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Abstract

Higher-order logic (HOL) offers a simple syntax and semantics for representing and
reasoning about typed mathematical concepts. There are many state-of-the-art automated
theorem provers for HOL. But the type system of HOL lacks advanced features where types
may depend on terms. This is useful as many mathematical notions are inherently dependent
typed. Dependent type theory offers such a rich type system but has rather substantial con-
ceptual differences to HOL and isn’t supported as well by automated theorem provers. We
introduce a dependently typed extension DHOLP of HOL that supports dependent types
while retaining the style and conceptual framework of HOL. Moreover, we describe one
translation from DHOLP and a second one from one of its fragments to HOL and prove the
soundness and completeness of the translations. We implement both translations within the
MMT system — a system for formalizing mathematics — where they are combined with a
HOL prover into an automated theorem prover for DHOLP. Finally, we formalize basic set
theory notions in DHOLP and outline how such a formalization can be combined with a re-
cent translation of the language of the Mizar proof assistant to MMT to obtain an automated
theorem prover for problems in the language of the Mizar proof assistant.
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1 Introduction and Related Work

Motivation and goal of our work In recent times computer-aided mathematics is emerging
as a new way for building and communicating mathematical results and proofs. Computer-aided
mathematics promises to help with various challenges faced by the traditional approach, like
mistakes in complicated proofs, finding existing results and explaining proofs to humans. The
traditional approach relies on informal definitions and arguments meant to communicate to and
convince other researchers in the field. In contrast, computer-aided mathematics can support
human mathematicians by

1. ensuring that mathematical proofs are actually correct,

2. building tools that help explain arguments at the desired level of details,

3. building search engines for formalized mathematical results,

4. organizing complicated proofs, by "bookkeeping" what is known so far and what still
needs to be proven.

Tools for formalizing mathematics (such as theorem provers and proof assistants) can also help
in other related areas, for example in verifying the correctness of computer programs or (more
rarely) checking formal arguments in other fields ranging from physics to philosophy.

However, formalizing mathematics in computer-readable systems creates many challenges as
well. In particular, formalizing mathematical proofs in proof assistants requires (manually or
automatically) proving many details (of larger proofs) that would be immediately obvious to
human researchers working in the field. Such details are not interesting to prove, so we don’t
want to force mathematicians to spend time on them, although we do want to make sure that they
can actually be proven. Often, a mathematical notion can be formalized in several ways which
are different to a proof assistant (but not to a human). This leads to situations in which existing
results are present only in a form which makes them not directly applicable, requiring proving
even more "obvious details". Those issues are likely to only get worse with further adoption of
computer-aided mathematics.

In order to address these challenges and aid the adoption of computer-aided mathematics we
need better tools for proof assistants that help mathematicians with proving relatively easy lem-
mas. Ideally we want hammers — tools in a proof assistant that can prove simpler theorems at
the push of a button, without any human assistance.

Hammers consist of mainly two parts: an automated theorem prover (ATP) system and a trans-
lation from the language of the proof assistant to a logic supported by the ATP system. The ATP
can be developed as part of the hammer or, more commonly, an existing ATP system can be
used.

Currently, hammers usually translate conjectures into problems written in first-order logic —
although recently higher-order logic is becoming a more attractive translation target due to im-
proving ATP systems supporting it — and then try one or several ATP systems on the problem.
Afterwards the hammer might or might not attempt to reconstruct the proof, i.e. translate the
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proof found by the ATP system back into a proof in the language of the proof assistant. Such
proof reconstruction can increase the confidence in the correctness of the results of the hammers
and are especially useful when the translation itself isn’t sound and complete (meaning it may
be possible to prove translations of conjectures that aren’t provable originally or vice versa).

Particularly for proof assistants [27, 20, 17] based on higher-order logic (HOL) [9, 18, 1], but
also for the proof assistant Mizar [23] based on set theory, good hammer tools [28, 22, 3] are
available [5]. Considering the many existing mature ATP systems for HOL [2, 37, 7, 31, 41]
itself, this is hardly surprising.

However, higher-order logic is inconvenient for formalizing some advanced concepts (for in-
stance categories) — and dependent types are required to express some mathematical concepts
directly, at the cost of making types, type-checking and consequently proof automation more
difficult. 1 Dependent types are used in dependent typed logics or more commonly in dependent
type theory (DTT) to express such concepts. There exist many proof assistants for various ver-
sions of dependent type theory (DTT) [10, 24, 14, 29]. But, contrary to the situation for HOL,
there are effectively no existing ATP systems for DTT (or dependent typed logics) — although
there are some hammer tools (most notably Coqhammer [12]) for proof assistants using depen-
dent type theory. The difficulty in developing automated theorem provers for logics or type
theories with dependent types is mainly due to typing and type equality becoming undecidable,
as they require deciding equalities of terms.

Our goal is to work towards bridging this gap between higher-order logic for which many mature
ATP systems exist and dependent typed logic which is more useful for formalizing mathematics.

We are thus interested in sound and complete translations from dependent typed logics into HOL,
which we can use to build hammers for those logics. A translation being sound and complete,
means that all information present in the problem is encoded by the translation and a statement
is provable iff its translation is. It is important that the translations are sound and complete, in
order to ensure that hammers using them can find proofs for provable conjectures — and only
for those. For that reason completeness is the more important property, especially completeness
w.r.t. those kinds of statements that we want to prove with a hammer. This also means that we
don’t need to reconstruct proofs to ensure their correctness. Such translations can be considered
as "embeddings" of the source logic into the target logic.

There are two kinds of embeddings. In shallow embeddings, types are translated to types that
correspond to them as closely as possible. In deep embeddings all term and type information is
represented on term level. Shallow embeddings are more "natural" than deep embeddings and
HOL provers are more likely to be able to use their translation results efficiently. Deep embed-
dings on the other hand are easier to construct but harder to efficiently use with an ATP system

1We are not claiming as Kevin Buzzard conjectured on his blog that such concepts cannot be expressed using
different mechanisms in simple typed logics. We are merely saying that otherwise a different mechanism (for instance
locales as used in a recent formalization of schemes in Isabelle/Hol [6]) is required. Which mechanism works best
long-term (and for which mathematical domains) is hard to say, not enough mathematics has been formalized to
really judge this. We are just assuming that dependent types are useful for formalizing mathematics and it is therefore
interesting to study proof automation for logics with dependent types.
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to build a hammer. We are interested in a shallow embedding. In particular, we want to translate
equalities to equalities in HOL, with some additional typing conditions ("relativizations") added.

To enable this we want to translate from a dependently typed logic that — while extending the
type system of HOL to make it more expressive — retains the style and conceptual framework
of HOL as much as possible. Therefore, we will use judgments (especially validity) to represent
statements in the logic, as it is also done also in HOL and the dependent types are only used
to express inherently dependently typed mathematical concept (for example in category theory
or set theory, as exemplified later in the thesis). This is different from how mathematics is
typically represented in proof assistants like Coq, Lean or Agda, which represent propositions
as types (via the Curry-Howard correspondence) instead of as formulae as done in HOL and its
extensions that we consider. The Curry-Howard correspondence is the observation that truth,
falsehood and the logical connectives implication, conjunction and disjunction correspond to
empty resp. non-empty types, function types, product and sum types respectively. Then a proof
of a formula corresponds to running a function of the corresponding type. Our choice to focus
on HOL style problems not using the Curry-Howard correspondence, is also motivated by the
desire to make the source logic more intuitive to use for mathematicians, who are usually not
familiar with (dependent) type theory but probably are at least somewhat familiar with logic.

We will therefore define a dependently typed (conservative) extension DHOLP of HOL which
adds two kinds of dependent types — namely dependent function types (Π-types) and predicate
subtypes — to the language and has modified inference rules compared to HOL. Then we con-
sider translations into HOL and study their soundness and completeness properties. Our goal is
to find at least one sound translation from DHOLP to HOL which is at the same type complete
at least w.r.t. the validity judgment.

Our work is additionally motivated by a concrete practical goal. We want to develop a hammer
for the MMT [30] system — a formal system for formalizing mathematical knowledge — and
make this hammer as useful as possible. Since dependent types often occur in theories in the
MMT system, we want the hammer to also support dependent types. Consequently, we want to
implement our translation and build a hammer for MMT theories based on DHOLP.

Related work In the following, we will mention some of the more similar previous work and
discuss how this work differs from ours.

Bart and Melham [4] develop a translation of Martin-Löf-style dependent type theory into Gor-
don’s HOL interactive theorem prover [17]. This work differs from ours in various respects.
Their work focuses on dependent type theory in the propositions-as-types style, in particular
using identity types to represent equalities, whereas we builds DHOLP as an extension of HOL
with classical booleans and an equality predicate. Many of the subtleties we encounter are
unique to our approach. Furthermore, they target an interactive prover; whereas our approach
targets an automated theorem prover.

Another interesting example is the translation used in Coqhammer [12], a hammer tool for the
Coq [10] proof assistant. Coqhammer is based on a translation [11] of the calculus of inductive
construction [26] (a much more expressive type system than the one we consider) into first-order

Page 3 of 50



Colin Rothgang

logic. This translation is neither sound nor complete in general (meaning not all first-order logic
proofs found by the hammer correspond to proofs in Coq and not all first-order translations of
provable conjectures are provable). This is due to the translation loosing some information.
This is partially intentional as it simplifies the translated problems and in some cases actually
improves the chances of being able to lift proofs back to the calculus of inductive constructions.
In practice, the translation is "sufficiently" sound and complete to allow lifting many proofs from
first-order logic to Coq: more than 40% of all theorems in the Coq standard library [12] can be
proven by the hammer in push-button mode.

In this work, we are investigating somewhat simpler translations and therefore it is reasonable to
aim for a translation that is sound and complete. If the goal is to also reconstruct proofs however,
it might make pay off to aim for a simpler but incomplete translation (unlike ours).

Sojakova and Rabe [35] describe a sound and complete translation of dependently typed first-
order logic into simple typed first-order logic. The sound– and correctness proof is based on
model-theory and cannot be easily generalized to our setting as many of the main difficulties
we encounter don’t arise in a first-order setting (such as quantification or equality over function
types). It is also not clear how the approach would deal with the non-surjectivity of the trans-
lation in higher-order setting. Furthermore, we prefer giving a completeness proof that allows
to "lift" proofs from simple typed higher-order logic to dependently typed higher-order logic,
allowing the reconstruction of proofs in the source logic.

Contribution We start with higher-order logic and only replace its function types with Π-
types, a function type in which the return type may depend on the value of the argument to the
function, yielding dependently typed higher-order logic (DHOL). As it turns out, this change
already makes finding a sound and complete shallow embedding very difficult, the resulting
translation is slightly non-intuitive and proving its correctness is quite challenging. However,
the translation and the proof of soundness and completeness generalize: adding predicate sub-
types — subtypes specified by a predicate that its members need to satisfy — to the logic re-
quires only a few and rather straightforward changes to the translation and the proofs. The
resulting logic is dependently typed higher-order logic with predicate subtypes (DHOLP). We
actually present two slightly different translations — one from DHOLP into HOL and one from
a fragment of DHOLP into the corresponding fragment of HOL. For the completeness of the
translation we only consider completeness w.r.t. validity, i.e. whether formulae with provably
valid translations are provably valid as this is the property we actually need in practice. For
soundness, we need to restrict the theory we consider. We show the soundness of both trans-
lations, the completeness (w.r.t. validity) of the second translation and the completeness (w.r.t.
validity) of the first translation if we consider the intuitionistic fragments — meaning we replace
one inference rule by a somewhat weaker one — of the source and target logics. Considering
the intuitionistic fragments of the logics is motivated by the observation that the translation is
otherwise known to be incomplete w.r.t. typing and type-equality, as the translation is loosing
information. However we also explain why the translation preserves all information on term
level and why the completeness of the translation (w.r.t. validity) from DHOLP into HOL can
be done analogously.
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Besides these theoretical contributions, we also implement both translations to obtain a hammer
(using either translation) for theorems inside MMT [30] theories based on DHOLP. As a HOL
prover to use for the translated problems we pick LEO-III [37]. Since LEO-III is designed for
proving theorems in simple typed HOL (among other things like modal logics), it is already quite
good at proving simple typed theorems. LEO-III is designed with support for various kinds of
logics in mind and its ecosystem contains a logic-embedding tool [36] to embed various logics
into logics supported by LEO-III. The tool takes input in a language that can also express DHOL
(although this isn’t intended or supported by ATP systems). We extend the implementation of
this tool so that it can also translate DHOL problems into HOL problems which we can pass on
into HOL provers.

Furthermore, we continue the work [43] of Wolff, who implemented an extension for MMT using
LEO-III as an external prover for content based on first-order and higher-order logic. Building
on his work we extend proving support to MMT content based on DHOLP, extending the hammer
tool for MMT theories based on HOL to one for MMT theories based on DHOLP. In fact, all the
examples given in this thesis have been formalized in MMT, assuring us of the correctness of
our analysis of the examples and testing the implementation.

Finally, we demonstrate how DHOLP can be used to formalize set theory. Taking advantage of
a recently developed importer [32] from the proof assistant Mizar, which is based on set theory,
into MMT it becomes possible to use our MMT hammer to prove theorems from the "Mizar
mathematical library" — a library of mathematical results formalized in Mizar.

Structure of the thesis In Section 2, we give some historical background for higher-order
logic, explain some basic notions and briefly describe the LEO-III prover and the MMT system.
We also define the version of higher-order logic we want to use and talk about its properties.

In Section 3, we introduce DHOL and its intuitionistic fragment DIHOL, their translations into
HOL and its intuitionistic fragment IHOL respectively and explain the choice of logic and trans-
lation. We also discuss the main difficulty for proving completeness of the translation and de-
scribe our approach for overcoming this obstacle. Soundness and completeness of the translation
follow from the soundness and completeness of the translation from DHOLP into HOL.

In Section 4, we introduce DHOLP and its intuitionistic fragment DIHOLP and their translations
into HOL and IHOL respectively. We prove the soundness of the translations. Then we discuss
how we can modify proofs in IHOL into simpler proofs, for which it is easier to construct a
corresponding proof in DIHOLP. Finally, we prove that we can lift such proofs in IHOL back to
DIHOLP and conclude the completeness of the translation. We argue why this proof generalizes
to the same translation from DHOLP into HOL and therefore conjecture the completeness of
that translation. Using analogous arguments we also show the completeness of a second similar
translation of the fragment of DHOLP in which we disallow 𝖻𝗈𝗈𝗅-valued function types (of
positive arity) into the target logic HOL.

In Section 5, we discuss higher-order logic with external propositions (a logic similar to the
fragment of HOL in which we disallow quantification over the type 𝖻𝗈𝗈𝗅 and also disallow 𝖻𝗈𝗈𝗅-
valued function types) and its extensions with dependent types and how to create a similar trans-

Page 5 of 50



Colin Rothgang

lation with analogous soundness and completeness proofs. We summarize our soundness and
completeness results in Table 2.

In Section 6, we discuss the implementation of the translation in the logic embedding tool and
the MMT system and how both can be used for theorem proving. We demonstrate the imple-
mentation of the translations on an example theory formalizing set theory and discuss how to
formalize the foundations of the Mizar language and use this with a recent importer into MMT

for proving theorems in Mizar.

In Section 7, we discuss an extension of DHOLP with parametric predicates and how we can
translate it into HOL. Finally, in Section 8 we conclude and discuss potential future work.

2 Preliminaries

2.1 History of classical logic

In this subsection, we will give a very brief introduction into the development of first-order and
higher order logic. This section can serve as a starting point for learning more about logic and
can explain better the larger area in which this work is embedded. Since we formally introduce
our logics in a self-contained fashion, it is not necessary to read this subsection in order to
understand the remaining thesis.

First-order logic and in particular second-order logic were first formally introduced by Frege
[15] in 1879. Later on the discovery of Russel’s paradox [34, 33] threatened the development
of logic and motivated Russel and Whitehead to invent higher-order type theory in their books
Principia mathematica [42] as a solution to the paradox (some people therefore credit Russel
with discovering higher-order logic). Their main idea was to separate out ordinary sets from
dangerously large types in order to prevent paradoxes like Russel’s paradox. Afterwards, they
went on to develop much of known mathematics at the point in their type theory. At this point
both Russel and Frege had discovered higher-order logic as part of their work, without giving
it many considerations as a system on its own. This changed with Hilbert who inspired by
Principia mathematica formally introduced modern first-order logic and higher-order logic in
his lectures and in 1928 published them with Ackermann in [13]. They also posed the question
of the completeness of higher-order logic, i.e. whether it is possible prove all true formulae in the
logic. Up until the incompleteness theorem’s by Gödel [16], the significance of the difference
between first-order and second-order (or higher-order) logic was not realized by most logicians.
After the incompleteness theorems it was clear that first-order logic was sound and complete,
while higher-order logic wasn’t. In 1936 Church introduced a model for computation, called
the 𝜆-calculus [8] and in 1940 he published a version of higher-order logic [9] based on it. In
1950 Henkin came up with alternative semantics (called Henkin semantics) for higher-order
logic [21]. In higher-order logic with Henkin semantics quantifiers over a function type 𝐴 → 𝐵
are taken to range only over some fixed subset of the set of functions from 𝐴 → 𝐵. With
these semantics higher-order logic is equivalent to typed first-order logic and in particular it is
complete [21]. As is usually done in recent times for theorem proving in higher-order logic, we
will consider higher-order logic with Henkin semantics.
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Automated theorem proving in higher-order logic also has a long history [39]. One of the first
successful ATPs for HOL is the TPS prover [2]. TPS is based on a version of higher-order
logic called Q0 [1] which also serves as an inspiration for (and has a fragment equivalent to)
our definition of HOL. Other early automated theorem prover systems for HOL include Isabelle
[27] (which can be used as an ATP system instead of as a proof assistant) and LEO with its
successors LEO-II and LEO-III [37]. However, in the last 15 years or so more powerful ATPs
for HOL — in particular Satallax [7] and Zipperposition [41] — have been developed as can be
seen in their performance in the CASC competition 2. Due to this somewhat recent development
HOL provers are becoming an attractive translation target for development of hammer tools.

2.2 Classical and intuitionistic higher order logic

We start by formalizing higher-order logic HOL and its intuitionistic fragment IHOL. They serve
both as the starting point to define DHOL and DHOLP and as the target of our translation from
DHOL (and DHOLP) to HOL.

To define a logic we need to define the following three ingredients:

1. an object language used by the logic to express content, in our case this language will be
given by a (context-free) grammar

2. judgements which use objects in the object language to form statements

3. axiom (schemata) and inference rules to derive new statements from known ones

We will discuss the three ingredients of the logics defined in this thesis in this order.

HOL uses the following grammar:

𝑇 ∶∶= ◦ | 𝑇 , 𝐷𝑒𝑐 theories
𝐷𝑒𝑐 ∶∶= 𝑎 ∶ 𝗍𝗉 | 𝑐 ∶ 𝐴 | 𝐹 declarations
Γ ∶∶= . | Γ, 𝑥 ∶ 𝐴 | Γ, 𝐹 contexts
𝐴,𝐵 ∶∶= 𝑎 | 𝐴 → 𝐵 | 𝖻𝗈𝗈𝗅 types
𝑠, 𝑡, 𝑐, 𝑓 , 𝐹 , 𝐺 ∶∶= 𝑐 | 𝑥 | 𝑓 𝑡 | 𝜆𝑥 ∶𝐴. 𝑡 | 𝑠 =𝐴 𝑡 | 𝐹 ⇒ 𝐺 terms

Here the meta-variables on the right can be created using the productions (separated by | ) on
the left. For instance,

𝐴,𝐵 ∶∶= 𝐴 → 𝐵,

means if 𝐴,𝐵 are types then we can also create the new type 𝐴 → 𝐵. We use the symbols ◦ and
. to refer to the empty theory and the empty context, respectively. We use 𝑥 ∶ 𝐴 in Γ or 𝐹 in Γ
to denote that the variable 𝑥 ∶ 𝐴 or the assumption 𝐹 occurs in Γ. We use Γ, 𝑥 ∶ 𝐴 to denote the
context Γ with the variable declaration 𝑥 ∶ 𝐴 appended (and wlog. (renaming) we assume that 𝑥
previously didn’t occur in Γ). Similarly, we use Γ, 𝐹 to denote the context Γ with the additional
assumption 𝐹 .

2https://www.tptp.org/CASC/
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As usual we can assume that HOL supports all the usual logical connectives 𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾, ¬, ∧,
∨ and quantifier ∀ and ∃, either as additional primitives defined in terms of the others or as
additions to the grammar. If the connectives are added to the grammar, further inference rules
need to be added to the calculus to make sure we can prove the same theorems.

We can define them similarly (except for the existential quantifier and disjunction which are de-
fined by Andrews using negation and the universal quantifier resp. conjunction) to how they are
defined by Andrews in [1]. We modify the definitions for the existential quantifier and disjunc-
tion, as the definition by Andrews don’t work in the intuitionistic fragment (as the equivalence
proof requires double negation elimination).

𝗍𝗋𝗎𝖾 ∶= 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥
𝖿𝖺𝗅𝗌𝖾 ∶= 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝗍𝗋𝗎𝖾

¬ ∶= 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾

∀ 𝑥 ∶𝐴. 𝐹 ∶= 𝜆𝑥 ∶𝐴. 𝐹 =𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
∧ ∶= 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. ∀ 𝑟 ∶𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅. 𝑟 𝑥 𝑦 =𝖻𝗈𝗈𝗅 𝑟 𝗍𝗋𝗎𝖾 𝗍𝗋𝗎𝖾
∨ ∶= 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. ∀ 𝑧 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑧) ⇒ (𝑦 ⇒ 𝑧) ⇒ 𝑧

∃𝑥 ∶𝐴.𝐹 ∶= ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (∀ 𝑥 ∶𝐴. 𝐹 ⇒ 𝑦) ⇒ 𝑦

We could also define ⇒ by ⇒∶= 𝜆𝑥 ∶ 𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶ 𝖻𝗈𝗈𝗅. (𝑥 ∧ 𝑦) =𝖻𝗈𝗈𝗅 𝑥. However, we single
out ⇒ in the grammar because it will subtly be affected when going to DHOL later, so giving
inference rules for it simplifies the soundness and completeness proofs.

Our grammar uses contexts Γ that are a list of typed variables 𝑥 ∶ 𝐴 and assumptions 𝐹 . That
makes stating the rules below more convenient. However, HOL contexts (in contrast to DHOL
contexts below) can always be normalized into a set of variable declarations followed by a set
of assumptions because the well-formedness of a type 𝐴 can never depend on a variable or an
assumption.

We will furthermore allow defined declarations in the theory, but will consider them as meta-
level abbreviations, not actual declarations. So they are not part of the grammar or language,
instead they are merely syntactic sugar for their definiens. This is useful to abbreviate some
terms that occur many times within a theory. The logical connectives defined above are also
realized in exactly this way.

The type and proof system for HOL uses the following judgments. Note that the equality of
types is a separate judgment because it cannot be expressed in the syntax, whereas the equality
of terms is a special case of the validity judgment — since equalities are ordinary formulae — we
only list equality here, because in other versions of HOL equality may be a separate judgement.
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2.2 Classical and intuitionistic higher order logic Colin Rothgang

Name Judgment Intuition
theories ⊢ 𝑇 𝖳𝗁𝗒 𝑇 is well-formed theory
contexts ⊢𝑇 Γ 𝖢𝗍𝗑 Γ is well-formed context

types Γ ⊢𝑇 𝐴 𝗍𝗉 𝐴 is well-formed type
typing Γ ⊢𝑇 𝑡 ∶ 𝐴 well-formed term 𝑡 has well-formed type 𝐴
validity Γ ⊢𝑇 𝐹 well-formed boolean 𝐹 is provable

equality of terms Γ ⊢𝑇 𝑡 =𝐴 𝑡′ special case of validity
equality of types Γ ⊢𝑇 𝐴 ≡ 𝐵 well-formed types 𝐴 and 𝐵 are provably equal

All judgments except for ⊢ 𝑇 𝖳𝗁𝗒 are relative to a theory 𝑇 . If we use ⊢ instead of ⊢𝑇 for such
a judgment, we refer to the judgement relative to the empty theory ◦ and we use ⊢𝑇 𝐹 to refer
to the judgement . ⊢𝑇 𝐹 in the empty context. The calculus has the rules given in Figure 1. We
assume that names in a theory or a context are unique without making that explicit in the rules.
Furthermore, we use 𝐸[𝑥∕𝑡] to denotes the capture-avoiding (meaning that we only replace 𝑥 in
the scope of a 𝜆-function or quantifier binding a variable 𝑥) substitution of the variable 𝑥 with
the term 𝑡 within expression 𝐸.

The rules for IHOL are the same as for HOL, except that we replace rule (boolExt) with rule
(propExt) (which otherwise follows from rule (boolExt) as shown in Lemma 1).

Rule (boolExt) states that if the application of a predicate on 𝖻𝗈𝗈𝗅 holds for both 𝗍𝗋𝗎𝖾 and for
𝖿𝖺𝗅𝗌𝖾, then the predicate holds on an arbitrary boolean variable and is therefore trivially true.
This rule allows us to proof a formula by case distinction on the value of a boolean variable
and by rule (∀E) (proven in Lemma 1) also by case distinction on the value of arbitrary boolean
subterms. This implies that all booleans are equal to either 𝗍𝗋𝗎𝖾 or equal to 𝖿𝖺𝗅𝗌𝖾. In contrast, in
IHOL it is not provable whether there are booleans non equal to 𝗍𝗋𝗎𝖾 or 𝖿𝖺𝗅𝗌𝖾.

Some terminology The following terminology will be used for all the logics in this thesis.

Definition 1. We will call a theory 𝑇 well-formed whenever we can show ⊢ 𝑇 𝖳𝗁𝗒. We will say
a context Γ is well-formed (relative to 𝑇 ), iff we can show ⊢ Γ𝖢𝗍𝗑 (⊢𝑇 Γ𝖢𝗍𝗑). We will say that a
type 𝐴 is well-formed in context Γ (relative to 𝑇 ) if we can show Γ ⊢ 𝐴 𝗍𝗉 (Γ ⊢𝑇 𝐴 𝗍𝗉). We will
say that two types (terms) are the same or identical, whenever they are the (syntactically) same
type (term). We will say that two types 𝐴,𝐴′ are equal in context Γ (relative to 𝑇 ) whenever we
can show ⊢ 𝐴 ≡ 𝐴′ (Γ ⊢𝑇 𝐴 ≡ 𝐴′). We will say that a term 𝑡 is well-typed (or well-formed)
in a context Γ (and relative to 𝑇 ) iff we have Γ ⊢ 𝑡 ∶ 𝐴 (Γ ⊢𝑇 𝑡 ∶ 𝐴) for some well-formed
type 𝐴. In that case, we will also say that 𝑡 has type 𝐴 and that 𝑡 is of type 𝐴. Similarly, we will
say that two terms 𝑡, 𝑡′ of type 𝐴 are equal in context Γ (relative to 𝑇 ) whenever we can show
Γ ⊢ 𝑡 =𝐴 𝑡′ (Γ ⊢𝑇 𝑡 =𝐴 𝑡′). We will call a term a formula if it has type 𝖻𝗈𝗈𝗅. Finally, we will
say that a formula 𝐹 is derivable in context Γ (relative to 𝑇 ) if Γ ⊢ 𝐹 (Γ ⊢𝑇 𝐹 ).

2.2.1 Comparison to other HOL versions

Formalization in a logical framework Our definition of HOL differs from other definitions
of HOL primarily by the explicit definition of the grammar. In particular, our grammar explic-
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2.2 Classical and intuitionistic higher order logic Colin Rothgang

Theories and contexts:

⊢ ◦ 𝖳𝗁𝗒
thyEmpty

⊢ 𝑇 𝖳𝗁𝗒

⊢ 𝑇 , 𝑎 𝗍𝗉 𝖳𝗁𝗒
thyType

⊢𝑇 𝐴 𝗍𝗉

⊢ 𝑇 , 𝑐 ∶ 𝐴 𝖳𝗁𝗒
thyConst

⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅

⊢ 𝑇 , 𝐹 𝖳𝗁𝗒
thyAxiom

⊢ 𝑇 𝖳𝗁𝗒

⊢𝑇 . 𝖢𝗍𝗑
ctxEmpty

Γ ⊢𝑇 𝐴 𝗍𝗉

⊢𝑇 Γ, 𝑥 ∶ 𝐴 𝖢𝗍𝗑
ctxVar

Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅

⊢𝑇 Γ, 𝐹 𝖢𝗍𝗑
ctxAssume

Lookup in theory and context:

𝑎 ∶ 𝗍𝗉 in 𝑇 ⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 𝑎 𝗍𝗉
type

𝑐 ∶ 𝑎 in 𝑇 ⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 𝑐 ∶ 𝐴
const

𝐹 in 𝑇 ⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 𝐹
axiom

𝑥 ∶ 𝐴 in Γ ⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 𝑥 ∶ 𝐴
var

𝐹 in Γ ⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 𝐹
assume

Well-formedness and equality of types:

Γ ⊢𝑇 𝐴 𝗍𝗉 Γ ⊢𝑇 𝐵 𝗍𝗉

Γ ⊢𝑇 𝐴 → 𝐵 𝗍𝗉
arrow

Γ ⊢𝑇 𝑎 𝗍𝗉

Γ ⊢𝑇 𝑎 ≡ 𝑎
congBase

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝐵 ≡ 𝐵′

Γ ⊢𝑇 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′ cong→

Typing and equality of terms:

Γ ⊢𝑇 𝑠 ∶ 𝐴 Γ ⊢𝑇 𝑡 ∶ 𝐴
Γ ⊢𝑇 𝑠 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅

=type
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 ∶ 𝐵

Γ ⊢𝑇 (𝜆𝑥 ∶𝐴. 𝑡) ∶ 𝐴 → 𝐵
lambda

Γ ⊢𝑇 𝑓 ∶ 𝐴 → 𝐵 Γ ⊢𝑇 𝑡 ∶ 𝐴
Γ ⊢𝑇 𝑓 𝑡 ∶ 𝐵

appl

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡′

Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝑡 =𝐴→𝐵 𝜆𝑥 ∶𝐴′. 𝑡′
cong𝜆 (xi)

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ Γ ⊢𝑇 𝑓 =𝐴→𝐵 𝑓 ′

Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′
congAppl

Γ ⊢𝑇 𝑡 ∶ 𝐴
Γ ⊢𝑇 𝑡 =𝐴 𝑡

refl
Γ ⊢𝑇 𝑡 =𝐴 𝑠
Γ ⊢𝑇 𝑠 =𝐴 𝑡

sym
Γ ⊢𝑇 (𝜆𝑥 ∶𝐴. 𝑠) 𝑡 ∶ 𝐵

Γ ⊢𝑇 (𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐵 𝑠[𝑥∕𝑡]
beta

Γ ⊢𝑇 𝑡 ∶ 𝐴 → 𝐵 𝑥 not in Γ
Γ ⊢𝑇 𝑡 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥

eta

Typing, introduction and elimination rules for implication:

Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 Γ ⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅

Γ ⊢𝑇 𝐹 ⇒ 𝐺 ∶ 𝖻𝗈𝗈𝗅
⇒type

Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 Γ, 𝐹 ⊢𝑇 𝐺
Γ ⊢𝑇 𝐹 ⇒ 𝐺

⇒I
Γ ⊢𝑇 𝐹 ⇒ 𝐺 Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐺
⇒E

Congruence for validity and boolean extensionality:

Γ ⊢𝑇 𝐹 =𝖻𝗈𝗈𝗅 𝐹 ′ Γ ⊢𝑇 𝐹 ′

Γ ⊢𝑇 𝐹
cong⊢

Γ ⊢𝑇 𝑝 𝗍𝗋𝗎𝖾 Γ ⊢𝑇 𝑝 𝖿𝖺𝗅𝗌𝖾
Γ ⊢𝑇 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥

boolExt

Figure 1: HOL Rules
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2.2 Classical and intuitionistic higher order logic Colin Rothgang

itly mentions theories which can declare additional declarations and axioms for a problem and
grammars which declare the free variables that may occur in statements in that context and may
give further assumptions for statements. In other definitions of logics, theories would usually
not be part of the grammar and contexts might not be treated explicitely. For our work, it is
necessary to make them explicit as we want to:

• reason about the differences and translations from extensions of HOL (and its fragments)

• implement those logics in a logical framework

A logical framework uses type-theory to formalize and reason about logics. For our implemen-
tation, a logical framework based on LF [19] in MMT [30] is used to define HOL and its exten-
sions. This logical framework itself uses type theory and the Curry-Howard correspondence to
formalize logics. For example, the validity judgment is represented as a function from formulae
to types (we can think of it as giving us the type of validity proofs of the formula). Thus, a
translation between logics in the framework is a function on the language of the framework.

Empty Types (I)HOL is traditionally built with the assumption that all types are non-empty.
We can express this assumption in the axiom schema:

∃𝑥 ∶𝐴.𝗍𝗋𝗎𝖾,

for all well-formed types 𝐴.

For DHOLP (and its fragments), on the other hand, this assumption is usually unsuitable because
dependent types are commonly used together with empty types.

For the soundness results (soundness and completeness are formally defined in Definition 6), it
is inconsequential whether the non-emptiness assumption is added to (I)HOL or not.

For the completeness result we have to assume that for each declaration

𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉

in the theory 𝑇 , there exists a term 𝑡 of type 𝑎 𝑡1 … 𝑡𝑛 for some 𝑡𝑖 of type 𝐴𝑖 respectively, i.e.:

⊢𝑇 ∃𝑡1 ∶𝐴𝑖.…∃𝑡𝑛 ∶𝐴𝑛[𝑥1∕𝑡1]… [𝑥𝑛−1∕𝑡𝑛−1].∃𝑥 ∶𝑎 𝑡1 … 𝑡𝑛.𝗍𝗋𝗎𝖾, (nonEmpty’)

for
𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉

in the theory 𝑇 . This assumption is reasonable in DHOLP (and its fragments) and translates to
the assumption that for each declaration 𝑎 ∶ 𝗍𝗉 in the translation 𝑇 of the theory, there exists a
well-typed term 𝑡𝐴 in DHOLP s.t. its translation 𝑡𝐴 has type 𝐴 in HOL, i.e.:

⊢𝑇 𝑡𝐴 ∶ 𝐴 (nonEmpty)

Since we are only really interested in translations of well-typed terms in HOL, it is reasonable
to assume that each declared type should contain such a term.

Since these assumptions are both reasonable and obviously correspond to each other we will not
discuss them much in the soundness and completeness proofs.
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2.2 Classical and intuitionistic higher order logic Colin Rothgang

Choice of inference rules In our formulation we try to pick the minimal and simplest rules
(without giving a definition to ⇒) required to yield HOL with the usual properties, as this choice
simplifies with the sound– and completeness proofs. In particular, we don’t have a rewrite rule
and need to conclude it from (cong⊢ ) and the congruence rules. As rule (cong⊢ ) allows us a
valid formula on the right of an equality by the formula on the left of it but not vice versa. Thus,
we can only use rule (beta) for beta expansions and not for beta reductions. Similarly, we cannot
proof symmetry of term equality and have to assume it as an extra rule (at least on the type 𝖻𝗈𝗈𝗅).
Alternatively (and equivalently) we can add a modified version of rule (beta) (at least on the type
𝖻𝗈𝗈𝗅) in which we flip the equlity in the conclusion or add a modified version of rule (cong⊢ ) in
which we flip the equality in the assumption of the rule. We also pick largely the same rules as
present in the already existing formalization of HOL in MMT.

To ensure our formalization of HOL is equivalent to classical HOL, we will show the equivalence
of our validity rules with e.g. the rules of a fragment of Q0. This is shown in Lemma 5, after we
prove some useful properties of our formalization of HOL.

Quantifier and implication as part of the grammar We include implication in the HOL and
DHOL grammars (rather than defining it in terms of =𝖻𝗈𝗈𝗅 ,∧ and 𝜆-functions), since we need
dependent-implication in DHOL — meaning the term on the right of an implication needs to be
well-typed only if the term on the left of it holds. Thus we need to make implication part of the
grammr for DHOL. To simplify reasoning about the translation, we thus also include it in the
HOL grammar. We don’t include quantifiers in the grammar, since the rules for the quantifiers
stay the same and we want to translate them to an expression equal to the translations of their
definiens.

Comparison to HOL as implemented in MMT Our definition of HOL is equivalent to its
definition in the MMT system. The syntax and grammar differ slightly, due to it being defined
in a logical framework in such a way as to share as much of its definitions with related logics
as possible. The inference rules used in the implementation of HOL in MMT include the rules
given in this thesis, but also include some additional rules that can be proven from them (for
instance the implementation of HOL in MMT includes the rules (propExt) and (extensionality)
proven in Lemma 1).

Writing proofs in HOL We will usually write proofs over this (or similar calculi) in natural
deduction style. In them, we proof new statements line by line, starting with (some of) our
assumptions and ending in the claim. For each line we will write on the side by which rule it
is concluded and in which previous lines in the proof the assumptions of that rule are given.
To shorten proofs we sometimes write a rule and how an assumption of that rule is derived,
instead of proving that assumption in a separate step. We may also not give justifications for
assumptions to rules that are trivial to prove (often this will be the case for typing assumptions
or equalities that can be derived from reflexivity or symmetry of equality).

Throughout this paper we will ignore contexthood assumptions of rules in proofs, as they can be
checked easily and furthermore the only contexts that typically occur in proofs are extensions of
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the context of the claim we want to proof.

Some consequence of the inference rules: The following lemma collects a few routine meta-
theorems that we make use of later on:

Lemma 1. Given the inference rules for HOL or IHOL (cfg. Figure 1), the following rules are
admissible:

⊢𝑇 Γ 𝖢𝗍𝗑

⊢ 𝑇 𝖳𝗁𝗒
ctxThy

Γ ⊢𝑇 𝐴 𝗍𝗉

⊢𝑇 Γ 𝖢𝗍𝗑
tpCtx

Γ ⊢𝑇 𝑡 ∶ 𝐴
Γ ⊢𝑇 𝐴 𝗍𝗉

typingTp
Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅
validTyping

Γ ⊢𝑇 𝐴 ≡ 𝐴′

Γ ⊢𝑇 𝐴′ ≡ 𝐴
≡ sym

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝐴′ ≡ 𝐴′′

Γ ⊢𝑇 𝐴 ≡ 𝐴′′ ≡ trans

Γ ⊢𝑇 𝑠 =𝐴 𝑡
Γ ⊢𝑇 𝑠 ∶ 𝐴

eqTyping
Γ ⊢𝑇 𝐹 ⇒ 𝐺
Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅

implTypingL
Γ ⊢𝑇 𝐹 ⇒ 𝐺
Γ ⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅

implTypingR

Γ ⊢𝑇 𝑠 ∶ 𝐴 Γ ⊢𝑇 𝑠 ∶ 𝐴′

Γ ⊢𝑇 𝐴 ≡ 𝐴′ typesUnique
Γ ⊢𝑇 𝑓 𝑡 ∶ 𝐵 Γ ⊢𝑇 𝑓 ∶ 𝐴 → 𝐵

Γ ⊢𝑇 𝑡 ∶ 𝐴
typingWf

Γ ⊢𝑇 𝑡 ∶ 𝐴 Γ ⊢𝑇 𝑓 𝑡 ∶ 𝐵
Γ ⊢𝑇 𝑓 ∶ 𝐴 → 𝐵

applType
Γ, 𝑥 ∶ 𝐵 ⊢𝑇 𝑠 ∶ 𝐴 Γ ⊢𝑇 𝑡 ∶ 𝐵

Γ ⊢𝑇 𝑠[𝑥∕𝑡] ∶ 𝐴
rewriteTyping

Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 Γ ⊢𝑇 𝐺
Γ, 𝐹 ⊢𝑇 𝐺

monotonic⊢
Γ ⊢𝑇 𝐴 𝗍𝗉 Γ ⊢𝑇 𝐽 for any statement ⊢𝑇 𝐽

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝐽
var⊢

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅

Γ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 ∶ 𝖻𝗈𝗈𝗅
∀type

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝐹
Γ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹

∀I
Γ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 Γ ⊢𝑇 𝑡 ∶ 𝐴

Γ ⊢𝑇 𝐹 [𝑥∕𝑡]
∀E

Γ 𝖢𝗍𝗑 𝐹 in Γ
Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅

assTyping
Γ ⊢𝑇 𝑡 =𝐴 𝑡′ Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝑡 ∶ 𝐴′

Γ ⊢𝑇 𝑡′ ∶ 𝐴′ cong∶

Γ, 𝐹 ⊢𝑇 𝐺 Γ, 𝐺 ⊢𝑇 𝐹
Γ ⊢𝑇 𝐹 =𝖻𝗈𝗈𝗅 𝐺

propExt
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑓 𝑥 =𝐵 𝑓 ′ 𝑥

Γ ⊢𝑇 𝑓 =𝐴→𝐵 𝑓 ′ extensionality

Γ ⊢𝑇 𝑠 =𝐴 𝑡 Γ ⊢𝑇 𝑡 =𝐴 𝑢
Γ ⊢𝑇 𝑠 =𝐴 𝑢

trans
Γ ⊢𝑇 𝑠 =𝐴 𝑠′ Γ ⊢𝑇 𝑡 =𝐴 𝑡′

Γ ⊢𝑇 (𝑠 =𝐴 𝑡) =𝖻𝗈𝗈𝗅 (𝑠′ =𝐴 𝑡′)
= cong

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝐹 =𝖻𝗈𝗈𝗅 𝐹 ′

Γ ⊢𝑇 ∀𝑥 ∶ 𝐴.𝐹 =𝖻𝗈𝗈𝗅 ∀𝑥 ∶ 𝐴′.𝐹 ′ ∀cong
Γ ⊢𝑇 𝐹 =𝖻𝗈𝗈𝗅 𝐹 ′ Γ ⊢𝑇 𝐺 =𝖻𝗈𝗈𝗅 𝐺′

Γ ⊢𝑇 𝐹 ⇒ 𝐺 =𝖻𝗈𝗈𝗅 𝐹 ′ ⇒ 𝐺′ ⇒cong

Γ ⊢𝑇 𝐹 =𝖻𝗈𝗈𝗅 𝐹 ′ Γ ⊢𝑇 𝐹
Γ ⊢𝑇 𝐹 ′ ⊢ cong

Γ ⊢𝑇 𝐹 [𝑥∕𝑡] Γ ⊢𝑇 𝑡 =𝐴 𝑡′ Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅

Γ ⊢𝑇 𝐹 [𝑥∕𝑡′]
rewrite

Furthermore we don’t use rule (boolExt) in the proof of this lemma, except to derive rule
(propExt) which is anyways assumed in IHOL, so our proof will show that these rules are ad-
missible both in HOL and in IHOL.

This is proven in Appendix A.

