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Abstract
The transport of individual particles in inhomogeneous environments is com-
plex and exhibits non-Markovian responses. The latter may be quantified by
a memory function within the framework of the linear generalised Langevin
equation (GLE). Here, we exemplify the implications of steady driving on
the memory function of a colloidal model system for Brownian motion in a
corrugated potential landscape, specifically, for one-dimensional motion in
a sinusoidal potential. To this end, we consider the overdamped limit of the
GLE, which is facilitated by separating the memory function into a singular
(Markovian) and a regular (non-Markovian) part. Relying on exact solutions
for the investigated model, we show that the random force entering the GLE
must display a bias far from equilibrium, which corroborates a recent general
prediction. Based on data for the mean-square displacement (MSD) obtained
from Brownian dynamics simulations, we estimate the memory function for
different driving strengths and show that already moderate driving accelerates
the decay of the memory function by several orders of magnitude in time. We
find that the memory may persist on much longer timescales than expected
from the convergence of the MSD to its long-time asymptote. Furthermore,
the functional form of the memory function changes from a monotonic decay
to a non-monotonic, damped oscillatory behaviour, which can be understood
from a competition of confined motion and depinning. Our analysis of the
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simulation data further reveals a pronounced non-Gaussianity, which questions
the Gaussian approximation of the random force entering the GLE.

Supplementary material for this article is available online

Keywords: generalised Langevin equation, Brownian motion,
non-equilibrium dynamics

1. Introduction

The transport of individual particles in inhomogeneous environments is complex and exhibits
non-Markovian responses, i.e. memory effects, which reflect the influence of the past trajectory
on the future motion of the particle. Typically, these memory effects depend on the timescales
that are resolved in an experiment and they disappear at timescales longer than the slowest
relaxation of the system. One goal of data-driven modelling is to develop effective stochastic
models for the particle motion which encapsulate the interaction with the environment in gen-
eralised transport coefficients rather than explicitly including the details of the environment.

Mathematically, the non-Markovianity manifests itself in a non-trivial functional form of
the corresponding transport propagator, where the deviations from the standard (Markovian)
form appear as a generalisation of the diffusion coefficientD(k,ω) that depends on awavenum-
ber k and a frequency ω [1–3]. Here, we consider the long-range transport of a single particle,
which is described by the small-wavenumber regime (k→ 0) and which is encoded in the
velocity autocorrelation function (VACF) Z(t) or, equivalently, the mean-square displacement
(MSD); in particular, Z(t) and D(k→ 0,ω) are related to each other via a one-sided Fourier
transform. Deviations from a linear increase of the MSD (as function of the lag time t) indic-
ate non-Markovian behaviour, which typically approaches diffusive behaviour, i.e. a linear
increase, at long times.

A widely employed framework for such non-Markovian behaviour of the MSD is the gen-
eralised Langevin equation (GLE, cf equation (3)), at the heart of which is a generalised fric-
tion ζ(t), termed memory function or memory kernel. Given ζ(t), the GLE generates particle
trajectories with certain statistics and links, inter alia, ζ(t) and the MSD. The GLE has far-
reaching applications, for example, in microrheology experiments, where one follows the
motion of a probe particle in a complex medium to determine the MSD and to conclude, via
the corresponding frequency-dependent friction, on the visco-elastic, mechanical responses of
the medium [4–6].

This phenomenological, top-down view is based on the observation of correlation func-
tions or related quantities (e.g. the VACF or the MSD), whereas a complementary, bottom-up
approach to the GLE is rooted in statistical mechanics and employs the projection operator
techniques due to Zwanzig, Mori and others [7–9], see [10] for a review. A typical applica-
tion is the projection on a suspended particle and thereby coarse-graining its interactions with
a complex solvent [11, 12]; recent progress was made on the non-linear GLE [13–16] and
on GLEs under non-equilibrium conditions [17–22]. In essence, the GLE may be seen as a
means to encapsulate a large number of unresolved degrees of freedom in the memory func-
tion. This apparent reduction of the complexity comes in general at the price of introducing
non-Markovian dynamics, which, however, may be amenable to approximations depending on
the specific physical system at hand. If memory effects are entirely negligible, the Markovian
approximation of the GLE reduces to the well-known Langevin equation, e.g. for the free
diffusion of a Brownian particle on sufficiently long timescales.
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It is a formidable challenge to parameterise the GLE from observations of a given complex
system, that is, estimating ζ(t) from data for the MSD or related correlation functions. Today,
several techniques are available for this task, which may roughly be divided into methods
based on few-parameter families of ansatz functions to represent the memory function [23–
25], and into ansatz-free methods in the time domain [26–29] or, via Fourier transforms, in
the frequency domain [29–32]. Notable recent advances follow a different route and rely on
memory estimation using bare trajectory data as input instead of correlation functions [33, 34].

Here, we consider the non-equilibrium dynamics of a Brownian particle in a corrugated
potential landscape under external driving. Experimentally, colloidal model systems provide
a unique control over both the driving force and the environment, where the latter may be
realised as a potential landscape [35–41], as a structured substrate [42–44] or a complex liquid
[45]. Furthermore, a considerable body of theoretical work is available for such systems (e.g.
[35, 46, 47]), including also driven transport in random environments [48–50].

Specifically, we study the overdamped motion of a Brownian particle driven by a constant
external force f across a corrugated potential landscape, which is of sinusoidal form with bar-
rier height 2U0, wavelength λ and wavenumber k= 2π/λ. The corresponding overdamped
Langevin equation for the particle’s position x(t) reads

ζ0ẋ(t) = f −U ′ (x)+ η (t) , U(x) = U0 (1− coskx) , (1)

where ζ0 denotes the particle’s friction constant in the absence of the potential and we have
assumed that the force points perpendicular to the grooves of the landscape and the x-axis is
aligned with the force, rendering the problem essentially one-dimensional. The random force
η(t) is a Gaussian white noise with mean ⟨η(t)⟩= 0 and covariance ⟨η(t)η(t ′)⟩= 2kBTζ0δ(t−
t ′) in agreement with the fluctuation–dissipation relation, where T is the temperature of the
solvent.

In equilibrium (f = 0), the confining potential slows down Brownian motion at long times
compared to free diffusion [51, 52]. In terms of the MSD, there is a crossover between dif-
fusive regimes at short and long times with diffusion constants D0 = kBT/ζ0 and D∞ < D0,
respectively. Out of equilibrium, f > 0, the presence of the driving force breaks the spa-
tial inflection symmetry at x= 0 and the system exhibits a non-vanishing drift velocity
vD = limt→∞⟨∆x(t)⟩/t in terms of the displacement ∆x(t) := x(t)− x(0). Fluctuations of
the position around this mean drift give rise to dispersion and one defines the MSD as
the variance δx2(t) := ⟨∆x(t)2⟩− ⟨∆x(t)⟩2 with a corresponding long-time diffusivity D∞ =
limt→∞ δx2(t)/(2t). Exact expressions for vD( f) and D∞( f) are available in the literature [46,
53, 54] and are quoted below (cf equations (29) and (30)).

