
Post‐Collisional Reorganisation of the Eastern Alps in 4D –
Crust and Mantle Structure
Peter J. McPhee1 and Mark R. Handy1,2

1Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany, 2Institute of Geological Sciences, Universität
Bern, Bern, Switzerland

Abstract The Eastern Alps were affected by a profound post‐collisional tectonic reorganisation in Neogene
time, featuring indentation by the Adriatic upper plate, rapid uplift and filling of the eastern Molasse Basin,
exhumation and eastward orogen‐parallel transport of Paleogene metamorphic units in the orogenic core, and a
shift from northward thrust propagation in the European plate to southward propagation in the Adriatic plate.We
test the idea that these events were triggered by slab detachment by reconstructing the indentation process. This
involves sequentially restoring N‐S and E‐W cross‐sections of the orogenic wedge and correcting for out‐of‐
section orogen‐parallel transport with a map‐view reconstruction. We propose two phases of indentation:
Initially (23 and 14Ma), the whole Adriatic crust acted as an indenter. Its northward motion was accommodated
by upright folding and orogen‐parallel extensional exhumation in the Tauern Window. This phase was followed
(14 Ma to Present) by continued orogen‐parallel transport of the orogenic wedge into the Pannonian Basin and
deformation of the leading edge of the Adriatic indenter, forming the Southern Alps fold‐thrust belt. The lower
crust of the Southern Alps indented the base of the Venediger Nappes in the Tauern Window, forming a high‐
velocity (6.8–7.25 km/s) ridge in map view at 30–45 km depth. By correlating the post‐23Ma orogenic evolution
with presently imaged European slab segments in P‐wave teleseismic tomography, we discern two possible
Neogene slab removal events: One from 23 to 19 Ma triggering tectonic reorganisation of the Eastern Alps and
its foreland basin, and potentially a second event after 14 Ma.

1. Introduction
Slab detachment, also known as break‐off, is a commonly invoked process affecting the post‐collisional
evolution of orogenic belts. In this paper, we sometimes use the term slab removal as a more neutral, non‐
mechanistic term to describe the elimination of subducted lithosphere from beneath orogens. By whatever
means, releasing the slab‐pull force is predicted to drive uplift (e.g., Buiter et al., 2002; Duretz et al., 2011;
Wortel & Spakman, 2000), reshaping orogens and their peripheral basins (e.g., Fox et al., 2015; Sinclair, 1997).
Slab remnants that have detached and sunk into the mantle have been widely imaged in seismic tomography,
particularly below orogenic belts (e.g., van der Meer et al., 2018; Wortel & Spakman, 2000). Yet, discerning
the geological signals of slab removal above these remnants, particularly uplift, is challenging because pro-
cesses such as crustal shortening and erosion may conceal them. Moreover, a scarcity of high‐resolution
geophysical data and an incomplete picture of orogenic evolution often complicates detailed examination of
the relationship between subduction, orogenesis, and slab detachment. Together, these uncertainties have driven
much discussion and controversy surrounding the role of slab removal in the Alps and beyond (e.g., Garzanti
et al., 2018; Kästle et al., 2020; McPhee et al., 2022). Recently, the Eastern Alpine crust and mantle have been
seismologically imaged in unprecedented detail using a network of over 600 temporary broadband stations
deployed during the AlpArray passive array experiment (2015–2019, AlpArray Seismic Network Team
et al., 2018; average station spacing of 40 km), as well as an even denser targeted array of 163 stations over the
Eastern and eastern Southern Alps (Swath D, average station spacing of 15 km, Heit et al., 2023). P‐wave
teleseismic models reveal high‐velocity anomalies interpreted as subducted and partly detached slabs
(Handy et al., 2021; Paffrath et al., 2021). In contrast to classical ideas of subduction in collisional settings that
involve horizontally continuous slabs and single detachment events (e.g., von Blanckenburg & Davies, 1995),
positive slab anomalies below the Eastern Alps have a non‐cylindrical structure with vertical and horizontal
gaps (e.g., Handy et al., 2021; Malusà et al., 2021). If AlpArray‐derived teleseismic models represent the
mantle structure accurately, they may demonstrate a complex history of orogen‐parallel slab segmentation,
potentially with more than one slab removal event.
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Unlike theWestern and Central Alps, north‐directed orogenesis in the Eastern Alps was significantly modified by
orogen‐parallel transport of the orogenic wedge in Neogene times (e.g., Frisch et al., 2000; Ratschbacher
et al., 1991; Scharf et al., 2013; Schmid et al., 2013; Wölfler et al., 2011). Those events broadly coincided with a
switch in orogenic polarity from north‐directed thrusting in the Eastern Alps to south‐directed thrusting in the
Southern Alps (Handy et al., 2023), as well as rapid infilling and coeval tectonic uplift of the eastern Molasse
Basin (Genser et al., 2007; Le Breton et al., 2023).

In using the term Eastern Alps, we refer specifically to part of the orogenic edifice east of the Brenner Fault and
north of the Giudicarie and Periadriatic Faults (Figure 1, hatched area bounded by lines labeled BF, GF, and PAF)
that experienced N‐ to NW‐directed indentation by the eastern Southern Alps in latest Oligocene toMiocene time.
This usage is more specific from the standpoint of Neogene tectonics and differs from broader definitions of
Eastern Alps that refer either geographically to the part of the Alps east of Switzerland, or geologically to that part
of the Alps with an intact cover of Austroalpine Nappes overlying the Paleogene nappe stack (Schmid et al., 2004,
colored purple in Figure 1).

By reconstructing the structural evolution of the indented and east‐transported Eastern Alps during Neogene
time, we attempt to correlate crustal structure with the mantle structure revealed by teleseismic P‐wave to-
mography (Paffrath et al., 2021). We restore Neogene deformation along two orogen‐normal cross‐sections—
the well‐known TRANSALP transect at ∼12°E (e.g., Lüschen et al., 2004) that is based on controlled‐source
seismology (CSS), and the Eastern Alpine Seismological Initiative (EASI) transect at 13.3°E (e.g., Hetényi
et al., 2018), a passive‐array swath experiment conducted in an early stage of the AlpArray project. In addition,
we present an E‐W orogen‐parallel cross‐section that intersects the TRANSALP and EASI transects (Figure 2).
We use local earthquake tomography (LET) to investigate the structure and fate of the lower crust during the
switch from north‐to south‐directed thrusting across the orogen. To make the balancing of Neogene tectonics
truly three‐dimensional, the effects of eastward transport in the N‐S cross‐sections are accounted for using a
map‐view reconstruction. We use these balanced cross‐sections to constrain the timing and kinematics of
indentation, as well as to infer the mechanical response of both indented and indenting crust during slab
removal.

2. Geological Setting
The Eastern Alps comprise rocks derived from the Adriatic continental upper plate (Austroalpine Nappes), the
subducted European continental lower plate (Tauern Window) and the accreted remains of the Mesozoic Alpine
Tethyan Ocean (Alpine Tethys) that once separated these continents (Figure 1). Subduction of the Alpine Tethys
in Late Cretaceous time was followed by an Adria‐Europe continental collision in the late Eocene, marked by the

Figure 1. Tectonic map of the Alps and surrounding basins and mountain belts (redrawn after Handy et al., 2019; Schmid
et al., 2004). BF—Brenner Fault; GB—Giudicarie Belt; GF—Giudicarie Fault; KF—Katschberg Fault; PAF—Periadriatic
Fault; TW—Tauern Window.
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incorporation of distal European passive margin units into the orogenic wedge and deposition of orogen‐derived
sediments on the European foreland.

The Molasse Basin forms the northern foreland basin of the Eastern Alps and holds a record of the erosion and
northward advance of the Alpine orogen with respect to Europe (Figure 2). East of the TRANSALP cross‐section
(Figure 2) the Molasse Basin experienced deep marine deposition from ∼25 to 19 Ma, followed by coeval rapid
infilling and tectonic uplift from 19 to 17 Ma (e.g., Hülscher et al., 2019; Kuhlemann & Kempf, 2002). The
Subalpine Molasse comprises folded and thrusted slices of the Molasse Basin and is the northernmost and
structurally lowest tectonic unit along the northern front of the Eastern Alps (e.g., Ortner et al., 2022). In the
Eastern Alps, thrusting of the Subalpine Molasse advanced northward until early Miocene time, when the thrusts
were sealed by lower Miocene (Aquitanian‐Burdigalian, 23–20 Ma) strata in the western part of the eastern
Molasse Basin (i.e., west of Salzburg, Figure 2; Hinsch, 2013). After that, only minor out‐of‐sequence defor-
mation affected the northern orogenic front and thrusting stepped back into the orogen (Ortner et al., 2014).

