
branches, especially in hot loops, to use stack objects in
stead of heap objects, preallocations, and C++ move se
mantics. It is hard to quantify the individual effect of 
these techniques since there is interplay between them, 
yet they all contributed significantly to performance. 
Last but not least, we employ a high-performance library 
for memory allocation, jemalloc, to further save runtimes 
for Linux and macOS. As jemalloc can be activated during 
runtime, its effect can be quantified more easily and leads 
to a time saving of up to around 8% (supplementary table 
S2, Supplementary Material online).

CMAPLE relies on three third-party libraries: ncl (Lewis 
2003), simde (https://github.com/simd-everywhere/simde), 
and zlib (http://zlib.net/).

Fast (Online) Sample Placement onto an 
Existing Tree
During the COVID-19 pandemic, many new viral genome 
sequences have been obtained and shared on a daily basis. 
Researchers and healthcare professionals have leveraged 
fast sample placement onto continually updated and 
maintained global SARS-CoV-2 phylogenetic trees for 
identifying new variants, recombinations, and reconstruc
tion transmissions. Therefore, CMAPLE implements a fast 
sample placement algorithm that allows adding new se
quences into a phylogenetic tree of existing samples as 
follows.

CMAPLE applies the stepwise addition method 
(Swofford et al. 1996), which iteratively adds new samples 
to the existing tree one at a time according to their simi
larity to the reference sequence, such that the most closely 
related sequence will be added first. For each new se
quence, CMAPLE tries to insert it into every branch of 
the tree and reevaluates the tree’s likelihood. The branch 
with the highest likelihood will be chosen. This process is 
repeated until all new sequences are added to the tree. 
In our tests, CMAPLE takes 14 min to insert 10,000 ran
domly sampled SARS-COV-2 sequences into an existing 
500,000-sample tree. The runtime does not depend on 
the genome size, but on the divergence level of the added 
sequences to the reference: a higher divergence level leads 
to a longer running time.

Reversible and Nonreversible DNA and 
Protein Substitution Models
CMAPLE supports two reversible DNA substitution mod
els, JC (Jukes and Cantor 1969) and GTR (Tavaré 1986), 
and the general nonreversible model UNREST (Yang 
1994a). Additionally, we have implemented 40 empirical 
reversible and nonreversible protein models from the 
IQ-TREE 2 software (Minh et al. 2021; Dang et al. 2022), 
which are all listed at https://github.com/iqtree/cmaple/ 
wiki#supported-substitution-models. Those models en
able CMAPLE to analyze a broader spectrum of pathogen 
data, including bacterial genomes (Parks et al. 2018).

Fast Branch Tests
Phylogenetic inference typically involves branch support 
assessment of the inferred trees. To facilitate that task, 
CMAPLE incorporates the Shimodaira–Hasegawa-like ap
proximate likelihood ratio test (SH-aLRT; Guindon et al. 
2010). To take advantage of multicore CPUs, the 
SH-aLRT implementation is parallelized using OpenMP 
(Chapman et al. 2007), which speeds up the SH-aLRT cal
culation nearly linearly with the number of CPU cores 
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used. For instance, assessing branch support for a phylo
genetic tree with 100,000 tips requires 5.1 h on a single 
core (AMD EPYC 7551) but only 14 min on 32 cores, a 
22-fold speedup.

API and Integration into the IQ-TREE 2 
Software
In addition to a standalone software package, we provide a 
C++ API with comprehensive documentation at http:// 
iqtree.org/cmaple/. The CMAPLE API provides three 
main C++ classes: Alignment, Model, and Tree, represent
ing the input sequence alignment, the substitution mod
els, and the phylogenetic tree, respectively. The API 
facilitates the integration of the CMAPLE’s algorithm 
into existing phylogenetic software such as IQ-TREE 
(Nguyen et al. 2015), RAxML (Stamatakis 2014; Kozlov 
et al. 2019), and PHYML (Guindon et al. 2010). In fact, 
we already incorporated CMAPLE into IQ-TREE version 
2.3.4.cmaple (https://github.com/iqtree/iqtree2/releases), 
which users can use via “--pathogen-force” option.

