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Learning about physical systems from quantum-enhanced experiments can outperform learning from exper-

iments in which only classical memory and processing are available. Whereas quantum advantages have

been established for state learning, quantum process learning is less understood. We establish an exponential

quantum advantage for learning an unknown n-qubit quantum processN . We show that a quantummemory

allows to efficiently solve the following tasks: (a) learning the Pauli transfer matrix (PTM) of an arbitraryN ,

(b) predicting expectation values of Pauli-sparse observables measured on the output of an arbitraryN upon

input of a Pauli-sparse state, and (c) predicting expectation values of arbitrary observables measured on the

output of an unknown N with sparse PTM upon input of an arbitrary state. With quantum memory, these

tasks can be solved using linearly-in-n many copies of the Choi state of N . In contrast, any learner without

quantum memory requires exponentially-in-n many queries, even when using adaptively designed experi-

ments. In proving this separation, we extend existing shadow tomography bounds from states to channels.

Moreover, we combine PTM learning with polynomial interpolation to learn arbitrary Hamiltonians from

short-time dynamics. Our results highlight the power of quantum-enhanced experiments for learning highly

complex quantum dynamics.
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1 Introduction

A complete characterization of an unknown quantum system or quantum process requires a num-
ber of copies of the unknown object that scales (at least) linearly in the dimension [42, 65, 66],
and thus exponentially in the number of qubits for a multi-qubit system. Hence, there is a need
for more resource-efficient alternatives that still suffice to make meaningful (while necessarily
incomplete) predictions about the unknown quantum object. In the case of quantum states, the
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14:2 M. C. Caro

frameworks of classical shadows and shadow tomography, motivated by learning-theoretic per-
spectives on the task of predicting properties of an unknown quantum state, have led to results
on sample-efficiently predicting a plethora of physically relevant properties of a quantum system
[1, 2, 6, 8, 9, 12, 13, 49, 54–56, 67, 74]. Classical shadows have the desirable feature that they do
not rely on complicated quantum processing, and interesting predictions can already be made
with non-adaptive single-copy measurements, which are amenable to implementation on noisy
intermediate-scale (NISQ) [70] devices. However, there are limitations to what can be learned effi-
ciently with this kind of access to an unknown quantum state or process. As shown in the work
of Chen et al. [27], state shadow tomography can in general only be solved sample-efficiently in
quantum-enhanced experiments, with access to a quantum memory and to quantum processing.
Chen et al. [27] identified several other quantum learning problems with similarly strong query
complexity separations, leading to a quantum advantage that becomes realizable on current quan-
tum devices [51].
Whereas state shadow tomography succeeds without any assumptions on the unknown state to

be learned and on the observables of interest, we cannot hope to query-efficiently and accurately
predict, without prior assumptions, expectation values of arbitrary measurements performed on
the output of an arbitrary quantum channel upon input of an arbitrary state. This can be seen
by embedding the problem of learning an arbitrary Boolean function into the task of learning
an arbitrary quantum channel (as discussed in other works [24, 50]). Nevertheless, results about
learning quantum processes are beginning to emerge [18, 21, 29, 32, 35, 36, 52, 53, 60, 61], with
different restrictions on the channel to be learned or on the input states and output observables
for which expectation values are to be predicted.
Despite the insights of these prior works, the landscape of quantum channel learning is still

largely unexplored, especially for general channels with potentially exponential complexity. In
particular, while we now know an exponential quantum advantage of quantum-enhanced over
conventional experiments in shadow tomography of static quantum systems, analogous results
for the case of quantum evolutions are lacking. A central challenge in understanding the potential
for a quantum advantage here is that conventional experiments for learning an unknown quantum
channel can involve intricate adaptive strategies for choosing both the input states and the mea-
surements to be performed. Thus, tightly bounding the capabilities of such strategies for channel
learning has so far been out of reach. This naturally leads us to study the importance of quantum-
enhanced experiments for tasks of channel learning, with a focus on their potential to outperform
their adaptive classical counterparts. Namely, we investigate the following two questions:

(1) What can we learn about a quantum channel without prior assumptions?
(2) Are quantum-enhanced experiments necessary for quantum channel learning?

1.1 Overview of the Results

We identify learning all entries of the Pauli transfer matrix (PTM) of an unknown quantum channel
as a task that can be solved efficiently by a learner with quantum memory, but that requires expo-
nentially many queries to the unknown channel if no quantum memory is used. Here, we view a
quantum channel as a linear map between matrices with complex entries, and the PTM is its ma-
trix representation w.r.t. the normalized Pauli basis, an orthonormal basis (ONB) for the space of
matrices of importance in quantum computing. Moreover, we show that this quantum advantage
carries over to two restricted variants of a channel shadow tomography task. Finally, we demon-
strate that PTM learning can be used as a subroutine to learn an arbitrary quantum Hamiltonian
from short-time dynamics. Thus, we have found one answer to Question (1): PTM and Hamilton-
ian learning are meaningful channel learning problems that can be solved efficiently without any

ACM Trans. Quantum Comput., Vol. 5, No. 2, Article 14. Publication date: June 2024.



Learning Quantum Processes and Hamiltonians via the Pauli Transfer Matrix 14:3

prior assumptions on the object to be learned. Additionally, query-efficient PTM learning requires
quantum-enhanced experiments, thus emphasizing their relevance to channel learning in answer
to Question (2).
Our first main result is an exponential query complexity separation between learners with quan-

tum memory and learners without quantum memory for the task of learning the PTM of an un-
known quantum channel.

Theorem 1.1 (PTM Learning with and without Quantum Memory). There is a learning

algorithm with quantum memory that uses O(n/ε4) copies of the Choi state of an unknown n-

qubit quantum channel N to output simultaneously ε-accurate estimates for all the 16n entries
1
2n tr[σAN(σB )],A,B ∈ {0, 1, 2, 3}n , of its PTM, with high success probability. In contrast, any learning

algorithm without quantum memory, even when allowed to access the unknown channel on subsys-

tems of adaptively chosen input states and perform adaptively chosen output measurements, has to

query the unknown channel Ω(4n/ε2) times to achieve the same guarantee.

Here, the lower bound for learners without quantum memory holds even if the unknown chan-
nel is promised in advance to be doubly-stochastic, entanglement-breaking, and to have a sparse
PTM. We demonstrate that this query complexity separation carries over to the tasks (a) of pre-
dicting arbitrary expectation values of the form tr[ON(ρ)], withO a bounded Pauli-sparse observ-
able, ρ a Pauli-sparse quantum state, and N an arbitrary quantum channel, and (b) of predicting
arbitrary expectation values of the form tr[ON(ρ)], with O an arbitrary bounded observable, ρ
an arbitrary quantum state, and N a quantum channel with sparse PTM. In fact, for task (a), we
give a learning algorithm with quantum memory that query-efficiently builds a classical memory-

efficient representation N̂ ofN fromwhich anyM such expectation values can be estimated query-
and time-efficiently.

Corollary 1.2 (Predicting Pauli-sparse Expectation Values for Arbitrary Channels).
There is a learning algorithm with quantum memory that uses O(n/ε4) copies of the Choi state of

an unknown n-qubit quantum channel N to build a classical representation N̂ of N from which

any M expectation values of the form tr[ON(ρ)], with O a bounded Pauli-sparse observable and ρ a

Pauli-sparse quantum state, can be predicted to accuracy ε , with high success probability. The classical

representation consists of O(n2/ε4) real numbers stored in classical memory, and the expectation values

are predicted using O(log(M )/ε2) additional Choi state copies and using classical computation time

O(Mn2/ε4).

Notably, these efficiency guarantees do not require any assumptions on the unknown quantum
channel N , so this channel may be a quantum process of arbitrary complexity. In Corollary 1.2,
we implicitly assumed the observables and states to have O(1)-sparse Pauli expansions. However,
as our guarantees scale polynomially with the sparsity parameters, we still get an efficient predic-
tion protocol if we allow for polynomially-in-n Pauli-sparse observables and states. This can then
be viewed as a restricted generalization of shadow tomography from states to channels. While
we formulate Theorem 1.1 and Corollary 1.2 for the PTM, we also give similar protocols with
polynomial-in-n copy complexity for transfer matrices w.r.t. general (appropriately normalized)
unitary orthonormal bases and for predicting expectation values with states and observables hav-
ing a sparse expansion in such a basis, again for an arbitrary unknown channel.
As an application of our protocol for learning the PTM with quantum memory, in our second

main result we show how this can be combined with polynomial interpolation for derivative esti-
mation to efficiently learn the Pauli coefficients of an unknown Hamiltonian H . Here, we assume
query access to the unitary that implements time evolution along H for (different) short times, all
on the order of O(1/‖H ‖).
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14:4 M. C. Caro

Theorem 1.3 (LearningArbitraryHamiltonianswithQuantumMemory). There is a learn-

ing algorithm with quantum memory that uses Õ
(
n ‖H ‖4/ε4

)
parallel queries to O(1/‖H ‖)-time evolu-

tions under an unknown n-qubit Hamiltonian H with Pauli expansion H =
∑

A∈{0,1,2,3}n α(A)σA

with a total evolution time of Õ
(
n ‖H ‖3/ε4

)
to estimate all the 4n −1 non-trivial Pauli coefficients α(A),

A ∈ {0, 1, 2, 3}n \ {0n}, of H to accuracy ε , with high success probability.

If the goal is to estimate only M Pauli coefficients of H , then the estimation procedure uses
classical computation time scaling linearly in M and polynomially in n and ‖H ‖/ε . Moreover, the
required classical memory also scales polynomially in n and ‖H ‖/ε . Similarly to how Theorem 1.1
does not require any assumptions on the unknown quantum channel, Theorem 1.3 works query-
efficiently for arbitrary Hamiltonians, assuming only a polynomial operator norm bound to be
guaranteed in advance. In particular, the unknown Hamiltonian can contain non-local all-to-all
interaction terms.

1.2 Techniques and Proof Overview

Upper Bounds for Learning with Quantum Memory. To achieve the complexity upper bounds in
Theorem 1.1 and Corollary 1.2, we rephrase the task of PTM learning as a shadow tomography
task for the Choi state of the unknown quantum channel. Here, the (normalized) Choi state 1

2n ΓN

of an n-qubit channel N is obtained by applying N to one-half of a maximally entangled state:
1
2n ΓN = (id ⊗N)(|Ω〉〈Ω |), with |Ω〉 maximally entangled. Concretely, we observe that PTM en-
tries can be rewritten in terms of expectation values of Pauli observables on the Choi state as
1
2n tr[σAN(σB )] = tr[(σ�

B ⊗ σA) 1
2n ΓN]. This now allows us to appeal to an existing procedure for

state shadow tomography with Pauli observables from Huang et al. [55], which is based on 2-copy
Bell measurements.
We point out that channel learning tasks cannot generically be reduced to state learning tasks

in a query-efficient manner. One important reason for this is the dimension factor of 2n incurred
when translating from Choi state expectation values to input-output expectation values of the
associated channel. However, with our chosen learning task, the normalization of the PTM entries
exactly cancels the dimension factor. This allows us to rely on Choi expectation value estimates
without any loss in accuracy so that we inherit the good complexity scaling of state tomography.
We can go from estimates for PTM entries to expectation value estimates under Pauli-sparsity

assumptions on either the state and observable or on the channel by expanding the respective
objects in the Pauli ONB. Here, the sparsity assumption guarantees that the transfer matrix (TM)
learning guarantee, which can be viewed as achieving good ∞-norm error, also leads to a good
error for other p-norms. To obtain the analogous results (albeit without bounds on the classical
memory and computation time) for more general orthonormal bases and associated transfer ma-
trices as well as for suitably sparse objects, we follow the same line of reasoning but rely on the
general state shadow tomography results in other works [2, 9]. Consequently, any improvements
to state shadow tomography will also directly improve our results.

Lower Bounds for Learning without Quantum Memory. For our exponential query complexity
lower bounds, we extend a technique introduced in the work of Chen et al. [27] to prove query
complexity lower bounds for state shadow tomography without quantum memory to a channel
learning task of shadow tomography type. Our proof consists of three steps. First, following the
framework proposed by Chen et al. [27], we model an adaptive learning procedure that uses only
a single copy of an unknown quantum channel at a time in terms of a so-called learning tree.
Here, branchings in the tree correspond to different adaptive choices of the learner, depending
on observed measurement outcomes. Second, we consider the distributions over the leaves of the

ACM Trans. Quantum Comput., Vol. 5, No. 2, Article 14. Publication date: June 2024.



Learning Quantum Processes and Hamiltonians via the Pauli Transfer Matrix 14:5

learning tree that arise when the learner acts on different (from their perspective unknown) chan-
nels, and we upper bound how distinguishable those distributions are. Here, distinguishability is to
be understood in terms of uniform one-sided likelihood ratio lower bounds for the leaf probability
distributions. Third, via Le Cam’s two-point method, such likelihood bounds gives rise to query
complexity lower bounds for a corresponding distinguishing task. We then argue that any learner
would in particular be able to solve that distinguishing task, thus inheriting the lower bound.
Even with the general learning tree framework in place, analyzing the distinguishability of the

induced distributions over learning trees remains a formidable technical challenge, which has so far
not been resolved for general quantum channels. For state shadow tomography without quantum
memory, Chen et al. [27] were able to overcome this technical hurdle and to establish exponential
query complexity lower bounds. Our first observation in trying to instantiate the learning tree
framework for lower bounds in PTM learning is that a small modification to the reasoning of
Chen et al. [27] already suffices to obtain analogous lower bounds for predicting PTM entries of
an unknown quantum channel if the learner only has access to copies of its Choi state. Concretely,
we obtain the lower bound via the intermediate task of distinguishing random Choi states of the
form 1

2n (1 ± 3εP), where ±P is a signed (2n)-qubit Pauli, from the maximally mixed state. This
modification involves determining the second moment for a certain sub-ensemble of all n-qubit
Paulis. However, the Ω (4n/ε2) query complexity lower bound obtained in this way does not yet
apply to general adaptive quantum channel learning procedures without quantummemory, which
can also adaptively choose inputs to the unknown channel.
Our main technical contribution is to prove the one-sided likelihood bounds required for Le

Cam’s two-point method even in this fully adaptive setting. To achieve this, we identify a quantity
that, given a set of PTM entries, characterizes the hardness of simultaneously predicting those
entries without using a quantummemory. We analyze this quantity for a suitable set of TM entries
and for a suitable ensemble of unknown quantum channels, whose Choi states are either 1

2n (1 ±
3εP), with a random signed Pauli string ±P , or maximally mixed. Our analysis, which combines
a second moment calculation for Pauli sub-ensembles with matrix-analytic tools, provides a new
way of utilizing the framework of Chen et al. [27] and establishes the Ω (4n/ε2) query complexity
lower bound for general channel learning procedures without quantum memory. This analysis
may serve as a template for proving query complexity lower bounds for further channel learning
tasks without access to quantum-enhanced experiments.

Hamiltonian Learning from PTM Learning. We prove that our PTM learning protocol gives rise
to the Hamiltonian learning algorithm of Theorem 1.3 in three steps. First, reinterpreting observa-
tions made in other works [40, 43, 75], we note that any single Pauli expansion coefficient α(A) of
the unknown Hamiltonian H =

∑
A∈{0,1,2,3}n α(A)σA can be related to the first-order time deriv-

ative of a specific time-dependent PTM entry of the associated unitary time evolution, evaluated
at time 0. Importantly, this works for Pauli coefficients of arbitrarily high weight. Second, rely-
ing on tools from polynomial approximation [48], we can estimate the first-order derivative of a
function via that of its Chebyshev interpolating polynomial. This requires us to prove bounds on
higher-order derivatives of the function of interest. Thus, the third step in our proof is to control
higher-order derivatives of functions of the form t 
→ 1

2 tr
[
σBe

−it H ρeit H
]
for an arbitrary Pauli

σB and an arbitrary state ρ. We achieve this via a rewriting in terms of iterated commutators with
H . The concrete implementation of this last step deviates from prior work, which used structural
assumptions on the Hamiltonian to obtain derivative bounds. In our case, since we do not make
any prior assumptions on H , we work with derivative bounds that depend on the spectral norm
‖H ‖. In summary, we use our PTM learning procedure applied to the evolution at different times
to produce data points for polynomial interpolation, then estimate the Pauli coefficients of the
Hamiltonian via first-order time derivatives from the interpolating polynomial.
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1.3 Related Work

Shadow Tomography for Quantum States. Since Aaronson [1] considered a “pretty good” ver-
sion of state tomography motivated by the framework of probably approximately correct learn-
ing, learning quantum states in different models has received significant attention. For example,
Aaronson et al. [3] and Chen et al. [30] investigated problems of online learning quantum states.
Most closely related to our work is shadow tomography for quantum states, originally proposed
by Aaronson [2] and improved upon in the work of Bădescu and O’Donnell [9] and Huang et al.
In shadow tomography, the task is to predict many expectation values of an unknown quantum
from few copies. Our work can be viewed as partially lifting shadow tomography from states to
channels. Here, the “partially” is meant to express that, whereas shadow tomography for states
allows to predict expectation values of arbitrary observables, in our channel shadow tomography
we have to make some additional assumptions on the input states and output observables.

Classical Shadows for Quantum States and Quantum Processes. While shadow tomography meth-
ods are efficient in terms of sample complexity, they rely on measurements on multiple copies of
the unknown state and can be inefficient in terms of classical memory and computation time. Clas-
sical shadows of quantum states, going back to other works [54, 67], constitute a more practical
variant of shadow tomography, since they use single-copy measurements and come with guar-
antees on classical memory and computation time. However, whereas shadow tomography can
predict expectation values for arbitrary observables, classical shadows only work reliably for a
suitably restricted set of observables, which depends on the random unitaries used in the shadow
protocol. Kunjummen et al. [60] and Levy et al. [61] lifted the classical shadow formalism from
states to channels by applying the classical shadow protocol of Huang et al. [54] based on ran-
domized local Paulis to the Choi state of an unknown channel (see also the work of França et al.
[75, Appendix H]), which is similar to how we apply shadow tomography to the Choi state to
learn TM entries of the channel from Choi access. As the local classical shadow protocol of Huang
et al. [54] comes with prediction guarantees only for local observables, the protocol of Kunjummen
et al. [60] and Levy et al.[61] can only learn local reduced density matrices of the Choi state. This
is not sufficient to learn the whole TM of the unknown channel, which our quantum-enhanced
protocol achieves.

Learning Quantum Channels. In the wake of the many insights into learning quantum states,
also questions of learning quantum channels have begun to attract attention. For instance, there
is a growing literature in variational quantum machine learning exploring how different kinds of
complexity bounds for the quantum model, which plays the role of an unknown quantum chan-
nel to be learned, lead to sample complexity bounds [4, 14–17, 19–23, 33, 41, 69]. Viewed from
the perspective of channel learning, these results make assumptions on the complexity of the un-
known channel and use this to bound the information-theoretic complexity of the learning task.
These approaches can therefore typically not be applied to arbitrary quantum channels of high
complexity.
Also in the broader quantum information theory community, channel learning tasks are gaining

traction. Some works [18, 32, 35] prove sample complexity guarantees for learning channels with
classical input and quantum output in a probably approximately correct learning setting. When
considering channels with quantum input and quantum output, the case of Pauli channels, rele-
vant for modeling quantum noise, is already well studied: some works [36, 37, 44, 45] give efficient
procedures for learning the Pauli error rates of an unknown Pauli channel. In work closely related
to the present article, Chen et al. [29] proved query complexity separations for learning the Pauli
eigenvalues of an unknown Pauli channel, which in our language are its diagonal PTM elements.
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They distinguish between learners with quantum memory and learners restricted either by not
having access to a quantum memory or only to auxiliary systems of limited size. Our query com-
plexity lower bounds for learning without quantum memory show that the lower bounds of Chen
et al. [29, Theorem 2, (i) and (ii)] can be strengthened significantly, achieving an exponential lower
bound independently of the size of the allowed auxiliary system, if we go beyond Pauli channels
with diagonal PTMs to general quantum channels with general PTMs.
Taking a broader perspective on channel learning, Huang et al. [53] established fundamental

results about the conditions under which quantum processes can or cannot be learned from ex-
periments with noise. And in very recent work, Huang et al. [52] extended the classical shadow
formalism from states to channels, giving an efficient procedure without quantum memory for
learning to predict an arbitrary unknown quantum channel w.r.t. bounded degree k-local observ-
ables when averaged over any locally flat distribution of input states. In contrast, our learning
algorithm relies on a quantum memory but can predict w.r.t. general Pauli-sparse observables and
worst-case w.r.t. Pauli-sparse input states.