Here, we will show that the dynamics due to equation (1) can be reproduced by means of
an overdamped version of the GLE equation, which reads (cf equation (16)):

ζ0ẋ(t) = f −
ˆ t

0
ζreg (t− s) ẋ(s) ds+ ξ (t) ; (2)

such that the confinement due to the potential U(x) is encapsulated in the regular, continuous
part ζreg(t) of the memory function. The latter depends on the potential, but also on the driving
force f, which is a well-known fact [24, 55]. There are recent avenues [13–15] to develop non-
equilibrium GLEs which employ the equilibrium memory function (as given for f = 0), which
comes at the price that the velocity enters the convolution integral non-linearly and the particle
is subject to an effective systematic force, given by the potential of mean force and depending
on the both U(x) and f. Here, we will stick to the linear GLE.
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2. Non-equilibrium GLE and its memory function

For a colloidal bead of mass m at position r(t) moving in d-dimensional space with velocity
v(t) = ṙ(t) and experiencing an external, constant force f, the linear (in v) GLE may be written
as [9, 10, 56]

mv̇(t) = f−
ˆ t

0
ζ (t− s; f) v(s) ds+ ξf (t) . (3)

Due to the force f, the isotropic symmetry is broken and non-vanishingmean values of vectorial
observables are possible. In addition, the system is driven out of equilibrium in such a way that
we can still expect the existence of a stationary statistical ensemble. In particular, the latter
permits a non-zero drift velocity vD = ⟨v(t)⟩ and it defines the temperature T via the variance
Var(vi) = ⟨(δvi)2⟩= kBT/m for every Cartesian component δvi of δv(t) := v(t)− vD.

The key ingredients of equation (3) are the memory function ζ(t; f) and the random force
ξf(t), both of which depend on f. The random force may be biased for strong driving, i.e. in
the non-linear response regime, and one expects a non-vanishing mean [11, 21]. Therefore, we
define

ξf := ⟨ξf (t)⟩ . (4)

Furthermore, ξf(t) is approximated as a coloured Gaussian noise such that its covariance sat-
isfies the fluctuation–dissipation relation,

⟨δξf (t)⊗ δξf (t
′)⟩= kBTζ (|t− t ′|; f) (5)

with δξf(t) = ξf(t)− ξf; in the absence of isotropy, ζ(t; f) is d× d matrix-valued.
The stationary drift velocity may be obtained from the GLE as the mean response of the

bead to the driving force. Taking the ensemble average of equation (3) in the long-time limit
yields

0= f− lim
t→∞

ˆ t

0
ζ (t− s; f) vD ( f) ds+ ξf (6)

and thus

vD ( f) = ζ∞ ( f)−1 ( f + ξf
)
, (7)

in terms of the macroscopic, static friction coefficient ζ∞( f) :=
´∞
0 ζ(s; f)ds. In the linear

response regime, for small driving force, it holds vD( f)∝ f, which implies that ζ(t) becomes
independent of f in this regime and that the noise is unbiased, ξf→0 = 0.

The long-range transport properties beyond vD are encoded in the (matrix-valued) VACF,
Z(t; f) = ⟨δv(t)⊗ δv(0)⟩, which is naturally expected to depend on the driving force. Defining
Z(t; f) in terms of the velocity fluctuation δv(t) instead of the velocity v(t) itself is the suitable
generalisation to the non-equilibrium situation. Building the corresponding scalar product for
equation (3) and averaging yields the evolution equation of the VACF:

mŻ(t; f) = f · ⟨δv(0)⟩−
ˆ t

0
ζ (t− s; f) ⟨[δv(s)+ vD ( f)] · δv(0)⟩ds+ ⟨ξf (t) · δv(0)⟩

=−
ˆ t

0
ζ (t− s; f) Z(s; f) ds , (8)

where we have exploited stationarity, ⟨δv(t)⟩= 0 for any t⩾ 0, and the independence of ξf(t)
and δv(0). We emphasise that equation (8) has the same form as in equilibrium, which is due
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to the use of δv for the definition of Z(t; f). In the following, we will often not indicate the
explicit force dependence of the occurring quantities to avoid a cluttering of the notation.

Equation (8) is a linear integro-differential equation with the initial value Z(0) = kBT/m.
It reduces to an algebraic equation for the one-sided Fourier (or: Fourier–Laplace) transform
Ẑ(ω) :=

´∞
0 eiωtZ(t)dtwith complex frequencyω such that Imω > 0. This equation is straight-

forward to solve for Ẑ(ω), yielding

Ẑ(ω) = kBT
[
−iωm+ ζ̂ (ω)

]−1
. (9)

Relation (9) provides a one-to-one link between the (complex matrix-valued) memory ker-
nel ζ̂(ω) and the VACF. Given Z(t) and thus Ẑ(ω), equation (9) may also be considered as
the defining relation for ζ̂(ω), which uniquely implies the memory function ζ(t) as its (real
matrix-valued) Fourier backtransform,

ζ (t) =
2
π

ˆ ∞

0
cos(ωt) Re ζ̂ (ω) dω . (10)

In particular, ζ̂(ω)may be used to postulate equation (3) as a stochastic process that generates
the prescribed Z(t). The fact that Z(t) is a correlation function also guarantees the existence of
a coloured noise ξ(t) with correlator kBTζ(t), so that the fluctuation–dissipation relation (5)
is satisfied [57, 58]. This noise can be shifted suitably to satisfy equation (4), which does not
change the covariance in equation (5).

The standard Langevin equation,

mv̇(t)+ ζ0v(t) = f+ ξ (t) , (11)

is contained in equation (3) as the special case where ζ(t) = ζ01δ+(t) is given by the iden-
tity matrix 1 and a half-sided Dirac δ-function δ+(t) on t⩾ 0; the latter is understood in
the sense that

´∞
0 g(t)δ+(t)dt= g(0) for continuous test functions g(t). Correspondingly,

the noise ξ(t) is Gaussian white noise, independent of f, such that ⟨ξ(t)⟩= 0 and ⟨ξ(t)⊗
ξ(t ′)⟩= 2kBTζ01δ(t− t ′) with δ(t) = δ+(|t|)/2. Solving equation (8) for this case yields
Z(t) = Z(0)exp(−γ0|t|)with the relaxation rate γ0 = ζ0/m. In the frequency domain, this cor-
responds to

Ẑ(ω) =
kBT

−iωm+ ζ0
1 , (12)

and, by comparison to equation (9), ζ̂(ω) = ζ01 reduces to a constant, Markovian friction.
One concludes that any contribution to ζ(t) beyond this singular part (equivalently, any non-
exponential decay of the VACF, Z(t)) indicates the presence of memory effects.

