Continuous Variables
leveneTest(data$acdplan_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0113 0.9156
## 225
summary(aov(data$acdplan_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.0 0.0308 0.01 0.921
## Residuals 225 694.6 3.0871
## 14 observations deleted due to missingness
leveneTest(data$acplan_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 2.2602 0.1341
## 239
summary(aov(data$acplan_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.5 0.5454 0.175 0.676
## Residuals 239 746.2 3.1222
leveneTest(data$age_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.3409 0.248
## 239
summary(aov(data$age_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 205 205.16 3.577 0.0598 .
## Residuals 239 13709 57.36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(data$alko1_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.2411 0.6239
## 233
summary(aov(data$alko1_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 27 26.65 0.817 0.367
## Residuals 233 7600 32.62
## 6 observations deleted due to missingness
leveneTest(data$alko2_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.4074 0.2367
## 234
summary(aov(data$alko2_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 84 83.72 1.718 0.191
## Residuals 234 11404 48.73
## 5 observations deleted due to missingness
leveneTest(data$aufswe_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.9235 0.3375
## 239
summary(aov(data$aufswe_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.9 0.9255 0.683 0.409
## Residuals 239 323.8 1.3548
leveneTest(data$bmi_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.2011 0.2742
## 239
summary(aov(data$bmi_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 30 30.15 1.272 0.261
## Residuals 239 5667 23.71
leveneTest(data$closrelmonths_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.02 0.8877
## 215
summary(aov(data$closrelmonths_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 535764 535764 3.707 0.0555 .
## Residuals 215 31069927 144511
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 24 observations deleted due to missingness
leveneTest(data$cesd_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0261 0.8718
## 239
summary(aov(data$cesd_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 1 1.03 0.02 0.887
## Residuals 239 12221 51.13
leveneTest(data$codplan_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0036 0.9521
## 225
summary(aov(data$codplan_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.2 0.1675 0.085 0.771
## Residuals 225 442.4 1.9662
## 14 observations deleted due to missingness
leveneTest(data$collattitude_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0171 0.8962
## 213
summary(aov(data$collattitude_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 3.6 3.583 1.822 0.179
## Residuals 213 418.9 1.967
## 26 observations deleted due to missingness
leveneTest(data$collimpint_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0022 0.9629
## 126
summary(aov(data$collimpint_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.0 0.007 0.001 0.969
## Residuals 126 558.2 4.430
## 113 observations deleted due to missingness
leveneTest(data$comorbidities_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.9139 0.3401
## 236
summary(aov(data$comorbidities_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.1 0.0605 0.031 0.86
## Residuals 236 458.2 1.9417
## 3 observations deleted due to missingness
leveneTest(data$coplan_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0477 0.8272
## 238
summary(aov(data$coplan_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.4 0.4299 0.172 0.679
## Residuals 238 596.0 2.5042
## 1 observation deleted due to missingness
leveneTest(data$dplan_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0419 0.838
## 225
summary(aov(data$dplan_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.1 0.0841 0.038 0.845
## Residuals 225 495.7 2.2033
## 14 observations deleted due to missingness
leveneTest(data$erwerbstu_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.023 0.8799
## 78
summary(aov(data$erwerbstu_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 201 200.9 0.768 0.384
## Residuals 78 20414 261.7
## 161 observations deleted due to missingness
leveneTest(data$gewicht_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0225 0.8808
## 239
summary(aov(data$gewicht_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 831 831.4 3.938 0.0483 *
## Residuals 239 50453 211.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(data$gonarthroseyears_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 3.0794 0.08061 .
## 232
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(data$gonarthroseyears_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 180 180.1 1.734 0.189
## Residuals 232 24098 103.9
## 7 observations deleted due to missingness
leveneTest(data$hausstu_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0528 0.8221
## 12
summary(aov(data$hausstu_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.2 0.18 0.002 0.963
## Residuals 12 959.2 79.93
## 227 observations deleted due to missingness
leveneTest(data$hk_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.3196 0.5724
## 239
summary(aov(data$hk_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 1.0 1.006 0.496 0.482
## Residuals 239 484.6 2.028
leveneTest(data$int_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 3.0504 0.082 .
## 239
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(data$int_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 1.95 1.9543 3.44 0.0649 .
