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1  |  INTRODUC TION

Insects exhibit species- specific, population- specific, and sex- 
specific body colours and patterns, which can also vary across 
life stages (Figure 1) (Khan, 2020; Khan & Herberstein, 2020b; 
Wittkopp & Beldade, 2009). Insect colour originates from the 
pigments that are deposited underneath the cuticle, from cu-
ticular surface structures, or a combination of both (Chapman 
& Chapman, 1998). These colours may function in interspecific 
communication (e.g. aposematism, crypsis including mimicry and 
camouflage), intraspecific communication (e.g. signalling), ther-
moregulation, and UV protection (Caro, 2005; Cott, 1940; Figon 

& Casas, 2018; Futahashi, 2020). Often, colour is associated with 
multiple functions simultaneously, and sometimes in conflicting 
ways. For example, the non- territorial damselfly Xanthagrion eryth-
roneurum undergoes ontogenetic colour change from yellow to red 
shortly after emergence, which signals sexual maturity but may 
also increase predation risk (Khan & Herberstein, 2020a). Similarly, 
the larger aposematic orange patches on the black body of moth 
larvae are effective in predator deterrence but are less effective 
in thermoregulation (Lindstedt et al., 2009). Appreciating the com-
plexity of body colours and their function is of utmost important 
in understanding the local adaptation and evolution of populations 
(Endler & Mappes, 2017).
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Abstract
The colours of insects function in intraspecific communication such as sexual signal-
ling, interspecific communication such as protection from predators, and in physio-
logical processes, such as thermoregulation. The expression of melanin- based colours 
is temperature- dependent and thus likely to be impacted by a changing climate. 
However, it is unclear how climate change drives changes in body and wing colour 
may impact insect physiology and their interactions with conspecifics (e.g. mates) or 
heterospecific (e.g. predators or prey). The aim of this review is to synthesise the 
current knowledge of the consequences of climate- driven colour change on insects. 
Here, we discuss the environmental factors that affect insect colours, and then we 
outline the adaptive mechanisms in terms of phenotypic plasticity and microevolu-
tionary response. Throughout we discuss the impact of climate- related colour change 
on insect physiology, and interactions with con- and- heterospecifics.
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Insects can respond to anthropogenic climate change through 
the plastic responses of individuals (Buckley et al., 2017; Hodgson 
et al., 2011) or through genetic and microevolutionary changes 
in populations (Larson et al., 2019; Overgaard et al., 2014; Ranga 
et al., 2017). There are several lines of evidence (temporal, geo-
graphical, and experimental studies) that indicate that insect colours 
vary with climate such as temperature and humidity (Lis et al., 2020; 
MacLean et al., 2019; Wilts et al., 2019; Xing et al., 2018). For exam-
ple, Zvereva et al. (2019) observed a reduction of the darker subarc-
tic leaf beetle morphs (Chrysomela lapponica) in conjunction with an 
increase of spring temperatures by 2.5°C. However, the relationship 
between climate and insect colour is complex with several biotic and 
abiotic factors at play (reviewed in Clusella- Trullas & Nielsen, 2020). 
For example, adaptive change to new climatic conditions can in-
crease survivability, but can also carry reproductive fitness costs 
(Candolin & Heuschele, 2008). Understanding the capacity of in-
sects to respond to a changing climate is important for estimating 
the extinction risk of populations and species (Halsch et al., 2021; 
True, 2003; Urban, 2015).

The aim of this review is to examine the contemporary evi-
dence of insect responses (colour change) against a rapidly chang-
ing climate (Table 1) and review the impact of climate- driven 

colour change on intraspecific communication in insects (Table 2). 
We highlighted the current gaps and proposed future directions 
where further research is required. We believe, our review will 
provide insights into how insect colour varies across climates 
and will highlight the ecological and evolutionary consequences 
of such variation. We recognise that colour is a multi- component 
phenomenon that integrates overall intensity (the human- based 
perception of the overall intensity of light emitted or reflected 
from a stimulus) and quality (i.e., the perceived category of colour, 
determined by the spectral shape of a stimulus; see definitions 
by Kemp et al., 2015). For the purpose of this review, we mostly 
consider the perceived intensity of light reflected from the insect 
body and use the term ‘lightness’ as this is frequently used in the 
literature we reviewed.