Hamiltonian Learning. The task of learning a Hamiltonian underlying the evolution of a quan-
tum physical evolution has seen significant progress in recent years. Some works [10, 38, 62, 72]
showed that, at least in principle, generic geometrically local Hamiltonians can be learned from
“little information,” such as from a single eigenstate or from few generic pairs of input and output
states. Anshu et al. [7] and Rouzé and França [74] gave efficient procedures for learning a geomet-
rically local Hamiltonian from copies of its high-temperature Gibbs state, and this was extended to
more general low-intersectionHamiltonianswhile at the same time improving the sample and time
complexity in the work of Haah et al. [43]. Some recent works [40, 75, 79, 82] have highlighted the
practical importance of learning an unknown Hamiltonian from access to its dynamics, deriving
provable guarantees for geometrically local or low-intersection Hamiltonians and demonstrating
the applicability of their Hamiltonian learning procedures for relatively large quantum systems.
Recently, Huang et al. [57] proved that even Heisenberg-limited scaling for the total evolution time
is achievable in the task of learning low-intersection Hamiltonians from dynamics. Our addition
to the Hamiltonian learning literature is, to the best of our knowledge, the first efficient protocol
for learning an arbitrary Hamiltonian with an a priori unknown structure from parallel access to
its short-time dynamics.

Learning from Quantum Experiments. Aharonov et al. [5] and Huang et al. [55] established expo-
nential query complexity separations between certain tasks of learning from quantum experiments
with and without quantum memory. Additionally, Huang et al. [55] demonstrated that a class of
average-case channel learning tasks does not admit a large quantum query complexity advantage,
thereby emphasizing the importance of worst-case considerations. Building on these works, Chen
et al. [27] introduced the learning tree framework as a powerful tool for proving query complexity
lower bounds for learning without quantum memory, or with limited quantum memory [26]. This
mathematical framework has been used by Huang et al. [51] to prove an experimentally demon-
strable quantum advantage in learning from quantum physics experiments when using a quantum
memory. Moreover, with Chen et al. [28], the learning tree formalism has recently found an appli-
cation in a complexity-theoretic study of the capabilities of NISQ devices. We use the framework
of Chen et al. [27] and develop new technical tools to extend their proof strategy and to derive
query complexity lower bounds for PTM learning without quantum memory, thereby extending
their lower bounds for state shadow tomography to (Pauli-sparse) channel shadow tomography.
Whereas Aharonov et al. [5] and Chen et al. [27] considered “channel distinguishing” tasks, we fo-
cus more on “channel learning” tasks. (Note, however, that our query complexity lower bounds are
proved via a channel distinguishing task.) And whereas Huang et al. [51, Theorem 3] established
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a quantum-versus-classical query complexity separation for learning a polynomial-time quantum
channel on average over a distribution of states, we consider learning arbitrarily complex quantum
channels in a worst-case framework over (certain) input states.

1.4 Summary and Directions for Future Work

In this work, we have given a provably sample-efficient procedure for learning transfer matrices
with quantummemory from copies of the Choi state of an arbitrary unknown quantum channel. In
the case of the PTM, we obtained efficiency guarantees for classical memory and classical compu-
tation time in addition to the copy complexity bounds. This allows to efficiently learn an arbitrary
unknownHamiltonian from dynamics.Moreover, we demonstrated that (Pauli) TM learning can be
used as a subroutine for efficiently learning to predict expectation values for (Pauli-) sparse input
states and output observables, a task of channel shadow tomography type. In particular, solving
these learning problems remains information-theoretically feasible even for arbitrarily complex
quantum processes, which is in contrast to the idea of Occam’s razor embodied in the established
classical statistical learning theory literature based on complexity measures [11, 34, 59, 68, 76, 77].
While the tasks of TM learning and sparse expectation value prediction can be solved

information-theoretically efficiently with quantum memory, we proved that no learner without
quantum memory can succeed at these tasks with a subexponential number of queries to the un-
known quantum channel. Thus, these channel learning tasks show an exponential query complex-
ity separation between learners with and without quantum memory. Our Ω(4n/ε2) query complex-
ity lower bound for learners without quantum memory is significantly stronger than the Ω(2n/ε2)
obtained by directly applying the existing state shadow tomography lower bound to state prepara-
tion channels, showing that the quantum advantage over conventional experiments is even more
distinctive in the channel learning case than in the state learning case.
We conclude by outlining some open problems raised by our work. Here, we begin by recalling

the two questions underlying this work and aspects thereof that remain open:

— TM learning and Hamiltonian learning are efficiently solvable channel learning tasks with-
out structural assumptions, thus serving as positive examples in answer to Question (1). Can
we embed them into a broader class of feasible learning problems with arbitrary unknown
quantum processes?

— Our exponential query complexity separation between learners with and without quantum
memory answers Question (2) for TM learning. However, it breaks down for certain variants
of the task (compare Remarks 5.4, 5.5, 5.9, and 5.10). Can we develop a more general under-
standing of the conditions conducive to a quantum query complexity advantage in channel
learning?

Finally, we mention three questions regarding potential improvements and extensions of our
results:

— As our TM learning protocols with quantum memory require only Choi access to the un-
known channel, it is natural to ask whether the query complexity can be further improved
by allowing for sequential channel access. However, the linear-in-n dependence cannot be
improved, even for Pauli channels [29, Theorem 2, (iv)]. Does sequential access allow to
improve upon the 1

ε4
-scaling?

— Our Hamiltonian learning complexity bounds in Theorem 6.3 exhibit a quartic scaling with
1/ε and a linear or quadratic scaling with n. Can these dependencies be improved to come
closer to the guarantees found for restricted Hamiltonians in prior works? Are quantum-
enhanced experiments even necessary for learning arbitrary Hamiltonians from dynamics?
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—Using the work of França et al. [75, Appendix A], we can employ our PTM learning proce-
dure to learn Lindblad generators with arbitrary Hamiltonian part and arbitrary single-site
dissipation terms. Does this extend to more general Lindblad generators with arbitrary dis-
sipative part?

Answering these questionswill help understand the role of quantummemory in learning processes
in quantum physics from a query complexity perspective motivated by theoretical computer sci-
ence. Thereby, we can gain a better grasp of quantum learning problems solvable on near-term
quantum hardware and of the experimental capabilities that need to be developed for addressing
the most challenging quantum learning tasks.

1.5 Structure of the Article

The rest of the article is structured as follows. Section 2 introduces basic notions from quantum
information as well as different models of learning from an unknown quantum channel. (See
Appendix A for two additional learning models.) In Section 3, we explain how approximations
on the level of the TM of a channel translate to expectation value estimates under sparsity as-
sumptions. Section 4 contains our efficient procedures with quantum memory for learning quan-
tum channels via their PTM, with a corresponding query complexity lower bound presented in
Appendix E. (More general transfer matrices are considered in Appendix B.) This is then con-
trasted with exponential query complexity lower bounds for learning without quantum memory
in Section 5, the proofs for which can be found in Appendix D and are based on the learning
tree formalism [27] shortly reviewed in Appendix C. To showcase an application of TM learning,
we demonstrate its applicability to Hamiltonian learning in Section 6, with the main proof again
deferred to Appendix D.

2 Preliminaries

2.1 Quantum Channels, the Choi-Jamiolkowski Isomorphism, and the TM

Representation

Here, we review basic notions from quantum information and computation that will appear
throughout the rest of the article. The presentation here is brief, thus we recommend textbooks
(e.g., [46, 64, 78]) or lecture notes (e.g., [71, 81]).
Throughout the article, we work with finite-dimensional Hilbert spaces Cd , with dimension d ∈

N≥1 = {1, 2, . . .}. We employ Dirac bra-ket notation to denote elements ofCd by kets and elements
of the dual space (Cd )∗ by bras. We use B(Cd ) to denote the set of bounded linear operators on Cd .
Two norms on B(Cd ) will be relevant for our purposes. We denote the operator norm (w.r.t. the
Euclidean norm on Cd ), also called the spectral norm or Schatten ∞-norm, of X ∈ B(Cd ) by ‖X ‖ =
sup |ψ 〉∈Cd :〈ψ |ψ 〉=1 〈ψ |X |ψ 〉. We denote the norm induced by the Hilbert-Schmidt inner product,

also called the Frobenius norm or Schatten 2-norm, of X ∈ B(Cd ) by ‖X ‖2 =
√
tr
[
X †X

]
.

The set of d-dimensional density matrices, the mathematical description for quantum states, is
denoted by S(Cd ) =

{
ρ ∈ B(Cd ) | ρ ≥ 0 ∧ tr[ρ] = 1

}
. The rank-1 projections in S(Cd ) are called

pure states. We typically identify a pure state |ψ 〉〈ψ | ∈ S(Cd ) with the corresponding normalized
vector |ψ 〉 ∈ Cd . If ρ ∈ S(Cd ⊗ Cd ′ ) is a state on a composite system, we say that ρ is separable if
it can be written as a convex combination of tensor products of states on the two tensor factors,
otherwise we call ρ entangled.
We describe measurements in terms of positive operator-valued measures (POVMs). Here, a d-

dimensionalM-outcome POVM is a set {Ei }M
i=1 of bounded linear operators Ei ∈ B(Cd ) satisfying
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0 ≤ Ei ≤ 1d for all 1 ≤ i ≤ M as well as
∑M

i=1 Ei = 1d . According to Born’s rule, the probability of
observing outcome i when measuring the POVM {Ei }M

i=1 on the state ρ is given by tr[Eiρ].
We now turn our attention to evolutions of quantum systems. These are described mathemati-

cally by quantum channels.

Definition 2.1 (Quantum Channels). A linear superoperator N : B(Cdin) → B(Cdout) is a quan-
tum channel (in the Schrödinger picture) if N is completely positive (i.e., idaux ⊗N is positivity-
preserving for any auxiliary system) and trace-preserving. If N is also unital (i.e., satisfies
N(1din) = 1dout ), then we call N a doubly-stochastic quantum channel (see [63]).

We call a quantum channelN entanglement-breaking if (idaux ⊗N)(ρ) is separable for any state
ρ ∈ S(Cdaux ⊗Cdin ) (see [47]). Our main focus will be onn-qubit channels, for whichdin = dout = 2n .
Linear superoperators are isomorphically related to bounded linear operators on a tensor prod-

uct space. A well-known isomorphism particularly useful for quantum information purposes is
given in the following.

Proposition 2.2 (Choi-Jamiolkowski Isomorphism [31, 58]). Given an ONB B = {|i〉}din
i=1 ⊆

C
din , the linear map that takes as input a linear superoperator N : B(Cdin) → B(Cdout) and maps it

to the bounded operator

1

din
ΓN � (idin ⊗N)(Ω) ∈ B(Cdin ⊗ Cdout ), (2.1)

where Ω = |Ω〉〈Ω | with |Ω〉 = 1√
din

∑din
i=1 |ii〉 is the canonical maximally entangled state w.r.t. B, is a

linear isomorphism and is called the Choi-Jamiolkowski isomorphism (w.r.t. the basis B).

Given the Choi state 1
din

ΓN of a quantum channel, we can describe the action of N on an input

operator X ∈ B(Cdin) via N(X ) = din trin[(X�
in ⊗ 1out) 1

din
ΓN]. More generally, the action of idaux ⊗N

on a bipartite input operator X ∈ B(Cdaux ⊗ Cdin) is given by (idaux ⊗N)(X ) = din trin[(X�in ⊗
1out)(1aux ⊗ 1

din
ΓN)].

From now on, we always imagine that a basis B of Cdin has been fixed, so we will not men-
tion the choice of basis for the canonical maximally entangled state, for the Choi-Jamiolkowski
isomorphism, or for matrix transpositions explicitly anymore. We collect useful properties of the
Choi-Jamiolkowski isomorphism in the next proposition.

Proposition 2.3 (Properties of the Choi-Jamiolkowski Isomorphism (see, e.g.,
[81, Proposition 2.1])). Let N : B(Cdin) → B(Cdout) be a linear superoperator and let 1

2n ΓN be its

normalized Choi-Jamiolkowski operator as in Equation (2.1). Then:

(1) N is Hermiticity-preserving if and only if 1
2n ΓN is Hermitian.

(2) N is completely positive if and only if 1
2n ΓN is positive semidefinite.

(3) N is trace-preserving if and only if trout[ 1
2n ΓN] = 1

2din
1in.

(4) N is unital if and only if trin[ 1
2n ΓN] = 1

2dout
1out.

In particular, we see thatN is a quantum channel if and only if 1
2n ΓN is a quantum state with a

maximally mixed first marginal. Moreover, recalling thatN is entanglement-breaking if and only if
1
2n ΓN is separable [47], we see thatN is a doubly-stochastic and entanglement-breaking quantum

channel if and only if 1
2n ΓN is a separable quantum state whose first and second marginal both are

maximally mixed.
The Choi-Jamiolkowski isomorphism already provides us with a useful representation for

a quantum channel. The next definition introduces an alternative representation obtained by
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choosing an ONB for the space of bounded operators and then considering the matrix representa-
tion of a quantum channel w.r.t. that basis. For convenience, we focus on the case of multi-qubit
channels.

Definition 2.4 (General Transfer Matrices). Let Q = {Qi }4
n

i=1 be an ONB for B((C2)⊗n) w.r.t. the
Hilbert-Schmidt inner product, consisting of Hermitian bounded linear operators Qi = Q†

i ∈
B((C2)⊗n). Let N : B(C2n ) → B(C2n ) be an n-qubit quantum channel. The TM of N w.r.t. Q
is the matrix RQ

N ∈ C4n×4n
with entries(
RQ
N

)
i, j
� tr

[
QiN(Q j )

]
, ∀1 ≤ i, j ≤ 4n . (2.2)

As we are interested in channels acting on systems of multiple qubits, we can consider a relevant
special case of Definition 2.5 by choosing the overall ONB to consist of tensor products of elements
of a single-qubit ONB.

Definition 2.5 (Local Transfer Matrices). Let Q = {Qi }4i=1 be a local ONB for B(C2) w.r.t. the
Hilbert-Schmidt inner product, consisting of Hermitian bounded linear operators Qi = Q†

i ∈
B(C2), and assume Q0 =

1√
2
12. Let N : B(C2n ) → B(C2n ) be an n-qubit quantum channel. The

local TM of N w.r.t. Q is the matrix RQ
N ∈ C{0,1,2,3}n×{0,1,2,3}n

with entries(
RQ
N

)
A,B
� tr[QAN(QB )], ∀A,B ∈ {0, 1, 2, 3}n , (2.3)

where we used the notation

QA =

n⊗
k=1

QAk
, ∀A = (A1, . . . ,An) ∈ {0, 1, 2, 3}n . (2.4)

Note that we use A,B,C, . . . to denote elements of {0, 1, 2, 3}n (or sometimes of {0, 1, 2, 3}2n),
which leads to operators indexed by A,B,C, . . . to express tensor products. This is not to be con-
fused with the indexing of operators by the subsystem they act on, for which sometimes a similar
notation is used. When an indexing by subsystems becomes necessary, we will do so by giving the
subsystems names such as in (for “input”), out (for “output”), or aux (for “auxiliary”).
We obtain the prime example for a (local) TM when considering the ONB of normalized Pauli

strings.

Example 2.6 (Pauli Transfer Matrix). Consider the local ONB of normalized single-qubit Paulis,
P = { 1√

2
σa}a∈{0,1,2,3}. For an n-qubit quantum channel N : B(C2n ) → B(C2n ), this gives rise to

the PTM RP
N ∈ C{0,1,2,3}n×{0,1,2,3}n

, a local TM, with entries(
RP
N

)
A,B
�

1

2n
tr[σAN(σB )], ∀A,B ∈ {0, 1, 2, 3}n . (2.5)

Note that for a quantum channelN , all PTM entries are real and lie in the interval [−1, 1] (compare,
e.g., [39, Section 2.1.3]).

2.2 Learning Quantum Channels with and without Quantum Memory

In this section, we describe different models of learning quantum channels. These models differ
in the type of access to the unknown quantum channel—for example, depending on whether the
learner has a quantum memory at their disposal or whether the learner can actively choose the
input states on which the unknown quantum channel is queried. We first recall two definitions
from Chen et al. [25]. The first considers general adaptive procedures for learning an unknown
quantum channel if the learner does not have access to a quantum memory.
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Fig. 1. Illustration of learning quantum channels from general channel access, each panel to be read from left

to right. Panel (a) depicts a learner without quantum memory, and panel (b) depicts a learner with quantum

memory.

Definition 2.7 (Learning Quantum Channels without Quantum Memory [25, Definition 4.17]).

An algorithm for learning an unknown n-qubit quantum channel N without quantum mem-
ory can obtain classical data from the channel oracle by preparing an arbitrary input state
ρ ∈ B((C2)⊗naux ⊗ (C2)⊗n), evolving under N to yield the output state (idaux ⊗N)(ρ), and per-
forming an arbitrary POVM measurement {Fs }s ⊆ B((C2)⊗naux ⊗ (C2)⊗n) on that output state to
obtain outcome s with probability Tr[Fs (idaux ⊗N)(ρ)]. Here, the selection of the input state and
the POVM can be adaptive—that is, depend on previously chosen input states, previously chosen
POVMs, and previously observed measurement outcomes. After T oracle accesses, the algorithm
uses the entirety of the obtained measurement outcomes to predict properties of N .

General learning procedures in which the learner does have a quantummemory at their disposal
are encapsulated in the following definition.

Definition 2.8 (Learning Quantum Channels with Quantum Memory [25, Definition 4.18]). An
algorithm for learning an unknownn-qubit quantum channelN with quantummemory can access
the channel oracle as a quantum channel during amixed-state quantum computation. The resulting
state of the quantum memory after T oracle accesses is

ρN
T = NT (idaux,T−1 ⊗N) . . .N2(idaux,1 ⊗N)N1(idaux,0 ⊗N)(ρ0), (2.6)

with some input state ρ0 ∈ S((C2)⊗naux,0 ⊗ (C2)⊗n) and some nt−1-to-nt qubit quantum channels
Nt : B((C2)⊗nt−1 ) → B((C2)⊗nt ), for t = 1, . . . ,T , where n0 = n. After T oracle accesses, the
algorithm performs a POVM {Fs }s ⊆ B((C2)⊗nT ) on the quantum memory state ρN

T
to predict

properties of N .

Definitions 2.7 and 2.8 are illustrated in Figure 1. We will also consider variants of the previous
two definitions. To obtain these variants, we suppose that the learner has access to the unknown
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Fig. 2. Illustration of learning quantum channels from Choi access, each panel to be read from bottom to top.

Panel (a) depicts a learner without quantum memory, and panel (b) depicts a learner with quantum memory.

quantum channel N only via its Choi state 1
2n ΓN . In analogy to Chen et al. [25, Definitions 4.15

and 4.16], this leads us to the following two definitions.

Definition 2.9 (Learning Quantum Channels without Quantum Memory from Choi Access). An
algorithm for learning an unknown n-qubit quantum channel N without quantum memory from
Choi access can obtain classical data from the Choi state oracle by performing arbitrary adaptively
chosen POVM measurements on single copies of the Choi state 1

2n ΓN . In other words, for each

oracle access, the algorithm can select a POVM {Fs }s ⊆ B((C2)⊗n⊗(C2)⊗n) and obtain the classical
outcome s with probability tr

[
Fs

1
2n ΓN ] . Here, the selection of the POVM can be adaptive (i.e.,

depend on previously chosen POVMs and previously observed measurement outcomes). After T
oracle accesses, the algorithm uses the entirety of the obtained measurement outcomes to predict
properties of N .