The Helvetic Nappes, structurally above the Subalpine Molasse, comprise Permo‐Mesozoic sedimentary rocks
derived from the former European passive margin of Alpine Tethys (e.g., Pfiffner, 1993). These nappes are poorly
exposed along the Eastern Alpine orogenic front and are intercalated with equally poorly exposed thrust slices of
the structurally‐higher Penninic Nappes. The Penninic Nappes consist of ophiolites derived from the subducted
Alpine Tethys (e.g., Kurz et al., 1996; Schmid et al., 2004). In the TauernWindow, where the Penninic Nappes are
best exposed, they record Paleogene high‐pressure and subsequent high‐temperature metamorphism (e.g.,
Hoinkes et al., 1999; Schuster et al., 2004).

Figure 2. Tectonic map of the Central and Eastern Alps based on Schmid et al. (2004) and faults fromMcPhee et al. (in prep).
Thick red lines indicate traces of the TRANSALP, EASI, and EW cross‐sections in this study. Abbreviations: AI—Adamello
Intrusion; DAV—Defereggen‐Anterselva/Antholz‐Valles/Vals Fault; BF—Brenner Fault; EN—Engadin Window; GF—
Giudicarie Fault; GöF—Görschitztal Fault; KLT—Königsee‐Lammertal‐Traunsee Fault; KF—Katschberg Fault; KPD—
Kozak and Pohorje Domes; MAN—Mandling Fault; MHSZ—Mid Hungarian Shear Zone; MMF—Mur‐Mürz Fault; PAF—
Periadriatic Fault; P‐L—Pöls‐Lavanttal; RW—Rechnitz Window; SEMP—Salzach‐Ennstal‐Mariazell‐Puchberg Fault;
ZWD—Zwischenbergen‐Wöllatratten‐Drau Fault.
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The Austroalpine Nappes are the structurally highest nappes in the Alps and are derived from the Adriatic Plate
(e.g., Schmid et al., 2004). Nappe stacking occurred during the Cretaceous Eoalpine Orogeny. During subsequent
subduction of the Alpine Tethyan Ocean and Adria‐Europe collision, this older nappe stack formed a lid that was
affected by further shortening during Paleogene collision and nappe stacking (e.g., Handy et al., 2010). Across the
Eastern Alps, the Austroalpine Nappes are unconformably overlain by outliers of the Late Cretaceous to
Paleogene syn‐to post‐orogenic sediments of the Gosau Basins (Figure 2; e.g., Wagreich & Faupl, 1994).

On the northern side of the Eastern Alps, the Austroalpine Nappes include the far‐traveled, weakly‐ to non‐
metamorphic Northern Calcareous Alps (Figure 2), which were accreted in Cretaceous time from the northern
margin of the Neotethyan ocean (Frisch & Gawlick, 2003; Schmid et al., 2004). The structurally underlying
Austroalpine Basement Nappes are best exposed to the south of the Northern Calcareous Alps and comprise pre‐
Alpine basement and cover that experienced Late Cretaceous mid‐temperature and high‐pressure metamorphism
during the Eoalpine orogeny (e.g., Hoinkes et al., 1999; Schuster et al., 2004).

The Tauern Window exposes subducted, accreted, and metamorphosed units of the European passive margin (the
sub‐Penninic Venediger Nappes) and overlying Penninic Nappes. The Venediger Nappes comprise a thrust
duplex of basement slices separated by thinned Permo‐Mesozoic cover rocks (e.g., Groß et al., 2020, 2022). These
underwent high‐pressure metamorphism in Paleogene time (e.g., Handy & Oberhänsli, 2004; Liu et al., 2001)
before the entire thrust duplex was overprinted by high‐temperature, Barrovian‐type metamorphism at peak
conditions of 620°C, 0.7 GPa at 28–30 Ma (e.g., Favaro et al., 2015).

The Tauern Window (Figure 2) is bounded to the W and E by oppositely dipping, low‐angle normal faults
(Brenner and Katschberg faults, respectively) and to the N and S by conjugate strike‐slip faults. Together, these
faults accommodated E‐W extension and E‐directed orogen‐parallel motion of the Eastern Alpine orogenic crust
(Figure 1; e.g., Frisch et al., 2000; Linzer et al., 2002; Ratschbacher et al., 1989, 1991; Rosenberg et al., 2018;
Scharf et al., 2013). Our cross‐sections (Figure 4, traces in Figure 2) transect these strike‐slip faults.

Cooling of the Venediger Nappes began in the Oligo‐Miocene (∼28–23 Ma) and accelerated in early to middle
Miocene time (∼23–9 Ma, e.g., (Favaro et al., 2015; Fügenschuh et al., 1997; Luth & Willingshofer, 2008;
Wölfler et al., 2012). This cooling has been attributed to exhumation involving a combination of broadly coeval
upright post‐nappe folding, erosion, and extensional exhumation in the footwalls of the Brenner and Katschberg
normal faults (Bertrand et al., 2017; Favaro et al., 2017; Rosenberg et al., 2018; Scharf et al., 2013).

The Southern Alps fold‐thrust belt, located south of the Periadriatic Fault, comprises non‐metamorphic Permo‐
Mesozoic cover and basement derived from Adria (e.g., Bertotti et al., 1993; Winterer & Bosellini, 1981). Unlike
the Austroalpine Nappes, the nappes of the Southern Alps verge to the south to southeast and comprise mostly
sediments that are in close proximity with their basement substratum. The eastern Southern Alps are separated
from the central and western parts of the Southern Alps by the Giudicarie Belt (Figure 1), an oblique sinistral
transpressional fold‐thrust belt (e.g., Picotti et al., 1995; Verwater et al., 2021) which, together with the NNE‐
SSW‐trending Giudicarie Fault, was active in early‐to‐late Miocene time (Castellarin, Vai, & Cantelli, 2006;
Pomella et al., 2011, 2012). The Giudicarie Belt sinistrally offsets the Periadriatic Fault and Oligocene Peri-
adriatic intrusive rocks (marked red in Figure 2), subdividing the Adriatic indenter into the Ivrea (western) and
Dolomites (eastern) subindenters (e.g., Handy et al., 2015; Rosenberg et al., 2018). In the eastern Southern Alps,
thrust faults rooting in the basement formed since middle Miocene times, as dated by the youngest (lower‐to‐
middle Miocene) sedimentary rocks in their footwalls (Castellarin et al., 1998; Verwater et al., 2021, and ref-
erences therein). This age is corroborated by evidence for flexural deepening of the Veneto‐Friuli Basin (Mellere
et al., 2000) and by thermal modeling of cooling ages along eroded hangingwall anticlines above thrust faults
(Eizenhöfer et al., 2023). The thrusts in the easternmost Southern Alps offset older SW‐directed thin‐skinned
thrusts of the Late Cretaceous‐to Paleogene Dinaric fold‐thrust belt (e.g., Merlini et al., 2002; Poli & Zanfer-
rari, 2018; Ponton, 2010). West of the Giudicarie Belt, Miocene thrusting affecting the basement was preceded by
an earlier phase (Late Cretaceous or Paleogene?) of thrusts crosscut by the Oligocene Adamello intrusion (e.g.,
Brack, 1981; Schönborn, 1992).

3. Tomographic Models of the Eastern and Southern Alps
A dense network of temporary stations of the AlpArray and SWATH‐D experiments at a node spacing of 5–15 km
(Jozi Najafabadi et al., 2022) allows us to use LET to visualize the P‐wave velocity structure down to 60 km depth.
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P‐wave velocities reflect the bulk physical properties of rock averaged over a volume roughly proportional to the
spacing between seismic stations at the surface. Although LET is a truly 3D method that yields potentially high‐
resolution and reliable 3D velocity information for consistent data sets, LET models do not directly reproduce
velocity discontinuities such as the Moho or crustal‐scale faults, instead resolving these as smooth velocity
gradients.

