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Zusammenfassung 

 

Nanopartikel sind aufgrund ihrer geringen Größe und ihrer physikalisch-chemischen 

Eigenschaften ideal für die Herstellung von Diagnostika und als Wirkstoffträger für 

therapeutische Ansätze. Sie bieten Funktionen, die viele konventionelle Ansätze nicht bieten 

können. Dazu gehören die hochauflösende Bildgebung mit Nanosensoren, die verbesserte 

Bioverfügbarkeit von nanopartikulären Formulierungen für therapeutische Wirkstoffe und die 

Möglichkeit, Substanzen gezielt an den Wirkort zu bringen. Insbesondere polymere 

Nanopartikel können leicht strukturell modifiziert werden, um bestimmte Eigenschaften 

maßzuschneidern. Aus ihnen können eine Vielzahl funktioneller Nanopartikel für 

unterschiedlichste Anwendungen gefertigt werden. Im Rahmen dieser Dissertation wurden 

drei Studien durchgeführt, in denen die vielfältigen Einsatzmöglichkeiten von Polystyrol-

Nanopartikeln als Nanosensoren für die Biosensorik in Biofilmen und eukaryotischen Zellen 

sowie als Nanocarrier für die Behandlung pathogener Biofilme aufzeigt werden. 

In der ersten Studie wurde ein pH-Nanosensor auf Basis von biokompatiblen Polystyrol-

Nanopartikeln für die Messung und bildliche Darstellung des pH-Werts in Biofilmen 

entwickelt. Der Nanosensor nutzt ein ratiometrisches Prinzip zur pH-Wert Bestimmung, 

basierend auf den Fluoreszenz-Intensitätsverhältnissen des pH-unempfindlichen Farbstoffs 

Nilrot und des pH-empfindlichen Farbstoffs Fluorescein-Isothiocyanat (FITC). Die Bestimmung 

der Fluoreszenzen erfolgt mittels konfokaler mikroskopischer Bildgebung. Damit ist es 

möglich, den pH-Wert sowohl dreidimensional als auch über lange Zeiträume zu messen und 

abzubilden, z.B. um dynamische Prozesse in Biofilmen genauer zu untersuchen. In der Studie 

wurde die Funktionalität des pH Nanosensors an einem Anwendungsbeispiel demonstriert, 

bei dem die zeitabhängigen pH-Änderungen, die durch die Stoffwechselaktivität von 

Escherichia coli Biofilmen ausgelöst werden, abgebildet wurden. Die Anwendung des 

Nanosensors ist unkompliziert, es wird kein besonderes Equipment benötigt und trotzdem 

sind die Messungen sehr genau und der Sensor robust. Dies ist unter anderem auf das 

durchdachte Designkonzept des Sensors mit seinem ratiometrischen Messprinzip 

zurückzuführen und macht ihn zu einem wertvollen Werkzeug für die Charakterisierung der 

chemischen Mikroumgebung von Biofilmen. Der pH-Nanosensor kann dazu beitragen, die 

Dynamik von Biofilmen besser zu verstehen und die Entwicklung verbesserter Strategien zur 

Bekämpfung von durch Biofilme verursachten Gesundheitsproblemen zu ermöglichen. 
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In der zweiten Studie wurde ein Nanosensor für die Bestimmung des extrazellulären pH-Werts 

und der extrazellulären pH-Mikroumgebung von eukaryotischen Zellen beschrieben. Dieser 

funktioniert nach dem gleichen Prinzip wie der Sensor der ersten Studie, doch eine 

entscheidende Weiterentwicklung ermöglicht die Messung des pH-Wertes direkt auf der 

Zelloberfläche. Der Nanosensor ist mit einem Lektin konjugiert, welches an die Zellmembran 

bindet und den Nanosensor dort verankert. Dadurch wird die präzise und räumlich aufgelöste 

Messung des extrazellulären pH-Werts an der Zelloberfläche einzelner Zellen ermöglicht. Die 