2  |  INSEC T COLOUR: COLOUR 
PRODUC TION MECHANISM AND LINK TO 
ENVIRONMENTAL FAC TORS

Insect colour is involved in mimicry, camouflage, thermoregu-
lation, and intraspecific communication (Cott, 1940; Khan & 

F I G U R E  1 Insects	exhibit	diverse	
colours that are produced from pigments, 
structural- based colour or a combination 
of both. (a) Danaus genetia, (b) Ceriagrion 
cerinorubellum, (c) Tectocoris diophthalmus, 
(d) Coccinella transversalis, (e) Trithemis 
aurora, (f) Taxila haquinus. Photo © MK
Khan.
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Herberstein, 2021; True, 2003). In addition to colour production, 
the pigment melanin is also involved in immunological protection 
against	 pathogens	 and	 parasites	 (Armitage	 &	 Siva-	Jothy,	 2005; 
Mackintosh, 2001; Wilson et al., 2001) as a rate- limiting molecule of 
the	phenoloxidase	cascade	(José	de	Souza	et	al.,	2011; Sugumaran 
& Barek, 2016). For more details on the function of insect colours, 

we refer the reader to several excellent reviews (Badejo et al., 2020; 
Figon & Casas, 2018; True, 2003; Umbers et al., 2014).

The colours of insects are mostly generated by pigments and/
or structures. Pigments or their precursor can either be synthe-
sised in epidermal cells or extracted from diet (e.g. carotenoids) 
(Dresp, 2014; Wittkopp & Beldade, 2009). There are eight classes of 

TA B L E  1 Evidence	of	insect	colour	change	associated	with	latitude	and	climatic	factors.	Study	type	refers	to	whether	the	study	used	
temporal, geographic, or experimental evidence of colour change.

Species Order Study type Insects' response
Factors associated 
with colour change References

Colias meadii Lepidoptera Temporal Decreased wing 
melanisation

Warmer 
temperature

MacLean et al. (2016)

Colias meadii Lepidoptera Temporal Increased wing melanisation Higher temperature MacLean et al. (2019)

Butterflies and dragonflies Odonata Temporal Decreased melanisation Higher temperature Zeuss et al. (2014)

Adalia bipunctata Coleoptera Temporal Decreased frequency of 
melanic morph

Higher spring 
temperatures

Brakefield and de 
Jong	(2011)

Chrysomela lapponica Coleoptera Temporal Decreased darker morphs Higher spring daily 
temperatures

Zvereva et al. (2019)

Timema cristinae Phasmatodea Temporal Increased frequency of 
melanic morphs

Warmer 
temperature

Nosil et al. (2018)

Adalia bipunctata Coleoptera Geographical Decreased frequency of 
melanic morphs

Altitude Scali and Creed (1975)

Oreina sulcate Coleoptera Geographical Green colours Lower elevations Mikhailov (2001)

Oreina sulcate Coleoptera Geographical Darker and more reflective 
metallic morphs

Higher elevations Mikhailov (2001)

Colias eurytheme Lepidoptera Geographical Darker hindwing 
(undersides)

Higher latitude Watt (1968)

Bumblebees Hymenoptera Geographical Darker colour Lower latitude Williams (2007)

Drosophila melanogaster Diptera Experimental Decreased colour on the 
thorax and abdomen

Higher temperature Gibert et al. (1998)

Saccharosydne procerus Hemiptera Experimental Darker colour Higher temperature Yin et al. (2015)

Pachydiplax longipennis Odonata Experimental Increased wing 
ornamentation

Warmer larval 
temperatures

Lis et al. (2020)

Danaus plexippus Lepidoptera Experimental Greater portion of black and 
a lower portion of white and 
yellow colour

Lower temperature Solensky and 
Larkin (2003)

TA B L E  2 Impact	of	climate-	driven	colour	change	on	sexual	selection.

Species Order
Factors associated 
with colour change Impact References

Phymata americana Hemiptera Temperature Dark individuals had a higher success 
rate in mate searching at colder ambient 
temperature

Punzalan	et	al.	(2008)

Pachydiplax longipennis Odonata Temperature Greater abundance of dark pigment in the 
wing increased male flight performance at 
colder temperature

Moore et al. (2019)

Ischnura elegans Odonata High latitude Darker colours led to increased sexual 
conflict

Svensson, Willink, 
et al. (2020)

Allonemobius socius Orthoptera Short season length Darker colours led to increased melanin- 
based immunity

Fedorka et al. (2013)

Colias philodice eriphyle Lepidoptera Elevation Lighter males had reduced flight activity at 
high elevation