Definition 2.10 (Learning Quantum Channels with Quantum Memory from Choi Access). An algo-
rithm for learning an unknown n-qubit quantum channel N with quantum memory from Choi
access can obtain copies of the Choi state 1

2n ΓN from the Choi state oracle and store those
copies in the quantum memory. After T oracle accesses, the algorithm performs a joint POVM
{Fs }s ⊆ B(((C2)⊗n ⊗ (C2)⊗n)⊗T ) on ( 1

2n ΓN)⊗T to predict properties of N .

We illustrate learning channels from Choi access in Figure 2. Any procedure for learning a
quantum channel from Choi access in particular is an instance of a general procedure for learning
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a quantum channel. To see this, simply use independent copies of a maximally entangled state as
input in Definitions 2.7 and 2.8. However, as the implementation of ann-qubit quantum channel via
teleportation of its Choi state in general has a success probability 4−n , not every general procedure
for learning a quantum channel may be realizable via learning from Choi access. However, under
additional assumptions on shared local unitary invariances of the Choi states of the unknown
channels, the success probability of implementation via teleportation can be increased (compare,
e.g., [81, Section 2.1]), so reducing general channel learning to learning from Choi access may
become feasible. Finally, in Appendix A, we describe a model of channel learning from parallel
access, which is intermediate between Choi access and general channel access.

3 Predicting Expectation Values From TM Entries Under Sparsity Assumptions

Before establishing our results on learning transfer matrices, we first discuss how approximations
to entries of the TM of a channel N can be used to obtain estimates for expectation values of the
form tr[ON(ρ)]. Namely, we first observe the following. The ability to simultaneously approximate
entries (RQ

N)i, j of the TM of a channel N up to accuracy ε allows to approximate the expectation
value tr[ON(ρ)] up to accuracy ε̃ , where ε̃/ε can be controlled in terms of the 1-norms of the Q-
basis coefficient vectors ofO and ρ. This is particularly useful if bothO and ρ have sparse Q-basis
expansions. Our second observation is similar. If the TM ofN is sparse, then ε-accurate estimates
of those entries translate to ε̃-accurate estimates of tr[ON(ρ)] for anyO and ρ, where ε̃/ε depends
on the sparsity of the TM. In summary, under sparsity assumptions, accurate estimates of TM
entries give rise to accurate estimates of expectation values.
For this section, we always take Q = {Qi }4

n

i=1 to be a Hermitian ONB of B((C2)⊗n). Accordingly,
the transfer matrices in this subsection will be as in Definition 2.4.

3.1 Sparse Input States and Sparse Output Observables

We begin by showing how estimates for the TM translate to expectation value estimates under
1-norm assumptions on the coefficient vectors of state and observable.

Lemma 3.1. Let ρ ∈ S(C2n ) be an n-qubit quantum state whose coefficient vector in the Q-basis

expansion has 1-norm Bρ > 0. Let O ∈ B(C2n ) be a self-adjoint n-qubit observable whose coefficient

vector in the Q-basis expansion has 1-norm BO > 0. Assume that we have ε-accurate estimates r̂ Qi, j
for the entries of the Q-TM of an n-qubit quantum channel N : B(C2n ) → B(C2n ). Then, from these

estimates, we can obtain an (εBρBO )-accurate estimate μ̂ of tr[ON(ρ)].

Proof. Consider the Q-basis expansions

ρ =
4n∑
i=1

αiQi , αi = Tr[ρQi ], (3.1)

O =
4n∑
i=1

βiQi , βi = Tr[OQi ], (3.2)

of ρ and ofO . By expanding in the Q-basis, we can rewrite our quantity of interest, Tr[ON(ρ)], as

Tr[ON(ρ)] =
4n∑

i, j=1

αiβj (RQ
N)j,i . (3.3)
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Accordingly, we define the estimate μ̂ as

μ̂ �
4n∑

i, j=1

αiβj r̂
Q
j,i , (3.4)

with the the estimates r̂ Qi, j for the entries of the Q-TM satisfying |r̂ Qi, j −(RQ
N)j,i | ≤ ε for all 1 ≤ i, j ≤

4n . Then, we can argue for the accuracy of μ̂ as follows:

|μ̂ − Tr[ON(ρ)]| =

����� 4n∑
i, j=1

αiβj (r̂ Qj,i − (RQ
N)j,i )

����� (3.5)

≤ ε ·
4n∑

i, j=1

|αi | · |βj | (3.6)

= ε ‖ �α ‖1 · ‖ �β ‖1 (3.7)

= εBρBO . (3.8)

Here, the inequality is an application of Hölder’s inequality (with p = 1 and q = ∞). �

As sparsity assumptions lead to 1-norm bounds, this has the following consequence.

Corollary 3.2. Let ρ ∈ S(C2n ) be an n-qubit quantum state whose coefficient vector in the Q-

basis expansion is sρ -sparse. Let O ∈ B(C2n ) be a self-adjoint n-qubit observable whose coefficient

vector in the Q-basis expansion is sO -sparse. Assume that we have ε-accurate estimates r̂ Qi, j for the en-

tries of the Q-TM of an n-qubit quantum channel N : B(C2n ) → B(C2n ). Then, from these estimates,

we can obtain an
(
εsρ

√
sO ‖O ‖2 max1≤i≤4n ‖Qi ‖∞

)
-accurate estimate of tr[ON(ρ)].

Proof. We use the notation from the previous proof for Q-basis coefficients. First observe that,
by orthonormality of the Qi , Parseval’s equality yields

‖ρ‖22 =
4n∑
i=1

|αi |2 = ‖ �α ‖22 , ‖O ‖22 =
4n∑
i=1

|βi |2 = ‖ �β ‖22 . (3.9)

Now, if �α is sρ -sparse and �β is sO -sparse, Hölder’s inequality tells us that

‖ �α ‖1 ≤ sρ ‖ �α ‖∞ = sρ max
1≤i≤4n

|Tr[ρQi ]| ≤ sρ max
1≤i≤4n

‖ρ‖1 · ‖Qi ‖∞ = sρ max
1≤i≤4n

‖Qi ‖∞ , (3.10)

as well as

‖ �β ‖1 ≤
√
sO ‖ �β ‖2 =

√
sO ‖O ‖2 . (3.11)

Plugging these bounds into the statement of the previous lemma finishes the proof. �

Remark 3.3. In the preceding proofs, we have chosen to expand both ρ andO w.r.t. Q. This leads
to the norm bounds ‖ �α ‖∞ ≤ max1≤i≤4n ‖Qi ‖∞ and ‖ �β ‖∞ ≤ ‖O ‖2. From a quantum information

perspective, one may instead consider the alternative expansions ρ =
∑4n

i=1 α̃i max1≤j≤4n ‖Q j ‖∞Q j

with α̃i = 1
max1≤j≤4n ‖Qi ‖∞ Tr[ρQi ], as well as O =

∑4n

i=1 β̃i
1

max1≤j≤4n ‖Q j ‖∞Qi with β̃i =

max1≤j≤4n ‖Q j ‖∞ Tr[OQi ]. These lead to the norm bounds ‖ �̃α ‖∞ ≤ 1 and ‖ �̃β ‖∞ ≤
max1≤j≤4n ‖Qi ‖∞‖O ‖2. In particular, if Q = P is the Pauli ONB, we have the operator norm bound

max1≤j≤4n ‖Qi ‖∞ = 1√
2n
, and if O has bounded operator norm ‖O ‖ ≤ B, we get ‖ �̃α ‖∞ ≤ 1 and

‖ �̃β ‖∞ ≤ B. Of course, this change in normalization does not change the sparsity of the respective
expansions and also leaves the product of the 1-norms of the coefficient vectors invariant. Thus,
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the results of Lemma 3.1 and Corollary 3.2 remain untouched by such a simultaneous change in
normalization.

In the rest of this article, we will sometimes for brevity call O (or ρ) sO -sparse (or sρ -sparse)

w.r.t. Q if the respective coefficient vector (tr[OQi ])4
n

i=1 (or (tr[ρQi ])4
n

i=1) in the Q-basis is sO -sparse
(or sρ -sparse). If Q = P is the Pauli ONB, we will speak of Pauli-sparse observables and states. To
illustrate potential applications, we next discuss some examples of observables and states with a
sparse ONB expansion. We do so for the relevant special case of the Pauli ONB.

Example 3.4 (Pauli-sparse Observables). The following constitute examples for observables with
a sparse Pauli-ONB expansion:

— All n-qubit Pauli observables of arbitrarily high weight have Pauli-sparsity sO = 1, indepen-
dently of n.

— All geometrically k-local n-qubit observables have Pauli-sparsity sO = O(4knD ), assuming
the underlying lattice is a subset of ZD .

— All k-local n-qubit observables have Pauli-sparsity sO ≤
(n
k

)
· 4k ≤ O((4n)k ).

— All k-local degree-d n-qubit observables—that is, k-local n-qubit observables made up of
summands such that each qubit is acted on by at most d of them (see the work of Huang
et al. [52] for a formal definition)—have Pauli-sparsity sO ≤ O(nd4k ).

Remark 3.5. For these last two classes of observables, one can alternatively use the work of
Huang et al. [52, Corollaries 3 and 4] to get better bounds on the 1-norm of the vector of Pauli
coefficients ofO . Note, however, that in another work, Huang et al. [52] consider the unnormalized
Pauli expansion of an observable. If we account for this (compare also the discussion in Remark 3.3),
then in the notation of Lemma 3.1, the work of Huang et al. [52, Corollary 3] combined with
Hölder’s inequality implies that for k-local O , we have

‖ �β ‖1 ≤ ‖ �β ‖2k/(k+1)s
(k−1)/2k

O
≤ 3

√
2n

C(k) ‖O ‖ · O
(
(4n)

k−1
2

)
, (3.12)

where C(k) = (exp (Θ(k logk)))−1. Even more directly, the work of Huang et al. [52, Corollary 4]
implies that for a k-local degree-d observable O ,

‖ �β ‖1 ≤
3
√
2n

C(k,d) ‖O ‖, (3.13)

with C(k,d) = (
√
d exp(Θ(k logk)))−1. Both of these 1-norm bounds improve in terms of n-

dependence upon the more naive ‖ �β |1 ≤
√
sO ‖O ‖2 ≤

√
sO2n ‖O ‖ that we would obtain by combin-

ing the respective sparsity observed in Example 3.4 with the reasoning that led from Lemma 3.1
to Corollary 3.2. This demonstrates that the bound of Corollary 3.2, based on exact sparsity, can
be looser than the 1-norm-based bound of Lemma 3.1.

Example 3.6 (Pauli-sparse States). The following constitute examples for states with a sparse
Pauli-ONB expansion:

— For any non-identity n-qubit Pauli σA, indexed by a string A ∈ {0, 1, 2, 3}n with A � 0n , the
mixed state ρ± =

1
2n (12n ± σA) proportional to the projector on the ±1 eigenspace of σA has

Pauli-sparsity sρ± = 2, independently of n.
— Let σA1 , . . . ,σAk

be pairwise distinct n-qubit Paulis. Then, the mixed state ρ± =
1
2n

∏k
�=1(12n ± σA� ) = 1

2n

∑
b ∈{0,1}k (−1) |b |σb1

A1
. . . σbk

Ak
proportional to the projector on the

joint ±1 eigenspace of σA1 , . . . ,σAk
has Pauli-sparsity sρ± = |〈σA1 , . . . ,σAk

〉| = 2k .
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Having given these examples of observables and states that we can cover, we remark on an
important limitation on the class of sparse states.

Remark 3.7. The class of quantum states with an sρ -sparse Q-basis expansion only contains
states with a limited purity. With the notation used in the proof of Lemma 3.8, this can be seen as
follows. If ρ is sρ -sparse w.r.t. Q, then its purity can be bounded as

tr
[
ρ2
]
= ‖ρ‖22 = ‖ �α ‖22 ≤ sρ ‖ �α ‖2∞ ≤ sρ max

1≤i≤4n
‖Qi ‖2∞. (3.14)

As 1 = tr[ρ] ≤ rank(ρ) tr
[
ρ2
]
, this also implies that rank(ρ) ≥ (sρ max1≤i≤4n ‖Qi ‖2∞)−1. For our

results in later sections, we will assume max1≤i≤4n ‖Qi ‖∞ = 1√
2n

and sρ ≤ O(poly(n)), with n the

number of qubits. Under these assumptions, we see that any sρ -sparse state ρ has purity at most

O( poly(n)
2n ) and rank at least Ω( 2n

poly(n) ). Thus, such states are highly mixed and high-rank. Note,

however, that sparse states can be far from maximally mixed in trace distance. For instance, if

A ∈ {0, 1, 2, 3}n with A � 0n , then ρ± =
12n ±σA

2n has Pauli-sparsity 2 and
��ρ± − 1

2n 12n

��
1
= 1.

We also note that the results of this subsection as well as the results of later sections all straight-
forwardly extend to observablesO that are close to sparse in operator norm and to states that are
close to sparse in 1-norm, since the true expectation value is then well approximated by the one
of the sparse approximations. This, however, does not add conceptual insight beyond the case of
exact sparsity, so we do not explicitly mention the approximate sparsity variant of the result each
time.

3.2 Sparse Quantum Channel

In the previous subsection, we made assumptions on the states and observables but no assump-
tions on the unknown quantum channel. Here, we consider the converse, by making a sparsity
assumption on the channel but allowing for arbitrary states and observables.

Lemma 3.8. Let ρ ∈ S(C2n ) be an n-qubit quantum state, and let O ∈ B(C2n ) be a self-adjoint

n-qubit observable. Let N : B(C2n ) → B(C2n ) be an n-qubit quantum channel with an sN-sparse

TM w.r.t. Q. Assume that we have ε-accurate estimates r̂ Qi, j for the non-zero entries of the Q-TM of

N . Then, from these estimates, we can obtain an (εsN‖O ‖2 max1≤i≤4n ‖Qi ‖∞)-accurate estimate of

tr[ON(ρ)].

Proof. Let us denote the pairs of indices corresponding to non-zero entries of theQ-TM ofN by
(i1, j1), . . . , (isN , jsN ) ∈ {1, . . . , 4n}2. Expanding in the Q-basis, we again start from Equations (3.3)
and (3.4). We can make use of our sparsity assumption to reduce the number of summands and
then again apply Hölder to obtain the following:

|μ̂ − Tr[ON(ρ)]| =

����� 4n∑
i, j=1

αiβj (r̂ Qj,i − (RQ
N)j,i )

����� (3.15)

=

����� sN∑
s=1

α js
βis

(
r̂ Qis , js

− (RQ
N)is , js

)����� (3.16)

≤ ε ·
sN∑
s=1

|α js
| · |βis

| , (3.17)
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where we used our assumption that |r̂ Qis , js
−(RQ

N)is , js
| ≤ ε for all 1 ≤ s ≤ sN . Yet another application

of Hölder gives us

sN∑
s=1

|α js
| · |βis

| ≤
(

sN∑
s=1

|α js
|
)
· max
1≤s≤sN

|βis
| (3.18)

≤ sN‖ �α ‖∞ · ‖ �β ‖∞ (3.19)

≤ sN‖ �α ‖∞ · ‖ �β ‖2 (3.20)

≤ sN ·
(
max
1≤i≤4n

‖Qi ‖∞
)
· ‖O ‖2 , (3.21)

where the final step uses the inequality ‖ �α ‖∞ ≤ max1≤i≤4n ‖Qi ‖∞ and the equality ‖ �β ‖2 = ‖O ‖2,
both of which were established in the proof of Corollary 3.2. Combining the two chains of inequal-
ities gives the claimed approximation guarantee. �

We emphasize that applying Lemma 3.8 requires estimates for the non-zero TM entries as well
as the knowledge that all other TM entries are equal to zero. In addition, similarly to how we
could allow for approximate sparsity in the states and observables in the previous subsection, it
is straightforward to extend Lemma 3.8 to channels that are close to a channel with sparse TM in
1-to-1 norm. We conclude this subsection with some examples of quantum channels with a sparse
(Pauli) TM.

Example 3.9 (Pauli-sparse Channels). The following constitute examples for channels with a
sparse PTM:

— Let N(·) =
∑

C ∈{0,1,2,3}n γCσC (·)σC be an n-qubit Pauli channel with Pauli error rates satis-
fying γC ≥ 0 and

∑
C ∈{0,1,2,3}n γC = 1. Then, for any A,B ∈ {0, 1, 2, 3}n , we have

1

2n
tr[σAN(σB )] =

1

2n

∑
C ∈{0,1,2,3}n

γC tr[σAσCσBσC ] (3.22)

=

�����
∑

C ∈{0,1,2,3}n

[σB,σC ]=0

γC −
∑

D∈{0,1,2,3}n

{σB,σD }=0

γD

�����δA,B . (3.23)

In other words, for any B ∈ {0, 1, 2, 3}n , the normalized Pauli σB√
2n

is an eigenoperator of N
with associated Pauli eigenvalue given by

λB =
∑

C ∈{0,1,2,3}n

[σB,σC ]=0

γC −
∑

D∈{0,1,2,3}n

{σB,σD }=0

γD . (3.24)

In other words, the PTM of a Pauli channel is a diagonal matrix with its eigenvalues on
the diagonal. Therefore, for Pauli channels, PTM learning is equivalent to the task of Pauli
eigenvalue learning considered in the work of Chen et al. [29]. Accordingly, a Pauli channel
has an s-sparse PTM if and only if its spectrum contains (at most) s non-zero eigenvalues.

— An n-qubit channelN has an s-sparse PTM if and only if its Choi state 1
2n ΓN has an s-sparse

Pauli ONB expansion. (This can be seen as a direct consequence of Equation (4.1).) Thus, any
example of a Pauli-sparse 2n-qubit state ρ with trn+1, ...,2n[ρ] = 1

2n 12n gives rise to a quantum

channel with s-sparse PTM. Concretely, if the Pauli expansion of the Choi state is 1
2n ΓN =
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C ∈{0,1,2,3}2n γ (C) σC√

22n
, with γ (B0n) = 1√

2n
δB,0n to ensure that N is trace-preserving, then

the corresponding channel N acts on an input state ρ =
∑

A∈{0,1,2,3}n α(A) σA√
2n

via

N(ρ) = 2n
∑

A,B∈{0,1,2,3}n

(−1) | {1≤i≤n | Ai=2} |α(A)γ (AB) σB√
2n
. (3.25)

— To make the abstract construction of the previous bullet point more concrete, consider the

Choi state 1
2n ΓN =

122n+σA

22n , for some A ∈ {0, 1, 2, 3}2n with An+1 . . .A2n � 0n . The action of
the associated n-qubit quantum channel is given by

N(·) = 2n trin

[
((·)�in ⊗ 1out)

1

2n
ΓN

]
=
tr[(·)]12n + sA tr

[
(·)σA1 ...An

]
σAn+1 ...A2n

2n
, (3.26)

where the sign sA is given by sA = (−1) | {1≤i≤n | Ai=2} | . As 1
2n ΓN has a 2-sparse Pauli expan-

sion, this channel N has a 2-sparse PTM.

We conclude this section with a remark about limitations of the class of sparse channels.

Remark 3.10. If N has an sN-sparse Q-TM, then that directly implies that this TM has rank at
most sN . As the Q-TM ofN is simply its matrix representation w.r.t. the ONB Q, that tells us this:
an n-qubit quantum channel with sN-sparse TM has rank at most sN when viewed as a linear map
from B((C2)⊗n) to itself. Thus, our notion of sparse channels can only capture relatively low-rank
channels (i.e., channels with a relatively low-dimensional image space).
We can also consider the Choi/Kraus rank ofN instead of its rank as a linear map. For simplicity,

let us focus on the case of the Pauli ONB. As mentioned previously, by Equation (4.1),N having an
s-sparse PTM is equivalent to its Choi state 1

2n ΓN having an s-sparse Pauli expansion. Following
the reasoning in Remark 3.7, we thus see that an s-sparse channel N has a Choi/Kraus rank of

at least Ω( 4n

s
). For general ONBs and TMs, we can obtain a Choi/Kraus rank lower bound with a

similar reasoning, replacing Equation (4.1) by Equation (B.3).