## Residuals 239 135.80 0.5682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(data$kids2_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 2.8305 0.09418 .
## 184
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(data$kids2_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.09 0.0882 0.108 0.743
## Residuals 184 150.15 0.8160
## 55 observations deleted due to missingness
leveneTest(data$kidsage1_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.5097 0.4762
## 179
summary(aov(data$kidsage1_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 248 248.4 1.906 0.169
## Residuals 179 23331 130.3
## 60 observations deleted due to missingness
leveneTest(data$kidsage2_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.8983 0.3455
## 102
summary(aov(data$kidsage2_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 49 49.28 0.488 0.486
## Residuals 102 10301 100.99
## 137 observations deleted due to missingness
leveneTest(data$kidsage3_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.7653 0.1928
## 34
summary(aov(data$kidsage3_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 26 26.29 0.178 0.675
## Residuals 34 5013 147.44
## 205 observations deleted due to missingness
leveneTest(data$kidsage4_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.4832 0.513
## 6
summary(aov(data$kidsage4_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.1 0.08 0.001 0.98
## Residuals 6 660.8 110.13
## 233 observations deleted due to missingness
leveneTest(data$lapse3_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 2.3461 0.131
## 58
summary(aov(data$lapse3_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 5.2 5.230 0.959 0.332
## Residuals 58 316.4 5.455
## 181 observations deleted due to missingness
leveneTest(data$lightagt_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.1279 0.721
## 227
summary(aov(data$lightagt_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 34159 34159 5.033 0.0258 *
## Residuals 227 1540624 6787
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 12 observations deleted due to missingness
leveneTest(data$mental_willpower_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0085 0.9264
## 238
summary(aov(data$mental_willpower_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.92 0.9157 0.788 0.376
## Residuals 238 276.49 1.1617
## 1 observation deleted due to missingness
leveneTest(data$mcs_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.3124 0.5768
## 231
summary(aov(data$mcs_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 35 34.85 0.327 0.568
## Residuals 231 24657 106.74
## 8 observations deleted due to missingness
leveneTest(data$clubmembmonths1_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0163 0.8986
## 116
summary(aov(data$clubmembmonths1_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 75046 75046 0.979 0.325
## Residuals 116 8894355 76675
## 123 observations deleted due to missingness
leveneTest(data$clubmembmonths2_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.5614 0.4582
## 39
summary(aov(data$clubmembmonths2_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 110136 110136 0.816 0.372
## Residuals 39 5263326 134957
## 200 observations deleted due to missingness
leveneTest(data$mobss_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.4287 0.5133
## 225
summary(aov(data$mobss_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.59 0.5938 0.446 0.505
## Residuals 225 299.49 1.3311
## 14 observations deleted due to missingness
leveneTest(data$modagt_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0015 0.9687
## 227
summary(aov(data$modagt_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 1668 1668.3 2.273 0.133
## Residuals 227 166577 733.8
## 12 observations deleted due to missingness
leveneTest(data$motswe_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.1243 0.7247
## 239
summary(aov(data$motswe_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.48 0.4792 0.752 0.387
## Residuals 239 152.37 0.6375
leveneTest(data$muskeltraint_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.5773 0.4481
## 239
summary(aov(data$muskeltraint_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 454 454.1 0.957 0.329
## Residuals 239 113376 474.4
leveneTest(data$mvpaagt_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0587 0.8087
## 227
summary(aov(data$mvpaagt_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 2308 2308.4 2.841 0.0933 .
## Residuals 227 184459 812.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 12 observations deleted due to missingness
leveneTest(data$neghee_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 4.4894 0.03515 *
## 237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
oneway.test(data$neghee_0 ~ data$dropout)
##
## One-way analysis of means (not assuming equal variances)
##
## data: data$neghee_0 and data$dropout
## F = 1.1495, num df = 1.00, denom df = 104.42, p-value = 0.2861
leveneTest(data$nrecsc_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.4036 0.5259
## 225
summary(aov(data$nrecsc_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.6 0.6378 0.404 0.526
## Residuals 225 355.5 1.5801
## 14 observations deleted due to missingness
leveneTest(data$painvas_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.9473 0.1642
## 234
summary(aov(data$painvas_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 7.6 7.608 1.918 0.167
## Residuals 234 928.2 3.967
## 5 observations deleted due to missingness
leveneTest(data$pcs_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.4732 0.4922
## 231
summary(aov(data$pcs_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 599 598.6 11.23 0.000941 ***
## Residuals 231 12316 53.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 8 observations deleted due to missingness
leveneTest(data$physical_willpower_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.0241 0.3126
## 238
summary(aov(data$physical_willpower_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 5.08 5.078 6.053 0.0146 *
## Residuals 238 199.66 0.839
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
leveneTest(data$plan_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.6373 0.2019
## 239
summary(aov(data$plan_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.5 0.4563 0.217 0.642
## Residuals 239 502.1 2.1008
leveneTest(data$poshee_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 3.7429 0.05422 .