Studie zeigt die Vielseitigkeit und Kompatibilität dieses pH Nanosensors mit verschiedenen 

Zelllinien aus unterschiedlichen Organen in Verbindung mit einem effektiven Targeting. Dieser 

Nanosensor hat großes Potenzial für die Erforschung der extrazellulären Mikroumgebung und 

für ein tieferes Verständnis von zellulären Prozessen eingesetzt zu werden. Die Anwendungen 

des Nanosensors finden sich in der biomedizinischen Forschung, wie beispielsweise in der 

Krebsforschung oder zur Untersuchung von Stoffwechselstörungen sowie für diagnostische 

oder therapeutische Zwecke. 

In der dritten Studie wurde ein neuartiges Tool zur Eradikation von Biofilmen mittels 

photodynamischer Therapie entwickelt und angewendet. Polystyrol-Nanopartikel dienen als 

Träger, um den lipophilen Photosensibilisator (ein Bordipyrromethen-Derivat) einzubetten 

und zur Aktivierung am Zielort in den Biofilm zu bringen. Die Studie zeigte, dass die mit 

Photosensibilisator beladenen Nanopartikel hochwirksam gegen planktonische Bakterien und 

bakterielle Biofilme pathogener Bakterien wie Escherichia coli, Staphylococcus aureus und 

Streptococcus mutans, sind. Darüber hinaus wurden in der Studie die Wechselwirkungen der 

Nanopartikel mit den Biofilmen charakterisiert, um das Wissen über die Wirkmechanismen 

der antimikrobiellen photodynamischen Therapie mit nanopartikulären Wirkstoffen gegen 

Biofilme zu erweitern. Die mit Photosensibilisatoren beladenen Nanopartikel haben sich als 

wertvolle Hilfsmittel zur Verhinderung und Vernichtung von Biofilmen erwiesen. Sie zeigten 

dabei eine höhere Wirksamkeit als viele Systeme aus bereits publizierten Studien zur 

antimikrobiellen photodynamischen Therapie, sowohl mit als auch ohne Nanopartikel. Damit 

besitzen sie ein großes Potenzial als wirksames Mittel im Kampf gegen Biofilme eingesetzt zu 

werden. Sie stellen eine praktische und unkomplizierte Alternative zu bestehenden Methoden 

dar und haben gleichzeitig ein deutlich geringeres Risiko, zur Entwicklung bakterieller 

Resistenzen beizutragen. 



 

11 
 

Zusammenfassend zeigen die drei Studien das Potenzial von polymeren Nanopartikeln als 

Träger für eine wirksame antimikrobielle Behandlung und als Sensoren, die z.B. wertvolle 

Einblicke in die Mikroumgebung von Biofilmen ermöglichen. Weiterhin ermöglichen diese 

Sensoren präzise extrazelluläre pH-Messungen in verschiedenen Zelllinien. Diese Fortschritte 

sind vielversprechend für künftige Forschungen und Anwendungen in Bereichen, die von der 

Charakterisierung von Biofilmen bis zur biomedizinischen Forschung und antimikrobiellen 

Therapie reichen.  
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Abstract 

 

Nanoparticles are well-suited for developing diagnostic and therapeutic tools due to their 

small size and favorable physicochemical properties. They provide unique features that many 

conventional approaches cannot, such as high-resolution imaging utilizing nanosensors, 

improved bioavailability of nanoformulated therapeutics, and targeted delivery. Polymeric 

nanoparticles can be easily structurally modified to tailor specific properties, making them 

suitable for a wide range of applications. Three studies were carried out as part of this thesis, 

demonstrating the diverse applications of polystyrene nanoparticles as nanosensors for 

biosensing in biofilms and eukaryotic cells, and as nanocarriers for the treatment of 

pathogenic biofilms. 