In the LET model of Jozi Najafabadi et al. (2022), the Moho in Figure 3a is defined by a proxy velocity value of
7.25 km/s, an average of lower crustal and upper mantle velocities. For comparison, Figure 3b shows the Moho
map of Spada et al. (2013) based on a weighted combination of Moho depth estimates from LET, Receiver
Function (RF), and controlled‐source seismic (CSS) methods. The white area in Figure 3b indicates where no

Figure 3. LET data and Moho model across the Eastern Alps, with black lines defining major thrusts and strike‐slip faults.
The upper color bar shows depths to these surfaces, and the lower colourbar shows thickness between surfaces.
Abbreviations: BF—Brenner Fault; DIN—Dinarides; KF—Katschberg Fault; MB—Molasse Basin; MöF—Mölltal Fault;
GF—Giudicarie Fault; PAF—Periadriatic Fault; C‐SALPS—central Southern Alps; E‐SALPS—eastern Southern Alps;
SEMP—Salzach‐Ennstal‐Mariazell‐Puchberg Fault; TW—Tauern Window; V‐F—Veneto‐Friuli Basin (See Figure 2 for
additional labels). (a) 7.25 km/s (Moho proxy) isovelocity surfaces from Jozi Najafabadi et al. (2022). (b) Spada et al. (2013)
Moho model. (c) 6.8 km/s (top lower crust proxy) isovelocity surfaces from Jozi Najafabadi et al. (2022). (d) 7.25 to 6.8 km/s
interval thickness, interpreted to represent lower crustal thickness. (e) 6.8 km/s (top lower crust proxy) isovelocity surface to
Spada et al. (2013) Moho model.
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Moho could be imaged due to a low velocity gradient (Diehl et al., 2009).
Thus, we define the Moho in our cross‐sections in Figure 4 as the mean trace
of available Moho models along each geophysical transect (LET—Jozi
Najafabadi et al., 2022; Diehl et al., 2009; RF—Bianchi et al., 2021; Hetényi
et al., 2018; Kummerow et al., 2004; Mroczek et al., 2023; joint inversion of
LET, RF, and CSS—Spada et al., 2013).

The boundary between lower and intermediate crust is taken to be a proxy
velocity of 6.8 km/s (Figure 3c), corresponding to an average of P‐wave
velocities measured in the laboratory on exhumed crustal rocks from the
Ivrea‐Verbano Zone in the western‐most Southern Alps (Figure 1; Burke &
Fountain, 1990). There, a complete section of the Southern Alps (Adriatic)
crust exposes non‐metamorphic Permo‐Mesozoic sedimentary rocks in the
southeast to intermediate crustal, lower crustal, and upper mantle rocks in the
northwest (Zingg et al., 1990). The rocks in the Ivrea section are typical of
both the Adriatic and European lower crust because they share a common late
Palaeozoic and Early Mesozoic history before the opening of Alpine Tethys
(e.g., Handy et al., 1999).

To determine the thickness of the lower crust, we subtract the depths of the
6.8 km/s (Figures 3c) from the 7.25 km/s isovelocity surfaces (Figure 3a) and
the Moho model of Spada et al. (2013) (Figure 3b). The resulting thickness
maps (Figures 3d and 3e) show that in the Central Alps west of the Giudicarie
Fault, the lower crust is thickened north of the Periadriatic Fault. East of the
Giudicarie Fault, a thick ridge of lower crust runs subparallel to the Giudicarie
Fault beneath the Southern Alps, then continues northward to beneath the SW
corner of the Tauern Window, where it attains its greatest thickness. The
Moho is not offset by the Giudicarie Belt and Giudicarie Fault (Figures 3a and
3b), suggesting this major fault system is confined to the crust. In the eastern
Southern Alps, the 6.8 km/s isovelocity surface deepens from the Veneto‐
Friuli Basin toward the Periadriatic Fault (Figure 3c). North of the Periadri-
atic Fault and beneath the Tauern Window, the 6.8 km/s isovelocity surface
shallows to the north and east.

4. Section Construction and Reconstruction Approach
We construct our cross‐sections in the structural modeling and analysis software Move™ 2019, assuming min-
imum shortening. Where available, we use and adapt existing subsurface interpretations. We link structures
exposed at the surface to the LET and Moho models in the subsurface. Along the TRANSALP cross‐section, we
use reflectors manually picked from vibroseis‐ and dynamite‐source seismic data in Lüschen et al. (2006).

In the Neogene, the Eastern Alps were transected by dextral and sinistral strike‐slip faults that facilitated eastward
orogen‐parallel transport of the orogenic wedge (Figures 1 and 2; e.g., Bartosch et al., 2017; Favaro et al., 2017;
Linzer et al., 2002; Ratschbacher et al., 1991; Robl et al., 2008; Rosenberg et al., 2018; Wölfler et al., 2011). In
our north‐south‐oriented cross‐sections, this transport violates the basic assumption of plane strain made in 2D
balancing (i.e., motion only in the plane of the cross‐section). To address this, we utilize a map‐view recon-
struction to restore out‐of‐section transport at 23 and 14 Ma (Figure 4). We choose these periods to represent the
initiation of accelerated cooling of the Venediger Nappes, related to extension and upright folding (23 Ma) and to
represent the onset of south‐directed thrusting in the eastern Southern Alps (14 Ma). We first retrodeform the
map‐view reconstruction to the timesteps of interest, drawing straight cross‐section traces that connect the EASI
and TRANSALP cross‐sections from the European foreland to the Southern Alps. We then forward‐model the
map‐view reconstruction, translating segments of the 14 and 23 Ma cross‐sections to their present locations
(colored segments in Figure 4). Finally, we interpret the present structure in the offset cross‐section traces. We
assemble them into composite cross‐sections representing the orogen at 14 and 23 Ma. Our composite cross‐
sections maintain the present‐day cross‐sectional area of the accreted European units exposed in the Tauern
Window.

Figure 4. Part of Figure 2 showing the offset cross‐sections used to correct
for the effects of eastward orogen‐parallel transport. These were located
using the a map‐view reconstruction based on total strike‐slip offset
estimates from: (1) Inntal Fault—Ortner et al. (2006); (2) KLT—Königsee‐
Lammertal‐Traunsee—Linzer et al. (2002); (3) MMF—Mur‐Mürz Fault—
Eder and Neubauer (2000); (4) KF—Katschberg Fault—Scharf et al. (2013);
(5) MöF—Mölltal Fault (Favaro et al., 2017); (6) ZWD—Zwischenbergen‐
Wöllatratten‐Drau Fault—Favaro et al. (2017); (7) BF—Brenner Fault—
Wolff et al. (2021). Neogene SEMP Fault displacement (45 km) is obtained
by balancing the effects of extension on the Katschberg Fault and the E‐W
lengthening of the Austroalpine units south of the Tauern Window that was
accommodated by the ZWD and Mölltal faults. Periadriatic Fault
displacement is assumed to accommodate the eastward transport of these
units. V 1 is the location of the Vordersee 1 borehole (Brix & Schultz, 1993).
See Figure 2 for the legend.
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5. Present Structure
Figure 6 shows the present orogenic structure of the Eastern Alps in three
cross‐sections that depict key structural features. These cross‐sections form
the basis of the retrodeformation that follows, where we demonstrate that our
cross‐sections are balanced and kinematically viable.

5.1. TRANSALP

Along the TRANSALP cross‐section (TRANSALP Working Group, 2002),
the segment between the Molasse Basin and the DAV Fault (Figure 2) is
based on existing structural interpretations across the Subalpine Molasse and
Penninic and Helvetic nappes (Ortner et al., 2014), the Northern Calcareous
Alps to the Inntal Fault (Auer & Eisbacher, 2003) and between the Inntal
Fault and Tauern Window (Ortner et al., 2006). A package of seismic re-
flectors dips gently southward from the foreland, marking the Penninic and
Helvetic nappes and Permo‐Mesozoic cover of the European crust below the
Northern Calcareous Alps (Figure 6a). Following previous interpretations
(e.g., Lüschen et al., 2006), we link these reflectors to the Adriatic Moho
along a ramp beneath the Tauern Window, the Sub‐Tauern Ramp. This major
thrust runs parallel to south‐dipping seismic reflectors at the base of the
Venediger Nappes. Receiver function models of the Moho along the
TRANSALP cross‐section (Kummerow et al., 2004; Mroczek et al., 2023)
show that the European Moho dips south beneath the Adriatic Moho and is
separated from the latter by a vertical gap. We interpret this gap to represent
subducted European crust, corresponding to a positive anomaly in the local
earthquake (Figure 6a; Jozi Najafabadi et al., 2022) and teleseismic P‐wave
tomographic images (Figure 7a; Handy et al., 2021; Paffrath et al., 2021).