3. Overdamped limit of the GLE

3.1. Derivation

For application to overdamped dynamics, some modifications of the GLE and the definition
of the memory function are needed. We proceed in two steps: First, we explicitly split off the
singular, Markovian part of the memory kernel, which we assume to be also isotropic:

ζ (t) = ζ01δ+ (t)+ ζreg (t) , (13)
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such that ζreg(t) is continuous as t→ 0 (see [59] for a similar splitting of the VACF). This turns
equation (3) into

mv̇(t)+ ζ0v(t) = f−
ˆ t

0
ζreg (t− s) v(s)ds+ ξf (t) . (14)

In particular, one explicitly sees that the standard Langevin equation, equation (11) is memory-
less, ζreg(t) = 0, or Markovian. Second, we move to the overdamped regime by the usual
assumption that the inertial force is negligible compared with the friction force, mv̇(t)≪
ζ0v(t). This implies that the inertial relaxation time γ−1

0 is small compared to the timescales
of interest, t≫ γ−1

0 . Equivalently, in the frequency domain, we require that

|ω| ≪ γ0 =
ζ0
m

. (15)

The notion of the overdamped limit is such that the condition t≫ γ−1
0 is fulfilled for all t> 0,

which is realised by taking the limit γ0 →∞, or, equivalently, by letting m→ 0 at constant ζ0.
The overdamped limit of equation (3) follows to be

ζ0v(t) = f−
ˆ t

0
ζreg (t− s) v(s) ds+ ξf (t) ; (16)

the equilibrium form ( f= 0) of this overdampedGLEwas derived previously for the monomer
dynamics in a Rouse chain [60, 61] and was employed in the context of anomalous diffusion
[62]. Time integration yields a closed stochastic integral equation for the displacement∆r(t) =´ t
0 v(s)ds:

∆r(t) = ζ−1
0

(
f + ξf

)
t− ζ−1

0

ˆ t

0
ζreg (t− s) ∆r(s) ds+R(t) , (17)

which is driven by the centred Gaussian process R(t) := ζ−1
0

´ t
0 [ξ(s)− ξf]ds. This process

has vanishing mean, ⟨R(t)⟩= R(0) = 0, and, recalling equation (5), is characterised by the
covariance

⟨R(t)⊗R(t ′)⟩= ζ−2
0

ˆ t

0

ˆ t′

0
kBT [2ζ01δ (s− s ′)+ ζreg (|s− s ′|)]dsds ′

= 2D01min(t, t ′)+D0Creg (t)+D0Creg (t
′)−D0Creg (|t− t ′|) , (18)

given in terms of D0 = kBT/ζ0 and the f-dependent correlation function

Creg (t) := ζ−1
0

ˆ t

0
(t− s) ζreg (s) ds , (19)

which is analogous to a familiar relation for the VACF (see below, equation (22)). The contri-
bution 2D01min(t, t ′) refers to free Brownian motion, i.e. a scaled Wiener process. (For the
derivation of equation (18), it is helpful to perform the integrals over s and s′ first for t ′ ⩾ t;
then, the term D0Creg(t) corresponds to the case s> s ′ and the last two terms result from
s< s ′.)
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3.2. VACF

The relation between the memory function and the VACF is given by the overdamped limit of
equation (8), but may also be obtained from equation (16) directly:

ζ0Z(t) =−
ˆ t

0
ζreg (t− s) Z(s) ds . (20)

This is a linear Volterra equation of the second kind in the function Z(t); in particular,
equation (20) does not contain the time derivative Ż(t), which is present in equation (8).
Performing the Fourier-Laplace transform of equation (20) or, alternatively putting ζ̂(ω) =

ζ01+ ζ̂reg(ω) in equation (9) and letting m→ 0, one obtains:

Ẑ(ω) = D0

[
1+ ζ̂reg (ω)/ζ0

]−1
. (21)

which may serve as the overdamped version of the definition of the memory kernel, analog-
ously to equation (9).

The reference case of unconfined Brownian motion of an overdamped particle, ζ0ṙ(t) =
f+ ξ(t), corresponds to the memoryless situation, ζreg(t) = 0 (equation (16)). Then, the
noise R(t) in equation (17) simplifies to a Wiener process. For the VACF, it follows from
equation (21) that Ẑ(ω) = D01 and, in the time domain, we have Z(t) = D01δ+(|t|). This
result coincides with the overdamped limit for the underdamped particle considered above,
Z(t) = limγ0→∞D0γ01exp(−γ0|t|).

3.3. MSD

Given data for Z(t), equation (20) may be used to estimate the regular part of the memory func-
tion, ζreg(t). For overdamped dynamics, however, the displacement∆r(t) is naturally observed
in both experiments and simulations. Thus, we wish to connect the memory function ζreg(t) of
the overdamped GLE and theMSD, the latter being defined as δr2(t) = ⟨|∆r(t)|2⟩. Here and in
the following, we will either consider isotropic motion in d-dimensional space or the motion
along a fixed Cartesian axis (d= 1); in particular, the matrix-valued VACF Z(t) is replaced by
the average of its diagonal entries, trZ(t)/d, which is a scalar3.

Combining equation (20) with the Green–Kubo type relation for the MSD,

δr2 (t) = 2d
ˆ t

0
(t− s)Z(s) ds , (22)

we arrive at the integral equation

δr2 (t) = 2dD0t−
1
ζ0

ˆ t

0
ζreg (t− s) δr2 (s) ds . (23)

The equation follows either from the associativity of the convolution operation or, more ele-
mentarily, by multiplication of equation (20) with 2d(t− s) and integration over s from 0
to t. At short times, where the integral term is negligible since δr2(0) = 0, the asymptote
reproduces free Brownian motion, δr2(t→ 0)≃ 2dD0t. As mentioned above, this contribu-
tion corresponds to the singular term in the decomposition (13). Thus, any deviation of the

3 For anisotropic transport, one should work with the covariance tensor ⟨∆r(t)⊗∆r(t)⟩ instead of the MSD.
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MSD from a linear increase contributes to the memory encapsulated in ζreg(t). At long times,
one anticipates another diffusive regime on physical grounds (except for non-ergodic dynam-
ics), δr2(t→∞)≃ 2dD∞t, which defines the effective diffusivityD∞. The regular part of the
memory function completely encodes a possible enhancement or suppression of D∞ relative
to D0 (see below).