Lemma 2. If 𝐹 is a well-typed IHOL (or HOL) formula we can show Γ ⊢𝑇 𝐹 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 iff
Γ ⊢𝑇 𝐹 .
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2.2 Classical and intuitionistic higher order logic Colin Rothgang

Proof. We start with the ⇒ direction:

Γ ⊢𝑇 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅→𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 (refl),(lambda),(var) (1)

Γ ⊢𝑇 𝗍𝗋𝗎𝖾 definition of 𝗍𝗋𝗎𝖾,(1) (2)

Γ ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 by assumption (3)

Γ ⊢𝑇𝐹 (cong⊢ ),(3),(2) (4)

Now the ⇐ direction:

Γ ⊢𝑇𝐹 by assumption (5)

Γ ⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 by assumption (6)

Γ ⊢𝑇 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 by definition (7)

Γ, 𝗍𝗋𝗎𝖾 ⊢𝑇𝐹 (monotonic⊢ ),(5) (8)

Γ, 𝐹 ⊢𝑇 𝗍𝗋𝗎𝖾 (monotonic⊢ ),(2) (9)

Γ ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (propExt),(6),(7),(9),(8) (10)

Remark 3. In the following, we will omit derivations for typing assumptions of rules, whenever
they are provable using the typing rules (=type), (lambda), (appl), (⇒type) and (var), as proving
those is uninteresting and straightforward.

We will also often omit derivations for assumptions of rules, which are derivable using the rules
(assume), (refl), (sym), (axiom) and (assume).

Furthermore, we will allow using previous statements for assumptions of rules even if their
context is a subset of the context of the assumption of the rule. This will save us from having to
invoke the rules (monotonic⊢ ) and (var⊢ ) separately to show the assumption of the rule.

Considering the rather lengthy and unreadable proof of Lemma 1 (in Appendix A), it becomes
clear that these conventions allow us to shorten proofs significantly, while improving their read-
ability.

Remark 4. In the following we will also use the following rules about the Boolean connectives,
which can be easily derived from their definitions and the already shown rules:

Γ ⊢𝑇 𝐹 Γ ⊢𝑇 𝐺
Γ ⊢𝑇 𝐹 ∧ 𝐺

∧I
Γ ⊢𝑇 𝐹

Γ ⊢𝑇 𝐹 ∨ 𝐺
∨Il

Γ ⊢𝑇 𝐺
Γ ⊢𝑇 𝐹 ∨ 𝐺

∨Ir

Γ ⊢𝑇 𝐹 ∧ 𝐺
Γ ⊢𝑇 𝐹

∧El
Γ ⊢𝑇 𝐹 ∧ 𝐺
Γ ⊢𝑇 𝐺

∧Er
Γ ⊢𝑇 𝑡 ∶ 𝐴 Γ ⊢𝑇 𝐹 [𝑥∕𝑡]

Γ ⊢𝑇 ∃𝑥 ∶𝐴.𝐹
∃I

As an example we can show rule (∧Er) as follows:

Γ ⊢𝑇𝐹 ∧ 𝐺 by assumption (11)
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2.3 The LEO-III prover Colin Rothgang

Γ ⊢𝑇∀ 𝑟 ∶𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅. 𝑟 𝐹 𝐺 =𝖻𝗈𝗈𝗅 𝑟 𝗍𝗋𝗎𝖾 𝗍𝗋𝗎𝖾 definition,(11) (12)

Γ ⊢𝑇 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦 ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (lambda),(lambda),(var) (13)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝐹 𝐺 =𝖻𝗈𝗈𝗅

(𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝗍𝗋𝗎𝖾 𝗍𝗋𝗎𝖾 (∀E),(12),(13) (14)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝐹 𝐺 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (rewrite),(rewrite),(14),(beta),(beta)
(15)

Γ ⊢𝑇𝐺 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (rewrite),(rewrite),(15),(beta),(beta)
(16)

Γ ⊢𝑇𝐺 Lemma 2,(16)

Definition 2. For 𝐹 = (𝜆𝑥 ∶ 𝐴. 𝑡) 𝑠 being the application of a 𝜆-function 𝜆𝑥 ∶ 𝐴. 𝑡 to an
argument 𝑠, we will call 𝑡[𝑥∕𝑠] the beta reduced version of 𝐹 and denote it by 𝐹 𝛽 . This notation
is occasionally useful as it allows us to avoid writing out some lengthy formulae. Similarly for
𝐹 = 𝜆𝑥 ∶ 𝐴. 𝑓 𝑥 being a 𝜆-function applying a function to its bound variable, we will call
the function 𝑓 the eta reduced version of 𝐹 and denote it by 𝐹 𝜂. Both notations are taken to
denote the identity function on terms of other shape. The composition of the functions ⋅𝛽 and
⋅𝜂 is denoted by ⋅𝛽𝜂 (note that by Church-Rosser theorem the order in which the reductions are
applied doesn’t matter).

Using these conventions we can show the equivalence of HOL with a fragment of Q0:

Lemma 5. The rules for HOL as given in Figure 1 imply the axiom schemata and the rule
of Q0 (except for the fifth axiom schema the "axiom of description" which characterizes the
description operator present in Q0 but not in our formalization of HOL). Conversely, we can
derive the validity rules for HOL (except for the lookup rules (axiom) and (assume) which relate
provability with axioms and assumptions in context and theory and thus have no analogue in
Q0) from the axiom schemata and rules of Q0.

This is proven in Appendix B.

This lemma tells us that our formalization of HOL is in fact equivalent to classical HOL, so it
makes sense to use it as a translation target.

2.2.2 TPTP

TPTP (Thousands of Problems for Theorem Provers) [38] is a library of test problems for auto-
mated theorem provers (ATPs) as well as a collection of languages to be used for input for ATP
systems. Basically all major ATPs support input via TPTP languages. For our purposes, we are
especially interested in the language TPTP THF [40] which roughly corresponds to HOL.

2.3 The LEO-III prover

Leo-III is a an automated theorem prover for (parametric) HOL and modal logics based on a
resolution calculus with paramodulation at its core. LEO-III is also designed to cooperate with
external provers or solvers which can be tasked with subproblems simultaneously.

Page 15 of 50



2.4 The MMT system Colin Rothgang

Like all major provers LEO-III can take TPTP problems as input, it support all the main TPTP
languages including TPTP THF. LEO-III (like MMT) is implemented in the Scala language,
which simplifies its use within MMT and might facilitate a better integration in the future.

When LEO-III is called on a problem file (written in some TPTP language) it will first parse the
problem, typecheck the TPTP formulae, remove redundant ones and possibly eliminate some
formulae that are very unlikely to help at proving the conjecture.

The conjecture is then negated and LEO-III will try to prove a contradiction assuming this nega-
tion as well as the previous formulae.

For this a resolution calculus is used: LEO-III applies inference rules to derive further formulae
from already existing formulae. The derived formulae are unified (i.e. rewritten into a more
useful form in which it is also easier to check if such formulae are equal) and it is checked if
a contradiction is found. These steps are repeated until a contradiction is found or the prover
gives up. It is worth noticing that various of these steps only work in classical HOL not in
its intuitionistic fragment IHOL, already the approach of negating the conjecture and trying to
derive a contradiction doesn’t work for proving a conjecture in IHOL.

2.4 The MMT system

MMT [30] is a foundation independent formal language, an implementation of this language and
a LF based logical framework using this language to formalize formal content (mathematical or
otherwise). As a language is specifies basic concepts like theories, (optionally typed or defined)
declarations, terms, types and theory morphisms. MMT theories have a meta theory which
specifies allowed syntax for basic concepts (like sets, types, equality, logical connectives, . . . )
and potentially provides semantics for them. We can think of the meta-theory as specifying
the language the theory is written in (in the same way the ZFC axioms are written in first-
order logic). MMT heavily relies on the concept of theory morphisms, which can be used to
translate content in MMT theories along these morphisms. Building on the MMT language and
system LATIN has been created, an archive in which various logics, type theories, set theories
and their connections (expressed as theory-morphisms) have been formalized. In particular,
classical higher-order logic has already been formalized in LATIN and we add further theories
formalizing also the other logics mentioned in this thesis.

The MMT system includes a parser for the MMT language, a type-checker and simplifier, but
limited proving support. It is implemented in a modular fashion that makes it easy to extend
these components and by adding inference rules to the typechecker or simplifier or even to
extend MMT with a new hammer tool.

Very recently, Wolff [43] provided a translation from MMT theories based on first– and higher-
order logic to appropriate TPTP languages and build an automated theorem prover that uses
this translation and calls LEO-III on the translated conjectures. Our implementation builds on
(and generalizes) this architecture. We improve on his work mainly by adding formalizations of
DHOL and DHOLP to MMT and implementing their translations into HOL. This way we extend
the hammer for HOL problems in MMT to a hammer also for DHOL and DHOLP problems.
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Colin Rothgang

3 Translating dependently typed (I)HOL into simple typed (I)HOL

3.1 Dependently typed higher-order logic

3.1.1 Language

To obtain DHOL from HOL, only a few surgical changes are needed. The grammar is as follows
where unchanged parts are shaded out:

𝑇 ∶∶= ∗ | 𝑇 , 𝐷𝑒𝑐 theories
𝐷𝑒𝑐 ∶∶= 𝑐 ∶ 𝐴 | 𝑎 ∶(Π𝑥 ∶𝐴. )∗ 𝗍𝗉 | 𝐹 declarations
Γ ∶∶= . | Γ, 𝑥 ∶ 𝐴 | Γ, 𝐹 contexts
𝐴,𝐵 ∶∶= 𝑎 𝑡1… 𝑡𝑛 | Π𝑥 ∶𝐴. 𝐵 | 𝖻𝗈𝗈𝗅 types
𝑠, 𝑡, 𝑐, 𝑓 , 𝐹 , 𝐺 ∶∶= 𝑐 | 𝑥 | 𝑓 𝑡 | 𝜆𝑥 ∶𝐴. 𝑡 | 𝑠 =𝐴 𝑡 | 𝐹 ⇒ 𝐺 terms

Concretely, type constants 𝑎 can take term arguments and consequently function types may
depend on them. Moreover, while not apparent from the grammar, the list of variables in a
DHOL context must not be reordered anymore: variables can occur in the types of later variables,
and the well-formedness of types and assumptions may depend on previous assumptions.

The grammar for DIHOL is the same as for DHOL. It will be important to look at the DHOL
fragment in which we disallow variables of function types (of positive arity) with return type
𝖻𝗈𝗈𝗅 in lambdas, context variables and Πs. We will say that quantifications over such types are
disallowed. This fragment will be called DHOL without boolean-valued variables abbreviated as
DHOL∗. Disallowing quantifications over 𝖻𝗈𝗈𝗅-valued function types in HOL (here we disallow
such types on the left of an → rather than as the type of a variable bound by a Π) yields a logic
which we will denote by HOL∗.

Alternatively, we can look at HOL with external propositions (abbreviated HOLE), i.e. use a
grammar like:

𝑇 ∶∶= ∗ | 𝑇 , 𝐷𝑒𝑐 theories
𝐷𝑒𝑐 ∶∶= 𝑐 ∶ 𝐸 | 𝑎 ∶ (Π𝑥 ∶𝐴. )∗ 𝗍𝗉 | 𝐹 declarations
Γ ∶∶= . | Γ, 𝑥 ∶ 𝐴 | Γ, 𝐹 contexts
𝐴,𝐵 ∶∶= 𝑎 𝑡1… 𝑡𝑛 | Π𝑥 ∶𝐴. 𝐵 internal types
𝐸 ∶∶= 𝐴 | 𝖻𝗈𝗈𝗅 types
𝑠, 𝑡, 𝑓 , 𝐹 , 𝐺 ∶∶= 𝑐 | 𝑥 | 𝑓 𝑡 | 𝜆𝑥 ∶𝐴. 𝑡 | 𝑠 =𝐴 𝑡 | 𝐹 ⇒ 𝐺 terms

Then 𝖻𝗈𝗈𝗅 would not be a 𝗍𝗉, but instead be 𝗍𝗒𝗉𝖾. For our purposes this works similarly as
DHOL∗ as formalized above, except that we additionally disallow quantifications on the type
𝖻𝗈𝗈𝗅 and 𝖻𝗈𝗈𝗅-valued function types. HOLE is actually commonly used as a basis in dependent
type theory (e.g. in Agda, Lean and Coq we have external proposition).

Definition 3. Let 𝑇 be a DHOL (or DIHOL) theory and 𝑎 a declaration in it. If 𝑎 is of the form
𝑎 ∶ 𝗍𝗉 or 𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 we will call 𝑎 a simple type constructor or dependent
type constructor respectively. In both cases we will say 𝑎 is a type constructor.

Any declaration in the theory that is not an axiom or a type constructor will be called a term
declaration. Given a term declaration 𝑐 ∶ Π𝑦1 ∶ 𝑇1. …Π𝑦𝑠 ∶ 𝑇𝑠. 𝐵 with either 𝐵 = 𝖻𝗈𝗈𝗅 or
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3.1 Dependently typed higher-order logic Colin Rothgang

𝐵 = 𝑏 𝑧1 … 𝑧𝑡 (for some type constructor 𝑏 (and 𝑡 = 0 is allowed here)) we will call 𝐵 the
return type of 𝑐. In the first case we will call 𝑐 a boolean-valued function or a 𝑠+1-ary predicate
(in case 𝑠 = 0 we may also just call it a predicate), in the second case we will say that 𝑐 is a
constructor of the type constructor 𝑎. We will use the same terminology also for variables in
contexts.

We will use the same terminology also for DHOLP and its fragments.

3.1.2 Inference rules

The calculus for DHOL (DIHOL) has the same judgments as the one for HOL (IHOL), so we
only replace the Axiom nonEmpty by the Axiom nonEmpty’ and make minor changes to some
inference rules as shown in figure 2.

⊢𝑇 𝑥1 ∶ 𝐴1, … , 𝑥𝑛 ∶ 𝐴𝑛 𝖢𝗍𝗑

⊢𝑇 , 𝑎 ∶Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 𝖳𝗁𝗒
thyType’

𝑎 ∶Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 in 𝑇 Γ ⊢𝑇 𝑡1 ∶ 𝐴1 … Γ ⊢𝑇 𝑡𝑛 ∶ 𝐴𝑛[𝑥1∕𝑡1]… [𝑥𝑛−1∕𝑡𝑛−1] ⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 𝑎 𝑡1 … 𝑡𝑛 𝗍𝗉
type’

Γ ⊢𝑇 𝐴 𝗍𝗉 Γ ⊢𝑇 𝐵 𝗍𝗉

Γ ⊢𝑇Π𝑥 ∶𝐴. 𝐵 𝗍𝗉
pi

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝐵 ≡ 𝐵′

Γ ⊢𝑇Π𝑥 ∶𝐴. 𝐵 ≡Π𝑥 ∶𝐴′. 𝐵′ congΠ

𝑎 ∶Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 in 𝑇 Γ ⊢𝑇 𝑠1 =𝐴1
𝑡1 … Γ ⊢𝑇 𝑠𝑛 =𝐴𝑛[𝑥1∕𝑡1]…[𝑥𝑖−1∕𝑡𝑖−1] 𝑡𝑛 ⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 𝑎 𝑠1 … 𝑠𝑛 ≡ 𝑎 𝑡1 … 𝑡𝑛
congBase’

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 ∶ 𝐵
Γ ⊢𝑇 (𝜆𝑥 ∶𝐴. 𝑡) ∶Π𝑥 ∶𝐴. 𝐵

lambda’
Γ ⊢𝑇 𝑓 ∶Π𝑥 ∶𝐴. 𝐵 Γ ⊢𝑇 𝑡 ∶ 𝐴

Γ ⊢𝑇 𝑓 𝑡 ∶ 𝐵[𝑥∕𝑡]
appl’

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝑡 ∶ 𝐴′

Γ ⊢𝑇 𝑡′ ∶ 𝐴′ cong∶
Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 Γ, 𝐹⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅

Γ ⊢𝑇 𝐹 ⇒ 𝐺 ∶ 𝖻𝗈𝗈𝗅
⇒type’

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ Γ ⊢𝑇 𝑓 =Π𝑥∶𝐴. 𝐵 𝑓 ′

Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′
congAppl’

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡′

Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴′. 𝑡′
cong𝜆’

Γ ⊢𝑇 𝑡 ∶Π𝑥 ∶𝐴. 𝐵
Γ ⊢𝑇 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥

etaPi

Figure 2: Modified Rules in DHOL and DIHOL

Routinely, we replace all rules for → types with the corresponding rules for Π-types, e.g., the
rule (cong→) with the rule (congΠ), or the rule (arrow) with the rule (pi). Similarly, all rules for
base types 𝑎 need to be extended to handle arguments.

More subtly, types may now depend on arguments making type equality non-trivial, thus we
need to explicitly add rule (cong∶) (in HOL we can prove this rule). Furthermore, we replace
rule (congBase) with rule (congBase’) and rule (type) with rule (type’), as the former rules only
covers the case of a simple type constructor whereas the modified rules also cover the case of a
dependent type constructor.
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Rule (congBase’) is the rule that makes type equality undecidable in DHOL as deciding its appli-
cability now requires deciding a term equality. Then, rule (cong∶) makes also typing undecidable
as deciding its applicability requires deciding type equality. This is illustrated in Example 1:

Example 1 (Undecidability example for rule (congBase’):). Let 𝜑 denote any undecidable for-
mula in DHOL and consider the theory 𝑇 :

𝑎 ∶ Π𝑥 ∶𝖻𝗈𝗈𝗅. 𝗍𝗉
𝑡 ∶ 𝑎 𝜑

The type-equality statement ⊢𝑇 𝑎 𝗍𝗋𝗎𝖾 ≡ 𝑎 𝜑 and thus (by the rules (cong∶) and (typesUnique))
the typing statement ⊢𝑇 𝑡 =𝑎 𝗍𝗋𝗎𝖾 𝑡 ∶ 𝖻𝗈𝗈𝗅 holds exactly if ⊢𝑇 𝜑 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 or equivalently if 𝜑
provably valid. Since 𝜑 is undecidable, both statements are undecidable.

Finally, we replace rule (⇒type) with rule (⇒type’) for dependent implication: this allows the
well-formedness of consequent to depend of the validity of the antecedent. The proof rules for
implications are unchanged.

This dependence is illustrated in the following Example 2. The conjecture would not have been
well-typed with the rule (⇒type) instead of (⇒type’). This assumption is required in order to
invoke rule (congBase’) showing that the types 𝚖𝚘𝚛 𝑥 𝑥 and 𝚖𝚘𝚛 𝑦 𝑦 of the terms on both sides
of the equality 𝚒𝚍𝑥 =𝚖𝚘𝚛 𝑥 𝑥 𝚒𝚍𝑦 are actually equal. By rule (cong∶) it follows that 𝚒𝚍𝑦 then also
has type 𝚖𝚘𝚛 𝑥 𝑥 and the equality is well-typed.

Example 2 (Category Theory). The theory of a category contains the type constants 𝑜𝑏𝑗 for
objects and 𝚖𝚘𝚛 𝑎 𝑏 for morphisms, the constants 𝑖𝑑 and 𝚌𝚘𝚖𝚙 for identity and composition, and
the axioms for neutrality and associativity. We omit the latter for brevity. We also use → to
denote Π-types in which we don’t want to name the argument.

𝚘𝚋𝚓 ∶𝗍𝗉
𝚖𝚘𝚛 ∶Π𝑥 ∶𝚘𝚋𝚓. Π𝑦 ∶𝚘𝚋𝚓. 𝗍𝗉
𝚒𝚍 ∶Π𝑎 ∶𝚘𝚋𝚓. 𝚖𝚘𝚛 𝑎 𝑎

𝚌𝚘𝚖𝚙 ∶Π𝑎 ∶𝚘𝚋𝚓. Π𝑏 ∶𝚘𝚋𝚓. Π𝑐 ∶𝚘𝚋𝚓. 𝚖𝚘𝚛 𝑎 𝑏 → 𝚖𝚘𝚛 𝑏 𝑐 → 𝚖𝚘𝚛 𝑎 𝑐
∀𝑥 ∶ 𝚘𝚋𝚓. ∀𝑦 ∶ 𝚘𝚋𝚓. ∀𝑚 ∶ 𝚖𝚘𝚛 𝑥 𝑦. 𝑚◦𝚒𝚍𝑥 =𝚖𝚘𝚛 𝑥 𝑦 𝑚
∀𝑥 ∶ 𝚘𝚋𝚓. ∀𝑦 ∶ 𝚘𝚋𝚓. ∀𝑚 ∶ 𝚖𝚘𝚛 𝑥 𝑦. 𝚒𝚍𝑦◦𝑚 =𝚖𝚘𝚛 𝑥 𝑦 𝑚

Here, to enhance readability, we use the notations 𝚒𝚍𝑥 for 𝚒𝚍 𝑥 and ℎ◦𝑔 for 𝚌𝚘𝚖𝚙 _ _ _ 𝑔 ℎ
where the _ denote omitted arguments of type 𝚘𝚋𝚓.

We can then formalize the property of the pair (𝑓, 𝐹 ) being a covariant endo-functor using a
predicate:

𝚎𝚗𝚍𝚘𝙵𝚞𝚗𝚌𝚝𝚘𝚛𝚒𝚊𝚕 ∶Π𝑓 ∶𝚘𝚋𝚓 → 𝚘𝚋𝚓.
Π𝐹 ∶

(

Π𝑎 ∶𝚘𝚋𝚓. Π𝑏 ∶𝚘𝚋𝚓. 𝚖𝚘𝚛 𝑎 𝑏 → 𝚖𝚘𝚛 (𝑓 𝑎) (𝑓 𝑏)
)

. 𝖻𝗈𝗈𝗅
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with a defining axiom

∀ 𝑓 ∶𝚘𝚋𝚓 → 𝚘𝚋𝚓. ∀𝐹 ∶
(

Π𝑎 ∶𝚘𝚋𝚓. Π𝑏 ∶𝚘𝚋𝚓. 𝚖𝚘𝚛 𝑎 𝑏 → 𝚖𝚘𝚛 (𝑓 𝑎) (𝑓 𝑏)
)

.
𝚎𝚗𝚍𝚘𝙵𝚞𝚗𝚌𝚝𝚘𝚛𝚒𝚊𝚕 𝑓 𝐹 =𝖻𝗈𝗈𝗅

∀ 𝑥 ∶𝚘𝚋𝚓. 𝐹 𝑥 𝑥 𝚒𝚍𝑥 =𝚖𝚘𝚛 (𝑓 𝑥) (𝑓 𝑥) 𝚒𝚍𝑓 𝑥 ∧
∀ 𝑥 ∶𝚘𝚋𝚓. ∀ 𝑦 ∶𝚘𝚋𝚓. ∀ 𝑧 ∶𝚘𝚋𝚓. ∀ 𝑔 ∶𝚖𝚘𝚛 𝑥 𝑦. ∀ℎ ∶𝚖𝚘𝚛 𝑦 𝑧.

(𝐹 𝑦 𝑧 ℎ)◦(𝐹 𝑥 𝑦 𝑔) =𝚖𝚘𝚛 (𝑓 𝑥) (𝑓 𝑧) 𝐹 𝑥 𝑧 (ℎ◦𝑔)

Finally we consider the conjecture

⊢𝑇 ∀ 𝑥 ∶𝚘𝚋𝚓. ∀ 𝑦 ∶𝚘𝚋𝚓. 𝑥 =𝚘𝚋𝚓 𝑦 ⇒ 𝚒𝚍𝑥 =𝚖𝚘𝚛 𝑥 𝑥 𝚒𝚍𝑦

This is a straightforward theorem stating that equal objects have equal identity morphisms. This
theorem is well-formed only because of the typing rule for dependent implication.

Observe that D(I)HOL is a conservative extension of (I)HOL via the usual abbreviation of 𝐴 →
𝐵 for Π𝑥 ∶𝐴. 𝐵 if 𝑥 does not occur free in 𝐵. In fact, we can recover (I)HOL as the fragment
of D(I)HOL in which theories don’t declare any dependent type constructors (since rule (type’)
can be used only for those to show typehood of a dependent type).

3.2 Translating DHOL∗ into HOL∗ and DIHOL into IHOL

In this section, we define a translation function Ψ (denoted by ⋅) that maps DHOL-syntax to
HOL-syntax and a slightly different translation that maps DHOL∗-syntax to HOL-syntax. The
intuition behind the translations is to erase type dependencies by translating dependent types
𝑎 𝑡1 … , 𝑡𝑛 into simple types 𝑎 and replacing Π by →.

In this subsection, we will explain the idea for the translations, the subsequent two subsections
will define the translations formally. We will discuss the first slightly simpler translation first
and then describe how the second translation differs from it.

We choose for our first translation the simplest (shallow) translation for which we can actually
hope to proof its soundness and completeness. In particular, the translation maps D(I)HOL types
to (I)HOL types corresponding to the original types as closely as possible.

This is useful, to make the translation result simpler, more readable and most importantly simpler
to use for existing ATPs. In particular, it is important that equalities are translated to equalities,
as HOL provers are optimized to efficiently work with them.

The translation follows the same ideas as the translations in [11, 4, 35]: erase dependencies,
add 𝑛 + 1-ary predicates for 𝑛-ary function symbols, then use them to relativize variables and
equalities.

This idea to compensate for the non-injectivity on type level of the translation by relativizing
formulas was first introduced by Oberschelp in [25], who also introduced the word relativization
for it.

The intended invariants of the translation are as follows:
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DIHOL IHOL
theory theory with additional typing functions and axioms
context Γ context Γ with additional assumptions 𝐴? for each variable 𝑥 ∶ 𝐴 in Γ
type 𝐴 type 𝐴 and typing function 𝐴? ∶ 𝐴 → 𝖻𝗈𝗈𝗅

term 𝑡 ∶ 𝐴 term 𝑡 ∶ 𝐴 satisfying 𝐴? 𝑡

Table 1: Summary of intended invariants for (all) our translations

The translation is defined formally in Definition 1.

Translation 1 generates an additional 𝑛 + 1-ary typing predicate 𝑎? for each 𝑛-ary (dependent)
type declaration 𝑎. It also generates a typing axiom for each constructor 𝑐 (of 𝐴) and a typing
assumption for each variable 𝑥 of type 𝐴. To relativize Equalities are relativized by the transla-
tion: for equalities over non-function types we do this by adding the typing axioms for the terms
on both sides of the equality (see IT24). For equalities over function types we need to translate
differently (see IT23), taking advantage of functional extensionality (extensionality), otherwise
the translation will be neither sound nor complete (as discussed in Subsubsection 3.2.3).

If we use this translation to translate into HOL (rather than to IHOL), the typing predicate for
the type 𝖻𝗈𝗈𝗅 becomes trivial (by rule (boolExt)). It follows that function types with (eventual)
return type 𝖻𝗈𝗈𝗅 also have trivial typing predicates, so the their applications are all true and hence
contain no information at all. This leads to typing and type-equality becoming incomplete for
𝖻𝗈𝗈𝗅-valued function types (of positive arity) as can be seen from Example 3:

Example 3. Consider the DHOL theory 𝑇 :

𝑎 ∶ Π𝑥 ∶𝖻𝗈𝗈𝗅. 𝗍𝗉
𝑐 ∶ 𝑎 𝖿𝖺𝗅𝗌𝖾

and the false judgment ⊢𝑇 𝑐 ∶ 𝑎 𝗍𝗋𝗎𝖾. Since the typing predicate 𝑎? is trivial we can prove
𝑎? 𝗍𝗋𝗎𝖾 𝑐. This violates completeness of Translation 1 w.r.t. typing.

This may not be a serious problem in practice as we don’t use the typing predicates for type-
checking anyways and the translation remains sound and complete wr.t. validity. Nevertheless, it
motivates studying Translation 2 — a more faitful translation — which is defined in Definition 2.

To address the issue, Translation 2 will not use a typing predicate 𝖻𝗈𝗈𝗅?, but instead use a meta-
level abbreviation 𝖻𝗈𝗈𝗅? 𝑡 by induction on the shape of 𝑡𝛽𝜂. As this abbreviation cannot be ex-
pressed as the application of a predicate, rule (boolExt) cannot be used to show that its triviality.

Unfortunately, we cannot define this abbreviation for function applications of type bool, if the
function being applied is a variable (otherwise we yield a circular definition). Therefore, we
define Translation 2 as a translation from DHOL∗ into HOL∗ (and hence also to HOL). Using
this abbreviation instead of the typing predicate 𝖻𝗈𝗈𝗅? in the definition of soundness and com-
pleteness, the soundness and completeness proofs are essentially unaffected. We dont know if
this translation is actually complete w.r.t. typing.
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Inspecting the definition of the abbreviation 𝖻𝗈𝗈𝗅?, we notice that we can actually generalize a
version of it to arbitrary types. Since equalities and implications are always of type 𝖻𝗈𝗈𝗅, we only
have to consider the case of atomic terms and function applications. Since we no longer need to
worry about rule (boolExt) making the predicate trivial, we can define them as actual predicates
in DHOL rather than meta-level abbreviations (although their translations via the Translation 2
may use the abbreviation 𝖻𝗈𝗈𝗅? making their translations meta-level abbreviations). We will call
them the replacement predicates as their translations will be used to replace the typing predicates
in parts of the completeness proof. They are defined as follows:

Definition 4. Let Γ be a fixed DHOL context, 𝑇 a DHOL theory and 𝜑 a formula in Γ relative
to 𝑇 . Let 𝑡 be a subterm of 𝜑 of type well-formed type 𝐴. Assume that 𝐴 = 𝖻𝗈𝗈𝗅 and 𝑡𝛽𝜂 =
𝑝 𝑡1 … 𝑡𝑞 (where 𝑞 > 0 and 𝑝 not a function application) or that 𝐴 = 𝑎 𝑡1 … 𝑡𝑛 (here 𝑛 = 0 is
allowed) for a type constructor 𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 (if 𝐴 = 𝖻𝗈𝗈𝗅 we take 𝖻𝗈𝗈𝗅 ∶ 𝗍𝗉 to
be the type constructor 𝑎). Then we define the replacement predicate 𝑝_𝐴 of type Π𝑥 ∶𝐴. 𝖻𝗈𝗈𝗅
by:

𝑝𝐴 ∶= 𝜆𝑡 ∶𝐴.
(

(∃𝑟1,1 ∶𝑇1,1.…∃𝑟1,𝑝1 ∶𝑇1,𝑝1 .𝑡1 =𝐴1
𝑓1(𝑟1,1,… , 𝑟1,𝑝1)

∧ … ∧ 𝑡𝑛 =𝐴𝑛
𝑓𝑛(𝑟1,1,… , 𝑟1,𝑝1) ∧ 𝑡 =𝐴 𝑐1 𝑟1,1 … 𝑟1,𝑝1)

∨(∃𝑟2,1 ∶𝑇2,1.…∃𝑟2,𝑝2 ∶𝑇2,𝑝2 .𝑡1 =𝐴1
𝑓1(𝑟2,1,… , 𝑟2,𝑝2)

∧ … ∧ 𝑡𝑛 =𝐴𝑛
𝑓𝑛(𝑟2,1,… , 𝑟2,𝑝2) ∧ 𝑡 =𝐴 𝑐2 𝑟2,1 … 𝑟2,𝑝2)

⋮

∨(∃𝑟𝑚,1 ∶𝑇𝑚,1.…∃𝑟𝑚,𝑝𝑚 ∶𝑇𝑚,𝑝𝑚 .𝑡1 =𝐴1
𝑓1(𝑟𝑚,1,… , 𝑟𝑚,𝑝𝑚)

∧ … ∧ 𝑡𝑛 =𝐴𝑛
𝑓𝑛(𝑟𝑚,1,… , 𝑟𝑚,𝑝𝑚) ∧ 𝑡 =𝐴 𝑐𝑚 𝑟𝑚,1 … 𝑟𝑚,𝑝𝑚)

∨ 𝑡 =𝐴 𝑣1
⋮

∨ 𝑡 =𝐴 𝑣𝑞(𝑡)
)

where

𝑐1 ∶ Π𝑟1,1 ∶𝑇1,1. …Π𝑟1,𝑝1 ∶𝑇1,𝑝1 . 𝑎 𝑓1,1(𝑟1,1,… , 𝑟1,𝑝1) … 𝑓𝑛,1(𝑟1,1,… , 𝑟1,𝑝1),

𝑐2 ∶ Π𝑟2,1 ∶𝑇2,1. …Π𝑟2,𝑝2 ∶𝑇2,𝑝2 . 𝑎 𝑓1,2(𝑟2,1,… , 𝑟2,𝑝2) … 𝑓𝑛,2(𝑟2,1,… , 𝑟2,𝑝2),

⋮

𝑐𝑚 ∶ Π𝑟𝑚,1 ∶𝑇𝑚,1. …Π𝑟𝑚,𝑝𝑚 ∶𝑇𝑚,𝑝𝑚 . 𝑎 𝑓1,𝑚(𝑟𝑚,1,… , 𝑟𝑚,𝑝𝑚) … 𝑓𝑛,𝑚(𝑟𝑚,1,… , 𝑟𝑚,𝑝𝑚)

are the constructors of 𝑎 in theory 𝑇 and context Γ and 𝑣1,… , 𝑣𝑞(𝑥) are the variables of type 𝐴
in the scope of 𝑡 (meaning the bound and free variables at the position in which 𝑡 occurs in 𝜑).

On 𝖻𝗈𝗈𝗅 (and with 𝑡 not beta-eta reducible to a function application) and on Π-types (and later
predicate-subtypes) we define the 𝑝𝐴 by:

𝑝Π𝑥∶𝐴. 𝐵 𝑓 ∶=∀ 𝑥 ∶𝐴. 𝑝𝐴 𝑥 ⇒ 𝑝𝐵
(

𝑓 𝑥
)

(R1)

𝑝𝖻𝗈𝗈𝗅 (𝑡1 ⇒ 𝑡2) ∶=𝑝𝖻𝗈𝗈𝗅 𝑡1 ∧ 𝑝𝖻𝗈𝗈𝗅 𝑡2 (R2)
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𝑝𝖻𝗈𝗈𝗅 (𝑠 =𝐴 𝑡) ∶=𝑝𝐴 𝑠 ∧ 𝑝𝐴 𝑡 𝐴 not function type (R3)

𝑝𝖻𝗈𝗈𝗅 𝑡 ∶=𝑝𝖻𝗈𝗈𝗅 𝑡𝛽𝜂 𝑡 is beta or eta reduceable (R4)

𝑝𝖻𝗈𝗈𝗅 𝑥 ∶=𝗍𝗋𝗎𝖾𝑥 variable (R5)

𝑝𝖻𝗈𝗈𝗅 𝑐 ∶=𝗍𝗋𝗎𝖾 else (R6)

These replacement predicates will play a very important role in the completeness proof.

We will see later, in IHOL (and hence also in HOL) the typing predicates are provably equal to
the translation of the corresponding replacement predicates.

We will first prove soundness and completeness (w.r.t. validity) for Translation 1, then the
sound– and completeness for Translation 2 will be mostly analogous.

3.2.1 Translation 1 from DIHOL into IHOL

Translation definition 1 (Translation from DIHOL to IHOL). We define a translation from
DIHOL to IHOL syntax by induction on the Grammar.

The cases for theories and contexts are:

◦ ∶= ◦, 𝖻𝗈𝗈𝗅? ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅, 𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾, 𝖻𝗈𝗈𝗅? 𝖿𝖺𝗅𝗌𝖾 (IT1)

𝑇 , 𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 ∶= 𝑇 , 𝑎 ∶ 𝗍𝗉, 𝑎? ∶ 𝐴1 → … → 𝐴𝑛 → 𝑎 → 𝖻𝗈𝗈𝗅 (IT2)

𝑇 , 𝑐 ∶ 𝐴 ∶= 𝑇 , 𝑐 ∶ 𝐴, 𝐴? 𝑐 (IT3)

𝑇 , 𝐹 ∶= 𝑇 , 𝐹 (IT4)

. ∶= . (IT5)

Γ, 𝑥 ∶ 𝐴 ∶= Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 (IT6)

Γ, 𝐹 ∶= Γ, 𝐹 (IT7)

The cases of 𝐴 and 𝐴? 𝑡 for types 𝐴 and terms 𝑡 ∶ 𝐴 are:

(𝑎 𝑡1 … 𝑡𝑛) ∶= 𝑎 (IT8)

(𝑎 𝑡1 … 𝑡𝑛)
? 𝑡 ∶= 𝑎? 𝑡1 … 𝑡𝑛 𝑡 (IT9)

Π𝑥 ∶𝐴. 𝐵 ∶= 𝐴 → 𝐵 (IT10)

(Π𝑥 ∶𝐴. 𝐵)? 𝑓 ∶= ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝐵? (𝑓 𝑥
)

(IT11)

𝖻𝗈𝗈𝗅 ∶= 𝖻𝗈𝗈𝗅 (IT12)

For 𝑡𝛽𝜂 not the application of a function with (eventual) return type 𝖻𝗈𝗈𝗅 to all its arguments, we
treat 𝖻𝗈𝗈𝗅? 𝑡 not as a function application of 𝖻𝗈𝗈𝗅? to 𝑡, but instead as an abbreviation for:

𝖻𝗈𝗈𝗅? (𝑡1 ⇒ 𝑡2) ∶=𝖻𝗈𝗈𝗅? 𝑡1 ∧ 𝖻𝗈𝗈𝗅? 𝑡2 (IT13)

𝖻𝗈𝗈𝗅? (𝑠 =𝐴 𝑡) ∶=𝐴? 𝑠 ∧ 𝐴? 𝑡 𝐴 not function type (IT14)
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𝖻𝗈𝗈𝗅? 𝑡 ∶=𝖻𝗈𝗈𝗅? 𝑡𝛽𝜂 𝑡 is beta or eta reduceable (IT15)

𝖻𝗈𝗈𝗅? 𝑥 ∶=𝗍𝗋𝗎𝖾 𝑥 variable (IT16)

𝖻𝗈𝗈𝗅? 𝑐 ∶=𝗍𝗋𝗎𝖾 𝑥 constant (IT17)

The cases for terms are:

𝑐 ∶= 𝑐 (IT18)

𝑥 ∶= 𝑥 (IT19)

𝜆𝑥 ∶𝐴. 𝑡 ∶= 𝜆𝑥 ∶𝐴. 𝑡 (IT20)

𝑓 𝑡 ∶= 𝑓 𝑡 (IT21)

𝐹 ⇒ 𝐺 ∶= 𝐹 ⇒ 𝐺 (IT22)

𝑓 =Π𝑥∶𝐴. 𝐵 𝑔 ∶= ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑥 =𝐵 𝑔 𝑥] (IT23)

𝑠 =𝐴 𝑡 ∶= 𝑠 =𝐴 𝑡 ∧ 𝐴? 𝑠 ∧ 𝐴? 𝑡 𝐴 not function type (IT24)

Here the abbreviation 𝖱𝖾𝗅𝖺𝗍𝐴[𝑥 =𝐴 𝑥′] is used to denote the relativization of the equality 𝑥 =𝐴
𝑥′. We define the relativization of an equality by induction on the type 𝐴:

𝖱𝖾𝗅𝖺𝗍𝐴[𝑡 =𝐴 𝑡′] ∶= 𝖱[𝑡] =𝐴 𝖱[𝑡]′ ∧ 𝐴? 𝖱[𝑡] ∧ 𝐴? 𝖱[𝑡′] 𝐴 not function type (IT25)

𝖱𝖾𝗅𝖺𝗍Π𝑥∶𝐴. 𝐵[𝑓 =Π𝑥∶𝐴. 𝐵 𝑓 ′] ∶= ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑥 =𝐵 𝑓 𝑥] else (IT26)

And the abbreviation 𝖱[𝑠] denoting the relativization of the term 𝑠 is defined by:

𝖱[𝑠] ∶= 𝑠 if 𝑠 = 𝖱[𝑡] (IT27)

And for 𝑠 not of the form 𝖱[𝑡]:

𝖱[𝑠 =𝐴 𝑡] ∶= 𝖱𝖾𝗅𝖺𝗍𝐴[𝑠 =𝐴 𝑡] (IT28)

𝖱[𝑓 𝑡] ∶= 𝖱[𝑓 ] 𝖱[𝑡] (IT29)

𝖱[𝐹 ⇒ 𝐺] ∶= 𝖱[𝐹 ] ⇒ 𝖱[𝐺] (IT30)

𝖱[𝜆𝑥 ∶𝐴. 𝑠] ∶= 𝜆𝑥 ∶𝐴. 𝖱[𝑠] (IT31)

𝖱[𝑥] ∶= 𝑥 (IT32)

𝖱[𝑐] ∶= 𝑐 (IT33)

The relativization of a term is well-defined, since its definition recurses only into the definition of
the relativization of an equality over a type of smaller arity (for equalities over types of positive
arity) and into relativizations of subterms (for all other terms).

3.2.2 Translation 2 from DHOL into HOL

Translation definition 2 (Translation from DHOL∗ into HOL∗). We define this translation from
DHOL∗ into HOL∗ syntax by induction on the Grammar. The cases in the definition are mostly

Page 24 of 50



3.2 Translating DHOL∗ into HOL∗ and DIHOL into IHOL Colin Rothgang

the same as in Translation 1. The only difference between this translation and Translation 1 is
that we introduce no typing predicate 𝖻𝗈𝗈𝗅? but instead define 𝖻𝗈𝗈𝗅? of a function applications as
a meta-level abbreviation.

For 𝑡𝛽𝜂 not the application of a predicate to all its arguments we define 𝖻𝗈𝗈𝗅? 𝑡 as in Translation 1.
If 𝑡𝛽𝜂 is the application 𝑡′ ∶= 𝑝 𝑡1 … 𝑡𝑛 of a predicate 𝑝 (from the theory or context) with
(eventual) return type 𝖻𝗈𝗈𝗅 to all its arguments 𝑡1,… , 𝑡𝑝𝑖 , it follows that 𝑝 =∶ 𝑐𝑖 must be a
variable or a constructor in the context, scope or in the theory respectively or that 𝑡′ is the
application of a 𝜆-function to an argument that is ill-typed or of a type not equal to the type
quantified over in the 𝜆-function (otherwise 𝑡′ beta reducible). In the latter case, the term 𝑡′ itself
is ill-typed in HOL and we define 𝖻𝗈𝗈𝗅? 𝑡′ to be 𝖿𝖺𝗅𝗌𝖾.

Otherwise, we define the meta-level abbreviation 𝖻𝗈𝗈𝗅? 𝑡 ∶= 𝖻𝗈𝗈𝗅? 𝑡′ = 𝖻𝗈𝗈𝗅?
(

𝑝 𝑡1 … 𝑡𝑛
)

by:

𝖻𝗈𝗈𝗅? 𝑐𝑖 𝑡1 … 𝑡𝑝𝑖 ∶=𝑇𝑖,1
? 𝑡1 ∧… ∧

(

𝑇𝑖,𝑝𝑖[
𝑟𝑖,1∕𝑡1]… [𝑡𝑖,𝑝𝑖−1∕𝑡𝑝𝑖−1]

)?
𝑡𝑝𝑖 , (17)

where

𝑐1 ∶ Π𝑟1,1 ∶𝑇1,1. …Π𝑟1,𝑝1 ∶𝑇1,𝑝1 . 𝖻𝗈𝗈𝗅,

𝑐2 ∶ Π𝑟2,1 ∶𝑇2,1. …Π𝑟2,𝑝2 ∶𝑇2,𝑝2 . 𝖻𝗈𝗈𝗅,

⋮

𝑐𝑚 ∶ Π𝑟𝑚,1 ∶𝑇𝑚,1. …Π𝑟𝑚,𝑝𝑚 ∶𝑇𝑚,𝑝𝑚 . 𝖻𝗈𝗈𝗅

are the constructors (and variables) of return type 𝖻𝗈𝗈𝗅 in the DHOL∗ theory, context and scope.
We will sometimes also denote this abbreviation 𝖻𝗈𝗈𝗅? by 𝑝𝖻𝗈𝗈𝗅 if we are comparing the two
translations and the abbreviation might otherwise get confused with the typing predicate.

