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Abstract
We discuss the derivation of an effective Hamiltonian for open quantum many-
particle systems. The aim is to define an operator that can be used for (molecu-
lar) simulations where, through the exchange of energy and matter with the
surrounding environment (reservoir), the number of particles, n, becomes a
variable of the problem. The Hamiltonian is formally derived from the Von
Neumann equation; specifically, we derive an n-hierarchy of equations for the
density matrix, ρ̂n, for near equilibrium situations. Such a hierarchy, in case of
stationary equilibrium, delivers the standard grand canonical density matrix as
it would be expected. We report that a similar Hamiltonian was conjectured,
from empirical considerations, in the field of superconductivity. Thus our res-
ult also provide a formal basis for this long-standing hypothesis. Finally, an
application is discussed for Path Integral simulations of molecular systems.

Keywords: open systems, quantum many-particle systems,
Von Neumann equation, molecular dynamics schemes

1. Introduction

The simulation of open quantum many-particle systems that exchange matter with the envir-
onment is becoming a pressing request by modern research and associated technology (see e.g.
[1] and references therein). In current research a systematic description of an open quantum
system derived from the Von Neumann equation. i.e. from first principles, is achieved by the
Lindblad equation and related approaches [2–4]. However, the equation is used mostly for
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problems of transport (see e.g. [2–7] and references therein) and, at the best of our knowledge,
does not describe the situation of open systems in equilibrium with a reservoir where the num-
ber of particles naturally fluctuates in a grand canonical fashion [2, 3, 8]. On the other hand, an
effective Hamiltonian for open quantum systems in equilibrium with a particle’s reservoir has
been conjectured long time ago in the field of superconductivity; such a conjecture is based on
physical intuition, but so far has not been explicitly derived from the Von Neumann equation
(see e.g. [9, 10]). Systems in equilibrium are of high interest in current research thus, the key
question to address is whether it is possible to explicitly derive an n-dependent operator, with n
being the variable number of particles, physically consistent and mathematically well defined,
so that one can treat the evolution of a system that exchanges energy and matter with a bath
at equilibrium or near equilibrium and as a consequence is characterized by particle number
fluctuations that are not induced by any external source. For near equilibrium it is meant that
the deviation from equilibrium can be eventually added to the system as a (small) perturbation

As an example of system of interest, a relevant class of problems that falls in the cat-
egory is that of numerical algorithms for ab initio molecular dynamics for open molecular
systems [1, 11, 12]. In such systems, within the Born–Oppenheimer approximation [13], that
is under the hypothesis of nuclear and electronic scale separation, nuclei are considered clas-
sical objects while electrons are treated at quantum mechanical level; these latter require a
proper quantum treatment as open system and a corresponding numerical prescription for cal-
culations. This field is, in our view, still in its infancy, since most of the current open-system
ab initio algorithms are built on empirical basis and thus are often numerically not reliable [14]
due to conceptual inconsistencies that lead to incorrect statistical sampling [1, 15]. This means
that the construction of a solid theoretical framework would assure physical consistency and
computational robustness to the underlying numerical methods, as it occurred for molecular
dynamics of classical and semi-classical open systems with a system-reservoir exchange of
particles [16–20].

Using basic statistical mechanics arguments, for the ab initio treatment of open molecu-
lar systems the following condition has been proposed: the electronic chemical potential of
the open system must have the same value of the electronic chemical potential of reference
(i.e. of a large system)[12]; the results of this work provides an explicit formal justification
to the idea described above. Furthermore, the current model sets the formal basis for moving
beyond equilibrium by adding, on the equilibrium set up, possible physical perturbations to
the molecular system.