## 238
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(data$poshee_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 4.0 3.997 5.352 0.0216 *
## Residuals 238 177.7 0.747
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
leveneTest(data$precsc_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.6593 0.4177
## 225
summary(aov(data$precsc_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 1.3 1.275 0.659 0.418
## Residuals 225 435.1 1.934
## 14 observations deleted due to missingness
leveneTest(data$recss_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0489 0.8251
## 225
summary(aov(data$recss_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.3 0.3479 0.175 0.676
## Residuals 225 446.6 1.9848
## 14 observations deleted due to missingness
leveneTest(data$risk_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.9396 0.3334
## 238
summary(aov(data$risk_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.3 0.2563 0.143 0.706
## Residuals 238 428.0 1.7981
## 1 observation deleted due to missingness
leveneTest(data$sedagt_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.942 0.3328
## 227
summary(aov(data$sedagt_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 240 240 0.02 0.887
## Residuals 227 2692543 11861
## 12 observations deleted due to missingness
leveneTest(data$smokemonths_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.2613 0.2713
## 27
summary(aov(data$smokemonths_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 41284 41284 0.507 0.482
## Residuals 27 2196622 81356
## 212 observations deleted due to missingness
leveneTest(data$stepsagt_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.7118 0.3997
## 227
summary(aov(data$stepsagt_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 4.222e+07 42224802 5.9 0.0159 *
## Residuals 227 1.625e+09 7156697
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 12 observations deleted due to missingness
leveneTest(data$swesourceME_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 2e-04 0.9889
## 238
summary(aov(data$swesourceME_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.0 0.0417 0.023 0.878
## Residuals 238 422.2 1.7739
## 1 observation deleted due to missingness
leveneTest(data$swesourceNA_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 5.0376 0.02576 *
## 228
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
oneway.test(data$swesourceNA_0 ~ data$dropout)
##
## One-way analysis of means (not assuming equal variances)
##
## data: data$swesourceNA_0 and data$dropout
## F = 5.256, num df = 1.000, denom df = 99.733, p-value = 0.02397
leveneTest(data$swesourcePANA_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.5323 0.217
## 238
summary(aov(data$swesourcePANA_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 4.06 4.057 3.751 0.054 .
## Residuals 238 257.44 1.082
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
leveneTest(data$swesourceVE_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.4987 0.2221
## 238
summary(aov(data$swesourceVE_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.2 0.2283 0.093 0.76
## Residuals 238 581.2 2.4420
## 1 observation deleted due to missingness
leveneTest(data$swesourceVPO_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.9687 0.326
## 238
summary(aov(data$swesourceVPO_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 6.0 5.965 2.454 0.119
## Residuals 238 578.6 2.431
## 1 observation deleted due to missingness
leveneTest(data$swesource_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0078 0.9296
## 238
summary(aov(data$swesource_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.02 0.016 0.024 0.877
## Residuals 238 158.99 0.668
## 1 observation deleted due to missingness
leveneTest(data$tempt_willpower_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.7061 0.4016
## 238
summary(aov(data$tempt_willpower_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.69 0.6877 0.995 0.319
## Residuals 238 164.42 0.6908
## 1 observation deleted due to missingness
leveneTest(data$validdaysag_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 3.7657 0.05355 .
## 227
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(data$validdaysag_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 2.24 2.2392 3.766 0.0536 .