A complete self-contained definition of Translation 2 is given in Appendix C.

3.2.3 Non-injectivity of the translation and spurious terms

Inspecting the Translation 1, we notice two interesting cases, namely the translation of equalities
over function types and the treatment of the typing predicate over type 𝖻𝗈𝗈𝗅.

The case IT23 needs to be considered separately (from case IT23), to ensure the soundness of the
translation, otherwise the rule (cong𝜆’) makes the translation unsound. When proving soundness
of the translation, we can easily treat the inductive step case for the rule using the translation
by case IT23, but there is no obvious way to prove the step when translating according to IT24.
This unsoundness can be shown by considering the counterexample:

Example 4. Consider the theory 𝑆:

𝑏 ∶ 𝗍𝗉 (1)

𝑐1 ∶ 𝑏 (2)

𝑐2 ∶ 𝑏 (3)
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(

𝑐1 =𝑏 𝑐2
)

=𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 (4)

𝑎 ∶ Π𝑥 ∶𝑏. 𝗍𝗉 (5)

∀ 𝑥 ∶𝑎 𝑐1. 𝖿𝖺𝗅𝗌𝖾 (6)

𝑑 ∶ 𝑎 𝑐2 (7)

and the conjecture (for some well-formed context Γ)

Γ ⊢𝑆 𝜆𝑥 ∶𝑎 𝑐1. 𝑐1 =Π𝑥∶𝑎 𝑐1. 𝑏 𝜆𝑥 ∶𝑎 𝑐1. 𝑐2.

We can prove this conjecture in DIHOL as follows:

Γ, 𝑥 ∶ 𝑎 𝑐1 ⊢𝑆𝖿𝖺𝗅𝗌𝖾 (∀E),(6),(var) (8)

Γ, 𝑥 ∶ 𝑎 𝑐1 ⊢𝑆𝑐1 =𝑏 𝑐2 (cong⊢ ),(4),(8) (9)

Γ ⊢𝑆𝜆𝑥 ∶𝑎 𝑐1. 𝑐1 =Π𝑥∶𝑎 𝑐1. 𝑏 𝜆𝑥 ∶𝑎 𝑐1. 𝑐2 (cong𝜆),(9) (10)

However, the translation of the conjecture according to case T24 is:

Γ ⊢𝑆 𝜆𝑥 ∶𝑎. 𝑐1 =𝑎→𝑏 𝜆𝑥 ∶𝑎. 𝑐2 ∧ Π𝑥 ∶𝑎 𝑐1. 𝑏
? 𝜆𝑥 ∶𝑎. 𝑐1 ∧ Π𝑥 ∶𝑎 𝑐1. 𝑏

? 𝜆𝑥 ∶𝑎. 𝑐2

This translated conjecture is not provable. Already the statement of validity of its first conjunct

Γ ⊢𝑆 𝜆𝑥 ∶𝑎. 𝑐1 =𝑎→𝑏 𝜆𝑥 ∶𝑎. 𝑐2 (11)

is a contradiction. This can be seen as follows:

Γ ⊢𝑆
(

𝜆𝑥 ∶𝑎. 𝑐1
)

𝑑 =𝑏
(

𝜆𝑥 ∶𝑎. 𝑐2
)

𝑑 (congAppl),(11),(refl) (12)

Γ ⊢𝑆
(

𝜆𝑥 ∶𝑎. 𝑐1
)

𝑑 =𝑏 𝑐2 (rewrite),(12),(beta) (13)

Γ ⊢𝑆𝑐1 =𝑏 𝑐2 (rewrite),(13),(beta)

This contradicts (4) which (by definition of ¬) beta reduces to the negation of this equality.

Using the simpler translation of equality in Translation 1 also makes the translation incomplete,
as seen from the conjecture:
(

∀ 𝑝 ∶𝑎 𝑠 → 𝖻𝗈𝗈𝗅. 𝑝 =𝑎 𝑠→𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝑎 𝑠. 𝗍𝗋𝗎𝖾
)

=𝖻𝗈𝗈𝗅

(

∀ 𝑝 ∶𝑎 𝑡 → 𝖻𝗈𝗈𝗅. 𝑝 =𝑎 𝑡→𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝑎 𝑡. 𝗍𝗋𝗎𝖾
)

,

for 𝑎 𝑠 empty and 𝑎 𝑡 non-empty.

In the following, we will give a necessary (injectivity) condition for the completeness (w.r.t.
validity) of the translation and show why Translation 1 satisfies it.

Since the translation looses type information to dependency-erasure we can write down conjec-
tures that are not even well-typed in DIHOL, but whose translation is well-typed and in fact
provable. Perhaps the simplest such example is the DIHOL theory T:

𝑏 ∶ 𝗍𝗉, 𝑐1 ∶ 𝑏, 𝑐2 ∶ 𝑏, 𝑎 ∶ Π𝑥 ∶𝑏. 𝗍𝗉
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with the conjecture
⊢𝑇 𝜆𝑥 ∶𝑎 𝑐1. 𝑥 =𝑎 𝑐1 𝜆𝑥 ∶𝑎 𝑐2. 𝑥

This conjecture is not well-typed (as 𝑐1 =𝑏 𝑐2 not provable). Its translation however becomes:

⊢𝑇 ∀ 𝑥 ∶𝑎. 𝑎? 𝑐1 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝑎 𝑐1[𝑥 =𝑎 𝑐1 𝑥],

which is follows by the rules (refl), (assume), (∧I), (⇒I) and (∀I).

The problem is that terms of different DIHOL types can have equal images in IHOL of same
type. Thus the translation function is not complete if we allow for ill-typed DIHOL terms that
are translated to well-typed IHOL terms.

Following this observation, we introduce the notions of spurious terms and types:

Definition 5. Let 𝑡 be an ill-typed DIHOL (or DIHOLP) term with well-typed image 𝑡 in IHOL.
In this case we will say that 𝑡 is a spurious term. A term 𝑠 in IHOL that is the image of a well-
typed term 𝑠, will be called proper. A term 𝑡𝑚 in IHOL that is not the image of any (well-typed
or not) term is said to be improper. This is visualized in Figure 3 below.

well-typed
DHOLP terms

ill-typed
DHOLP terms

proper
HOL terms

spurious
HOL terms

improper
HOL terms

DHOLP terms HOL terms

Figure 3: Diagram about spurious and improper terms in HOL

Similarly, given an ill-formed DIHOL type 𝐴 with a well-formed image 𝐴 in IHOL, we will say
that 𝐴 is a spurious type. A well-formed IHOL type that is not spurious will be called proper.

Observe, that proper terms in IHOL are the image of well-typed DIHOL (or DIHOLP) terms.
Well-formed DIHOL (or DIHOLP) terms have – by definition – well-formed types, the sound-
ness of the translation w.r.t. typing will therefore imply that proper terms have proper types.

For example, relative to the translation of above theory T the term 𝜆𝑥 ∶ 𝑎. 𝑥 is proper, the term
𝜆𝑥 ∶𝑎. 𝑥 =𝑎→𝑎 𝜆𝑥 ∶𝑎. 𝑥 is improper and the translated conjecture is spurious.

If the translation is not (term-wise) injective, we can create a counterexample to the correctness
of the translation by choosing terms 𝑠, 𝑡 of types 𝐴 and 𝐴′ respectively s.t. 𝑠 = 𝑡 and 𝐴 ≡ 𝐴′ but
not 𝐴 ≡ 𝐴′ and considering the conjecture that the equality 𝑠 =𝐴 𝑡 is valid (we have already
seen an example for this situation above). This conjecture is not be provable in DIHOL, but its
translation is spurious but well-typed and provable.
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To avoid such issues coming from spurious formulas, it suffices to restrict to well-formed (and
thus well-typed) DIHOL theories and conjectures. Then any equality will necessarily have terms
of equal DIHOL type on the left and the right side. Now we only get injectivity issues if there
are different DIHOL terms of same DIHOL type with same image in IHOL.

Considering either only identical terms or also just provably equal terms as the same we get
different injectivity notions. Ultimately, we need that not provably equal terms of same DIHOL
type have images that are not provably equal, a property that we call value-wise injectivity. If the
translation is value-wise injective then we know that if equalities are provable in the image they
are also provable in DIHOL. In fact, lemma 2 implies that value-wise injectivity is equivalent to
the completeness of the translation w.r.t. validity.

Since it is very difficult to create equality proofs in DIHOL out of equality proofs of the images
in IHOL, it will be useful to also consider other injectivity notions that are easier to prove to
be satisfied. The other obvious injectivity notion is term-wise injectivity, indicating whether the
translation maps non-identical DIHOL terms of equal type to non-identical terms. Term-wise
injectivity can be easily shown using induction on the term productions in DIHOL:

Lemma 6. Let Δ be a DIHOL context and let Γ denote its translation. Given two DIHOL terms
𝑠, 𝑡 of type 𝐴 and assuming 𝑠 and 𝑡 are not identical, it follows that 𝑠 and 𝑡 are not identical.

This is proven in appendix D. We can show term-wise injectivity of Translation 2 in exactly the
same way.

Remark 7. Later in the thesis we extend both translations to source logics which additionally
feature predicate subtypes. However, since no additional terms are added, this lemma will hold
for those translations as well.

3.3 Soundness and completeness of translation from DIHOL into IHOL

3.3.1 Soundness of the translation

Definition 6 (Soundness and completeness of a translation between logics). We will say that
a translation from a logic 𝐿 to a logic 𝐿′ is sound, if the following property holds: Given a
conjecture Γ ⊢𝑇 𝐽 relative to a theory 𝑇 in 𝐿, if the conjecture Γ ⊢𝑇 𝐽 is provable in 𝐿, then its
translation is also provable in 𝐿′. For the logics in this thesis, we will additionally require that
the invariants given in Table 1 hold.

We will say that a translation from logic 𝐿 to logic 𝐿′ is complete, if the following property
holds: Take a well-formed conjecture Γ ⊢𝑇 𝐽 relative to a well-formed theory 𝑇 in 𝐿. If
the translation of the conjecture (and the corresponding invariants) are provable in 𝐿′, then the
conjecture is also provable in 𝐿.

The motivation for requiring the well-formedness (and hence also well-typedness) of the theory
and the conjecture was already discussed in Section 3.2.3: If we don’t assume well-typedness of
the theory and conjecture, the translation will definitely not be complete.

The words soundness and completeness are sometimes used with reversed meanings (soundness
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meaning what we call completeness and vice versa). We will use the concepts soundness/com-
pleteness from the perspective of the translation: Soundness carries provable DHOL statements
to provable HOL statements, and completeness the other way. That corresponds to thinking of
our translation as assigning semantics to DHOL by interpreting it in HOL. Consequently, from
the perspective of theorem proving, completeness is the critical property: it ensures that proving
𝐹 in HOL implies the validity of 𝐹 in DHOL.

As usual soundness is the relatively easier property to establish, in our case it can be shown
directly via induction on the derivations in D(I)HOL.

The more difficult completeness property will be discussed in the later Section 3.3.3.

Theorem 8 (Soundness). We have

⊢ 𝑇 𝖳𝗁𝗒 implies ⊢ 𝑇 𝖳𝗁𝗒 (1)

⊢𝑇 Γ 𝖢𝗍𝗑 implies ⊢𝑇 Γ 𝖢𝗍𝗑 (2)

Γ ⊢𝑇 𝐴 ∶ 𝗍𝗉 implies Γ ⊢𝑇 𝐴 ∶ 𝗍𝗉 and Γ ⊢𝑇 𝐴? ∶ 𝐴 → 𝖻𝗈𝗈𝗅 (3)

Γ ⊢𝑇 𝐴 ≡ 𝐵 implies Γ ⊢𝑇 𝐴 ≡ 𝐵 and Γ ⊢𝑇 𝐴? =𝐴→𝖻𝗈𝗈𝗅 𝐵
? (4)

Γ ⊢𝑇 𝑡 ∶ 𝐴 implies Γ ⊢𝑇 𝑡 ∶ 𝐴 and Γ ⊢𝑇 𝐴? 𝑡 (5)

Γ ⊢𝑇 𝐹 implies Γ ⊢𝑇 𝐹 (6)

In the special case of term equality =𝐴 we strengthen the claim to:

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ implies Γ ⊢𝑇 𝑡 =𝐴 𝑡′ ∧ 𝐴? 𝑡 ∧ 𝐴? 𝑡′ (7)

Additionally the substitution lemma holds, i.e.,

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 and Γ ⊢ 𝑢 ∶ 𝐴 implies Γ ⊢ 𝑡[𝑥∕𝑢] =𝐵 𝑡[𝑥∕𝑢] (8)

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 𝗍𝗉 and Γ ⊢ 𝑢 ∶ 𝐴 implies Γ ⊢ 𝐵[𝑥∕𝑢] ≡ 𝐵[𝑥∕𝑢] (9)

Corollary 9. Analogously (with just a case (treated in Appendix G) for rule (boolExt) instead
of the case for rule (propExt)), it follows that Translation 1 from DHOL into HOL is sound.

Theorem 10. Similarly Translation 2 from DHOL∗ into HOL∗ is sound.

Theorem 8 and Theorem 10 are special cases of the soundness theorems of Translation 1 from
DIHOLP into IHOL (resp. Translation 2 from DHOLP∗ into HOL) proven in Theorem 14 (resp.
Corollary 16).

3.3.2 The problem of spurious terms

Knowing the term-wise injectivity of the translation is helpful for show the completeness of the
translation. Using it we can try to inductively "lift" proofs from IHOL to DIHOL.

However, there is a critical issue we still have to address for this approach, namely the translation
being non-surjective. Specifically, in IHOL we have
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• spurious terms

• unrelativized equalities

• typing predicates and their applications outside of relativations

• unrelativized context variables

The issue with the non-surjectivity is that proofs in IHOL can contain terms not in the image
(of well-typed terms) of the translation. Since such terms don’t have any corresponding (well-
typed) term in DIHOL, there is no directly corresponding proof in DIHOL. In that sense, there
are "more proofs" in IHOL than in DIHOL (although of course there are countably infinitely
many proofs in both logics).

It will be useful to distinguish between two different kinds of improper terms.

Definition 7. An improper term is called almost proper iff its relativization isn’t spurious and
contains no spurious subterms, otherwise it is said to be unnormalizably spurious. We will
consider proper terms to be almost proper as well.

As will be described in section 4.3.3 we can transform derivations in IHOL in a way that removes
unnormalizably spurious terms from the derivation, yielding a derivation in which all occurring
terms are almost proper.

Regarding typing predicates outside of relativizations of equalities: We will prove that the typing
predicates are equivalent to the translations of the corresponding replacement predicates, so we
can consider the replacement predicates as the quasi-preimage of the typing predicate.

Regarding unrelativized equalities: After the removing unnormalizably spurious terms (and re-
placing typing predicates by translations of replacement predicates outside of relativizations)
in a derivation it is clear that unrelativized equalities have relativizations that are proper terms.
For this reason unrelativized equalities don’t really affect the completeness proof. We simply
consider the preimage of a relativization as the quasi-preimage of the equality.

Regarding unrelativized context variables: As it turns out, they don’t really affect the complete-
ness proof. We can simply add the missing typing assumptions for them when constructing a
DIHOL proof from an IHOL proof.

3.3.3 Completeness of the translation

Theorem 11 (Completeness of the Translation 1). Assume a well-formed DIHOL theory 𝑇 and
conjecture Γ ⊢𝑇 𝐹 . Then it follows:

Γ ⊢𝑇 𝐹 implies Γ ⊢𝑇 𝐹 (10)

In particular, this includes the special case of term equality =𝐴 :

Γ ⊢ 𝖱𝖾𝗅𝖺𝗍𝐴[𝑡 =𝐴 𝑡′] implies Γ ⊢ 𝑡 =𝐴 𝑡′ (11)
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This is a special case of the completeness proof for Translation 1 from DIHOLP to IHOL given
in Theorem 25.

Similarly, also Translation 2 from DHOL∗ into HOL∗ and HOL is complete (this is a special
case of Corollary 28 resp. Corollary 30).

3.4 Typechecking DHOL∗ theories

Since we cannot directly use the translation for typechecking DHOL∗ theories, we need a dif-
ferent method for typechecking. This can be done by using the usual typing rules of DHOL and
generating proof obligations for term equalities for the cases of the rules (cong∶) and (cong-
Base’). This is described in more detail in subsection 4.4.

4 Dependently typed higher-order logic with predicate subtypes

We can extend HOL, DHOL∗, IHOL,DHOL or DIHOL with predicate subtypes in a similar way
to how we added dependent function types. We will abbreviate DHOL∗, DIHOLand DHOL
with predicate subtypes as DHOLP∗, DIHOLP and DHOLP respectively. The type 𝐴|𝑝 denotes
the subtype of 𝐴 defined by the predicate 𝑝 ∶ 𝐴 → 𝖻𝗈𝗈𝗅. HOL with predicate subtypes shares
some common properties with DHOL: in both cases, terms can occur in types, type equality and
typing becomes undecidable, well-typedness of a declarations may depend on assumptions and
axioms, and dependent implication and conjunction are needed. Yet neither dependent function
types nor predicate subtypes can be defined in terms of the other.

To extend D(I)HOL with predicate subtypes, we extend its grammar to the following grammar:

𝑇 ∶∶= ∗ | 𝑇 , 𝐷𝑒𝑐 theories
𝐷𝑒𝑐 ∶∶= 𝑐 ∶ 𝐴 | 𝑎 ∶ (Π𝑥 ∶𝐴. )∗ 𝗍𝗉 | 𝐹 declarations
Γ ∶∶= . | Γ, 𝑥 ∶ 𝐴 | Γ, 𝐹 contexts
𝐴,𝐵 ∶∶= 𝑎 𝑡1… 𝑡𝑛 | Π𝑥 ∶𝐴. 𝐵 | 𝖻𝗈𝗈𝗅 | 𝐴|𝑝 types
𝑠, 𝑡, 𝑓 , 𝐹 , 𝐺 ∶∶= 𝑐 | 𝑥 | 𝑓 𝑡 | 𝜆𝑥 ∶𝐴. 𝑡 | 𝑠 =𝐴 𝑡 | 𝐹 ⇒ 𝐺 terms

By disallowing variables in contexts, Π-types or 𝜆-functions of (subtypes of) 𝖻𝗈𝗈𝗅-valued func-
tion types (of positive arity) and (subtypes of) 𝖻𝗈𝗈𝗅|𝑝 -valued function types for predicates 𝑝 ∶
Π𝑥 ∶𝖻𝗈𝗈𝗅. 𝖻𝗈𝗈𝗅, we yield the allowed DHOLP∗ syntax.

No new term constructors are needed.

The assumption nonEmpty’ and the inference rules of D(I)HOL (DHOL∗) remain, we only add
the additional inference rules (for any of the three logics) for predicate subtypes:

Γ ⊢𝑇 𝑝 ∶ Π𝑥 ∶𝐴. 𝖻𝗈𝗈𝗅
Γ ⊢𝑇 𝐴|𝑝 𝗍𝗉

|𝑝 𝗍𝗉
Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝑝 =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝑝′

Γ ⊢𝑇 𝐴|𝑝 ≡ 𝐴′
|𝑝′

|𝑝 ≡

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝑝 =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
Γ ⊢𝑇 𝐴|𝑝 ≡ 𝐴′ |𝑝 trivL

Γ ⊢𝑇 𝐴 ≡ 𝐴′ Γ ⊢𝑇 𝑝 =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
Γ ⊢𝑇 𝐴′ ≡ 𝐴|𝑝

|𝑝 trivR
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Γ ⊢𝑇 𝑡 ∶ 𝐴 Γ ⊢𝑇 𝑝 𝑡
Γ ⊢𝑇 𝑡 ∶ 𝐴|𝑝

|𝑝 I
Γ ⊢𝑇 𝑡 ∶ 𝐴|𝑝
Γ ⊢𝑇 𝑡 ∶ 𝐴

|𝑝E∶
Γ ⊢𝑇 𝑡 ∶ 𝐴|𝑝
Γ ⊢𝑇 𝑝 𝑡

|𝑝E𝑝

Remark 12. Observe that many of the rules derived for HOL in Lemma 1 still hold in DHOLP
and its fragments. In particular, the rules (ctxThy), (tpCtx), (typingTp) and (validTyping) can
be proven by the same method. Also the rules (monotonic⊢ ), (var⊢ ), (rewrite) and the intro-
duction and elimination rules for the quantifier and defined logical connectives can be derived
in D(I)HOLP with the same proofs.

We extend the definition of the replacement predicates to DHOLP and its fragments by defining

𝑝𝐴|𝑝 𝑡 ∶= 𝑝 𝑡 ∧ 𝑝𝐴 𝑡 . (R7)

Example 5 (Set theory). This theory formalizes set theory, specifically sets, elementhood, sub-
sets, functions between sets, function application and restriction of functions to subsets.

For better readability we use the infix notations ∈ , ⊂, @, ⋅|⋅ for 𝚘𝚏, 𝚜𝚞𝚋𝚜, @ and 𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛.
Furthermore, we allow for defined type declarations and term constructors. We treat the defined
declarations as mere abbreviations that are expanded before the translation is applied.

𝗌𝖾𝗍 ∶𝗍𝗉
𝚘𝚏 ∶Π𝑎 ∶𝗌𝖾𝗍. Π𝑥 ∶𝗌𝖾𝗍. 𝖻𝗈𝗈𝗅

𝚜𝚞𝚋𝚜 ∶Π𝑎 ∶𝗌𝖾𝗍. Π𝑠 ∶𝗌𝖾𝗍. 𝖻𝗈𝗈𝗅
∀ 𝑎 ∶𝗌𝖾𝗍. ∀ 𝑠 ∶𝗌𝖾𝗍. 𝑠 ⊂ 𝑎 =𝖻𝗈𝗈𝗅 (∀ 𝑦 ∶𝗌𝖾𝗍. 𝑦 ∈ 𝑠 ⇒ 𝑦 ∈ 𝑎)

𝖢𝗅𝖺𝗌𝗌 = 𝜆𝑝 ∶(Π𝑦 ∶𝗌𝖾𝗍. 𝖻𝗈𝗈𝗅) . 𝗌𝖾𝗍|𝜆𝑠∶𝗌𝖾𝗍. 𝑝 𝑠

𝖤𝗅𝖾𝗆 = 𝜆𝑋 ∶𝗌𝖾𝗍. 𝖢𝗅𝖺𝗌𝗌 (𝜆𝑥 ∶𝗌𝖾𝗍. 𝑥 ∈ 𝑋)
𝖲𝗎𝖻𝗌𝖾𝗍 = 𝜆𝑋 ∶𝗌𝖾𝗍. 𝖢𝗅𝖺𝗌𝗌 (𝜆𝑥 ∶𝗌𝖾𝗍. 𝑥 ⊂ 𝑋)

∶Π𝑎 ∶𝗌𝖾𝗍. Π𝑏 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍
@ ∶Π𝑎 ∶𝗌𝖾𝗍. Π𝑏 ∶𝗌𝖾𝗍. Π𝑓 ∶𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑎 𝑏) . Π𝑥 ∶𝖤𝗅𝖾𝗆 (𝑎) . 𝖤𝗅𝖾𝗆 (𝑏)

∀ 𝑎 ∶𝗌𝖾𝗍. ∀ 𝑏 ∶𝗌𝖾𝗍. ∀ 𝑓 ∶𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑎 𝑏) . ∀ 𝑔 ∶𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑎 𝑏) .
∀ 𝑥 ∶𝖤𝗅𝖾𝗆 (𝑎) . 𝑓@𝑥 =𝖤𝗅𝖾𝗆 (𝑏) 𝑔@𝑥 ⇒ 𝑓 =𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑎 𝑏) 𝑔

𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 ∶Π𝑎 ∶𝗌𝖾𝗍. Π𝑏 ∶𝗌𝖾𝗍. Π𝑓 ∶𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑎 𝑏) . Π𝑠 ∶𝖲𝗎𝖻𝗌𝖾𝗍 (𝑎) . 𝚏𝚞𝚗𝚌 𝑠 𝑏
∀ 𝑎 ∶𝗌𝖾𝗍. ∀ 𝑏 ∶𝗌𝖾𝗍. ∀ 𝑓 ∶𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑎 𝑏) . ∀ 𝑠 ∶𝖲𝗎𝖻𝗌𝖾𝗍 (𝑎) .

∀ 𝑥 ∶𝖤𝗅𝖾𝗆 (𝑠) . 𝑓 @ 𝑥 =𝖤𝗅𝖾𝗆 (𝑦)
(

𝑓 |𝑠
)

@ 𝑥

In this theory we can formalize the conjecture:

∀ 𝑎 ∶𝗌𝖾𝗍. ∀ 𝑑 ∶𝗌𝖾𝗍. ∀ 𝑏 ∶𝖲𝗎𝖻𝗌𝖾𝗍 (𝑎) . ∀ 𝑠 ∶𝖲𝗎𝖻𝗌𝖾𝗍 (𝑏) .

∀ 𝑓 ∶𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑎 𝑑) .
(

𝑓 |𝑏
)

|

|

|𝑠
=𝖤𝗅𝖾𝗆 (𝚏𝚞𝚗𝚌 𝑠 𝑑) 𝑓 |𝑠

Since both theory and conjecture use subtyping, this cannot be expressed (this way) in HOL.
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4.1 Translating DIHOLP into IHOL and DHOLP∗ into HOL∗

Definition 8 (Translation). We define two translations from DHOLP (DHOLP∗) into HOL
(HOL∗) syntax by induction on the Grammar. The translations use either of Translation 1 or
Translation 2 (denoted by ⋅ in the definiens) internally (which is why we obtain two translations
here as well). Using the notation ⋅ for either Translation 1 or Translation 2 we can extend this
translation to DHOLP resp. DHOLP∗ by induction on the grammar:

The cases for theories and contexts are:

◦ ∶= ◦ (PT1)

𝑇 , 𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 ∶= 𝑇 , 𝑎 ∶ 𝗍𝗉, 𝑎? ∶ 𝐴1 → … → 𝐴𝑛 → 𝑎 → 𝖻𝗈𝗈𝗅 (PT2)

𝑇 , 𝑐 ∶ 𝐴 ∶= 𝑇 , 𝑐 ∶ 𝐴, 𝐴? 𝑐 (PT3)

𝑇 , 𝐹 ∶= 𝑇 , 𝐹 (PT4)

. ∶= . (PT5)

Γ, 𝑥 ∶ 𝐶 ∶= Γ, 𝑥 ∶ 𝐴, 𝐶? 𝑥 (PT6)

Γ, 𝐹 ∶= Γ, 𝐹 (PT7)

The case of 𝐴 and 𝐴? for types 𝐴 are:

𝐴|𝑝 ∶= 𝐴 (PT8)
(

𝐴|𝑝
)? ∶= 𝜆𝑡 ∶𝐴. 𝑝 𝑡 ∧ 𝐴? 𝑡 (PT9)

Π𝑥 ∶𝐴. 𝐵 ∶= Π𝑥 ∶𝐴. 𝐵 (PT10)

(Π𝑥 ∶𝐴. 𝐵)? ∶= 𝜆𝑓 ∶Π𝑥 ∶𝐴. 𝐵. ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝐵? (𝑓 𝑥
)

(PT11)

𝐴 ∶= 𝐴 𝐴 is DHOL type (PT12)

The cases for terms are:

𝑐 ∶= 𝑐 (PT13)

𝑥 ∶= 𝑥 (PT14)

𝜆𝑥 ∶𝐴. 𝑡 ∶= 𝜆𝑥 ∶𝐴. 𝑡 (PT15)

𝑓 𝑡 ∶= 𝑓 𝑡 (PT16)

𝐹 ⇒ 𝐺 ∶= 𝐹 ⇒ 𝐺 (PT17)

𝑠 =𝐴|𝑝 𝑡 ∶= 𝑝 𝑠 ∧ 𝑝 𝑡 ∧ 𝑠 =𝐴 𝑡 (PT18)

𝑓 =Π𝑦∶𝐴. 𝐵 𝑔 ∶= ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑥 =𝐵 𝑔 𝑥] (PT19)

𝑠 =𝐴 𝑡 ∶= 𝑠 =𝐴 𝑡 ∧ 𝐴? 𝑠 ∧ 𝐴?𝑡 else (PT20)
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Here the notation 𝖱𝖾𝗅𝖺𝗍𝑇 [𝑥 =𝑇 𝑥′] is defined inductively (on 𝑇 ) by:

𝖱𝖾𝗅𝖺𝗍𝐴[𝑠 =𝐴 𝑡] ∶= 𝖱[𝑠] =𝐴 𝖱[𝑡] ∧ 𝐴? 𝖱[𝑠] ∧ 𝐴? 𝖱[𝑡] if 𝐴 not function type
(PT21)

𝖱𝖾𝗅𝖺𝗍𝐴|𝑝 [𝑠 =𝐴|𝑝
𝑡] ∶= 𝑝 𝖱[𝑠] ∧ 𝑝 𝖱[𝑡] ∧ 𝖱𝖾𝗅𝖺𝗍𝐴[𝑠 =𝐴 𝑡] (PT22)

𝖱𝖾𝗅𝖺𝗍Π𝑥∶𝐴. 𝐵[𝑓 =Π𝑥∶𝐴. 𝐵 𝑓 ′] ∶= ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑥 =𝐵 𝑓 𝑥] else (PT23)

And the notation 𝖱[𝑡𝑚] is defined inductively on 𝑡𝑚 by:

𝖱[𝑠] ∶= 𝑠 for 𝑠 = 𝖱[𝑡] (PT24)

𝖱[𝑠 =𝐴 𝑡] ∶= 𝖱𝖾𝗅𝖺𝗍𝐴[𝑠 =𝐴 𝑡] (PT25)

𝖱[𝑓 𝑡] ∶= 𝖱[𝑓 ] 𝖱[𝑡] (PT26)

𝖱[𝐹 ⇒ 𝐺] ∶= 𝖱[𝐹 ] ⇒ 𝖱[𝐺] (PT27)

𝖱[𝜆𝑥 ∶𝐴. 𝑠] ∶= 𝜆𝑥 ∶𝐴. 𝖱[𝑠] (PT28)

𝖱[𝜆𝑥 ∶𝐴. 𝑠] ∶= 𝜆𝑥 ∶𝐴. 𝖱[𝑠] (PT29)

𝖱[𝑥] ∶= 𝑥 (PT30)

𝖱[𝑐] ∶= 𝑐 (PT31)

Translating example 5 to HOL yields:

Example 6 (Translation of set theory example).

𝖻𝗈𝗈𝗅? ∶𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅

𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾

𝖻𝗈𝗈𝗅? 𝖿𝖺𝗅𝗌𝖾

𝗌𝖾𝗍 ∶𝗍𝗉

𝗌𝖾𝗍? ∶𝗌𝖾𝗍 → 𝖻𝗈𝗈𝗅

𝚘𝚏 ∶𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝖻𝗈𝗈𝗅

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑥 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑥 ⇒ 𝖻𝗈𝗈𝗅? (𝑥 ∈ 𝑎)
𝚜𝚞𝚋𝚜 ∶𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝖻𝗈𝗈𝗅

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑠 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑠 ⇒ 𝖻𝗈𝗈𝗅? (𝑠 ⊂ 𝑎)

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑠 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑠 ⇒

(𝑠 ⊂ 𝑎) =𝖻𝗈𝗈𝗅

(

∀ 𝑦 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑦 ⇒ 𝑦 ∈ 𝑠 ⇒ 𝑦 ∈ 𝑎
)

∕∖ 𝖻𝗈𝗈𝗅? (𝑠 ⊂ 𝑎) ∕∖ 𝖻𝗈𝗈𝗅? 𝑠 ∧ 𝖻𝗈𝗈𝗅? 𝑎
𝚏𝚞𝚗𝚌 ∶𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝗌𝖾𝗍

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑏 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑏 ⇒ 𝗌𝖾𝗍? (𝚏𝚞𝚗𝚌 𝑎 𝑏)
@ ∶𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝗌𝖾𝗍
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∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑏 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑏 ⇒ ∀ 𝑓 ∶𝗌𝖾𝗍. 𝑓 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑏 ∧ 𝗌𝖾𝗍? 𝑓 ⇒

∀ 𝑥 ∶𝗌𝖾𝗍. 𝑥 ∈ 𝑎 ∧ 𝗌𝖾𝗍? 𝑥 ⇒ 𝑓@𝑥 ∈ 𝑏 ∧ 𝗌𝖾𝗍? 𝑓@𝑥

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑏 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑏 ⇒ ∀ 𝑓 ∶𝗌𝖾𝗍. 𝑓 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑏 ∧ 𝗌𝖾𝗍? 𝑓 ⇒

∀ 𝑔 ∶𝗌𝖾𝗍. 𝑔 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑏 ∧ 𝗌𝖾𝗍? 𝑔 ⇒ ∀ 𝑥 ∶𝗌𝖾𝗍. 𝑥 ∈ 𝑎 ∧ 𝗌𝖾𝗍? 𝑥 ⇒

(𝑓@𝑥) =𝗌𝖾𝗍 (𝑔@𝑥) ∧ (𝑓@𝑥) ∈ 𝑏 ∧ 𝗌𝖾𝗍? (𝑓@𝑥) ∧ (𝑔@𝑥) ∈ 𝑏 ∧ 𝗌𝖾𝗍? (𝑓@𝑥) ⇒

𝑓 =𝗌𝖾𝗍 𝑔 ∧ 𝑓 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑏 ∧ 𝗌𝖾𝗍? 𝑓 ∧ 𝑔 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑏 ∧ 𝗌𝖾𝗍? 𝑓
𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 ∶𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝗌𝖾𝗍 → 𝗌𝖾𝗍

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑏 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑏 ⇒ ∀ 𝑓 ∶𝗌𝖾𝗍. 𝑓 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑏 ∧ 𝗌𝖾𝗍? 𝑓 ⇒

∀ 𝑠 ∶𝗌𝖾𝗍. 𝑠 ⊂ 𝑎 ∧ 𝗌𝖾𝗍? 𝑠 ⇒ 𝗌𝖾𝗍?
(

𝑓 |𝑠
)

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑏 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑏 ⇒ ∀ 𝑓 ∶𝗌𝖾𝗍. 𝑓 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑏 ∧ 𝗌𝖾𝗍? 𝑓 ⇒

∀ 𝑠 ∶𝗌𝖾𝗍. 𝑠 ⊂ 𝑎 ∧ 𝗌𝖾𝗍? 𝑠 ⇒ ∀ 𝑥 ∶𝗌𝖾𝗍. 𝑥 ∈ 𝑠 ∧ 𝗌𝖾𝗍? 𝑥 ⇒

𝑓@𝑥 =𝗌𝖾𝗍

(

𝑓 |𝑠
)

@𝑥 ∧ 𝑓@𝑥 ∈ 𝑏 ∧ 𝗌𝖾𝗍? 𝑓@𝑥 ∧
(

𝑓 |𝑠
)

@𝑥 ∈ 𝑏 ∧ 𝗌𝖾𝗍? 𝑓@𝑥

The conjecture is translated to:

∀ 𝑎 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑎 ⇒ ∀ 𝑑 ∶𝗌𝖾𝗍. 𝗌𝖾𝗍? 𝑑 ⇒ ∀ 𝑏 ∶𝗌𝖾𝗍. 𝑏 ⊂ 𝑎 ∧ 𝗌𝖾𝗍? 𝑏 ⇒

∀ 𝑠 ∶𝗌𝖾𝗍. 𝑠 ⊂ 𝑏 ∧ 𝗌𝖾𝗍? 𝑠 ⇒ ∀ 𝑓 ∶𝗌𝖾𝗍. 𝑓 ∈ 𝚏𝚞𝚗𝚌 𝑎 𝑑 ∧ 𝗌𝖾𝗍? 𝑓 ⇒
(

𝑓 |𝑏
)

|

|

|𝑠
=𝗌𝖾𝗍 𝑓 |𝑠 ∧ 𝗌𝖾𝗍? 𝑓 |𝑠

∧
(

𝑓 |𝑏
)

|

|

|𝑠
∈ (𝚏𝚞𝚗𝚌 𝑠 𝑏) ∧ 𝗌𝖾𝗍?

(

𝑓 |𝑏
)

|

|

|𝑠
∧ 𝑓 |𝑠 ∈ (𝚏𝚞𝚗𝚌 𝑠 𝑏) ∧ 𝗌𝖾𝗍? 𝑓 |𝑠

4.2 Soundness of the translations

We will start by proving the soundness of the Translation 1 from DIHOLP into IHOL, then
we will explain how the soundness proof for Translation 1 from DHOLP into HOL and for
Translation 2 from DHOLP∗ into HOL will differ.

To distinguish statements in IHOL and in DIHOLP we will in the following denote the turnstyle
symbols ⊢ and ⊢𝑇 in IHOL by ⊢𝐻 and ⊢𝐻

𝑇

As usual soundness is the relatively easier property to establish, in our case it can be shown
directly via induction on the derivations in DIHOLP.

The more difficult completeness property will be discussed in the subsequent Subsection 4.3.

The following lemma will be useful for the soundness proof:

Lemma 13. Given DIHOLP terms 𝑠, 𝑡 of type 𝐶 which is well-formed in context Γ, we have
Γ ⊢𝑇 𝑠 =𝐶 𝑡 ∧ 𝐶? 𝑠 ∧ 𝐶? 𝑡 implies Γ ⊢𝑇 𝑠 =𝐶 𝑡.

This is proven in Appendix E.

We can now directly prove the soundness of Translation 1 from DIHOLP into IHOL.
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Theorem 14 (Soundness). We have

⊢ 𝑇 𝖳𝗁𝗒 implies ⊢𝐻 𝑇 𝖳𝗁𝗒 (1)

⊢𝑇 Γ 𝖢𝗍𝗑 implies ⊢𝐻
𝑇

Γ 𝖢𝗍𝗑 (2)

Γ ⊢𝑇 𝐴 ∶ 𝗍𝗉 implies Γ ⊢𝐻
𝑇

𝐴 ∶ 𝗍𝗉 and Γ ⊢𝐻
𝑇

𝐴? ∶ 𝐴 → 𝖻𝗈𝗈𝗅 (3)

Γ ⊢𝑇 𝐴 ≡ 𝐵 implies Γ ⊢𝐻
𝑇

𝐴 ≡ 𝐵 and Γ ⊢𝐻
𝑇

𝐴? =𝐴→𝖻𝗈𝗈𝗅 𝐵
? (4)

Γ ⊢𝑇 𝑡 ∶ 𝐴 implies Γ ⊢𝐻
𝑇

𝑡 ∶ 𝐴 and Γ ⊢𝐻
𝑇

𝐴? 𝑡 (5)

If the theory does not contain constants of types of arity at least 3, we additionally have:

Γ ⊢𝑇 𝐹 implies Γ ⊢𝐻
𝑇

𝐹 (6)

In the special case of term equality =𝐴 we strengthen this claim to:

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ implies Γ ⊢𝐻
𝑇

𝑡 =𝐴 𝑡′ and Γ ⊢𝐻
𝑇

𝐴? 𝑡 and Γ ⊢𝐻
𝑇

𝐴? 𝑡′ (7)

Additionally the substitution lemma holds, i.e.,

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 and Γ ⊢ 𝑢 ∶ 𝐴 implies Γ ⊢𝐻
𝑇

𝑡[𝑥∕𝑢] =𝐵 𝑡[𝑥∕𝑢] (8)

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 𝗍𝗉 and Γ ⊢ 𝑢 ∶ 𝐵 implies Γ ⊢𝐻
𝑇

𝐵[𝑥∕𝑢] ≡ 𝐵[𝑥∕𝑢] (9)

The proof can be found in Section F in the appendix.

Corollary 15. Translation 1 from DHOLP into HOL is sound.

This is proven in Appendix G.

The soundness of the translation from DHOLP∗ into HOL∗ follows analogously:

Corollary 16. Translation 2 from DHOLP∗ into HOL is sound.

Proof. The proof is analogous to the soundness proof for the Translation 1 from DHOLP into
HOL. The only difference is in having to prove 𝑝𝑏𝑜𝑜𝑙 𝑡 instead of 𝖻𝗈𝗈𝗅? 𝑡 in some easy cases.

4.3 Completeness of the translations

Again we will first discuss Translation 1 from DIHOLP into IHOL then from DHOLP into HOL
and finally discuss how the completeness proof for Translation 2 differs.

The idea for showing completeness of Translation 1 from DIHOLP to IHOL is to explicitly
describe how to lift IHOL derivations to DIHOLP derivations. We construct a lift of a given
IHOL derivation of a translated validity conjecture to a DIHOLP derivation in several steps:
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1. show that typing predicates are equivalent to the translations of replacement predicates
and a replacement predicate 𝑝𝐴 holding on a term 𝑡 implies the typing statement 𝑡 ∶ 𝐴
(this is not actually necessary for our proof, but a good sanity check),

2. define the quasi-preimages of improper IHOL terms as follows:

• replacing typing predicates outside of relativizations with the translation of the cor-
responding replacement predicate,

• to obtain quasi-preimage for unrelativized equalities in the derivation, consider their
relativizations instead,

• take the preimage of the resulting proper term,

3. describe proof transformation removing unnormalizably spurious terms from derivations,

4. construct a lifting of the proof to DIHOLP by induction on the validity inference rules in
IHOL: assuming the quasi-preimages of the validity assumptions of a validity rule hold in
DIHOLP, show that the quasi-preimage of the conclusion holds in DIHOLP.

This shows that Translation 1 from DIHOLP into IHOL is complete w.r.t. validity. We do not
know whether Translation 1 from DIHOLP into IHOL is complete w.r.t. the typing and type-
equality judgments (but we know that Translation 1 from DHOLP into HOL is not).

Finally, we discuss how we can analogously proof the completeness w.r.t. validity of Transla-
tion 1 from DHOLP into HOL and Translation 2 from DHOLP∗ to into HOL.

4.3.1 Replacing typing predicates with translations of replacement predicates

In this section, we will show that replacing the typing predicates with the corresponding replace-
ment predicates will not affect the derivability of formulae in IHOL. We will also show that if
a replacement predicate 𝑝𝐴 holds on a term 𝑡 ∶ 𝐴 in DIHOLP, then 𝑡 has type 𝐴. Therefore, it
makes sense to use the replacement predicates to find quasi-preimages for the typing predicates.