Actually, in molecular simulations of open systems where the quantum effects of spatial
delocalization of atoms in space are included, the numerical algorithmmakes use of the effect-
ive Hamiltonian derived in this work. This specific example of practical application will be
explicitly discussed in the paper. From the conceptual point of view, the key aspect at the
basis of this work, is that for situations of equilibrium or near equilibrium, the fundamental
principles of quantum statistical mechanics state that the density matrix of a quantum sys-
tem takes the form of a grand canonical operator (see e.g. [21]). In this context, the neces-
sary request to assure physical consistency for an equation with system-reservoir exchange
of particles is that it should deliver the grand canonical density matrix in the limiting case of
full statistical equilibrium. As anticipated above, interestingly, from empirical considerations
within the framework of statistical mechanics, N.N.Bogoljubov in the treatment of supercon-
ductivity introduced a scalar parameter (identified a posteriori as the chemical potential of the
system) associated to the particle number operator with the task of fixing the particle’s num-
ber variation and conjectured an effective Hamiltonian for open systems with similar form as
the one that we will derive here [9, 10]. However, in our work, differently from the empir-
ical derivation of [9, 10], we propose a formal derivation of the effective Hamiltonian starting
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from the Von Neumann equation for the density matrix of the entire system. Next, having
in mind systems typically treated in molecular simulations, we integrate out the degrees of
freedom of the bath region and derive an n-hierarchy of equations for the density matrix of
the subsystem of interest, ρ̂n. This procedure is conceptually equivalent to the procedure fol-
lowed for the Liouville equation in the classical case [16, 17] developed within the framework
of molecular dynamics [22]. The novelty of our proposal lies in the explicit (step-by-step)
formal derivation of the equation from first principles, having in mind a molecular system for
numerical simulations. The relevant implication is that the procedure employed allows us to
explicitly define the physical conditions of validity of the model; this aspect may be rather
relevant in a computational set up. It must be noticed that, in our knowledge, the principle that
the grand canonical density matrix should be automatically and explicitly obtained from the
Von Neumann equation in the limiting case of equilibrium has not been applied to any of the
currently used quantum master equations where the number of particles are a variable of the
problem.

2. Quantum grand canonical ensemble

In statistical mechanics, an open system of particles, S, that exchanges energy and mat-
ter in equilibrium with a reservoir B, is characterized by a grand canonical density mat-
rix: ρ̂n = 1

QGC
exp(− 1

kT (Ĥn−µn̂)), where Ĥn is the Hamiltonian operator at n particles in
the system S, where n is a variable quantity and n̂ the number operator that counts the
number of particles in a given quantum state. Finally, µ is the chemical potential, that
is a quantity that regulates the exchange of particles with the bath and QGC a normal-
ization factor. In essence, µ can be seen as a rate of change of the free energy of the
system w.r.t. the change of number of particles, and n̂, the particle number operator
[21]. This latter, in a Fock space formalism, is defined as [23] n̂=

∑
k n̂k and n̂k = â†k âk,

with â†k and âk the creation and annihilation operators that act on the k-orbital of a
particle wavefunction, (with basis set ϕ1,ϕ2, ....ϕm), |ψ⟩= |ϕ1....ϕk−1,ϕk,ϕk+1. . .ϕm⟩ so that
âk|ϕ1....ϕk−1,ϕk,ϕk+1. . .ϕm⟩=

√
nk|ϕ1....ϕk−1,ϕk+1. . .ϕm⟩ and â†k |ϕ1....ϕk−1,ϕk+1. . .ϕm⟩=√

nk+1|ϕ1....ϕk−1,ϕk,ϕk+1. . .ϕm⟩, so that n̂k|ψ⟩= nk|ψ⟩ with nk the number of particles in
the k-orbital of the many-particle wave function |ψ⟩.

3. Quantum equation in the limiting case of equilibrium: grand canonical
operator

The approach employed in this work to derive a quantum equation for the density mat-
rix of a (sub-)system embedded in a large reservoir of energy and particles starts from the
Von Neumann equation [24] for the density matrix ρ̂ of a (large) total system with a given
Hamiltonian Ĥ:

iℏ
dρ̂
dt

=
[
Ĥ, ρ̂

]
. (1)

In the following, instead of a pure dynamical view, as done for example in the derivation of
the Lindblad equation, we consider a statistical view, that is consider a partitioning of the total
systemwithN particles in a subsystem Swith n particles and a reservoir BwithN− n particles,
as done for the Liouville equation in the case of classical systems [16, 17]. Next we trace out
the degrees of freedom of B in the Von Neumann equation, considering all the partitioning of
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N particles in n and N− n sets. The result is a hierarchy of equations for ρ̂n(t) = N!
(N−n)!n! ρ̂S(t),

which in the case of stationary state of equilibrium must deliver the grand canonical density
matrix: ρ̂n = 1

QGC
exp(− 1

kT (Ĥn−µn̂)) as a solution. For hierarchy here is meant that one obtains
a set of equations, one for each value of n, so that the n-dimensional operator ρ̂n represents the
n-fluctuating ensemble for the open system.