Following the near‐surface structural interpretation of Schmid et al. (2013; their cross‐section 3) across the
Tauern Window to the DAV, we link the Penninic Nappes at the surface to moderately south‐dipping seismic
reflectors at 14–18 km depth (e.g., TRANSALP Working Group et al., 2002). This package of reflectors is sub‐
parallel to reflectivity in the adjacent Austroalpine Nappes and Southern Alps basement and terminates abruptly
down‐dip, leading us to interpret a fault offset that we link vertically upwards to the surface trace of the
Periadriatic Fault (marked PAF in Figure 6a). We interpret the Venediger, Penninic, and Austroalpine nappes as
continuing southwards at depth, forming a south‐tapering wedge of intermediate crust below the Southern Alps
(Figure 6a).

Our interpretation of the Periadriatic Fault in the TRANSALP cross‐section is consistent with observations at the
surface that show this fault is a brittle structure that obliquely cuts the folded contacts between the Austroalpine,
Penninic, and Venediger nappes, and truncates Neogene cooling age contours (Figure 5) at the southwest corner
of the Tauern Window (Handy et al., 2005; Klötz et al., 2019; Luth & Willingshofer, 2008). Slip along this fault
was right‐lateral, with only a few kilometres of north‐side up motion during the late Oligocene andMiocene (Luth
& Willingshofer, 2008; Mancktelow et al., 2001; Ratschbacher et al., 1991). Therefore, the Periadriatic Fault
post‐dates not only nappe formation but also most of the Oligo‐Miocene exhumation of these nappes. The main
foliation parallel to the steeply S‐dipping nappe contacts cut by the Periadriatic Fault accommodated the bulk of
shearing related to nappe exhumation since 30 Ma (≤25 km, Handy et al., 2005, their Figure 5 and references
therein). In Figure 6a, this foliation is interpreted to correspond to the S‐dipping reflectors that continue at depth to
the south beneath the Southern Alps.

Our interpretation of the deep structure of the TRANSALP cross‐section (Figure 6a) differs from interpretations
of the TRANSALP Working Group (2002) in which the contacts between the Venediger, Penninic, and Aus-
troalpine nappes, as well as the Periadriatic Fault at the surface were extrapolated to depth in very different ways:
(a) S‐dipping and concordant with the south‐dipping reflectors (their Model A) and; (b) steeply to N‐dipping and
discordant with these reflectors (their Model B, see also Castellarin, Nicolich, et al., 2006). In the second scenario,
the Periadriatic Fault was inferred to connect with the Sub‐Tauern Ramp to accommodate vertical exhumation
and eastward lateral transport of the metamorphic units exposed in the Tauern Window. Interpretations since then

Figure 5. Map of the southwestern Tauern Window showing where the
Periadriatic Fault cuts the S‐dipping Paleogene nappe contacts (taken here
from Schmid et al., 2013) as well as Paleogene high temperature (HT)
metamorphism (Schuster et al., 2004) and Neogene isochrons related to post‐
nappe cooling and exhumation. Blue contours are 300°C cooling isochrons
from Handy and Oberhänsli (2004), based on a compilation of biotite Rb‐Sr
and Ar‐Ar white mica cooling ages. Zircon fission track ages compiled from
Bertrand et al. (2017), Elias (1998), Fügenschuh (1995), Klotz et al. (2019),
Most (2003), Pomella et al. (2012), Steenken et al. (2002), Stöckhert
et al. (1999), Viola et al. (2001). BF—Brenner Fault; DAV—Defereggen‐
Anterselva/Antholz‐Valles/Vals Fault; ZWD—Zwischenbergen‐
Wöllatratten‐Drau Fault.
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have adopted variants of these two end‐member models (e.g., Rosenberg et al., 2018; Schmid et al., 2004, 2013),
with most authors adopting variations of the TRANSALP B “lateral extrusion” model. Unfortunately, the deep
structure of the Periadriatic Fault remains virtually unconstrained despite repeated efforts to address the challenge
of imaging discrete subvertical structures with low impendence contrasts (e.g., 3D‐Kirckhoff stack migration—
Bleibinhaus &Groschup, 2008; Seismic diffraction imaging—Bauer et al., 2024). A subvertical Periadriatic Fault
that connects at depth with a detachment surface beneath the Tauern Window (Figure 6a) is consistent with
surface field observations and satisfies the kinematic necessity of accommodating coeval N‐S shortening and
eastward lateral extrusion in Neogene time.

South of the Periadriatic Fault, we reconstruct the Southern Alps fold‐thrust belt using 1:50,000 and 1:100,000
geological maps published by the Geological Survey of Italy (see supplementary materials) and incorporate the
structural interpretations of the Montello and Bassano anticlines in Picotti et al. (2022; Figure 6a) based on
reprocessed seismic reflection, borehole, and surface geological data. Along TRANSALP, the Southern Alps are
deformed from north to south by the Valsugana Fault, Belluno Fault, Bassano Anticline, and Montello Anticline
(Figures 2 and 6a).

In the hangingwall of the Valsugana Fault, a thin‐skinned fold‐thrust belt deforms the Upper Permian to
Cretaceous cover sequence of the Dolomites, with the evaporite‐bearing Upper Permian Bellerophon Formation
serving as a basal decollement. This formation is squeezed out along thrusts and in the cores of anticlines. We link
part of this shortening to subsurface thrusts reaching into the basement. Most of the thrusts in the hangingwall of
the Valsugana Fault are older SW‐directed thrusts of the Dinaric fold‐thrust belt (e.g., Castellarin & Can-
telli, 2000; Doglioni & Bosellini, 1987).

The Dolomites are affected by open folds and an overall gentle north‐dipping to subhorizontal regional dip (e.g.,
Castellarin et al., 1998). To reproduce this shallow regional dip above the stacked Valsugana, Belluno, Bassano,
andMontello thrust faults, we find that the thick‐skinned thrusts must link into a north‐dipping ductile shear zone.
This reaches down to 15–20 km depth, below the Bassano and Montello anticlines, and is associated with the
deepest seismicity in the area (e.g., Anderlini et al., 2020). Such a ductile shear zone was previously proposed in

Figure 7. Structural model along the TRANSALP, EASI, and EW cross‐sections, in relation to P‐wave teleseismic tomography (Paffrath et al., 2021; we followed the
common approach of smoothing model voxels using linear interpolation). The EW cross‐section reaches eastward to the Pannonian Basin, as defined byMiocene graben
structures underlying the Plio‐Pleistocene cover (see map trace in Figure 2). Dashed dark gray lines mark intersections of the cross‐sections. The blue lines closely
follow the +1% anomaly contour line and outline the interpreted boundary between lithospheric and asthenospheric mantle. ML—Mantle lithosphere. The blue line
subdividing the large positive anomaly in C is drawn according to geological criteria (see Section 7.3). Domains marked with “?” may be attributed to compositional
variability and/or smearing of the image of the downgoing European lithospheric mantle. Labels indicating interpreted mantle structures are described in Section 7.3.
See Figure 2 for cross‐section traces in map view and Figure 6 for labeled structures in cross‐sections. BF—Brenner Fault; IN—Inntal Fault; PAF—Periadriatic Fault;
PLF—Pöls‐Lavanttal Fault.
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balanced cross‐sections (Nussbaum, 2000; Schönborn, 1999; Verwater et al., 2021) and thermo‐kinematic models
of the Southern Alps fold‐thrust belt (Eizenhöfer et al., 2023).

As mentioned above, LET models of the Eastern Alpine crust consistently show an upward perturbation or bulge
of velocity contours on the southern side of the Tauern Window (Diehl et al., 2009; Jozi Najafabadi et al., 2022).
In map view, this bulge forms an E‐W trending high‐velocity structure some 5–10‐km‐high and oriented sub-
parallel to the Eastern Alps just south of the Tauern Window (Figure 3d). In the TRANSALP cross‐section
(Figure 6a), this high‐velocity bulge is located south of and below the Tauern Window, below the Periadriatic
Fault and north of the Moho gap.

5.2. EASI

We use the cross‐section of Hinsch (2013; their Figure 8a) through the Subalpine Molasse, and Penninic and
Helvetic nappes, which is based on borehole data and depth‐migrated 3D seismic reflection data. From the front of
the Northern Calcareous Alps to the Periadriatic Fault, we construct the cross‐section in Figure 6b using 1:50,000
geological maps published by the Austrian Geological Survey (GeoSphere Austria; see supplementary materials).
In the Northern Calcareous Alps, we incorporate the Vordersee‐1 borehole (Brix & Schultz, 1993; Figure 4),
which reached the buried Penninic and Helvetic nappes. Analogous to the TRANSALP cross‐section, we
reconstruct these nappes above a south‐dipping decollement as far south as the SEMP Fault (Figures 2 and 6b).
We assume that the regional dip of this thrust mimics that of the European Moho.