4 Efficient PTM Learning With Quantum Memory

In this section, we show that a learner with access to a quantum memory can efficiently estimate
all the PTM entries of an unknown channels from Choi access. Combining this with the results
of Section 3, this gives a procedure for estimating Pauli-sparse expectation values of an unknown
channel. Alternatively, we can use it to estimate arbitrary expectation values for an unknown
channel promised to have a sparse PTM.
First, we show that the Pauli-specific shadow tomography result of Huang et al. [55] allows

us to learn the PTM of an arbitrary unknown channel from a small number of Choi state copies,
assuming access to a quantum memory.

Theorem 4.1. There is a learning procedure with quantum memory from Choi access that, using

m = O(n+log(1/δ )
ε4

) copies of the Choi state 1
2n ΓN of an arbitrary unknown n-qubit channel N , outputs,

with success probability ≥ 1 − δ , numbers r̂ P
A,B for A,B ∈ {0, 1, 2, 3}n such that |r̂ P

A,B − (RP
N)A,B | ≤ ε

holds simultaneously for all A,B ∈ {0, 1, 2, 3}n .

Proof. For every A,B ∈ {0, 1, 2, 3}n , we can write the corresponding PTM entry as(
RP
N

)
A,B
=

1

2n
tr[σAN(σB )] = tr

[
(σ�

B ⊗ σA)
1

2n
ΓN

]
= (−1) | {1≤i≤n |Bi=2} | tr

[
(σB ⊗ σA)

1

2n
ΓN

]
.

(4.1)
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Here, the last equality used that σ�
0 = σ0, σ

�
1 = σ1, σ

�
2 = −σ2, and σ�

3 = σ3. Thus, an ε-accurate

estimate of the Pauli expectation value tr[(σB ⊗ σA) 1
2n ΓN] immediately translates to a ε-accurate

estimate of the PTM entry (RP
N)A,B .

To learn all theseM = 16n Pauli expectation values simultaneously, we employ the Pauli shadow
tomography procedure of Huang et al. [55, SupplementaryMaterial V.B]. According to Huang et al.
[55, Theorem 2], this procedure uses at most

O
����
log

(
16n

δ

)
ε4

���� = O
(
n + log

(
1
δ

)
ε4

)
(4.2)

copies of the Choi state 1
2n ΓN to produce, with success probability ≥ 1 − δ , simultaneously ε-

accurate estimates for all Pauli expectation values. �

In Appendix E, we give a simple proof for a corresponding lower bound of Ω( n
ε2
), thus estab-

lishing the optimality of the linear-in-n scaling for learning the PTM with quantum memory from
Choi access. In fact, Chen et al. [29, Theorem 2, (iv)] use teleportation stretching for Pauli channels
to show the following: even given general channel access and even when the unknown channel is
promised to be a Pauli channel and thus to have a diagonal PTM, the linear-in-n scaling cannot be
improved.
When focusing on the task of predicting sparse expectation values, we not only have efficient

query complexity, butwe can also translate guarantees on the efficiency of the Pauli shadow tomog-
raphy result of Huang et al. [55] in terms of both classical memory and classical post-processing
time to our setting.

Corollary 4.2. There is a learning procedure with quantum memory from Choi access that, using

m1 = O
(

n+log(1/δ )
ε4

· B4s4ρs2O
)

(4.3)

copies of the Choi state 1
2n ΓN of an unknown n-qubit channel N , produces a classical descrip-

tion N̂ of N from which any M expectation values of the form tr[OiN(ρi )], 1 ≤ i ≤ M , with

Oi some n-qubit observables with sO -sparse Pauli basis expansions satisfying ‖Oi ‖2 ≤ B
√
2n and

ρi some n-qubit states with sρ -sparse Pauli basis expansions, can be predicted to accuracy ε with

m2 = O( log(min{Msρ sO ,16n })+log(1/δ )
ε2

· B2s2ρsO ) additional copies of 1
2n ΓN and classical computation

time O(nm1M) = O(n2+n log(1/δ )
ε4

· B4s4ρs2OM), with success probability ≥ 1 − δ . The classical rep-

resentation N̂ of N consists of O(nm1) = O(n2+n log(1/δ )
ε4

· B4s4ρs2O ) real numbers stored in classical

memory.

Proof. This follows from the work of Huang et al. [55, Theorem 2] and the bounds on clas-
sical memory and classical computation time given in the proof thereof (see [55, Supplementary
Material V.B]) when combined with Corollary 3.2. To see this, note that, by Corollary 3.2, it suf-
fices to use the protocol of Huang et al. [55, Supplementary Material V.B] to predict the at most
min{MsρsO , 16

n} relevant non-zero PTM entries, which we can relate to expectation values of
Pauli observables on the Choi state by Equation (4.1), each to accuracy ε̃ = ε

sρ
√

sO B
. �

When talking about computational efficiency in Corollary 4.2, we implicitly assume that the
Pauli-sparse observables Oi and the Pauli-sparse states ρi are given to the learner in the natural

efficient classical representations, Ôi and ρ̂i , namely as lists of the respective Pauli coefficients.
For example, given the freedom in normalization discussed in Remark 3.3, we can work with the
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classical representations ρ̂i = {(As , tr[ρiσAs
])}sρ

s=1 and Ôi = {(Bs ,
1
2n tr[OiσBs

])}sO

s=1. Given these
Pauli representations ofOi and ρi , our learning procedure can then efficiently predict tr[OiN(ρi )].
Corollary 4.2 thus tells us that we can predict expectation values of the form tr[ON(ρ)] to an
inverse-polynomial accuracy from an efficient number of copies of 1

2n ΓN using efficient classical
computation time and efficient classical memory, as long as we assume that both O and ρ have a
O(poly(n))-sparse Pauli basis expansions and that ‖O ‖ ≤ O(poly(n)).
While we formulate Corollary 4.2 for sparse observables and states, we note that a similar copy

complexity bound holds when replacing sparsity by 1-norm assumptions. This can be proven in
the same way, merely replacing Corollary 3.2 by Lemma 3.1. As we saw in Remark 3.5, the latter
can lead to tighter bounds than the former. However, when starting from 1-norm assumptions, it is
not immediately clear how to translate the statements about computational efficiency, for example,
because there is no longer a natural efficient representation for the observables and states.

Remark 4.3. We note some additional features of Corollary 4.2. First, if the classical representa-

tions are only approximate, in the sense that we obtain ρ̂i = {(As , α̂
(i)
s )}sρ

s=1 with |α̂ (i)
s −tr[ρiσAs

]| ≤
ερ and Ôi = {(Bs , β̂

(i)
s )}sO

s=1 with |β̂ (i)s − 1
2n tr[OiσBs

]| ≤ εO , then our procedure still gives
(ε + sρsOεO + sρερ (

√
sOB + sOεO ))-accurate estimates for tr[OiN(ρi )]. (This can be seen by aug-

menting the proof of Lemma 3.8 with additional triangle inequalities.)
Second, we inherit two more interesting features of Huang et al. [55, Theorem 2]. On the one

hand, in Corollary 4.2, theOi and ρi need not be known in advance, and we can build our classical
representation and get told only afterward which expectation values we should predict. On the
other hand, the part of the procedure in Corollary 4.2 that produces the classical representation

N̂ only ever performs measurements on at most two copies of the Choi state 1
2n ΓN , so a quantum

memory of 2n qubits suffices to build N̂ . However, using N̂ to predict M expectation values uses
a quantum memory of 2n(m2 − 1) qubits, withm2 as in Corollary 4.2.

If we are promised in advance that the unknown quantum channel has a sparse PTM but the
location of the non-zero entries is unknown, then a combination of Theorem 4.1 with a cut-off
argument leads to the following variant of our result.

Lemma 4.4. There is a learning procedure with quantum memory from Choi access that, using

m = O(n+log(1/δ )
ε4

) copies of the Choi state 1
2n ΓN of an unknown n-qubit channel N with sN-sparse

PTM, outputs, with success probability ≥ 1 − δ , a list {((is , js ), r̂ Pis , js
)}S

s=1 of length S such that

(1) (i, j) � {(is , js )}S
s=1 ⇒ |(RP

N)i, j | ≤ ε ,

(2) (i, j) ∈ {(is , js )}S
s=1 ⇒ |(RP

N)i, j | > ε/6,
(3) S ≤ sN , and

(4) |r̂ Pis , js
− (RP

N)is , js
| ≤ ε holds for all 1 ≤ s ≤ S .

Proof: First apply the learning procedure of Theorem 4.1 with accuracy parameter ε̃ = ε/3.
With success probability ≥ 1 − δ , this produces estimates r̃ Pi, j satisfying |r̃ Pi, j − (RP

N)i, j | ≤ ε/3
simultaneously for all 1 ≤ i, j ≤ 4n . Now define

r̂ Pi, j =

{
0 if |r̃ Pi, j | ≤ ε/2
r̃ Pi, j else

. (4.4)

Let {((is , js ), r̂ Pis , js
)}S

s=1 be the list of remaining non-zero numbers r̂
P
i, j and the associated locations

(i, j) in the TM. It is now easy to see that, conditioned on the success event, this list has the desired
properties:
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(1) Assume (i, j) � {(is , js )}S
s=1. By construction, this is the case if and only if r̂

P
i, j = 0, which

in turn is equivalent to |r̃ Pi, j | ≤ ε/2. As |r̃ Pi, j − (RP
N)i, j | ≤ ε/3 holds in the case of success, this

implies |(RP
N)i, j | ≤ ε/2 + ε/3 = 5ε/6 ≤ ε by the triangle inequality.

(2) Assume (i, j) ∈ {(is , js )}S
s=1. By construction, this is the case if and only if r̂ Pi, j � 0 and

r̂ Pi, j = r̃
P
i, j , which in turn is equivalent to |r̃ Pi, j | > ε/2. As |r̃ Pi, j − (RP

N)i, j | ≤ ε/3 holds in the case
of success, this implies |(RP

N)i, j | > ε/2 − ε/3 = ε/6.
(3) As a direct consequence of 2., we see that S ≤ {(i, j) | (RP

N)i, j � 0} = sN .
(4) For any 1 ≤ s ≤ S , we have r̂ Pis , js

= r̃ Pis , js
by construction. As |r̃ Pis , js

− (RP
N)is , js

| ≤ ε/3 holds in
the case of success, we have |r̂ Pis , js

− (RP
N)is , js

| ≤ ε/3 ≤ ε . �

Combining Lemma 4.4 with Lemma 3.8 gives a variant of Corollary 4.2 in which we replace the
sparsity assumption on states and observables by a sparsity assumption on the unknown channel.

Corollary 4.5. There is a learning procedure with quantum memory from Choi access that, using

m = O
(
n + log(1/δ )

ε4
· B4s4N

)
(4.5)

copies of the Choi state 1
2n ΓN of an unknown n-qubit channel N with sN-sparse PTM, produces, with

success probability ≥ 1 − δ , a classical description N̂ of N from which all expectation values of the

form tr[ON(ρ)], whereO is an arbitrary n-qubit observable with ‖O ‖2 ≤ B
√
2n and ρ is an arbitrary

n-qubit state, can be predicted to accuracy ε .

Proof. By Lemma 3.8, we can get the desired ε-accurate expectation value estimates from ε̃-

accurate PTM entry estimates if we set ε̃ = ε
√
2n

sN ‖O ‖2
. If we plug this accuracy ε̃ into the copy com-

plexity bound of Lemma 4.4 and insert the assumed inequality ‖O ‖2 ≤ B
√
2n , we obtain the stated

copy complexity bound. �

Corollary 4.5 describes an information-theoretically efficient way of predicting expectation val-
ues for arbitrary input states and arbitrary bounded output observables if the unknown quantum
channel is promised to have a polynomially-sparse PTM. Importantly, the learning procedure in
Corollary 4.5 does not require knowledge about the sparsity structure of the PTM. It suffices to
know only that the TM is sparse, the sparsity structure is then found as part of the learning proce-
dure. In fact, if additionally the sparsity structure of the (P)TM is known in advance, then there is a
straightforward information-theoretically efficient learning procedure without quantum memory
(compare Remark 5.4).

Remark 4.6. Analogously to Corollary 4.2, one can show that the classical representation N
in Corollary 4.5 can be chosen to consist of O(n2+n log(1/δ )

ε4
· B4s4N) real numbers. However, it is

not clear how to translate the computation time bound from Corollary 4.2 to the case of sparse
channels and arbitrary states and observables. In particular, there is no longer a natural efficient
representation of the states and observables for which the expectation value is to be predicted.

While we focus on the PTM in this section, we can extend most of our results to TMs w.r.t. more
general unitary orthonormal bases. We explain this in Appendix B.

5 Exponential Query Complexity Lower Bounds For PTM Learning Without Quantum

Memory

In the language introduced in Section 2.2, we can view Section 4 (andAppendix B) as giving us algo-
rithmswith quantummemory for learning the PTM (and TM) and for predicting sparse expectation
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values of an unknown quantum channel from Choi access with a polynomial number of copies.
In other words, if we have access to a quantum memory, then we can information-theoretically
efficiently solve these two learning tasks even in the weakest of the three quantum access models
defined in Section 2.2. In this section, we explore how essential the quantum memory is to achieve
the efficient information-theoretic complexity scaling.

5.1 Query Complexity Lower Bounds for PTM Learning without Quantum Memory

from Choi Access

We first prove exponential query complexity lower bounds for the weakest of our learning mod-
els, namely that of learning without quantum memory from Choi access. While the result of this
subsection is implied by that of the next subsection on learning without quantum memory from
general channel access, we have chosen to present it separately because the proof in the case of
Choi access is technically less involved and can serve as preparation for the proof in the general
channel access case. More precisely, the proof for Choi access is a variant of the proof strategy
used in the work of Chen et al. [27] to establish exponential query complexity lower bounds for
learners without quantum memory for the task of Pauli shadow tomography of quantum states.
For learning without quantummemory from Choi access, we have the following query complexity
lower bound.

Lemma 5.1. Any algorithm for learning without quantum memory from Choi access requires Ω( 4n

ε2
)

copies of the Choi state of an unknown n-qubit channel N to estimate all entries of RP
N up to accuracy

ε with success probability ≥ 2
3 .

Proof Sketch. We give a detailed proof in Appendix D. The proof is a modification to that of
Chen et al. [25, Corollary 5.9] and proceeds as follows. As learning PTM entries is, by Equation (4.1),
equivalent to predicting Pauli expectation values for the Choi state, PTM learning becomes a Pauli
shadow tomography problem on the level of the Choi state. For general states, Chen et al. [25,
Corollary 5.9] established a Pauli shadow tomography query complexity lower bound for learners
without quantum memory by reducing to a many-versus-one state distinguishing task and con-
structing an ensemble of states for which the latter task is hard. To adapt their proof to our setting,
we effectively restrict their state ensemble to the sub-ensemble of valid Choi states and analyze
the hardness of the Pauli shadow tomography task for that sub-ensemble. �

We can recover the same asymptotic copy complexity lower bound even if we restrict the un-
known channel to be doubly-stochastic and entanglement-breaking, and to have a sparse PTM
with unknown sparsity structure.

Lemma 5.2. Any algorithm for learning without quantum memory from Choi access requires Ω( 4n

ε2
)

copies of the Choi state of an unknown doubly-stochastic and entanglement-breaking n-qubit channel

N with O(1)-sparse PTM to estimate all entries of RP
N up to accuracy ε with success probability

≥ 2
3 .

Proof. We give a detailed proof in Appendix D. The proof requires only a small modification
compared to that of Lemma 5.1. Namely, we have to further restrict the state ensemble to those that
are valid Choi states of doubly-stochastic quantum channels. All states in the ensemble are already
separable and O(1)-sparse, so we automatically focus on entanglement-breaking channels with
O(1)-sparse PTM. Again, we have to perform a hardness analysis for the Pauli shadow tomography
task of this further restricted ensemble. �

ACM Trans. Quantum Comput., Vol. 5, No. 2, Article 14. Publication date: June 2024.



14:24 M. C. Caro

If N is doubly-stochastic, then we have for A,B ∈ {0, 1, 2, 3}n ,

tr

[
σAN

(
1⊗n
2 + σB

2n

)]
=

⎧⎪⎪⎨⎪⎪⎩
1 +

(
RP
N

)
A,B

if A = 0n(
RP
N

)
A,B

else
. (5.1)

Thus, the ability to estimate expectation values of the form tr[σAN(1
⊗n
2 +σB

2n )] up to a desired ac-
curacy ε immediately allows one to estimate the PTM entries (RP

N)A,B to the same accuracy, as-
sumingN is doubly-stochastic. Trivially, the observables σA have a 1-sparse Pauli basis expansion,

and the states
1⊗n
2 +σB

2n have a 2-sparse Pauli basis expansion. In addition, ‖σA‖2 =
√
2n . Therefore,

Lemma 5.2 has the following consequence.

Corollary 5.3. Any learning algorithm without quantum memory requires Ω( 4n

ε2
) copies of the

Choi state of an unknown doubly-stochastic and entanglement-breakingn-qubit channelN with O(1)-
sparse PTM to produce a classical description N̂ of N from which any expectation value of the form

tr[ON(ρ)], with O an n-qubit observable with O(1)-sparse Pauli basis expansion satisfying ‖O ‖2 ≤√
2n and ρ an n-qubit state with O(1)-sparse Pauli basis expansion, can be predicted to accuracy ε

with success probability ≥ 2
3 .

This is to be contrasted with Corollaries 4.2 and 4.5 (as well as Corollaries B.4 and B.6), which
showed that using a quantum memory allows to solve even more general versions of the same
expectation value prediction task using polynomially-in-n or even linearly-in-n many copies of
the Choi state of an unknown n-qubit quantum channel. Thus, we have established an exponential
separation in query complexity between algorithms with and without quantum memory for the
task of predicting Pauli-sparse expectation values of an unknown channel with sparse PTM when
given access to copies of its Choi state.

Remark 5.4. The exponential query complexity lower bound for learners without quantummem-
ory fromChoi access may no longer apply if stronger assumptions on the unknown quantum chan-
nel are made. For example, ifN is promised to be sN-sparse and the sparsity structure ofN (i.e., the
positions of non-zero PTM entries) is known in advance, then, by Lemma 3.8, it suffices to estimate
the corresponding sN many Pauli expectation values for the Choi state. Thus, if sN ≤ O(poly(n)),
then this can easily be achieved without quantum memory using O( poly(n)·log(1/δ )

ε2
) Choi state

copies.

Remark 5.5. Complementary to the previous remark, we note that the exponential query com-
plexity lower bound for learners without quantum memory from Choi access may also fail to hold
if stronger assumptions on the input states and output observables are made. For instance, if we
only care about “low-weight” observables and states, whose Pauli expansions consist of Paulis act-
ing non-trivially on at most a constant number of qubits, then applying classical shadows to the
Choi state suffices, so no quantum memory is needed [60, 61].

5.2 Query Complexity Lower Bounds for PTM Learning without Quantum Memory

from Sequential Channel Access

Next, we extend the exponential query complexity lower bounds for the task of PTM learning
without quantum memory also to the stronger model of sequential channel access (Definition 2.7).

Theorem 5.6. Any learning algorithm without quantum memory requires Ω( 4n

ε2
) copies of an un-

known n-qubit channel N to estimate all entries of RP
N up to accuracy ε with success probability

≥ 2
3 .
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Proof. We give a detailed proof in Appendix D. The proof is based on the learning tree represen-
tation of Chen et al. [27] and an extension of their analysis from state shadow tomography to our
channel shadow tomography setting. While the underlying framework is the same as in the proof
of the Choi state access case, the technical details become more involved due to the possibility of
adaptively chosen input states. �

Similarly to the previous subsection, we also have a stronger doubly-stochastic, entanglement-
breaking, and sparse version.