3.1. Partitioning the total system into a system of interest and reservoir

We consider the following Hamiltonian for the total system: Ĥ= ĤS⊗1B+1S⊗ ĤB+ Ĥint;
where the notation 1S and 1B represent the identity operator of the Hilbert space associated to
the domain S and B respectively. In essence, we consider the total Hamiltonian partitioned in
the Hamiltonian of particles in S, the Hamiltonian of the particles in B and the Hamiltonian of
interaction between the particles of S and B.

We assume ||Ĥint||≪||ĤS|| always, this is the so-called surface-to-volume ratio approxim-
ation used in the statistical derivation of grand canonical ensemble that can be found in the
most popular textbooks of statistical mechanics (see e.g. [21]). In essence, one neglects the dir-
ect interaction between S and B and considers the total Hamiltonian partitioned between the
part of S and the part of B: Ĥ= ĤS⊗1B+1S⊗ ĤB = Ĥn⊗1B+1S⊗ ĤN−n, thus the particle
exchange between S and B happens according to the balance of free energy between S and B.
The free energy of S and the free energy of B are characterized by the particle-particle interac-
tions between particles only in S and particles only in B respectively, and by a particle-particle
interaction between particles in S and particles in B (direct interactions). Under the hypothesis
that S is large enough, the direct particle-particle interaction between S and B is negligible
compared to the effect of all the other interactions, e.g. surface-to-volume ratio hypothesis
(see e.g. [21]). The density matrix of the whole system needs to be defined according to the
partitioning in a system S with n (instantaneous) particles and a bath B with N− n (instantan-
eous) particles, this means that, for indistinguishable particles, one must consider all possible
partitioning (realizations) of N in n particles for S and N− n particles for B, i.e. N!

(N−n)!n! . It
follows that a consistent definition of the total density matrix is (see also [16]):

ρ̂=
N!

(N− n)!n!
ρ̂Sn ρ̂BN−n (2)

with ρ̂Sn being the n-realization of the density matrix that represents S and ρ̂BN−n the corres-
ponding N− n-realization of the density matrix that represents B.

We then define:

ρ̂n = TrB
N!

(N− n)!n!
ρ̂Sn ρ̂BN−n . (3)

At this point we make a first step in the modeling, that is we employ the Born–Markov
approximation [25]: ρ̂(t) = N!

(N−n)!n! ρ̂Sn(t)⊗ ρ̂BN−n(0), with TrBρ̂BN−n(0) = 1∀n. In essence we
assume that the bath is large enough and thermodynamically in a stationary state where the
exchange of particle with S can be ignored (for the properties of B). One can formally see it
also in the following manner: one can write ρ̂B = 1

QB
γ̂B, where QB is the partition function of

B, that is: QB = TrBγ̂B and γ̂B is the density matrix operator of B not normalized, for example
in the canonical form: γ̂B = e−βHB . It is known from statistical mechanics that−kT lnQB = FB
which is the free energy of B. Since we assumed that B is large enough and in equilibrium so
that its properties do not significantly change with time, then the exchange of particles with S
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can be ignored (w.r.t. the properties of B), thus FB can be considered constant and thus inde-
pendent of N− n, it follows: TrBρ̂B(0) = 1. The followed approach corresponds to the stand-
ard procedure of statistical mechanics when the grand canonical partition function is derived
from statistical considerations (see e.g. [21]). Proceeding further with the model, since this is
a statistical approach where in S the particle number n can take values from zero to N, one
has to count all such possible realizations in the ensemble and thus:

∑
n=0,NTrρ̂n = 1, which

implies that Trρ̂=
∑

n=0,NTrSTrB
N!

(N−n)!n! ρ̂Sn ρ̂BN−n = 1, as it occurs in a grand-canonical
ensemble [16, 21].

In the next to avoid a heavy formalism we will indicate S for the system and B for the bath
without carrying further the particle number label n and N− n.

At this point, in order to reduce equation (1) only to the degrees of freedom of S, we integrate
both sides of the equation w.r.t. the degrees of freedom of B, that is we calculate the trace
over B:

iℏ
dTrBρ̂
dt

= TrB
[
Ĥ, ρ̂

]
. (4)

Due to additivity of the Lie bracket, the r.h.s of equation (4) becomes TrB[Ĥn⊗1B+1n⊗
ĤN−n, ρ̂n⊗ ρ̂B] = TrB[Ĥn⊗1B, ρ̂n⊗ ρ̂B] +TrB[1n⊗ ĤN−n, ρ̂n⊗ ρ̂B].