In the first study, a pH nanosensor based on biocompatible polystyrene nanoparticles was 

developed to determine and visualize the pH in biofilms. The nanosensor employs a 

ratiometric principle to determine pH, based on the fluorescence intensity ratio of the pH-

insensitive dye nile red and the pH-sensitive dye fluorescein isothiocyanate (FITC). The 

fluorescence is acquired by confocal laser scanning microscopy. This method allows for three-

dimensional measurement of pH over extended time periods, enabling detailed studies of 

dynamic processes in biofilms. The study demonstrated the functionality of the pH nanosensor 

by imaging the time-dependent pH changes induced by the metabolic activity of Escherichia 

coli biofilms. The nanosensor is easy to use, no special equipment is required, yet the 

measurements are precise, and the sensor is very robust. This is achieved by the smart design 

concept with its ratiometric working principle, making it a valuable tool for characterizing the 

chemical microenvironment of biofilms. The pH nanosensor can improve the understanding 

of biofilm dynamics and enable the development of improved strategies to combat biofilm-

associated health problems in industry and for clinical settings. 

The second study describes a nanosensor for the determination of extracellular pH and the 

extracellular pH microenvironment of eukaryotic cells. The nanosensor operates on the same 

principle as the sensor in the first study, but a significant addition enables the direct 

measurement of pH at the cell surface. The nanosensor is conjugated to a lectin, which binds 

to the cell membrane and anchors the nanosensor to the cell surface. This method enables a 

precise and spatially resolved measurement of extracellular pH at the cell surface of individual 

cells. The study demonstrates the versatility and compatibility of this pH nanosensor with 
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different cell lines from various organs, combined with effective targeting. It has great 

potential for studying the cellular microenvironment and gaining a deeper understanding of 

cellular processes based on these microenvironments. Its applications are found in biomedical 

research, particularly in cancer research, for understanding and studying metabolic disorders, 

and for diagnostic or therapeutic purposes. 

In the third study, a novel tool for the photodynamic eradication of biofilms was developed 

and applied. Polystyrene nanoparticles were used as carriers to embed the lipophilic 

photosensitizer (a boron-dipyrromethene derivative) and deliver it to the biofilm for 

activation at the target site. The study demonstrated that the photosensitizer-loaded 

nanoparticles were highly effective against planktonic bacteria and bacterial biofilms of 

pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Streptococcus 

mutans. Furthermore, the study aimed to characterize the interactions between nanoparticles 

and biofilms to enhance the understanding of the mechanisms behind antimicrobial 

photodynamic therapy using nanoscale treatment agents against biofilms. The 

photosensitizer-loaded nanoparticles were found to be a highly effective tool in the 

prevention and removal of biofilms. They showed even higher efficacy than many tools in 

previously published studies about antimicrobial photodynamic therapy, both with and 

without nanoparticles. The nanoparticles presented in this study have great potential to be 

used as effective tools in the fight against biofilms. They offer a practical and straightforward 

alternative to existing methods, with a lower risk of bacterial resistance developing in the 

future. 

In summary, these studies highlight the potential of polymeric nanoparticles as carriers for 

effective antimicrobial treatment and as sensors for providing valuable insights into biofilm 

microenvironments. Furthermore, they enable precise extracellular pH measurements in 

diverse cell lines. These advancements hold promise for future research and applications in 

fields ranging from biofilm characterization to biomedical research and antimicrobial therapy. 
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Abbreviations 

 

aPDT   antimicrobial photodynamic therapy 

BODIPY boron-dipyrromethene 

DLS   dynamic light scattering 

EPR  Enhanced Permeability and Retention 

EPS   extracellular polymeric substances 

FITC  fluorescein isothiocyanate 

MIC   microbially induced corrosion 

NPs   nanoparticles 

NR  nile red 

PDT   photodynamic therapy 

PEG   polyethylene glycol 

pHe  extracellular pH 

pHi   intracellular pH 

PS   polystyrene 

PTS   photosensitizers 

QS   quorum sensing 

ROS   reactive oxygen species 

SEM   scanning electron microscopy 

UV   ultraviolet light 

WGA  wheat germ agglutinin 

WHO  World health organization 
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1. Introduction 