Ellers and Boggs (2004)
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pigments (melanins, ommochromes, pteridines, tetrapyrroles, carot-
enoids, flavonoids, papiliochromes, and quinones) that are involved 
in insect colouration (Futahashi & Osanai- Futahashi, 2021). Of 
these, melanins, ommochromes, and pteridines are the dominant co-
lour pigments in dragonflies (Futahashi & Osanai- Futahashi, 2021), 
while tetrapyrroles, carotenoids, flavonoids, papiliochromes, and 
quinones are the main contributors to colour in grasshoppers 
(Futahashi & Osanai- Futahashi, 2021), aphids (Tsuchida, 2016), and 
butterflies (Burghardt et al., 2000; Stavenga et al., 2014b). Pigments 
can also contribute to structural colours in insects (Yoshioka & 
Kinoshita, 2006).

Structural colours are the result of light refraction, interference, 
or diffraction caused by photonic structures in the insect integu-
ment (Kemp et al., 2006; Stuart- Fox et al., 2017; Sun et al., 2013; 
Vukusic & Sambles, 2003). Structural colours are common in butter-
flies (Burg & Parnell, 2018; Stavenga et al., 2014a), moths (Stavenga 
et al., 2018) and beetles (Burg & Parnell, 2018), and Saharan silver 
ants (reviewed in Stuart- Fox et al., 2017). For example, the metallic 
colours of beetles are generated by epicuticular multilayer reflec-
tors (McNamara et al., 2012). In addition to pigmentation and struc-
tural colour, some insects, such as fireflies, beetles, and springtails 
also	produce	colour	by	luciferases,	an	enzyme	capable	of	producing	
light in bioluminescence (Viviani, 2002) a form of colour production 
that we will not consider further in this review.

The expression of insect colours in terms of quantity and quality 
can be impacted by environmental factors including temperature, 
rainfall, and solar radiation (Cott, 1940; Elith et al., 2010). Temperature 
directly affects pigment production (Hassall & Thompson, 2012), 
and insects in colder environments tend to be darker, as melanin 
production	is	greater	in	lower	temperatures	(De	Souza	et	al.,	2017). 
The selective advantage of this response to environmental tem-
perature is that darker bodies can absorb more solar radiation than 
lighter bodies, allowing darker individuals to remain active for longer 
periods in colder regions, which may increase reproductive success 
and feeding rates (Clusella Trullas et al., 2007;	De	Souza	et	al.,	2017). 
In support of this idea, male damselflies (Calopteryx splendens) with 
high pigmentation and larger wing spots had significantly faster 
early morning activation than males with smaller wing spots, pre-
sumably because the larger dark patches warmed up the insect 
bodies faster (Laakso et al., 2021). A related but distinct proposed 
function of greater melanin pigmentation is the absorption of dam-
aging UV radiation. For example, pierid butterflies under high lev-
els of solar radiation produced more melanin (Stelbrink et al., 2019). 
Finally, geometrid moths became increasingly brighter with increas-
ing solar radiation along a latitudinal gradient but not an altitudinal 
gradient, where the moths became darker (Heidrich et al., 2018). The 
lack of consistent patterns with temperature and irradiation may be 
an indicator of species or population- specific trade- offs between 
UV protection and thermoregulation because the intensity of UV ra-
diation and temperature are positively associated – hotter environ-
ments also have higher UV radiation, which may lead to trade- offs 
in melanin- related functions (see Clusella- Trullas & Nielsen, 2020).

Humidity can also trigger colour change in insects, even within 
the same individual, such as in Adscita statice, a green forester moth 
that changes its colour at dusk and dawn with humidity (Wilts 
et al., 2019). The ambient humidity modifies the multilayer refrac-
tive index which alters the moth's colour from red to green (Wilts 
et al., 2019). Moreover, male Hercules beetles, Dynastes hercules, 
switch the colour of the elytra from black (at night) to yellow (in the 
morning) associated with a humidity shift from high to low (Hinton & 
Jarman,	1973). There is conflicting evidence that insect melanisation 
increases with decreasing humidity thereby reducing cuticular water 
loss and increasing resistant to desiccation – the melanism–desic-
cation hypothesis. Law et al. (2020) found indirect support where 
ant assemblages in the canopy experiencing dryer conditions were 
darker than assemblages on the more humid ground. However, re-
sults from an experiment that selected for darker and lighter phe-
notypes of Drosophila melanogaster over generations found no 
relationship between desiccation tolerance and colour (Rajpurohit 
et al., 2016). It is possible that there are other physiological mech-
anisms that are responsible for desiccation tolerance in insects. As 
might be expected, the response of organisms to environmental 
change is complex, highly context- dependent and is shaped by both 
their physical and biological environments.