We have: TrB[Ĥn⊗1B, ρ̂n⊗ ρ̂B] = [Ĥn,TrB(ρ̂n⊗ ρ̂B)] = [Ĥn, ρ̂n]. For the next termwe have:
TrB[1n⊗ ĤN−n, ρ̂n⊗ ρ̂B] = TrB(ĤN−nρ̂B)ρ̂n− ρ̂nTrB(ρ̂BĤN−n).

It can be notices that TrB(ĤN−nρ̂B) and TrB(ρ̂BĤN−n) are nothing else than the ensemble
averaged energy of B, which we denote by ⟨EB⟩. This quantity depends on the number of
particles of S and B (i.e. n and N− n). Here comes the crucial point of our modeling proposal,
as explained below. ⟨EB(N− n)⟩ is an unknown function of the variable n, if we consider the
situation of equilibrium between S and B, then we can reasonably expand the energy of B in
Taylor series at the first order:

⟨EB (N− n)⟩= ⟨EB (N)⟩ +
∂⟨EB (N− n)⟩

∂n

∣∣∣∣
n≪N

n. (5)

The term ⟨EB(N− n)⟩ is not known explicitly, the term ⟨EB(N)⟩ is not crucial since this is a
constant that can be considered as the zero of the energy scale, instead −∂⟨EB(N−n)⟩

∂n |n≪N is
actually an explicitly known quantity that characterizes the thermodynamics of the system. It
corresponds, by definition, to the chemical potential µ, at constant entropy and volume for B
(since we consider B in stationary equilibrium, see also [26]). It must be noticed, as expressed
in the formalism above, that the expansion in nmust not be seen as n→ 0, but as an expansion
in the limit N≫n, so that effectively n is negligible compared to N. This hypothesis implies
that the effects of a variation of n on the physics of B is negligible, that is the macroscopic
properties of B are determined as if B was a canonical ensemble with, effectively, a fixed
number of particles N (see e.g. [21]). In practical terms, the validity of equation (5) strongly
relies on considering a large B for which the variation of its macroscopic physical quantities,
due to a variation of n, is negligible w.r.t. the numerical accuracy chosen for the calculations
of physical quantities in the open system.

Moreover, the term −∂⟨EB(N−n)⟩
∂n n= µn must be interpreted within the framework of

quantum statistical mechanics, that is, n in equation (5) must be considered as an operator, n̂,
which, at given thermodynamic conditions consistent with µ, counts the number of particles of
the corresponding quantum state of S. Next, we notice that while B is considered large enough
so that the change of number of particles, from the physical point of view does not affect its
properties (as it was at fixed number of particles), the same cannot be said for S. In fact, a
change of number of particles carries sizable fluctuations in the statistical properties of S since
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⟨EB(N− n)⟩ enters into equation (4) ‘acting on’ ρ̂S. Thus for situations close to equilibrium
equation (4) is reduced to:

iℏ
dρ̂n
dt

=
[
Ĥn−µn̂, ρ̂n

]
(6)

and for the exact equilibrium with dρ̂n
dt = 0, one would recover the grand canonical density

matrix for S: ρ̂n = 1
QGCS

e−
1
kT (Ĥn−µn̂) as a solution, with QGCS =

∑∞
n=0TrS[e

− 1
kT (Ĥn−µn̂)]. Note

that equation (6) leads to a solution for ρ̂n that preserves the trace as:
∑∞

n=0 (TrSρ̂n) = 1.
The correspondence between classical and quantum statistical mechanics used above to

expand ⟨EB(N− n)⟩ and write it in operator form is the main proposal of our model; it is
inspired by the procedure usually used in literature to define statistical and thermodynamic
quantities in quantum mechanics starting from the known classical case [21]. Once the model
above is accepted, near equilibrium one may add any source of energy of (small) perturbation
(e.g. particle current, heat, external fields) on the r.h.s. of equation (6). The meaning of ‘near
equilibrium’ varies from system to system and problem to problem, a general criterion would
be to consider perturbations that lead to a linear response with an input/perturbation of energy,
with respect to the energy of equilibrium of the system, within a certain threshold, so that the
physical hypothesis of ‘small perturbation’ holds (e.g. 10% of energy input/output, see e.g.
[27]). The extended equation would then allow for a larger set of possibilities compared to the
physical situations treatable by other approaches, e.g. the standard Lindblad equation.