Definition 9. Given a valid DIHOLP context Γ and well-typed IHOL formula 𝜑 over Γ, we
denote by 𝖱𝖯 [𝜑] the formula obtained by replacing typing predicates 𝐴? in 𝜑 outside of rela-
tivizations by the corresponding replacement predicates 𝑝𝐴. More formally we define:

𝖱𝖯 [𝖱[𝑠]] ∶= 𝖱[𝖱𝖯 [𝑠]] (PT32)

𝖱𝖯
[

𝐴?] ∶= 𝑝𝐴 (PT33)

𝖱𝖯 [𝑐] ∶= 𝑐 (PT34)

𝖱𝖯 [𝑥] ∶= 𝑥 (PT35)

𝖱𝖯 [𝑓 𝑡] ∶= 𝖱𝖯 [𝑓 ] 𝖱𝖯 [𝑡] (PT36)

𝖱𝖯 [𝜆𝑥 ∶𝐶. 𝑡] ∶= 𝜆𝑥 ∶𝐶. 𝖱𝖯 [𝑡] (PT37)

𝖱𝖯
[

𝑠 =𝐴 𝑡
]

∶= 𝖱𝖯 [𝑠] =𝐴 𝖱𝖯 [𝑡] (PT38)

𝖱𝖯 [𝑠 ⇒ 𝑡] ∶= 𝖱𝖯 [𝑠] ⇒ 𝖱𝖯 [𝑡] (PT39)
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Remark 17. It is clear from (PT32) that applying 𝖱𝖯 [⋅] to a relativized almost-proper term yields
a relativized almost-proper term. Furthermore, it is clear from (PT33) that the result of applying
𝖱𝖯 [⋅] to an almost-proper term yields a term with no typing predicates except for those required
to relativize equalities. Using induction on the shape of a given almost proper term, we can
conclude that for an almost proper term 𝑡 the term 𝖱𝖯 [𝖱[𝑡]] is always a proper term.

Regarding the equivalence of typing predicates with the translations of the corresponding re-
placement predicates:

Lemma 18. Let 𝑇 be a well-formed DIHOLP theory and 𝜑 a well-formed conjecture in the
well-formed context Γ relative to 𝑇 using the validity judgement.

Given a proper IHOL term 𝑡 ∶= 𝑡𝑚 with 𝑡𝑚 of DIHOLP type 𝐴 over Γ and a proper DIHOLP
type 𝐵 with 𝐴 ≡ 𝐵, it follows that Γ, 𝐵? 𝑡 ⊢𝑇 𝑝𝐵 𝑡.

This is proven in Appendix I.

With the same assumption on theories as in the validity case of the soundness theorem, we can
also prove the converse to Lemma 18:

Lemma 19. Let 𝜑 be a formula in DIHOLP context Γ and 𝑡 an occurence of a subterm of 𝜑. De-
note the free and bound variables of type 𝐴 in the scope of 𝑡 by 𝑣1,… , 𝑣𝑞(Γ) and 𝑣𝑞(Γ)+1,… , 𝑣𝑟(𝑡).
Then Γ, 𝑣𝑞(Γ)+1 ∶ 𝐴,… , 𝑣𝑟(𝑡) ∶ 𝐴 ⊢ 𝑡 ∶ 𝐴 implies Γ, 𝑣𝑞(Γ)+1 ∶ 𝐴,… , 𝑣𝑟(𝑡) ∶ 𝐴, 𝑎? 𝑡 ⊢ 𝑝𝑎 𝑡.

This is proven in Appendix H.

By rule (propExt), the two lemmas jointly imply that applications of typing predicates are equal
to the corresponding applications of translations of replacement predicates.

We want to check that if a replacement predicate 𝑝𝐴 𝑡 holds on a term in DIHOLP, it follows that
the term is of the type of the replacement predicate.

Lemma 20. Given a well-formed DIHOLP theory 𝑇 and well-formed DIHOLP context Γ rela-
tive to 𝑇 , let 𝐴 be a well-formed type and 𝑡 any well-typed term.

If we have Γ ⊢𝑇 𝑝𝐴 𝑡, then Γ ⊢𝑇 𝑡 ∶ 𝐴.

This is proven in Appendix J.

Combining Lemma 18-18 yields that the typing predicates (or their replacements) correctly en-
code the typing information. If we can show that we can lift validity proofs for (possibly ill-
typed) applications of typing predicates, completeness follows (although this is difficult to prove
(and doesn’t even hold when translating to HOL rather than IHOL)). This could be used to build
a deep-embedding of DHOLP into HOL by disregarding types in HOL and only considering
the typing predicates. But since we want a shallow-embedding, we instead use the replacement
predicates as a tool to show the completeness of our shallow embeddings.

4.3.2 Constructing quasi-preimages of statements in IHOL derivations

Definition 10. Assume a well-formed DIHOLP theory ⊢ 𝑇 𝖳𝗁𝗒.
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We say that an IHOL context Δ is proper (relative to 𝑇 ), iff there is a well-formed IHOL context
Θ (relative to 𝑇 ), s.t. there exists a well-formed DIHOLP context Γ (relative to 𝑇 ) with Γ = Θ
and Θ can be obtained from Δ by adding well-typed typing assumptions. In this case, Γ is called
a quasi-preimage of Δ. Inspecting the translation, it becomes clear that Γ is uniquely determined
by the choices of the preimages of the types of variables without a typing assumption in Δ.

Given a proper IHOL context Δ and a well-typed IHOL formula 𝜑 over Δ, we say that 𝜑 is
quasi-proper iff 𝖱𝖯 [𝖱[𝜑]] = 𝐹 with Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 and Γ is a quasi-preimage of Δ. In that
case, we call 𝐹 a quasi-preimage of 𝜑.

Finally, we call a validity judgement Δ ⊢𝐻
𝑇

𝜑 in IHOL proper iff

1. Δ is proper,

2. 𝜑 is quasi-proper in context Δ

In this case, we will call Γ ⊢𝐻
𝑇

𝐹 a relativization of Δ ⊢𝐻
𝑇

𝜑 and Γ ⊢𝑇 𝐹 a quasi-preimage of

the statement Δ ⊢𝐻
𝑇

𝜑, where Γ is a quasi-preimage of Δ and 𝐹 a quasi-preimage of 𝜑.

4.3.3 Removing spurious terms from IHOL proofs

Assuming a valid IHOL derivation, we can make all terms in the derivation almost proper using
the following proof transformation:

Definition 11. A statement transformation in a given logic is a map that maps statements in the
logic to statements in the logic.

Definition 12. A macro-step 𝑀 for a statement transformation 𝑇 replacing a step 𝑆 in a deriva-
tion is a sequence of steps 𝑆1,… , 𝑆𝑛 (called micro-steps of 𝑀) s.t. the assumptions of the 𝑆𝑖
that are not concluded by 𝑆𝑗 with 𝑗 < 𝑖 are results of applying 𝑇 to assumptions of step 𝑆 and
furthermore the conclusion of step 𝑆𝑛 is the result of applying 𝑇 to the conclusion of 𝑆. The
assumptions of those 𝑆𝑗 that are not concluded by previous micro-steps of 𝑀 are called the
assumptions of macro-step 𝑀 and the conclusion of the last micro-step 𝑆𝑛 of 𝑀 is called the
conclusion of macro-step 𝑀 .

Definition 13. A 𝑃 -normalizing statement transformation 𝗌𝖱𝖾𝖽 (⋅) is defined to be the trans-
formation that replaces terms in statements (including their contexts) as described below. The
definition of the transformation of a term will additionally depend on a DIHOLP-type 𝐴 (called
the preimage type) for each term 𝑡. We will write those types as indices to the IHOL terms, so
for instance 𝑡𝐴 would indicate an IHOL term 𝑡 of type 𝐴 and preimage type 𝐴.

These indices are used to effectively associate to each term a type of a possible quasi-preimage,
which is useful as for 𝜆-functions there are quasi-preimages of potentially many different types.
We require that for an indexed term 𝑡𝐴, term 𝑡 has type 𝐴 and that for almost proper terms 𝑡𝐴 with
unique quasi-preimage the quasi-preimage has type 𝐴. To make this transformation more useful
we also assume an arbitrary meta-level predicate 𝑃 on terms which is satisfied by the terms in
the final conclusion (including its context) of the derivation and which additionally satisfies:

𝑃
(

𝑠 =𝐴 𝑡
)

=𝑃 𝑠 ∧ 𝑃 𝑡 (P1)
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𝑃 (𝐹 ⇒ 𝐺) =𝑃 𝐹 ∧ 𝑃 𝐺 (P2)

𝑃 (𝜆𝑥 ∶𝐴. 𝑓 𝑥) =𝑃 𝑓 (P3)

𝑃 (𝜆𝑥 ∶𝐴. 𝑠) 𝑡 ⟹𝑃 𝑠[𝑥∕𝑡] (P4)

𝑃 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

[𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡𝐴)] if 𝑠, 𝑡 almost proper (P5)

The transformation will then beta and eta reduce terms not satisfying 𝑃 . For this we need that
beta reductions of the transformation of terms satisfy 𝑃 and that 𝑃 behaves naturally with respect
to the productions of the grammar. For example 𝑃 could be the property of an almost proper
term of not being beta or eta reducible.

As we are assuming a valid derivation, we will only define this transformation on well-typed
IHOL terms. We can then define the transformation of 𝑡𝐴 (denoted by 𝗌𝖱𝖾𝖽

(

𝑡𝐴
)

) by induction
on the shape of 𝑡𝐴 as follows:

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

∶=𝑡𝐴 if 𝑡𝐴 satisfies 𝑃 and 𝑡 has quasi-preimage of type 𝐴 (SR1)

𝗌𝖱𝖾𝖽
(

𝑓Π𝑥∶𝐴. 𝐵 𝑡𝐴
)

∶=𝗌𝖱𝖾𝖽
(

𝑓Π𝑥∶𝐴. 𝐵
)

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

if 𝑓Π𝑥∶𝐴. 𝐵 𝑡𝐴 satisfies 𝑃 or isn’t beta reducible
(SR2)

In the following cases, we assume that the term 𝑡𝐴 in 𝗌𝖱𝖾𝖽 (⋅) on the left of ∶= is doesn’t satisfy
𝑃 or isn’t almost proper with a quasi-preimage of type 𝐴:

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

∶=𝗌𝖱𝖾𝖽
(

𝑡𝛽𝜂𝐴
)

𝑡 is beta or eta reducible (SR3)

𝗌𝖱𝖾𝖽
(

𝑠𝐴 =𝐴 𝑡𝐴′
)

∶=𝗌𝖱𝖾𝖽
(

𝑠𝐴
)

=𝐴 𝗌𝖱𝖾𝖽
(

𝑡𝐴′
)

(SR4)

𝗌𝖱𝖾𝖽
(

𝐹𝖻𝗈𝗈𝗅 ⇒ 𝐺𝖻𝗈𝗈𝗅

)

∶=𝗌𝖱𝖾𝖽
(

𝐹𝖻𝗈𝗈𝗅

)

⇒ 𝗌𝖱𝖾𝖽
(

𝐺𝖻𝗈𝗈𝗅

)

(SR5)

𝗌𝖱𝖾𝖽
(

𝜆𝑥 ∶𝐴. 𝑠𝐵
)

∶=𝜆𝑥 ∶𝐴. 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

(SR6)

𝗌𝖱𝖾𝖽
(

𝑓Π𝑥∶𝐴. 𝐵 𝑡𝐴′
)

∶=𝑡𝐵 (SR7)

Lemma 21. Assume a well-typed DIHOLP theory 𝑇 and a conjecture Γ ⊢𝑇 𝜑 with Γ well-
formed and 𝜑 well-typed. Assume a valid IHOL derivation of Γ ⊢𝐻

𝑇
𝜑. Assume all terms in the

theory 𝑇 and conjecture satisfy property 𝑃 . Then, there we can index the terms in the deriva-
tion s.t. any steps 𝑆 in the derivation can be replaced by a macro-step for the 𝑃 -normalizing
statement transformation replacing step 𝑆 s.t. after replacing all steps by their macro-steps:

• the resulting derivation is valid,

• all terms occuring in the derivation are almost proper,

• all terms occuring in the assumptions and conclusions of macro-steps that don’t satisfy
property 𝑃 are beta and eta reduced.

This is proven in Appendix K.

Using the lemma for 𝑃 being true on all terms, we yield the corollary:

Corollary 22. Let 𝑇 be a well-formed DIHOLP theory and 𝜑 a well-formed conjecture in the
well-formed context Γ relative to 𝑇 using the validity judgement.
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Consider a valid derivation in IHOL of Γ ⊢𝐻
𝑇

𝜑. Then, there exists another derivation of this
statement for which all terms occurring in the derivation are almost proper terms.

4.3.4 Completeness of Translation 1 from DIHOLP into IHOL

Lemma 23. Assume a well-formed DIHOLP theory ⊢ 𝑇 𝖳𝗁𝗒 and a context Γ that is well-
formed relative to 𝑇 . Assume that Γ ⊢𝐻

𝑇
𝖱𝖾𝗅𝖺𝗍𝐵[𝑠 =𝐵 𝑡] holds. It follows that Γ ⊢𝐻

𝑇
𝐵? 𝑠 and

Γ ⊢𝐻
𝑇

𝐵? 𝑡 both hold.

This is proven in Appendix L.

Lemma 24. Assume that Γ ⊢𝑇 𝜑 ∶ 𝖻𝗈𝗈𝗅 is derivable for 𝜑 = 𝑠 =𝐴 𝑡 or 𝜑 = 𝐹 ⇒ 𝐺
respectively in DIHOLP relative to a well-formed theory in a well-formed context. Then it
follows that Γ ⊢𝑇 𝑠 ∶ 𝐴 and Γ ⊢𝑇 𝑡 ∶ 𝐴 or Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 and Γ ⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅 respectively
hold.

Proof. Observe that for 𝜑 a possibly ill-typed formula in DIHOLP, 𝜑 ∶ 𝖻𝗈𝗈𝗅|𝑝 is only derivable
by rule (|𝑝 I) for some 𝑝 ∶ Π𝑥 ∶𝖻𝗈𝗈𝗅. 𝖻𝗈𝗈𝗅 and only if 𝜑 ∶ 𝖻𝗈𝗈𝗅 is already known.

Continuing by the same inductive arguments as in the (joined) derivation of the rules (eqTyp-
ing), (implTypingL) and (implTypingR) but additionally repeating the above argument in the
induction whenever necessary yields the claim.

Theorem 25 (Completeness of Translation 1 from DIHOLP into IHOL). Assume a well-formed
DIHOLP theory ⊢ 𝑇 𝖳𝗁𝗒 and conjecture 𝜑 in a context Γ that is well-formed relative to 𝑇 .

Γ ⊢𝐻
𝑇

𝜑 implies Γ ⊢ 𝐹 for 𝖱𝖯 [𝖱[𝜑]] = 𝐹 (10)

In the special case of 𝜑 = 𝐹 a proper term, this is exactly the claim of completeness of Transla-
tion 1 from DIHOLP into IHOL. In particular, this includes the case of term equality =𝐴 :

Γ ⊢𝐻
𝑇

𝑡 =𝐴 𝑡′ ∧ 𝐴? 𝑡 ∧ 𝐴? 𝑡′ implies Γ ⊢𝑇 𝑡 =𝐴 𝑡′ (11)

This is shown in Appendix M.

Inspecting the overall completeness proof for the first translation from DIHOLP into IHOL, we
observe that it doesn’t actually use the fact that we are considering intuitionistic logics. In fact,
maybe somewhat surprisingly, the Translation 1 is complete also from DHOLP into HOL. The
typing predicate 𝖻𝗈𝗈𝗅? becomes provably trivial in HOL, so the translation seemingly looses
information, but the relativization of equalities over function types seems to prevent this from
making the translation incomplete. ¨

For example, if we consider the correct conjecture ¬∀ 𝑝 ∶ 𝑎 𝗍𝗋𝗎𝖾 → 𝖻𝗈𝗈𝗅. ∀ 𝑞 ∶ 𝑎 𝗍𝗋𝗎𝖾 →
𝖻𝗈𝗈𝗅. 𝑝 =𝑎→𝖻𝗈𝗈𝗅 𝑞 for some empty type 𝑎 𝗍𝗋𝗎𝖾, the relativization of the ∀s will be trivial, but the
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inner equality is translated to ∀ 𝑥 ∶ (𝑎 𝑇 ). (𝑎 𝑇 )? 𝑥 ⇒ 𝑝 𝑥 =𝖻𝗈𝗈𝗅 𝑞 𝑥 which is a trivially true
statement since 𝑎 𝗍𝗋𝗎𝖾 is an empty type and thence (𝑎 𝑇 )? never holds.

In the completeness proof we define replacement predicates and show the equivalence of their
translations with the typing predicates. However being a predicate over the same type, the
replacement predicate 𝑝𝖻𝗈𝗈𝗅 (and its translation) can be proven to be trivial by rule (boolExt) just
like the typing predicate 𝖻𝗈𝗈𝗅? can. So the typing– and translated replacement predicates are still
equivalent. Furthermore, if the replacement predicate 𝑝𝖻𝗈𝗈𝗅 holds on a term 𝑡 the application must
be well-typed so 𝑡 ∶ 𝖻𝗈𝗈𝗅 must be provable. Finally, the proof of completeness w.r.t. validity
doesn’t really depend on any properties of the typing predicates (other than their equivalence
with the replacement predicates which still holds), so Translation 1 is actually complete w.r.t.
validity also from DHOLP into HOL. As with the Translation 1 from DIHOLP into IHOL, we
cannot easily prove the completeness w.r.t. typing and type equality (since we have to assume
that the theory and conjecture are well-typed, this wouldn’t be very useful anyways). But when
translating into HOL we can actually show that the translation is not complete w.r.t. typing
and type-equality for 𝖻𝗈𝗈𝗅-valued function types. The fact that Translation 1 is not complete
w.r.t. typing for 𝖻𝗈𝗈𝗅-valued function types can be seen directly from Example 3. Similarly for
different 𝖻𝗈𝗈𝗅-valued function types of same image Translation 1 will create equivalent typing
predicates, so Translation 1 is also not complete w.r.t. type-equality.

However, unlike the proof of completeness from DIHOLP into IHOL, we have not checked the
arguments in the completeness proof (for validity) in sufficient detail to consider this proven, so
we will only conjecture the following:

Conjecture 26. Translation 1 from DHOLP into HOL is complete w.r.t. validity.

4.3.5 Completeness of Translation 2 from DHOLP∗ into HOL∗ and HOL

The proof of completeness w.r.t. validity will be almost completely analogous to the proof for
the completeness of the first translation from DIHOLP into IHOL– we just get one additional
easy case for the inference rule (boolExt) in the proof by induction on the validity rules of
Theorem 25. As a sanity check we verify that Lemma 20 also hold for the quasi-preimages of
𝖻𝗈𝗈𝗅? 𝑡 for 𝑡 a function application:

Lemma 27. Given a well-formed DHOLP∗ theory 𝑇 and well-formed DHOLP∗ context Γ rela-
tive to 𝑇 , let 𝐴 be a well-formed type and 𝐹 any almost proper formula.

Let 𝜑 denote the quasi-preimage of 𝖻𝗈𝗈𝗅? 𝐹 . If Γ ⊢𝑇 𝜑 is derivable in DHOLP∗, then Γ ⊢𝑇 𝐹 ∶
𝐴 is also derivable.

This is proven in Appendix N.

Corollary 28. The Translation 2 from DHOLP∗ into HOL∗ is also complete w.r.t. validity.

Proof. This can be proven analogously to the proof of Theorem 25.

Lemma 29. HOL is a conservative extension of HOL∗.
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This is proven in Appendix O using proof transformations.

Corollary 30. Combining Corollary 28 and the above Lemma 29, it follows that the translation
from DHOLP∗ into HOL is also complete w.r.t. the validity judgement.

4.4 Typechecking DHOLP∗ theories

Since we cannot use the translation for checking typing and type-equality judgements over DI-
HOLP and DHOLP∗ theories (we need to assume well-formed theories in the completeness
theorem), we will once again describe how we can check them nonetheless using the translation.
Typing judgements are decided based on the rules (lambda’), (appl’), (⇒type’), (var), (const),
(=type), (cong∶), (∀type), (|𝑝 I), (|𝑝E∶). Checking the assumptions of these rules is easy if we
can check type equality judgements (in case of rule (cong∶)) and validity judgements (in case of
rule (|𝑝 I)).

Type-equality judgements are decided based on the rules (congBase’), (congΠ), (|𝑝 ≡ ). Check-
ing the assumptions of the rules is easy if we can decide term equalities (needed for (congBase’)).

As shown in the subsections 4.2 and 4.3, Translation 1 of DHOLP into HOL is both sound
and complete. Consequently, we can use the translation and a HOL prover to decide validity
judgements in DHOLP.

There is one caveat we need to think about: It is important to check declarations in the theory and
context assumptions in order. This way previous declarations of the theory and assumptions in
the context (only on those we are allowed to depend on) are known to be well-typed, so the theory
and context they form are well-formed. Furthermore for typechecking a term 𝑡 it is important to
first typecheck the quantifier in whose scope 𝑡 occurs, to first typecheck the subterms of 𝑡 and
to first check typing against the ambient type in case of a predicate subtype before checking if
the predicate holds on 𝑡. Then, the proof obligations generated for the prover will be well-typed
conjectures relative to a well-formed theory and in a well-formed context and we can apply our
completeness results.

5 Other translations and summary of soundness and completeness
results

Translating from classical to intuitionistic logic For this we modify case IT16 in the defini-
tion of Translation 1 to:

𝖻𝗈𝗈𝗅? 𝑥 ∶=𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 (IT34)

We observe that the rule (boolExt) is equivalent to the following one:

⊢𝑇 Γ 𝖢𝗍𝗑

Γ ⊢𝑇 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾
boolExt’
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Rule (boolExt) implies rule (boolExt’) as can be seen by inserting 𝜆𝑥 ∶ 𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨
𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 for 𝑝 in (boolExt).

Rule (boolExt’) also implies rule (boolExt), which can be seen as follows: Assume that Γ ⊢𝑇
𝑝 𝗍𝗋𝗎𝖾 and Γ ⊢𝑇 𝑝 𝖿𝖺𝗅𝗌𝖾. Then ⊢𝑇 Γ 𝖢𝗍𝗑 follows and hence we have Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝜆𝑥 ∶
𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾. Observe that assuming 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 applying rule (rewrite)
yields 𝑝 𝑥 and analogously for 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 applying the rule yields 𝑝 𝑥. Thus Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇
𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ⇒ 𝑝 𝑥 and Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 ⇒ 𝑝 𝑥 hold. By definition of ∨ and
using rule (⇒E) it follows that Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑝 𝑥, so rule (∀I) implies the desired conclusion
of Γ ⊢𝑇 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥.

Secondly, we observe that the translation of the formula in the conclusion of rule (boolExt’) is
translated to a trivially true formula by the modified version of Translation 1. We have:

∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾

=∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝖻𝗈𝗈𝗅? 𝑥 ⇒
(

𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∧
(

𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾
)

∧ 𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾
)

∨
(

𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 ∧
(

𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 ∧ 𝖻𝗈𝗈𝗅? 𝖿𝖺𝗅𝗌𝖾
))

.

Since 𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾 and 𝖻𝗈𝗈𝗅? 𝖿𝖺𝗅𝗌𝖾 both hold and by definition we have 𝖻𝗈𝗈𝗅? 𝑥 = 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨
𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾, this can be further simplified to

∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∨ 𝑥 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾,

which is trivially true.

Therefore soundness is not affected by adding the rule (boolExt) to DIHOL or DIHOLP (but it
is not clear if the modified case (IT16) makes the translation unsound). Completeness is also
not affected by adding an additional rule to the source logic and is probably also not affected by
the modified translation as the additional information it provides is hopefully compensated for
by the additional rule (boolExt) in the source logic. Thus it would be interesting to study the
soundness and completeness of this translation from DHOLP to IHOL.

Alternatively, we can also translate normally with Translation 1 from DHOLP to IHOL, this
translation will be unsound but complete (by Conjecture 26).

Classical logic with external propositions instead of 𝖻𝗈𝗈𝗅 Instead of adding Π-types and
predicate subtypes to HOL∗, we can instead add Π-types and predicate subtypes to HOLE and
translate from the resulting logic (denoted by DHOLPE) to HOL. Since it is not possible to
quantify over 𝗉𝗋𝗈𝗉, the translating to HOL is complete (and also sound) for the same reason as
the translation for DHOLP∗.

Summary of soundness and completeness results The overall soundness (with the assump-
tion on the theory for soundness w.r.t. validity given in Theorem 14) and completeness (w.r.t.
validity) results are summarized in Table 2:

3 Since we have the additional inference rule (boolExt) in the classical logic.
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Translation from
Translation to DIHOL DIHOLP DHOLP DHOLP∗ DHOLPE

IHOL via
Translation 1

sound by
Theorem 8,
complete by
Theorem 11

sound by
Theorem 14,
complete by
Theorem 25

unsound3,
probably
complete by
Conjecture 26

unsound3,
complete by
Theorem 25

-

HOL via
Translation 1

sound by
Theorem 8,
incomplete3

sound by
Corollary 9,
incomplete3

sound by
Corollary 15,
probably
complete by
Conjecture 26

sound by
Corollary 16,
probably
complete by
Conjecture 26

-

HOL via
Translation 2 - - -

sound by
Corollary 16,
complete by
Corollary 30

-

HOL∗ via
Translation 1 - - -

sound by
Corollary 16,
maybe com-
plete

-

HOL∗ via
Translation 2 - - -

sound by
Corollary 16,
complete by
Corollary 28

-

HOLE - - - -

sound by
Corollary 16,
complete by
Corollary 28

Table 2: Summary of sound– and completeness results for different translations

6 TPTP encoding and implementation of prover

In this section we discuss our implementation of Translation 1 from DHOL to HOL as a prepro-
cessor for HOL ATPs. We also discuss the implementation of both translation inside the MMT

system and how they are used in a hammer for DHOLP based theories in MMT. We start with
the discussion of the preprocessor for the LEO-III prover.

We choose the LEO-III system because it is well-developed and there is an already existing
preprocessor infrastructure as well as an additional logic embedding tool [36], which can be
extended to implement Translation 1 from DHOL or HOL.

For this it is helpful that TPTP already supports DHOL∗ syntax although — to our knowledge —
no ATP system has made use of it so far. Concretely, the type Π𝑥 ∶ 𝐴. 𝐵 is encoded as
!>[X:A]B and a base type 𝑎 𝑡1… 𝑡𝑛 as a @ t1 ... @ tn. Taking advantage of this,
it was straightforward to extend the logic embedding tool to DHOL. Since we cannot currently
express DHOLP in TPTP (it seems a future TPTP language is needed here), we unfortunately
cannot currently implement the translation from DHOLP.
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The logic embedding tool now accepts TPTP problems using the DHOL logic and translates
them to TPTP problems using the HOL logic in the language TPTP THF. LEO-III (or any other
HOL prover) can then be run on the translated problem.

Furthermore, we developed a bridge between the MMT system [30] and LEO-III. This is imple-
mented as an exporter from MMT theories using DHOLP or DHOLP∗ as meta-language to TPTP
problems. This exporter is used by MMT to translate proof obligations generated by MMT’s in-
ternal provers which then runs the LEO-III prover on those problems, yielding a hammer for
DHOLP in MMT. Given an implementation of a translation to TPTP THF problems, this imple-
mentation extends also to other logics, furthermore it is trivial to change the implementation to
use other HOL provers as well.

We have added the type equality rules (congΠ) and (|𝑝 ≡ ) to MMT’s formalizations of DHOL∗

resp. DHOLP∗, so MMT’s type-checker can take advantage of this prover for type-checking
theories based on those logics.

The implementation of the translations can be found in this folder. The formalization of DHOLP
and related logics in MMT can be found in this file. Finally the example theories in DHOL and
DHOLP given throughout this thesis (and some more) are formalized in MMT in this folder.

This way, we build two different systems for different purposes:

• An MMT-based system that uses Leo as a backend. This system provides a type-checker,
IDE, and knowledge management system for DHOLP using our extension as a hammer
tool. The type-checkers call LEO-III to discharge proof obligations in a way that is trans-
parent to the user.

• A LEO-III-based system that provides a general purpose DHOL∗ ATP that accepts input
in TPTP encoding. This acts as a preprocessor for Leo, which translates the DHOL∗ TPTP
problem into a HOL∗ TPTP problem on which LEO-III (or any other HOL prover for that
matter) can be called. In the future it would be nice to better integrate this implementation
with LEO-III to also type-check the problem in a similar way as done with the MMT based
system. Once the TPTP syntax supports predicate subtypes, this can be further generalized
to DHOLP∗ TPTP problems.

As an example of how the TPTP translation looks like, consider the translation of example 6 to
IHOL. This translation is generated as an intermediate step in the implementation of the MMT

based prover for DHOLP, but immediately translated further into HOL TPTP.

The resulting IHOL TPTP problem is given in example 7 below: Translating example 6 to HOL
TPTP yields:

Example 7 (Translation of set theory example to HOL TPTP using Translation 1).

𝑡ℎ𝑓 (𝖻𝗈𝗈𝗅?_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝖻𝗈𝗈𝗅? ∶ $𝚘 > $𝚘 ).

𝑡ℎ𝑓 (𝑎𝑥1, 𝑎𝑥𝑖𝑜𝑚, 𝖻𝗈𝗈𝗅?($𝚝𝚛𝚞𝚎) ).

𝑡ℎ𝑓 (𝑎𝑥2, 𝑎𝑥𝑖𝑜𝑚, 𝖻𝗈𝗈𝗅?($𝚏𝚊𝚕𝚜𝚎) ).
𝑡ℎ𝑓 (𝗌𝖾𝗍_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝗌𝖾𝗍 ∶ $𝚝𝚃𝚢𝚙𝚎 ).
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𝑡ℎ𝑓 (𝗌𝖾𝗍?_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝗌𝖾𝗍? ∶ 𝗌𝖾𝗍 > $𝚘 ).
𝑡ℎ𝑓 (𝚘𝚏_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝚘𝚏 ∶ 𝗌𝖾𝗍 > 𝗌𝖾𝗍 > $𝚘 ).

𝑡ℎ𝑓 (𝑎𝑥3, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑥 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑥) ⇒ 𝖻𝗈𝗈𝗅? (𝚘𝚏(𝑎, 𝑠)) ).
𝑡ℎ𝑓 (𝚜𝚞𝚋𝚜_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝚜𝚞𝚋𝚜 ∶ 𝗌𝖾𝗍 > 𝗌𝖾𝗍 > $𝚘 ).

𝑡ℎ𝑓 (𝑎𝑥4, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑠 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑠) ⇒ 𝖻𝗈𝗈𝗅? (𝚜𝚞𝚋𝚜(𝑎, 𝑠) ).

𝑡ℎ𝑓 (𝑎𝑥5, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑠 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑠) ⇒

(𝑠 ⊂ 𝑎) =
(

! > [𝑦 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑦) ⇒ 𝚘𝚏 (𝑠, 𝑦) ⇒ 𝚘𝚏 (𝑎, 𝑦)
)

∕∖ 𝖻𝗈𝗈𝗅? (𝑠 ⊂ 𝑎) ∕∖ 𝖻𝗈𝗈𝗅? 𝑠 ∕∖ 𝖻𝗈𝗈𝗅? 𝑎 ).
𝑡ℎ𝑓 (𝚏𝚞𝚗𝚌_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝚏𝚞𝚗𝚌 ∶ 𝗌𝖾𝗍 > 𝗌𝖾𝗍 > 𝗌𝖾𝗍 ).

𝑡ℎ𝑓 (𝑎𝑥6, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑏 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑏) ⇒ 𝗌𝖾𝗍? (𝚏𝚞𝚗𝚌 (𝑎, 𝑏)) ).
𝑡ℎ𝑓 (𝚊𝚙𝚙𝚕_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝚊𝚙𝚙𝚕 ∶ 𝗌𝖾𝗍 > 𝗌𝖾𝗍 > 𝖤𝗅𝖾𝗆 > 𝖤𝗅𝖾𝗆 > 𝖤𝗅𝖾𝗆 ).

𝑡ℎ𝑓 (𝑎𝑥7, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑏 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑏) ⇒

! > [𝑓 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 (𝚏𝚞𝚗𝚌 (𝑎, 𝑏), 𝑓 ) ∕∖ 𝗌𝖾𝗍? (𝑓 ) => ! > [𝑥 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 (𝑎, 𝑥) ∕∖ 𝗌𝖾𝗍? (𝑥) =>

𝚘𝚏 (𝑏, 𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏)) ∕∖ 𝗌𝖾𝗍? (𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏)) ).

𝑡ℎ𝑓 (𝑎𝑥8, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑏 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑏) ⇒

! > [𝑓 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 (𝚏𝚞𝚗𝚌 (𝑎, 𝑏), 𝑓 ) ∕∖ 𝗌𝖾𝗍? (𝑓 ) =>

! > [𝑔 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 (𝚏𝚞𝚗𝚌 (𝑎, 𝑏), 𝑔) ∕∖ 𝗌𝖾𝗍? (𝑔) => ! > [𝑥 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 (𝑎, 𝑥) ∕∖ 𝗌𝖾𝗍? (𝑥) =>

𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏) = 𝚊𝚙𝚙𝚕 (𝑔, 𝑥, 𝑎, 𝑏) ∕∖ 𝚘𝚏 (𝑏, 𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏)) ∕∖ 𝗌𝖾𝗍? (𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏))

∕∖ 𝚘𝚏 (𝑏, 𝚊𝚙𝚙𝚕 (𝑔, 𝑥, 𝑎, 𝑏)) ∕∖ 𝗌𝖾𝗍? (𝚊𝚙𝚙𝚕 (𝑔, 𝑥, 𝑎, 𝑏)) ⇒

𝑓 = 𝑔 ∕∖ 𝚘𝚏 (𝚏𝚞𝚗𝚌 (𝑎, 𝑏), 𝑓 ) ∕∖ 𝗌𝖾𝗍? (𝑓 ) ∕∖ 𝚘𝚏 (𝚏𝚞𝚗𝚌 (𝑎, 𝑏), 𝑔) ∕∖ 𝗌𝖾𝗍? (𝑔) ).
𝑡ℎ𝑓 (𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛_𝑡𝑦𝑝𝑒, 𝑡𝑦𝑝𝑒, 𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 ∶ 𝗌𝖾𝗍 > 𝗌𝖾𝗍 > 𝗌𝖾𝗍 > 𝗌𝖾𝗍 > 𝗌𝖾𝗍 ).

𝑡ℎ𝑓 (𝑎𝑥9, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑏 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑏) ⇒

! > [𝑓 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 ((𝚏𝚞𝚗𝚌 (𝑎, 𝑏)) , 𝑓 ) ∕∖ 𝗌𝖾𝗍? (𝑓 ) =>

! > [𝑠 ∶ 𝗌𝖾𝗍] ∶ 𝚜𝚞𝚋𝚜 (𝑠, 𝑎) ∕∖ 𝗌𝖾𝗍? (𝑠) => 𝗌𝖾𝗍? (𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑠, 𝑎, 𝑏)) ).

𝑡ℎ𝑓 (𝑎𝑥10, 𝑎𝑥𝑖𝑜𝑚, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑏 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑏) ⇒

! > [𝑓 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 ((𝚏𝚞𝚗𝚌 (𝑎, 𝑏)) , 𝑓 ) ∕∖ 𝗌𝖾𝗍? (𝑓 ) =>

! > [𝑠 ∶ 𝗌𝖾𝗍] ∶ 𝚜𝚞𝚋𝚜 (𝑠, 𝑎) ∕∖ 𝗌𝖾𝗍? (𝑠) => ! > [𝑥 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 (𝑠, 𝑥) ∕∖ 𝗌𝖾𝗍? (𝑥) =>
𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏) = 𝚊𝚙𝚙𝚕 ((𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑠, 𝑎, 𝑏)) , 𝑥, 𝑎, 𝑏)

∕∖ 𝚘𝚏 (𝑏, 𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏)) ∕∖ 𝗌𝖾𝗍? (𝚊𝚙𝚙𝚕 (𝑓, 𝑥, 𝑎, 𝑏))
∕∖ 𝚘𝚏 (𝑏, 𝚊𝚙𝚙𝚕 ((𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑠, 𝑎, 𝑏)) , 𝑥, 𝑎, 𝑏)) ∕∖

𝗌𝖾𝗍? (𝚊𝚙𝚙𝚕 ((𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑠, 𝑎, 𝑏)) , 𝑥, 𝑎, 𝑏)) ).

The conjecture is translated to:

𝑡ℎ𝑓 (𝑐𝑜𝑛𝑗, 𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒, ! > [𝑎 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑎) ⇒ ! > [𝑑 ∶ 𝗌𝖾𝗍] ∶ 𝗌𝖾𝗍? (𝑑) ⇒

! > [𝑏 ∶ 𝗌𝖾𝗍] ∶ 𝚜𝚞𝚋𝚜 (𝑏, 𝑎) ∕∖ 𝗌𝖾𝗍? (𝑏) => ! > [𝑠 ∶ 𝗌𝖾𝗍] ∶ 𝚜𝚞𝚋𝚜 (𝑠, 𝑏) ∕∖ 𝗌𝖾𝗍? (𝑠) =>

! > [𝑓 ∶ 𝗌𝖾𝗍] ∶ 𝚘𝚏 (𝚏𝚞𝚗𝚌 (𝑎, 𝑏), 𝑓 ) ∕∖ 𝗌𝖾𝗍? (𝑓 ) =>
𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 ((𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑏, 𝑎, 𝑏)) , 𝑠, 𝑎, 𝑏) = 𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑠, 𝑎, 𝑏)
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∕∖𝖤𝗅𝖾𝗆? (𝚏𝚞𝚗𝚌 𝑠 𝑑) (𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 ((𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑏, 𝑎, 𝑏)) , 𝑠, 𝑎, 𝑏))

∕∖𝖤𝗅𝖾𝗆? (𝚏𝚞𝚗𝚌 𝑠 𝑑) (𝚏𝚞𝚗𝚌𝚁𝚎𝚜𝚝𝚛 (𝑓, 𝑠, 𝑎, 𝑏)) ).

This is also the result yielded by translating the theory in example 5 using the DHOLP to TPTP
exporter in MMT. Note however that the MMT based prover doesn’t directly use this translation,
but instead only translates those proof obligations MMT cannot solve itself to HOL TPTP.

Example use case for MMT implementation: Mizar proofs As illustrated in the above ex-
ample 5, DHOLP is quite suitable to express set theory, using predicate subtypes of a 𝗌𝖾𝗍 type to
represent types and an elementhood predicate to represent typing. The Mizar system is based on
set theory and can be formalized in DHOLP similarly to how set theory is formalized in example
5. Recently, [32] the entire Mizar mathematical library has been imported to a formalization in
MMT based on soft-typed first-order logic. After replacing the formalization with an equivalent
one based on DHOLP (or a translation of the previous formalization into DHOLP), we can use
the MMT implementation of our translation to prove Mizar theorems in MMT.

7 Extending DHOLP with parametric predicates
To obtain DPHOL with parametric predicates, we extend the DPHOL grammar as follows:

𝑇 ∶∶= ∗ | 𝑇 , 𝐷𝑒𝑐 theories
𝐷𝑒𝑐 ∶∶= 𝑐 ∶ 𝐴 | 𝑎 ∶

(

Π𝑥 ∶𝐴.
)∗

𝗍𝗉 | 𝐹 | 𝑑 ∶
[

𝐷1,… , 𝐷𝑚
] (

Π𝑥 ∶𝐴.
)∗

𝖻𝗈𝗈𝗅 declarations
Γ ∶∶= . | Γ, 𝑥 ∶ 𝐴 | Γ, 𝐹 | Γ, 𝐷 ∶ 𝗍𝗉 contexts
𝐴,𝐵 ∶∶= 𝑎 𝑡1… 𝑡𝑛 | Π𝑥 ∶𝐴. 𝐵 | 𝖻𝗈𝗈𝗅 | 𝐴|𝑝 types
𝑠, 𝑡, 𝑐, 𝑓 , 𝐹 , 𝐺 ∶∶= 𝑐 | 𝑥 | 𝑓 𝑡 | 𝜆𝑥 ∶𝐵. 𝑡 | 𝑠 =𝐵 𝑡 | 𝐹 ⇒ 𝐺 | 𝑑 𝐷1 … 𝐷𝑚 𝑡1… 𝑡𝑛 terms

The additional inference rules for DPHOL with parametric predicates are:

⊢𝑇 𝐷1 ∶ 𝗍𝗉,… , 𝐷𝑚 ∶ 𝗍𝗉, 𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛 𝖢𝗍𝗑

⊢ 𝑇 , 𝑑 ∶
[

𝐷1,… , 𝐷𝑚
]

Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 𝖳𝗁𝗒
thyPPred

⊢𝑇 Γ 𝖢𝗍𝗑

⊢𝑇 Γ, 𝐷 ∶ 𝗍𝗉 𝖢𝗍𝗑
ctxTp

𝐷 ∶ 𝗍𝗉 in Γ
Γ ⊢𝑇 𝐷 𝗍𝗉

TVar

𝑑 ∶
[

𝐷1,… , 𝐷𝑚
]

Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 in 𝑇
Γ, 𝐷1 ∶ 𝗍𝗉, … , 𝐷𝑚 ∶ 𝗍𝗉 ⊢𝑇 𝑡1 ∶ 𝐴1

⋮
Γ, 𝐷1 ∶ 𝗍𝗉, … , 𝐷𝑚 ∶ 𝗍𝗉, 𝑥1 ∶ 𝐴1, … , 𝑥𝑛−1 ∶ 𝐴𝑛−1[𝑥1∕𝑡1]… [𝑥𝑛−2∕𝑡𝑛−2] ⊢𝑇 𝑡𝑛 ∶ 𝐴𝑛[𝑥1∕𝑡1]… [𝑥𝑛−1∕𝑡𝑛−1]

Γ ⊢𝑇 𝑑 𝐷1 … 𝐷𝑚 𝑡1 … 𝑡𝑛 ∶ 𝖻𝗈𝗈𝗅
PPredTp

and using the notation Δ ∶= Γ, 𝐷1 ∶ 𝗍𝗉,… , 𝐷𝑚 ∶ 𝗍𝗉, 𝐷′
1 ∶ 𝗍𝗉,… , 𝐷′

𝑝 ∶ 𝗍𝗉:

𝑑 ∶
[

𝐷1,… , 𝐷𝑚
]

Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 in 𝑇 𝑑′ ∶
[

𝐷′
1,… , 𝐷′

𝑝

]

Π𝑥1 ∶𝐴′
1. …Π𝑥𝑞 ∶𝐴′

𝑛. 𝗍𝗉 in 𝑇
Δ ⊢𝑇 𝐴1 ≡ 𝐴′

1 … Δ, 𝑥1 ∶ 𝐴1, … , 𝑥𝑛−1 ∶ 𝐴𝑛−1[𝑥1∕𝑡1]… [𝑥𝑛−2∕𝑡𝑛−2] ⊢𝑇 𝐴𝑛[𝑥1∕𝑡1]… [𝑥𝑛−1∕𝑡𝑛−1] ≡ 𝐴′
𝑛[𝑥1∕𝑡1]… [𝑥𝑛−1∕𝑡𝑛−1]

Δ ⊢𝑇 𝑠1 =𝐴1
𝑡′1 … Δ ⊢𝑇 𝑠𝑛 =𝐴𝑛[𝑥1∕𝑡1]…[𝑥𝑛−1∕𝑡𝑛−1] 𝑡′𝑛

Γ ⊢𝑇 𝑑 𝐷1 … 𝐷𝑚 𝑠1 … 𝑠𝑛 =𝖻𝗈𝗈𝗅 𝑑′ 𝐷′
1 … 𝐷′

𝑝 𝑡1 … 𝑡𝑛
congPPred

Translation to DPHOL
The translation for parametric predicate declaration is similar to the translation of equality for
non-function types.
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The translation of DPHOL with parametric predicates to DPHOL is given by induction on the
grammar. The interesting cases (that differ from the cases in the definition of Translation 1) are:

𝑇 , 𝑑 ∶
[

𝐷1,… , 𝐷𝑚
]

Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝖻𝗈𝗈𝗅 ∶= 𝑇 , 𝑑 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝖻𝗈𝗈𝗅
(PT40)

Γ, 𝐷 ∶= Γ (PT41)

We need to define the abbreviation 𝖻𝗈𝗈𝗅? 𝑡 for 𝑡 being the application of a parametric predicate:

𝖻𝗈𝗈𝗅? 𝑑 𝐷1 … 𝐷𝑛 𝑡1 … 𝑡𝑛 ∶= 𝑑? 𝐷1 … 𝐷𝑚 𝑡1 … 𝑡𝑛 (PT42)

This uses the abbreviation 𝑑? 𝐷1 … 𝐷𝑚 𝑡1 … 𝑡𝑛, which is defined for a parametric predicate
declaration 𝑑 ∶

[

𝐷1,… , 𝑑𝑚
]

Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝖻𝗈𝗈𝗅 by:

𝑑? 𝐷1 … 𝐷𝑚 𝑡1 … 𝑡𝑛 ∶= 𝐴1
? 𝑡1 ∧… ∧ 𝐴𝑛

? 𝑡𝑛

The cases for terms are:

𝑑 𝐷1 … 𝐷𝑛 𝑡1 … 𝑡𝑛 ∶= 𝐴1
? 𝑡1 ⇒ … ⇒

(

𝐴𝑛[𝑥1∕𝑡1]… [𝑥𝑛−1∕𝑡𝑛−1]
)? 𝑡𝑛 ⇒

(

𝑑 𝑡1 … 𝑡𝑛
)

∧ 𝑑? 𝐷1 … 𝐷𝑚 𝑡1 … 𝑡𝑛 (PT43)

𝑡 ∶= 𝑡 if 𝑡 a DPHOL term (PT44)

8 Conclusion and Future Work

We have investigated ways to extend the applicability of HOL provers by translating dependently
typed problems to equivalent problems in higher-order logic. We have defined DHOLP as an
extension of HOL with classical booleans and equality (unlike other dependent type theories
which use propositions-as-types) to facilitate the use of the translation for automated theorem
proving. We have focused on two additional typing features, Π-types and predicate subtypes
yielding the logic DHOLP and given a translation of DHOLP into HOL. A further extension of
DHOLP with parametric predicates and of our translation for it is given.