3  |  E VIDENCE OF CLIMATE CHANGE 
IMPAC T ON INSEC T COLOUR

3.1  |  Temporal studies

Colour change in insect over time has been linked to climate 
change. A long- term study (1953–2012) on Colias meadii but-
terflies in the USA showed that wing melanisation decreased 
with increasing temperature during this time period (MacLean 
et al., 2016). This pattern, however, is not true across space. In 
the same species, over the same time period, melanism de-
creased with increasing temperature in Northern Canada but in-
creased with increasing temperature in southern USA (MacLean 
et al., 2019). Explaining the mechanisms that drive these seem-
ingly disparate patterns is challenging, and to date no unifying ex-
planation has emerged (MacLean et al., 2019). Different patterns 
of insect colour responses to increasing temperature are also ap-
parent in other taxa. For example, European dragonfly individu-
als are lighter in colour in warmer regions (Zeuss et al., 2014) and 
the melanic morphs of two- spot ladybird beetle, Adalia bipunctata, 
(Brakefield	&	de	Jong,	2011) and leaf beetles (Chrysomela lappon-
ica) have decreased with an increase of spring temperatures over 
the	last	25 years	(Zvereva	et	al.,	2019). This may be due to the loss 
of thermoregulatory advantages of darker individuals in warmer 
springs. Conversely, the frequency of melanic stick insects (Timea 
cristine) morphs increased in warmer years because of darker in-
dividuals have a crypsis advantage on dry and brownish plants in 
warmer years (Nosil et al., 2018).
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3.2  |  Geographic variation

Phenotypic differences across latitude and/or altitude are often 
used to anticipate how organisms might react to climate change 
(Fielding et al., 1999; Golab et al., 2022). Altitude (or elevation) is 
linked to colour pattern polymorphism in several insect species 
(Hodkinson, 2005) whereby, the frequency of melanic morphs in-
creases with altitude (Berry & Willmer, 1986; Hodkinson, 2005). 
Species, such as spittlebugs Philaenus spumarius (Berry & 
Willmer, 1986), dung beetles Onthophagus proteus (Stanbrook 
et al., 2021), Eupteryx leafhoppers (Stewart, 1986), grasshop-
pers (Guerrucci & Voisin, 1988), and noctuid moths (Heidrich 
et al., 2021) showed increased melanisation with altitude. However, 
in some ladybird beetles (Adalia bipunctata) (Scali & Creed, 1975) 
and bush cricket (Isophya rizeensis) (Kuyucu et al., 2018) the me-
lanic frequencies decreased with altitude. Similarly, in geometrid 
moths in China, the observation of darker colour moths at higher 
elevations was not consistent across different study sites (Xing 
et al., 2018). In addition to melanisms, structural colours that cause 
a metallic appearance also change with elevation. For example, the 
metallic colouration in Oreina sulcata beetle varied with elevation: 
green- colour morphs were more frequent at lower elevations, and 
darker and more reflective metallic morphs at higher elevations 
(Mikhailov, 2001).

Distributions across different latitudes can also relate to co-
lour variation in insects (Raffard et al., 2020; Zheng et al., 2015). 
A study conducted on monarch caterpillars (Danaus plexippus) 
over a 650,000- km2 area in the USA and Canada showed com-
paratively less pigmentation at lower latitude or warmer locations 
than in individuals found at higher latitude or colder locations 
(Tseng et al., 2023). Rather than a continuous effect, latitude can 
also have a bimodal effect: individuals tend to be darker both 
at higher latitude (i.e. in colder climates) and lower latitude (in 
warmer climate), with lighter morph at intermediate latitudes 
(Stewart, 1986; Watt, 1968; Williams, 2007). For example, Colias 
butterflies possess darker hindwing undersides at higher latitude 
and colder climates as well as lower latitudes and hotter climates 
(Watt, 1968).