3.2. Empirical derivation of Ĥ−µn̂ v.s. our first principles derivation

As anticipated above, an effective Hamiltonian similar to our result, ĤGC = Ĥ−µn̂ was con-
jectured by Bogoljubov in the framework of superconductivity for open quantum systems.
The argument used for advancing such a proposal is based on the physical intuition that
the result obtained from the canonical ensemble can be carried over to the grand canonical
ensemble by extending the canonical Hamiltonian with a term that regulates the variation of
number of particles at the rate expressed by the chemical potential, µ, as known from ther-
modynamics. That is, it seems reasonable to define a grand canonical effective Hamiltonian:
ĤGC = Ĥ−µn̂ so that for similarity to the canonical density matrix, ρ̂C = e−βĤ, one would
obtain: ρ̂GC = e−βĤGC = e−β(Ĥ−µn̂), that is the well known result of statistical mechanics
regarding the grand canonical density matrix. It must be added that in literature the results
of quantum statistical mechanics are derived through a formal similarity to the classical res-
ults, that is, the canonical or grand canonical density matrix are a formal extensions of the
classical results to the Hilbert space (see e.g. [28] and references therein). In this sense, the
Hamiltonian ĤGC = Ĥ−µn̂, in [9, 10], is based on an empirical formal extension of a classical
result, it is not derived from a rigorous first principles equation of quantum mechanics (Von
Neumann equation).

The approach shown here instead is not empirical in such sense, in fact we start from the
Von Neumann equation, that is an equation that expresses the very nature of a quantum system,
divide the system in an open system and a large reservoir, make physical hypothesis about the
reservoir and integrate its degrees of freedom in the equation. The relevant consequence is
that the chemical potential is not empirically ‘imposed’ a priori, but is formally obtained as
a result of the integration of the reservoir (as the constant of the first order expansion in the
number of particles for the system-reservoir coupling). This means that we do not impose
the grand canonical density matrix as a constraints of our model, instead we verify that our
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Hamiltonian automatically leads to the grand canonical density matrix as a natural solution of
the Von Neumann equation for an open system in a stationary state.

In essence, our procedure embeds a formal justification of the empirical model of [9, 10].
Furthermore it clarifies that Ĥ−µn̂ is a first order approximation within the system-reservoir
coupling and the error is in the truncation terms of the Taylor series w.r.t. the number of
particles of the open system.

It is important to notice that while, for technical reasons, ĤGC = Ĥ−µn̂, may be popular in
fields such as theory of superconductivity, for quantummolecular simulations this Hamiltonian
has not been considered yet, except in this work (see the next section). In fact in simulations, the
variation of number of particles is implemented through a stochastic process within a Monte
Carlo approach (see e.g. [29]), where particles are inserted or deleted according to the chemical
potential. Instead, ĤGC = Ĥ−µn̂, as derived by us, allows for a fully dynamic picture, without
the need of separating the purely dynamic part, generated by Ĥ, with a stochastic part regulated
by µ. As a practical conclusion, one of the major advantage of the extended Hamiltonian is
that it allows for the possibility of designing very efficient Molecular Dynamics algorithms
for open systems [1, 12, 22].

4. Example of a practical application: path integral molecular dynamics of
open systems

The Path Integral formalism of Feynman can be used in molecular dynamics (MD) to account
for the quantum delocalization in space of atoms/atomic nuclei (quantum nuclear effects).
The essence of the idea (for the specific details see the appendix or appendix C and D of [11])
is that the quantum Hamiltonian of an atomic or molecular system can be mapped onto an
effective classical Hamiltonian where the atoms in MD, or the nuclei in ab initio electronic
structure calculations, are represented as ring polymers with beads connected via springs. The
three dimensional fluctuation in space of such polymer rings describes the quantum atomic or
nuclear delocalization in space. Moreover, the sampling of configurations in space, via clas-
sical trajectories produced by the MD, results in the statistical sampling of the correspond-
ing atomic/nuclear quantum density matrix. As a consequence any physical quantity aver-
aged over the MD trajectory corresponds to the quantum average of the quantity in question.
Of specific interest for us is the Hamiltonian used for doing such simulation in the case of
open systems that exchange energy and matter with a reservoir. In fact, in such simulations
[30] the effective classical Hamiltonian contains an additional one-particle potential term that
acts (mostly) at the border between the molecular system and the reservoir and regulates the
system-reservoir exchange of particles. The system-reservoir exchange occurs in a way that
the resulting statistics reproduces the Grand Canonical distribution at the (correct) chemical
potential of the system, this latter corresponds approximately to the statistical average of the
one-particle potential. In formal terms, the MD of the polymer rings (i.e. the effective classical
simulation on which the quantum Hamiltonian has been mapped) contains the standard path
integral Hamiltonian plus an additional, one-particle potential term: HPI −