Equation (23) is a linear Volterra convolution equation of the second kind with respect
to δr2(t) for given ζreg(t), which may be solved by discretising the integral with, e.g. the
trapezoidal rule [63]. We aim, however, at extracting the memory function ζreg(t) for a given
MSD, δr2(t). For reasons of numerical stability [28, 29], we choose to work with the integ-
ral of equation (23) to solve for the dimensionless memory integral, G(t) := ζ−1

0

´ t
0 ζreg(s)ds,

which obeys
ˆ t

0
δr2 (s) ds= dD0t

2 −
ˆ t

0
G(t− s) δr2 (s) ds (24)

with the initial condition G(0) = 0. Afterwards, the regular part of the memory function fol-
lows from differentiation, ζreg(t) = ζ0G ′(t).

As a general consequence of the splitting of the friction in equation (13), the long-time limit
of the memory integral, G∞ := G(t→∞), is related to the effective, macroscopic friction via

ζ∞ =

ˆ ∞

0
ζ (s) ds= ζ0 (1+G∞) . (25)

Together with the Green–Kubo and Einstein relations, Ẑ(ω → 0) = D∞ = kBT/ζ∞ (see
equation (9)), it follows that G∞ quantifies the reduction of the diffusivity,

G∞ =
∆D
D∞

:=
D0 −D∞

D∞
. (26)

We emphasise that the relations between δr2(t), Z(t), ζ(t), and G(t) given in sections 2 and 3
are valid in any stationary ensemble and do not hinge on the notion of equilibrium.

3.4. Numerical estimation of the memory function

In order to estimate the memory function from MSD data, we proceed as follows. First, we
assume that δr2(t) is given on a semi-geometrically spaced time grid (see, e.g. [29, 64–66]).
Such a grid is a suitable choice to represent the characteristic behaviour of the MSD on log-
arithmic scales; moreover, it allows for the efficient sampling of the MSD with a multiple-τ
correlation technique [64, 67]. A uniform linear grid would become increasingly redundant
with increasing lag time t and the use of such a dense grid would unnecessarily introduce a
statistical ‘high-frequency’ noise in the data at long times, which is detrimental to the numer-
ical stability. On the other hand, data on a uniform time grid are required for the standard
deconvolution algorithm to invert equation (24). For these reasons, we take the data for δr2(t)
given on a semi-geometrically spaced grid and interpolate them on a uniform, equidistantly
spaced grid, δr2i = δr2(ti) with ti = i∆t (i = 0,1, . . . ).

Second, given the data points δr2i , we employ the trapezoidal rule to discretise the integrals
in equation (24) and solve for Gi = G(ti) with the initial values δr20 = 0 and G0 = 0. We arrive
at a recurrence relation for Gi (i> 0):

Gi =
1
δr21

dD0∆t(i+ 1)2 −
i∑

j=1

δr2j −
1
2
δr2i+1 −

i∑
j=2

Gi+1−j δr
2
j

 . (27)
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Third, having obtained the valuesGi on the uniform grid, it remains to compute the memory
function, ζreg(t) = ζ0G ′(t) using finite differences:

G ′
0 = (G1 −G0)/∆t and G ′

i = (Gi+1 −Gi−1)/(2∆t) for i > 0. (28)

Note the data for Gi may suffer from statistical noise, which results in unphysical oscillations
of the derivative, especially at short times, and hence in the estimate of ζreg(t). To improve the
quality of the results, we did the following. At the interpolation step, we combined a smaller
(∆t1) and larger (∆t2) time resolution, such that∆t1 <∆t<∆t2. The interpolated data sets for
theMSDs yield results for ζreg(t)which better reproduce shorter and longer times, respectively,
and which match on intermediate lag times.

4. Overdamped Brownian motion under confinement

In this section, the framework developed in sections 2 and 3 is applied to and tested on colloidal
diffusion in a sinusoidal potential landscape (equation (1)). For this basic problem, a number
of analytic results have been worked out in the past [46, 51–54, 68]. Due to the symmetry of
the potential, it is sufficient to consider only the one-dimensional transport along the x-axis,
which is normal to the ripples of the potential.

4.1. Analytic solution for the long-time transport

In equilibrium (f = 0), the effective long-time diffusion constant was calculated as [51, 52]

D∞ =
D0

|I0 (υ) |2
, (29)

where υ = U0/kBT is the strength of the confinement relative to the thermal energy and Iν(x)
denotes the modified Bessel function of the first kind of order ν. Because of I0(0) = 1 and
I0(x)⩾ I0(0), we see that the effective diffusivity is maximum in the absence of the confine-
ment,D∞ = D0 forU0 = 0, and it is suppressed due to the corrugation of the potential, leading
to D∞ < D0 for U0 > 0.

Out of equilibrium (f > 0) the drift velocity was obtained by Stratonovich [53] and reads

vD ( f) =
kD0

π

sinh(πκ)
|Iiκ (υ) |2

, (30)

where κ= f/(kkBT) specifies the relative driving strength; the order of the Bessel function
becomes purely imaginary and is non-integer valued. For weak driving, f ≪ kU0, the drift
vD( f) is strongly suppressed and varies exponentially, whereas for strong driving, f ≫ kU0,
it approaches from below the linear increase, vD( f)≃ ζ−1

0 f, indicating effectively unconfined
transport (figure 1(a)). The corresponding long-time diffusivity was calculated only recently
by Reimann et al [46, 54]:

D∞ ( f) = D0
⟨I± (x, f)2 I∓ (x, f)⟩x

⟨I± (x, f)⟩3x
, (31)

in terms of

I± (x, f) = ⟨exp [±(Ueff (x, f)−Ueff (x∓ y, f))/kBT]⟩y ; (32)
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Figure 1. (a) Analytic predictions for the dependence of the long-time transport on the
driving force f : mean drift velocity vD( f) (black solid line, equation (30)) and diffusion
constant D∞( f) (dashed blue line, equation (31)). Symbols indicate simulation results
(section 4.3) for exemplary driving forces. (b) Non-equilibrium bias ξf < 0 of the ran-

dom force ξf(t) of the GLE (equations (3) and (16)); ξf is calculated from the predictions
for vD( f) and ζ∞( f) = kBT/D∞( f) using equation (7). Inset: double-logarithmic rep-
resentation of −ξf in comparison to a behaviour ∼f 3 (dashed blue line). In both panels,
the amplitude of the potential landscape is set to U0 = 5kBT.