 

1.1. Nanosensors for biosensing 

 

A biosensor is an analytical tool that detects, monitors, or quantifies a biological component, 

biological molecule, or biochemical reaction in or produced by a biological system. Biosensors 

have been developed for a wide range of biological systems, including eukaryotic cells, tissues, 

fungi, bacteria, and biofilms, for both in vitro and in vivo applications. They have proven to be 

highly valuable in many areas including the medical field, pharmaceutics, biotechnology, food 

safety, environmental monitoring, and forensics 1,2. 

Biosensors on the nanoscale are often referred to as nanobiosensors or short nanosensors 

and will be the topic of the following chapter of this work. They are often fabricated from 

nanoparticles (NPs). The materials used to produce nanosensors are diverse, including 

biological and synthetic polymers, metals, metal oxides, carbon, and many others, depending 

on the requirements of the application 3. Some sensors consist of a single material, while 

others are composed of a mixture of materials. The core-shell nanosensor is a widely used 

design, where the core of the particle is made of one material and the shell is made of another. 

This design can improve the interaction with the analyte and allows for the combination and 

fine-tuning of various material properties within a single sensor or particle 4. 

 

1.1.1. Rationale for using nanoparticles 

 

Nanomaterials are materials with at least one dimension in the nanometer scale, typically less 

than 100 nm. While some nanomaterials occur naturally, such as oxides, minerals, or rock 

abrasion, the majority of nanomaterials used in research and the production of nanosensors 

are man-made. The fabrication of materials and particles in nanometer size is motivated by 

the fact that NPs have significantly different properties compared to the same material with 

larger dimensions. For instance, NPs have a higher surface-to-volume ratio than their 

respective bulk material. This results in new material properties in chemical, physical, optical, 

and mechanical aspects, such as increased reactivity, as more atoms or surface groups can 

interact with the environment. The size-dependent properties of NPs also vary depending on 
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their composition. Gold NPs are a good example of size-dependent reactivity and optical 

properties. Gold is considered chemically inert in its solid form, and in particulate form in sizes 

as small as the double-digit nanometer range 5. However, gold NPs smaller than approximately 

5 nm exhibit a significantly increased reactivity, and these gold NPs are even used as 

catalysts 6. On top, gold NPs can have a range of colors, including red, green, blue, and brown, 

depending on their size and shape 7. When metals or semiconductor NPs interact with visible 

or near-infrared light, quantum effects dominate the material properties and a phenomenon 

called surface plasmon resonance occurs 8. The plasmon oscillation generates strong 

electromagnetic fields at the particle surface. These surface plasmons can decay by photon 

emission resulting in the colored appearance of the NPs. Other types of NPs that use size-

dependent photoemission are quantum dots, which exhibit size-dependent light absorption. 

Due to their distinctive optical properties, they are utilized in the production of displays and 

solar cells. Unfortunately, many inorganic NPs, including quantum dots, are toxic in biological 

systems, which limits their use in medical and diagnostic applications 9. Figure 1 displays 

various classes of NPs, along with examples, advantages, and limitations of their use.  

 

 

 

Figure 1. Common classes and subclasses of nanoparticles (NP) with some of the main advantages and 

disadvantages regarding cargo, delivery, and biological response. Reprinted with permission from reference 10. 

Copyright by Springer Nature 2021. 
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Polymeric NPs, such as dendrimers or nanospheres, are a promising alternative for diagnostic 

use, as they can be labelled with dyes and used for imaging. Polymer particles have the 

potential to be used as drug delivery vehicles. However, not all types of polymers are 

biocompatible. Lipid-based NPs, such as liposomes or solid lipid NPs, are a better option due 

to their good biocompatibility. However, they have limitations in terms of the amount and 

type of cargo. 