∑n
i=1ϕi(x), with

⟨ϕi(x)⟩ ≈ µ and n the instantaneous number of particles in the system [31–34]. The corres-
ponding MD simulation, as explained above, samples effectively the quantum, grand canon-
ical, density matrix of the molecular system.

As a matter of fact the classical Hamiltonian HPI −
∑n

i=1ϕi(x), since it samples the grand
canonical distribution, consistently maps on an effective classical problem the Hamiltonian
of an open quantum system in equilibrium, that is, it effectively maps the Hamiltonian of
equation (6) Ĥn−µn̂ in the stationary case of equilibrium.
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In the path integral MD the term,
∑n

i=1ϕi(x), as underlined above, regulates the net num-
ber of particles that according to the statistical rate (µ, the chemical potential) is allowed
to enter into/exit from the system so that the statistics satisfies the grand canonical distri-
bution of equilibrium, which, effectively, is the quantum grand canonical density matrix:
ρ̂n =

1
QGCS

e−
1
kT (Ĥn−µn̂). In a quantum view of the molecular system, the equivalent of the

action of
∑n

i=1ϕi is the action of the operator µn̂, i.e. counting the instantaneous number of
particles of the system according to the rate µ so that it satisfies the grand canonical dens-
ity matrix at equilibrium (i.e. [Ĥn−µn̂, ρ̂n] = 0). As a consequence, the effective classical
Hamiltonian in the path integral MD, HPI −

∑n
i=1ϕi(x), when mapped back to the quantum

Hamiltonian is physically consistent with the expression: Ĥ−µn̂ of equation (6). Furthermore,
since ⟨ϕi(x)⟩ ≈ µ, one has that ⟨

∑n
i=1ϕi(x)⟩ ≈ µ⟨n⟩ and accordingly in quantum terms one

would have that ⟨ψ|µn̂|ψ⟩= µ⟨n⟩, which enforces the statistical correspondence between the
classical operator used in path integral simulations of open systems and the quantum operator
derived in this work. In essence, the result of this paper gives the needed conceptual legitim-
ization to an otherwise purely empirical numerical approach. Until now, due to the lack of
conceptual justification for the effective Hamiltonian used, the application of the open system
approach to Path Integral Molecular Dynamics has often required a case-by-case numerical
validation. The numerical validation was done running additional and rather expensive full
quantum simulations of large systems [19, 20, 30, 35, 36]. The conceptual justification of the
effective Hamiltonian shown in this paper implies that a specific case-by-case numerical val-
idation is not required.

5. Conclusions

We have addressed the problem of system-reservoir exchange of energy and particles for
quantum systems with the aim of deriving an effective Hamiltonian for molecular simulations.
We start from the Von Neumann equation for the density matrix of the whole (large) system,
and model it according to the partitioning of the total system in a system of n variable particles
and a large stationary reservoir; furthermore we focus on the situation of equilibrium or near
equilibrium. Next, by integrating out the degrees of freedom of the environment we obtain an
equation for the density matrix of the subsystem of interest carrying terms of interaction with
the environment/reservoir. The result is a n-hierarchy of equations for the density matrix of the
system ρ̂n, where n is the number of particles governed by an effective Hamiltonian, Ĥn−µn̂.

Since n is a variable quantity it follows that each ρ̂n represents one of the possible statistical
realizations; in the limit of stationary equilibrium we recover a known solution, that is the
grand canonical density matrix as it would be expected for naturally fluctuating open system in
equilibrium. The procedure employed for the derivation of the hierarchy of equations is similar
to the procedure employed for a system of classical particles [16, 17]; such a procedure was
used as a theoretical platform to design algorithms of (classical) molecular simulation [22].We
have pointed out that our derivation can be also considered as the explicit formal derivation
of a result that was empirically conjectured within the field of superconductivity and that,
in addition, now can be extended to the larger field of quantum molecular simulations. At
numerical level, the theoretical model proposed here already gives sufficiently solid ground to
computational methods for studying open molecular systems. In order to support such a claim
we discussed how the model proposed here forms the theoretical basis of algorithms that are
successfully used in Path Integral simulations of open molecular systems. In perspective, the
proposed model can be used as a theoretical basis for ab initio simulations of open systems
where molecules explicitly carry electrons. Existing algorithms for such systems are based
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on empirical considerations only [1, 12]. This field, despite its potential relevance, is, in our
view, still in its infancy and the search for a solid formal ground with the associated conceptual
development of the subject is highly desired.
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Appendix. Path integral formalism and its application in molecular dynamics