Theorem 5.7. Any learning algorithm without quantum memory requires Ω( 4n

ε2
) copies of an un-

known doubly-stochastic and entanglement-breaking n-qubit channel N with O(1)-sparse PTM to

estimate all entries of RP
N up to accuracy ε with success probability ≥ 2

3 .

Proof. We give a detailed proof in Appendix D. This proof requires only a small modification to
that of Theorem 5.6, which again consists of further restricting the ensemble of unknown channels
to a sub-ensemble consisting only of doubly-stochastic entanglement-breaking channelswithO(1)-
sparse PTM. This further restriction then requires a corresponding adaptation to the hardness
analysis. �

In exactly the sameway that Lemma 5.2 gave rise to Corollary 5.3, Theorem 5.7 has the following
immediate consequence.

Corollary 5.8. Any learning algorithm without quantum memory requires Ω( 4n

ε2
) copies of an

unknown doubly-stochastic and entanglement-breaking n-qubit channel N with O(1)-sparse PTM

to produce a classical description N̂ of N from which any expectation value of the form tr[ON(ρ)],
with O an n-qubit observable with O(1)-sparse Pauli basis expansion satisfying ‖O ‖2 ≤

√
2n and ρ

an n-qubit state with O(1)-sparse Pauli basis expansion, can be predicted to accuracy ε with success

probability ≥ 2
3 .

This shows that the exponential query complexity separation for the task of predicting Pauli-
sparse expectation values between learning with quantum memory from Choi state copies and
learning without quantum memory from Choi state copies persists even if we allow learners with-
out quantummemory to access copies of the unknown sparse channel. Again, a learner with quan-
tum memory can even solve more general tasks than that in Corollary 5.8 (see Corollaries 4.2 and
4.5). Thereby, we have established an exponential separation between the weakest of our three
learning models with quantum memory (Definition 2.10) and the strongest of our three learning
models without quantum memory (Definition 2.7).

Remark 5.9. Additionally, the exponential query complexity lower bounds in this subsection can
fail under a priori promises on the unknown channel. Concretely, Chen et al. [29, Corollary 2] give
a learning procedure without quantum memory that estimates all (non-trivial) PTM entries of an

unknown n-qubit Pauli channelN using O(n log(1/δ )
ε2

) queries toN , where n-dimensional auxiliary
quantum systems are used. Thus, if we are promised that the unknown channel is a Pauli channel,
the exponential query complexity separation between PTM learning with and without quantum
memory breaks down. In fact, the protocol of Chen et al. [29] achieves the same n-dependence and
a better ε-dependence than that of Theorem 4.1, despite the latter using a quantum memory.

Remark 5.10. As a further example of a change in framework can break the exponential query
complexity lower bound for learners without quantum memory, we highlight the worst case na-
ture of our task. Namely, we require the learner to make accurate predictions for all Pauli-sparse
states and observables. In contrast, [52] recently established that arbitrary quantum channels can
be learned efficiently without quantum memory from parallel access in a worst-case sense over
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certain (k-local degree-d) observables and on-average over certain (locally flat) distributions of
quantum states.

Remark 5.11. To conclude our discussion of query complexity lower bounds, we explain the im-
plications of Chen et al. [29, Theorem 2, (iii)] for our learning task. Formulated in our language,
Chen et al. [29, Theorem 2, (iii)] say this: without the possibility of querying the unknown channel
on a subsystem of an entangled quantum state (as is, for example, required to prepare Choi state
copies), the task of PTM learning requires Ω(2n/3) many queries, even if the unknown channel is
promised to be a Pauli channel (or, equivalently, to have a diagonal PTM). This teaches us about the
importance of allowing for an auxiliary quantum system our definitions of learning with quantum
memory. Combined with the query complexity lower bounds for learners without quantum mem-
ory established in this section, we see that the efficient query complexity of PTM learning with
quantummemory established in Theorem 4.1 requires both the ability to query the unknown chan-
nel sequentially without intermediate measurements and the ability to let the unknown channel
act on a subsystem of a larger composite quantum system.

6 Hamiltonian Learning With Quantum Memory

As an application of our positive results for PTM learning with quantum memory, we show how
these can be combined with polynomial interpolation techniques to give rise to a Hamiltonian
learning protocol. The ideas presented in this section follow the approaches based on polyno-
mial interpolation and derivative estimation put forward in other works [40, 43, 75], but our PTM
learner allows us to deal with arbitrary Hamiltonians, whereas these prior works require assump-
tions on the structure of the unknown Hamiltonian.
Our goal is to learn an unknown n-qubit Hamiltonian H = H † ∈ B((C2)⊗n), without

making prior assumptions on the structure of H . Namely, if H has the Pauli expansion H =∑
A∈{0,1,2,3}n α(A)σA, with α(A) = 1

2n tr[HσA] ∈ R and w.l.o.g. α(0n) = 0, we aim to approxi-

mate the coefficient vector �α = (α(A))A∈{0,1,2,3}n in �∞-norm over R4
n
. (Note: Here we consider

an unnormalized Pauli expansion.)
We will consider learning an unknown Hamiltonian from access to the associated unitary

dynamics. For any time t ≥ 0, we will denote the unitary quantum channel describing the
(Schrödinger picture) evolution under the Hamiltonian H for time t by

Ut : B((C2)⊗n) → B((C2)⊗n), Ut (ρ) = e−it H ρeit H . (6.1)

By expanding the operator exponentials in their power series, we obtain

Ut (ρ) = ρ − it[H , ρ] +
∞∑

k=2

(−it)k
k!

CH
k (ρ) , (6.2)

where CH
k
(ρ) denotes the k-fold iterated commutator defined via

CX
k (Y ) � [X , [X , [. . . , [X︸�������������︷︷�������������︸

k times

,Y ] . . .]]] . (6.3)

Repeating an observation previously made in other works [40, 43, 75, 82], we can isolate any single
coefficient α(A) in the first-order term when acting on a suitable Pauli-sparse input state and
measuring a suitable Pauli observable on the obtained output state.

Lemma 6.1. Let H =
∑

A∈{0,1,2,3}n α(A)σA, with α(A) = 1
2n tr[HσA] ∈ R. Let A ∈ {0, 1, 2, 3}n ,

A � 0n . Let 1 ≤ j ≤ n be such that Aj � 0. Let Bj ∈ {1, 2, 3}\{Ai } and set Bk = 0 for all k � i . Define
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the quantum state ρ = 12n+i [σA,σB ]/2
2n . Then

tr[σB · (−i[H , ρ])] = 2α(A). (6.4)

Proof. This can be seen by a direct computation:

tr[σB · (−i[H , ρ])] = tr[(i[H ,σB]) · ρ] (6.5)

= − 1

2n+1
tr[[H ,σB ] · [σA,σB ]] (6.6)

= − 1

2n+1

∑
C ∈{0,1,2,3}n

α(C) tr[[σC ,σB ] · [σA,σB ]] (6.7)

=
1

2n+1

∑
C ∈{0,1,2,3}n

[σB,σC ]�0

α(C) tr[[σC ,σB ] · [σA,σB ]] (6.8)

=
1

2n+1

∑
C ∈{0,1,2,3}n

[σB,σC ]�0

α(C) tr[2σBσC · 2σAσB ] (6.9)

=
2

2n

∑
C ∈{0,1,2,3}n

[σB,σC ]�0

α(C) tr[σC · σA] (6.10)

= 2α(A), (6.11)

as claimed. �

Recalling Equation (6.2), we conclude the following. For any A � 0n , if we manage to extract
the first-order time derivative at time zero of tr[σBUt (ρ)] with B and ρ as in Lemma 6.1, then that
tells us the coefficient α(A). We can achieve this by performing polynomial interpolation for the
function t 
→ tr[σBUt (ρ)]. To ensure that polynomial interpolation gives an accurate estimate for
the first derivative, we need bounds on higher-order derivatives. The next lemma establishes such
bounds for a general Hamiltonian.

Lemma 6.2. Let B ∈ {0, 1, 2, 3}n be an arbitrary string, and let ρ ∈ S((C2)⊗n) be an arbitrary

n-qubit state. Then, for any k ∈ N and for any τ ≥ 0,���� dk

dtk
Tr[σBUt (ρ)]

����
t=τ

���� ≤ (2‖H ‖)k . (6.12)

Proof. Using the power series expansion of Ut (ρ), one can evaluate the time derivative of a

time-dependent expectation value as dk

dt k Tr[σBUt (ρ)]
��
t=τ
= (i)k Tr[CH

k
(σB )Uτ (ρ)]. As the opera-

tor norm of an iterated commutator satisfies
��CX

k
(Y )

�� ≤ (2‖X ‖)k ‖Y ‖, an application of Hölder’s
inequality gives���� dk

dtk
Tr[σBUt (ρ)]

����
t=τ

���� ≤ ��CH
k (σB )

�� · ‖Uτ (ρ)‖1 ≤ (2‖H ‖)k ‖σB ‖ = (2‖H ‖)k , (6.13)

sinceUτ is completely positive and trace-preserving for every τ ≥ 0 and ρ is a quantum state. �

Together with polynomial interpolation guarantees for derivative estimation, our PTM learning
protocol from Corollary 4.2 now has the following consequence.

Theorem 6.3. There is a learning procedure with quantum memory from parallel access that, using

m1 = Õ
(

n+log(1/δ )
ε4

· ‖H ‖4
)

(6.14)
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parallel queries to O( 1
‖H ‖ )-time evolutions along H with a total evolution time of T1 = Õ(n+log(1/δ )

ε4
·

‖H ‖3), produces a classical description Ĥ of H from which any M Pauli coefficients α(A(i)), A(i) ∈
{0, 1, 2, 3}n , 1 ≤ i ≤ M , can be estimated to accuracy ε withm2 = Õ( log(M )+log(1/δ )

ε2
· ‖H ‖2) additional

parallel queries to O( 1
‖H ‖ )-time evolutions along H with a total evolution time of T2 = Õ(n+log(1/δ )

ε2
·

‖H ‖) and classical computation time Õ(n2+n log(1/δ )
ε4

· ‖H ‖4M), with success probability ≥ 1 − δ . The

classical representation Ĥ of H consists of Õ(n2+n log(1/δ )
ε4

· ‖H ‖4) real numbers stored in classical

memory.

Proof Sketch. We give a detailed proof in Appendix D. The learning procedure works as fol-

lows. First, we use Corollary 4.2 to build classical representations Ût of Ut for different times t .
The totality of those classical representations makes up our classical representation Ĥ ofH . When
asked to estimate a Pauli coefficients α(A(i)), 1 ≤ i ≤ M , from that classical representation, we

use each Ût to obtain an estimate of 1
2 tr[σB(i )Ut (ρ(i))] with B(i) and ρ(i) as in Lemma 6.1 for

different times, and then use those estimates to approximately evaluate the first-order time deriva-
tive at time 0 via Chebyshev polynomial interpolation for each i . Motivated by Equation (6.2) and
Lemma 6.1, these approximate derivatives are our estimates for the Pauli coefficients α(A(i)). �

Assuming an upper bound of ‖H ‖ ≤ O(poly(n)), Theorem 6.3 gives an efficient procedure for
learning the Pauli coefficients ofH in �∞-norm. Crucially, and in contrast to results frompriorwork,
we do not need any structural assumptions about H , as it can be an arbitrarily non-local Hamil-
tonian. However, Theorem 6.3 is not directly comparable to prior works on learning Hamiltonians
from real time dynamics. Methods making use of known structure in the Hamiltonian achieve ex-
ponentially bettern dependence and polynomially better ε dependence than Theorem 6.3, and they
do not scale directly with ‖H ‖ but rather with the the �∞-norm of the vector of Pauli coefficients
of H and with, for example, the assumed locality parameter [40, 43, 57, 75].

APPENDICES

A Learning Quantum Channels with Parallel Access

We present one more access model for quantum channel learning, this one lying in between the
general access model and the Choi access model. Here, we suppose that the learner has to perform
all oracle accesses to the unknown quantum channel in parallel. We formalize this as follows.

Definition A.1 (Learning Quantum Channels without Quantum Memory from Parallel Access). A
T -query algorithm for learning an unknown n-qubit quantum channelN without quantum mem-
ory from parallel access is aT -query algorithm for learning an unknown n-qubit quantum channel
N without quantummemory under the additional restriction that the input states must not be cho-
sen adaptively.

Definition A.2 (Learning Quantum Channels with Quantum Memory from Parallel Access). A
T -query algorithm for learning an unknown n-qubit quantum channel N with quantum mem-
ory from parallel access is a 1-query algorithm for learning the unknown (nT )-qubit quantum
channel N⊗T with quantum memory. In other words, such an algorithm can prepare an in-
put state ρ0 ∈ S((C2)⊗naux ((C2)⊗n)⊗T ), access the oracle for N in parallel T times to have
the state ρN

T
= (idaux ⊗N⊗T )(ρ0) in the quantum memory, and then perform a joint POVM

{Fs }s ⊆ B((C2)⊗naux ⊗ ((C2)⊗n)⊗T ) on ρN
T
to predict properties of N .

These two definitions are illustrated in Figure 3. Any procedure for learning an unknown quan-
tum channel from Choi access can also be realized with parallel access to the unknown channel.
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Fig. 3. Illustration of learning quantum channels from parallel access, each panel to be read from bottom

to top. Panel (a) depicts a learner without quantum memory, and panel (b) depicts a learner with quantum

memory.

Additionally, any procedure with parallel access is clearly an instance of a general channel learn-
ing procedure. Thus, the parallel access model sits in between Choi access and general channel
access.

B TM Learning With Quantum Memory From Polynomially Many Queries

While the focus in Section 4 was on the PTM, we can extend our reasoning to general TMs when
replacing the Pauli shadow tomography procedure of Huang et al. [55] by themore general shadow
tomography procedure of Aaronson [2] and Bădescu and O’Donnell [2, 9]. In this appendix, we
describe how that leads to a query-efficient procedure for learning general TMs, assuming a quan-
tummemory and Choi state access. According to the results of Section 3, this allows us to estimate
sparse expectation values for an unknown quantum channel. Moreover, as discussed in Section 2.2
and Appendix A, this then particularly implies information-theoretically efficient learners with
quantum memory from parallel access and from more general sequential access in terms of its
power.
First, we demonstrate that applying existing state shadow tomography methods to the Choi

state of the unknown quantum channel is sufficient to obtain accurate estimates for all TM entries
simultaneously, while using only polynomially many Choi state copies.

Theorem B.1. There is a learning procedure with quantum memory from Choi access that, using

m = Õ
(

n3+n log(1/δ )
ε4

·
(
2n · max

1≤i≤4n
‖Qi ‖2∞

)4)
(B.1)
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copies of the Choi state 1
2n ΓN of an unknown n-qubit channel N , outputs, with success probability

≥ 1 − δ , numbers r̂ Qi, j for 1 ≤ i, j ≤ 4n such that |r̂ Qi, j − (RQ
N)i, j | ≤ ε holds simultaneously for all

1 ≤ i, j ≤ 4n .

Notice that the copy complexity upper bound in Theorem B.1 becomes polynomial in n if we
assume ‖Qi ‖∞ = 1√

2n
for all 1 ≤ i ≤ 4n . This is, for example, satisfied in the case of the Pauli ONB.

In fact, it is easy to see from ‖Qi ‖2 ≤
√
2n ‖Qi ‖ that max1≤i≤4n ‖Qi ‖ = 1√

2n
holds if and only if Q

is an ONB of normalized unitaries.

Proof. We first define a set of effect operators, to which we then later apply the improvement
by Bădescu and O’Donnell [9] to the shadow tomography procedure of Aaronson [2]. Namely, for
each 1 ≤ i, j ≤ 4n , we define

Ei, j =
1

2

(
1 ⊗ 1 +

1

‖Q j ‖∞
Q�

j ⊗ 1

‖Qi ‖∞
Qi

)
. (B.2)

Notice that since everyQi is Hermitian, so is every Ei, j . Moreover, since each 1
‖Q j ‖∞Q

�
j ⊗

1
‖Qi ‖∞Qi is

normalized in operator norm, an application of the triangle inequality shows that 0 ≤ Ei, j ≤ 1⊗1
holds for all 1 ≤ i, j ≤ 4n . Thus, every Ei, j is a valid effect operator. In addition, note that by
definition, we have

Tr
[
QiN(Q j )

]
= 2n Tr

[
(Q�

j ⊗ Qi )
1

2n
ΓN

]
(B.3)

= 2n · ‖Qi ‖∞ · ‖Q j ‖∞ · Tr
[(

1

‖Qi ‖∞
Q�

i ⊗ 1

‖Q j ‖∞
Q j

)
1

2n
ΓN

]
(B.4)

= 2n · ‖Qi ‖∞ · ‖Q j ‖∞ · 2 ·
(
Tr

[
Ei, j

1

2n
ΓN

]
− 1

2

)
. (B.5)

Hence, an ε̃-accurate estimate for the expectation value Tr[Ei, j
1
2n ΓN] gives rise to a (ε̃ · 2n+1 ·

max1≤i≤4n ‖Qi ‖2∞)-accurate estimate of the TM entry (RQ
N)i, j = Tr[QiN(Q j )].

Letting ε > 0 and δ ∈ (0, 1) be arbitrary, define ε̃ = ε
2n+1 ·max1≤i≤4n ‖Qi ‖2∞

> 0. According to Bădescu

and O’Donnell [9, Theorem 1.4], if we apply their shadow tomography procedure for theM = 16n

effect operators Ei, j , 1 ≤ i, j ≤ 4n , and the (2n)-qubit quantum state 1
2n ΓN , we see that(

log2(M) + log
(
2n
δ ε

) )
· 2n

ε̃4
· O

(
log

(
2n
δ ε

) )
= Õ

(
n3 + n log(1/δ )

ε4
·
(
2n · max

1≤i≤4n
‖Qi ‖2∞

)4)
(B.6)

copies of 1
2n ΓN suffice to produce estimates r̃i, j satisfying |r̃i, j −Tr[Ei, j

1
2n ΓN]| ≤ ε̃ for all 1 ≤ i, j ≤

4n , with success probability ≥ 1− δ . By our preceding reasoning, these simultaneously ε̃-accurate
expectation value estimates now give us simultaneously ε-accurate estimates

r̂ Qi, j = 2
n · ‖Qi ‖∞ · ‖Q j ‖∞ · 2 ·

(
r̃i, j −

1

2

)
(B.7)

of the TM entries, with success probability ≥ 1 − δ . �

Remark B.2. There are two immediate extensions of TheoremB.1 thatwewant to highlight. First,
we have phrased Theorem B.1 in a way suggesting that the learner knows the ONB Q in advance.
This is not needed, as the learner only needs to know an upper bound on max1≤i≤4n ‖Qi ‖2∞ in
advance to determine the suitable copy complexity. To see this, recall that the shadow tomography
procedure in the work of Bădescu and O’Donnell [9] allows for adaptively chosen measurements,
so also in our case the same copy complexity bound holds if the learner does not knowQ in advance
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and the ONB elements are only revealed adaptively. This is in contrast to the Pauli ONB case: when
formulating a variant of Theorem 4.1 for estimatingM PTM entries, these entriesmust be known to
the learner in advance. This limitation is inherited from the Pauli shadow tomography procedure
of Huang et al. [55], which does not allow for adaptively chosen Pauli observables. Similarly, the
observables Oi and states ρi in Corollary 4.2 must be known to the learner in advance for our
sample complexity bound to apply.
Second, while there is only a single ONB Q in Theorem B.1, we can also allow for N different

ONBs Q(1), . . . ,Q(N ). This will increase the number of effect operators in the proof from 16n to
N · 16n , but since that number only enters the sample complexity bound for shadow tomography

logarithmically, the final copy complexity will still be bounded as Õ(n3+n log(N )+n log(1/δ )
ε4

· (2n ·
max1≤i≤4n,1≤L≤N ‖Q (L)

i ‖2∞)4).
In summary, we can sample-efficiently simultaneously learn TMs w.r.t. exponentially many dif-

ferent adaptively chosen ONBs, if we know in advance how many different ONBs there are and
that the maximum operator norm of any ONB element is 1√

2n
. These two extensions also carry

over to the next result, but we do not state the corresponding variants explicitly.