This approach has several drawbacks, including undecidable type-checking (arguably an accept-
able price in practice) and problems translating dependent types with eventual return type 𝖻𝗈𝗈𝗅.
Furthermore, we cannot prove the soundness w.r.t. validity if the theory contains (undefined)
constants of types of the form Π𝑥 ∶Π𝑦 ∶𝐵. 𝐶. 𝐷. Since we mostly care about theories with de-
fined constants, this assumption is relatively harmless, furthermore being a soundness issue this
doesn’t restrict the applicability of the translation for use in a hammer. The issue regarding the
𝖻𝗈𝗈𝗅-valued function types doesn’t affect the soundness of our translation or the completeness
of the translation restricted to the intuitionistic fragment of the source. Somewhat surprisingly,
it also doesn’t affect the completeness of the translation w.r.t. validity. Since we can decide typ-
ing and type-equality statements using the soundness and completeness of the translation w.r.t.
validity, this is exactly what we need in practice.
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Nevertheless, we have described a second translation which is complete also w.r.t. typing and
type equality. However, this requires disallowing quantification over 𝖻𝗈𝗈𝗅-valued function-types
in the source logic, yielding a (sound with same restriction and) complete translation from this
fragment DHOLP∗ into the corresponding fragment HOL∗ of HOL. We have proven that HOL
is a conservative extension of HOL∗, which implies that also the translation to HOL is complete.
As our completeness proof(s) are constructive, they also provide a way to reconstruct proofs in
DHOLP (although in practice, a simpler and more practical method for reconstructing proofs
should be used).

We have implemented both translations as extensions to MMT and integrated them into a prover
infrastructure that cooperates with the LEO-III prover, yielding a hammer for MMT theories
based on DHOLP. This way we have archived our practical goal: developing a hammer for
MMT theories based on DHOLP. However, at the moment we do not have enough example
theories in MMT based on DHOLP to seriously evaluate the effectiveness of the hammer.

We have shown how set theory can be formalized within DHOLP and discussed how we can
modify the formalization of the foundation of the Mizar system in MMT to be based on it,
allowing the use of our prover implementation for theorems imported from the Mizar mathemat-
ical library. This would also produce many examples that can be used to test and evaluate the
effectiveness of the hammer implementation.

These results are interesting for several reasons:

1. Automated theorem provers have been extended to support more and more expressive
input logics, mirroring the development of new TPTP dialects for more expressive logics
(e.g. TPTP TH1 corresponding to higher-order logic with rank-1 polymorphism). Our
results are a further step towards extending the supported input logics of ATPs.

2. The methods we developed for the completeness proof (considering termwise-injectivity,
the proof transformations in (I)HOL and the replacement predicates and their use in defin-
ing quasi-preimages of terms) can be reused for similar translations. Furthermmore, we
provide criteria (like injectivity for terms of same type) and intuition for the complete-
ness of such translations. We also give some counterexamples for more naive translations
that can benefit the development of other translations. Furthermore, the implementation
in MMT can be easily extended with other translations yielding support for other logics.
Our work therefore constitutes a case study of how we can extend HOL provers to more
expressive logics based on translations into HOL.

It would be natural to study how our work can be further generalized. Especially, Σ-types are an
interesting extension to consider. Since we already support Π-types and predicate subtypes we
can almost define them (to do this we need to add a description operator in DHOLP and translate
it to an operator that additionally takes a typing predicate as an argument in HOL), so we expect
that DHOLP and its translations can be extended with Σ-types without major problems.
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Appendix

A Proof of lemma deriving further inference rules for HOL

Proof of Lemma 1:

Regarding (ctxThy), (tpCtx), (typingTp) and (validTyping): We can show these rules easily
by induction on the inference rules of HOL. In each step of the induction we show that the
assumptions of the rule and these four rules holding on the assumptions of the rule implies that
these four rules also hold for the conclusion of the rule. In case of a validity rule this means
that we need to show that the conclusion is well-typed, in case of a typing rule we need to show
that the type of the term in the typing statement in the conclusion is well-formed, in case of a
well-formedness rule for types we need to show that the context of the conclusion is well-formed
and in case of a well-formedness rule for contexts we need to show that the theory relative to
which the conclusion is stated is well-formed. These properties hold by construction of the
inference rules (each inference rules makes whatever assumptions are necessary to guarantee
that the inductive step in this proof works).

Regarding (≡ sym) and (≡ trans): We can show both on induction on the two rules that
allow showing type equality, namely (congBase) and (cong→). The rule (congBase) only allows
showing type equality for identical types (so symmetry is trivial and transitivity reduces to one
of the two assumption of the transitivity rule). The rule (cong→) only allows showing type
equality for →-types 𝐴 → 𝐵 and 𝐴′ → 𝐵′ based on equal types 𝐴 ≡ 𝐴′ and 𝐵 ≡ 𝐵′. Now,
if the assumption of (≡ sym) is shown using rule (cong→), by induction hypothesis we yield
that the type equalities 𝐴 ≡ 𝐴′ and 𝐵 ≡ 𝐵′ satisfy symmetry and using (cong→) with the
swapped type equalities yields 𝐴′ → 𝐵′ ≡ 𝐴 → 𝐵 as desired. Similarly, if 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′

and 𝐴′ → 𝐵′ ≡ 𝐴′′ → 𝐵′′ are both shown using the rule (cong→) we have 𝐴 ≡ 𝐴′ and
𝐴′ ≡ 𝐴′′ and hence by induction hypothesis 𝐴 ≡ 𝐴′′ and 𝐵 ≡ 𝐵′′, so rule (cong→) implies
𝐴 → 𝐵 ≡ 𝐴′′ → 𝐵′′ as desired.

Regarding (eqTyping), (implTypingL) and (implTypingR): By assumption we have Γ ⊢𝑇
𝑠 =𝐴 𝑡 resp. Γ ⊢𝑇 𝐹 ⇒ 𝐺. By the rules (ctxThy), (tpCtx), (typingTp) and (validTyping) it
follows that the theory 𝑇 and context Γ must be well-formed. Since the well-formedness of a
context with an additional assumption or of a theory with an additional axiom can only be shown
by rule (ctxAssume) and (thyAxiom) respectively it follows that axioms in 𝑇 and assumptions
in Γ must be well-typed and that the proof of the axiom or assumption being well-typed must
not use that assumption or axiom. We can then prove by induction on derivations that whenever
Γ ⊢𝑇 𝑠 =𝐴 𝑡 is concluded in a step then the assumption of the step imply that Γ ⊢𝑇 𝑠 ∶ 𝐴 and
Γ ⊢𝑇 𝑡 ∶ 𝐴 are derivable and whenever Γ ⊢𝑇 𝐹 ⇒ 𝐺 is concluded in a step Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅
and Γ ⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅 are derivable from the assumptions of the step and furthermore whenever we
conclude a validity statement, the formula is well-typed and in all conclusions in the derivation
all types and contexts are well-formed.

I



Colin Rothgang

The the claim follows directly from using what we just proved for the step showing the assump-
tion Γ ⊢𝑇 𝑠 =𝐴 𝑡 resp. Γ ⊢𝑇 𝐹 ⇒ 𝐺.

Regarding (cong∶): This follows from the fact that provably equal types in HOL are neces-
sarily identical, so whenever we have 𝐴 ≡ 𝐴′ and 𝑡 ∶ 𝐴, we already have that 𝑡 ∶ 𝐴′ holds
by assumption. We can show that provably equal types are identical by induction on the two
type-equality rules in HOL namely (congBase) and (cong→).

Regarding (typesUnique): There is no rule allowing to show that a well-typed boolean term
has any other type than 𝖻𝗈𝗈𝗅 (since we only allow validity but not type equality or typing as-
sumptions). Hence 𝐶,𝐶 ′ are not 𝖻𝗈𝗈𝗅 and 𝑠 not of type 𝖻𝗈𝗈𝗅. Continue by induction on the shape
of 𝑠.

Depending on the shape of 𝑠 at most one of the two assumption (wlog. (renaming) assume that
it is Γ ⊢𝑇 𝑠 ∶ 𝐶) can be concluded using one of the rules (const) or (var). The other must be
shown using on of the rules (lambda), (appl) (since names of context variables and constants are
mutually distinct).

In the case that rule (lambda) was used to show 𝑠 ∶ 𝐶 ′ (with 𝐶 ′ = 𝐴 → 𝐵′ and 𝑠 = 𝜆𝑥 ∶𝐴. 𝑡) it
follows from the shape of 𝑠 that also 𝐶 = 𝐴 → 𝐵 for some type 𝐵 with Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 ∶ 𝐵 (as
also 𝑠 ∶ 𝐶 must be proven using rule (lambda)). By the induction hypothesis it follows that then
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝐵 ≡ 𝐵′. Since equal types in HOL must be identical (see proof of rule (cong∶)),
it follows that Γ ⊢𝑇 𝐵 ≡ 𝐵′. Rule (cong→) then implies the claim of Γ ⊢𝑇 𝐶 ≡ 𝐶 ′.

In the case that rule (appl) was used to show 𝑠 ∶ 𝐶 ′ (with 𝐶 ′ = 𝐵′ and 𝑠 = 𝑓 𝑡 and Γ ⊢𝑇 𝑓 ∶
𝐴′ → 𝐵′ and Γ ⊢𝑇 𝑡 ∶ 𝐴′) it follows from the shape of 𝑠 that also 𝐶 = 𝐵 for some type 𝐵 with
Γ ⊢𝑇 𝑓 ∶ 𝐴 → 𝐵 and Γ ⊢𝑇 𝑡 ∶ 𝐴. By the induction hypothesis (applied to 𝑓 and 𝑡) it follows
that Γ ⊢𝑇 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′ and Γ ⊢𝑇 𝐴 ≡ 𝐴′. Since equal types in HOL are identical it
follows that also Γ ⊢𝑇 𝐵 ≡ 𝐵′ holds, so by assumption the conclusion holds.

Regarding (typingWf): The first assumption can only be proven using rule (appl). In the first
case the conclusion is an assumption of the rule used to prove Γ ⊢𝑇 𝑓 𝑡 ∶ 𝐵 and must therefore
hold.

Regarding (monotonic⊢ ) and (var⊢ ): The idea for showing this is observing that adding
additional variables or assumptions to the contexts occuring in a derivation will always result
in another (equally valid) derivation. This can be shown by induction on derivations. If in a
derivation some rule is used to conclude Γ ⊢𝑇 𝐹 and adding additional variables and assump-
tions to Γ as well as the contexts of all judgements appearing in those derivations leaves those
derivations valid, then we need to show that also the assumptions of the rule are still satisfied.
Since we have valid derivations for all assumptions that are judgements themselves, we only
need to check assumptions of rules that are not judgements. The only assumptions of this kind
that appear in inference rules are assumptions that some variable or context assumption is con-
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tained in a context. Adding further assumptions or variables will not make this false if is was
true initially.

This proves that (monotonic⊢ ) and (var⊢ ) hold.

Regarding (rewriteTyping): This can be seen by applying the substitution ⋅[𝑥∕𝑡] to the terms
in the derivation (but not the variable declaration 𝑥 in the context itself) of Γ, 𝑥 ∶ 𝐵 ⊢𝑇 𝑠 ∶
𝐴, using the fact that Γ ⊢𝑇 𝑡 ∶ 𝐵 holds instead of rule (var) (that may be used to conclude
Γ, 𝑥 ∶ 𝐵 ⊢𝑇 𝑥 ∶ 𝐵 in the original declaration). This leads to a derivation of the conclusion
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑠[𝑥∕𝑡] ∶ 𝐴. Since 𝑥 doesn’t appear in the derivation, removing the variable
declaration 𝑥 ∶ 𝐴 from the context leads to a valid derivation of Γ ⊢𝑇 𝑠[𝑥∕𝑡] ∶ 𝐴 as desired.

Regarding (assTyping):

⊢Γ 𝖢𝗍𝗑 by assumption (12)

⊢𝐹 in Γ by assumption (13)

Γ ⊢𝐹 (assume),(13),(12) (14)

Γ ⊢𝐹 ∶ 𝖻𝗈𝗈𝗅 (validTyping),(14) (15)

Regarding (∀type):

Γ, 𝑥 ∶ 𝐴 ⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 by assumption (16)

Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝐹 ∶ 𝐴 → 𝖻𝗈𝗈𝗅 (lambda),(16) (17)

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 by definition (18)

Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾 ∶ 𝐴 → 𝖻𝗈𝗈𝗅 (lambda),(18) (19)

Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝐹 =𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (=type),(17),(19) (20)

Γ ⊢𝑇∀ 𝑥 ∶𝐴. 𝐹 ∶ 𝖻𝗈𝗈𝗅 by definition,(20) (21)

Regarding (∀E):

Γ ⊢𝑇∀ 𝑥 ∶𝐴. 𝐹 by assumption (22)

Γ ⊢𝑇 𝑡 ∶ 𝐴 by assumption (23)

Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝐹 =𝐴→𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾 by definition,(22) (24)

Γ ⊢𝑇 𝑡 =𝐴 𝑡 (refl),(23) (25)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝐹
)

𝑡 =𝖻𝗈𝗈𝗅

(

𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
)

𝑡 (congAppl),(24),(25) (26)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
)

𝑡 =𝖻𝗈𝗈𝗅

(

𝜆𝑥 ∶𝐴. 𝐹
)

𝑡 (sym),(26) (27)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝐹
)

𝑡 ∶ 𝖻𝗈𝗈𝗅 (eqTyping),(26) (28)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
)

𝑡 ∶ 𝖻𝗈𝗈𝗅 (eqTyping),(27) (29)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝐹
)

𝑡 =𝖻𝗈𝗈𝗅 𝐹 [𝑥∕𝑡] (beta),(univE6) (30)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
)

𝑡 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (beta),(univE6) (31)
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Γ ⊢𝑇𝐹 [𝑥∕𝑡] =𝖻𝗈𝗈𝗅

(

𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾
)

𝑡 (rewrite),(26),(30) (32)

Γ ⊢𝑇𝐹 [𝑥∕𝑡] =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (rewrite),(32),(31) (33)

Γ ⊢𝑇 𝗍𝗋𝗎𝖾 (refl),definition (34)

Γ ⊢𝑇𝐹 [𝑥∕𝑡] (cong⊢ ),(31),(34) (35)

Regarding (propExt):

Γ, 𝐹 ⊢𝑇 𝐺 by assumption (36)
Γ, 𝐹 ⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅 (validTyping),(36) (37)
⊢𝑇Γ, 𝐹 𝖢𝗍𝗑 (tpCtx),(46) (38)

Γ ⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 (assTyping),(38) (39)
Γ, 𝐺 ⊢𝑇 𝐹 by assumption (40)
Γ, 𝐺 ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 (validTyping),(36) (41)
⊢𝑇Γ, 𝐺 𝖢𝗍𝗑 (tpCtx),(47) (42)

Γ ⊢𝑇𝐺 ∶ 𝖻𝗈𝗈𝗅 (assTyping),(42) (43)
Γ ⊢𝑇 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 by definition (44)
Γ ⊢𝑇 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 by definition (45)
Γ ⊢𝑇𝐹 ⇒ 𝐺 (⇒I), (39),(36) (46)
Γ ⊢𝑇𝐺 ⇒ 𝐹 (⇒I), (43),(40) (47)
Γ ⊢𝑇 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (refl),(44) (48)
Γ ⊢𝑇 𝗍𝗋𝗎𝖾 ⇒ 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(44),(44) (49)

Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝗍𝗋𝗎𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (monotonic⊢ ),(49), (48) (50)
Γ ⊢𝑇 (𝗍𝗋𝗎𝖾 ⇒ 𝗍𝗋𝗎𝖾) ⇒ 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (⇒I),(49), (50) (51)

Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝗍𝗋𝗎𝖾 ⊢𝑇 (𝗍𝗋𝗎𝖾 ⇒ 𝗍𝗋𝗎𝖾) ⇒ 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (monotonic⊢ ),(49),(51) (52)
Γ ⊢𝑇 (𝗍𝗋𝗎𝖾 ⇒ 𝗍𝗋𝗎𝖾) ⇒ ((𝗍𝗋𝗎𝖾 ⇒ 𝗍𝗋𝗎𝖾) ⇒ 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾) (⇒I),(49), (52) (53)

Analogously we can show:

Γ ⊢𝑇 (𝖿𝖺𝗅𝗌𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ ((𝖿𝖺𝗅𝗌𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾) analogous to (53) (54)
Γ ⊢𝑇 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(44),(45) (55)
⊢𝑇Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 𝖢𝗍𝗑 (ctxAssume),(55) (56)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(monotonic⊢ ),(55),(44),(monotonic⊢ ),(55),(45)

(57)

Γ ⊢𝑇 𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(45),(44) (58)
Γ, 𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾 ⊢𝑇 𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(monotonic⊢ ),(55),(45),(monotonic⊢ ),(55),(44)

(59)

Γ ⊢𝑇 𝗍𝗋𝗎𝖾 (refl),(44) (60)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 (assume),(56) (61)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝖿𝖺𝗅𝗌𝖾 (⇒E),(61),(60) (62)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 (monotonic⊢ ),(55),(60) (63)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑦 ∶ 𝖻𝗈𝗈𝗅 (var),(ctxVar),(56) (64)
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Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦 ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (lambda),(64) (65)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 by definition (66)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 by definition (67)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (=type),(67),(66) (68)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (appl),(65),(68) (69)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 (=type),(66),(67) (70)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 (appl),(65),(70) (71)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (appl),(65),(66) (72)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 (appl),(65),(67) (73)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥) 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 (beta),(73) (74)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝖿𝖺𝗅𝗌𝖾 (cong⊢ ),(74),(62) (75)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝑥) 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (beta),(72) (76)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝗍𝗋𝗎𝖾 (cong⊢ ),(76),(63) (77)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) 𝑥 (boolExt),(75),(77) (78)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) (𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾) (∀E),(78),(70) (79)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) (𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾) (∀E),(78),(68) (80)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) (𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾)

=𝖻𝗈𝗈𝗅 (𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾) (beta),(71) (81)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) (𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾)

=𝖻𝗈𝗈𝗅 (𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾) (beta),(69) (82)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾)

=𝖻𝗈𝗈𝗅 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) (𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾) (sym),(81) (83)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾)

=𝖻𝗈𝗈𝗅 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑦) (𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾) (sym),(82) (84)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 (cong⊢ ),(83),(79) (85)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (cong⊢ ),(84),(80) (86)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾, 𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾 ⊢𝑇 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾 (monotonic⊢ ),(59),(85) (87)
Γ, 𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 (𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾) ⇒ (𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾) (⇒I),(57),(87) (88)

Γ ⊢𝑇 (𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ (𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾) (⇒I),(58),(86) (89)
Γ ⊢𝑇 (𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ ((𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾) ⇒ 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾) (⇒I),(55),(88) (90)

Γ, 𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾 ⊢𝑇 (𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ (𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝖿𝖺𝗅𝗌𝖾) (monotonic⊢ ),(59),(89) (91)
Γ ⊢𝑇 (𝖿𝖺𝗅𝗌𝖾 ⇒ 𝗍𝗋𝗎𝖾) ⇒ ((𝗍𝗋𝗎𝖾 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾) (⇒I),(59),(91) (92)
Γ ⊢𝑇 ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝗍𝗋𝗎𝖾 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝗍𝗋𝗎𝖾) ⇒ 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝑦) (boolExt),(53),(cong⊢ ),(beta),(90)

(93)

Γ ⊢𝑇 ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝖿𝖺𝗅𝗌𝖾 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝑦) (boolExt),(92),(cong⊢ ),(beta),(54)
(94)

Showing that these terms are all well-typed:

Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑥 ∶ 𝖻𝗈𝗈𝗅 (var),(ctxAssume),(ctxAssume)
(95)

V
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Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑦 ∶ 𝖻𝗈𝗈𝗅 (var),(ctxAssume),(ctxAssume)
(96)

Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 (𝑥 ⇒ 𝑦) ∶ 𝖻𝗈𝗈𝗅 (⇒type),(95),(96) (97)
Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 (𝑦 ⇒ 𝑥) ∶ 𝖻𝗈𝗈𝗅 (⇒type),(96),(95) (98)
Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 (𝑥 =𝖻𝗈𝗈𝗅 𝑦) ∶ 𝖻𝗈𝗈𝗅 (=type),(95),(96) (99)
Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 (𝑦 ⇒ 𝑥) ⇒ (𝑥 =𝖻𝗈𝗈𝗅 𝑦) ∶ 𝖻𝗈𝗈𝗅 (⇒type),(98),(99) (100)
Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦) ∶ 𝖻𝗈𝗈𝗅 (⇒type),(97),(100) (101)
Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦) ∶ 𝖻𝗈𝗈𝗅 (∀type),(101) (102)

Γ ⊢𝑇 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦) ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (lambda),(102) (103)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦)) 𝗍𝗋𝗎𝖾 ∶ 𝖻𝗈𝗈𝗅 (appl),(103),(44) (104)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦)) 𝖿𝖺𝗅𝗌𝖾 ∶ 𝖻𝗈𝗈𝗅 (appl),(103),(45) (105)

Beta reduce and conclude claim:

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦)) 𝗍𝗋𝗎𝖾
=𝖻𝗈𝗈𝗅 ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝗍𝗋𝗎𝖾 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝗍𝗋𝗎𝖾) ⇒ 𝗍𝗋𝗎𝖾 =𝖻𝗈𝗈𝗅 𝑦) (beta),(104) (106)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦)) 𝖿𝖺𝗅𝗌𝖾
=𝖻𝗈𝗈𝗅 ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝖿𝖺𝗅𝗌𝖾 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝖿𝖺𝗅𝗌𝖾) ⇒ 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 𝑦) (beta),(105) (107)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦)) 𝗍𝗋𝗎𝖾 (cong⊢ ),(106),(93) (108)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦)) 𝖿𝖺𝗅𝗌𝖾 (cong⊢ ),(107),(94) (109)
Γ ⊢𝑇 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦)) 𝑥 (boolExt),(108),(109)

(110)

Γ ⊢𝑇 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦) 𝐹 (∀E),(110),(39) (111)
Γ ⊢𝑇 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦) 𝐹 ∶ 𝖻𝗈𝗈𝗅 (validTyping),(111) (112)
Γ ⊢𝑇 ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝐹 ) ⇒ 𝐹 =𝖻𝗈𝗈𝗅 𝑦) =𝖻𝗈𝗈𝗅

𝜆𝑥 ∶𝖻𝗈𝗈𝗅. ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝑥) ⇒ 𝑥 =𝖻𝗈𝗈𝗅 𝑦) 𝐹 (beta),(112) (113)
Γ ⊢𝑇 ∀ 𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ⇒ 𝑦) ⇒ ((𝑦 ⇒ 𝐹 ) ⇒ 𝐹 =𝖻𝗈𝗈𝗅 𝑦) (cong⊢ ),(113),(111) (114)
Γ ⊢𝑇 (𝐹 ⇒ 𝐺) ⇒ ((𝐺 ⇒ 𝐹 ) ⇒ 𝐹 =𝖻𝗈𝗈𝗅 𝐺 (∀E),(114),(43) (115)
Γ ⊢𝑇 (𝐺 ⇒ 𝐹 ) ⇒ 𝐹 =𝖻𝗈𝗈𝗅 𝐺 (⇒E), (115), (46) (116)
Γ ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐺 (⇒E), (116), (47) (117)

Regarding (∀I): Note that while this proof uses Lemma 2, this is not a problem since we only use
those of the rules in this lemma that are shown in the above cases which don’t assume (∀I) or Lemma 2.

Γ, 𝑥 ∶ 𝐴 ⊢𝑇𝐹 by assumption (118)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 lemma 2,(118) (119)

Γ ⊢𝑇𝐴 ≡ 𝐴 (congBase) (120)
Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝐹 =𝐴→𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾 (cong𝜆),(119),(120) (121)
Γ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 by definition,(121) (122)

Regarding (applType):

Γ ⊢𝑇 𝑡 ∶ 𝐴 by assumption (123)
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Γ ⊢𝑇 𝑓 𝑡 ∶ 𝐵 by assumption (124)

Since typing of a function application can only be proven by rule (appl), the assumptions of the rule must
be satisfied, so we yield:

Γ ⊢𝑇 𝑓 ∶ 𝐴′ → 𝐵 see above (125)
Γ ⊢𝑇 𝑡 ∶ 𝐴′ see above (126)
Γ ⊢𝑇𝐴 ≡ 𝐴′ (typesUnique),(126) (127)
Γ ⊢𝑇𝐴

′ ≡ 𝐴 (≡ sym),(127) (128)
Γ ⊢𝑇𝐴

′ → 𝐵 ≡ 𝐴 → 𝐵 (cong→),(128) (129)
Γ ⊢𝑇 𝑓 =𝐴′→𝐵 𝑓 (refl),(125) (130)
Γ ⊢𝑇 𝑓 ∶ 𝐴 → 𝐵 (cong∶),(130),(129),(125) (131)

Regarding (trans):

Γ ⊢𝑇 𝑠 =𝐴 𝑡 by assumption (132)
Γ ⊢𝑇 𝑠 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅 (validTyping),(132) (133)
Γ ⊢𝑇 𝑡 =𝐴 𝑢 by assumption (134)

Γ, 𝑠 =𝐴 𝑡 ⊢𝑇 𝑠 =𝐴 𝑡 (assume),(ctxAssume),(133) (135)
Γ, 𝑠 =𝐴 𝑡, 𝑡 =𝐴 𝑡 ⊢𝑇 𝑠 =𝐴 𝑡 (monotonic⊢ ),(133), (135) (136)

Γ ⊢𝑇 𝑡 =𝐴 𝑠 (sym),(132) (137)
Γ ⊢𝑇 𝑡 ∶ 𝐴 (eqTyping),(137) (138)
Γ ⊢𝑇𝐴 𝗍𝗉 (typingTp),(138) (139)
Γ ⊢𝑇 𝑢 =𝐴 𝑡 (sym),(134) (140)
Γ ⊢𝑇 𝑢 ∶ 𝐴 (eqTyping),(140) (141)
Γ ⊢𝑇 𝑡 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅 (=type),(138),(138) (142)

Γ, 𝑠 =𝐴 𝑡 ⊢𝑇 𝑡 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅 (monotonic⊢ ),(133), (142) (143)
Γ ⊢𝑇 𝑠 ∶ 𝐴 (eqTyping),(132) (144)

Γ, 𝑠 =𝐴 𝑡 ⊢𝑇 𝑡 =𝐴 𝑡 ⇒ 𝑠 =𝐴 𝑡 (⇒I),(143) (136) (145)
Γ ⊢𝑇 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑡 ⇒ 𝑠 =𝐴 𝑡 (⇒I),(133), (145) (146)

Γ,𝑧 ∶ 𝐴 ⊢𝑇 𝑠 ∶ 𝐴 (var⊢ ),(139),(144) (147)
⊢𝑇Γ, 𝑧 ∶ 𝐴 𝖢𝗍𝗑 (ctxVar),(tpCtx),(144),(139) (148)
Γ,𝑧 ∶ 𝐴 ⊢𝑇 𝑡 ∶ 𝐴 (var⊢ ),(139),(138) (149)
Γ,𝑧 ∶ 𝐴 ⊢𝑇 𝑧 ∶ 𝐴 (var),(148) (150)
Γ,𝑧 ∶ 𝐴 ⊢𝑇 𝑡 =𝐴 𝑧 ∶ 𝖻𝗈𝗈𝗅 (⇒I),(149),(150) (151)
Γ,𝑧 ∶ 𝐴 ⊢𝑇 𝑠 =𝐴 𝑧 ∶ 𝖻𝗈𝗈𝗅 (⇒I),(147),(150) (152)
Γ,𝑧 ∶ 𝐴 ⊢𝑇 (𝑡 =𝐴 𝑧) ⇒ (𝑠 =𝐴 𝑧) ∶ 𝖻𝗈𝗈𝗅 (⇒I),(151),(152) (153)
Γ,𝑧 ∶ 𝐴 ⊢𝑇 𝑠 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅 (⇒I),(147),(149) (154)
Γ,𝑧 ∶ 𝐴 ⊢𝑇 (𝑠 =𝐴 𝑡) ⇒ ((𝑡 =𝐴 𝑧) ⇒ (𝑠 =𝐴 𝑧)) ∶ 𝖻𝗈𝗈𝗅 (⇒type),(154),(153) (155)

Γ ⊢𝑇 𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧 ∶ 𝐴 → 𝖻𝗈𝗈𝗅 (lambda),(155) (156)
Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑡 ∶ 𝖻𝗈𝗈𝗅 (appl),(156),(138) (157)
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Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑡
=𝖻𝗈𝗈𝗅 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑡 ⇒ 𝑠 =𝐴 𝑡 (beta),(157) (158)

Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑡 (cong⊢ ), (146), (158) (159)
Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑡

=𝖻𝗈𝗈𝗅 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑢 (congAppl), (132) (160)
Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑢

=𝖻𝗈𝗈𝗅 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑡 (sym), (160) (161)
Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑢 (cong⊢ ), (161), (159) (162)
Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑡 ∶ 𝖻𝗈𝗈𝗅 (appl),(156),(141) (163)
Γ ⊢𝑇 (𝜆𝑧 ∶𝐴. 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑧 ⇒ 𝑠 =𝐴 𝑧) 𝑢

=𝖻𝗈𝗈𝗅 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑢 ⇒ 𝑠 =𝐴 𝑢 (beta),(163) (164)
Γ ⊢𝑇 𝑠 =𝐴 𝑡 ⇒ 𝑡 =𝐴 𝑢 ⇒ 𝑠 =𝐴 𝑢 (cong⊢ ),(164), (162) (165)
Γ ⊢𝑇 𝑡 =𝐴 𝑢 ⇒ 𝑠 =𝐴 𝑢 (⇒E),(165),(132) (166)
Γ ⊢𝑇 𝑠 =𝐴 𝑢 (⇒E),(166),(134) (167)

Regarding (extensionality):

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑓 𝑥 =𝐵 𝑓 ′ 𝑥 by assumption (168)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑓 𝑥 ∶ 𝐵 (eqTyping),(168) (169)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑓

′ 𝑥 =𝐵 𝑓 𝑥 (sym),(168) (170)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑓

′ 𝑥 ∶ 𝐵 (eqTyping),(170) (171)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑥 ∶ 𝐴 (var),(tpCtx),(169) (172)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑓 ∶ 𝐴 → 𝐵 (applType),(172),(169) (173)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑓

′ ∶ 𝐴 → 𝐵 (applType),(172),(171) (174)
Γ ⊢𝑇 𝑓 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑓 𝑥 (eta),(173) (175)
Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝑓 𝑥 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑓 ′ 𝑥 (cong𝜆), (168) (176)
Γ ⊢𝑇 𝑓 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑓 ′ 𝑥 (trans), (175), (176) (177)
Γ ⊢𝑇 𝑓

′ =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑓 ′ 𝑥 (eta),(174) (178)
Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝑓 ′ 𝑥 =𝐴→𝐵 𝑓 ′ (sym),(178) (179)
Γ ⊢𝑇 𝑓 =𝐴→𝐵 𝑓 ′ (trans), (177), (179) (180)

Regarding (∀cong):

Γ ⊢𝑇𝐴 ≡ 𝐴′ by assumption (181)

By induction on derivations, it follows that 𝐴,𝐴′ well-typed

Γ, 𝑥 ∶ 𝐴 ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐹
′ by assumption (182)

Γ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 ∶ 𝖻𝗈𝗈𝗅 (=type),(lambda),definition,(lambda),(eqTyping),(182) (183)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 (assume),(ctxAssume),(183) (184)

Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 (var⊢ ),(ctxVar),(184) (185)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′, 𝑥′ ∶ 𝐴 ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 (var⊢ ),(ctxVar),(185) (186)
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Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′, 𝑥′ ∶ 𝐴 ⊢𝑇 𝑥
′ ∶ 𝐴 (var),(ctxVar) (187)

Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′, 𝑥 ∶ 𝐴 ⊢𝑇𝐹 (∀E),(186),(187) (188)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑥 ∶ 𝐴 ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐹

′ (monotonic⊢ ),(182) (189)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′, 𝑥 ∶ 𝐴 ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐹

′ (var⊢ ),(tpCtx),(187),(189) (190)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′, 𝑥 ∶ 𝐴 ⊢𝑇𝐹

′ (cong⊢ ),(190),(188) (191)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 ′ (∀I),(191) (192)

Now we will prove that Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇 𝑦 ∶ 𝐴

Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇 𝑦 ∶ 𝐴′ (var),(ctxVar) (193)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇 𝑦 =𝐴′ 𝑦 (refl),(193) (194)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇𝐴 ≡ 𝐴′ (var⊢ ),(monotonic⊢ ),(ctxAssume),(183),(181) (195)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇𝐴

′ ≡ 𝐴 (≡ sym) (196)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇 𝑦 ∶ 𝐴 (cong∶),(194),(196),(193) (197)

Substitute 𝑦 for 𝑥 in (192) and move 𝑦 from context into a ∀ binder.

Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑦 ∶ 𝐴′ ⊢𝑇𝐹
′[𝑥∕𝑦] (∀E),(192),(197) (198)

Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑥 ∶ 𝐴′ ⊢𝑇𝐹
′ renaming 𝑦 to 𝑥 (199)

Γ, ∀ 𝑥 ∶𝐴. 𝐹 , 𝑥 ∶ 𝐴′ ⊢𝑇 𝑥 ∶ 𝐴′ (var),(tpCtx),(197) (200)
Γ, ∀ 𝑥 ∶𝐴. 𝐹 ⊢𝑇 ∀ 𝑥 ∶𝐴′. 𝐹 ′ (∀I),(199),(200) (201)

Since term and type equality are both symmetric (and we can use the same trick as above to show that
variables of type 𝐴′ are also of type 𝐴 and vice versa), we can prove the following formula analogously:

Γ, ∀ 𝑥 ∶𝐴′. 𝐹 ′ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 analogously (202)
Γ ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝐹 =𝖻𝗈𝗈𝗅 ∀ 𝑥 ∶𝐴. 𝐹 ′ (propExt),(201),(202) (203)

Regarding (⇒cong):

Γ ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐹
′ by assumption (204)

Γ ⊢𝑇𝐺 =𝖻𝗈𝗈𝗅 𝐺
′ by assumption (205)

Introduce lambda function in two variables 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦 show rule for it using (congAppl)
and use (beta) and (trans) to conclude the same about ⇒:

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦)
=𝖻𝗈𝗈𝗅 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) (refl),(lambda),(lambda),(⇒type),(var),(var) (206)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹
=𝖻𝗈𝗈𝗅 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ (congAppl),(206),(204) (207)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 𝐺
=𝖻𝗈𝗈𝗅 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ 𝐺′ (congAppl),(207),(205) (208)

Now we prove that 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦 and its applications are well-typed to allow using the rule
(beta) for it:

Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑥 ∶ 𝖻𝗈𝗈𝗅 (var),(ctxVar),(ctxVar) (209)
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Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑦 ∶ 𝖻𝗈𝗈𝗅 (var),(ctxVar),(ctxVar) (210)
Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅, 𝑦 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝑥 ⇒ 𝑦 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(209),(210) (211)
Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅 ⊢𝑇 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ⇒ 𝑦) ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (lambda),(211) (212)

Γ ⊢𝑇 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦 ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (lambda),(212) (213)
Γ ⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 (eqTyping),(204) (214)
Γ ⊢𝑇𝐺 ∶ 𝖻𝗈𝗈𝗅 (eqTyping),(205) (215)
Γ ⊢𝑇𝐹

′ =𝖻𝗈𝗈𝗅 𝐹 (sym),(204) (216)
Γ ⊢𝑇𝐺

′ =𝖻𝗈𝗈𝗅 𝐺 (sym),(205) (217)
Γ ⊢𝑇𝐹

′ ∶ 𝖻𝗈𝗈𝗅 (eqTyping),(216) (218)
Γ ⊢𝑇𝐺

′ ∶ 𝖻𝗈𝗈𝗅 (eqTyping),(217) (219)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (appl),(213),(214) (220)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (appl),(213),(218) (221)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 𝐺 ∶ 𝖻𝗈𝗈𝗅 (appl),(220),(215) (222)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ 𝐺′ ∶ 𝖻𝗈𝗈𝗅 (appl),(221),(219) (223)

Now we can use rule (beta) to show that the applications of 𝜆𝑥 ∶ 𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶ 𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦 to 𝐹 ,𝐺 and
𝑓 ′, 𝐺′ respectively are equal to their (beta) reduced versions:

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 =𝖻𝗈𝗈𝗅→𝖻𝗈𝗈𝗅 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ⇒ 𝑦)) (beta),(220) (224)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ =𝖻𝗈𝗈𝗅→𝖻𝗈𝗈𝗅 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ′ ⇒ 𝑦)) (beta),(221) (225)

And again:

Γ ⊢𝑇 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 ≡ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (congBase) (226)
Γ ⊢𝑇 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ⇒ 𝑦) ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (cong∶),(224),(226),(220)

(227)

Γ ⊢𝑇 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ′ ⇒ 𝑦) ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (cong∶),(225),(226),(221)
(228)

Γ ⊢𝑇 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ⇒ 𝑦) 𝐺 ∶ 𝖻𝗈𝗈𝗅 (appl),(227),(215) (229)
Γ ⊢𝑇 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ′ ⇒ 𝑦) 𝐺′ ∶ 𝖻𝗈𝗈𝗅 (appl),(228),(219) (230)
Γ ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ⇒ 𝑦)) 𝐺 =𝖻𝗈𝗈𝗅 ((𝐹 ⇒ 𝐺)) (beta),(222) (231)
Γ ⊢𝑇 (𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ′ ⇒ 𝑦)) 𝐺′ =𝖻𝗈𝗈𝗅 ((𝐹 ′ ⇒ 𝐺′)) (beta),(223) (232)
Γ ⊢𝑇𝐺 =𝖻𝗈𝗈𝗅 𝐺 (refl),(215) (233)
Γ ⊢𝑇𝐺

′ =𝖻𝗈𝗈𝗅 𝐺
′ (refl),(219) (234)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 𝐺 =𝖻𝗈𝗈𝗅 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ⇒ 𝑦) 𝐺 (congAppl),(233),(224)
(235)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ 𝐺′ =𝖻𝗈𝗈𝗅 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝐹 ′ ⇒ 𝑦) 𝐺′ (congAppl),(234),(225)
(236)

Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 𝐺 =𝖻𝗈𝗈𝗅 (𝐹 ⇒ 𝐺) (trans),(235),(231) (237)
Γ ⊢𝑇 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ 𝐺′ =𝖻𝗈𝗈𝗅 (𝐹 ′ ⇒ 𝐺′) (trans),(236),(232) (238)
Γ ⊢𝑇 (𝐹 ⇒ 𝐺) =𝖻𝗈𝗈𝗅 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 𝐺 (sym),(237) (239)
Γ ⊢𝑇 (𝐹 ⇒ 𝐺) =𝖻𝗈𝗈𝗅 (𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ⇒ 𝑦) 𝐹 ′ 𝐺′ (trans),(239),(208) (240)
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Γ ⊢𝑇 (𝐹 ⇒ 𝐹 ′) =𝖻𝗈𝗈𝗅 (𝐺 ⇒ 𝐺′) (trans),(240),(238) (241)

Regarding (⊢ cong):

Γ ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐹
′ by assumption (242)

Γ ⊢𝑇𝐹 by assumption (243)
Γ ⊢𝑇𝐹

′ =𝖻𝗈𝗈𝗅 𝐹 (sym),(242) (244)
Γ ⊢𝑇𝐹

′ (cong⊢ ),(244),(243) (245)

Regarding (rewrite):

Γ ⊢𝑇𝐹 [𝑥∕𝑡] by assumption (246)
Γ ⊢𝑇 𝑡 =𝐴 𝑡′ by assumtion (247)

Γ, 𝑦 ∶ 𝐴 ⊢𝑇𝐹 [𝑥∕𝑦] ∶ 𝖻𝗈𝗈𝗅 by assumption (248)
Γ ⊢𝑇 𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦] ∶ 𝐴 → 𝖻𝗈𝗈𝗅 (lambda),(248) (249)
Γ ⊢𝑇 𝑡 ∶ 𝐴 (eqTyping),(247) (250)
Γ ⊢𝑇 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡 ∶ 𝖻𝗈𝗈𝗅 (appl),(249),(250) (251)
Γ ⊢𝑇 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡 =𝖻𝗈𝗈𝗅 𝐹 [𝑥∕𝑡] (beta),(251) (252)
Γ ⊢𝑇 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡 (cong⊢ ),(252),(246) (253)
Γ ⊢𝑇 𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦] =𝐴→𝖻𝗈𝗈𝗅 𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦] (refl),(249) (254)
Γ ⊢𝑇 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡 =𝖻𝗈𝗈𝗅 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡′ (congAppl),(247),(254) (255)
Γ ⊢𝑇 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡′ (⊢ cong),(255),(253) (256)
Γ ⊢𝑇 𝑡

′ ∶ 𝐴 (eqTyping),(sym),(247) (257)
Γ ⊢𝑇 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡′ ∶ 𝖻𝗈𝗈𝗅 (appl),(249),(257) (258)
Γ ⊢𝑇 (𝜆𝑦 ∶𝐴. 𝐹 [𝑥∕𝑦]) 𝑡′ =𝖻𝗈𝗈𝗅 𝐹 [𝑥∕𝑡′] (beta),(258) (259)
Γ ⊢𝑇𝐹 [𝑥∕𝑡′] (⊢ cong),(259),(256) (260)

B Proof of lemma about equivalence of HOL with Q0

Proof of Lemma 5. Firstly, let us quickly talk about the inference rules for the other judgments
(not validity) and why those rules are reasonable.