⟨ · · · ⟩x = λ−1
´ x0+λ

x0
· · · dx denotes the spatial average over one wavelength λ of the landscape

and Ueff(x; f) =−f x+U(x) is a tilted potential that, in addition to the landscape, includes the
external force. The dependence of D∞( f) on the driving force exhibits a maximum near the
critical force fcr = kU0 of the athermal (D0 = 0) depinning transition; for small driving, the
diffusivity is strongly suppressed, D∞( f)≪ D0 (figure 1(a)). In the linear response regime,
the solutions in equations (30) and (31) satisfy an Einstein relation:

vD ( f)≃
f

kBT
D∞ ( f) , f → 0. (33)

In the context of the non-equilibrium GLE (equations (3) and (16)), the predictions for the
long-time transport coefficients allow us to infer the bias ξf of the random force ξf(t). From
inversion of equation (7), it holds

ξf = [kBT/D∞ ( f)] vD ( f)− f < 0 , (34)

which is negative due to vD( f)⩽ ζ−1
0 f for all f. Below the critical force fcr, the bias ξf increases

apparently linearly as f is increased (figure 1(b)). However, inspection of the numerical data
for weak driving suggests that ξf→0 ∼ f 3 (inset of figure 1(b)), which is in line with recent the-
oretical predictions for the coarse-grained dynamics of a Hamiltonian many-particle system,
obtained within the Mori projection formalism [21].

4.2. Analytic solution for the dynamics in equilibrium

In equilibrium (f = 0), the underdamped analogue of the dynamic problem in equation (1)
was studied by Fulde et al [68], who give an analytic solution in terms of continued fractions
for the frequency-dependent electron mobility, µ̂(ω) := (kBT)−1

´ t
0 e

iωtZ(t)dt. They showed
that truncating the continued fraction already at the second order provides a reasonably good
approximation:

µ̂(ω)≈
[
−imω+ ζ0 + ζ0αk

2D0/
(
−iω+ τ−1

m

)]−1
(35)

10



J. Phys. A: Math. Theor. 57 (2024) 295003 A V Straube and F Höfling

with constants τm > 0 and α= υI1(υ)/I0(υ). Performing the overdamped limit,m→ 0, in this
expression and proceeding to the VACF, Ẑ(ω) = kBT µ̂(ω), we arrive at

Ẑ(ω)≈ D0

1+
ατ−1

0

−iω+ τ−1
m

, τ0 :=
1

k2D0
. (36)

All occurring quantities are known except for the time τm, which is found from matching the
long-time diffusivity, Ẑ(ω → 0) = D∞, with its value given in equation (29), which yields

τm =
|I0 (υ) |2 − 1

ατ−1
0

=
1
α

(
1

k2D∞
− 1
k2D0

)
=

τ0
α

∆D
D∞

, (37)

where ∆D := D0 −D∞ ⩾ 0.
The frequency-dependent memory kernel ζ̂(ω) = ζ0 + ζ̂reg(ω) follows from the comparison

of equation (36) with equation (21), which yields for the regular part:

ζ̂reg (ω)≈
ατ−1

0 ζ0

−iω+ τ−1
m

. (38)

Transforming this result to the time domain, we obtain the total memory function
(equation (13)) with the regular part

ζreg (t) = ζ0ατ
−1
0 e−t/τm = ζ0

∆D
D∞τm

e−t/τm , (39)

and the memory integral G(t) = ζ−1
0

´ t
0 ζreg(s)ds:

G(t) =
∆D
D∞

(
1− e−t/τm

)
. (40)

Hence, the long-time limit, G∞ =∆D/D∞, quantifies the reduction of the diffusivity
(equation (26)) and τm is the characteristic timescale of the memory effects in G(t) and thus
in ζreg(t).

For the VACF in the time domain, we need to backtransform Ẑ(ω) given in equation (36).
To this end, we single out the Markovian short-time diffusion first:

Ẑ(ω)−D0 =−D0
ατ−1

0

−iω+ τ−1
m +ατ−1

0

. (41)

This suggests to define the rate

τ−1
c = τ−1

m +ατ−1
0 (42)

and, thus, we have

Z(t) = D0δ+ (t)− ∆D
τc

e−t/τc . (43)

Here, with account of equations (37) and (42) we made use of the relationD0ατ
−1
0 =∆Dτ−1

c .
After further integration, for the time-dependent diffusivity, D(t) =

´ t
0 Z(s)ds, and for the

MSD, δx2(t) = 2
´ t
0D(s)ds= 2

´ t
0(t− s)Z(s)ds, it follows:

D(t) = D∞ +∆De−t/τc , (44)

11
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δx2 (t) = 2D∞t+ 2∆Dτc

(
1− e−t/τc

)
. (45)

These results, relying on the approximation to Ẑ(ω) (equation (36)) are found to accurately
reproduce the true dynamics as obtained from Brownian dynamics simulations (figure 2).

We note that the quantities Z(t), D(t) and δx2(t) evolve at the timescale

τc =
D∞

D0
τm , (46)

which means that the memory function varies more slowly, at a stretched timescale, relative to
the position/velocity correlations of the particle. On the other hand, the particle position has
two relaxation channels (equation (42)): directly via Markovian diffusion, with rate ατ−1

0 , and
via barrier crossings with rate τ−1

m . The latter rate depends on how strongly free diffusion is
reduced due to the confinement, which is quantified by G∞ =∆D/D∞. In particular for high
barriers,U0 ≫ kBT, the mobility of the particle is strongly suppressed,D∞ ≪ D0, which leads
to a separation of the timescales at which Z(t), D(t) and δx2(t) at one hand and the memory
function ζreg(t) on the other hand relax: τc ≪ τm.

We note further that the functional forms of equations (43)–(45) have already been anticip-
ated in our earlier work [44]. The main difference is that, there, they were based on an ad hoc
assumption for the form of Z(t), whereas in this work, they are a consequence of the approx-
imation equation (36), which includes all parametric dependencies on the confining potential.

4.3. MSD data from Brownian dynamics simulations

Wehave run Brownian dynamics simulations for the dynamics in equation (1) to obtain data for
theMSD at different driving forces f. To this end, we have used k−1, kBT, and τ 0 (equation (36))
as the units of length, energy, and time, respectively. This choice of scales is equivalent to
setting k= 1, kBT= 1 and D0 = 1; in particular, it implies ζ0 = kBT/D0 = 1. The remaining
control parameters of the problem are the height of the potential barrier, 2U0, and the external
force, f. As we have shown in section 4.2 for the equilibrium case (f = 0), the timescales τ c,
characterising positional correlations (including the MSD, the VACF and the diffusivity) and
τm, characterising noise correlations and the memory function of the GLE, may differ strongly.
To ensure a visible separation of these timescales on one hand and still to be able to capture
both crossovers in the simulations, we set the amplitude of the landscape to U0 = 5kBT. This
yields τc ≈ 0.22τ0 and τm ≈ 166τ0. Going beyond the analytically tractable case f = 0, we
have also simulated non-equilibrium situations with driving forces f = 2kkBT and f = 3kkBT
to investigate the effect of driving on the dynamics.