## Residuals 227 134.98 0.5946
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 12 observations deleted due to missingness
leveneTest(data$vigagt_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 6.0032 0.01504 *
## 227
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
oneway.test(data$vigagt_0 ~ data$dropout)
##
## One-way analysis of means (not assuming equal variances)
##
## data: data$vigagt_0 and data$dropout
## F = 9.6489, num df = 1.00, denom df = 205.82, p-value = 0.002162
leveneTest(data$weartime_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 3e-04 0.9874
## 227
summary(aov(data$weartime_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 55988 55988 5.581 0.019 *
## Residuals 227 2277303 10032
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 12 observations deleted due to missingness
leveneTest(data$wieswe_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 1.8834 0.1712
## 238
summary(aov(data$wieswe_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.85 0.8478 0.839 0.361
## Residuals 238 240.60 1.0109
## 1 observation deleted due to missingness
leveneTest(data$willpower_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.1923 0.6614
## 238
summary(aov(data$willpower_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 0.49 0.4914 0.941 0.333
## Residuals 238 124.22 0.5219
## 1 observation deleted due to missingness
leveneTest(data$womac_0_i, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 4.384 0.03733 *
## 239
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
oneway.test(data$womac_0_i ~ data$dropout)
##
## One-way analysis of means (not assuming equal variances)
##
## data: data$womac_0_i and data$dropout
## F = 4.7878, num df = 1.00, denom df = 107.92, p-value = 0.03082
leveneTest(data$womacfunc_0_i, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 3.2023 0.0748 .
## 239
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(data$womacfunc_0_i ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 4284 4284 5.882 0.016 *
## Residuals 239 174070 728
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(data$womacpain_0_i, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.885 0.3478
## 239
summary(aov(data$womacpain_0_i ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 183 183.00 2.787 0.0963 .
## Residuals 239 15691 65.65
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(data$womacstiff_0_i, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.26 0.6106
## 239
summary(aov(data$womacstiff_0_i ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 38 37.73 1.859 0.174
## Residuals 239 4850 20.29
leveneTest(data$zig1_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 2.2181 0.148
## 27
summary(aov(data$zig1_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 50 49.99 0.552 0.464
## Residuals 27 2447 90.64
## 212 observations deleted due to missingness
leveneTest(data$zig1_tag_all_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.8688 0.3523
## 227
summary(aov(data$zig1_tag_all_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 16 16.22 0.869 0.352
## Residuals 227 4237 18.67
## 12 observations deleted due to missingness
leveneTest(data$zig2_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.2447 0.6342
## 8
summary(aov(data$zig2_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 469 469.2 0.23 0.644
## Residuals 8 16329 2041.1
## 231 observations deleted due to missingness
leveneTest(data$zig2_woche_all_0, data$dropout)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.4561 0.5002
## 208
summary(aov(data$zig2_woche_all_0 ~ data$dropout))
## Df Sum Sq Mean Sq F value Pr(>F)
## data$dropout 1 43 43.1 0.456 0.5
## Residuals 208 19655 94.5
## 31 observations deleted due to missingness
Dichotomous and Categorical Variables
chisq.test(data$aus1_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$aus1_0 and data$dropout
## X-squared = 1.1857, df = 1, p-value = 0.2762
chisq.test(data$aus2_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$aus2_0 and data$dropout
## X-squared = 0.28609, df = 1, p-value = 0.5927
chisq.test(data$aus3_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$aus3_0 and data$dropout
## X-squared = 0.00023144, df = NA, p-value = 1
chisq.test(data$aus4_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$aus4_0 and data$dropout
## X-squared = 0.021287, df = 1, p-value = 0.884
chisq.test(data$aus5_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$aus5_0 and data$dropout
## X-squared = 6.2377e-31, df = 1, p-value = 1
chisq.test(data$aus6_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$aus6_0 and data$dropout
## X-squared = 0.62495, df = 1, p-value = 0.4292
chisq.test(data$aus7_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$aus7_0 and data$dropout
## X-squared = 7.3451e-30, df = 1, p-value = 1
chisq.test(data$aus8_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$aus8_0 and data$dropout
## X-squared = 0.19086, df = NA, p-value = 1
chisq.test(data$berentet_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$berentet_0 and data$dropout