Remark B.3. Comparing Theorem B.1 with Theorem 4.1, we see that our bound in the Pauli-
specific case provides an asymptotic copy complexity improvement by a factor of n2 compared to
simply applying the bound obtained when applying Theorem B.1 to the Pauli ONB (up to loga-
rithmic factors). Thus, both Theorems 4.1 and B.1 give polynomial-in-n copy complexity bounds
for learning the PTM, but the former gives an effectively cubic n-dependence, which the latter
improves to linear. Moreover, as the general state shadow tomography results of Aaronson [2]
and Bădescu and O’Donnell [9] do not come with bounds on classical memory or computational
complexity, we also do not have such bounds in the case of a general TM, in contrast to the PTM
case (Corollary 4.2).

Combining Theorem B.1 with Corollary 3.2, we obtain the following.

Corollary B.4. There is a learning procedure with quantum memory from Choi access that, using

m = Õ
(
n3 + n log(1/δ )

ε4
· B4s4ρs2O ·

(√
2n · max

1≤i≤4n
‖Qi ‖∞

)12)
(B.8)

copies of the Choi state 1
2n ΓN of an n-qubit channel N , produces, with success probability ≥ 1 − δ ,

a classical description N̂ of N from which all expectation values of the form tr[ON(ρ)], where O is

an n-qubit observable with sO -sparse Q-basis expansion such that ‖O ‖2 ≤ B
√
2n and ρ is an n-qubit

state with sρ -sparse Q-basis expansion, can be predicted to accuracy ε .

Proof. By Corollary 3.2, we can get the desired ε-accurate expectation value estimates from
ε̃-accurate TM entry estimates if we set ε̃ = ε

sρ
√

sO ‖O ‖2 max1≤i≤4n ‖Qi ‖∞ . Plugging this accuracy ε̃ into

the copy complexity bound of Theorem B.1 and inserting the assumed inequality ‖O ‖2 ≤ B
√
2n

now gives the stated copy complexity bound. �

Note that, in particular, any n-qubit observable O with ‖O ‖∞ ≤ B satisfies the Hilbert-Schmidt

norm bound ‖O ‖2 ≤ B
√
2n . Thus, the corollary can be applied to bounded Q-sparse observables.

Exactly analogous to the Pauli case, if we are promised in advance that the unknown quantum
channel has a sparse TM, then we can combine Theorem B.1 with a cut-off argument to obtain the
following variant of our result.
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Lemma B.5. There is a learning procedure with quantum memory from Choi access that, using

m = Õ
(

n3+n log(1/δ )
ε4

·
(
2n · max

1≤i≤4n
‖Qi ‖2∞

)4)
(B.9)

copies of the Choi state 1
2n ΓN of an unknown n-qubit channel N with sN-sparse TM w.r.t. Q, outputs,

with success probability ≥ 1 − δ , a list {((is , js ), r̂ Qis , js
)}S

s=1 of length S such that

(1) (i, j) � {(is , js )}S
s=1 ⇒ |(RQ

N)i, j | ≤ ε ,

(2) (i, j) ∈ {(is , js )}S
s=1 ⇒ |(RQ

N)i, j | > ε/6,
(3) S ≤ sN , and

(4) |r̂ Qis , js
− (RQ

N)is , js
| ≤ ε holds for all 1 ≤ s ≤ S .

Proof. The proof is essentially identical to that of Corollary 4.5, and we only have to replace
Theorem 4.1 by Theorem B.1. �

Combining LemmaB.5with Lemma 3.8, we get a variant of Corollary B.4 inwhichwe replace the
sparsity assumption on states and observables by a sparsity assumption on the unknown channel.

Corollary B.6. There is a learning procedure with quantum memory from Choi access that, using

m = Õ
(
n3 + n log(1/δ )

ε4
· B4s4N ·

(√
2n · max

1≤i≤4n
‖Qi ‖∞

)12)
(B.10)

copies of the Choi state 1
2n ΓN of an n-qubit channel N with sN-sparse TM w.r.t. Q, produces, with

success probability ≥ 1 − δ , a classical description N̂ of N from which all expectation values of the

form tr[ON(ρ)], where O is an n-qubit observable with ‖O ‖2 ≤ B
√
2n and ρ is an n-qubit state, can

be predicted to accuracy ε .

Proof. Recalling Lemma 3.8, we see that ε̃-accurate TM entry estimates are sufficient to get the
desired ε-accurate expectation value estimates if we take ε̃ = ε

sN ‖O ‖2 max1≤i≤4n ‖Qi ‖∞ . Plugging this

accuracy ε̃ into the copy complexity bound of Lemma B.5 and inserting the assumed inequality

‖O ‖2 ≤ B
√
2n now gives the stated copy complexity bound. �

If Q is an ONB of normalized unitaries, then Corollary B.6 describes a procedure for sample-
efficiently predicting expectation values for arbitrary input states and arbitrary bounded output
observables if the unknown quantum channel is promised to have a polynomially-sparse TM. Here,
no a priori knowledge about the structure of the (sparse) TM is needed.

C Learning Tree Formalism for Learning Without Quantum Memory

Here, we recall (part of) the learning tree formalism introduced in the work of Chen et al. [27] to
establish query complexity lower bounds for learners without quantum memory. More precisely,
we need the following definition of the tree representation for learning a quantum channel without
quantum memory.

Definition C.1 (Tree Representation for Learning Channels [25, Definition 7.1]). Let N be an n-
qubit quantum channel. An algorithm for learning fromT queries toN without quantummemory
can be represented as a rooted tree T of depth T in which each node encodes all measurement
outcomes the algorithm has received thus far. The tree has the following properties:

— Each node u has an associated probability pN(u).
— The probability associated to the root r of the tree equals 1, pN(r ) = 1.
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—At each non-leaf node u, we prepare a state |ϕu 〉 ∈ (C2)⊗naux ⊗ (C2)⊗n , apply the channel

idaux ⊗N to |ϕu 〉〈ϕu |, and measure a (u-dependent) rank-1 POVM {
√
wu

s 2n2naux

��ψu
s

〉〈
ψu

s

��}s ⊆
B((C2)⊗naux ⊗ (C2)⊗n) to obtain a classical outcome s .

— If v is a child node of u, then the probability of the child node is related to the probability of
its parent via

pN(v) = pN(u) ·wu
s 2

n2naux · 〈ψv | (idaux ⊗N)(|ϕu 〉〈ϕu |) |ψv 〉 . (C.1)

— Each root-to-leaf path in T is of length T . If � is a leaf node, then pC(�) is the probability of
the classical memory being in state � after the learning procedure.

While Definition C.1 implicitly assumes all input states to be pure and all measurements to be
rank-1 POVMs, these assumptions can be made without loss of generality via standard purifica-
tion arguments and via simulating general POVMs with rank-1 POVMs. (Compare the work of
Chen et al. [25, Lemma 4.8 and Remark 4.19] for the latter.) In addition, we can without loss of
generality assume the auxiliary system size naux to be the same for each query to the channel
oracle.

D Additional Proofs

D.1 Proofs of Lemmas 5.1 and 5.2

To prove Lemmas 5.1 and 5.2, we make use of the following two variations of Chen et al. [25,
Theorem 5.5].

Lemma D.1 (Shadow Tomography Lower Bound for Choi States). Let O1, . . . ,OM ∈
B((C2)⊗2n) be M ∈ 2N traceless and self-adjoint (2n)-qubit observables satisfying the following

properties:

(i) For every 1 ≤ i ≤ M , σ (Oi ) ⊆ {−1, 1}. In particular, ‖Oi ‖ = 1 holds for all 1 ≤ i ≤ M .

(ii) For every 1 ≤ i ≤ M , trn+1, ...,2n[Oi ] = 0.

(iii) For every 1 ≤ i ≤ M/2, Oi = −Oi+M/2.

Any algorithm without quantum memory requires

Ω

(
1

ε2δ (O1, . . . ,OM )

)
(D.1)

copies of the Choi state 1
2n ΓN of an unknown n-qubit channel N to simultaneously predict all expec-

tation values tr[Oi
1
2n Γ], 1 ≤ i ≤ M , up to accuracy ε with a success probability ≥ 2

3 . Here, we defined

δ (O1, . . . ,OM ) � sup
|ϕ 〉∈(C2)⊗2n :‖ϕ ‖=1

2

M

M/2∑
i=1

〈ϕ |Oi |ϕ〉2 . (D.2)

Proof. We only have to notice that the maximally mixed state on 2n qubits is a valid Choi state,
and that the assumptions on the Oi ensure that

1

2n
Γi �

1⊗2n
2 + 3εOi

22n
(D.3)

is a valid Choi state for every 1 ≤ i ≤ M , as long as ε < 1/3. Now, the remainder of the proof is
exactly the same as the proof of Chen et al. [25, Theorem 5.5]. �

Lemma D.2 (Shadow Tomography Lower Bound for Choi States of Doubly-stochastic
Sparse Channels). Let O1, . . . ,OM ∈ B((C2)⊗2n) be M ∈ 2N traceless and self-adjoint (2n)-qubit

observables satisfying the following properties:
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(i) For every 1 ≤ i ≤ M , σ (Oi ) ⊆ {−1, 1}. In particular, ‖Oi ‖ = 1 holds for all 1 ≤ i ≤ M .

(ii) For every 1 ≤ i ≤ M , tr1, ...,n[Oi ] = 0 and trn+1, ...,2n[Oi ] = 0.

(iii) For every 1 ≤ i ≤ M/2, Oi = −Oi+M/2.
(iv) For every 1 ≤ i ≤ M , Oi has a O(1)-sparse Pauli ONB expansion.

(v) For every 1 ≤ i ≤ M , Oi is a tensor product of 2n single-qubit observables.

Any algorithm without quantum memory requires

Ω

(
1

ε2δ (O1, . . . ,OM )

)
(D.4)

copies of the Choi state 1
2n ΓN of an unknown doubly-stochastic and entanglement-breaking n-qubit

channel N with O(1)-sparse PTM to simultaneously predict all expectation values tr[Oi
1
2n Γ], 1 ≤ i ≤

M , up to accuracy ε with a success probability ≥ 2
3 . Here, we defined

δ (O1, . . . ,OM ) � sup
|ϕ 〉∈(C2)⊗2n :‖ϕ ‖=1

2

M

M/2∑
i=1

〈ϕ |Oi |ϕ〉2 . (D.5)

Proof. We only have to notice that the maximally mixed state on 2n qubits is a valid Choi state
of a doubly-stochastic and entanglement-breaking quantum channel with O(1)-sparse PTM, and
that the assumptions (i) and (ii) on the Oi ensure that

1

2n
Γi �

1⊗2n
2 + 3εOi

22n
(D.6)

is a valid Choi state of a doubly-stochastic quantum channel Ni for every 1 ≤ i ≤ M , as long as
ε < 1/3. Moreover, the channelNi has a O(1)-sparse PTM because of Equation (4.1) and assumption
(iv), and Ni is entanglement-breaking because its Choi state

1
2n Γi is separable by assumptions (i)

and (v), which can be seen by expanding Oi in its eigenbasis consisting of tensor products of
eigenvectors. Now, the remainder of the proof is exactly the same as the proof of Chen et al. [25,
Theorem 5.5]. �

To apply these two lemmata, we need to establish upper bounds on δ (O1, . . . ,OM ) for sets of
Pauli observables satisfying the respective requirements. We do so in the following two lemmata,
with a reasoning quite similar to that of Chen et al. [25, Lemma 5.8].

Lemma D.3. Consider the following 2 · 4n(4n − 1) many (2n)-qubit Pauli observables

P1, . . . , P4n (4n−1) ∈ {+σA}A∈{0,1,2,3}2n \{+σB ⊗ 1⊗n
2 }B∈{0,1,2,3}n (D.7)

P4n (4n−1)+1, . . . , P2·4n (4n−1) ∈ {−σA}A∈{0,1,2,3}2n \{−σB ⊗ 1⊗n
2 }B∈{0,1,2,3}n . (D.8)

The set of observables {Pi }2·4
n (4n−1)

i=1 , when suitably ordered, satisfies conditions (i) through (iii) from

Lemma D.1. Moreover,

δ (P1, . . . , P2·4n (4n−1)) =
1

4n
. (D.9)

Proof. Each Pi is a Pauli observable and thus clearly satisfies condition (i). In addition, each
Pi satisfies condition (ii) because, for every A ∈ {0, 1, 2, 3}2n , trn+1, ...,2n[σA] � 0 holds if and only
if Aj = 0 for all n + 1 ≤ j ≤ 2n. Condition (iii) is satisfied by construction (when ordering the
observables suitably). It remains to compute δ (P1, . . . , P2·4n (4n−1)). To this end, let |ϕ〉 ∈ (C2)⊗2n be
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an arbitrary normalized pure state, ‖ϕ‖ = 1. Then,

1

4n(4n − 1)

4n (4n−1)∑
i=1

〈ϕ | Pi |ϕ〉2 (D.10)

=
1

4n(4n − 1) tr
[(

4n (4n−1)∑
i=1

Pi ⊗ Pi

)
(|ϕ〉〈ϕ |)⊗2

]
(D.11)

=
1

4n(4n − 1) tr
[(( ∑

A∈{0,1,2,3}2n

σA ⊗ σA

)
(D.12)

−
( ∑

B∈{0,1,2,3}n

(σB ⊗ 1⊗n
2 ) ⊗ (σB ⊗ 1⊗n

2 )
))
(|ϕ〉〈ϕ |)⊗2

]
(D.13)

=
1

4n(4n − 1)
(
tr
[
22n SWAP1, ...,2n(|ϕ〉〈ϕ |)⊗2

]
− tr

[
2n SWAP1, ...,n(trn+1, ...,2n[|ϕ〉〈ϕ |])⊗2

] )
(D.14)

=
1

4n(4n − 1)
(
22n − 2n tr

[
trn+1, ...,2n[|ϕ〉〈ϕ |]2

] )
. (D.15)

Here, we used the following well-known identity:∑
B∈{0,1,2,3}n

σB ⊗ σB = 2
n SWAP1, ...,n . (D.16)

This is a special case of the general representation of the swap operator in any ONB of operators
(see, e.g., [81, Example 1.2]).
Accordingly, we get

δ (P1, . . . , P2·4n (4n−1)) = sup
|ϕ 〉∈(C2)⊗2n :‖ϕ ‖=1

1

4n(4n − 1)

4n (4n−1)∑
i=1

〈ϕ | Pi |ϕ〉2 (D.17)

=
22n − 2n · 1

2n

4n(4n − 1) (D.18)

=
1

4n
, (D.19)

and the supremum is attained at |ϕ〉 if and only if trn+1, ...,2n[|ϕ〉〈ϕ |] is maximally mixed, which
is equivalent to |ϕ〉 being maximally entangled across the cut {1, . . . , 2n} = {1, . . . ,n} ∪ {n +
1, . . . , 2n}. �

LemmaD.4. Consider the following 2(42n−2·4n+1) = 2(4n−1)2 many (2n)-qubit Pauli observables

P1, . . . , P(4n−1)2 ∈ {+σA}A∈{0,1,2,3}2n :∃1≤i≤n,n+1≤j≤2n:Ai�0�Aj
(D.20)

P42n−2·4n+2, . . . , P2(4n−1)2 ∈ {−σA}A∈{0,1,2,3}2n :∃1≤i≤n,n+1≤j≤2n:Ai�0�Aj
. (D.21)

The set of observables {Pi }2(4
n−1)2

i=1 , when suitably ordered, satisfies conditions (i) through (v) from

Lemma D.2. Moreover,

δ (P1, . . . , P2((4n−1)2)) =
1

4n − 1
. (D.22)

Proof. Each Pi is a Pauli tensor product observable and thus clearly satisfies conditions (i),
(iv), and (v). Additionally, each Pi satisfies condition (ii) because, for every A ∈ {0, 1, 2, 3}2n ,
trn+1, ...,2n[σA] � 0 holds if and only if Aj = 0 for all n + 1 ≤ j ≤ 2n, and tr1, ...,n[σA] � 0 holds if
and only if Ai = 0 for all 1 ≤ i ≤ n. Condition (iii) is satisfied by construction (when ordering the
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observables suitably). It remains to compute δ (P1, . . . , P2(4n−1)2 ). To this end, let |ϕ〉 ∈ (C2)⊗2n be
an arbitrary normalized pure state, ‖ϕ‖ = 1. Then,

1

(4n − 1)2
(4n−1)2∑

i=1

〈ϕ | Pi |ϕ〉2 (D.23)

=
1

(4n − 1)2 tr
⎡⎢⎢⎢⎢⎣���

(4n−1)2∑
i=1

Pi ⊗ Pi
��� (|ϕ〉〈ϕ |)⊗2

⎤⎥⎥⎥⎥⎦ (D.24)

=
1

(4n − 1)2 tr
[(( ∑

A∈{0,1,2,3}2n

σA ⊗ σA

)
−
( ∑

B∈{0,1,2,3}n

(σB ⊗ 1⊗n
2 ) ⊗ (σB ⊗ 1⊗n

2 )
)

(D.25)

−
( ∑

B∈{0,1,2,3}n

(1⊗n
2 ⊗ σB ) ⊗ (1⊗n

2 ⊗ σB )
)
+ 1⊗2n

2

)
(|ϕ〉〈ϕ |)⊗2

]
(D.26)

=
1

(4n − 1)2
(
tr
[
22n SWAP1, ...,2n(|ϕ〉〈ϕ |)⊗2

]
− tr

[
2n SWAP1, ...,n(trn+1, ...,2n[|ϕ〉〈ϕ |])⊗2

]
(D.27)

− tr
[
2n SWAPn+1, ...,2n(tr1, ...,n[|ϕ〉〈ϕ |])⊗2

]
+ 1

)
(D.28)

=
1

(4n − 1)2
(
22n − 2n(tr

[
trn+1, ...,2n[|ϕ〉〈ϕ |]2

]
+ tr

[
tr1, ...,n[|ϕ〉〈ϕ |]2

]
) + 1

)
, (D.29)

where we again used Equation (D.16) multiple times in the computation.
Accordingly, we get

δ (P1, . . . , P2(4n−1)2 ) = sup
|ϕ 〉∈(C2)⊗2n :‖ϕ ‖=1

1

(4n − 1)2
(4n−1)2∑

i=1

〈ϕ | Pi |ϕ〉2 (D.30)

=
22n − 2n · 2

2n + 1

(4n − 1)2 (D.31)

=
1

4n − 1
, (D.32)

and the supremum is attained at |ϕ〉 if and only if both tr1, ...,n[|ϕ〉〈ϕ |] and trn+1, ...,2n[|ϕ〉〈ϕ |]
are maximally mixed, which is equivalent to |ϕ〉 being maximally entangled across the cut
{1, . . . , 2n} = {1, . . . ,n} ∪ {n + 1, . . . , 2n}. �

We are now in a position to complete the proof of Lemmas 5.1 and 5.2.

Proof of Lemmas 5.1 and 5.2. Recalling from the proof of Theorem 4.1 that estimating all
entries of RP

N up to accuracy ε is equivalent to estimating all expectation values tr
[
σA

1
2n ΓN ] ,

A ∈ {0, 1, 2, 3}2n , up to accuracy ε , we can now combine Lemmas D.1 and D.3 to obtain Lemma 5.1,
and combine Lemmas D.2 and D.4 to obtain Lemma 5.2. �

D.2 Proof of Theorems 5.6 and 5.7

Next, we prove Theorems 5.6 and 5.7. To this end, we first establish analogues of Lemmas D.1
and D.2 for the case of sequential channel access. The proof uses the notation introduced in
Definition C.1.

Lemma D.5. LetO1, . . . ,OM ∈ B((C2)⊗2n) be M ∈ 2N traceless and self-adjoint (2n)-qubit observ-

ables satisfying the following properties:

(i) For every 1 ≤ i ≤ M , σ (Oi ) ⊆ {−1, 1}. In particular, ‖Oi ‖ = 1 holds for all 1 ≤ i ≤ M .