By contrast, some insects are generally darker in colder cli-
mates and lighter in warmer climates (Bishop et al., 2016; Pinkert 
et al., 2018; Zeuss et al., 2014). For example, Tectocoris dioph-
thalmus bugs at temperate and lower latitude sites showed larger 
patches of blue against a lighter red background compared with 
subtropical and tropical bugs (Fabricant et al., 2018). On the 
other hand, in adult swallowtail butterflies (Sericinus montelus), 
males at lower latitudes were more likely to express darker co-
lours than males at higher latitudes (Zheng et al., 2015). Similar 
results were also found in bumblebees (Williams, 2007). Some 
of the observed contradictions described above may reflect that 
habitats and climate variables are interwoven and complex, re-
quiring controlled experiments to isolate the effect of tempera-
ture on colour.

4  |  E XPERIMENTAL E VIDENCE OF 
TEMPER ATURE IMPAC T ON INSEC T 
COLOUR

Several experimental studies investigated how temperature af-
fects insect colour. In Drosophila melanogaster, pigmentation on 
the thorax and abdomen decreased with experimentally increased 
temperature (Gibert et al., 1998). Contrary to this result, planthop-
pers Saccharosydne procerus produced darker colours when reared 
at higher temperatures (Yin et al., 2015). Similarly, male territorial 
dragonflies, Pachydiplax longipennis, produced darker wing orna-
mentation when larvae were reared at higher temperature than 
when larvae were reared at lower temperature (Lis et al., 2020). A 
controlled rearing experiment in harlequin bug (male and female 
Murgantia histrionica) also showed that temperature was a signifi-
cant factor for melanisation: individuals reared at lower tempera-
ture were darker than the individuals at higher temperature (Sibilia 
et al., 2018). Similarly, the wood tiger moth (Arctia plantaginis) reared 
at higher temperatures was less pigmented than individuals reared 
at	lower	temperatures	(Galarza	et	al.,	2019). Finally, monarch larvae 
(Danaus plexippus) reared at lower temperatures developed a higher 
portion of black and a lower portion of white and yellow, compared 
with larvae reared at warmer temperature (Solensky & Larkin, 2003). 
Overall, while it is clear from these studies that temperature influ-
ences insect colour expression, patterns between experiments and 
species are quite variable.

Some of the responses to rearing temperature can result in sea-
sonal polymorphism: Colias butterflies, Papilio machaonin, and Pontia 
butterflies show seasonally polyphenic traits that can generate 
various adaptive phenotypes in response to seasonal environmen-
tal variation (Kingsolver, 1995). Distinct wing phenotypes are the 
most common seasonal polyphenism in butterflies that can influ-
ence their thermoregulatory ability (Kingsolver, 1987). For example, 
environmental manipulation such as altering photoperiodic condi-
tions, which resulted in more hours at higher temperatures, during 
the larval stage of the white butterfly (Pontia occidentalis), lead to 
greater melanisation on the dorsal forewings and lower melanisa-
tion on the ventral hindwings of summer individuals compared with 
spring individuals (Kingsolver, 1995;	Kingsolver	&	Wiernasz,	1991). 
Significantly, the different phenotypes had different survivability 
under extreme thermal conditions in the field (Kingsolver, 1995).

Some insects are also able to change colour reversibly with 
ambient temperature (Huang & Reinhard, 2012; Key & Day, 1954; 
O'Farrell., 1964; Umbers et al., 2013). In common blue- tail damsel-
flies (Ischnura heterosticta), morphs changed their colour partially 
and reversibly under controlled laboratory conditions: dull green 
or grey colour under 12°C and bright blue above 15°C (Huang & 
Reinhard, 2012; O'Farrell., 1964). Similarly, male chameleon grass-
hopper (Kosciuscola tristis) also showed rapid reversible colour 
change under different laboratory conditions-  black at 10°C, inter-
mediate colouration from 10 to 15°C and turquoise colouration over 
25°C (Key & Day, 1954; Umbers, 2011; Umbers et al., 2013, 2014).
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5  |  MECHANISMS: PHENOT YPIC 
PL A STICIT Y,  MICROE VOLUTIONARY 
RESPONSE

Populations experiencing new selection pressures may respond in 
three different ways – they may shift to a more suitable habitat, ad-
just to changing conditions through phenotypic plasticity, or they 
may adapt to new conditions through population genetic change 
(Davis et al., 2005; Holt, 1990). Generally, plastic responses to 
new conditions are more rapid than evolutionary responses (Sgrò 
et al., 2016). The precise mechanism depends on life history traits, 
dispersal ability, availability of alternative habitats, and the rate of 
continual environmental change (Gienapp et al., 2008). Sometimes 
populations combine all three possible responses to climatic change 
(Davis & Shaw, 2001).