The SEMP sinistral strike‐slip fault marks the southern limit of the Northern Calcareous Alps in the EASI cross‐
section. It juxtaposes the lowest Austroalpine and underlying Penninic nappes with the structurally higher
Northern Calcareous Alps (Figure 6b). Between the SEMP and Tauern Window, folded Penninic rocks exposed
to the west of the EASI cross‐section (Figure 2) lead us to interpret a thin cover of Austroalpine Basement rocks
that plunge steeply south at the SEMP Fault to form a north‐dipping monocline.We interpret this monocline as the
foreland‐dipping limb of a fault‐bend fold, marking the location of the subsurface Sub‐Tauern Ramp. In contrast
to the TRANSALP cross‐section where the European and Adriatic Mohos are separated by a vertical gap
(Figure 6a), the Moho along the EASI cross‐section is poorly defined in the vicinity of the Tauern Window and
beneath the Periadriatic Fault (Figure 3b), for the reasons pointed out above.

Our orogen‐normal cross‐section of the Venediger Nappes in the Tauern Window closely resembles those of
Schmid et al. (2013) and Rosenberg et al. (2018). Figure 6b shows an open, upright fold in the Tauern Window
with a vertical to overturned upper contact in the shallow subsurface that attains a shallower dip at depth.

The high‐velocity bulge situated above theMoho gap, just south of the TauernWindow and below the Periadriatic
Fault decreases in amplitude going eastward from the TRANSALP to the EASI cross‐sections (Figures 3e, 6a, and
6b). This may reflect a thinner lower crust and shallower Moho toward the east. We take the Moho gap to define
the southern end of the European slab (e.g., Hetényi et al., 2018; Spada et al., 2013), which is directly underlain by
a high‐velocity anomaly in LET and teleseismic P‐wave tomographic models, and then by a negative velocity
anomaly in P‐wave tomography (Handy et al., 2021; Paffrath et al., 2021).

To define the structure south of the Periadriatic Fault in the Southern Alps, we modify the cross‐section of
Ponton (2010), which incorporates seismic interpretations and borehole data of Merlini et al. (2002). Seismicity
down to 15–20 km in the actively deforming, frontal part of the Southern Alps indicates that, as in the
TRANSALP cross‐section, thrusting is linked to shear zones deeply rooted in the basement (e.g., Bressan
et al., 2016). A NE‐SW segment of this cross‐section allows balancing of orogen‐normal shortening relative to the
autochthonous Adriatic foreland. We extend the Ponton (2010) cross‐section north to the Periadriatic Fault based
on the large‐scale geological map of the Friuli‐Venezia‐Giulia region (Battista Carulli et al., 2006). There, we
interpret a south‐dipping monocline between the Periadriatic and Sava‐Fella faults (marked PAF and S‐F
respectively, in Figure 6b) where Palaeozoic sedimentary, volcanic, and basement rocks are exposed adjacent
to the Periadriatic Fault. Our cross‐section shows two major thrusts in the basement that splay upwards into the
marly, locally gypsum‐bearing Upper Triassic Raibl Formation to form a thrust imbricate.

The EASI cross‐section includes the E‐W striking Sava‐Fella Fault (Figure 2, marked S‐F in Figure 6b). A dextral
offset of some 30–60 km has been proposed along the Slovenian segment of this fault based on a visual correlation
of Oligocene volcanic rocks (e.g., Fodor et al., 1998). West of the EASI cross‐section (Figure 2), this fault ac-
commodates N‐S shortening and subordinate dextral motion and terminates at a compressive horsetail structure
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(Bartel et al., 2014). Based on its hangingwall and footwall geometries, we reconstruct the Sava‐Fella Fault—in
Figure 6b as a subvertical south‐dipping dextral‐oblique thrust with minor associated fault splays (Jadoul &
Nicora, 1986) that root in the basement (Merlini et al., 2002; Moulin & Benedetti, 2018; Nussbaum, 2000;
Ponton, 2010).

Toward the foreland of the Southern Alps, Dinaric structures are unconformably covered by synorogenic sedi-
mentary rocks of late Cretaceous to Paleogene age (Merlini et al., 2002) indicating that these structures were not
significantly reactivated during Neogene deformation. North of the frontal thrusts, these sediments are absent, and
so we rely on detailed structural analysis of Ponton (2010) to identify Dinaric thrust faults. Geological markers
indicate a maximum of about 5 km of dextral offset across the system of Dinaric strike‐slip faults (Moulin
et al., 2016; see also Žibret & Žibret, 2023). This is consistent with estimates of up to 1 km from 1:50,000 scale
geological map (Zanferrari et al., 2013) of associated fault splays. We modify the interpretation of Ponton (2010)
to depict the Monte Simone Fault as a strike‐slip fault (marked MS in Figure 6b; Zanferrari et al., 2013), thereby
removing an interpreted structural repetition of Mesozoic sedimentary rocks along a shallow‐dipping Monte
Simone Thrust (Merlini et al., 2002; Moulin & Benedetti, 2018).

5.3. EW (Orogen‐Parallel)

In the E‐W orogen‐parallel cross‐section from the Central Alps to the Pannonian Basin (Figure 6c), we use the
Moho model of Spada et al. (2013), which closely matches the Moho proxy (7.25 km/s) in the LET model of Jozi
Najafabadi et al. (2022). In the hangingwall of the Brenner Fault, we project west‐plunging structures from the
surface into the cross‐section and tie our interpretation to the NW‐SE cross‐section of Pomella et al. (2016; their
Figure 3b). Across the Tauern Window, we use a series of N‐S and E‐W oriented cross‐sections from Schmid
et al. (2013) and Groß et al. (2022) and augment our interpretation of the shallow‐subsurface structure with
structural information from tectonic contacts at the surface. In the hangingwall of the Katschberg Fault, we use
1:50,000 scale geological maps published by the Austrian Geological Survey (GeoSphere; see supplementary
materials for details), projecting tectonic contacts down‐ or up‐dip into the cross‐section. Finally, in the Styrian
and Pannonian Basins (shown only in Figure 7c), we project the interpretation of the seismic reflection survey in
Maros et al. (2012) onto our cross‐section.

Two features of the orogen‐parallel cross‐section in Figure 6c stand out: (a) the eastward shallowing of the Moho
from ∼50 km below the Central Alps to ∼35 km below the Styrian Basin, and even less to the east below the
Pannonian Basin (Figure 3b); and (b) the anomalous thickness of European‐derived crust in the Tauern Window.
This crust is thinned to the west and east in the footwalls of the Brenner and Katschberg normal faults,
respectively. Comparing the orogen‐parallel and orogen‐normal cross‐sections, it is interesting to note that the
anomalous thickness of intermediate European crust beneath the Tauern Window occurs immediately above and
to the north of the lower crustal bulge overlying the gap between the Adriatic and European Mohos
(Figures 6a–6c).

5.4. Present Mantle Structure

In Figure 7, we augment our model of the crustal structure with the P‐wave teleseismic tomographic model of
Paffrath et al. (2021) that images the upper mantle structure. A multitude of P‐wave tomographic models are
available for the Alpine and Carpathian domains (e.g., Bijwaard & Spakman, 2000; Karousova et al., 2013;
Koulakov et al., 2009, 2009; Lippitsch, 2002; Serretti & Morelli, 2011; Zhu et al., 2015), but we chose Paffrath
et al. (2021) because it uses three existing crustal velocity models (Diehl et al., 2009; Kennett et al., 1995; Tesauro
et al., 2008) to arrive at an optimized crustal correction (see Paffrath et al., 2021 and their supplement for
description). The high resolution afforded by this model is crucial for imaging structures in the depth interval of
60–150 km, which includes the transition from the orogenic crust to the lithospheric slabs beneath the Alps.

Positive velocity anomalies are generally interpreted as cooler and denser mantle lithosphere that either forms the
base of the orogenic lithosphere and/or reaches further down as a slab into the asthenosphere. The asthenosphere
is generally considered warmer and, therefore, marked by negative anomalies. However, we cannot rule out
compositional heterogeneities as the cause of local variations in velocity (Figure 7a).