ACM Trans. Quantum Comput., Vol. 5, No. 2, Article 14. Publication date: June 2024.



Learning Quantum Processes and Hamiltonians via the Pauli Transfer Matrix 14:37

(ii) For every 1 ≤ i ≤ M , trn+1, ...,2n[Oi ] = 0.

(iii) For every 1 ≤ i ≤ M/2, Oi = −Oi+M/2.

Any algorithm for learning without quantum memory requires

Ω

(
1

ε2Δ(O1, . . . ,OM )

)
(D.33)

queries to an n-qubit channel N to simultaneously predict all expectation values tr
[
Oi

1
2n Γ

]
, 1 ≤ i ≤

M , up to accuracy ε with a success probability ≥ 2
3 . Here, we defined

Δ(O1, . . . ,OM ) � sup
naux∈N

|ϕ 〉∈(C2)⊗naux ⊗(C2)⊗n :‖ϕ ‖=1
ρ ∈S((C2)⊗naux ⊗(C2)⊗n )

2

M

M/2∑
i−1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Oi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
.

(D.34)

Analogously to how δ (O1, . . . ,OM ) was interpreted by Chen et al. [27] as characterizing the
hardness of state shadow tomography without quantum memory for the observables O1, . . . ,OM ,
we can viewΔ(O1, . . . ,OM ) as a quantity characterizing how challenging it is to performChoi state
shadow tomography without quantum memory for these observables, even given query access to
the corresponding channel. In particular, if O1, . . . ,OM are chosen to be Pauli observables σB1 ⊗
σA1 , . . . ,σBM

⊗σAM
, then, via Equation (4.1), the quantity Δ(O1, . . . ,OM ) expresses the hardness of

simultaneously predicting the PTM entries (RP
N)Ai ,Bi

when given general access toN , but without
a quantum memory being available.

Proof. We first show that any algorithm that can solve the learning task can also solve a certain
many-versus-one distinguishing task. Then we show the query complexity lower bound for the
latter distinguishing task. As in the proof of Lemma D.1, consider the states

1

2n
Γi �

1⊗2n
2 + 3εOi

22n
, 1 ≤ i ≤ M, (D.35)

which are valid Choi states by conditions (i) and (ii). Notice that also the maximally mixed state
1
22n 1

⊗2n
2 is a valid Choi state. Moreover, our assumptions on the observables Oi imply both that

tr[Oi
1
2n Γi ] = 3ε and that tr[Oi

1
22n 1

⊗2n
2 ] = 0 for all 1 ≤ i ≤ M . Therefore, any algorithm that can

predict all the expectation values tr[Oi
1
2n Γ], 1 ≤ i ≤ M , up to accuracy ε with success probability

≥ 2
3 immediately gives rise to an algorithm that, with success probability ≥ 2

3 , solves the many-
versus-one distinguishing task between the unknown channel having maximally mixed Choi state
1
22n 1

⊗2n
2 and the unknown channel being drawn uniformly at random from theM channelsNi with

Choi states 1
2n Γi . Hence, any query complexity lower bound for achieving the latter task without

a quantum memory directly implies the same query complexity lower bound for the former task
under the same restrictions on the algorithm. Thus, we now establish a query complexity lower
bound for performing the many-versus-one distinguishing task without quantum memory.
Consider the tree representation T of the learning algorithm. The probability of arriving at a

leaf � when having access to N is

pN(�) =
T∏

t=1

wvt
2n2naux

〈
ψvt

�� (idaux ⊗N)(
��ϕvt−1

〉〈
ϕvt−1

��) ��ψvt

〉
. (D.36)

Using that, for every bipartite state ρ ∈ S((C2)naux ⊗ (C2)nin), we have

(idaux ⊗N)(ρ) = 2n trin

[
(ρ�in ⊗ 1out)

(
1aux ⊗

1

2n
ΓN
in,out

)]
, (D.37)
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we can compute

(idaux ⊗Ni )(ρ) =
ρaux ⊗ 1out + 3ε trin[(ρ�in ⊗ 1out)(1aux ⊗ Oi )]

2n
(D.38)

as well as

(idaux ⊗Nmax−mixed)(ρ) =
ρaux ⊗ 1out

2n
. (D.39)

Using these expressions as well as the notational shorthands ρvt−1 =
��ϕvt−1

〉〈
ϕvt−1

�� and pt =〈
ψvt

�� ρvt−1,aux ⊗ 1out
��ψvt

〉
, we can now perform the following calculation:

Ei∼Uniform({1, ...,M })[pNi (�)]
pNmax−mixed (�)

(D.40)

= Ei∼Uniform({1, ...,M })

[
T∏

t=1

wvt
2n2naux

(
pt + 3ε

〈
ψvt

�� trin[(ρ�in
vt−1 ⊗ 1out)(1aux ⊗ Oi )]

��ψvt

〉)
wvt

2n2nauxpt

]
(D.41)

= Ei∼Uniform({1, ...,M })

[
exp

(
T∑

t=1

log

(
1 + 3ε

〈
ψvt

�� trin[(ρ�in
vt−1 ⊗ 1out)(1aux ⊗ Oi )]

��ψvt

〉
pt

))]
(D.42)

≥ exp

(
T∑

t=1

Ei∼Uniform({1, ...,M })

[
log

(
1 + 3ε

〈
ψvt

�� trin[(ρ�in
vt−1 ⊗ 1out)(1aux ⊗ Oi )]

��ψvt

〉
pt

)])
(D.43)

= exp
���

T∑
t=1

1

M

M/2∑
i−1

log
���1 − 9ε2

( 〈
ψvt

�� trin[(ρ�in
vt−1 ⊗ 1out)(1aux ⊗ Oi )]

��ψvt

〉
pt

)2������ (D.44)

≥ exp
���−

T∑
t=1

18

M

M/2∑
i−1

ε2

( 〈
ψvt

�� trin[(ρ�in
vt−1 ⊗ 1out)(1aux ⊗ Oi )]

��ψvt

〉
pt

)2��� (D.45)

≥ exp
(
−9Tε2Δ(O1, . . . ,OM )

)
. (D.46)

Here, the first two steps are simple rewritings. The third step is by Jensen’s inequality. The fourth
step uses condition (iii). The fifth step uses the numerical inequality log(1 − x) ≥ −2x , which is
valid for x ∈ [0, 0.79], and which we can apply for ε > 0 small enough. The final step holds by
definition of Δ(O1, . . . ,OM ). With this, we have shown that

Ei∼Uniform({1, ...,M })[pNi (�)]
pNmax−mixed (�)

≥ exp
(
−9Tε2Δ(O1, . . . ,OM )

)
≥ 1 − 9Tε2Δ(O1, . . . ,OM ). (D.47)

Using the one-sided version of Le Cam’s two-point method [25, Lemma 5.4], this tells us that
the learning algorithm without quantum memory solves the many-versus-one distinguishing task
correctly with probability at most 9Tε2Δ(O1, . . . ,OM ). Thus, to achieve a success probability ≥ 2/3,
the number of queries has to satisfy

T ≥ Ω

(
1

ε2Δ(O1, . . . ,OM )

)
. (D.48)

By the reduction between learning and distinguishing discussed at the beginning of the proof, this
establishes the claimed query complexity lower bound. �

By slightly varying the assumptions on the observables, we get the following version for doubly-
stochastic and entanglement-breaking channels with sparse PTM.
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Lemma D.6. LetO1, . . . ,OM ∈ B((C2)⊗2n) be M ∈ 2N traceless and self-adjoint (2n)-qubit observ-

ables satisfying the following properties:

(i) For every 1 ≤ i ≤ M , σ (Oi ) ⊆ {−1, 1}. In particular, ‖Oi ‖ = 1 holds for all 1 ≤ i ≤ M .

(ii) For every 1 ≤ i ≤ M , tr1, ...,n[Oi ] = 0 and trn+1, ...,2n[Oi ] = 0.

(iii) For every 1 ≤ i ≤ M/2, Oi = −Oi+M/2.
(iv) For every 1 ≤ i ≤ M , Oi has a O(1)-sparse Pauli ONB expansion.

(v) For every 1 ≤ i ≤ M , Oi is a tensor product of 2n single-qubit observables.

Any algorithm for learning without quantum memory requires

Ω

(
1

ε2Δ(O1, . . . ,OM )

)
(D.49)

queries to a doubly-stochastic and entanglement-breaking n-qubit channel N with O(1)-sparse PTM

to simultaneously predict all expectation values tr[Oi
1
2n Γ], 1 ≤ i ≤ M , up to accuracy ε with a success

probability ≥ 2
3 . Here, we again defined

Δ(O1, . . . ,OM ) � sup
naux∈N

|ϕ 〉∈(C2)⊗naux ⊗(C2)⊗n :‖ϕ ‖=1
ρ ∈S((C2)⊗naux ⊗(C2)⊗n )

2

M

M/2∑
i−1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Oi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
.

(D.50)

Proof. The proof follows the same steps as the proof of Lemma D.5, we only have to notice
that, with the changed condition (ii) and the added conditions (iv) and (v), all the 1

2n Γi as well as
the maximally mixed state are valid Choi states of doubly-stochastic and entanglement-breaking
quantum channels with O(1)-sparse PTM. �

As before, tomake use of these lower bounds, we need to evaluate (or at least bound) the quantity
Δ(O1, . . . ,OM ) for sets of observables of interest. We will do so for the same sets of observables
that we have already considered in Lemmas D.3 and D.4.

Lemma D.7. Consider the following 2 · 4n(4n − 1) many (2n)-qubit Pauli observables

P1, . . . , P4n (4n−1) ∈ {+σA}A∈{0,1,2,3}2n \ {+σB ⊗ 1⊗n
2 }B∈{0,1,2,3}n (D.51)

P4n (4n−1)+1, . . . , P2·4n (4n−1) ∈ {−σA}A∈{0,1,2,3}2n \ {−σB ⊗ 1⊗n
2 }B∈{0,1,2,3}n . (D.52)

The set of observables {Pi }2·4
n (4n−1)

i=1 , when suitably ordered, satisfies conditions (i) through (iii) from

Lemma D.5. Moreover,

Δ(P1, . . . , P2·4n (4n−1)) =
1

4n − 1
. (D.53)

Proof. We have already established conditions (i) through (iii) when proving Lemma D.3. We
upper bound Δ(P1, . . . , P2·4n (4n−1)) as follows. Let naux ∈ N, |ϕ〉 ∈ (C2)⊗naux ⊗ (C2)⊗n with ‖ϕ‖ = 1,
and let ρ ∈ S((C2)⊗naux ⊗ (C2)⊗n)) be arbitrary. Then, using Equation (D.16) similarly to before,
we obtain the following:

1

4n(4n − 1)

4n (4n−1)∑
i=1

〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉2 (D.54)
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=
1

4n(4n − 1)

4n (4n−1)∑
i=1

tr
[
trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉〈ϕ |

]2
(D.55)

=
1

4n(4n − 1)

4n (4n−1)∑
i=1

tr
[ (
(ρ�in ⊗ 1out)(1aux ⊗ Pi )

)
(1in ⊗ |ϕ〉〈ϕ |)

]2
(D.56)

=
1

4n(4n − 1) tr
[(

4n (4n−1)∑
i=1

(1aux ⊗ Pi ) ⊗ (1aux ⊗ Pi )
) (

(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)
) ⊗2]

(D.57)

=
1

4n(4n − 1)
(
tr
[
22n SWAPin,out(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])⊗2

]
(D.58)

− tr
[
2n SWAPin(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])⊗2

] )
(D.59)

=
1

4n(4n − 1)
(
22n tr

[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
(D.60)

− 2n tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

] )
. (D.61)

Therefore, we have

1

4n(4n − 1)

4n (4n−1)∑
i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
(D.62)

=
1

4n(4n − 1)

(
22n

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
〈ϕ | (ρaux ⊗ 1out) |ϕ〉2

(D.63)

− 2n
tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
〈ϕ | (ρaux ⊗ 1out) |ϕ〉2

)
. (D.64)

Notice that

tr
[
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

]
= 〈ϕ | (ρaux ⊗ 1out) |ϕ〉 = tr[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)], (D.65)

since trin[ρ�in ⊗ 1out] = ρaux ⊗ 1out. As the partial trace of an operator has the same trace as the
original operator, we can thus rewrite the preceding as follows:

1

4n(4n − 1)

4n (4n−1)∑
i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
(D.66)

=
1

4n(4n − 1)

(
22n

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
tr[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]2

− 2n

)
. (D.67)

It remains to bound the first summand. We first rewrite it using the identity trA[XY ] =
trA[X�AY�A ] ∀X ,Y ∈ B(CdA ⊗ CdB ) together with the identity (θin ⊗ idout) ◦ traux = traux ◦(θin ⊗
idaux,out) for the transpose map θin viewed as a linear superoperator on B((C2)⊗n), which al-
lows us to replace ρ�in by ρ in the enumerator. (We explain this in full detail in the proof of
Lemma D.8.) Then, we do a direct computation. Suppose |ϕ〉aux,out has Schmidt decomposition
|ϕ〉aux,out =

∑min{2naux ,2n }
i=1

√
λi |ei 〉aux ⊗ | fi 〉out, where the λi ≥ 0 satisfy

∑min{2naux ,2n }
i=1 λi = 1,

and where {|ei 〉}2
naux

i=1 and {| fi 〉}2
n

i=1 are ONBs of (C2)⊗naux and (C2)⊗n , respectively. As nin =

n = nout, we can expand ρin,aux w.r.t. the tensor product basis {
��fi 〉〈 fj

�� ⊗ |ek 〉〈e� |}i, j,k, � of
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B((C2)⊗n ⊗ (C2)⊗naux ) as

ρin,aux =
∑

i, j,k, �

ρi jk�

��fi 〉〈 fj

��
in
⊗ |ek 〉〈e� |aux . (D.68)

Using these explicit expansions for |ϕ〉 and ρ, we can compute

(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]) =
∑

i, j,k, �,n

√
λiλjρk�jn | fk 〉〈f� |in ⊗ |ei 〉〈en |aux ⊗

��fi 〉〈 fj

��
out
, (D.69)

leading to

traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)] =
∑

i, j,k, �

√
λiλjρk�ji | fk 〉〈f� |in ⊗

��fi 〉〈 fj

��
out
. (D.70)

From this, we obtain

tr
[
traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)]

]2
= tr

⎡⎢⎢⎢⎢⎣
∑

i, j,k, �

√
λiλjρk�i j | fk 〉〈f� |in ⊗

��fi 〉〈 fj

��
out

⎤⎥⎥⎥⎥⎦
2

(D.71)

=

(∑
i, �

λiρ��ii

)2
(D.72)

=
∑

i, j,k, �

λiλjρ��iiρkk j j (D.73)

as well as

tr
[ (
traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)]

)2]
(D.74)

= tr

⎡⎢⎢⎢⎢⎣
∑

i, j,k, �,m,n,s,t

√
λiλjλsλt ρk�jiρmnts |k〉〈� |in · |m〉〈n |in ⊗ |i〉〈j |out · |s〉〈t |out

⎤⎥⎥⎥⎥⎦ (D.75)

=
∑

i, j,k, �

λiλjρ�ki jρk�ji . (D.76)

As ρ is Hermitian and positive semidefinite, we have, for any i, j,k, �, ρ�ki j = ρk�ji and 0 ≤

det

(
ρkkii ρk�i j

ρk�ji ρ��ii

)
= ρ��iiρkk j j − |ρ�ki j |2 = ρ��iiρkk j j − ρ�ki jρk�ji . The latter holds because the

matrix

(
ρkkii ρk�i j

ρk�ji ρ��ii

)
is a principal submatrix of the positive semidefinite matrix ρ and thus itself

positive semidefinite. Altogether, we now have the following:

tr
[ (
traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)]

)2]
=

∑
i, j,k, �

λiλj︸︷︷︸
≥0

ρ�ki jρk�ji︸�����︷︷�����︸
≤ρ��ii ρkk j j

(D.77)

≤
∑

i, j,k, �

λiλjρ��iiρkk j j (D.78)

= tr
[
traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)]

]2
. (D.79)
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Plugging this inequality back into our expression of interest, we have shown

1

4n(4n − 1)

4n (4n−1)∑
i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
≤ 22n − 2n

4n(4n − 1) (D.80)

=
2n − 1

2n(4n − 1) (D.81)

≤ 1

4n − 1
. (D.82)

To finish the proof, it only remains to notice that equality can be attained, for example, if |ϕ〉aux,out
and ρin,aux factorize as |ϕ〉aux,out = |ψ 〉aux ⊗ |φ〉out and ρin,aux = |φ〉〈φ |in ⊗ |ψ 〉〈ψ |aux. �

LemmaD.8. Consider the following 2(42n−2·4n+1) = 2(4n−1)2 many (2n)-qubit Pauli observables

P1, . . . , P(4n−1)2 ∈ {+σA}A∈{0,1,2,3}2n :∃1≤i≤n,n+1≤j≤2n:Ai�0�Aj
(D.83)

P42n−2·4n+2, . . . , P2(4n−1)2 ∈ {−σA}A∈{0,1,2,3}2n :∃1≤i≤n,n+1≤j≤2n:Ai�0�Aj
. (D.84)

The set of observables {Pi }2(4
n−1)2

i=1 , when suitably ordered, satisfies conditions (i) through (v) from

Lemma D.6. Moreover,

1

(2n + 1)2 ≤ Δ(P1, . . . , P2((4n−1)2)) ≤
1

(2n − 1)2 . (D.85)

Proof. We have already established conditions (i) through (v) when proving Lemma D.4. We
bound Δ(P1, . . . , P2(4n−1)2) as follows. Let naux ∈ N, |ϕ〉 ∈ (C2)⊗naux ⊗ (C2)⊗n with ‖ϕ‖ = 1, and

ρ ∈ S((C2)⊗naux ⊗ (C2)⊗n)) be arbitrary. Then, using Equation (D.16) similarly to before, we obtain
the following:

1

(4n − 1)2
(4n−1)2∑

i=1

〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉2 (D.86)

=
1

(4n − 1)2
(4n−1)2∑

i=1

tr
[
trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉〈ϕ |

]2
(D.87)

=
1

(4n − 1)2
(4n−1)2∑

i=1

tr
[ (
(ρ�in ⊗ 1out)(1aux ⊗ Pi )

)
(1in ⊗ |ϕ〉〈ϕ |)

]2
(D.88)

=
1

(4n − 1)2 tr
⎡⎢⎢⎢⎢⎣���

(4n−1)2∑
i=1

(1aux ⊗ Pi ) ⊗ (1aux ⊗ Pi )
���
(
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

) ⊗2⎤⎥⎥⎥⎥⎦ (D.89)

=
1

(4n − 1)2

(
tr
[
22n SWAPin,out(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])⊗2

]
(D.90)

− tr
[
2n SWAPin(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])⊗2

]
(D.91)

− tr
[
2n SWAPout(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])⊗2

]
(D.92)

+ tr
[
(1aux ⊗ 1in,out)(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])⊗2

] )
(D.93)
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=
1

(4n − 1)2

(
22n tr

[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
(D.94)

− 2n tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
(D.95)

− 2n tr
[
(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
(D.96)

+ tr
[
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

]2 )
. (D.97)

Therefore, we have

1

(4n − 1)2
(4n−1)2∑

i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
(D.98)

=
1

(4n − 1)2

(
22n

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
〈ϕ | (ρaux ⊗ 1out) |ϕ〉2

(D.99)

− 2n
tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
〈ϕ | (ρaux ⊗ 1out) |ϕ〉2

(D.100)

− 2n
tr
[
(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
〈ϕ | (ρaux ⊗ 1out) |ϕ〉2

(D.101)

+
tr
[
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

]2
〈ϕ | (ρaux ⊗ 1out) |ϕ〉2

)
. (D.102)

Notice that

tr
[
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

]
= 〈ϕ | (ρaux ⊗ 1out) |ϕ〉 = tr[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)], (D.103)

since trin[ρ�in ⊗ 1out] = ρaux ⊗ 1out = trin[ρ ⊗ 1out]. As the partial trace of an operator has the
same trace as the original operator, we can thus rewrite the preceding as follows:

1

(4n − 1)2
(4n−1)2∑

i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
(D.104)

=
1

(4n − 1)2

(
22n

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
tr [traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]]2

(D.105)

− 2n
tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
tr
[
traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]

]2 (D.106)

− 2n
tr
[
(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
tr
[
traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]

]2 + 1

)
. (D.107)

Next we use the identity

tr[XY ] = tr
[
X�AY�A

]
, ∀X ,Y ∈ B(CdA ⊗ CdB ), (D.108)

which can, for example, be checked by expanding in a tensor product basis. Let θ denote the trans-
pose viewed as linear superoperator. We clearly have (θin ⊗ idout) ◦ traux = traux ◦(θin ⊗ idaux,out).
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Combining this with Equation (D.108), we can rewrite the enumerator in the first summand
above as

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
(D.109)

= tr
[ (
(θin ⊗ idout)

(
traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)]

) )2]
(D.110)

= tr
[ (
traux

[
(θin ⊗ idaux,out)

(
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

) ] )2]
(D.111)

= tr
[
(traux [(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
. (D.112)

Similarly, we can combine the identity tr[XY ] = tr[X�Y�] ∀X ,Y ∈ B(H) with the commuta-
tion θin ◦ traux,out = traux,out ◦(θin ⊗ idaux,out) to rewrite the enumerator in the second summand
above as

tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
(D.113)

= tr
[ (
θin(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])

)2]
(D.114)

= tr
[ (
traux,out

[
(θin ⊗ idaux,out)

(
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

) ] )2]
(D.115)

= tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
. (D.116)

Finally, using the identity trA[XY ] = trA[X�AY�A ] ∀X ,Y ∈ B(CdA ⊗ CdB ), we can rewrite the
enumerator in the third summand above as

tr
[
(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)])2

]
(D.117)

= tr
[ (
traux, in

[
(θin ⊗ idaux,out)

(
(1in ⊗ |ϕ〉〈ϕ |) (ρ�in ⊗ 1out)

) ] )2]
(D.118)

= tr
[
(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
. (D.119)

In summary, we now have the following expression:

1

(4n − 1)2
(4n−1)2∑

i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
(D.120)

=
1

(4n − 1)2

(
22n

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
tr [traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]]2

(D.121)

− 2n
tr
[
(traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
tr
[
traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]

]2 (D.122)

− 2n
tr
[
(traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
tr
[
traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]

]2 + 1) . (D.123)

To simplify the second and third summand further, we use that the partial trace is cyclic w.r.t. op-
erators that act non-trivially only on the system(s) being traced over. This allows us to do the
following rewritings. As |ϕ〉〈ϕ | = (|ϕ〉〈ϕ |)2, we get

traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)] = traux,out[(1in ⊗ |ϕ〉〈ϕ |)2 (ρ ⊗ 1out)] (D.124)

= traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out) (1in ⊗ |ϕ〉〈ϕ |)]. (D.125)
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And as ρ =
√
ρ2, we get

traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)] = traux, in[(1in ⊗ |ϕ〉〈ϕ |) (√ρ ⊗ 1out)2] (D.126)

= traux, in[(
√
ρ ⊗ 1out) (1in ⊗ |ϕ〉〈ϕ |) (√ρ ⊗ 1out)]. (D.127)

Therefore, both traux,out[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)] and traux, in[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)] are partial
traces of positive semidefinite operators and thus themselves positive semidefinite. As the inequal-
ity |tr[X 2]| = tr[X 2] ≤ (tr[X ])2 holds for any positive semidefinite X , we now arrive at the follow-
ing upper bound:

1

(4n − 1)2
(4n−1)2∑

i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
(D.128)

≤ 1

(4n − 1)2

(
22n

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
tr [traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]]2

+ 2 · 2n + 1

)
. (D.129)

It remains to recall from the proof of Lemma D.7 that

tr
[
(traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)])2

]
≤ tr [traux[(1in ⊗ |ϕ〉〈ϕ |) (ρ ⊗ 1out)]]2 . (D.130)

Therefore, we have shown the upper bound:

1

(4n − 1)2
(4n−1)2∑

i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
≤ 22n + 2 · 2n + 1

(4n − 1)2 (D.131)

=
(2n + 1)2
(4n − 1)2 (D.132)

=
1

(2n − 1)2 . (D.133)

This finishes the proof for the upper bound. To establish the lower bound, we can, for example,
consider the case in which |ϕ〉aux,out and ρin,aux factorize as |ϕ〉aux,out = |ψ 〉aux⊗ |φ〉out and ρin,aux =
|φ〉〈φ |in ⊗ |ψ 〉〈ψ |aux. Plugging these choices into our exact expression above, we get

1

(4n − 1)2
(4n−1)2∑

i=1

(
〈ϕ | trin[(ρ�in ⊗ 1out)(1aux ⊗ Pi )] |ϕ〉

〈ϕ | (ρaux ⊗ 1out) |ϕ〉

)2
=
22n − 2 · 2n + 1

(4n − 1)2 (D.134)

=
(2n − 1)2
(4n − 1)2 (D.135)

=
1

(2n + 1)2 . (D.136)

This concludes the proof. �

Having established these lemmata, we can complete the proof of Theorems 5.6 and 5.7.

Proof of Theorems 5.6 and 5.7. Recalling from the proof of Theorem 4.1 that estimating all
entries of RP

N up to accuracy ε is equivalent to estimating all expectation values tr[σA
1
2n ΓN], A ∈

{0, 1, 2, 3}2n , up to accuracy ε , we can now combine Lemmas D.5 and D.7 to obtain Theorem 5.6,
and combine Lemmas D.2 and D.8 to obtain Theorem 5.7. �
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Remark D.9. A natural alternative proof strategy for establishing Theorems 5.6 and 5.7 would be
to reduce them to their respective Choi access analogues. It is, however, not immediately obvious
how to obtain such a reduction information-theoretically efficiently because protocols like imple-
mentation of a channel via Choi state teleportation have a success probability that is exponentially
small in the number of qubits. While this success probability can be boosted if local unitary invari-
ances of the Choi state are known in advance (compare, e.g., [81, Section 2.1]), we would need
the unknown quantum channels to share the same invariances for this insight to be useful in a
reduction for our lower bounds. We were unable to identify a suitable shared invariance for the
Choi states used in our proofs and therefore resorted to a proof strategy other than a reduction
to learning from Choi access. It would be interesting to see whether the proof of Chen et al. [29,
Theorem 2, (iv)], which is based on teleportation stretching for Pauli channels, can be modified to
obtain a similar reduction from general channel access to Choi access in our setting, as this may
simplify our proofs.

D.3 Proof of Theorem 6.3

Here, we give the complete proof for our Hamiltonian learning guarantee in Theorem 6.3.

Proof of Theorem 6.3. We follow the strategy sketched in the main text. We choose the pa-
rameters for the polynomial interpolation as follows. We set the maximal evolution time to be

T = 1/‖H ‖ and the Chebyshev degree to be L = �2 log( 8‖H ‖√
2π ln(2)ε )�. Additionally, we set our inter-

polation times to be t� =
T
2 (1 + z�), where z� = − cos( 2�−12L

π ), for 1 ≤ � ≤ L. Moreover, we set

ε̃ = 3T ε
4(L−1)L(2L−1) .

As first part of the procedure, for each 1 ≤ � ≤ L, we apply Corollary 4.2 to obtain a classical

description Ût� of Ut� that allows to predict Pauli-sparse expectation values, with success prob-

ability ≥ 1 − δ . This uses O(n+log(1/δ )
ε̃4

) parallel queries to Ut� for each 1 ≤ � ≤ L. In the second

part of the procedure, to estimateM Pauli coefficients α(A(i)), A(i) ∈ {0, 1, 2, 3}n \ {0n}, 1 ≤ i ≤ M ,

we first use the classical representations Û� to obtain ε̃-accurate estimates 2α̂
(i)
t�
of the expectation

values tr
[
σB(i )Ut� (ρ(i))

]
, with B(i) and ρ(i) as in Lemma 6.1. This usesm2 = O( log(M/δ )

ε̃2
) additional

parallel queries to Ut� as well as classical computation time O(n+log(1/δ )
ε̃4

), for each 1 ≤ � ≤ L.
Next, we perform Chebyshev interpolation with these estimated values, which gives Chebyshev

coefficients b̂(i)0 =
1
L

∑L
�=1 α̂

(i)
t�

and b̂(i)m =
2
L

∑L
�=1 α̂

(i)
t�
Tm(z�), 1 ≤ m ≤ L − 1, where Tm is themth

Chebyshev polynomial (of the first kind). These Chebyshev coefficients in turn give rise to the

first-order Taylor coefficients ĉ(i)1 = − 2
T

∑L−1
m=0(−1)mb̂

(i)
m m2, 1 ≤ i ≤ M , as shown, for example, in

the work of Gu et al. [40, Lemma 6].

It remains to show that indeed |ĉ(i)1 − α(A(i))| ≤ ε holds simultaneously for all 1 ≤ i ≤ M , with
success probability ≥ 1−δ . To see this, first recall that by Corollary 4.2, we know that, with success
probability ≥ 1 − δ , ���2α̂ (i)

t�
− tr

[
σB(i )Ut� (ρ(i))

] ��� ≤ ε̃ ∀1 ≤ i ≤ M . (D.137)

For the remainder of the proof, we condition on this success event. Consider “ideal” datasets(
t1,

1
2 tr

[
σB(i )Ut1 (ρ(i))

] )
, . . . ,

(
tL,

1
2 tr

[
σB(i )UtL

(ρ(i))
] )

(D.138)

to which the algorithm does not have access, but which is a useful tool for our analysis. Let b(i)m

be the coefficients of the Chebyshev interpolation polynomial for that ideal dataset. Let c(i)1 =

− 2
T

∑L−1
m=0(−1)mb

(i)
m m2 be the corresponding estimates for the first-order Taylor coefficients. By the
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triangle inequality, |ĉ(i)1 − α(A(i))| ≤ |ĉ(i)1 − c(i)1 | + |c(i)1 − α(A(i))|. The first of these two summands
is easy to bound: as we are in the success event, we have |b̂(i)m − b(i)m | ≤ 2ε̃ for every 0 ≤ m ≤ L − 1
and for every 1 ≤ i ≤ M . Therefore,

|ĉ(i)1 − c(i)1 | ≤ 2

T

L−1∑
m=0

|b̂m − bm |m2 ≤ 4ε̃

T

L−1∑
m=0

m2 =
2ε̃(L − 1)L(2L − 1)

3T
=

ε

2
, (D.139)

where the last inequality is by our choice of ε̃ . For the second summand, we know—from Lemma 6.1

and from the definition of c(i)1 —that α(A(i)) and c(i)1 are exactly the first-order Taylor coefficients of

the smooth R-valued function t 
→ 1
2 tr[σB(i )Ut (ρ(i))] ≡ f (i)(t) and of the corresponding degree-

(L − 1) Chebyshev interpolation, respectively. We can therefore use the work of Howell [48, The-
orem 3], which tells us

|c(i)1 − α(A(i))| ≤
���ω(1)

���
∞
·

��� dL

dt L f
(i)
���
∞

1! · (L − 1)! , (D.140)

where ω(t) � (t − t0) · (t − t1) · . . . · (t − tN ). To bound the right-hand side, we combine Lemma 6.2
with the observation that���ω(1)

���
∞
= max

τ ∈[0,T ]

d

dt
((t − t1) · (t − t2) · . . . · (t − tL))

����
t=τ

(D.141)

= max
τ ∈[0,T ]

L∑
i=1

∏
k�i

(t − tk )

�����
t=τ

(D.142)

≤ max
ζ ∈[−1,1]

L∑
i=1

∏
k�i

T

2
(z − zk )

�����
z=ζ

(D.143)

≤
L∑

i=1

T L−1 (D.144)

≤ LT L−1 . (D.145)

Combining these bounds, we obtain

|c(i)1 − α(A(i))| ≤ LT L−1

(L − 1)! · (2‖H ‖)L = 2L · ‖H ‖ · (2T ‖H ‖)L−1
(L − 1)! . (D.146)

We can further upper bound this using the Stirling approximation bounds√
2π (L − 1)( L−1

e
)L−1e

1
12(L−1)+1 ≤ (L − 1)! ≤

√
2π (L − 1)( L−1

e
)L−1e

1
12(L−1) from the work of

Robbins [73], which give us

2L · ‖H ‖ · (2T ‖H ‖)L−1
(L − 1)! ≤ 2L · ‖H ‖ · (2eT ‖H ‖)L−1√

2π (L − 1)(L − 1)L−1
e
− 1
12(L−1)+1 (D.147)

≤ 2L√
2π (L − 1)

· ‖H ‖ ·
(
1

2

)L−1
(D.148)

≤ 4‖H ‖
√
2π ln(2)

· ln(2)Le− ln(2)L (D.149)
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≤ 4‖H ‖
√
2π ln(2)

·
(
1

2

) L
2

(D.150)

≤ ε

2
, (D.151)

where the last inequality is by our choice of L. In that computation, we also used the fact that

xe−x ≤ e−
x
2 holds for any x ≥ 0. Altogether, we have shown that, conditioned on our success

event, |ĉ(i)1 − α(A(i))| ≤ ε holds for all 1 ≤ i ≤ M .
To finish the proof, let us summarize the different complexity bounds. To build the classical

representations in the first phase, we use O(n+log(1/δ )
ε̃4

) queries toUt� for each 1 ≤ � ≤ L. Overall,

the first phase thus uses O(L · n+log(1/δ )
ε̃4

) = Õ(n+log(1/δ )
ε4

· ‖H ‖4) parallel queries to time evolutions
along H , each with a time of order O(T ) = O(1/‖H ‖), leading to a total evolution time for the first
phase of

T1, total = O
(
n + log(1/δ )

ε̃4

)
·

L∑
�=1

t� (D.152)

= Õ
(
n + log(1/δ )

ε4
· ‖H ‖4

)
·

L∑
�=1

T

2
(1 + z�) (D.153)

= Õ
(
n + log(1/δ )

ε4
· ‖H ‖4

)
· 1

2‖H ‖

L∑
�=1

(
1 − cos

(
2� − 1

L
π

))
(D.154)

≤ Õ
(
n + log(1/δ )

ε4
· ‖H ‖4

)
· L

‖H ‖ (D.155)

≤ Õ
(
n + log(1/δ )

ε4
· ‖H ‖3

)
. (D.156)

The second phase produces the ε̃-accurate estimates α̂ (i)
t�
, for 1 ≤ � ≤ L, 1 ≤ i ≤ M . This

uses O( log(M/δ )
ε̃2

) additional parallel queries to Ut� for each 1 ≤ � ≤ L. Accordingly, this uses

O( L ·log(M/δ )
ε̃2

) = Õ( log(M )+log(1/δ )
ε2

· ‖H ‖2) additional parallel queries to O(1/‖H ‖)-time evolutions
alongH , and the total evolution time for the second phase isT2, total ≤ Õ(n+log(1/δ )

ε2
·‖H ‖). Producing

the estimates α̂ (i)
t�

uses classical computation time O(LM · n2+n log(1/δ )
ε̃4

) = Õ(n2+n log(1/δ )
ε4

· ‖H ‖4M).
This dominates the classical computation time since the Chebyshev interpolation and consequent
derivative estimation takes time O(L).
Finally, the classical representation Ĥ of H consists of the classical representations Ût� of Ut�

for 1 ≤ � ≤ L. As each Ût� consists of O(n2+n log(1/δ )
ε̃4

) real numbers, we see that Ĥ consists of

O(L · n2+n log(1/δ )
ε̃4

) = Õ(n2+n log(1/δ )
ε4

· ‖H ‖4) real numbers stored in classical memory. �

E Query Complexity Lower Bound for PTM Learning With Quantum Memory from

Choi Access

Complementing the discussion of learning (Pauli) transfer matrices and predicting sparse expecta-
tion values from copies of the Choi state from Section 4 and Appendix B, we give an information-
theoretic argument to show that the linear-in-n sample complexity scaling of Theorem 4.1 and
Corollary 4.2 is optimal for learning with quantum memory from Choi access.
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Lemma E.1. Any algorithm for learning with quantum memory from Choi access requires Ω( n
ε2
)

copies of the Choi state of an unknown n-qubit channel N to estimate all entries of RP
N up to accuracy

ε with success probability ≥ 2
3 .

Proof. Consider the set of observables {Pi }2·4
n (4n−1)

i=1 defined in Lemma D.3 and the correspond-

ing Choi states 1
2n Γi =

1⊗2n
2 +3εPi

22n . By construction, we have

tr

[
Pi

1

2n
Γj

]
= 3ε(δi, j − δi+4n (4n−1), j ) ∀1 ≤ i, j ≤ 2 · 4n(4n − 1), (E.1)

where the addition in the index is to be understood modulo 2 · 4n(4n − 1). Therefore, the ability
to predict tr

[
Pi

1
2n Γj

]
up to accuracy ε for every j—which is no harder than estimating all PTM

entries up to accuracy ε by Equation (4.1)—from T copies of the Choi state implies the ability to
identify i fromT copies of the Choi state. If we consider i to be chosen uniformly at random, then
this implies that the mutual information between the classical and the quantum subsystem in the
classical-quantum state

ρcq = EI∼U({1, ...,2·4n (4n−1))}

[
|I 〉〈I | ⊗

(
1

2n
ΓI

) ⊗T
]

(E.2)

is at least log2 (2 · 4n(4n − 1)) = Ω(n). In other words, we have
Ω(n) ≤ I (c; q)ρ (E.3)

= S

(
EI∼U({1, ...,2·4n (4n−1))}

[(
1

2n
ΓI

) ⊗T
])

− EI∼U({1, ...,2·4n (4n−1))}

[
S

((
1

2n
ΓI

) ⊗T
)]

(E.4)

≤ T

(
2n − EI∼U({1, ...,2·4n (4n−1))}

[
S

(
1

2n
ΓI

)])
. (E.5)

Here, the second step used that the quantum mutual information of a classical-quantum state
equals its Holevo information (compare the work of Wilde [80, Exercise 11.6.9]) and the third step
uses that any (2nT )-qubit state has a von Neumann entropy of at most 2nT , and that the von
Neumann entropy of a T -fold tensor power equals T times the von Neumann entropy of a single
tensor factor.
Next, we compute S

(
1
2n Γi

)
for arbitrary i . To this end, simply observe that half of the eigenvalues

of Pi are ±1, so half of the eigenvalues of 1
2n Γi are

1±3ε
22n . Therefore, we get

S

(
1

2n
Γi

)
=
22n

2
· 1 + 3ε

22n
log

(
22n

1 + 3ε

)
+
22n

2
· 1 − 3ε

22n
log

(
22n

1 − 3ε

)
(E.6)

= 2n −
(
1 − 1 + 3ε

2
log

(
2

1 + 3ε

)
− 1 − 3ε

2
log

(
2

1 − 3ε

))
(E.7)

= 2n − O(ε2), (E.8)

where the last step is via Taylor expansion. Therefore, we have shown

Ω(n) ≤ I (c; q)ρ ≤ O(Tε2), (E.9)

which we can rearrange to the claimed T = Ω( n
ε2
). �

The proof strategy used here is not new (see, e.g., the work of Aaronson [2, Section 6] for a
similar reasoning). In fact, we can easily apply the same reasoning with the set of observables

{Pi }2·4
n (4n−1)

i=1 from Lemma D.4 to show that the Ω( n
ε2
) lower bound of Lemma E.1 even holds if the
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unknown channel is promised to be doubly-stochastic and to have a O(1)-sparse PTM. Following
the same reasoning that we have already used to go from Theorem B.1 to Corollary B.4, this lower
bound immediately carries over to the task of predicting expectation values for states and observ-
ables with O(1)-sparse Pauli ONB expansion for an unknown doubly-stochastic quantum channel
with O(1)-sparse PTM.
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