In insects, phenotypic plasticity of colour expression can stem 
from a change in the colour pigment in the epidermis or the cuticle 
(Nijhout, 2010). For instance, RNA interference (RNAi) treatment of 
yellow mealworm (Tenebrio molitor) showed light brownish colour 
whereas,	enzymes	deficient	in	the	cuticle	tanning	pathway	resulted	
in darker pigments (Mun et al., 2020). Similarly, swallowtail butterfly 
(Papilio xuthus) displayed black cuticle colour when epidermal cells 
expressed	 tyrosine	 hydroxylase	 and	 dopa	 decarboxylase	 enzymes	
whereas they exhibited reddish- brown colour during the epidermal 
expression of tyrosine hydroxylase, dopa decarboxylase, and ebony 
enzymes	(Futahashi	&	Fujiwara,	2005). Phenotypic variation of co-
lour across seasons, that is, polyphenism (Nijhout, 2010) is known 
in many insects such as moths (Orgyia antiqua) (Sandre et al., 2007), 
narrow- headed ants (Formica exsecta) (Putyatina et al., 2022) and 
butterflies	(species	belong	to	tribe	Junoniini)	(Clarke,	2017).

Phenotypic plasticity provides an important mechanism to ad-
just to new environmental conditions. The underlying mechanisms 
are likely to be the up and downregulation of the relevant genes. In 
Colias crocea butterflies, an increased expression of the BarH- 1 gene 
is responsible for the white wing colour (Woronik et al., 2019). In 
Heliconius butterflies optix and cortex genes control red and yellow/
white	wing	patterns	 (Jiggins	et	al.,	2017). Furthermore, in Ischnura 
senegalensis damselflies, the expression of ebony and black genes is 
responsible for the reddish- brown colour in the thorax of the gy-
nochrome female (Takahashi et al., 2019). The expression of colour 
producing genes may vary in response to climate change, however, 
experimental evidence for changing gene expressions is limited 
mostly because of the nature and complexity of the genetic basis 
for colour (Clusella- Trullas & Nielsen, 2020; Daniels et al., 2014; 
Roulin, 2014). Recent advancement in genetics and genomics now 
provide platforms to study the mechanisms of insect colour change 
in response to climate.

It has been argued that phenotypic plasticity, as described 
above, is unable to provide long- term solutions for populations 
(Gienapp et al., 2008;	Przybylo	et	al.,	2000). Hence, microevolution-
ary responses are required to cope with continual environmental 
change over long periods (Davis et al., 2005; Stockwell et al., 2003). 
While the heritability of melanism is thought to be high (Roff & 

Fairbairn, 2013), potentially setting the stage for rapid evolution, 
insect melanin is associated with several other physiological mech-
anisms, such as immunity and desiccation, which could potentially 
counteract adaptive colour evolution in response to a warming cli-
mate (Clusella- Trullas & Nielsen, 2020). In the next section, we spe-
cifically discuss how climate- induced colour change might interact 
with sexual signals in insects.

6  |  SE XUAL SELEC TION AND MODE OF 
AC TION

Sexual selection is an important selective force that drives the 
evolution of pre-  and post- copulatory traits (Durrant et al., 2020; 
Hosken & House, 2011) and can ultimately accelerate speciation 
(Hugall & Stuart- Fox, 2012). Colour in a sexual context is mostly as-
sociated with visual signalling that may facilitate mate recognition 
and communication of mate or competitor quality (Khan, 2020; Khan 
& Herberstein, 2021). Less obvious is the interaction of sexual colour 
signals and thermoregulation. While darker colours are frequently 
favoured by sexual selection, they also absorb more solar radiation 
and increase body temperature (Leith et al., 2022). A higher body 
temperature can be advantageous if it allows individuals to actively 
search for mates. For example, darker male speckled wood butter-
flies, heat up faster and are more likely to patrol for females than 
lighter males that perch (Van Dyck & Matthysen, 1998). Presumably, 
increased melanisation driven by sexual selection could be detri-
mental in warmer or hotter climates, however, we could not find re-
search to confirm this prediction.