In the TRANSALP cross‐section, the European lithosphere extends southwards beneath the orogenic lithosphere
to at least 200 km (Figure 7a) depth. In contrast, no high‐velocity slab anomaly is observed beneath the EASI
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cross‐section (Figure 7b). The latter cross‐section is marked by a discontinuity in the orogenic lithosphere be-
tween the European and Adriatic sides. This pronounced east‐west change in the mantle structure in the
TRANSALP and EASI cross‐sections is best seen in the orogen‐parallel cross‐section (Figure 7c), where the slab
anomaly in the TRANSALP cross‐section gives way to the east to a low‐velocity anomaly below the Tauern
Window at a depth interval of approximately 70–150 km. This anomaly broadens from 12.5°E eastward toward
the Pannonian Basin. The 1% velocity anomaly contour outlining the slab illustrates that the slab is largely
disconnected from the overlying orogenic lithosphere.

6. Retrodeformation
6.1. TRANSALP

In the 14 Ma cross‐section (Figure 7b), we restore 46 km of N‐S shortening in the Southern Alps fold‐thrust belt
above a north‐dipping ductile shear zone. The shortened upper to middle crustal rocks are interpreted to have
formed the cover of the Adriatic lower crustal wedge, which is imaged as a high‐velocity anomaly in the LET data
(Figures 3 and 8). In the present‐day cross‐section (Figure 7a), we interpret a south‐tapering wedge of European
crust (Figures 8a and 8b, thrust slice labeled [2]) between the Adriatic lower crustal wedge and the Southern Alps
(Figure 8a, thrust slice labeled [1]). This out‐of‐sequence stacking of units is achieved by inferring that the
Valsugana Fault cut down to the north and accreted this slice of European crust. Serravallian (∼14–12 Ma)
conglomerates preserved in its footwall (Castellarin et al., 1992) constrain thrusting to have occurred no earlier
than 14 Ma.

We restore 17 km of N‐S shortening accommodated by eastward orogen‐parallel motion between the Periadriatic
and Inntal faults (Figure 4) from 14 to 0 Ma (Figure 8b). North of the Inntal Fault, the Subalpine Molasse was
shortened by 8 km from 23 to 9Ma (Ortner et al., 2014). We assume that this was accommodated at a constant rate
(0.6 km/Myr) and thus restore 3 km of shortening from 14 to 9Ma. Adding this shortening to the 46 km shortening
in the Southern Alps detailed above, we estimate up to 66 km of shortening in the TRANSALP cross‐section since
14 Ma.

Going further back in time from 14 to 23 Ma, we restore 21 km of N‐S shortening associated with orogen‐parallel
motion (Figure 8c) including sinistral motion along the ZWD related to E‐W stretching of the Austroalpine
Nappes between the Tauern Window and Periadriatic Fault (Figure 2; Favaro et al., 2017; Scharf et al., 2013). In
the Tauern Window, the Venediger Nappes were affected by ductile folding and shearing under retrograde
amphibolite‐to‐greenschist‐facies conditions (Favaro et al., 2015). We restore 30 km of shortening by upright
folding, treating the Venediger Nappes as a single unit with a fixed cross‐sectional area. These nappes experi-
enced E‐W stretching, which in a N‐S cross‐section is represented by area loss. In the absence of constraints on the
magnitude of this loss, we assume constant area, thereby slightly underestimating the actual area that the Ven-
ediger Nappes would have occupied in the TRANSALP cross‐section at 23 and 14 Ma.

In the Tauern Window, the Austroalpine Nappes that once formed the roof of the Venediger Nappes have been
eroded (Favaro et al., 2017), so we calculate the vertical distance to the top of the Venediger Nappe stack at 23Ma
by using estimates of maximum burial (20 km) from geobarometry in post‐nappe Barrovian metamorphism
(0.7 GPa, Selverstone, 1993). Finally, we restore the European lower crust from the Sub‐Tauern Ramp, south of
and below the unfolded Venediger Nappes (Figures 8a and 8c). We restore 22 km of shortening north of the Inntal
Fault, including 5 km in the Subalpine Molasse. Taken together, the amount of N‐S shortening between 23 and
14 Ma in the TRANSALP cross‐section amounts to 72 km. Thus, the total N‐S shortening since 23 Ma is 138 km.

We note that the balancing of the TRANSALP cross‐section necessitates subducting a small piece of intermediate
European crust (labeled [3] in Figure 8a). In the absence of seismological evidence for this fragment, we arbi-
trarily placed it in the mantle wedge immediately south of the Moho gap between the European and Adriatic
Plates. However, its precise location is unimportant for the purposes of this reconstruction.

6.2. EASI

In the 14Ma cross‐section (Figure 9b), we restore 49 km of shortening in the Southern Alps above a north‐dipping
ductile shear zone that forms the base of the deformed part of the Adriatic indenter. As in the TRANSALP cross‐
section, the shortened upper and middle crustal rocks of the Southern Alps fold‐and‐thrust belt originally formed
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the hangingwall of the lower crustal wedge, which is imaged as a high‐velocity anomaly in subsurface seismic
images (Figures 3c and 9a).

In both the 14 and 23 Ma cross‐sections (Figures 9b and 9c), we account for orogen‐parallel transport using
laterally offset cross‐sections (Figure 4). Eastward orogen‐parallel transport accommodated a total of 43 km of N‐
S shortening since 23 Ma, with 31 km of this N‐S shortening accommodated from 23 to 14 Ma and an additional
12 km from 14 Ma to the present.

Figure 9. Restoration of the EASI cross‐section from Present (a) back to 14 Ma (b) and 23 Ma (c). Faults bounding the eastwardly extruding wedge are highlighted in
yellow. LET P‐wave velocity contours at intervals of 0.25 km/s in (a) are taken from Jozi Najafabadi et al. (2022). Tectonic units labeled 1–6 aid in the description of the
retrodeformation in the text. The slab end in (a) is interpreted from P‐wave teleseismic tomography, the location of the Moho gap, and LET P‐wave velocity contours in
Figure 7A. The cross‐hatched gray area represents the European crust south of the present‐day down‐dip end of the positive velocity anomaly of the European slab. This
end in panels (b, c) corresponds to the location of the Moho gap marked in panel (a), see text for discussion.

Tectonics 10.1029/2024TC008374

MCPHEE AND HANDY 14 of 24



From the 14 Ma to the 23 Ma reconstruction in Figure 9c, we restore ∼20 km shortening due to out‐of‐sequence
thrusting below the Northern Calcareous Alps. This is required to accommodate shortening between 20 and 9 Ma
associated with NE‐translation of the Northern Calcareous Alps along the oblique‐sinistral Inntal Fault once
northward propagation of Subalpine Molasse thrusting had ceased (∼20 Ma; Hinsch, 2013). Most of this out‐of‐
sequence thrusting occurred within the Penninic and Helvetic nappes and by thrusting of the Northern Calcareous
Alps over these nappes (Beidinger &Decker, 2014; Hinsch, 2013). Using the∼20 km estimate of out‐of‐sequence
shortening, we restore the Penninic and Helvetic nappes as a single unit, preserving cross‐sectional area. Poor
surface exposure and a lack of internal reflectors in the seismic data presented in Hinsch (2013) make subsurface
interpretation highly uncertain. As in the TRANSALP cross‐section, we extend the European lower crust below
the unfolded Venediger Nappes.

6.3. EW (Orogen‐Parallel)

To restore the present EASI cross‐section in Figure 10a to 23 Ma (Figure 10c), we first translate the cross‐section
line (Figure 2) southward to account for shortening by upright folding exposed in the Tauern Window (see

Figure 10. Restoration of the EW cross‐section from Present (a) to 14Ma (b), 23Ma (b). Faults bounding the eastwardly extruding wedge are highlighted in yellow. LET
contours at intervals of 0.25 km/s in panel (a) are taken from Jozi Najafabadi et al. (2022). BF—Brenner Fault; GöF—Görschitztal Fault; KF—Katschberg Fault; PLF—
Pöls‐Lavanttal Fault.
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Figures 8c and 9c for intersection of the EW cross‐section with the TRANSALP and EASI cross‐sections at
23 Ma). The thickness of the Venediger Nappes and subducting European crust is estimated by using the in-
tersections with TRANSALP and EASI cross‐sections (Figures 8c and 9c). We then restore at total of 60 km of
extension reported on the Brenner and Katschberg faults (Fügenschuh et al., 2012; Scharf et al., 2013; Wolff
et al., 2021).