Automatically Selecting CMAPLE or IQ-TREE 
Search Algorithms to Minimize the Runtime
The performance of CMAPLE and MAPLE strongly relies 
on low sequence divergence (De Maio et al. 2023), 
i.e. the MAPLE algorithm only works well on closely related 
sequences, such as SARS-CoV-2 genomes. Therefore, we 
provide a feature to decide if the CMAPLE algorithm is ef
fective for any user-given input alignment: (i) by default, 
every sequence must be at most 6.7% different from the 
reference sequence and (ii) the average sequence diver
gence from the reference must be at most 2%. We set these 
criteria based on the results of De Maio et al. (2023), who 
benchmarked MAPLE against popular phylogenetic meth
ods using alignments simulated with different levels of di
vergence; at levels of divergence around 20 times higher 
than typical SARS-CoV-2 data sets, they found that 
MAPLE becomes less accurate or less efficient than trad
itional approaches, so we set these as thresholds in our 
method.

Within IQ-TREE version 2.3.4.cmaple, users can use the 
option “--pathogen,” which will automatically invoke ei
ther the CMAPLE or the original IQ-TREE search algorithm, 
depending on the effectiveness defined above. For the API, 
developers can use the function cmaple::isEffective().

Benchmarking CMAPLE against Existing 
Software
We benchmarked the sequential version of CMAPLE (un
der the default setting and using the jemalloc library) 
against MAPLE on a server with an AMD EPYC 7551 32- 
core Processor. To generate a testing data set, we sub
sampled 5K, 10K, 50K, 100K, and 200K real SARS-CoV-2 
sequences from a global data set of 4.3 million genomes 

available on 2022 April 2 (McBroome et al. 2021). 
CMAPLE is about three times faster (Fig. 1a) and requires 
over three times less memory than MAPLE (Fig. 1b) while 
yielding equally high likelihood trees as MAPLE (see the 
Software Validation section). This is due to the memory 
efficiency of C++ code over Python and several optimiza
tion techniques (see the CMAPLE Implementation and 
Performance Optimization section). MAPLE required 
2.4 d and 11.5 GB RAM (Fig. 1) to reconstruct a tree of 
200,000 SARS-CoV-2 sequences, whereas CMAPLE took 
only 19 h and 3.6 GB RAM.

Thanks to these improvements, we ran CMAPLE on an 
alignment of 1 million SARS-CoV-2 genomes (McBroome 
et al. 2021), an input that MAPLE and other existing max
imum likelihood methods cannot handle currently. 
CMAPLE took 11 d and 15.4 GB RAM. Therefore, CMAPLE 
is highly efficient.

Analyzing these large alignments using existing max
imum likelihood software is impractical. Therefore, we 
benchmarked CMAPLE against IQ-TREE 2 (v2.2.5) and 
FastTree 2 (Double-precision executable for nearly-identical 
sequences, v2.1.11; Price et al. 2010) on two smaller align
ments with 5K and 10K real SARS-CoV-2 sequences. 
CMAPLE is 23× and 300× faster and requires 62 and 51 
times less memory than FastTree 2 and IQ-TREE 2, respect
ively, while also producing trees with higher likelihoods 
(supplementary table S1, Supplementary Material online). 
CMAPLE took 8 min and 0.24 GB RAM to reconstruct a 
tree from 10K sequences, while FastTree 2 and IQ-TREE 2 
took 3 and 40.5 h and 15.22 and 12.54 GB RAM, respectively 
(Fig. 1).

Software Validation
We validated our implementation by using IQ-TREE to 
compute the likelihoods of the trees inferred by CMAPLE 
and MAPLE from the real SARS-CoV-2 alignments of our 
testing data sets above. We found that the likelihoods of 
the trees inferred by CMAPLE and MAPLE are at most 
0.003% different from each other (supplementary table S1, 
Supplementary Material online).

We validated our branch support implementation in 
CMAPLE with IQ-TREE 2 on the same testing data sets. 
The SH-aLRT branch supports computed by both pro
grams on the CMAPLE-inferred trees have a Pearson cor
relation coefficient of 0.995 to 0.997 (supplementary fig. 
S1, Supplementary Material online). We observed 1.98% 
to 3.76% and 0.17% to 0.33% of branches where the two 
support values differed by more than 10% and 20%, re
spectively. We anticipate that these differences are due 
to the approximate nature of the CMAPLE likelihoods.