However, since usually theories and context and their well-formedness are not formalized (be-
cause it is relatively obvious how they should be formalized) we will not discuss the rules for
well-formedness of types and theories. Similarly the lookup rules for contexts and theories are
obvious and result from us defining the logic more formally than usually done.

The type-equality and typing rules are also not very interesting:

• the type equality rules allow showing equality of types exactly for identical types (this can
be shown, once again, by induction on the two type-equality rules)
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• the typing rules (=type), (lambda), (appl) and (⇒type) all allow showing a typing state-
ment for a term assuming typing statements for its subterms

The interesting rules are the validity rules and in order to ensure equivalence with classical HOL
we mainly have to ensure they are equivalent to e.g. the validity rules (and axiom schemata) of
Q0 (except for the one about the description operator). This focus is further motivated by the fact
that we are interested in problems formalized in HOL style, which means that the conjectures
we are interested in are validity statements.

Translated into our syntax, the first four of the five axiom schemata of Q0 are: 4

𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 for 𝑝 ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 (Q1)

𝑡 =𝐴 𝑡′ ⇒𝑓 𝑡 =𝐵 𝑓 𝑡′ for 𝑓 ∶ 𝐴 → 𝐵, 𝑡, 𝑡′ ∶ 𝐴 (Q2)

𝑓 =𝐴→𝐵 𝑔 =𝖻𝗈𝗈𝗅 ∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥 for 𝑓, 𝑔 ∶ 𝐴 → 𝐵 (Q3)

(𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐵 𝑠[𝑥∕𝑡] for 𝑠 ∶ 𝐵 and 𝑡 ∶ 𝐴 (Q4)

and additionally we have one inference rule:

⊢ 𝑡 =𝐴 𝑡′ ⊢ 𝐹
𝐹 ′ R if 𝐹 ′ obtained from 𝐹 by replacing a single occurence of 𝑡 by 𝑡′ in 𝐹

(261)

Let Q0F denote the fragment of Q0 without the description operator and without the fifth ax-
iom schema (about the description operator). This fragment has exactly the above four axiom
schemata and the above inference rule (R). We claim that in a context without assumptions and
relative to a theory without axioms HOL is equivalent to Q0F. To show this, we need to derive
the axiom schemata and inference rule of Q0F in HOL and conversely show the validity rules of
HOL (except for the lookup rules (assume) and (axiom)) in Q0F. Thus it follows that Q0F can
prove the same validity statements as HOL relative to a theory without axioms and in a context
without assumptions.

Firstly, we prove the equivalence of the inference rules for ⇒ with the definition of ⇒ in Q0:

Lemma 31. Implication as formalized with the its inference rules is equivalent to implication
defined by ⇒∶= 𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. (𝑥 ∧ 𝑦) =𝖻𝗈𝗈𝗅 𝑥 as in Q0.

Proof of Lemma 31. Firstly, observe that by rule (appl) and the observation that the definien
𝜆𝑥 ∶ 𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶ 𝖻𝗈𝗈𝗅. (𝑥 ∧ 𝑦) =𝖻𝗈𝗈𝗅 𝑥 for ⇒ has type 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 it follows that rule
(⇒type) holds for the defined implication. Furthermore, if rule (⇒type) can be used to show that
a term 𝐹 ⇒ 𝐺 is well-typed then by assumption 𝐹 and 𝐺 are well-typed booleans and thus rule
(appl) yields that the same conclusion for the defined implication without using rule (⇒type).

4In the original version of Q0 introduced in [1] four separate schemata are used instead of the fourth one, but it is
also proven in the same book that they are jointly equivalent to this axiom schema, which is more convenient for our
purposes.
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It remains to show that the rules (⇒I) and (⇒E) are jointly equivalent to the validity of the
definition for ⇒ in Q0. We can show that the defined ⇒ satisfies rule (⇒I) as follows:

Γ, 𝐹 ⊢𝑇𝐺 by assumption (262)

Γ, 𝐹 ⊢𝑇𝐹 (assume) (263)

Γ, 𝐹 ⊢𝑇𝐹 ∧ 𝐺 (∧I),(262),(263) (264)

Γ, 𝐹 ∧ 𝐺 ⊢𝑇 𝐹 (∧El) (265)

Γ ⊢𝑇𝐹 ∧ 𝐺 =𝖻𝗈𝗈𝗅 𝐹 (propExt),(264),(265) (266)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝑥
)

𝐹
=𝖻𝗈𝗈𝗅

(

𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝐹 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝐹
)

(beta) (267)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝑥
)

𝐹 𝐺
=𝖻𝗈𝗈𝗅

(

𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝐹 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝐹
)

𝐺 (congAppl),(267,(refl)) (268)

Γ ⊢𝑇
(

𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝐹 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝐹
)

𝐺
=𝖻𝗈𝗈𝗅

(

𝐹 ∧ 𝐺 =𝖻𝗈𝗈𝗅 𝐹
)

(beta) (269)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝑥
)

𝐹 𝐺
=𝖻𝗈𝗈𝗅

(

𝐹 ∧ 𝐺 =𝖻𝗈𝗈𝗅 𝐹
)

(trans),(268),(269) (270)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝑥
)

𝐹 𝐺 (cong⊢ ),(270),(266) (271)

Γ ⊢𝑇𝐹 ⇒ 𝐺 definition of ⇒,(271) (272)

Secondly, we can show that the defined ⇒ satisfies rule (⇒E) by:

Γ ⊢𝑇𝐹 ⇒ 𝐺 by assumption (273)

Γ ⊢𝑇𝐹 by assumption (274)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝑥
)

𝐹 𝐺 definition of ⇒,(273) (275)

Γ ⊢𝑇𝐹 ∧ 𝐺 =𝖻𝗈𝗈𝗅 𝐹 (cong⊢ ),(270),(275) (276)

Γ ⊢𝑇𝐹 ∧ 𝐺 (cong⊢ ),(276),(274) (277)

Γ ⊢𝑇𝐺 (∧Er),(277) (278)

It remains to show that given 𝐹 ,𝐺 ∶ 𝖻𝗈𝗈𝗅 and assuming the rules (⇒I) and (⇒E) it follows that
𝐹 ⇒ 𝐺 =𝖻𝗈𝗈𝗅

(

𝜆𝑥 ∶𝖻𝗈𝗈𝗅. 𝜆𝑦 ∶𝖻𝗈𝗈𝗅. 𝑥 ∧ 𝑦 =𝖻𝗈𝗈𝗅 𝑥
)

𝐹 𝐺 holds. By rule (trans) and equation
(270), it suffices to show that 𝐹 ⇒ 𝐺 =𝖻𝗈𝗈𝗅

(

𝐹 ∧ 𝐺 =𝖻𝗈𝗈𝗅 𝐹
)

. This can be shown by case
distinctions using rule (boolExt).

Secondly we observe that the different definitions of ∨ and ∃ are equivalent. The equivalence of
the definitions for ∨ can be seen by case distinction on the arguments to the disjunction using
rule (boolExt). The equivalence of the definitions for the existential quantifier can be shown
using rule (propExt) and double negation elimination (which follows from (boolExt)).

We observe that the inference rule (R) of Q0F is a special case of (rewrite) as proven in Lemma 1,
which allows replacing arbitrarily many occurrences of a subterm 𝑡 inside a formula 𝐹 by a term
𝑡′ equal to 𝑡. Let us now discuss how we can prove the axiom schemata of Q0F in HOL.
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We can prove the axiom schema Q1 in HOL as follows:

Γ, 𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 (assume) (279)

Γ, 𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝑝 𝗍𝗋𝗎𝖾 (∧El),(279) (280)

Γ, 𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇 𝑝 𝖿𝖺𝗅𝗌𝖾 (∧Er),(536) (281)

Γ, 𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 ⊢𝑇∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 (boolExt),(537),(538) (282)

Γ, ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 ⊢𝑇∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 (assume) (283)

Γ, ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 ⊢𝑇 𝑝 𝗍𝗋𝗎𝖾 (∀E),(283) (284)

Γ, ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 ⊢𝑇 𝑝 𝖿𝖺𝗅𝗌𝖾 (∀E),(283) (285)

Γ, ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 ⊢𝑇 𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 (∧I),(284),(285) (286)

Γ ⊢𝑇 𝑝 𝗍𝗋𝗎𝖾 ∧ 𝑝 𝖿𝖺𝗅𝗌𝖾 =𝖻𝗈𝗈𝗅 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 (propExt),(282),(286)

The axiom schema Q2 can be proven in HOL as follows:

Γ, 𝑡 =𝐴 𝑡′ ⊢𝑇 𝑡 =𝐴 𝑡′ (assume) (287)

Γ, 𝑡 =𝐴 𝑡′ ⊢𝑇𝑓 =𝐴→𝐵 𝑓 (refl) (288)

Γ, 𝑡 =𝐴 𝑡′ ⊢𝑇𝑓 𝑡 =𝐵 𝑓 𝑡′ (congAppl),(287),(288) (289)

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ ⇒ 𝑓 𝑡 =𝐵 𝑓 𝑡′ (⇒I),(289)

The axiom schema Q3 can be proven in HOL using rule (propExt) by:

Γ, 𝑓 =𝐴→𝐵 𝑔, 𝑥 ∶ 𝐴 ⊢𝑇𝑓 =𝐴→𝐵 𝑔 (assume) (290)

Γ, 𝑓 =𝐴→𝐵 𝑔𝑥 ∶ 𝐴, ⊢𝑇𝑥 =𝐴 𝑥 (refl) (291)

Γ, 𝑓 =𝐴→𝐵 𝑔, 𝑥 ∶ 𝐴 ⊢𝑇𝑓 𝑥 =𝐴 𝑔 𝑥 (congAppl),(290),(291) (292)

Γ, 𝑓 =𝐴→𝐵 𝑔 ⊢𝑇∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥 (∀I),(292) (293)

Γ, ∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥 ⊢𝑇∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥 (assume) (294)

Γ, ∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥, 𝑦 ∶ 𝐴 ⊢𝑇 ∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥 (assume) (295)

Γ, ∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥, 𝑦 ∶ 𝐴 ⊢𝑇 𝑓 𝑦 =𝐵 𝑔 𝑦 (∀E),(295) (296)

Γ, ∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥 ⊢𝑇𝑓 =𝐴→𝐵 𝑔 (extensionality),(296) (297)

Γ ⊢𝑇
(

𝑓 =𝐴→𝐵 𝑔
)

=𝖻𝗈𝗈𝗅 ∀ 𝑥 ∶𝐴. 𝑓 𝑥 =𝐵 𝑔 𝑥 (propExt),(293),(297)

The axiom schema Q4 follows directly from rule (beta).

It remains to show that we can derive the validity rules of HOL (except for the lookup rules
(axiom) and (assume)) from the axiom schemata and inference rule of Q0F. For this we assume
a context and theory without axioms or assumptions. Since variables in contexts in HOL in
a validity statement only help for proving the validity of the formula in the statement if the
variable occurs in it, we may assume that all variables in the context of a validity statement
will occur in the formula whose validity is asserted in the statement. Thus the contexts, will
consist of exactly the variable declarations for the free variables of the formula in the statement.
Similarly for declarations in the theory. It thus makes sense to omit the context and theory from
our statements as it is done in Q0F.
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Lemma 32. A formula whose validity is shown using one of the inference rules (cong𝜆), (con-
gAppl), (refl), (sym), (beta), (eta), (cong⊢ ) and (boolExt) in HOL can be derived in Q0F from
the assumptions of the respective rule.

Proof of Lemma 32. Given the assumptions of rule (boolExt) we can apply rule (∧I) to conclude
𝑝 𝗍𝗋𝗎𝖾∧𝑝 𝖿𝖺𝗅𝗌𝖾 and then apply rule (R) to conclude ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 which is exactly the conclusion
of rule (boolExt).

The rules (cong𝜆), (congAppl), (sym) and (cong⊢ ) all follow directly from rule (R).

The rule (beta) follows directly from axiom schema Q4 and the observation that (𝜆𝑥 ∶𝐴. 𝑠) 𝑡 ∶
𝐵 is only provable if 𝑠 ∶ 𝐵 and 𝑡 ∶ 𝐴. Thus the assumptions of the rule imply that the axiom
schema is applicable, yielding the desired conclusion of (𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐵 𝑠[𝑥∕𝑡].

The rules (eta) and (refl) are both derived in Q0F in [1].

C Self-contained definition of Translation 2 from DHOL∗ into HOL∗

Translation definition 2 (Translation from DHOL∗ into HOL∗). We define Translation 2 from
DHOL into HOL syntax by induction on the Grammar.

The cases for theories and contexts are:

◦ ∶= ◦ (T1)

𝑇 , 𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 ∶= 𝑇 , 𝑎 ∶ 𝗍𝗉, 𝑎? ∶ 𝐴1 → … → 𝐴𝑛 → 𝑎 → 𝖻𝗈𝗈𝗅 (T2)

𝑇 , 𝑐 ∶ 𝐴 ∶= 𝑇 , 𝑐 ∶ 𝐴, 𝐴? 𝑐 (T3)

𝑇 , 𝐹 ∶= 𝑇 , 𝐹 (T4)

. ∶= . (T5)

Γ, 𝑥 ∶ 𝐴 ∶= Γ, 𝑥 ∶ 𝐴,𝐴? 𝑥 (T6)

Γ, 𝐹 ∶= Γ, 𝐹 (T7)

The case of 𝐴 and 𝐴? 𝑡 for types 𝐴 and terms 𝑡 ∶ 𝐴 are:

(𝑎 𝑡1 … 𝑡𝑛) ∶= 𝑎 (T8)

(𝑎 𝑡1 … 𝑡𝑛)
? 𝑡 ∶= 𝑎? 𝑡1 … 𝑡𝑛 𝑡 (T9)

Π𝑥 ∶𝐴. 𝐵 ∶= 𝐴 → 𝐵 (T10)

∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝐵? (𝑓 𝑥
)

(T11)

𝖻𝗈𝗈𝗅 ∶= 𝖻𝗈𝗈𝗅 (T12)

XV



Colin Rothgang

For 𝑡𝛽𝜂 not the application of a function (from either context or theory) with (eventual) return
type 𝖻𝗈𝗈𝗅 to all its arguments, we treat 𝖻𝗈𝗈𝗅? 𝑡 as a meta-level abbreviation for:

𝖻𝗈𝗈𝗅? (𝑡1 ⇒ 𝑡2) ∶=𝖻𝗈𝗈𝗅? 𝑡1 ∧ 𝖻𝗈𝗈𝗅? 𝑡2 (T13)

𝖻𝗈𝗈𝗅? (𝑠 =𝐴 𝑡) ∶=𝑝𝐴 𝑠 ∧ 𝑝𝐴 𝑡 𝐴 not function type (T14)

𝖻𝗈𝗈𝗅? 𝑡 ∶=𝖻𝗈𝗈𝗅? 𝑡𝛽𝜂 𝑡 is beta or eta reduceable (T15)

𝖻𝗈𝗈𝗅? 𝑥 ∶=𝗍𝗋𝗎𝖾 𝑥 variable (T16)

𝖻𝗈𝗈𝗅? 𝑐 ∶=𝗍𝗋𝗎𝖾 else (T17)

For 𝑡𝛽𝜂 being the application 𝑡′ ∶= 𝑝 𝑡1 … 𝑡𝑛 of an 𝑛-ary predicate 𝑝 (from the theory or context)
to all its arguments 𝑡1,… , 𝑡𝑝𝑖 , it follows that 𝑝 =∶ 𝑐𝑖 must be a variable or a constructor in the
context, scope or theory respectively or that 𝑡′ is the application of a 𝜆-function to an argument
that doesn’t have the type quantified over in the 𝜆-function (otherwise 𝑡′ beta reducible). In the
latter case, the term 𝑡′ itself is ill-typed in HOL and thus we define 𝖻𝗈𝗈𝗅? 𝑡′ to be 𝖿𝖺𝗅𝗌𝖾.

Otherwise we define the meta-level abbreviation 𝖻𝗈𝗈𝗅? 𝑡′ = 𝖻𝗈𝗈𝗅?
(

𝑝 𝑡1 … 𝑡𝑛
)

as follows:

𝖻𝗈𝗈𝗅? 𝑐𝑖 𝑡1 … 𝑡𝑝𝑖 ∶=𝑇𝑖,1
? 𝑡1 ∧… ∧

(

𝑇𝑖,𝑝𝑖[
𝑟𝑖,1∕𝑡1]… [𝑡𝑖,𝑝𝑖−1∕𝑡𝑝𝑖−1]

)?
𝑡𝑝𝑖 , (298)

where

𝑐1 ∶ Π𝑟1,1 ∶𝑇1,1. …Π𝑟1,𝑝1 ∶𝑇1,𝑝1 . 𝖻𝗈𝗈𝗅,

𝑐2 ∶ Π𝑟2,1 ∶𝑇2,1. …Π𝑟2,𝑝2 ∶𝑇2,𝑝2 . 𝖻𝗈𝗈𝗅,

⋮

𝑐𝑚 ∶ Π𝑟𝑚,1 ∶𝑇𝑚,1. …Π𝑟𝑚,𝑝𝑚 ∶𝑇𝑚,𝑝𝑚 . 𝖻𝗈𝗈𝗅

are the constructors (and variables) of return type 𝖻𝗈𝗈𝗅 in the DHOL∗ theory, context and scope.

The cases for terms are:

𝑐 ∶= 𝑐 (T18)

𝑥 ∶= 𝑥 (T19)

𝜆𝑥 ∶𝐴. 𝑡 ∶= 𝜆𝑥 ∶𝐴. 𝑡 (T20)

𝑓 𝑡 ∶= 𝑓 𝑡 (T21)

𝐹 ⇒ 𝐺 ∶= 𝐹 ⇒ 𝐺 (T22)

𝑓 =Π𝑥∶𝐴. 𝐵 𝑔 ∶= ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑥 =𝐵 𝑔 𝑥] (T23)

𝑠 =𝐴 𝑡 ∶= 𝑠 =𝐴 𝑡 ∧ 𝐴? 𝑠 ∧ 𝐴? 𝑡 otherwise (T24)

Here the notation 𝖱𝖾𝗅𝖺𝗍𝐴[𝑥 =𝐴 𝑥′] is used to denote the relativization of the equality 𝑥 =𝐴 𝑥′,
i.e. the translation of 𝑥 =𝐴 𝑥′ for 𝑥, 𝑥′ being variables of type 𝐴 in DHOL, rather than variables
of type 𝐴 in HOL. The definition is exactly the same as for Translation 1:
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We define the relativization of an equality by induction on the type 𝐴:

𝖱𝖾𝗅𝖺𝗍𝐴[𝑡 =𝐴 𝑡′] ∶= 𝖱[𝑡] =𝐴 𝖱[𝑡]′ ∧ 𝐴? 𝖱[𝑡] ∧ 𝐴? 𝖱[𝑡′] 𝐴 not function type (T25)

𝖱𝖾𝗅𝖺𝗍Π𝑥∶𝐴. 𝐵[𝑓 =Π𝑥∶𝐴. 𝐵 𝑓 ′] ∶= ∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑥 =𝐵 𝑓 𝑥] else (T26)

And the abbreviation 𝖱[𝑠] denoting the relativization of the term 𝑠 is defined by:

𝖱[𝑠] ∶= 𝑠 if 𝑠 = 𝖱[𝑡] (T27)

And for 𝑠 not of the form 𝖱[𝑡]:

𝖱[𝑠 =𝐴 𝑡] ∶= 𝖱𝖾𝗅𝖺𝗍𝐴[𝑠 =𝐴 𝑡] (T28)

𝖱[𝑓 𝑡] ∶= 𝖱[𝑓 ] 𝖱[𝑡] (T29)

𝖱[𝐹 ⇒ 𝐺] ∶= 𝖱[𝐹 ] ⇒ 𝖱[𝐺] (T30)

𝖱[𝜆𝑥 ∶𝐴. 𝑠] ∶= 𝜆𝑥 ∶𝐴. 𝖱[𝑠] (T31)

𝖱[𝑥] ∶= 𝑥 (T32)

𝖱[𝑐] ∶= 𝑐 (T33)

The relativization of a term is well-defined, since its definition recurses only into the definition of
the relativization of an equality over a type of smaller arity (for equalities over types of positive
arity) and into relativizations of subterms (for all other terms).

D Proof of termwise injectivity of Translation 1

Proof of Lemma 6. We prove this by induction on the arity of the types both equalities are over,
in case both terms are equalities and by subinduction on the shape of the two terms otherwise.
We observe that terms created using a different top-level production are non-identical and will
remain that way in the translation. So we can go over the productions one by one and assuming
term-wise injectivity for subterms show injectivity of applying them. Different constants are
mapped to different constants and different variables to different variables, so in those cases
there is nothing to prove. If two function applications or implications differ in DIHOL then one
of the two pairs of corresponding arguments must differ as well. By induction hypothesis so will
the images of the terms in that pair. Since function application and implication both commute
with the translation, it follows that the images of the function applications or implications also
differ. Since the translations of the terms on both sides of an equality also show up in the
translation, the same argument also works for two equalities over the same type. Similarly for
lambda functions of same type.

Consider now two equalities over different types that get identified by dependency-erasure.

In case of equalities over different non-function types, the typing predicate in the relativizations
of the equalities will be different and ensure term-wise-injectivity. For equalities over different
function types either the domain type or the codomain type must differ by rule (congΠ). If the
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domain types differ then the typing predicates in the relativizations of the universal quantifier in
the beginning of the translated equalities will be different. If the codomain types are different
then the bodies of those relativized universally quantified formulae that are the translations of
the equalities will be the translations of the equalities that we yield by applying the functions
on both sides of the equalities to a freshly bound variable of the domain type. The translations
of the equalities are only identical if those "inner equalities" are identical. Furthermore, the
inner equalities are over types of smaller arity. The remaining claim therefore follows from the
induction hypothesis.

E Proof of Lemma 13 about relativizations of equalities

Proof of Lemma 13. If 𝐶 is not a function type, there is nothing to prove. If 𝐶 is a predicate
subtype 𝐶 ′

|𝑝 of a function type 𝐶 ′ both the assumption and the conclusion of the lemma change
by the additional conjuncts 𝑝 𝑠 and 𝑝 𝑡. By the introduction and elimination rules ((∧I), (∧El),
(∧Er)) of conjunction it suffices to prove the claim for the equality 𝑠 =𝐶 ′ 𝑡 over 𝐶 instead. So
let us assume that 𝐶 ∶= Π𝑥 ∶ 𝐴. 𝐵 and prove that the claim holds for arbitrary equalities in
HOL by induction on the shape of 𝐴 and 𝐵. If follows:

Γ ⊢𝐻
𝑇
𝑠 =𝐴→𝐵 𝑡 by assumption (299)

Γ ⊢𝐻
𝑇
(Π𝑥 ∶𝐴. 𝐵)? 𝑠 by assumption (300)

Γ ⊢𝐻
𝑇
(Π𝑥 ∶𝐴. 𝐵)? 𝑡 by assumption (301)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝐵? (𝑠 𝑥

)

IT10,(300) (302)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝐵? (𝑡 𝑥

)

IT10,(301) (303)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝑠 𝑥 =𝐵 𝑡 𝑥 (monotonic⊢ ),(congAppl’),(299)

(304)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝐵? (𝑠 𝑥

)

(∀E),(var⊢ ),(302) (305)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝐵? (𝑡 𝑥

)

(∀E),(var⊢ ),(303) (306)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝖱𝖾𝗅𝖺𝗍𝐵[𝑠 𝑥 =𝐵 𝑡 𝑥] ∧ 𝐵? (𝑠 𝑥

)

∧ 𝐵? (𝑡 𝑥
)

(∧I),(304),(∧I),(302),(303)

(307)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝖱𝖾𝗅𝖺𝗍𝐵[𝑠 𝑥 =𝐵 𝑡 𝑥] induction hypothesis,(307) (308)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑠 𝑥 =𝐵 𝑡 𝑥] (∀I),(⇒I),(308) (309)

Γ ⊢𝐻
𝑇
𝑠 =Π𝑥∶𝐴. 𝐵 𝑡 IT23,(309)
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F Proof of soundness of Translation 1 from DIHOLP into IHOL

Proof of substitution lemma and soundness. We will prove Theorem 14 by induction on deriva-
tions, i.e. by doing inductions over the rules that allow us to derive the formulae to the left of
the implications in the lemma and show that we can then use the assumptions to those rules to
derive the formulae on the right side.

The induction hypothesis then states that the statements (1)-(9) hold for the judgements occur-
ring as assumptions in the rules.

For the case of each of these judgements, we will also assume soundness w.r.t. the previous
judgements. For brevity’s sake we will nevertheless write this proof as one big inductive proof
rather than many separate ones.

Substitution lemma Since the translation of types commutes with the type productions of the
grammar (9) is obvious.

We show (8) by induction on the grammar of DPIHOL. If 𝑥 is not a free variable in 𝑡, then
𝑡[𝑥∕𝑢] = 𝑡 = 𝑡[𝑥∕𝑢] and the claim (8) follows by rule (refl). So assume that 𝑥 is a free variable of 𝑡.

If 𝑡 is a variable, then by assumption (that 𝑥 is a free variable in 𝑡) it follows that 𝑡 = 𝑥 and thus
𝑡[𝑥∕𝑢] = 𝑢 = 𝑡[𝑥∕𝑢] and the claim follows by rule (refl).

If 𝑡 is a 𝜆-term 𝜆𝑦 ∶𝐴. 𝑠, then by induction hypothesis we have Γ, 𝑦 ∶ 𝐴 ⊢𝐻
𝑇

𝑠[𝑥∕𝑢] =𝐴 𝑠[𝑥∕𝑢],

where 𝐴 is the type of 𝑠. By rule (cong𝜆), the claim of Γ ⊢𝐻
𝑇

𝜆𝑦 ∶𝐴. 𝑠[𝑥∕𝑢] =𝐵 𝜆𝑦 ∶𝐴. 𝑠[𝑥∕𝑢]
follows.

If 𝑡 is a function application 𝑓 𝑠, then by induction hypothesis we have Γ ⊢𝐻
𝑇

𝑠[𝑥∕𝑢] =𝐴 𝑠[𝑥∕𝑢]

and Γ ⊢𝐻
𝑇

𝑓 [𝑥∕𝑢] =𝐴→𝐵 𝑓 [𝑥∕𝑢], where 𝑇 is the type of 𝑠. By rule (congAppl), the claim of

Γ ⊢𝐻
𝑇

(𝑓 𝑠) [𝑥∕𝑢] =𝐵 𝑓 𝑠[𝑥∕𝑢] follows.

If 𝑡 is an equality 𝑠 =𝐴 𝑠′, then by induction hypothesis we have Γ ⊢𝐻
𝑇

𝑠[𝑥∕𝑢] =𝐴 𝑠[𝑥∕𝑢] and

Γ ⊢𝐻
𝑇

𝑠′[𝑥∕𝑢] =𝐴 𝑠′[𝑥∕𝑢], where 𝐴 is the type of 𝑠 and 𝑠′. By rule (= cong), the claim of

Γ ⊢𝐻
𝑇

(

𝑠 =𝐴 𝑠′
)

[𝑥∕𝑢] =𝖻𝗈𝗈𝗅

(

𝑠 =𝐴 𝑠′
)

[𝑥∕𝑢] follows.

Well-formedness of theories Well-formedness of DPIHOL theories can be shown using the
rules (thyEmpty), (thyType’), (thyConst) and (thyAxiom):

(thyEmpty):

⊢ ◦ 𝖳𝗁𝗒 (thyEmpty) (310)

⊢𝐻◦ 𝖳𝗁𝗒 (thyEmpty) (311)

⊢𝐻◦, 𝖻𝗈𝗈𝗅? ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅 𝖳𝗁𝗒 (thyConst) (312)
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⊢𝐻
◦, 𝖻𝗈𝗈𝗅?∶𝖻𝗈𝗈𝗅→𝖻𝗈𝗈𝗅

𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾 (appl) (313)

⊢𝐻◦, 𝖻𝗈𝗈𝗅? ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅, 𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾 𝖳𝗁𝗒 (thyAxiom),(313) (314)

⊢𝐻
◦, 𝖻𝗈𝗈𝗅?∶𝖻𝗈𝗈𝗅→𝖻𝗈𝗈𝗅, 𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾

𝖻𝗈𝗈𝗅? 𝖿𝖺𝗅𝗌𝖾 (appl) (315)

⊢𝐻◦, 𝖻𝗈𝗈𝗅? ∶ 𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅, 𝖻𝗈𝗈𝗅? 𝗍𝗋𝗎𝖾, 𝖻𝗈𝗈𝗅? 𝖿𝖺𝗅𝗌𝖾 𝖳𝗁𝗒 (thyAxiom),(315) (316)

⊢𝐻◦ 𝖳𝗁𝗒 PT1,(316)

(thyType’):

⊢𝑇𝑥1 ∶ 𝐴1,… , 𝑥𝑛 ∶ 𝐴𝑛 𝖢𝗍𝗑 by assumption (317)

⊢𝐻
𝑇
𝑥1 ∶ 𝐴1, 𝐴1

? 𝑥1,… , 𝑥𝑛 ∶ 𝐴𝑛, 𝐴𝑛
? 𝑥𝑛 𝖢𝗍𝗑 induction hypothesis,(317) (318)

⊢𝐻𝑇 𝖳𝗁𝗒 (ctxThy),(318) (319)

⊢𝐻𝑇 , 𝑎 ∶ 𝗍𝗉 𝖳𝗁𝗒 (thyType),(319) (320)

⊢𝐻𝑇 , 𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 𝖳𝗁𝗒 PT2,(320) (321)

(thyConst):

⊢𝑇𝐴 𝗍𝗉 by assumption (322)

⊢𝐻
𝑇
𝐴 𝗍𝗉 induction hypothesis,(322) (323)

⊢𝐻𝑇 , 𝑐 ∶ 𝐴 𝖳𝗁𝗒 (thyConst),(323) (324)

⊢𝐻𝑇 , 𝑐 ∶ 𝐴 𝖳𝗁𝗒 PT3,(324) (325)

(thyAxiom):

⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 by assumption (326)

⊢𝐻
𝑇
𝐹 ∶ 𝖻𝗈𝗈𝗅 induction hypothesis,(326) (327)

⊢𝐻𝑇 , 𝐹 𝖳𝗁𝗒 (thyAxiom),(327) (328)

⊢𝐻𝑇 , 𝐹 𝖳𝗁𝗒 PT4,(328) (329)

Well-formedness of contexts Well-formedness of contexts can be concluded using the rules
(ctxEmpty), (ctxVar) and (ctxAssume):

(ctxEmpty):

⊢𝑇 𝖳𝗁𝗒 by assumption (330)

⊢𝐻𝑇 𝖳𝗁𝗒 induction hypothesis,(330) (331)

⊢𝐻
𝑇
. 𝖢𝗍𝗑 (ctxEmpty),(331) (332)

⊢𝐻
𝑇
. 𝖢𝗍𝗑 PT5,(332) (333)
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(ctxVar):

Γ ⊢𝑇𝐴 𝗍𝗉 by assumption (334)

Γ ⊢𝐻
𝑇
𝐴 𝗍𝗉 induction hypothesis,(334) (335)

Γ ⊢𝐻
𝑇
𝐴? ∶ 𝐴 → 𝖻𝗈𝗈𝗅 induction hypothesis,(334) (336)

⊢𝐻
𝑇
Γ, 𝑥 ∶ 𝐴 𝖢𝗍𝗑 (ctxVar),(335) (337)

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝐴? ∶ 𝐴 → 𝖻𝗈𝗈𝗅 (var⊢ ),(335),(336) (338)

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝐴? 𝑥 ∶ 𝖻𝗈𝗈𝗅 (appl),(338),(var) (339)

⊢𝐻
𝑇
Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 𝖢𝗍𝗑 (ctxAssume),(339) (340)

⊢𝐻
𝑇
Γ, 𝑥 ∶ 𝐴 𝖢𝗍𝗑 PT6,(340) (341)

(ctxAssume):

Γ ⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 by assumption (342)

Γ ⊢𝐻
𝑇
𝐹 ∶ 𝖻𝗈𝗈𝗅 induction hypothesis,(342) (343)

⊢𝐻
𝑇
Γ, 𝐹 𝖢𝗍𝗑 (ctxAssume),(343) (344)

⊢𝐻
𝑇
Γ, 𝐹 𝖢𝗍𝗑 PT7,(344) (345)

Well-formedness of types Well-formedness of types can be shown in DHOL using the rules
(type’), (pi) and (|𝑝 𝗍𝗉):

(type’):

𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 in 𝑇 by assumption (346)

Γ ⊢𝑇Γ 𝖢𝗍𝗑 by assumption (347)

⊢𝐻
𝑇
Γ 𝖢𝗍𝗑 induction hypothesis,(347) (348)

𝑎 ∶ 𝗍𝗉 in 𝑇 PT2,(346) (349)

𝑎? ∶ 𝑎 → 𝖻𝗈𝗈𝗅 in 𝑇 PT2,(346) (350)

Γ ⊢𝐻
𝑇
𝑎 𝗍𝗉 (type),(349),(348) (351)

Γ ⊢𝐻
𝑇
𝑎? ∶ 𝑎 → 𝖻𝗈𝗈𝗅 (const),(350) (352)

Γ ⊢𝐻
𝑇
𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 PT2,(351) (353)

Γ ⊢𝐻
𝑇
𝑎? ∶ 𝑎 → 𝖻𝗈𝗈𝗅 PT16,(352) (354)
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(pi):

Γ ⊢𝑇𝐴 𝗍𝗉 by assumption (355)

Γ ⊢𝑇𝐵 𝗍𝗉 by assumption (356)

Γ ⊢𝐻
𝑇
𝐴 𝗍𝗉 induction hypothesis,(355) (357)

Γ ⊢𝐻
𝑇
𝐵 𝗍𝗉 induction hypothesis,(356) (358)

Γ ⊢𝐻
𝑇
𝐴 → 𝐵 𝗍𝗉 (arrow),(357),(358) (359)

Γ ⊢𝐻
𝑇
𝐴? ∶ 𝐴 → 𝖻𝗈𝗈𝗅 induction hypothesis,(355) (360)

Γ ⊢𝐻
𝑇
𝐵? ∶ 𝐵 → 𝖻𝗈𝗈𝗅 induction hypothesis,(356) (361)

Γ ⊢𝐻
𝑇
Π𝑥 ∶𝐴. 𝐵 𝗍𝗉 PT10,(359) (362)

Γ ⊢𝐻
𝑇
(Π𝑥 ∶𝐴. 𝐵)? ∶ (Π𝑥 ∶𝐴. 𝐵) → 𝖻𝗈𝗈𝗅 PT11,(360),(361) (363)

(|𝑝 𝗍𝗉):

Γ ⊢𝑇𝐴 𝗍𝗉 by assumption (364)

Γ ⊢𝑇 𝑝 ∶ 𝐴 → 𝖻𝗈𝗈𝗅 by assumption (365)

Γ ⊢𝐻
𝑇
𝐴 𝗍𝗉 induction hypothesis,(364) (366)

Γ ⊢𝐻
𝑇
𝐴|𝑝 𝗍𝗉 PT8,(366) (367)

Γ ⊢𝐻
𝑇
𝐴? ∶ 𝐴 → 𝖻𝗈𝗈𝗅 induction hypothesis,(364) (368)

Γ ⊢𝐻
𝑇

(

𝐴|𝑝
)? ∶ 𝐴 → 𝖻𝗈𝗈𝗅 PT9,(368) (369)

Type-equality Type-equality can be shown using the rules (|𝑝 ≡ ), (congBase’), (congΠ),
(|𝑝 trivL) and (|𝑝 trivR):

(|𝑝 ≡ ):

Γ ⊢𝑇𝐴 ≡ 𝐴′ by assumption (370)

Γ ⊢𝑇 𝑝 =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝑝
′ by assumption (371)

Γ ⊢𝐻
𝑇
𝐴 ≡ 𝐴′ induction hypothesis,(370) (372)

Γ ⊢𝐻
𝑇
𝐴? =𝐴→𝖻𝗈𝗈𝗅 𝐴

′? induction hypothesis,(370) (373)

Γ ⊢𝐻
𝑇
𝑝 =𝐴→𝖻𝗈𝗈𝗅 𝑝′ induction hypothesis,(371) (374)

Γ ⊢𝐻
𝑇
(𝐴|𝑝 )

? =𝐴→𝖻𝗈𝗈𝗅 (𝐴|𝑝 )
? (refl),PT9,(eqTyping),(373) (375)

Γ ⊢𝐻
𝑇
(𝐴|𝑝 )

? =𝐴→𝖻𝗈𝗈𝗅 (𝐴|𝑝′ )
? (rewrite),(375),(374) (376)
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Γ ⊢𝐻
𝑇
(𝐴|𝑝 )

? =𝐴→𝖻𝗈𝗈𝗅 (𝐴
′
|𝑝′ )

? PT9,(rewrite),(376),(373) (377)

Γ ⊢𝐻
𝑇
𝐴|𝑝 ≡ 𝐴′

|𝑝′ PT8,(372) (378)

(congBase’):

𝑎 ∶ Π𝑥1 ∶𝐴1. …Π𝑥𝑛 ∶𝐴𝑛. 𝗍𝗉 in 𝑇 by assumption (379)

Γ ⊢𝑇 𝑠1 =𝐴1
𝑡1 by assumption (380)

⋮

Γ ⊢𝑇 𝑠𝑛 =𝐴𝑛[𝑥1∕𝑡1]…[𝑥𝑛−1∕𝑡𝑛−1] 𝑡𝑛 by assumption (381)

⊢𝑇Γ 𝖢𝗍𝗑 by assumption (382)

𝑎 ∶ 𝗍𝗉 in 𝑇 PT2,(379) (383)

𝑎? ∶ 𝐴1 → … → 𝐴𝑛 → 𝑎 → 𝖻𝗈𝗈𝗅 in 𝑇 PT2,(379) (384)

Γ ⊢𝐻
𝑇
𝑠1 =𝐴1

𝑡1 induction hypothesis,(380) (385)

⋮

Γ ⊢𝐻
𝑇
𝑠𝑛 =𝐴𝑛

𝑡𝑛 induction hypothesis,(381) (386)

⊢𝐻
𝑇
Γ 𝖢𝗍𝗑 induction hypothesis,(382) (387)

Γ ⊢𝐻
𝑇
𝑎 ∶ 𝗍𝗉 (type),(383),(387) (388)

Γ ⊢𝐻
𝑇
𝑎 ≡ 𝑎 (congBase),(388) (389)

Γ ⊢𝐻
𝑇
𝑎? =𝐴1→…→𝐴𝑛→𝑎→𝖻𝗈𝗈𝗅 𝑎

? (refl),(const),(384),(387) (390)

Γ ⊢𝐻
𝑇
𝑎? 𝑠1 =𝐴2→…→𝐴𝑛→𝑎→𝖻𝗈𝗈𝗅 𝑎

? 𝑡1 (congAppl),(385),(390) (391)

⋮

Γ ⊢𝐻
𝑇
𝑎? 𝑠1 … 𝑠𝑛 =𝑎→𝖻𝗈𝗈𝗅 𝑎

? 𝑡1 … 𝑡𝑛 (congAppl),(386),previous line (392)

Γ ⊢𝐻
𝑇
𝑎 𝑠1 … 𝑠𝑛 ≡ 𝑎 𝑡1 … 𝑡𝑛 T8,PT12,(389) (393)

Γ ⊢𝐻
𝑇
(𝑎 𝑠1 … 𝑠𝑛)

? =𝑎 𝑠1 … 𝑠𝑛 (𝑎 𝑡1 … 𝑡𝑛)
? PT12,(392) (394)

(congΠ):

Γ ⊢𝑇𝐴 ≡ 𝐴′ by assumption (395)
Γ, 𝑥 ∶ 𝐴 ⊢𝑇𝐵 ≡ 𝐵 by assumption (396)

Γ ⊢𝐻
𝑇
𝐴 ≡ 𝐴′ induction hypothesis,(395) (397)

Γ ⊢𝐻
𝑇
𝐴? =𝐴→𝖻𝗈𝗈𝗅 𝐴

′? induction hypothesis,(395) (398)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝐵 ≡ 𝐵′ induction hypothesis,(396) (399)

Γ ⊢𝐻
𝑇
𝐵 ≡ 𝐵′ ≡ context independent in HOL,(399)

(400)
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Γ ⊢𝐻
𝑇
𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′ (cong→),(397),(400) (401)

Γ ⊢𝐻
𝑇
Π𝑥 ∶𝐴. 𝐵 ≡ Π𝑥 ∶𝐴′. 𝐵′ PT10,(401) (402)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝐵? =𝐵→𝖻𝗈𝗈𝗅 𝐵

′? induction hypothesis,(396) (403)

Γ, 𝑓 ∶ 𝐴 → 𝐵, 𝑥 ∶𝐴 ⊢𝐻
𝑇

𝐴? 𝑥 ⇒ 𝐵? (𝑓 𝑥)

=𝖻𝗈𝗈𝗅 𝐴
′? 𝑥 ⇒ 𝐵? (𝑓 𝑥) (rewrite),(refl),(398) (404)

Γ, 𝑓 ∶ 𝐴 → 𝐵, 𝑥 ∶𝐴 ⊢𝐻
𝑇

𝐴? 𝑥 ⇒ 𝐵? (𝑓 𝑥)

=𝖻𝗈𝗈𝗅 𝐴
′? 𝑥 ⇒ 𝐵′? (𝑓 𝑥) (rewrite),(404),(403) (405)

Γ, 𝑓 ∶ 𝐴 → 𝐵 ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ (𝐵?(𝑓 𝑥)) =𝖻𝗈𝗈𝗅

∀ 𝑥 ∶𝐴′. 𝐴′? 𝑥 ⇒ (𝐵′?(𝑓 𝑥))) (∀cong),(397),(405) (406)

Γ ⊢𝐻
𝑇
(Π𝑥 ∶𝐴. 𝐵)? =𝐴→𝖻𝗈𝗈𝗅

(

Π𝑥 ∶𝐴′. 𝐵′)? PT15,(cong𝜆),(406) (407)

(|𝑝 trivL):

Γ ⊢𝑇𝐴 ≡ 𝐴′ by assumption (408)
Γ ⊢𝑇 𝑝 =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾 by assumption (409)

Γ ⊢𝐻
𝑇
𝐴 ≡ 𝐴′ induction hypothesis,(408) (410)

Γ ⊢𝐻
𝑇
𝐴? =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝐴

′? induction hypothesis,(409) (411)

Γ ⊢𝐻
𝑇
𝑝 =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝜆𝑥 ∶𝐴. 𝗍𝗋𝗎𝖾 induction hypothesis,(409) (412)

Γ𝑥 ∶ 𝐴, ⊢𝐻
𝑇
𝑝 𝑥 =𝖻𝗈𝗈𝗅 𝗍𝗋𝗎𝖾 (trans),(congAppl),(refl),(412),(beta) (413)

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝑝 𝑥 Lemma 2,(413) (414)

Γ, 𝑥 ∶ 𝐴, ⊢𝐻
𝑇
𝐴? 𝑥 =𝖻𝗈𝗈𝗅 𝐴

′? 𝑥 (congAppl),(refl),(411) (415)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ∧ 𝑝 𝑥 ⊢𝐻
𝑇
𝐴? 𝑥 (∧El),(assume) (416)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ∧ 𝑝 𝑥 ⊢𝐻
𝑇
𝐴′? 𝑥 (⊢ cong),(415),(416) (417)

Γ, 𝑥 ∶ 𝐴, 𝐴′? 𝑥 ⊢𝐻
𝑇
𝐴? 𝑥 (cong⊢ ),(415),(assume) (418)

Γ, 𝑥 ∶ 𝐴, 𝐴′? 𝑥 ⊢𝐻
𝑇
𝐴? 𝑥 ∧ 𝑝 𝑥 (∧I),(418),(monotonic⊢ ),(414) (419)

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝐴? 𝑥 ∧ 𝑝 𝑥 =𝖻𝗈𝗈𝗅 𝐴

′? 𝑥 (propExt),(417),(419) (420)

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇

(

𝜆𝑦 ∶𝐴. 𝐴? 𝑦 ∧ 𝑝 𝑦
)

𝑥 =𝖻𝗈𝗈𝗅 𝐴
′? 𝑥 (rewrite),(beta),(420) (421)

Γ ⊢𝐻
𝑇

(

𝐴|𝑝
)? =Π𝑥∶𝐴. 𝖻𝗈𝗈𝗅 𝐴

′? PT9,(extensionality),(421)

(|𝑝 trivR): This case is analogous to the above case for rule (|𝑝 trivL).