More specifically, we integrated equation (1) numerically up to the time t= 5× 108τ0
using the Euler–Maruyama scheme with a timestep of δt= 0.0025τ0. The moments ⟨x(t)n⟩
for n= 1, . . . ,4 were calculated with a moving time average and, additionally, an ensemble
average over 30 independent realisations for each value of the force f. The MSD was obtained
as the variance δx2(t) := Var(x(t)) = ⟨x(t)2⟩− ⟨x(t)⟩2 on a semi-geometric time grid (see
section 3.4).

Our approach yields results for the drift velocity vD( f) and the effective long-time diffusiv-
ity D∞( f) that agree very well with the corresponding predictions (equations (30) and (31)),
see figure 1 and table 1. The comparably high potential barrier (U0 = 5kBT) considered here
leads to a strong suppression of the long-time diffusivity in equilibrium [D∞( f = 0)] by three
orders of magnitude relative to the free diffusivity D0. The MSD shows a crossover between
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Table 1. Theoretical predictions and simulation results for the long-time transport coef-
ficients in equilibrium (f = 0) and far from equilibrium. The columns show the driving
force f, the drift velocity vD( f), the effective long-time diffusivity D∞( f), and the long-
time limit G∞ = G(t→∞) of the dimensionless memory integral.

f/(kkBT)

vD( f)/(kD0) D∞( f)/D0 G∞

equation (30) sim. equation (31) sim. equation (26) sim.

0 0 <3× 10−7 0.001 348 0.001 382 740.8 740.3
2 0.044 957 0.044 959 0.138 44 0.138 39 6.223 6.230
3 0.295 84 0.295 77 0.816 23 0.817 59 0.2252 0.2221

Figure 2. Results for the MSD δx2(t), rescaled by 2D0t for free diffusion. The data
were obtained from Brownian dynamics simulations for U0 = 5kBT at three different
values of the driving force f. The long-time limits of the data correspond to the effective
diffusivity, D∞( f)/D0. The bold blue line shows the analytic prediction in equilibrium
(equation (45)), symbols mark actual simulation data, and thin lines are guides to the
eye.

the two values as a function in time (figure 2). To this end, plotting the ratio δx2(t)/(2D0t)
allows one to infer the diffusion coefficients at short and long times directly from the graph;
on double-logarithmic scales, such a graph may be interpreted as a simplistic approximation
to the timescale-dependent diffusivity, D(t) = ∂tδr2(t)/2, up to the factor D0. Moreover, the
MSD data for f = 0 follow closely the approximate analytic solution which is available in
equilibrium (equation (45)). The suppression of D∞( f)/D0 is weakened as the driving force
is increased from f = 0 to f = 3kkBT and the monotonic decay of δx2(t)/(2D0t) becomes non-
monotonic for large forces; for even stronger driving, one anticipates thatD∞( f)> D0, which
is accompanied by a pronounced increase of δx2(t)/(2D0t) for longer times, t≳ τ0 (figure 1).

4.4. Results for the memory function and its integral

Based on the MSD data presented in figure 2, we have calculated the memory integral G(t)
and the regular part of the memory function, ζreg(t) = ζ0G ′(t), as described in section 3.4. In
order to more clearly resolve the behaviour at short and long timescales, we have combined
results from data sets with sampling timesteps ∆t1 = 0.001τ0 and ∆t2 = 0.1τ0 for each force
value, which yields overlapping results for G(t) and ζreg(t) at intermediate timescales. As a
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Figure 3. (a) Memory integralsG(t) obtained numerically from the MSD data (figure 2)
forU0 = 5kBT and three different values of the driving force f. The bold blue line corres-
ponds to the analytic result in equilibrium (f = 0) (equation (40)). (b) Memory functions
ζreg(t) = ζ−1

0 G ′(t) obtained by numerical differentiation of the data shown in panel (a).
The bold blue line is the prediction in equilibrium (equation (39)).

consistency check, the equilibrium data obtained from this approach agree very well with the
approximate (yet accurate) analytic solutions, without any fit parameters (figure 3).

The memory integral G(t) exhibits a linear growth at short times, G(t→ 0)≃ ζ−1
0 ζreg(t→

0) t and saturates monotonically at long times, G(t→∞) = G∞ (figure 3(a)). The limiting
value satisfies the relation G∞ = (D0 −D∞)/D∞ (equation (26)), also far from equilibrium
(table 1). Due to the high potential barriers considered here (U0 = 5kBT), it holds D∞ ≪ D0

in equilibrium and thus G∞( f = 0)≫ 1. In equilibrium, the two regimes in G(t) are delimited
by the crossover timescale τm ≈ 166τ0 for the present model parameters, which is well cor-
roborated by the data in figure 3(a). For increasing driving force f, the decrease of D∞ goes
hand in hand with a decrease of G∞ and, concomitantly, of the crossover timescale,

τm ≈ ζ0G∞/ζreg (t→ 0) . (47)

This relation follows from matching the asymptotic regimes at short and long times; in equi-
librium, it is already implied by the analytic solution in equations (39) and (40). This estimate
of the crossover time appears still reasonable for f = 2kkBT, but breaks down for larger forces
(e.g. f = 3kkBT) due to a distinctly non-monotonic behaviour of G(t). In the latter case, G(t)
exhibits a maximum at intermediate times (here, at t≈ 0.5τ0), which hints at the competition of
two timescales governing the behaviour of G(t). We note that, qualitatively speaking, the non-
monotonicity of G(t) for f = 3kkBT mirrors the non-monotonic feature of the corresponding
rescaled MSD, δr2(t)/(2t) (figure 2). For stronger driving such that D∞ > D0, one anticipates
from equation (26) that G(t) becomes negative at long times; in particular, G∞ < 0.

Finally, we have obtained the memory functions ζreg(t) from numerical differentiation of
G(t) for the three investigated values of the driving force (figure 3(b)). All curves converge to
finite values ζreg(t→ 0) at short timescales and they decay to zero for long times. The equi-
librium data for ζreg(t) are in close agreement with the prediction in equation (39), which
exhibits a single-exponential decay to zero with rate τ−1

m . Driving the system moderately out
of equilibrium, the memory function retains the monotonic decay for f = 2kkBT, but it picks
up the non-monotonicity inG(t) for the largest force considered here; in this case, ζreg(t) shows
damped oscillation about zero. Such a non-monotonic decay of the memory function (and of
correlation functions in general) is a genuine non-equilibrium effect that has been observed
also in other colloidal systems [45, 69–71]; it is excluded for overdamped dynamics in equi-
librium, which requires that correlation functions are completely monotone functions [72–74];
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only in this case, they may be approximated by a superposition of decaying exponentials with
positive weights, which is also known as a Prony series [75].