We also examined the code quality using SoftWipe 
(Zapletal et al. 2021) and achieved an overall absolute 
score of 8.0/10, ranked third out of 53 computational tools 
examined at https://github.com/adrianzap/softwipe/wiki/ 
Code-Quality-Benchmark (access date: 2024 February 2). 
All data sets and the testing scripts are provided in the 
Supplementary Material.
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Documentation and User Support
CMAPLE is open source and freely available at https:// 
github.com/iqtree/cmaple. We provide two executables: 
“cmaple” and “cmaple-aa” for DNA and protein data, re
spectively. A comprehensive user manual and command 
reference of the CMAPLE software are available at 
https://github.com/iqtree/cmaple/wiki. User support, bug 
reports, and feature requests can be conveniently submit
ted at https://github.com/iqtree/cmaple/issues. API docu
mentation and instructions on how to use the CMAPLE 
library are available at http://iqtree.org/cmaple/.

Discussions
Existing phylogenetic software, such as IQ-TREE, RAxML, and 
FastTree 2, was primarily developed for general tree recon
structions, thus may become slow and inefficient when 
handling large alignments with closely related sequences, as 
demonstrated in our benchmark and by De Maio et al. 
(2023). CMAPLE was specifically designed to address that 
problem.

We have here presented a sequential tree search algo
rithm, CMAPLE, which successfully improves upon 
MAPLE for larger pandemic-scale phylogenetic recon
struction. We plan to further reduce CMAPLE’s runtime 
by parallelizing tree search using OpenMP (Chapman 
et al. 2007) and/or message passing interface (MPI; 
Gropp et al. 1998). During tree search, CMAPLE seeks 
SPR moves for internal branches in a sequential manner. 
To expedite this computationally intensive task, OpenMP 
can employ multithreading on a single machine, while 
MPI allows multiprocessing in a high-performance com
puting cluster. Besides, we will also consider other paral
lelization approaches, such as parallel tree searches, 

parallelizing the likelihood calculation over genome list 
entries (i.e. groups of sites, see De Maio et al. 2023; similar 
to the approaches of PLL [Flouri et al. 2015], BEAGLE 
[Ayres et al. 2012], IQ-TREE, and RAXML) and potentially 
utilizing GPUs (Smith et al. 2024). These ideas require 
substantial efforts in design and implementation, thus 
beyond the scope of the current study.

CMAPLE currently applies GTR for DNA and LG for pro
tein data as default choices. It would be desirable to devise 
a model selection mechanism to automatically choose 
the most appropriate substitution model for a given 
data set, for example, by the Bayesian information criterion 
(Schwarz 1978) and Akaike information criterion (Akaike 
1974). Besides, the current MAPLE algorithm assumes all 
sites in the alignment evolve at the same substitution 
rate. We plan to relax this assumption by implementing 
models of rate heterogeneity across sites (Yang 1994b).

Another key challenge in genomic epidemiological ana
lysis is to deal with sequencing errors (De Maio et al. 2020; 
Turakhia et al. 2020). Not accounting for sequencing errors 
can lead to inaccurate inference (Turakhia et al. 2020). We 
plan to implement sequence error models (Felsenstein 
2004; Chen et al. 2022) to enhance the robustness and ac
curacy of CMAPLE.

Apart from providing CMAPLE as a standalone program, 
we also provide it as an API that can be readily deployed in 
any C++ code. The API provides the cmaple::isEffective() 
function to quickly test the efficiency of the CMAPLE algo
rithm for a data set at hand. If efficient, developers can invoke 
the CMAPLE library as provided in the tutorial. Besides, we 
plan to create a Python package for CMAPLE to approach 
a wider user base (e.g. similar to Wang et al. 2023).

The CMAPLE library complements existing phylogenet
ic libraries, PLL and BEAGLE, but cannot replace them 
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because the CMAPLE algorithm only works on low diver
gence sequences. In the future, we plan to combine the 
methods in CMAPLE with classical phylogenetic ap
proaches (such as those implemented within the libraries 
PLL and BEAGLE) to develop a unifying approach that 
would work efficiently at any level of divergence, for ex
ample, switching from classical algorithms and data struc
tures to those of CMAPLE as one moves from long 
branches in the tree into densely sampled clades.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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