Typing Typing can be shown using the rules (|𝑝 I), (|𝑝E∶), (lambda’), (appl’), (⇒type’), (const),
(cong∶),(var), (=type):
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(|𝑝 I):

Γ ⊢𝑇 𝑡 ∶ 𝐴 by assumption (422)

Γ ⊢𝑇 𝑝 𝑡 by assumption (423)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴 induction hypothesis,(422) (424)

Γ ⊢𝐻
𝑇
𝐴? 𝑡 induction hypothesis,(422) (425)

Γ ⊢𝐻
𝑇
𝑝 𝑡 induction hypothesis,(423) (426)

Γ ⊢𝐻
𝑇

(

𝐴|𝑝
)? 𝑡 PT9,(∧I),(425),(426)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴|𝑝 PT8,(424)

(|𝑝E∶):

Γ ⊢𝑇 𝑡 ∶ 𝐴|𝑝 by assumption (427)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴|𝑝 induction hypothesis,(427) (428)

Γ ⊢𝐻
𝑇

(

𝐴|𝑝
)? 𝑡 induction hypothesis,(427) (429)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴 PT8,(428)

Γ ⊢𝐻
𝑇
𝐴? 𝑡 PT9,(429)

(lambda’):

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 ∶ 𝐵 by assumption (430)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝑡 ∶ 𝐵 induction hypothesis,PT6,(430) (431)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝐵? 𝑡 induction hypothesis,PT6,(430) (432)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝐵? 𝑡 (⇒I),(∀I),(432) (433)

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝑡 ∶ 𝐵 typing is independent of assumptions,(431)

(434)

Γ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝑡) ∶ 𝐴 → 𝐵 (lambda),(434) (435)

Γ ⊢𝐻
𝑇
𝜆𝑥 ∶𝐴. 𝑡 ∶ Π𝑥 ∶𝐴. 𝐵 PT15,PT10,(435)

Γ ⊢𝐻
𝑇
(Π𝑥 ∶𝐴. 𝐵)? 𝜆𝑥 ∶𝐴. 𝑡 PT11,(433)

(appl’):

Γ ⊢𝑇𝑓 ∶ Π𝑥 ∶𝐴. 𝐵 by assumption (436)

Γ ⊢𝑇 𝑡 ∶ 𝐴 by assumption (437)
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Γ ⊢𝐻
𝑇
𝑓 ∶ 𝐴 → 𝐵 induction hypothesis,PT10,(436) (438)

Γ ⊢𝐻
𝑇
(Π𝑥 ∶𝐴. 𝐵)? 𝑓 induction hypothesis,PT10,(436) (439)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝐵? (𝑓 𝑥) PT11,(439) (440)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴 induction hypothesis,(437) (441)

Γ ⊢𝐻
𝑇
𝐴? 𝑡 induction hypothesis,(437) (442)

Γ ⊢𝐻
𝑇
𝐵? (𝑓 𝑡) (∀E),(440),(442) (443)

Γ ⊢𝐻
𝑇
𝑓 𝑡 ∶ 𝐵 (appl),(438),(441) (444)

Γ ⊢𝐻
𝑇
𝑓 𝑡 ∶ 𝐵 PT16,(444)

Γ ⊢𝐻
𝑇
𝐵? 𝑓 𝑡 PT16,(443)

(⇒type’):

Γ ⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 by assumption (445)

Γ, 𝐹 ⊢𝑇𝐺 ∶ 𝖻𝗈𝗈𝗅 by assumption (446)

Γ ⊢𝐻
𝑇
𝐹 ∶ 𝖻𝗈𝗈𝗅 induction hypothesis,(445) (447)

Γ ⊢𝐻
𝑇
𝖻𝗈𝗈𝗅? 𝐹 induction hypothesis,(445) (448)

Γ, 𝐹 ⊢𝐻
𝑇
𝐺 ∶ 𝖻𝗈𝗈𝗅 induction hypothesis,(446) (449)

Γ, 𝐹 ⊢𝐻
𝑇
𝖻𝗈𝗈𝗅? 𝐺 induction hypothesis,(446) (450)

Γ ⊢𝐻
𝑇
𝐺 ∶ 𝖻𝗈𝗈𝗅 typing is independent of assumptions,(449) (451)

Γ ⊢𝐻
𝑇
𝐹 ⇒ (𝖻𝗈𝗈𝗅? 𝐺) (⇒I),(450) (452)

Γ ⊢𝐻
𝑇
𝐹 ⇒ 𝐺 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(447),(451) (453)

Γ ⊢𝐻
𝑇
𝐹 ⇒ 𝐺 ∶ 𝖻𝗈𝗈𝗅 PT17,(453)

Γ ⊢𝐻
𝑇
𝖻𝗈𝗈𝗅? 𝐹 ⇒ 𝐺 IT13,PT17,(448),(452)

(const):

𝑐 ∶ 𝐴 in 𝑇 by assumption (454)

⊢𝑇Γ 𝖢𝗍𝗑 by assumption (455)

𝑐 ∶ 𝐴 in 𝑇 PT3,(454) (456)

𝐴? 𝑐 in 𝑇 PT3,(454) (457)

⊢𝐻
𝑇
Γ 𝖢𝗍𝗑 induction hypothesis,(455) (458)

Γ ⊢𝐻
𝑇
𝑐 ∶ 𝐴 (const),(456),(458) (459)
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Γ ⊢𝐻
𝑇
𝑐 ∶ 𝐴 PT13,(459)

Γ ⊢𝐻
𝑇
𝐴? 𝑐 PT13,(457)

(var):

𝑥 ∶ 𝐴 in Γ by assumption (460)

⊢𝑇Γ 𝖢𝗍𝗑 by assumption (461)

𝑥 ∶ 𝐴 in Γ PT6,(460) (462)

𝐴? 𝑥 in Γ PT6,(460) (463)

⊢𝑇Γ 𝖢𝗍𝗑 induction hypothesis,(461) (464)

Γ ⊢𝐻
𝑇
𝑥 ∶ 𝐴 (var),(462),(464) (465)

Γ ⊢𝐻
𝑇
𝑥 ∶ 𝐴 PT14,(465) (466)

Γ ⊢𝐻
𝑇
𝐴? 𝑥 PT14,(assume),(463),(464)

(=type):

Γ ⊢𝑇 𝑠 ∶ 𝐴 by assumption (467)

Γ ⊢𝑇 𝑡 ∶ 𝐴 by assumption (468)

Γ ⊢𝐻
𝑇
𝑠 ∶ 𝐴 induction hypothesis,(467) (469)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴 induction hypothesis,(468) (470)

Γ ⊢𝐻
𝑇
𝐴? 𝑠 induction hypothesis,(467) (471)

Γ ⊢𝐻
𝑇
𝐴? 𝑡 induction hypothesis,(468) (472)

Γ ⊢𝐻
𝑇
𝐴? 𝑠 ∧ 𝐴? 𝑡 (∧I),(471),(472) (473)

Γ ⊢𝐻
𝑇
𝐴? 𝑠 ∶ 𝖻𝗈𝗈𝗅 (validTyping),(471) (474)

Γ ⊢𝐻
𝑇
𝐴? 𝑡 ∶ 𝖻𝗈𝗈𝗅 (validTyping),(472) (475)

Γ ⊢𝐻
𝑇
𝑠 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅 (=type),(469),(470) (476)

We claim that we can then show

Γ ⊢𝐻
𝑇

𝑠 =𝐴 𝑠 ∶ 𝖻𝗈𝗈𝗅.

If 𝐴 is not a function type, this follows directly from ∧ being (by definition) of type 𝖻𝗈𝗈𝗅 →
𝖻𝗈𝗈𝗅 → 𝖻𝗈𝗈𝗅, rule (appl) and (474)-(476). Otherwise it follows by rule (∀type), (⇒type), (appl),
rule (eqTyping) and rule (appl) with (469), (470).

Γ ⊢𝐻
𝑇
𝑠 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅 see above explanation
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Γ ⊢𝐻
𝑇
𝖻𝗈𝗈𝗅?

(

𝑠 =𝐴 𝑡
)

IT14,Lemma 13,(473)

(cong∶):

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ by assumption (477)

Γ ⊢𝑇𝐴 ≡ 𝐴′ by assumption (478)

Γ ⊢𝑇 𝑡 ∶ 𝐴 by assumption (479)

Γ ⊢𝐻
𝑇
𝑡 =𝐴 𝑡′ induction hypothesis,(477) (480)

We claim that from the prevous line (480), we can conclude:

Γ ⊢𝐻
𝑇

𝑡′ ∶ 𝐴

In case 𝐴 is not a function type, this follows using rule (∧El), rule (sym) and rule (eqTyping).
If 𝐴 is a function type we first show that the term on the right of the ⇒ inside the scope of the
universal quantifier is well typed using the rules rule (∀E) (with a fresh variable), rule (validTyp-
ing) and rule (implTypingR). By the rules (sym), (eqTyping) and (applType) the desired claim
follows.

Γ ⊢𝐻
𝑇
𝑡′ ∶ 𝐴 see explanation

Γ ⊢𝐻
𝑇
𝐴? 𝑡′ induction hypothesis,(477)

Term equality For term-equality and validity we need the assumption that the theory 𝑇 doesn’t
contain constants of type with arity at least 3. This means that all terms in the DIHOLP derivation
of a function type Π𝑥 ∶Π𝑦 ∶𝐶. 𝐷. 𝐵 must be 𝜆-functions. We then proceed by applying a simple
proof transformation to the given DIHOLP derivation. Namely whenever for two 𝜆-functions
𝑓 ∶= 𝜆𝑥 ∶ Π𝑦 ∶ 𝐶. 𝐷. 𝑠 and 𝑔 ∶= 𝜆𝑥 ∶ Π𝑦 ∶ 𝐶. 𝐷. 𝑠′ of type Π𝑥 ∶ Π𝑦 ∶ 𝐶. 𝐷. 𝐵 of
arity 𝑛 and two terms 𝑡, 𝑡′ (which are not identical) of type Π𝑦 ∶𝐶. 𝐷 rule (congAppl) is used
to derive 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′, then we will replace this step by the following alternative steps: Use
rule (congAppl) to conclude Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡. Use rule (beta) (and rule (sym)) to conclude
Γ ⊢𝑇 𝑓 ′ 𝑡 =𝐵 𝑠′[𝑥∕𝑡] and Γ ⊢𝑇 𝑠′[𝑥∕𝑡′] =𝐵 𝑓 ′ 𝑡′. Derive that Γ ⊢𝑇 𝑠′[𝑥∕𝑡] =𝐵 𝑠′[𝑥∕𝑡′] using
the congruence rules for the productions of the grammar (in case of equality (= cong), in case
of ⇒ rule (⇒cong), in case of function application (congAppl) and in case of 𝜆-function rule
(cong𝜆)) and the fact that Γ ⊢𝑇 𝑡 =Π𝑦∶𝐶. 𝐷 𝑡′. Conclude the desired statement of Γ ⊢𝑇 𝑓 𝑡 =𝐵
𝑓 ′ 𝑡′ by rule using (trans) (several times). Observe that iterating these replacements reduces the
number of steps using rule (congAppl) to conclude a statement Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′ for 𝑡, 𝑡′ not
identical and for 𝑓, 𝑓 ′ having the highest arity of such terms in such steps. Thus repeating these
replacements of steps will eventually result in a valid derivation that never uses rule (congAppl)
to conclude a statement Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′ for 𝑡, 𝑡′ not identical and of function type. At this
point, we can continue the proof of the theorem by induction on derivations again.
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By rule (eqTyping), whenever we can show Γ ⊢𝑇 𝑠 =𝑇 𝑡 in DPIHOL, we can also show
Γ ⊢𝑇 𝑠 ∶ 𝑇 and Γ ⊢𝑇 𝑡 ∶ 𝑇 . By induction hypothesis, this implies both Γ ⊢𝐻

𝑇
𝑇 ? 𝑠 and

Γ ⊢𝐻
𝑇

𝑇 ? 𝑡.

By Lemma 13, it thus suffices to prove that Γ ⊢𝑇 𝑠 =𝑇 𝑡 implies Γ ⊢𝐻
𝑇

𝑠 =𝑇 𝑡.

If 𝑇 = Π𝑥 ∶ 𝐴. 𝐵 we can instead also show Γ ⊢𝐻
𝑇

∀ 𝑥 ∶ 𝐴. ∀ 𝑥′ ∶ 𝐴. 𝖱𝖾𝗅𝖺𝗍𝐴[𝑥 =𝐴 𝑥′] ⇒

𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑥 =𝐵 𝑔 𝑥′].

Term equality can be shown using the rules (congAppl’), (cong𝜆’), (etaPi), (refl), (sym), (beta)
and (propExt) in DPIHOL.

(congAppl’) Firstly, let us consider the case of 𝐴 not a function type:

Γ ⊢𝑇 𝑡 =𝐴 𝑡′ by assumption (481)

Γ ⊢𝑇𝑓 =Π𝑥∶𝐴. 𝐵 𝑓 ′ by assumption (482)

Γ ⊢𝐻
𝑇
𝑡 =𝐴 𝑡′ (∧El),induction hypothesis,(481) (483)

Γ ⊢𝐻
𝑇
𝐴? 𝑡 (∧Er),(∧El),induction hypothesis,(481) (484)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝑓 𝑥 =𝐵 𝑓 ′ 𝑥 induction hypothesis,PT10,(482) (485)

Γ ⊢𝐻
𝑇
𝑓 𝑡 =Π𝑥∶𝐴. 𝐵 𝑓 ′ 𝑡 (⇒E),(∀E),(485),(484) (486)

Γ ⊢𝐻
𝑇
𝑓 𝑡 =Π𝑥∶𝐴. 𝐵 𝑓 ′ 𝑡′ (rewrite),(486),(483) (487)

Γ ⊢𝐻
𝑇
𝑓 𝑡 =Π𝑥∶𝐴. 𝐵 𝑓 ′ 𝑡′ PT16,(487) (488)

Secondly consider the case of 𝐴 being a function type. Without loss of generality we assume that
𝐴 is not a predicate subtype of a function type as that only strengthens our assumptions without
affecting what we need to prove). Thus 𝐴 is of the form Π𝑥 ∶𝐶. 𝐷. Since the theory doesn’t
contain constants of type Π𝑥 ∶𝐴. 𝐵, it follows that 𝑓, 𝑓 ′ are 𝜆-functions. But such a step cannot
appear in the derivation anymore (after the proof transformation discussed in the beginning of
the paragraph about soundness of term equality). So this case cannot occur and there is nothing
left to prove.

(cong𝜆’)

Γ ⊢𝑇𝐴 ≡ 𝐴′ by assumption (489)

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡′ by assumption (490)

Γ ⊢𝐻
𝑇
𝐴 ≡ 𝐴′ induction hypothesis,(489) (491)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝖱𝖾𝗅𝖺𝗍𝐵[𝑡 =𝐵 𝑡′] induction hypothesis,(490) (492)

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑡 =𝐵 𝑡′] (⇒I),(492) (493)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐵[𝑡 =𝐵 𝑡′] (cong𝜆’),Lemma 2,(493) (494)
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Γ ⊢𝐻
𝑇
𝜆𝑥 ∶𝐴. 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴′. 𝑡′ PT20

(etaPi)

Γ ⊢𝑇 𝑡 ∶ Π𝑥 ∶𝐴. 𝐵 by assumption (495)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴 → 𝐵 PT10,induction hypothesis,(495) (496)

Γ ⊢𝐻
𝑇
𝑡 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥 (eta),(496) (497)

Γ ⊢𝐻
𝑇
𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥 PT15,PT10,(497)

(refl)

Γ ⊢𝑇 𝑡 ∶ 𝐴 by assumption (498)

Γ ⊢𝐻
𝑇
𝑡 ∶ 𝐴 induction hypothesis,(498) (499)

Γ ⊢𝐻
𝑇
𝑡 =𝐴 𝑡 (refl),(499)

(sym)

Γ ⊢𝑇 𝑠 =𝐴 𝑡 by assumption (500)

Γ ⊢𝐻
𝑇
𝑠 =𝐴 𝑡 induction hypothesis,(500) (501)

Γ ⊢𝐻
𝑇
𝑡 =𝐴 𝑠 (rewrite),(501),(sym)

(beta)

Γ ⊢𝑇 (𝜆𝑥 ∶𝐴. 𝑠) 𝑡 ∶ 𝐵 by assumption (502)

Γ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝑠) 𝑡 ∶ 𝐵 induction hypothesis,PT15,(502) (503)

Γ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐵 𝑠[𝑥∕𝑡] (beta),(503) (504)

Γ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐵 𝑠[𝑥∕𝑡] property (8),(504) (505)

Γ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐵 𝑠[𝑥∕𝑡] PT15,PT16,(505) (506)

(propExt)

Γ, 𝐹 ⊢𝑇𝐺 by assumption (507)

Γ, 𝐺 ⊢𝑇𝐹 by assumption (508)

Γ, 𝐹 ⊢𝐻
𝑇
𝐺 induction hypothesis,PT16,(507) (509)

Γ, 𝐺 ⊢𝐻
𝑇
𝐹 induction hypothesis,PT16,(508) (510)

Γ ⊢𝐻
𝑇
𝐹 =𝖻𝗈𝗈𝗅 𝐺 (propExt),(509),(510) (511)
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Validity Validity can be shown using the rules (|𝑝E𝑝), (axiom), (assume), (cong⊢ ), (⇒I) and
(⇒E).

(|𝑝E𝑝)

Γ ⊢𝑇 𝑡 ∶ 𝐴|𝑝 by assumption (512)

Γ ⊢𝐻
𝑇

(

𝐴|𝑝
)? 𝑡 induction hypothesis,(512) (513)

Γ ⊢𝐻
𝑇
𝑝 𝑡 (∧El),PT9,(513) (514)

Γ ⊢𝐻
𝑇
𝑝 𝑡 PT16,(514)

(axiom)

𝐹 in 𝑇 by assumption (515)

⊢𝑇Γ 𝖢𝗍𝗑 by assumption (516)

𝐹 in 𝑇 PT4,(515 (517)

⊢𝐻
𝑇
Γ 𝖢𝗍𝗑 induction hypothesis,516 (518)

Γ ⊢𝐻
𝑇
𝐹 (axiom),(517),(518)

(assume)

𝐹 in Γ by assumption (519)

⊢𝑇Γ 𝖢𝗍𝗑 by assumption (520)

𝐹 in Γ PT7,(519 (521)

⊢𝐻
𝑇
Γ 𝖢𝗍𝗑 induction hypothesis,520 (522)

Γ ⊢𝐻
𝑇
𝐹 (assume),(521),(522)

(cong⊢ )

Γ ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐹
′ by assumption (523)

Γ ⊢𝑇𝐹
′ by assumption (524)

Γ ⊢𝐻
𝑇
𝐹 =𝖻𝗈𝗈𝗅 𝐹 ′ (∧El),induction hypothesis,(523) (525)

Γ ⊢𝐻
𝑇
𝐹 ′ induction hypothesis,(524 (526)

Γ ⊢𝐻
𝑇
𝐹 (cong⊢ ),(525),(526)
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(⇒I)

Γ ⊢𝑇𝐹 ∶ 𝖻𝗈𝗈𝗅 by assumption (527)

Γ, 𝐹 ⊢𝑇𝐺 by assumption (528)

Γ ⊢𝐻
𝑇
𝐹 ∶ 𝖻𝗈𝗈𝗅 induction hypothesis,(527) (529)

Γ, 𝐹 ⊢𝐻
𝑇
𝐺 induction hypothesis,PT7,(528) (530)

Γ ⊢𝐻
𝑇
𝐹 ⇒ 𝐺 (⇒I),(529),(530) (531)

Γ ⊢𝐻
𝑇
𝐹 ⇒ 𝐺 PT17,(531)

(⇒E)

Γ ⊢𝑇𝐹 ⇒ 𝐺 by assumption (532)

Γ ⊢𝑇𝐹 by assumption (533)

Γ ⊢𝐻
𝑇
𝐹 ⇒ 𝐺 induction hypothesis,PT17,(532) (534)

Γ ⊢𝐻
𝑇
𝐹 induction hypothesis,(533) (535)

Γ ⊢𝐻
𝑇
𝐺 (⇒E),(534),(535)

Remark 33. Since the restriction on the theory for the soundness w.r.t. validity only allies to
constants of type Π𝑥 ∶Π𝑦 ∶𝐶. 𝐷. 𝐵 that are not defined as 𝜆-functions, it would be interesting
to consider this restriction semantically. We expect that models of theories will soundly translate
to models of the translated theory (since in a model all constants are given definien). Therefore
from a semantic viewpoint, the translation is sound without restrictions.

G Proof of soundness of Translation 1 from DHOLP into HOL

Proof of Corollary 15. The soundness proof is the same as in the intuitionistic case except that
we need to consider the case of rule (boolExt) instead of rule (propExt). This case can be shown
as follows:

Γ ⊢𝑇 𝑝 𝗍𝗋𝗎𝖾 by assumption (536)

Γ ⊢𝑇 𝑝 𝖿𝖺𝗅𝗌𝖾 by assumption (537)

Γ ⊢𝐻
𝑇
𝑝 𝗍𝗋𝗎𝖾 induction hypothesis,IT21,(536) (538)

Γ ⊢𝐻
𝑇
𝑝 𝖿𝖺𝗅𝗌𝖾 induction hypothesis,IT21,(537) (539)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 (boolExt),(538),(539) (540)
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By definition, 𝖻𝗈𝗈𝗅? 𝑥 holds for variables 𝑥 ∶ 𝖻𝗈𝗈𝗅, hence Γ, 𝑥 ∶ 𝖻𝗈𝗈𝗅 ⊢𝐻
𝑇

(

𝖻𝗈𝗈𝗅? 𝑥 ⇒ 𝑝 𝑥
)

=𝖻𝗈𝗈𝗅

𝑝 𝑥.

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝖻𝗈𝗈𝗅.

(

𝖻𝗈𝗈𝗅? 𝑥 ⇒ 𝑝 𝑥
)

=𝖻𝗈𝗈𝗅 ∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 (∀cong), above explanation (541)

Γ ⊢𝐻
𝑇
∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝖻𝗈𝗈𝗅? 𝑥 ⇒ 𝑝 𝑥 (cong⊢ ),(541),(540)

H Proof of Lemma 19 about replacement predicates

Proof of Lemma 19. To simplify the notations denote Δ ∶= Γ, 𝑣𝑞(Γ)+1 ∶ 𝐴,… , 𝑣𝑟(𝑡) ∶ 𝐴.

We want to show that the analogues of the typing axioms and assumptions for 𝐴? that are gener-
ated by the translation, will also hold for 𝑝𝐴. Since nothing more is known about the 𝐴? and the
typing and replacement predicates are defined analogously on Π-types and predicate subtypes,
by induction on derivation it suffices to prove: Δ ⊢𝐻

𝑇
𝐴?𝑡 implies Δ ⊢𝐻

𝑇
𝑝𝐴 𝑡 for base types (i.e.

𝖻𝗈𝗈𝗅 and types declared in the theory, but not function types or predicate subtypes).

We therefore need to show that Δ ⊢𝐻
𝑇

𝐴?𝑡 implies Δ ⊢𝐻
𝑇

𝑝𝐴 𝑡 for base types. If 𝑡 is a variable it

is one of 𝑣1,… , 𝑣𝑞, say 𝑣𝑖. Hence 𝑝𝐴 𝑡 = 𝗍𝗋𝗎𝖾 = 𝗍𝗋𝗎𝖾 holds by definition and there is nothing to
prove.

It remains to consider the case of 𝑡 not a variable.

For non-variables the translation generates exactly the axioms ∀ 𝑟𝑖,1 ∶𝑇𝑖,1. 𝑇𝑖,1? 𝑟𝑖,1 ⇒ …∀ 𝑟𝑖,1 ∶

𝑇𝑖,1. 𝑇𝑖,1? 𝑟𝑖,1 ⇒
(

𝑎 𝑓1,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖) … 𝑓𝑛,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖)
)?

𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖 for each constructor
𝑐𝑖 ∶ Π𝑟𝑖,1 ∶𝑇𝑖,1. …Π𝑟𝑖,𝑝𝑖 ∶𝑇𝑖,𝑝𝑖 . 𝑎 𝑓1,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖) … 𝑓𝑛,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖).

We therefore have to prove that if in the scope of 𝑡 (i.e. in context Δ) we have

𝑎 𝑓1,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖) … 𝑓𝑛,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖) ≡ 𝐴

for 𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖 of type 𝑇𝑖,1,… , 𝑇𝑖,𝑝𝑖 , then we have

𝑝𝐴 𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖 .

Then, the remaining claim follows by induction on derivations.

Since 𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖 doesn’t have a function type, it must be of the form 𝑎 𝑡1 … 𝑡𝑛 (with 𝑛 = 0
and 𝑎 = 𝖻𝗈𝗈𝗅 allowed) it follows that the type equality

𝑎 𝑓1,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖) … 𝑓𝑛,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖) ≡ 𝐴,

can only be shown by rule (congBase’) in DIHOLP. Hence,

Γ ⊢𝑇 𝑡1 =𝑇𝑖,1 𝑓1,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖),… ,Γ ⊢𝑇 𝑡𝑛 =𝑇𝑖,𝑝𝑖
𝑓𝑛,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖)
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must all hold in DIHOLP.

Since ∨ commutes with the translation, by the introduction rule of ∨ it follows that we need to

show that the translation of one of the disjuncts of 𝑝𝐴
(

𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖
)

holds. We will show this
for the 𝑖-th conjunct namely for:
∃𝑟𝑖,1 ∶ 𝑇𝑖,1.𝑇𝑖,1? 𝑟𝑖,1 ∧ …∃𝑟𝑖,𝑝𝑖 ∶ 𝑇𝑖,𝑝𝑖 .𝑇𝑖,𝑝𝑖

? 𝑟𝑖,𝑝𝑖 ∧ (𝖱𝖾𝗅𝖺𝗍𝐴1
[𝑡1 =𝐴1

𝑓1,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖)]) ∧ … ∧
(𝖱𝖾𝗅𝖺𝗍𝐴𝑛

[𝑡𝑛 =𝐴𝑛
𝑓𝑛,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖)]) ∧ (𝖱𝖾𝗅𝖺𝗍𝐴[(𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖) =𝐴 𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖]).

Since the 𝑟𝑖,𝑗 have type 𝑇𝑖,𝑗 respectively in DIHOLP, by the soundness of the translation, it
follows that 𝑇𝑖,𝑗? 𝑟𝑖,𝑗 for all 𝑖, 𝑗.

Furthermore by the soundness of the translation and the equalities between the 𝑡𝑗 and the ap-
plications of the 𝑓𝑗,𝑖 to the 𝑟𝑖,𝑗 , it follows that Δ ⊢𝐻

𝑇
𝑡1 =𝑇𝑖,1 𝑓1,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖), . . . , Δ ⊢𝐻

𝑇
𝑡𝑛 =𝑇𝑖,𝑝𝑖

𝑓𝑛,𝑖(𝑟𝑖,1,… , 𝑟𝑖,𝑝𝑖 hold. This step requires the assumption that the theory contains no
constants of types Π𝑥 ∶Π𝑦 ∶𝐶. 𝐷. 𝐵.

By the soundness of the translation w.r.t. typing 𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖 ∶ 𝐴 and thus by rule (refl):

𝖱𝖾𝗅𝖺𝗍𝐴[(𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖) =𝐴 𝑐𝑖 𝑟𝑖,1 … 𝑟𝑖,𝑝𝑖].

The claim thus follows by repeated application of the introduction rules for ∨ and the introduc-
tion rule for ∃ for the 𝑟𝑖,𝑗 .

I Proof of Lemma 18 about replacement predicates

Proof of Lemma 18. Since the definitions of the replacement predicates and typing predicates
for Π-types, predicates subtypes and booleans are completely analogous, we can by induction
on the derivations reduce the remaining claim to the cases of a disjunct of 𝑝𝐵 𝑡 (corresponding to
a typing assumption/axiom of a non-function or predicate subtype) holding. In such a case, we
have that 𝐵 is not a function type or predicate subtype and 𝑡 is not the application of a predicate
to all its arguments.

If 𝑡 is a variable of type other than bool, we have 𝖱𝖾𝗅𝖺𝗍𝐴[𝑡 =𝐴 𝑣𝑖] for some variable 𝑣𝑖 in the
scope and the claim 𝐴? 𝑡 is actually a conjunct of the assumption.

If 𝑡 is a boolean variable, it follows that 𝑡𝑚 is a boolean variable, so 𝑡𝑚 ∶ 𝖻𝗈𝗈𝗅 trivially holds.

It remains to consider the case of
𝑡𝑚 = 𝑐 𝑑1 … 𝑑𝑝

being the application of term constructor

𝑐 ∶ Π𝑟1 ∶𝑇1. …Π𝑟𝑝 ∶𝑇𝑝. 𝑎 𝑓1(𝑟1,… , 𝑟𝑝) … 𝑓𝑛(𝑟1,… , 𝑟𝑝)

in the theory or scope and
𝐵 = 𝑎 𝑡1 … 𝑡𝑛.

In this case, there is a typing axiom or assumption in 𝑇 or Γ that (after reducing with rule (∀E)
and (⇒E)) asserts the claim of 𝐵? 𝑡.
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J Proof that replacement predicates holding implies typing

Proof of Lemma 20. The below DIHOLP analogue of rule (typingWf) can be derived similarly
to how it is derived in IHOL:

Γ ⊢𝑇 𝑓 𝑡 ∶ 𝐷 Γ ⊢𝑇 𝑓 ∶ Π𝑥 ∶𝐶. 𝐷
Γ ⊢𝑇 𝑡 ∶ 𝐶

typingWellformed’

If 𝐵 is a predicate subtype 𝐵′
|𝑝 , the definition at R7 implies that 𝑝 𝑡 must hold, so rule (|𝑝 I)

allow us to reduce the claim to the case of the simpler type 𝐵′.

Wlog. (rule (rewrite) guarantees the equivalence) assume that 𝑡 is beta and eta reduced.

Continue by induction on the shape of 𝑡. If 𝐵 is 𝖻𝗈𝗈𝗅 but 𝑡 is not the application of a function of
(eventual) return type 𝖻𝗈𝗈𝗅 to all its arguments, then 𝑡 is a also not a variable or constant of type
𝖻𝗈𝗈𝗅 (or we would be in the case of an empty function application) and hence 𝑡 is an equality
or implication. The definition of 𝑝𝖻𝗈𝗈𝗅 combined with the induction hypothesis then ensures that
all the subterms have the appropriate types and we can use one of the typing rules (=type) or
(⇒type) to conclude 𝑡 ∶ 𝖻𝗈𝗈𝗅 as desired.

It follows that 𝑝𝐵 is an actual predicate on type 𝐵 i.e. Γ ⊢𝑇 𝑝𝐵 ∶ Π𝑥 ∶ 𝐵. 𝖻𝗈𝗈𝗅. By rule
(validTyping) (and Remark 12 about its proof in D(I)HOLP) and rule (typingWellformed’) it
follows that Γ ⊢𝑇 𝑡 ∶ 𝐵.

K Proof of Lemma 21 about the 𝑃 -normalizing proof transforma-
tion

Proof of Lemma 21. We will show this by induction on the inference rules.

Firstly, we observe that there are no dependent types in IHOL and the context and axioms contain
no spurious subterms. Hence, well-formedness (of theories, contexts, types) and type-equality
judgements are unaffected by the transformation. So there is nothing to prove for the well-
formedness and type-equality rules.

Regarding the indices for the terms: For proper terms there is no choice here. We start
indexing the term at the end of the derivation and go up line by line. Whenever we need to
pick an index for a term we already encountered (in a later step) in the derivation we will pick
the same index. Whenever we need to pick an index for a non-atomic term we pick indices
for the atomic terms in the term and then choose the type of the quasi-preimage (by termwise-
injectivity (see remark 7) this quasi-preimage is unique) for which the quasi-preimages of the
subterm have the types they are indexed with. If we have to pick an index for a variable that
is part of a 𝜆-function we see if that 𝜆-function is applied to an argument and if so we pick the
index of that argument (this choice ensures that the reduction will do as little as necessary and
is also consistent with the indexing of variables in proper terms). Otherwise, we pick the index
arbitrarily (but satisfying the already stated requirements).
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It remains to consider the typing and validity rules and to show that if the 𝑃 -normalizing state-
ment transformation of the assumptions hold, then the 𝑃 -normalizing statement transformation
of the conclusion holds:

(const): Since constants are proper terms satisfying predicate 𝑃 , there is nothing to prove.

(var): Since context variables are proper terms satisfying predicate 𝑃 , there is nothing to
prove.

(=type):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑠)𝐴 ∶ 𝐴 by assumption (542)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐴 ∶ 𝐴 by assumption (543)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑠)𝐴 =𝐴 𝗌𝖱𝖾𝖽 (𝑡)𝐴 ∶ 𝖻𝗈𝗈𝗅 (=type),(542),(543) (544)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑠𝐴 =𝐴 𝑡𝐴
)

𝖻𝗈𝗈𝗅
∶ 𝖻𝗈𝗈𝗅 SR4,(544)

(lambda):

Δ, 𝑥𝐴 ∶ 𝐴 ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑡𝐵
)

∶ 𝐵 by assumption (545)

Δ ⊢𝐻
𝑇

(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)𝐵
)

∶ 𝐴 → 𝐵 (lambda),(545) (546)

If 𝗌𝖱𝖾𝖽 (𝑡)𝐵 isn’t a function application 𝗌𝖱𝖾𝖽 (𝑓 )Π𝑦∶𝐴. 𝐵 𝑥𝐴 not satisfying 𝑃 for which 𝑥 doesn’t
appear in 𝑓 :

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)𝐵
)

∶ 𝐴 → 𝐵 SR6,(546)

Else by (SR3) we have 𝗌𝖱𝖾𝖽
(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)𝐵
)

= 𝗌𝖱𝖾𝖽 (𝑓 )Π𝑦∶𝐴. 𝐵:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)𝐵
)

∶ 𝐴 → 𝐵 SR3,(546)

(appl):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 ∶ 𝐴 → 𝐵 by assumption (547)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐴′ ∶ 𝐴 by assumption (548)

Unless 𝗌𝖱𝖾𝖽 (𝑓 ) 𝗌𝖱𝖾𝖽 (𝑡) beta reducible and either not satisfing 𝑃 or not satisfying 𝐴 ≡ 𝐴:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑓Π𝑥∶𝐴. 𝐵 𝑡𝐴′
)

∶ 𝐵 SR1,(lambda),(547),(548)
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Otherwise if 𝗌𝖱𝖾𝖽 (𝑓 ) 𝗌𝖱𝖾𝖽 (𝑡) beta reducible with 𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 = 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑠)𝐵 and is
either not satisfing 𝑃 or not satisfying 𝐴 ≡ 𝐴, it follows that

𝗌𝖱𝖾𝖽
(

𝑓Π𝑥∶𝐴. 𝐵 𝑡𝐴′
)

= 𝗌𝖱𝖾𝖽
(

𝗌𝖱𝖾𝖽 (𝑠)𝐵 [𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡)𝐴′]
)

.

Observe that Δ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇

𝗌𝖱𝖾𝖽 (𝑠) ∶ 𝐵 must be derivable and thus:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑠)𝐵 [𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡)𝐴′] ∶ 𝐵 (rewriteTyping),assumption,(548)

Observe that by induction hypothesis the derivations of Δ ⊢𝐻
𝑇

𝗌𝖱𝖾𝖽 (𝑠)𝐵 ∶ 𝐵 and of Δ ⊢𝐻
𝑇

𝗌𝖱𝖾𝖽 (𝑡)𝐴 ∶ 𝐴 are almost proper with quasi-preimages for terms of indexed types. Conse-
quently, the steps in the derivation obtained by plugging in the proof of rule (rewriteTyping)
into this case will also be almost proper with quasi-preimages of indexed types (as the terms
in it for corresponding steps have the same types and indices as in the derivation for Δ ⊢𝐻

𝑇
𝗌𝖱𝖾𝖽 (𝑠)𝐵 ∶ 𝐵 and steps in the derivation of Δ ⊢𝐻

𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐴 ∶ 𝐴 which occur in this deriva-

tion are unchanged). Therefore treating rule (rewriteTyping) like a primitive rule is harm-
less here (we can replace a step using the rule by the steps in the derivation of the rule).
By (P5) and the fact that 𝗌𝖱𝖾𝖽 (𝑠)𝐵 [𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡)𝐴′] (and its subterms) are almost proper with quasi-
preimages of the indexed types, it follows that 𝑃 holds on 𝗌𝖱𝖾𝖽 (𝑠)𝐵 [𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡)𝐴′]. Therefore by
(SR1) we have 𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑠)𝐵 [𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡)𝐴′]
)

= 𝗌𝖱𝖾𝖽 (𝑠)𝐵 [𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡)𝐴′] and we are already done.

(⇒type):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 ∶ 𝖻𝗈𝗈𝗅 by assumption (549)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 ∶ 𝖻𝗈𝗈𝗅 by assumption (550)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 ⇒ 𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 ∶ 𝖻𝗈𝗈𝗅 (⇒type),(549),(550) (551)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝐹𝖻𝗈𝗈𝗅 ⇒ 𝐹𝖻𝗈𝗈𝗅

)

∶ 𝖻𝗈𝗈𝗅 SR5,(551)

(axiom): Since translations of axioms to IHOL are always proper terms, there is nothing to
prove here.