7. Behavior of Orogenic Lithosphere During Indentation
7.1. Timing of Indentation and the Mechanical Response of the Indented Crust

Indentation of the Eastern Alps occurred in two phases, first involving the whole Adriatic crust from ∼23 to
14 Ma, then followed by N‐S shortening of the leading edge of the Adriatic Plate since 14 Ma. The first phase of
indentation coincided with the cessation of the northward advance of the thrust front into the Molasse Basin, north
of Salzburg (Figure 2; Hinsch, 2013; Ortner et al., 2014). The Adriatic indenter moved north along the northern
segment of the Giudicarie Fault, displacing the Periadriatic Fault by some 70 km (e.g., Laubscher, 1990;
Schönborn, 1992). This motion was largely accommodated by post‐nappe, upright folding in the TauernWindow.
The second phase entailed wedging of the Adriatic middle and lower crust into the base of the Eastern Alpine
orogenic wedge.

Upright folding in the Tauern Window was broadly coeval with E‐W extension on the Katschberg and Brenner
faults, as argued on structural and thermochronological grounds (Fügenschuh et al., 1997; Rosenberg et al., 2018;
Scharf et al., 2013). This was linked to eastward extrusion of the high‐grade metamorphic core of the Eastern Alps
between conjugate, oblique strike‐slip faults (Figure 2). In the TRANSALP and EASI cross‐sections for 23 Ma
(Figures 8c and 9c), we infer that these faults flatten into a common detachment surface (sensuOldow et al., 1990)
at the base of the Venediger Nappes at ∼25 km depth as highlighted in yellow in Figures 8–10. Above this basal
detachment, we restore 67 and 42 km of shortening in the TRANSALP and EASI cross‐sections, respectively.
Going from west to east along the Tauern Window, the proportion of N‐S shortening accommodated by upright
folding decreases and the proportion of shortening by orogen‐parallel transport increases. Rosenberg et al. (2018,
their Figure 23) schematically illustrated how a series of easterly diverging conjugate strike‐slip faults account for
these trends. In the western Tauern Window, orogen‐parallel transport was accommodated primarily by the Inntal
and Periadriatic faults. In the eastern Tauern Window, the SEMP, ZWD, and Mölltal Faults accommodated
additional orogen‐parallel transport (Figure 4), leading to an eastward increase in orogen‐parallel displacement
relative to the European foreland and thus an eastward increase in shortening taken up by orogen parallel motion.
A consequence of placing the basal detachment at the base of the Venediger Nappes (Figures 8–10) is that
shortening in the east was accommodated without significant crustal thickening, whereas in the west, south‐
directed subduction of the European lithosphere accommodated N‐S convergence of the underlying lower
crust and mantle lithosphere.

The Venediger Nappes were affected by Barrow‐type metamorphism between 32 and 25 Ma, resulting in tem-
peratures of 500–600°C (e.g., Favaro et al., 2017; Schuster et al., 2004). Given the strong temperature sensitivity
of crustal viscosity (e.g., Carter & Tsenn, 1987; Handy, 1989; Kohlstedt et al., 1995), high temperatures are
expected to have reduced the viscous strength of the nappe pile in the Tauern Window during burial in Paleogene
time. During subsequent indentation, upright isoclinal folding rotated the main foliation into increasingly high
angles with the direction of indentation, thus increasing the bulk viscous strength of the Venediger Nappes in the
N‐S direction of indentation, an effect known in rock mechanics as geometric‐ or foliation‐hardening. The nappes
are expected to have strengthened even more as they exhumed and cooled below 300°C, that is, through the
viscous‐to‐frictional transition in granitoid rocks (e.g., Handy et al., 1999). Strengthening rendered the nappe
stack a strong body that resisted further indentation, such that N‐S convergence was increasingly accommodated
by south‐directed folding and thrusting, forming the eastern Southern Alps.

7.2. Crustal Wedging

During the second phase of indentation, a ductile shear zone in the Southern Alps basement accommodated
northward wedging of the Adriatic middle‐to‐lower crust above subducted European lithosphere in the
TRANSALP and EASI cross‐sections (Figures 8 and 9). This wedging is kinematically like the wedging proposed
for the NFP‐20E cross‐section west of the Giudicarie Fault (e.g., Schmid et al., 1996, and references therein, see
also Rosenberg & Kissling, 2013). In contrast to the NFP‐20E cross‐section, however, the indented orogenic
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wedge east of the Giudicarie Fault comprises both accreted European and Adriatic units. The latter were emplaced
as nappes during late Cretaceous and Paleogene accretion and subduction (Schmid et al., 2004; Schuster
et al., 2004), that is, prior to Neogene indentation.

The model of crustal indentation and European subduction in Figures 6a and 6b differs markedly from past in-
terpretations in which the middle to lower crust of the eastern Southern Alps was subducted on a north‐dipping
slab of Adriatic lithosphere (e.g., Handy et al., 2015; Lippitsch, 2002; Schmid et al., 2004). Here, we follow
Mitterbauer et al. (2011) in interpreting the positive P‐wave velocity anomaly beneath the Eastern Alps as a
remnant of the subducted European Plate. Handy et al. (2021) argued against an Adriatic origin for this slab
because its 100–200 km down‐dip length far exceeds shortening in the Southern Alps (Figures 8 and 9; Castellarin
et al., 1998).

North of the Periadriatic Fault, we find around 90 km total shortening (92 km in TRANSALP, Figure 8; 86 km in
EASI, Figure 9). This shortening, involving European‐accreted nappes, occurred above the European lithosphere
(Figures 6a and 6b and 8 and 9), requiring subduction equivalent to the shortening we reconstruct. Along the
TRANSALP cross‐section, the slab corresponding to this shortening is imaged as a south‐dipping positive ve-
locity anomaly in teleseismic P‐wave tomography (Figure 7a). European subduction must have been continuous
but slow throughout the Neogene to accommodate Adriatic indentation that involved upright folding, orogen‐
parallel extrusion, and orogen‐normal thrusting.

7.3. Constraints on Subduction and Possible Slab Removal Events

The approximate age of the positive velocity anomalies that are interpreted as subducted slabs can be constrained
by comparing the current slab lengths in Figure 7 with the amount of N‐S shortening estimated from the three‐
dimensionally balanced cross‐sections in Figures 8 and 9. In so doing, we assume that lithospheric volume is
conserved during subduction. Crustal shortening estimates obtained by retrodeforming nappe systems must al-
ways be regarded as minima in the absence of both adequate cutoff markers and evidence precluding subduction
erosion. Also, slab lengths are difficult to measure and compare in teleseismic tomographic images, not only due
to poor resolution and smearing of the images (e.g., Foulger et al., 2013), but also because slabs themselves may
be deformed (Lister et al., 2008). In the model used here (Paffrath et al., 2021), the reported vertical resolution is
about 20 km down to ∼150 km depth and decreases to 50 km at greater depth, with considerable smearing at
depths down to ∼350 km, the maximum depth considered here. Despite these limitations, the combined
geological‐geophysical approach below yields general insight into the possible volumes and ages of subducted
lithosphere beneath the Eastern Alps.

The south‐dipping slab anomaly in the TRANSALP cross‐section (Figure 7a) is at least 200 km long, exceeding
the 138 km of post‐23 Ma N‐S shortening estimated above along this cross‐section (Figure 8). Some of this
difference may be attributed to stretching of the down‐going slab under its own weight (e.g., Lister et al., 2008),
but the estimates are similar enough to indicate that the slab still attached to the orogenic lithosphere represents
lithosphere mostly subducted since 23 Ma. The down‐dip end of this anomaly may therefore represent a slab
detachment surface at about 23 Ma. Extensive analysis of tomographic slices in this area indicates that this high‐
velocity anomaly actually connects out‐of‐section with the vertically underlying positive anomaly at 220–350 km
depth. This is inferred to comprise lithosphere that subducted mostly before 23 Ma, that is, in Paleogene time
(Figure 7a).

In contrast, the EASI cross‐section lacks a slab anomaly and instead features only a thin high velocity layer
beneath the Moho (Figure 7b). Thus, there is no slab still attached to the orogenic lithosphere to accommodate the
total of 135 km of N‐S shortening in this cross‐section since 23 Ma (Figures 9b and 9c). The only plausible
candidate for this slab is the positive anomaly in Figures 7b and 7c entrained between 150 and 300 km depth. In
the EASI cross‐section, the ∼150 km down‐dip length of this anomaly exceeds post‐23 Ma shortening by only
15 km. Taken at face value, the excess length of the anomaly indicates either that the slab underwent down‐dip
stretching and/or that it includes some 15 km of European lithosphere that was subducted before 23Ma. Thus, like
the TRANSALP cross‐section, the bottom of the anomaly in the EASI cross‐section may lie at or near a slab
detachment surface at 23 Ma.