In this section, we report the basic information about the the path integral formalism within the
framework of quantum statistical mechanics and its implementation in Molecular Dynamics
to simulate quantum spatial delocalization in space of atoms of nuclei. A more complete treat-
ment can be found in [37].

The starting point is the Hamiltonian of a single particle subject to a potential U:

Ĥ=
p̂2

2m
+U(x̂) = K̂+ Û, (7)

with K̂ and Û the kinetic and potential energy operators, respectively, fulfilling the commut-
ation relation: [K̂, Û] ̸= 0. The element in the space representation of the density matrix are
written as:

ρ
(
x,x

′
)
= ⟨x

′
|e−βH|x⟩. (8)

K̂ and Û do not commute, thus to the aim of feasible calculation the Trotter theorem is used.
For two non-commuting operators, A and B, the Trotter theorem reads:

eλ(Â+B̂) = lim
P→∞

[
e

λÂ
2P e

λB̂
P e

λÂ
2P

]P
, (9)

where P is known as the ‘Trotter number’. The application of the theorem to the density matrix

element gives: ρ(x,x
′
) = limP→∞⟨x′ |[e−

βÛ
2P e−

βK̂
P e−

βÛ
2P ]P|x⟩. Next, let us define the operator

Ω̂ = e−
βÛ
2P e−

βK̂
P e−

βÛ
2P , then :

ρ
(
x,x

′
)
= lim

P→∞
⟨x

′
|Ω̂P|x⟩= lim

P→∞
⟨x

′
|

P︷ ︸︸ ︷
Ω̂Ω̂Ω̂Ω̂. . .Ω̂ |x⟩. (10)

P− 1 insertions of the identity operator, Î=
´
dx|x⟩⟨x|, between each Ω̂ gives:

ρ
(
x,x

′
)
= lim

P→∞

ˆ
dx2. . .dxP×⟨x

′
|Ω|xP⟩⟨xP|Ω|xP−1⟩⟨xP−1|. . .|x2⟩⟨x2|Ω|x⟩. (11)

9
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As a consequence, the calculation of the matrix elements is simplified:

⟨xk+1 | Ω̂ | xk⟩= ⟨xk+1 | e−
βÛ
2P e−

βK̂
P e−

βÛ
2P | xk⟩.

Since Û|xk⟩= U(xk), one has: ⟨xk+1 | e−
βÛ
2P e−

βK̂
P e−

βÛ
2P | xk⟩= e−

βU(xk+1)

2P ⟨xk+1 | e−
βK̂
P |

xk⟩e−
βU(xk)

2P .
Concerning the kinetic operator, one introduces the identity operator in momentum space:

I=
´
dp | p⟩⟨p | and, since K̂|p⟩= p2

2m , it follows: ⟨xk+1 | e−
βK̂
P | xk⟩=

´
e−

βp2

2mP ⟨xk+1 | p⟩⟨p |
xk⟩dp. Furthermore, through the relation between the position and momentum eigenstate:
⟨x | p⟩= 1√

2πℏe
ipx
ℏ one obtains:

⟨xk+1 | e−
βK̂
P | xk⟩=

1
2πℏ

ˆ
dpe

ip(xk+1−xk)
ℏ e−

βp2

2mP , (12)

whose integration delivers the following expression: ⟨xk+1 | e−
βK̂
P | xk⟩=

( mP
2πβℏ2 )

1/2e
− mP

2βℏ2 (xk+1−xk)
2

and, by substituting in the expression of the density matrix, one
obtains:

ρ
(
x,x

′
)
= lim

P→∞

(
mP

2πβℏ2

)P/2ˆ
dx2. . .dxP

×exp

(
−1
ℏ

P∑
k=1

[
mP
2βℏ

(xk+1 − xk)
2
+
βℏ
2P

(U(xk+1)+U(xk))