 

When utilizing nanomaterials, especially in biochemical research and the medical field, it is 

important to consider that most biological processes occur on the nanoscale. As a result, NPs 

interact differently with cells and cellular processes. This enables the optimization of 

interactions between NPs and biological targets, such as receptors, enzymes, or cells, leading 

to the development of new strategies for therapy and diagnosis. However, it is important to 

note that this increased interaction can cause the toxicological properties of NPs to differ 

significantly from those of larger particles. In addition, when NPs are exposed to biological 

fluids, particles generate a dynamic layer of biomolecules, mainly proteins, known as the 

protein corona 11. The protein corona can impact the interaction of NPs with their 

surroundings and, consequently, their toxicity 12. The protein corona's composition varies 

depending on the protein composition of the biological fluid. This variability makes it a 

complex task to evaluate the impact of the protein corona on NPs toxicity. Consequently, 

regulatory efforts aimed at evaluating the hazard posed by NPs should incorporate 

comprehensive assessments that account for the distinct toxicological properties arising from 

the size in the nanoscale. 

 

1.1.2. Benefits of polystyrene nanoparticles 

 

Polystyrene (PS) is a synthetic polymer composed of styrene monomers. Its applications are 

numerous. In its foamed form, it is commonly used as a packaging material and for thermal 

insulation. In its solid form, it is used as a disposable product in laboratory equipment and for 

the fabrication of NPs. In the following section, the specific properties of PS NPs and the 

resulting potential applications are discussed in detail. 

PS NPs can be easily synthesized and are also commercially available in a broad size range, 

from several nanometers to large PS spheres in the micron range. They are known for their 
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excellent size uniformity and narrow particle size distribution, which is achieved through 

controlled synthesis methods during manufacturing. Modern synthesis methods for PS NPs 

are emulsion polymerization and controlled radical polymerization techniques like atom 

transfer radical polymerization or reversible addition-fragmentation chain transfer 13. 

Furthermore, the use of monodisperse initiators for polymerization can propagate to the 

growing polymer chains, resulting in NPs with a narrow size distribution. A narrow size 

distribution is an important factor for maintaining suspension stability, as phenomena such as 

agglomeration are minimized. The use of stabilizing agents or surfactants in the synthesis of 

NPs also helps to prevent agglomeration and aggregation of the particles.  

PS NPs mostly possess a spherical morphology, irrespective of their size, a trait ascribed to the 

influence of surface tension during their synthesis through precipitation (Figure 2). The 

customization of PS NPs into non-spherical shapes, such as discs, rods, golf balls, or fiber-like 

structures, is feasible, catering to specific application requirements 14. The morphology of NPs 

plays a critical role for biological interactions, impacting cellular uptake, as well as degradation 

processes 15-17. 

 

 

Figure 2. Transmission electron microscopy (left) and scanning electron microscopy images (right) of polystyrene 

nanoparticles displaying the uniform size and shape morphology. 

 

The stability of NP suspensions is influenced by several factors, including van der Waals forces, 

Coulomb forces, and the distance between neighboring NPs (which is concentration 

dependent). When attractive forces dominate, NPs tend to agglomerate or aggregate, 

whereas a predominance of repulsive forces leads to stabilization. There are several methods 

of stabilizing NPs, such as electrostatic or steric repulsion. To enhance electrostatic repulsion, 

charged surface groups can be introduced to NPs trough covalent binding or adsorption. When 

neighboring NPs share the same surface charge, repulsion is induced, leading to stabilization 

of the NPs. Zeta potential is a measure of the surface charge of NPs, with values above +30 
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mV or below ‒30 mV considered indicative of high colloidal stability. Steric repulsion is 

achieved by attaching long chain polymers to the NPs to increase the distance between the 

particles. Electrosteric stabilization, which combines both electrostatic and steric effects, can 

also be used to stabilize NP dispersions 18. 