6.1  |  Intrasexual selection

Intrasexual selection involves individuals of one sex (usually, but 
not exclusively, males) that compete with individuals of the same 
sex over access to mates. Mate competition can take the form of 
fighting and defending territories and/or resources selecting traits 
that	facilitate	fights	and	defence	(Fitze	et	al.,	2008). Alternatively, 
scrambling does not involve intrasexual interactions, selecting 
traits that facilitate fast emergence, location, and approach of 
mates (see Herberstein et al., 2017 for a review). Colour may also 
be a trait selected for intrasexual competition, such as in the dam-
selfly Calopteryx haemorrhoidalis, where males with higher wing 
melanisation have a greater ability to successfully defend territo-
ries (Córdoba- Aguilar, 2002). These more conspicuous males have 
an advantage by outcompeting rivals and attracting more mates. 
In non- territorial mating system conspicuous colour can evolve to 
reduce unprofitable matting, especially in species where popu-
lation density and competition for mating is high. For example, 
conspicuous blue abdominal stripes in Xanthagrion erythroneurum 
male damselflies signal unprofitabilty as mate and thus reduce 
male–male mating interactions in high male density populations 
(Khan & Herberstein, 2019).
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6.2  |  Intersexual selection

Intersexual selection occurs when members of one sex select a mate 
based on their physical appearance or traits. This form of selection 
is common in females and males invest in physical traits and their 
display	(Fitze	et	al.,	2008) or in providing direct benefits such as nu-
tritional	resources	(Møller	&	Jennions,	2001). There are many exam-
ples where females choose males with exaggerated traits such as 
conspicuous colour or elaborate ornamentation (Andersson, 1994; 
Darwin, 1888). In Colias philodice eriphyle, butterflies male wing 
colour is attractive to females – more melanised males are prefer-
entially chosen by females (Ellers & Boggs, 2003). Colour can also 
signal an unprofitable mate and warn off unwanted mate. For ex-
ample, sexually immature Agriocnmis femina females signal their 
unprofitability as mates with conspicuous red colour which reduces 
male mating attempts with pre- reproductive females (Khan, 2020). 
For both modes of sexual selection, climate- driven colour change 
may impair signalling and activity patterns, courtship displays, and 
ultimately reproductive fitness.

7  |  IMPAC T OF CLIMATE-  DRIVEN 
COLOUR CHANGE ON SE XUAL SELEC TION

Climate change may impact life history traits and mating systems 
that subsequently affect the strength or direction of sexual selec-
tion (Maan & Seehausen, 2011; Pilakouta & Ålund, 2021). A recent 
quantitative genetic model showed that the strength of sexual se-
lection may decrease due to rapid climate change, which reduces 
the benefits of sexual selection relative to the survival benefits 
of adapting to new environmental conditions (Martinossi- Allibert 
et al., 2019). For example, temperature can determine the outcome 
of sexual selection by changing reproductive behaviour, such as 
mate searching, male–female, and male–male interactions (García- 
Roa et al., 2020). Similarly, a study conducted on ambush bugs, 
Phymata americana, showed that the interaction between ambient 
temperature and melanisation could affect the outcome of mate 
competition as male bugs with relatively darker colour patterns 
had higher mate- searching success in cool ambient temperatures 
but may suffer detrimental effects in warm ambient temperature 
(Punzalan	et	al.,	2008).

Physiologically, a warming climate may enhance the fitness of 
animals living in cooler temperature and higher latitudes whereas 
increasing temperature is likely to have detrimental consequences 
on tropical animals (Deutsch et al., 2008). Behaviourally, animals 
that display sex- specific traits in an inter or intrasexual context may 
also be affected by increasing temperature (Moore et al., 2019). On 
the one hand, higher temperatures may increase mating opportu-
nity and reproductive output, however, more conspicuous sexual 
signals or signalling may incur costs if they are more likely to be de-
tected by parasites and predators (Halfwerk et al., 2011; Patricelli & 
Blickley, 2006; Zuk et al., 2006). In addition, melanised wing interfer-
ence patterns or patches in Drosophila or dragonflies might increase 

reproductive success but may be physiologically detrimental as 
they increase body temperature in warmer climates (Corbet, 1999; 
Katayama et al., 2014; Moore et al., 2021). Hence, selection may re-
duce sexual colour signals at higher temperatures to mitigate costs, 
as shown in some dragonflies. Male dragonflies with higher wing 
melanisation had greater mating success than males with less mel-
anised wings (Moore et al., 2021). However, wing melanisation also 
increased individual body temperature by >2°C (Moore et al., 2019; 
Svensson,	Gomez-	Llano,	&	Waller,	2020; Svensson & Waller, 2013). 
Such thermal effects may confer modest locomotor benefits in low- 
temperature environments but may reduce flight ability, damage 
wing tissue, and cause death in high temperature environments 
(Moore et al., 2019;	Svensson,	Gomez-	Llano,	&	Waller,	2020). This 
impact may be sex- specific as females forage at lower temperatures 
or in shaded micro- habitats (Moore et al., 2021).