The non-monotonicity of ζreg(t) for f = 3kkBT is inherited from the time-dependent diffus-
ivity D(t) (see data in figure 2 for a simplistic approximation). It results from different phys-
ical mechanisms at short and long timescales: With high probability, the particle starts near
a minimum of the potential landscape, which has a similar effect as a harmonic confinement.
Thus, the diffusivity at short times decreases from its microscopic value, D ′(t→ 0)< 0 with
D(0) = D0. At longer times, the finiteness of the effective barrier height becomes relevant,
which may speed up the dispersion, in particular, for driving forces near the threshold force
fcr of the depinning transition. For weak driving, D∞ ≪ D0 and D(t) decays monotonically
to its long-time limit, D∞ = D(t→∞). For stronger forces such that D∞( f)> D0, there is
a time window where the diffusivity increases, D ′(t)> 0, which suggests that the long-time
limit is approached from below. Hence, D(t) is non-monotonic and displays a minimum at
intermediate timescales; the investigated force f = 3kkBT= 0.6fcr is just at the onset of this
behaviour.

The short-time value ζreg(t→ 0) is a non-trivial quantity and is one of the factors determ-
ining the persistence time τm of the memory effects, which may be defined in general as (see
equation (47) for equilibrium and weak driving)

τm =
1

ζreg (t→ 0)

ˆ ∞

0
tζreg (t) dt . (48)

Overall, one infers from the data shown in figure 3(b) that the timescale τm is diminished by
three orders of magnitude if the driving is increased from f = 0 (equilibrium) to f = 3kkBT.
We note that ζreg(t), together with ζ0, determines the autocorrelation function of the random
force R(t), introduced after equation (17).

4.5. Non-Gaussian effects

The GLEs considered here are linear in their variable, either the velocity in the under-
damped description (equation (3)) or the displacement in the overdamped limit (equation (17)).
Combined with a Gaussian (coloured) noise, this implies that the generated solutions for v(t)
or ∆r(t) are Gaussian processes again, since the linear superposition of Gaussian variables
(with deterministic coefficients) is Gaussian again [76]. In complex transport, this is usually an
approximation, the quality of which may be quantified in terms of the so-called non-Gaussian
parameters, defined as the normalised cumulants of the displacement [2, 3]:

αn/2 (t) :=
κn (t)

cn/2κ2 (t)
n/2

, n= 3,4, . . . . (49)

with constants cm = (2m− 1)!! = 2mΓ(m+ 1/2)/Γ(1/2) for transport in d= 1 dimensions,
e.g. c3/2 =

√
8/π and c2 = 3. We note that the higher-order cumulants are normalised by

κ2(t) = δx2(t), which is the MSD, since the cumulants for odd n vanish for isotropic set-
ups without driving. The cumulants κn(t) are determined from the characteristic function
F(q, t) = ⟨exp(iq∆x(t))⟩ for ‘wavenumber’ q→ 0 via∑

n⩾1

(iq)n

n!
κn (t) = logF(q, t) = log

∑
n⩾0

(iq)n

n!
⟨∆x(t)n⟩ ; (50)

the second relation allows one to obtain κn(t) from the moments ⟨∆x(t)n′⟩ with n ′ ⩽ n upon
matching powers in q. For Gaussian transport, F(q, t) has a Gaussian shape in q and, thus, the
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Figure 4. Non-Gaussian parameters of the particle displacement ∆x(t) after time t.
The lines show simulation results for the (a) third and (b) fourth normalised cumulants
αn/2(t) := κn(t)/[cn/2κ2(t)

n/2] for three different driving forces f (in units of kkBT) and
fixed potential amplitude U0 = 5kBT.

cumulants vanish, κn(t) = 0, for n⩾ 3. Due to the central limit theorem (CLT), this property
is also expected to hold at sufficiently long timescales for transport in a complex environment
that appears homogeneous at macroscopic scales [3]. One shows easily, for independent incre-
ments contributing to∆x(t), that κn(t→∞) = O(t) and, hence, αn/2(t) = O(t−n/2+1) decays
algebraically for long times.

For the present problem of colloidal motion driven across a periodic landscape, we have cal-
culated the non-Gaussian parametersα3/2(t) andα2(t) from the simulated trajectories for three
different driving forces (figure 4). In all cases, αn/2(t→ 0) = 0 at short times, which reflects
the completely overdamped, diffusive motion at short timescales. Also, αn/2(t→∞) = 0,
which follows from the potential landscape being characterised by a single wavelength λ=
2π/k; thus, the motion at much larger distances resembles a hopping process of independ-
ent steps. In equilibrium, α3/2(t) remains zero at all times due to symmetry; however, α2(t)
displays a pronounced peak at long times, t≈ τm. This implies that the distribution of∆x(τm)
deviates considerably from a Gaussian and is much broader than what the corresponding value
of the MSD would suggest.

The presence of a driving force f > 0 diminishes the peak height in α2(t) as f is increased;
at the same time, the peak position shifts to shorter time scales, similarly to what we have
observed in the memory function (figure 3). The broken isotropy permits a non-trivial beha-
viour of the odd cumulants: we observe peaks in α3/2(t) at intermediate times which are ana-
logous to the peaks in α2(t). In both quantities, the peaks are located at similar f -dependent
timescales, which are of the same magnitude as the persistence time of the memory effects.

5. Summary and conclusions

We have studied memory effects in colloidal motion under confinement and driving. To this
end, we have considered a Brownian particle driven over a sinusoidal landscape as a prototyp-
ical model system, which also admits experimental implementations [35, 36, 38–40]. Here,
we are interested in a GLE where the environment (i.e. the potential landscape) is accounted
for by the memory kernel and which reproduces the essential transport behaviour of the full
model. We have addressed two questions: First, what are the implications of driving from the
perspective of coarse-graining, i.e. which modifications of the GLE are necessary to account
for driving the dynamics far from equilibrium? The second question addresses the estimation
of memory functions from data, for which established methods exist for the conventional,
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underdamped GLE. How can one adapt these methods to the case of completely overdamped
dynamics, i.e. for instantaneous momentum relaxation?

The starting point was the linear GLE for the particle velocity, amended by a constant,
external force (equation (3)). While it has been clear that the memory function in this approach
depends on the external force, it has been recognised only recently [11, 21] that, outside of
the linear response regime, the random force must be biased (equation (7)). The pronounced
non-linear response of the model investigated here appears as an ideal benchmark for this situ-
ation, in particular, since detailed analytic predictions are available for the transport properties
(sections 4.1 and 4.2). Indeed, these results corroborate the previously predicted [21] cubic
increase of the random force bias, ξf→0 ∼ f 3 (figure 1). Yet, we note that the GLE studied here
and the one derived in [21] differ in the details.