 

One advantage of using synthetic polymers such as PS NPs is the wide range of options for 

equipping the NPs with functional groups. The properties of the particles such as colloidal 

stability (aggregation tendency), reactivity, biocompatibility, biodistribution, and 

pharmacodynamics can be influenced by the type and quantity of functional groups. In 

addition, the surface groups are the primary point of interaction between the particles and 

their environment. The terminal surface functionalities on the NPs, formed by co-

polymerization of a monomer, act as anchoring points for subsequent surface 

functionalizations. 

The most commonly used groups for surface functionalization of PS NPs are carboxyl and 

amino groups. Carboxyl groups turn the surface of the particles hydrophilic, resulting in 

excellent particle suspendability in water. This is particularly beneficial for application in 

biological systems, which are typically aqueous. In addition, the carboxyl groups give the NPs 

a negative zeta potential at neutral pH, which can be beneficial for the suspension stability. 

Carboxyl groups can also be utilized to conjugate other biomolecules to adapt the function of 

the particles. For the conjugation, the carboxyl groups must first be activated as they have a 

very low reactivity. A carbodiimide, such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 

is typically used to convert the carboxyl group into an active ester. The resulting active ester 

can then react with the amino groups of the conjugation partner through an addition-

elimination reaction to form an amide 19. Dye molecules can be conjugated to create colored 

or fluorescent particles, which can be used for imaging or colorimetric quantification. 

Additionally, biomolecules such as proteins or antibodies can be conjugated for targeting 

purposes. 

Another common surface functionalization for PS NPs are amino groups, which result in the 

particles having a positive zeta potential at a neutral pH value. Biomolecules, small molecules, 

or dyes containing amino-reactive groups can be conjugated to the particle’s amino groups, 

e.g. via addition-elimination reactions. Dyes commonly used for this type of conjugation are 

fluorescein isothiocyanate (FITC), Texas Red (with a sulfonyl chloride group) or 5-TAMRA-SE 
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(with a succinimidyl ester group). Amino groups at the surface of PS NPs are most often 

synthesized from carboxyl groups through conjugation of a diamino compound resulting in a 

mixture of both surface groups instead of a pure amino group functionalization. 

PS NPs can be functionalized with various other surface groups, such as thiol, aldehyde, 

maleimide, epoxide, azide, and vinyl groups. These groups can expand the range of 

conjugation partners that can be coupled using other conjugation reactions, such as click 

reactions with e.g. cyclooctyne derivatives reacting with azide groups. 

 

The toxicity of PS NPs is relatively low compared to other polymeric NPs due to the inertness 

of PS as a material 20-22. Therefore, the toxicity and biocompatibility of PS NPs are primarily 

determined by the surface chemistry, specifically the type and number of functional groups. 

The surface groups are crucial for biocompatibility and toxicity as they are the first point of 

interaction with the biological environment. The presence of free reactive groups on the NPs, 

such as those with a high cationic surface charge, can result in cytotoxicity. Numerous studies 

have demonstrated that a positive surface charge is linked to higher toxicity of PS NPs in 

comparison to neutral or negatively charged PS NPs 23-25. Positively charged NPs interact more 

effectively with cell membranes. This is due to attractive electrostatic interactions with 

negatively charged phospholipids or membrane proteins. As a result, non-phagocytic cells can 

more easily take up NPs, which plays a critical role for toxicity 26,27. In addition, due to the 

increased membrane interactions of cationic PS particles, cell membrane ruptures can occur, 

leading to cell death 21. This relationship between cationic surface charge and increased 

toxicity is also observed in other types of NPs, including carbon nanotubes, silica NPs, and 

liposomes 28,29. Additionally, surface groups with a highly hydrophobic character can interact 

more strongly with cell membranes, potentially leading to membrane disruption 27. When 

assessing the toxicity of NPs for bacteria, the particle’s surface charge and hydrophilicity are 

the predominant factors to be considered. In addition, it should be noted that bacteria are not 

able to actively take up NPs in a size-dependent manner. Neutral and negatively charged PS 

NPs are generally considered non-toxic and non-inflammatory, making them suitable carriers 

for in vitro cell studies 30,31. 