])∣∣∣∣∣
xP+1=x

′

x1=x

. (13)

The partition function of the system is calculated as the trace of the density matrix within a
certain interval [0,L] (the linear size of the box containing the particle):

Z=

ˆ L

0
dx⟨x | e−βĤ | x⟩=

ˆ L

0
dxρ(x,x) . (14)

in explicit terms:

Z= lim
P→∞

(
mP

2πβℏ2

)P/2 ˆ
D(L)

dx1. . .dxP× exp

(
− 1
ℏ

P∑
k=1

[
mP

2βℏ
(xk+1 − xk)

2 +
βℏ
P
U(xk)

])∣∣∣∣∣
xP+1=x

′

x1=x

,

(15)

where D(L) are all the possible paths within [0,L]. If one expresses it as:

Z= lim
P→∞

(
mP

2πβℏ2

)P/2ˆ
D(L)

dx1. . .dxPe
−βH(x1...xP)

it can be concluded that the ‘effective’ Hamiltonian corresponds to:

H(x1. . .xP) =
P∑
k=1

[
1
2
mω2

P (xk+1 − xk)
2
+

1
P
U(xk)

]
,

withωP =
√
P

βℏ and xP+1 = x1. The result above corresponds (and it is known in literature as) the
discretized path integral (quantum) representation of the partition function of a single particle.
As a matter of fact, it can be seen as the partition function of a polymer ring with P beads

10
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harmonically linked to each other via nearest neighbor connections, with ωP being the coup-
ling strength. The extension N interacting particles is, in principle, not trivial since the stat-
istics/symmetry (fermionic or bosonic) must be included. However, in first approximation,
independently on whether the particles are fermions or bosons, the basic quantum effects of
particle spatial delocalization do not need the introducing of the particle symmetry.

As a consequence, for a Hamiltonian of N particles in d-dimensions: Ĥ=
∑N

i=1
p̂2i
2m +

U(r̂1, . . ., r̂N), it follows that:

Z= lim
P→∞

N∏
i=1

(
miP

2πβℏ2

)dP/2ˆ N∏
i=1

dr(1)i . . .dr(P)i

× exp

(
−

P∑
k=1

[
N∑
i=1

miP
2βℏ2

(
r(k+1)
i − r(k)i

)2
+
β

P
U
(
r(k)1 , . . .,r(k)N

)])
r(P+1)
i =r(1)i

. (16)

A natural consequence of the formalism is that for two particles (atoms) in their bead represent-
ation, the atom-atom interaction implies that only the beads with the same index k do interact
with each other. The density quantum density matrix (or the partition function) obtained above
can be sampled using a an effective fictitious dynamics as that produced by classical Molecular
Dynamics, as reported in the subsection below.

A.1. Path integral formalism in molecular dynamics

The effective fictitious dynamics for MD simulations requires to have momenta associated to
each particle (atom), which are not present in the effective ring polymer Hamiltonian. This

problem can be solved by writing: ( mP
2πβℏ2 ) =

´
dp1. . .dpP(−β

∑P
i=1

p2i
2m′ ) that is by artificially

adding P-Gaussian integrals corresponding to fictitious momentum variables p1, . . .,pP where
m

′
= mP

(2πℏ)2 , is an arbitrary mass parameter. Here we want only to show the general idea so we

can restrict our attention to a system of equivalent atoms, thusmj = ma for the j-atom andm
′

j =

m
′
for the fictitious mass. The extension to multi-atoms components is indeed straightforward.

The partition function is written as:

Z= lim
P→∞

ˆ
dp1. . .dpP

ˆ
dx1. . .dxP × exp

(
−β

P∑
k=1

[
p2k
2m′ +

1
2
maω

2
P (xk+1 − xk)

2 +
βℏ
P
U(xk)

])∣∣∣∣∣
xP+1=x

′

x1=x

,

(17)

with the effective quantizedHamiltonian: HPI =
∑P

k=1

[
[p(k)]2

2m′ + 1
2maω

2
P(xk+1 − xk)

2 + 1
PU(xk)

]
to be used for the MD simulation.

In this way we have mapped the quantum problem on an effective sampling in space of
interacting polymer rings via Molecular Dynamics, that is, while the dynamics is fictitious,
the space sampling of the conformations is statistically equivalent to the quantum statistics of
interacting atoms which are not rigid spheres but space-delocalized entities (the fluctuating
shape of each ring).
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