Considering a non-equilibrium, yet stationary ensemble, it is crucial that autocorrelation
functions are defined in terms of the fluctuations about the mean value; examples for observ-
ables with non-vanishing mean are the particle velocity, but also the random force. Given such
a correlation function (e.g. the VACF), the analytic properties of the corresponding memory
function guarantee the existence of a random force that satisfies a fluctuation–dissipation rela-
tion (equation (5)). Hence, the GLE (3) is justified without resorting to a projected dynamics.
We emphasise that the relations (9) and (21) between the VACF and the memory functions are
at the heart of this approach to the GLE; they are valid for any stationary relaxation dynamics,
in and far from equilibrium. Nevertheless, it would be desirable and is left for future research
to derive equation (3) using, e.g. a Mori projection onto the particle degrees of freedom, but
coarse-graining out the potential landscape U(x) (which may be thought of as infinitely many
static degrees of freedom).

Regarding the overdamped limit of the GLE, we have decomposed the memory function
ζ(t) into a singularMarkovian contribution and a regular part (equation (13)). This has allowed
us to perform the overdamped limit similarly as for the standard Langevin equation and to
obtain a stochastic integral equation for the displacement (equation (17)). The latter, however,
is no longer in the form of an evolution equation; its solution is driven by a random process
R(t) which is a superposition of a free diffusion and a more regular Gaussian process with its
covariance determined by ζreg(t). In addition to the advantage of regularisation, the splitting
of ζ(t) collects all memory effects in the regular part.

For the estimation of the memory function from time series data, we have employed an
ansatz-free deconvolution in the time domain; in particular, we have not prescribed a cer-
tain form to the memory function. Following up on our earlier study [29] and after some
adjustments to the case of overdamped dynamics, we have developed a numerical scheme
that yields the memory function from MSD data as the sole input (section 3.4 and figure 3).
From a practical point of view, the non-equilibrium situation is handled by changing to a co-
moving coordinate frame, i.e. by subtracting the drift with constant speed vD from the position
data. For the deconvolution procedure, we suggest to estimate the integral G(t) of the memory
function first, which has the trivial initial condition G(0) = 0 instead of the unknown value of
ζreg(t→ 0) that is needed when solving for ζ(t) directly. The memory function is eventually
obtained from numerical differentiation of G(t). We have demonstrated the high accuracy of
the approach by comparing the estimated long-time limits G∞ = G(t→∞) to the analytic
predictions (table 1). Moreover, we have validated the full time dependence of the estimated
memory function against accurate predictions in equilibrium, without any parameter fitting
(figure 3 and equation (39)).

Our analysis of the equilibrium dynamics, which is based on a continued-fraction rep-
resentation of the frequency-dependent mobility [68], shows that the relaxation of positional
correlations (encoded in quantities such as the MSD, the VACF and the timescale-dependent
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diffusivity) is governed by the timescale τ c, which is different from the decay time τm of the
memory function. For a large amplitude U0 of the potential landscape, the long-time diffusion
of the Brownian particle is strongly suppressed, D∞ ≪ D0, which implies a clear separation
of the two timescales, τc ≪ τm (equation (42)). Thus, memory effects can still be present at
timescales orders of magnitude longer than what the convergence of the MSD to its long-
time asymptote would suggest (figure 2). At variance to this observation, the memory relaxa-
tion time is the relevant timescale for the non-Gaussian parameters, which exhibit pronounced
peaks near τm (figure 4). The comparably fast convergence of theMSD can be understood from
the equilibrium result τ−1

c = τ−1
m +ατ−1

0 (equation (42)): the superposition of rates suggests
that Markovian diffusion within the potential wells (ατ−1

0 ) is another relaxation mechanism
for the Gaussian part of positional correlations, in addition to the much slower barrier crossing
(τ−1

m ).
Out of equilibrium, our study relies on data from Brownian dynamics simulations. We have

exemplified the implications of steady driving for the transport behaviour and its memory func-
tion using two intermediate values of the driving force, which are already deep in the non-linear
response regime but still well below the depinning transition. The driving results in a system-
atic reduction of the memory with respect to its magnitude ζreg(t→ 0) and its persistence time
τm; in particular, the total integral of the memory function G∞ =∆D/D∞ decreases. These
trends are expected to change for stronger driving such that ∆D< 0, which implies G∞ < 0
and thus requires an extended temporal regime where ζreg(t)< 0. The onset of such a beha-
viour is already anticipated from the non-monotonic variation of ζ(t) for the larger of the two
driving forces (f = 3kkBT). For overdamped dynamics, such a non-monotonic decay of the
memory function is a unique fingerprint of non-equilibrium; similar observations have been
made for other colloidal systems out of equilibrium [45, 69–71]. The non-monotonic beha-
viour of ζ(t) is inherited from the timescale-dependent diffusivity D(t) and we have identified
the underlying physical mechanism as a competition between confined motion (decreasing
the diffusivity at short times) and depinning (which, for sufficiently strong driving, leads to an
enhanced dispersion at long times).

In summary, we have put forward a non-equilibrium GLE for the overdamped dynam-
ics of colloidal motion in an external potential. As a consequence of driving the dynamics
out of the linear response regime, the random force entering the GLE has a non-vanishing
mean. Under the Gaussian approximation for the random force, the coarse-grained dynam-
ics reproduces the transport properties and the dynamic responses correctly at the level
of the first and second moments of the displacements (including corresponding correlation
functions such as the VACF). Our simulation results, however, indicate pronounced devi-
ations from a Gaussian displacement distribution (figure 4), which requires that the ran-
dom force is a non-Gaussian process. To this end, it would be of interest to characterise
the statistics and the degree of the non-Gaussianity of the random force ξf(t) or, equival-
ently, of the random displacements R(t) in equation (17), obtained within Brownian dynamics
simulations of the full problem in equation (1).

The present study was restricted to driving forces below the critical depinning force fcr. It
appears as a rewarding future task to investigate the ramifications of the depinning transition
on the memory function and to test for non-analytic anomalies, in particular, in the low tem-
perature limit, where D∞( fcr) diverges due to the phenomenon of giant diffusion. Eventually,
another interesting variation of the present problem is obtained by utilising self-propulsion as
a means to drive the colloidal dynamics out of equilibrium [77]. Can the additional internal
degrees of freedom (i.e. the orientation of an anisotropic particle) be incorporated into the
memory function of the GLE? How would such a coarse-grained dynamics respond to an
external driving force?
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