(assume):

𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 in Δ by assumption (552)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 (assume),(552)

By assumption 𝗌𝖱𝖾𝖽 (𝐹 ) almost proper (with a quasi-preimage of type 𝖻𝗈𝗈𝗅), so the conclusion
of the rule is almost proper.
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(cong𝜆):

Δ ⊢𝐻
𝑇
𝐴 ≡ 𝐴′ by assumption (553)

Δ, 𝑥𝐴 ∶ 𝐴 ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑡𝐵 =𝐵 𝑡′𝐵
)

by assumption (554)

Δ, 𝑥𝐴 ∶ 𝐴 ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐵 =𝐵 𝗌𝖱𝖾𝖽

(

𝑡′
)

𝐵 SR4,(554) (555)

Δ ⊢𝐻
𝑇
𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)𝐵 =𝐴→𝐵 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽

(

𝑡′
)

𝐵 (cong𝜆),(553),(555) (556)

By assumption 𝗌𝖱𝖾𝖽 (𝑡)𝐵 =𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐵 almost proper with quasi-preimage consistent with type
indices and 𝐴 ≡ 𝐴′, thus also 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)𝐵 =𝐴→𝐵 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽

(

𝑡′
)

𝐵 almost proper
with quasi-preimage consistent with type indices. It follows that the same is true for the (re-
peated) beta and eta reductions of those 𝜆-functions. -
Using the rules (beta), (eta) and (trans), it follows that beta and eta reductions (due to terms
not satisfying property 𝑃 ) will not affect the derivability (using only almost proper terms with
quasi-preimages consistent with the type indices) of the conclusion. So wlog. assume that the
two 𝜆-functions do satisfy the property 𝑃 :

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)𝐵 =𝐴→𝐵 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐵

)

SR6,SR4,(556)

(congAppl):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑡𝐴′ =𝐴 𝑡′𝐴′

)

by assumption (557)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐴′ =𝐴 𝗌𝖱𝖾𝖽

(

𝑡′
)

𝐴′ SR4557 (558)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑓Π𝑥∶𝐴. 𝐵 =𝐴→𝐵 𝑓 ′
Π𝑥∶𝐴. 𝐵

)

by assumption (559)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 =𝐴→𝐵 𝗌𝖱𝖾𝖽

(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 SR4,(559) (560)

Assume that 𝐴 ̸≡ 𝐴′. Our choice of type indices then implies 𝗌𝖱𝖾𝖽 (𝑓 ) and 𝗌𝖱𝖾𝖽
(

𝑓 ′) are not
𝜆-functions. Consequently, the applications 𝗌𝖱𝖾𝖽 (𝑓 ) 𝗌𝖱𝖾𝖽 (𝑠) and 𝗌𝖱𝖾𝖽

(

𝑓 ′) 𝗌𝖱𝖾𝖽
(

𝑠′
)

are not
beta or eta reducible. Thus, 𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽 (𝑡)𝐴′
)

= 𝑡𝐵 and -
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽
(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐴′

)

= 𝑡𝐵 and we yield:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽 (𝑡)𝐴′
)

=𝐵 𝗌𝖱𝖾𝖽
(

𝗌𝖱𝖾𝖽
(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐴′

)

(refl)
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Otherwise the applications 𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽 (𝑡)𝐴′ and 𝗌𝖱𝖾𝖽
(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐴′ are al-
most proper with quasi-preimages consistent with type indices. It follows that the same is true for
the (repeated) beta and eta reductions of those function applications. -
Considering the rules (beta), (eta) and (trans), it follows that beta and eta reductions (due to terms
not satisfying property 𝑃 ) will not affect the derivability (using only almost proper terms with
quasi-preimages consistent with the type indices) of the conclusion. So wlog. we can assume
that the two function applications both either are not beta reducible or do satisfy property 𝑃 . It
follows:

𝗌𝖱𝖾𝖽
(

𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽 (𝑡)𝐴′
)

= 𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽 (𝑡)𝐴′

and
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽
(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐴′

)

= 𝗌𝖱𝖾𝖽
(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐴′

and thus:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽 (𝑡)𝐴′
)

=𝐵

𝗌𝖱𝖾𝖽
(

𝗌𝖱𝖾𝖽
(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐴′

)

(congAppl),(558),(560) (561)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑓 )Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽 (𝑡)𝐴′ =𝐵 𝗌𝖱𝖾𝖽
(

𝑓 ′)

Π𝑥∶𝐴. 𝐵 𝗌𝖱𝖾𝖽
(

𝑡′
)

𝐴′

)

SR4,(561)

(refl):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐴 ∶ 𝐴 by assumption (562)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐴 =𝐴 𝗌𝖱𝖾𝖽 (𝑡)𝐴 (refl),(562) (563)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑡)𝐴 =𝐴 𝗌𝖱𝖾𝖽 (𝑡)𝐴
)

SR4,(563)

(sym):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑡𝐴 =𝐴 𝑠𝐴
)

by assumption (564)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)𝐴 =𝐴 𝗌𝖱𝖾𝖽 (𝑠)𝐴 SR4,(564) (565)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑠)𝐴 =𝐴 𝗌𝖱𝖾𝖽 (𝑡)𝐴 (sym),(565) (566)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝑠𝐴 =𝐴 𝑡𝐴
)

SR4,(566)

(beta):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

((

𝜆𝑥𝐴 ∶𝐴. 𝑠𝐵
)

𝑡𝐴
)

∶ 𝐵 by assumption (567)

(

𝜆𝑥𝐴 ∶𝐴. 𝑠𝐵
)

𝑡𝐴 is by choice of indexing almost proper with quasi-preimage of type 𝐵. If it
does satisfy 𝑃 , it follows:

Δ ⊢𝐻
𝑇

(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

)

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

∶ 𝐵 SR2,(567) (568)
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Δ ⊢𝐻
𝑇

(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

)

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

=𝐵 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

[𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡𝐴)] (beta),(568) (569)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

((

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

)

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

=𝐵 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

[𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡𝐴)]
)

SR4,SR1,P4,(569)

Otherwise, we have 𝗌𝖱𝖾𝖽
((

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

)

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

)

= 𝗌𝖱𝖾𝖽
(

𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

[𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡𝐴)]
)

and thus:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

((

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

)

𝗌𝖱𝖾𝖽
(

𝑡𝐴
)

=𝐵 𝗌𝖱𝖾𝖽
(

𝑠𝐵
)

[𝑥𝐴∕𝗌𝖱𝖾𝖽 (𝑡𝐴)]
)

(refl),SR4

(eta):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 ∶ 𝐴 → 𝐵 by assumption (570)

𝑥 not in Δ by assumption (571)

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 𝑥𝐴 is by choice of indexing almost proper with quasi-preimage of type
Π𝑥 ∶𝐴. 𝐵. If it does satisfy 𝑃 , it follows:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 =𝐴→𝐵 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 𝑥𝐴 (eta),(570),(571) (572)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 =𝐴→𝐵 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 𝑥𝐴
)

SR2,SR6,SR4,(572) (573)

Otherwise we have 𝗌𝖱𝖾𝖽
(

𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 𝑥𝐴
)

= 𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 and thus:

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 =𝐴→𝐵 𝜆𝑥𝐴 ∶𝐴. 𝗌𝖱𝖾𝖽 (𝑡)Π𝑥∶𝐴. 𝐵 𝑥𝐴
)

(refl),SR4

(cong⊢ ):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝐹𝖻𝗈𝗈𝗅 =𝖻𝗈𝗈𝗅 𝐹
′
𝖻𝗈𝗈𝗅

)

by assumption (574)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝐹 ′)

𝖻𝗈𝗈𝗅
by assumption (575)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 =𝖻𝗈𝗈𝗅 𝗌𝖱𝖾𝖽

(

𝐹 ′)

𝖻𝗈𝗈𝗅
SR4,(574) (576)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 (cong⊢ ),(576),(575)

(⇒I):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 ∶ 𝖻𝗈𝗈𝗅 by assumption (577)

Δ, 𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 by assumption (578)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 ⇒ 𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 (⇒I),(577),(578) (579)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝐹𝖻𝗈𝗈𝗅 ⇒ 𝐺𝖻𝗈𝗈𝗅

)

SR5,(579)
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(⇒E):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝐹𝖻𝗈𝗈𝗅 ⇒ 𝐺𝖻𝗈𝗈𝗅

)

by assumption (580)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 by assumption (581)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 ⇒ 𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 SR5,(580) (582)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 (⇒E),(582),(581)

(propExt):

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 ∶ 𝖻𝗈𝗈𝗅 by assumption (583)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 ∶ 𝖻𝗈𝗈𝗅 by assumption (584)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽 (𝐹 )𝖻𝗈𝗈𝗅 =𝖻𝗈𝗈𝗅 𝗌𝖱𝖾𝖽 (𝐺)𝖻𝗈𝗈𝗅 (propExt),(583),(584) (585)

Δ ⊢𝐻
𝑇
𝗌𝖱𝖾𝖽

(

𝐹𝖻𝗈𝗈𝗅 =𝖻𝗈𝗈𝗅 𝐺𝖻𝗈𝗈𝗅

)

SR4,(585)

L Proof that relativized equalities imply typing conditions

Proof of Lemma 23. If 𝐵 is not a function type the claims are conjuncts of the assumption and
follow immediately (by rule (∧El) and rule (∧Er)). Otherwise 𝐵 is of the shape Π𝑥 ∶𝐶. 𝐷 and
the second claim is:

∀ 𝑥 ∶𝐶. 𝐶? 𝑥 ⇒ 𝖱𝖾𝗅𝖺𝗍𝐷[𝑠 𝑥 =𝐷 𝑡 𝑥].

Let us compare this with the typing predicate
(

Π𝑥 ∶𝐶. 𝐷
)?𝑦 which is

∀ 𝑥 ∶𝐶. 𝐶? 𝑥 ⇒ 𝐷? 𝑦.

By the rules (∀cong) and (⇒cong) we can reduce the claim to the analogous claim for the type
𝐷, instead of 𝐵. Continuing by induction on the shape of 𝐷 finishes the proof.

M Proof of Theorem 25 about lifting IHOL to DIHOLP proofs

Proof. As shown in Corollary 22, we may assume that the derivation of Γ ⊢𝐻
𝑇

𝜑 contains only

almost proper terms. Consequently, for any unrelativized equality 𝑠 =𝐴 𝑡 in the derivation, we
know that also its relativized version 𝖱𝖾𝗅𝖺𝗍𝐴[𝑠 =𝐴 𝑡] holds.

If such a relativized equality occurs in the assumption of a rule the induction hypothesis (assum-
ing that the assumption is proper) yields 𝑠 =𝐴 𝑡 in DIHOLP. By Lemma 24 it follows that also
𝑠 ∶ 𝐴 and 𝑡 ∶ 𝐴 are derivable in DIHOLP.

Without loss of generality (adding extra assumptions throughout the proof) we may assume that
the context of the (final) conclusion is the translation of a DIHOLP context.
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By remark 7, the translation is termwise-injective. Therefore, if we can lift a derivation of a
proper validity statement to a derivation of a quasi-preimage DIHOLP then this lift is a derivation
of is uniquely determined and we have created a derivation for the right conjecture in DIHOLP.

We prove the claim of Γ ⊢ 𝐹 by induction on the validity rules of IHOL as follows:

Given a validity rule 𝑅 with assumptions 𝐴1,… , 𝐴𝑛, validity assumptions (assumptions that are
validity judgements) 𝑉1,… , 𝑉𝑚, non-judgement assumptions (meaning assumptions that some-
thing occurs in a context or theory) 𝑁1,… , 𝑁𝑝 and conclusion 𝐶 we will show the following:

Claim. Assuming that the 𝐴𝑖 and the 𝑁𝑗 hold.

1. Assume that the conclusion 𝐶 is proper with quasi-preimage 𝐶−1. It follows that the
contexts 𝐶𝑖 of the 𝐴𝑖 are proper and the quasi-preimages of the 𝐶𝑖 are uniquely determined
from the quasi-preimage 𝐶−1 of 𝐶 .

2. Assume that whenever an 𝐴𝑖 is proper its quasi-preimage (where we choose the same
preimages for identical terms and types with several possible preimages) holds in DI-
HOLP and that the conclusion 𝐶 is proper with quasi-preimage 𝐶−1. Then, 𝐶−1 holds in
DIHOLP.

Let us start with the first part of this claim, namely that if 𝐶 is proper (i.e. the formula in 𝐶−1

well-typed in the context of 𝐶−1) then the 𝐶𝑖 are proper and their quasi-preimages are uniquely
determined from 𝐶−1. Since all formulae appearing in the derivation are almost proper, this
implies that the 𝐴𝑖 themselves are proper and the contexts of their quasi-preimages fit together
with the context of 𝐶−1.

The translation clearly implies that if an 𝑁𝑗 holds in IHOL, the corresponding non-judgement
assumption 𝑁𝑗

−1 holds in DIHOLP (e.g. if 𝐹 is an axiom in 𝑇 , then 𝐹 must be an axiom in 𝑇 ).

Since the validity judgement being derived is proper, it follows from this first part of the claim
that the validity assumptions of all validity rules in the derivation are proper and the contexts of
the quasi-preimages of those assumptions are uniquely determined.

By induction on the validity rules, if given an arbitrary validity rule 𝑅 whose assumptions hold
and whose validity assumptions all satisfy a property 𝑃 we can show that 𝑃 holds on the con-
clusion of 𝑅, then all derivable validity judgments have property 𝑃 . Since all the validity as-
sumptions and conclusions of validity rules in the derivation are proper, the property of having
a derivable quasi-preimage is such a property. By the above induction principle, it thus suffices
to prove the second part of the claim for the validity rules in IHOL.

Validity can be shown using the rules (cong𝜆), (eta), (congAppl), (beta), (refl), (sym), (assume),
(axiom), (⇒I), (⇒E) and (propExt).

(cong𝜆): Since the conclusion is proper, it follows that the relativization Γ ⊢𝐻
𝑇

∀ 𝑥 ∶𝐴. 𝐴? 𝑥 ⇒

𝖱𝖾𝗅𝖺𝗍𝐵[𝑡 𝑥 =𝐵 𝑡′ 𝑥] of the conclusion holds. Since the formula in this relativization is almost
proper, it follows that Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴′. 𝑡′ is well-typed.
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By rule (eqTyping) and rule (sym) Γ ⊢𝑇 𝜆𝑥 ∶𝐴′. 𝑡′ ∶ Π𝑥 ∶𝐴. 𝐵 holds in DIHOLP. This is only
provable if Γ ⊢𝑇 𝐴 ≡ 𝐴′. Consequently, the relativization Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻

𝑇
𝖱𝖾𝗅𝖺𝗍𝐵[𝑡 𝑥 =𝐵

𝑡′ 𝑥] of the validity assumption is proper and thus the assumption must be as well. Clearly,
Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡′ is a quasi-preimage of the validity assumption. It follows:

Γ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝑡 =𝐵 𝑡′ by assumption (586)

Γ, 𝑥 ∶ 𝐴, 𝐴? 𝑥 ⊢𝐻
𝑇
𝑡 =𝐵 𝑡′ (monotonic⊢ ),(586) (587)

Γ, 𝑥 ∶ 𝐴 ⊢𝑇 𝑡 =𝐵 𝑡′ induction hypothesis,(587) (588)

Γ ⊢𝑇𝐴 ≡ 𝐴′ see above (589)

Γ ⊢𝑇 𝜆𝑥 ∶𝐴. 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴′. 𝑡′ (cong𝜆’),(589) (590)

(eta): Since the conclusion is proper, it follows that the relativization

Γ ⊢𝐻
𝑇

𝖱𝖾𝗅𝖺𝗍Π𝑥∶𝐴. 𝐵[𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴𝑡 𝑥. ]

of the conclusion holds. The preimage of the formula in this relativization must therefore be a
well-typed equality and hence

Γ ⊢𝑇 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥 ∶ 𝖻𝗈𝗈𝗅.

It follows:

Γ ⊢𝑇 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥 ∶ 𝖻𝗈𝗈𝗅 see above (591)

Γ ⊢𝑇 𝑡 =Π𝑥∶𝐴. 𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥 (etaPi),(591) (592)

(congAppl): Since the conclusion Γ ⊢𝐻
𝑇

𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′ is proper, it follows that its relativization

Γ ⊢𝐻
𝑇

𝖱𝖾𝗅𝖺𝗍𝐵[𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′] holds and the preimage 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′ of the formula in this
relativization must be well-typed i.e. Γ ⊢𝑇 𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′.

Since the validity assumption use the same context as the conclusion, it follows that they are both
proper. As observed in the beginning of the proof if a proper assumption of a rule is an equality
over a type 𝐴, the induction hypothesis implies that the quasi-preimage of that assumption in
which the equality is over type 𝐴 must hold. Hence, we have both Γ ⊢𝑇 𝑡 =𝐴 𝑡′ and Γ ⊢𝑇
𝑓 =Π𝑥∶𝐴. 𝐵 𝑓 ′ in DIHOLP.

It follows:

Γ ⊢𝑇 𝑡 =𝐴′ 𝑡′ see above (593)

Γ ⊢𝑇𝑓 =Π𝑥∶𝐴′. 𝐵 𝑓 ′ see above (594)

Γ ⊢𝑇𝑓 𝑡 =𝐵 𝑓 ′ 𝑡′ (congAppl),(593),(594) (595)

This is what we had to show.
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(cong⊢ ): Since the conclusion Γ ⊢𝐻
𝑇

𝐹 is proper it follows that its quasi-preimage is well-
typed i.e. Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅. Since the validity assumptions use tha same context as the conclusion,
which is proper, it follows that they are also proper. The first assumption Γ ⊢𝐻

𝑇
𝜑 =𝖻𝗈𝗈𝗅 𝐹 of

the rule therefore implies that Γ ⊢𝑇 𝐹 ′ =𝖻𝗈𝗈𝗅 𝐹 , where 𝐹 ′ denotes the preimage of 𝖱𝖯 [𝖱[𝜑]].
In particular, it follows that the (validity) assumptions of the rule are proper. By the induction
hypothesis applied to the second assumption, we get Γ ⊢𝑇 𝐹 ′. The desired result of Γ ⊢𝑇 𝐹
then follows from rule (cong⊢ ).

(beta): Since the conclusion is proper, it follows that the relativization Γ ⊢𝐻
𝑇

𝖱𝖾𝗅𝖺𝗍𝐵[
(

𝜆𝑥 ∶

𝐴. 𝑠
)

𝑡 =𝐵 𝑠[𝑥∕𝑡]] of the conclusion holds. The preimage of the formula in this relativization
must therefore be a well-typed equality and hence

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝑠
)

𝑡 =Π𝑥∶𝐴. 𝐵 𝑠[𝑥∕𝑡] ∶ 𝖻𝗈𝗈𝗅.

It follows:

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝑠
)

𝑡 =Π𝑥∶𝐴. 𝐵 𝑠[𝑥∕𝑡] ∶ 𝖻𝗈𝗈𝗅 see above (596)

Γ ⊢𝑇
(

𝜆𝑥 ∶𝐴. 𝑠
)

𝑡 =Π𝑥∶𝐴. 𝐵 𝑠[𝑥∕𝑡] (beta),(596) (597)

(refl): Since the conclusion Γ ⊢𝐻
𝑇

𝑡 =𝐴 𝑡 of the rule is proper, it follows that its relativization

Γ ⊢𝐻
𝑇

𝖱𝖾𝗅𝖺𝗍𝐴[𝑡 =𝐴 𝑡] must hold. Since the preimage of the formula in this relativization must
be well-typed it follows that Γ ⊢𝑇 𝑡 =𝐴 𝑡 ∶ 𝖻𝗈𝗈𝗅. Rule (eqTyping) thus implies that Γ ⊢𝑇 𝑡 ∶ 𝐴.
The claim of Γ ⊢𝑇 𝑡 =𝐴 𝑡, follows by rule (refl) and termwise injectivity of the translation
(shown in Lemma 7).

(sym): Since the assumption Γ ⊢𝐻
𝑇

𝑠 =𝐴 𝑡 of the rule is proper, so must be the assumption

Γ ⊢𝐻
𝑇

𝑡 =𝐴 𝑠. Obviously, Γ ⊢𝑇 𝑡 =𝐴 𝑠 is the right quasi-preimage of the assumption. Thus:

Γ ⊢𝐻
𝑇
𝑡 =𝐴 𝑠 by assumption (598)

Γ ⊢𝑇 𝑡 =𝐴 𝑠 induction hypothesis,(598) (599)

Γ ⊢𝑇 𝑠 =𝐴 𝑠 (sym),(599) (600)

(assume): Since the conclusion Γ ⊢𝐻
𝑇

𝐹 is proper it follows that Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 and hence by
rule (typingTp) followed by rule (tpCtx) it follows that ⊢𝑇 Γ 𝖢𝗍𝗑. By definition of the translation
function (particularly the cases PT7 and IT7) an assumption 𝐹 occurs in Γ iff an axiom 𝐹 occurs
in 𝑇 . Hence by rule (assume) the conclusion of Γ ⊢𝑇 𝐹 follows.

(axiom): Since the conclusion Γ ⊢𝐻
𝑇

𝐹 is proper it follows that Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 and hence by
rule (typingTp) followed by rule (tpCtx) it follows that ⊢𝑇 Γ 𝖢𝗍𝗑. By definition of the translation
function (particularly the cases PT4 and IT4) an axiom 𝐹 occurs in 𝑇 iff an axiom 𝐹 occurs in
𝑇 . Hence by rule (axiom) the conclusion of Γ ⊢𝑇 𝐹 follows.
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(⇒I): Since the conclusion Γ ⊢𝐻
𝑇

𝐹 ⇒ 𝐺 is proper it follows that Γ ⊢𝑇 𝐹 ⇒ 𝐺 ∶ 𝖻𝗈𝗈𝗅.

Thus by Lemma 24 it follows that Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 and Γ, 𝐹 ⊢𝐻
𝑇

𝐺 ∶ 𝖻𝗈𝗈𝗅 both hold. Con-

sequently, the validity assumption Γ, 𝐹 ⊢𝐻
𝑇

𝐺 is proper with preimage (and hence quasi-
preimage) Γ, 𝐹 ⊢𝑇 𝐺. By induction hypothesis this preimage of the validity assumption must
hold. Rule (⇒I), then implies the desired result of Γ ⊢𝑇 𝐹 ⇒ 𝐺.

(⇒E): Since the conclusion Γ ⊢𝐻
𝑇

𝐺 is proper it follows that Γ ⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅. Since the formula

𝖱𝖯
[

𝖱[𝐹 ′]
]

(where Γ ⊢𝐻
𝑇

𝐹 ′ is the second validity assumption) must be proper, it follows that
its preimage 𝐹 is well-typed i.e. Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅. By rule (⇒type’) this implies that also
Γ ⊢𝑇 𝐹 ⇒ 𝐺 ∶ 𝖻𝗈𝗈𝗅. By Lemma 24 we yield both Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 and Γ, 𝐹 ⊢𝐻

𝑇
𝐺 ∶ 𝖻𝗈𝗈𝗅.

Thus, both validity assumptions are proper with the obvious quasi-preimages. By induction
hypothesis, it follows that Γ ⊢𝑇 𝐹 and Γ, 𝐹 ⊢𝑇 𝐺 both hold. Rule (⇒E) then allows us to
conclude the claim of Γ ⊢𝑇 𝐺.

(propExt): Since by assumption the conclusion Γ ⊢𝐻
𝑇

𝐹 =𝖻𝗈𝗈𝗅 𝐺 is proper, it follows by rule
(eqTyping) (and rule (sym)) that Γ ⊢𝑇 𝐹 ∶ 𝖻𝗈𝗈𝗅 and Γ ⊢𝑇 𝐺 ∶ 𝖻𝗈𝗈𝗅 and hence the assumptions
are also proper. Thus:

Γ, 𝐹 ⊢𝐻
𝑇
𝐺 by assumption (601)

Γ, 𝐺 ⊢𝐻
𝑇
𝐹 by assumption (602)

Γ, 𝐹 ⊢𝑇𝐺 induction hypothesis,(601) (603)

Γ, 𝐺 ⊢𝑇𝐹 induction hypothesis,(602) (604)

Γ ⊢𝑇𝐹 =𝖻𝗈𝗈𝗅 𝐺 (propExt),(603),(604) (605)

N Proof of Lemma 27 about Translation 2

Proof of Lemma 27. Since beta and eta reductions don’t affect typing statements, we can wlog.
assume that 𝐹 is beta and eta reduced. If 𝐹 is the application of a 𝜆-function to an argument
that is ill-typed or of wrong type, then by definition 𝜑 = 𝖿𝖺𝗅𝗌𝖾 and there is nothing to prove.
Otherwise, we know that 𝐹 must be an equality, an implication, a constant or variable or the
application 𝑝 𝑡1… 𝑡𝑛 of a constant or variable 𝑝 to (all its) arguments.

We proceed by induction on the shape of 𝐹 . If 𝐹 is an equality, then rule (=type) reduces
the claim to the result of Lemma 20 (for arguments 𝑡𝑖 not of type 𝖻𝗈𝗈𝗅) and to the induction
hypothesis for arguments of type 𝖻𝗈𝗈𝗅. If 𝐹 is an implication, then rule (⇒type) reduces the
claim to the induction hypothesis. Finally if 𝐹 is the application 𝑝 𝑡1… 𝑡𝑛 of a constant or
variable 𝑝 to (all its) arguments, the abbreviation abbreviates 𝑝𝐴1

𝑡1 ∧…∧ 𝑝𝐴𝑛
, where the 𝐴𝑖 are

the types of the arguments in the Π-type of 𝑝. Using Lemma 20 for 𝑖 with 𝐴𝑖 not (a subtype of)
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the type 𝖻𝗈𝗈𝗅 and the induction hypothesis for the remaining 𝑖 we yield Γ ⊢𝑇 𝑡𝑖 ∶ 𝐴𝑖 for all 𝑖.
The claim then follows by (repeated application of) rule (appl’).

O Proof that HOL is a conservative extension of HOL∗

Definition 14. We define the logic fragment of HOL without quantification of order 𝑛 of 𝖻𝗈𝗈𝗅-
valued function types (denoted by HOLF𝑛n) as the fragment of HOL in which we explicitly
disallow terms of type 𝐴 for types 𝐴 of the form (((… (𝐶 → 𝐵1) → 𝐵2) → … → 𝐵𝑚) with 𝐶 a
𝖻𝗈𝗈𝗅-valued function type and 𝑚 > 𝑛, except in context variables where we even disallow such
types 𝐴 for 𝑚 ≥ 𝑛.

Definition 15. We want to define a proof transformation that takes a valid HOLF𝑛+1 derivation
relative to a HOL∗ theory and of a HOL∗ conjecture and yields a valid HOL∗ derivation relative
to the same theory of the same conjecture. Let 𝑛 and the derivation in HOLF𝑛+1 be given.

We define the order reducing statement transformation of order 𝑛 (denoted by 𝖮𝖱𝖾𝖽𝑛 (⋅)) to
be the statement transformation in HOLF𝑛+1 which replaces terms and types in statements as
follows

𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶=𝑡 𝑡 in HOLF𝑛 (OR1)

𝖮𝖱𝖾𝖽𝑛
(

𝑠 =𝐴 𝑡
)

∶=𝖮𝖱𝖾𝖽𝑛 (𝑠) =𝖮𝖱𝖾𝖽𝑛(𝐴) 𝖮𝖱𝖾𝖽𝑛 (𝑡) (OR2)

𝖮𝖱𝖾𝖽𝑛 (𝐹 ⇒ 𝐺) ∶=𝖮𝖱𝖾𝖽𝑛 (𝐹 ) ⇒ 𝖮𝖱𝖾𝖽𝑛 (𝐺) (OR3)

𝖮𝖱𝖾𝖽𝑛 ((𝜆𝑥 ∶𝐴. 𝑓 ) 𝑡) ∶=𝖮𝖱𝖾𝖽𝑛 (𝑓 ) [𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡)] 𝜆𝑥 ∶𝐴. 𝑓 not in HOLF𝑛 (OR4)

𝖮𝖱𝖾𝖽𝑛 (𝑓 𝑡) ∶=𝖮𝖱𝖾𝖽𝑛 (𝑓 ) 𝖮𝖱𝖾𝖽𝑛 (𝑡) otherwise (OR5)

𝖮𝖱𝖾𝖽𝑛 (𝜆𝑥 ∶𝐴. 𝑓 ) ∶=𝖮𝖱𝖾𝖽𝑛 (𝑓 ) 𝜆𝑥 ∶𝐴. 𝑓 not in HOLF𝑛 (OR6)

𝖮𝖱𝖾𝖽𝑛 (𝜆𝑥 ∶𝐴. 𝑓 ) ∶=𝜆𝑥 ∶𝖮𝖱𝖾𝖽𝑛 (𝐴) . 𝖮𝖱𝖾𝖽𝑛 (𝑓 ) otherwise (OR7)

𝖮𝖱𝖾𝖽𝑛 (𝐴) ∶=𝐴 type 𝐴 in HOLF𝑛 (OR8)

𝖮𝖱𝖾𝖽𝑛
(

(… (𝐶 → 𝐵1) → … → 𝐵𝑛+1)
)

∶=𝐵𝑛+1 else (OR9)

Secondly, we add a fresh free variable 𝑥 ∶ 𝐴 to contexts in the conclusions of rules whose
order-reducing statement transformation has a bound variable 𝑥 of type 𝐴 for 𝐴 not in HOLF𝑛.
Whenever we add a context variable to one of the assumptions of a rule, we will add it also to
contexts of the other assumptions (and their derivations). Observe that this still cannot lead to
additional context variables for the context of the final conclusion in the entire derivation.

We now need to define a macro-step for each step 𝑆 in the resulting derivation for the order-
reducing statement transformation of order 𝑛 replacing step 𝑆.

For the most part we can pick the macro-steps to be identical to the step they replace. However,
we have to use rule (refl) instead of a congruence rule in some steps, remove some steps using
rule (lambda) entirely and have to replace steps using rule (appl) by steps using rule (rewrite-
Typing) (or rather the steps in the proof of the rule in our case as a macro-step) for function
applications outside of HOLF𝑛. Finally, we need to replace steps using the rule (congAppl) for
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applications outside of HOLF𝑛 by a macro-step often consisting of several micro-steps whose
micro-steps all use congruence rules. We don’t care in which order those congruence rules are
applied and will consider the resulting transformation to be an order-reducing proof transforma-
tion in any case. Observe that all those (macro-)steps will (have micro-steps that) lie (modulo
the variable declarations in the context) inside HOLF𝑛.

The resulting proof transformation will be called the order-reducing proof transformation of
order 𝑛. Notice that applying the order reducing proof transformation of order 𝑛 to a derivation
in HOLF𝑛+1 for a theory and conjecture in HOL∗ will result in a derivation whose context
assumptions, terms and types within assumptions and conclusions of steps all lie in HOLF𝑛.
Since the final conclusion lies in HOL∗ and we cannot remove free variables outside of HOLF𝑛

(without creating bound variables of same type) from contexts in the derivation, it follows that
the resulting derivation lies in HOLF𝑛. The application on term and type-level of the order
reducing proof transformation of order 𝑛, will be called the order reducing reduction of order 𝑛.

Lemma 34. Given a valid HOLF𝑛+1 derivation relative to a HOL∗ theory for a HOL∗ conjec-
ture, there exists an order reducing proof transformation of order 𝑛 whose application to the
derivation is a valid derivation.

Proof. We will prove this by induction on the inference rules of HOL.

If the proof transformation modifies types at all, it is my replacing types 𝐴 → 𝐵 by types 𝐵 and
the former can only be proven to be well-typed (by rule (arrow)) once the latter is already known
to be well-typed. Therefore the cases of the rules for well-formedness of types and contexts are
trivial (and the proof transformation doesn’t affect the theories at all, so we don’t have to prove
anything about the well-formedness of theories).

Firstly, we observe that there are no dependent types in IHOL and the theory lies in HOL∗.
Furthermore all types are translated to either to themselves or to their codomain in case of
certain function types. As the well-formedness of the original types imply the well-formedness
of the later (and similarly for type equalities between two such function types), it follows that
the well-formedness (of theories, contexts, types) and type-equality judgements are unaffected
by the order reducing proof transformation of order 𝑛 (or any other order). It remains to consider
the typing and validity rules and to show that if the order reducing reductions of the assumptions
hold, then the order reducing reduction of the conclusion holds:

(const): Since constants lie in HOL∗, there is nothing to prove.

(var): Since the types of context variables are not modified by the proof transformation:

⊢𝐻
𝑇
𝑥 ∶ 𝐴 in 𝖮𝖱𝖾𝖽𝑛 (Δ) by assumption (606)

⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (Δ) 𝖢𝗍𝗑 by assumption (607)

Δ ⊢𝐻
𝑇
𝑥 ∶ 𝐴 (var),(606),(607) (608)
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(=type):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴) by assumption (609)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴) by assumption (610)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) =𝖮𝖱𝖾𝖽𝑛(𝐴) 𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖻𝗈𝗈𝗅 (=type),(609),(610) (611)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑠 =𝐴 𝑡
)

∶ 𝖻𝗈𝗈𝗅 OR2,(611) (612)

(lambda):

Δ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) by assumption (613)

if 𝖮𝖱𝖾𝖽𝑛 (𝐴) in HOLF𝑛−1:

Δ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝖮𝖱𝖾𝖽𝑛 (𝑡)) ∶ 𝐴 → 𝖮𝖱𝖾𝖽𝑛 (𝐵) (lambda),(613) (614)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝜆𝑥 ∶𝐴. 𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴 → 𝐵)) OR1,OR8,(614) (615)

otherwise:

Δ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝜆𝑥 ∶𝐴. 𝖮𝖱𝖾𝖽𝑛 (𝑡)) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴 → 𝖮𝖱𝖾𝖽𝑛 (𝐵)) OR6,OR9,(613) (616)

(appl):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 ) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴 → 𝐵) by assumption (617)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴) by assumption (618)

If 𝐴 → 𝐵 in HOLF𝑛:

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 ) 𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) (lambda),OR8,(617),(618) (619)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) OR5,(619) (620)

Otherwise we have 𝑓 =∶ 𝜆𝑥 ∶𝖮𝖱𝖾𝖽𝑛 (𝐴) . 𝖮𝖱𝖾𝖽𝑛 (𝑠), 𝐴 not in HOLF𝑛−1, so by OR6, OR9 and
OR8 we have 𝖮𝖱𝖾𝖽𝑛 (𝑓 ) = 𝖮𝖱𝖾𝖽𝑛 (𝑠) and 𝖮𝖱𝖾𝖽𝑛 (𝐴 → 𝐵) = 𝐵 = 𝖮𝖱𝖾𝖽𝑛 (𝐵) and 𝖮𝖱𝖾𝖽𝑛 (𝐴) =
𝐴:

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) OR6,OR9,OR8,(617) (621)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) [𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵)] (rewriteTyping),(621),(619) (622)

Observe that by induction hypothesis the derivations of Δ ⊢𝐻
𝑇

𝖮𝖱𝖾𝖽𝑛 (𝑠) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) and of

Δ ⊢𝐻
𝑇

𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴) lie in HOLF𝑛. Consequently the steps in the derivation which we
get when plugging in the proof of rule (rewriteTyping) in this case will also lie in HOLF𝑛(as the
terms in it for corresponding steps have the same types as in the derivation for Δ ⊢𝐻

𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) ∶

𝖮𝖱𝖾𝖽𝑛 (𝐵) and steps in the derivation of Δ ⊢𝐻
𝑇

𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴) which occur in this
derivation are unchanged).
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(⇒type): Observe that 𝖮𝖱𝖾𝖽𝑛 (𝖻𝗈𝗈𝗅) = 𝖻𝗈𝗈𝗅.

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) ∶ 𝖻𝗈𝗈𝗅 by assumption (623)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐺) ∶ 𝖻𝗈𝗈𝗅 by assumption (624)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) ⇒ 𝖮𝖱𝖾𝖽𝑛 (𝐺) ∶ 𝖻𝗈𝗈𝗅 (⇒type),(623),(624) (625)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ⇒ 𝐹 ) ∶ 𝖻𝗈𝗈𝗅 OR3,(625) (626)

(axiom): Since axioms always lie in HOL∗, there is nothing to prove here.

(assume):

𝖮𝖱𝖾𝖽𝑛 (𝐹 ) in 𝑇 (627)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) (assume),(627) (628)

(cong𝜆):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐴) ≡ 𝖮𝖱𝖾𝖽𝑛

(

𝐴′) by assumption (629)

Δ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑡 =𝐵 𝑡′
)

by assumption (630)

Δ, 𝑥 ∶ 𝐴 ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝖮𝖱𝖾𝖽𝑛(𝐵) 𝖮𝖱𝖾𝖽𝑛

(

𝑡′
)

OR2,(630) (631)

If 𝐴,𝐴′ in HOLF𝑛−1:

Δ ⊢𝐻
𝑇
𝜆𝑥 ∶𝖮𝖱𝖾𝖽𝑛 (𝐴) . 𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝖮𝖱𝖾𝖽𝑛(𝐴)→𝖮𝖱𝖾𝖽𝑛(𝐵)

𝜆𝑥 ∶𝖮𝖱𝖾𝖽𝑛 (𝐴) . 𝖮𝖱𝖾𝖽𝑛
(

𝑡′
)

(cong𝜆),(629),(631) (632)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝜆𝑥 ∶𝐴. 𝑡 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑡′
)

OR7,OR8,OR2, (632) (633)

Since 𝐴 ≡ 𝐴′ we neither are in HOLF𝑛−1 and thus the claim is exactly the assumption (630).

(congAppl):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑡 =𝐴 𝑡′
)

by assumption (634)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝖮𝖱𝖾𝖽𝑛(𝐴) 𝖮𝖱𝖾𝖽𝑛

(

𝑡′
)

OR2,(634) (635)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑓 =𝐴→𝐵 𝑓 ′) by assumption (636)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 ) =𝖮𝖱𝖾𝖽𝑛(𝐴→𝐵) 𝖮𝖱𝖾𝖽𝑛

(

𝑓 ′) OR2,(636) (637)

If 𝐴 → 𝐵 in HOLF𝑛:

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 ) 𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝖮𝖱𝖾𝖽𝑛(𝐵) 𝖮𝖱𝖾𝖽𝑛

(

𝑓 ′) 𝖮𝖱𝖾𝖽𝑛
(

𝑡′
)

OR8,(congAppl),(635),(637)
(638)
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Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑓 𝑡 =𝐴→𝐵 𝑓 ′ 𝑡′
)

OR5,OR2,(638) (639)

Otherwise 𝑓 and 𝑓 ′ are of the form 𝜆𝑥 ∶𝐴. 𝑠 and 𝜆𝑥 ∶𝐴. 𝑠′ and the context of the assumptions
contains a variable 𝑥 ∶ 𝐴 at the very end. Let Δ′ denote the context without this variable
declaration. Then the second assumption simplifies to:

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) =𝖮𝖱𝖾𝖽𝑛(𝐵) 𝖮𝖱𝖾𝖽𝑛

(

𝑠′
)

OR6,OR9,(637) (640)

We know that 𝖮𝖱𝖾𝖽𝑛 (𝑠) ,𝖮𝖱𝖾𝖽𝑛
(

𝑠′
)

,𝖮𝖱𝖾𝖽𝑛 (𝐵) in HOLF𝑛. Thus we can use the congruence
rules for equality, 𝜆-functions, function application and implication (namely (trans), (cong𝜆),
(congAppl), (⇒cong)) to conclude by induction that

Δ′ ⊢𝐻
𝑇

𝖮𝖱𝖾𝖽𝑛 (𝑠) [𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡)] =𝐵 𝖮𝖱𝖾𝖽𝑛
(

𝑠′
)

[𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡)]

and except possibly for free variable this derivation will lie in HOLF𝑛.

Δ′ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) [𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡)] =𝐵 𝖮𝖱𝖾𝖽𝑛

(

𝑠′
)

[𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡′)] see above

Since 𝑥 doesn’t appear in the substitutions, the context in the desired statement is Δ′ and the
next step concludes the desired statement:

Δ′ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝖮𝖱𝖾𝖽𝑛 (𝑠) [𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡)] =𝖮𝖱𝖾𝖽𝑛(𝐵) 𝖮𝖱𝖾𝖽𝑛
(

𝑠′
)

[𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡′)]
)

OR2,(641) (641)

(refl):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴) by assumption (642)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝖮𝖱𝖾𝖽𝑛(𝐴) 𝖮𝖱𝖾𝖽𝑛 (𝑡) (refl),(642) (643)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑡 =𝐴 𝑡
)

OR2,(643) (644)

(sym):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑡 =𝐴 𝑠
)

by assumption (645)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝖮𝖱𝖾𝖽𝑛(𝐴) 𝖮𝖱𝖾𝖽𝑛 (𝑠) OR2,(645) (646)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑠) =𝐴 𝖮𝖱𝖾𝖽𝑛 (𝑡) (sym),(646) (647)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑠 =𝐴 𝑡
)

OR2,(647) (648)

(beta):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 ((𝜆𝑥 ∶𝐴. 𝑠) 𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) by assumption (649)
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If (𝜆𝑥 ∶𝐴. 𝖮𝖱𝖾𝖽𝑛 (𝑠)) 𝖮𝖱𝖾𝖽𝑛 (𝑡) is in HOLF𝑛:

Δ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝖮𝖱𝖾𝖽𝑛 (𝑠)) 𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) OR2,OR5,OR7,(649) (650)

Δ ⊢𝐻
𝑇
(𝜆𝑥 ∶𝐴. 𝖮𝖱𝖾𝖽𝑛 (𝑠)) 𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝐵 𝖮𝖱𝖾𝖽𝑛 (𝑠) [𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡)] (beta),(650) (651)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

(𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐴 𝑠[𝑥∕𝑡]
)

OR5,OR7,OR2,(651) (652)

Otherwise we have

𝖮𝖱𝖾𝖽𝑛 ((𝜆𝑥 ∶𝐴. 𝑠) 𝑡) = 𝖮𝖱𝖾𝖽𝑛 (𝑠) [𝑥∕𝖮𝖱𝖾𝖽𝑛 (𝑡)] = 𝖮𝖱𝖾𝖽𝑛 (𝑠[𝑥∕𝑡])

and thus:

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 ((𝜆𝑥 ∶𝐴. 𝑠) 𝑡) =𝐴 𝖮𝖱𝖾𝖽𝑛 (𝑠[𝑥∕𝑡]) (refl),(649) (653)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

(𝜆𝑥 ∶𝐴. 𝑠) 𝑡 =𝐴 𝑠[𝑥∕𝑡]
)

OR2,(653) (654)

Note that in either case we only applied a single rule either rule (beta) or rule (refl) once, in
the other of the above steps we are just rewriting statements using the definition of the order-
reducing reduction.

(eta):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐴 → 𝐵) by assumption (655)

𝑥 not in Γ by assumption (656)

If 𝐴 → 𝐵 in HOLF𝑛:

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑡) =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝖮𝖱𝖾𝖽𝑛 (𝑡) 𝑥 OR8,(eta),(655),(656) (657)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑡 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥
)

OR7,OR2,(657) (658)

Otherwise we have 𝖮𝖱𝖾𝖽𝑛 (𝐴 → 𝐵) = 𝐵 = 𝖮𝖱𝖾𝖽𝑛 (𝐵) and 𝑡 is of the form 𝜆𝑥 ∶ 𝐴. 𝑓 with
𝖮𝖱𝖾𝖽𝑛 (𝑡) = 𝖮𝖱𝖾𝖽𝑛 (𝑓 ) and thus:

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 ) ∶ 𝖮𝖱𝖾𝖽𝑛 (𝐵) OR6,OR9,OR8,(655) (659)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 ) =𝖮𝖱𝖾𝖽𝑛(𝐵) 𝖮𝖱𝖾𝖽𝑛 (𝑡) (refl),(659) (660)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑓 ) =𝖮𝖱𝖾𝖽𝑛(𝐵) 𝖮𝖱𝖾𝖽𝑛 (𝜆𝑥 ∶𝐴. 𝑡 𝑥) OR6,(660) (661)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝑡 =𝐴→𝐵 𝜆𝑥 ∶𝐴. 𝑡 𝑥
)

OR2,(661) (662)

Just as for rule (beta), we used exactly one rule, either rule (eta) or rule (refl) exactly once.

Since 𝖮𝖱𝖾𝖽𝑛 (𝖻𝗈𝗈𝗅) = 𝖻𝗈𝗈𝗅, we simply write 𝖻𝗈𝗈𝗅 instead of 𝖮𝖱𝖾𝖽𝑛 (𝖻𝗈𝗈𝗅) in the cases for the
remaining 4 rules:
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(cong⊢ ):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝐹 =𝖻𝗈𝗈𝗅 𝐹
′) by assumption (663)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛

(

𝐹 ′) by assumption (664)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) =𝖻𝗈𝗈𝗅 𝖮𝖱𝖾𝖽

𝑛 (𝐹 ′) OR2,(663) (665)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) (cong⊢ ),(665),(664) (666)

(⇒I):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) ∶ 𝖻𝗈𝗈𝗅 by assumption (667)

Δ, 𝖮𝖱𝖾𝖽𝑛 (𝐹 ) ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐺) by assumption (668)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) ⇒ 𝖮𝖱𝖾𝖽𝑛 (𝐺) (⇒I),(667),(668) (669)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ⇒ 𝐺) OR3,(669) (670)

(⇒E):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ⇒ 𝐺) by assumption (671)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) by assumption (672)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐹 ) ⇒ 𝖮𝖱𝖾𝖽𝑛 (𝐺) OR3,(671) (673)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝐺) (⇒E),(673),(672) (674)

(boolExt):

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑝 𝗍𝗋𝗎𝖾) by assumption (675)

Δ ⊢𝐻
𝑇
𝑝 𝗍𝗋𝗎𝖾 OR1,(675) (676)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (𝑝 𝖿𝖺𝗅𝗌𝖾) by assumption (677)

Δ ⊢𝐻
𝑇
𝑝 𝖿𝖺𝗅𝗌𝖾 OR1,(677) (678)

Δ ⊢𝐻
𝑇
∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥 (boolExt),(676),(678) (679)

Δ ⊢𝐻
𝑇
𝖮𝖱𝖾𝖽𝑛 (∀ 𝑥 ∶𝖻𝗈𝗈𝗅. 𝑝 𝑥) OR1,(679) (680)

Proof of Lemma 29. This lemma follows directly from induction and Lemma 34.

Remark 35. Lemma 34 is a very useful lemma and can also be used to show for instance that
HOL is a conservative extension of first-order logic.
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