## X-squared = 0.29229, df = 1, p-value = 0.5888
chisq.test(data$comorbdich_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$comorbdich_0 and data$dropout
## X-squared = 1.9941, df = 1, p-value = 0.1579
chisq.test(data$diet_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$diet_0 and data$dropout
## X-squared = 0.61322, df = NA, p-value = 0.5557
chisq.test(data$dietprog1_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$dietprog1_0 and data$dropout
## X-squared = 0.82349, df = NA, p-value = 0.5872
chisq.test(data$erwerb_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$erwerb_0 and data$dropout
## X-squared = 0.5911, df = 1, p-value = 0.442
chisq.test(data$fam1_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$fam1_0 and data$dropout
## X-squared = 0.0012802, df = 1, p-value = 0.9715
chisq.test(data$fam2_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$fam2_0 and data$dropout
## X-squared = 7.1429e-31, df = 1, p-value = 1
chisq.test(data$fam3_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$fam3_0 and data$dropout
## X-squared = 0.17896, df = 1, p-value = 0.6723
chisq.test(data$fam4_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$fam4_0 and data$dropout
## X-squared = 0.017692, df = 1, p-value = 0.8942
chisq.test(data$fam5_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$fam5_0 and data$dropout
## X-squared = 0.019958, df = 1, p-value = 0.8877
chisq.test(data$groupfu, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$groupfu and data$dropout
## X-squared = 0.8765, df = 1, p-value = 0.3492
chisq.test(data$groupzmk_1, data$dropout)
##
## Pearson's Chi-squared test
##
## data: data$groupzmk_1 and data$dropout
## X-squared = 0.48089, df = 2, p-value = 0.7863
chisq.test(data$haus_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$haus_0 and data$dropout
## X-squared = 1.5648, df = 1, p-value = 0.211
chisq.test(data$income_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$income_0 and data$dropout
## X-squared = 3.2206, df = NA, p-value = 0.3613
chisq.test(data$inausb_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$inausb_0 and data$dropout
## X-squared = 2.5031, df = NA, p-value = 0.2869
chisq.test(data$klgrade_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$klgrade_0 and data$dropout
## X-squared = 0.062179, df = 1, p-value = 0.8031
chisq.test(data$kids1_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$kids1_0 and data$dropout
## X-squared = 1.9674e-29, df = 1, p-value = 1
chisq.test(data$language1_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$language1_0 and data$dropout
## X-squared = 0.31856, df = NA, p-value = 0.6982
chisq.test(data$language2_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$language2_0 and data$dropout
## X-squared = 0.13668, df = NA, p-value = 0.7351
chisq.test(data$lapse1_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$lapse1_0 and data$dropout
## X-squared = 0.0077225, df = 1, p-value = 0.93
chisq.test(data$lone_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$lone_0 and data$dropout
## X-squared = 1.1742, df = 1, p-value = 0.2785
chisq.test(data$mitglspo_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$mitglspo_0 and data$dropout
## X-squared = 0.90802, df = 1, p-value = 0.3406
chisq.test(data$nation1_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$nation1_0 and data$dropout
## X-squared = 0.02624, df = NA, p-value = 1
chisq.test(data$nation2_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$nation2_0 and data$dropout
## X-squared = 0.31856, df = NA, p-value = 0.6797
chisq.test(data$nonerwerb_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$nonerwerb_0 and data$dropout
## X-squared = 0.12549, df = 1, p-value = 0.7232
chisq.test(data$school_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$school_0 and data$dropout
## X-squared = 1.7656, df = NA, p-value = 0.937
chisq.test(data$schicht_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$schicht_0 and data$dropout
## X-squared = 0.15319, df = NA, p-value = 1
chisq.test(data$sex_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$sex_0 and data$dropout
## X-squared = 0.046549, df = 1, p-value = 0.8292
chisq.test(data$smoke_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$smoke_0 and data$dropout
## X-squared = 0.010267, df = 1, p-value = 0.9193
chisq.test(data$zusels_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$zusels_0 and data$dropout
## X-squared = 4.3566, df = NA, p-value = 0.05597
chisq.test(data$zuselt_0, data$dropout, simulate.p.value = T)
##
## Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)
##
## data: data$zuselt_0 and data$dropout
## X-squared = 0.80904, df = NA, p-value = 0.5767
chisq.test(data$zuspart_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$zuspart_0 and data$dropout
## X-squared = 0.13946, df = 1, p-value = 0.7088
chisq.test(data$zuskids_0, data$dropout)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: data$zuskids_0 and data$dropout
## X-squared = 1.1314e-30, df = 1, p-value = 1