The above examples represent isolated case studies in the absence 
of a predictive framework on how insects might respond to the cli-
mate change impacts on sexual signals and sexual selection. Below 
we attempt to generate some broad non- mutually exclusive predic-
tions that we hope will serve for future direct and indirect testing. (1) 
Reduced melanisation in warmer but lower altitude areas is likely to be 
associated with a shift in signal preference toward lighter colour sig-
nals; (2) at higher altitude melanisation will be less affected due to the 
additional function of UV protection and signal preference for darker 
signals will be maintained; (3) courtship displays in species with darker 
sexual signals will shift in season and daytime toward earlier (cooler) 
seasons and earlier (cooler) daytime hours.

8  |  KNOWLEDGE GAPS AND FUTURE 
DIREC TIONS

Our review identified indirect and direct evidence that climate, specifi-
cally temperature, affects colour expression, in particular melanin- based 
colours in insects. Many studies we reviewed provided indirect evidence 
using time series or spatial patterns, while experimental studies were 
less frequent. Perhaps not surprisingly, experimental studies tended 
to use ‘model’ species such as Drosophila (Ramniwas & Singh, 2022) 
or Colias butterflies (Nielsen & Kingsolver, 2020) with fewer examples 
from non- model species. This raises the question of whether the model- 
species responses can be extrapolated to other species or taxonomic 
groups (Zuk et al., 2014). Somewhat surprising was the inconsistency in 
response between and sometimes within species: higher temperatures 
led to both increases and decreases in melanisation or the frequency of 
melanic phenotypes, with no clear pattern emerging. Regardless of the 
direction of response, fitness consequences of climate change- induced 
colour change in terms of reproduction, foraging, and survival were 
mostly not explicitly tested but for some outstanding examples (e.g. 
butterflies (Xing et al., 2016; Zeuss et al., 2014);	fig	wasps	(Jevanandam	
et al., 2013); ladybird beetle (Dubey et al., 2016)).

We can see great opportunities in balancing short- term experi-
ments that are most likely to detect phenotypic plasticity with long- 
term experiments over several generations that are likely to capture 
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microevolutionary effects to generate a more wholistic assessment of 
how insect populations might be affected by climate change. We also 
observed possible geographic and sex- specific biases in the current lit-
eratures due to the limited geographic regions (mostly the temperate 
regions of the Northern Hemisphere) and a focus on male colour sig-
nals. Clearly, large- scale geographic surveys on both sexes of multiple 
species can reduce this bias. The availability of many advanced tech-
niques such as digital photographs for assessing colour, and computer- 
assisted image analysis software also opens the use of museum 
specimen that may be too fragile for conventional photospectrometry. 
Usage of museum specimens provides further opportunity to under-
stand the temporal trend of insect colour change under a changing cli-
mate. The advancement of genomics, bioinformatics, and genetics also 
broaden the scope to understand the genetic mechanism of climate 
change- induced colour change. In conclusion, the effect of global cli-
mate change on insect colour can impact physiological functions, intra-  
and interspecies communication, and sexual selection, all of which may 
contribute to the global decline of insects. We believe monitoring the 
impact of global climate change on insect traits will assist the manage-
ment of biodiversity and environmental sustainability.

We further highlighted the following questions to improve our 
understanding of climate change impact on insect colour, sexual sig-
nals, and sexual selection:

1. How does global warming drive insect colour change in dif-
ferent populations, species, and sexes?

2. How do temperature, humidity, life history traits, sexual selec-
tion, or a combination thereof relate to variation in colour under
climate change?

3. How does climate- related colour change impact mechanism of
sexual selection such as intrasexual competition (male–male com-
petition, female–female competition) and intrasexual mate pref-
erences (male mate choice or female mate choice)?

4. How does climate- related colour change and its impact on sexual
signals and sexual selection vary across biomes; do tropical and
temporal species respond similarly or differently?

5. How does climate- related colour change impact species–spe-
cies interactions such as predator–prey and host–pathogen
interactions?

6. How does colour change and sexual signalling under a rapidly
changing climate impact insect fitness?
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