The western part of this large anomaly, which is the same positive anomaly imaged between 220 and 350 km
depth in the TRANSALP cross‐section (Figure 7a), is inferred to comprise older lithosphere subducted prior to
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23 Ma based on the arguments above. Thus, by applying areal balancing of crustal shortening, we surmise that
what appears as a single large positive anomaly in Figure 7c is actually a segmented slab. Lines delineating older
and younger segments are drawn accordingly in Figure 7c. The resolution of the P‐wave tomographic model used
here (Paffrath et al., 2021) is insufficient to distinguish closely spaced slab segments at this depth.

Shallow removal of the slab in EASI cross‐section must have occurred after 23 Ma, possibly even after 14 Ma to
account for the lack of slab to accommodate the 68 km of post‐14 Ma N‐S shortening estimated above (Figures 9a
and 9b). Shallow slab removal earlier than 14 Ma can be ruled out because asthenosphere would have been
emplaced in direct contact with the base of the Venediger Nappes (cross‐hatched area in Figures 9b and 9c). This
is implausible in the absence of mid‐Miocene metamorphism and volcanism in the Eastern Alps (e.g., Göğüş &
Pysklywec, 2008; Reid et al., 2017). Therefore, we propose that the European lithosphere in the upper part of the
detached slab in the EASI cross‐section formed the substratum of the Venediger Nappes beneath the Sub‐Tauern
Ramp until it detached, sometime after 14 Ma.

In keeping with this scenario, we interpret the thin high‐velocity anomaly beneath the EASI cross‐section to be
newly formed mantle lithosphere (marked new LAB in Figures 7b and 7c) that has grown since the last slab
removal event at ≤14 Ma. The negative velocity anomaly in P‐wave tomography in the depth interval of 70–
150 km of the EASI cross‐section (Figures 7b and 7c) is thought to represent asthenosphere filling the sub-
horizontal gap left by this slab removal. Notably, this negative velocity anomaly does not extend as far west as the
TRANSALP cross‐section. It neither coincides with the northern projection of the Giudicarie Fault (Figures 2 and
7c), nor does it line up with the eastern and western ends of the Tauern Window. This discrepancy in the location
of crustal and mantle structures suggests that the major faults exposed at the surface formed before slab removal at
≤14 Ma as argued below.

7.4. Geological Expression of Slab Removal Events

What was the geological expression of the slab removal events inferred above from tectonic balancing and P‐
wave seismic tomography? Partial detachment of subducting European lithosphere in early Miocene time fits
well with previous proposals of slab detachment (Handy et al., 2015, 2021; Schlunegger & Kissling, 2022) to
explain sudden tectonic uplift and coeval infilling of the marine eastern Molasse Basin in Burdigalian time (e.g.,
Hülscher et al., 2019; Kuhlemann & Kempf, 2002; Le Breton et al., 2023). This uplift may represent the terminal
stages of slab detachment that began at ∼23 Ma, facilitating the indentation and orogen‐parallel extension of the
Eastern Alps, as well as triggering extension in the Pannonian Basin in the upper plate of the retreating Carpathian
subduction orogen. It may also have initiated the mid‐Miocene change in orogenic polarity from N‐directed
thrusting along the northern front of the eastern Alps to S‐directed folding and thrusting in the Southern Alps.
These events immediately predated and were continuous with the ∼20 Ma onset of major east‐west extension in
the Pannonian Basin that accompanied roll‐back subduction in the Carpathians (∼200–300 km; e.g., Horváth
et al., 2006, 2015; Royden & Burchfiel, 1989; Ustaszewski et al., 2008). Thus, Adriatic indentation rather than
Carpathian roll‐back subduction was the probable trigger of orogen‐parallel extension in the Eastern Alps (Scharf
et al., 2013; Schmid et al., 2013).

Evidence for removal of part of the European slab beneath the Eastern Alps after 14 Ma is more difficult to find in
the geologic record. The eastern Molasse Basin underwent 500–900 m of post‐Late Miocene erosion (Gus-
terhuber et al., 2012) that has been tied to 200–600 m of Late Mio‐Pliocene tectonic uplift (Genser et al., 2007).
Within the Eastern Alps, the Tauern Window saw high exhumation rates in Mio‐Pliocene times, based on
inversion of thermochronological data (∼700 m/Myr, e.g., Bertrand et al., 2017; Fox et al., 2015; Heberer
et al., 2017). Mio‐Pliocene uplift was also active east of the Tauern Window based on dating of incised high‐
elevation low‐relief surfaces (Gradwohl et al., 2024; Stüwe et al., 2024), catchment‐wide erosion‐rate
modeling (Legrain et al., 2014) and dating of sediments in cave systems (Wagner et al., 2010).

A possible explanation for these ≤14 Ma events is that low subduction rates in the Miocene (3–4 mm/yr average
based on our shortening estimates) allowed the slab to steepen and heat up as Adria‐Europe convergence ground
to a halt. Pull of the residual slab may have thinned the slab, promoting thermal erosion and decreasing the
viscosity of the slab, thus rendering it more deformable while gradually increasing its buoyancy and decreasing its
downward pull. Taken together, these factors would be expected to locally increase the rates and amounts of
surface response. However, such effects are speculative and difficult, if not impossible, to distinguish at the
surface.
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Finally, we note that Neogene slab detachment(s) does not preclude an older slab detachment event in Eo‐
Oligocene time, which has long been proposed to explain calc‐alkaline magmatism along the Periadriatic
Fault (von Blanckenburg & Davies, 1995) and rapid uplift and erosion of the retro‐wedge of the Central Alps
(e.g., Schlunegger & Castelltort, 2016; Sinclair, 1997). Thus, the Eastern Alps may well have witnessed up to
three late‐to post‐collisional slab removal events, resulting in the complex three‐dimensional slab geometries
imaged today by P‐wave tomography in the AlpArray experiment.

8. Conclusions
We have reconstructed the Neogene to Present structural evolution of the Eastern Alps in N‐S (TRANSALP and
EASI) and E‐W (orogen‐parallel) cross‐sections of the orogenic wedge that are corrected for out‐of‐section
orogen‐parallel transport. Correlating these three‐dimensionally balanced cross‐sections with the geological re-
cord reveals two phases of Adriatic indentation of the Eastern Alpine orogenic wedge. During these phases, the
total N‐S shortening of ∼135 km north of the Periadriatic Fault in both the TRANSALP and EASI transects was
accommodated by a roughly equivalent amount of subduction of European lithosphere.

The first phase of indentation (∼23–14 Ma), concurrent with the termination of northward thrust advancement
into the Molasse Basin, involved the northward movement of the Dolomites sub‐indenter of the Adriatic Plate
along the Giudicarie Fault. This movement displaced the Periadriatic Fault by some 70 km and was accompanied
by post‐nappe upright folding, and E‐W extension in the Tauern Window. The latter was broadly coeval with
eastward orogen‐parallel transport (Rosenberg et al., 2018; Scharf et al., 2013; Wölfler et al., 2011) at an average
rate of ≥4 mm/yr. We propose that this first phase of indentation was triggered by detachment of the European
slab beneath large parts of the Eastern Alps, beginning at 23 Ma.

The second phase of indentation (∼14–0 Ma) involved deformation of the leading edge of the Adriatic indenter,
forming the Southern Alps fold‐thrust belt as the Adriatic middle‐to‐lower crust wedged into the base of the
Eastern Alpine orogenic wedge. We tentatively relate this second phase of indentation to gradual removal of the
part of the European slab remaining after the earlier detachment event. There is no unequivocal surface expression
of this late slab removal, possibly indicating a slab load that had already been reduced by earlier slab
detachment(s).

In parting, we note that our exploration of the consequences of slab detachment on the orogenic crust involved
using only the P‐wave tomographic model of Paffrath et al. (2021), Yet, in the Alps, differences remain among
seismological models based on different methods and among models using the same method (Kästle
et al., 2020). These differences are most pronounced in the crucial depth interval between 70 and 150 km
(Paffrath et al., 2021). This underscores the need for rigorous benchmarking of seismological models (e.g.,
Kästle & Paffrath, 2023), which may help us to ascertain whether tomographic images portray a physical reality
or merely reflect the myriad assumptions made in collecting, processing, and inverting seismic waveforms.
Using geological data on the age and kinematics of crustal motion provides an independent means of testing the
viability of seismological models.

Data Availability Statement
Local earthquake tomography data are available in Jozi Najafabadi et al. (2022). P‐wave teleseismic tomography
data can be accessed in Paffrath et al. (2021). Reflection seismic data are available through Lüschen et al. (2006).
Geological maps used in cross‐section construction are listed in Supporting Information S1.
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