 

In summary, PS NPs are very versatile and can be easily and effectively structurally customized 

for various purposes. Most PS NPs exhibit a narrow particle size distribution and good 
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biocompatibility. The possibility to easily load and conjugate PS NPs with different molecules 

such as dyes, drug molecules or targeting moieties make them a universally applicable 

platform for nanoscale tools for diverse applications. 

 

1.1.3. Fluorescent nanoparticles as biosensors 

 

Polymeric NPs are often used as nanosensors. Nanosensors are typically classified based on 

the stimuli they respond to, i.e. chemical stimuli (elements and molecules like glucose, lactate, 

oxygen or protons), biological stimuli (pathogens, enzymes, DNA), mechanical stimuli 

(position, force, pressure), optical stimuli (absorbance, fluorescence, refractive index), 

thermal stimuli (temperature), electrical stimuli (charge, potential), or magnetic stimuli 

(magnetic fields) 3,32. Classification of nanosensors by the readout parameters is also common 

and the main categories are electrochemical, optical, piezoelectric, and thermometric readout 

33. This works focus is on optical nanosensors, more specifically on fluorescent nanosensors. 

These sensors are based on the readout of fluorescence signals, either after excitation of a 

fluorescent dye or by the inherent fluorescence of a sensor. The molecules absorb photons 

and undergo transition to an excited state. Upon returning to their ground state, they emit 

fluorescence at a characteristic wavelength. Fluorescence can be detected sensitively using 

instruments such as spectrometers and microscopes. The response to a stimulus can be 

measured by changes in fluorescence intensity or the shift in the wavelength of the 

fluorescence maximum. Commonly used fluorescent sensor dyes e.g., for measuring pH via 

fluorescence are fluorescein-based dyes, seminaphthorhodafluors (SNARF), naphthalimide 

dyes or rhodamine dyes 34,35. 

Single-wavelength intensity-based probes are commonly used for sensing due to their simple 

instrumentation and operation 36. However, the accuracy of their determination is often 

compromised by fluctuations in excitation light intensity, variations in dye concentration, and 

interference from other potential stimuli, such as high salt concentrations 34. Ratiometric 

fluorescence sensors effectively overcome many limitations of the single-wavelength 

intensity-based sensors 37-39. Ratiometric sensors measure the fluorescence intensity of an 

analyte-sensitive sensor dye and an analyte-insensitive reference dye simultaneously. The 

analyte value is then derived from the ratio of these two intensities. The advantage of this 
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method is that the ratio is not affected by variations in dye concentration and excitation light 

intensity, making it a more accurate and robust measurement system.  

To fabricate a ratiometric sensor, the sensor and reference dye can be incorporated into the 

same NP. When both dyes are embedded in the NP, a permeable NP matrix is required for the 

target analyte. Therefore, most ratiometric nanosensors embed the reference dye in the NP 

core and conjugate the sensor dye to the functional groups on the particles surface. The 

previous section 1.1.2. discussed the possibilities of dye conjugation to PS NPs. Various 

techniques can be used to embed dyes in polymer NPs, which are typically divided into 

polymerization-based strategies and strategies based on preformed polymers 40. 

Polymerization-based strategies can involve chemical conjugation of the dyes to the 

monomers before polymerization, resulting in polymer particles with covalently bound 

dyes 41. Techniques that employ preformed polymers can use one-step swelling procedures 42. 

These one-step swelling procedures are both simple and effective and involve swelling the PS 

NPs in organic solvents, such as tetrahydrofuran, before adding a dye solution 43. Once the 

dye has diffused into the swollen particles, the solvent is removed, and the NPs are deswollen 

in water, embedding the dye in the polymer structure. This technique is particularly 

advantageous for lipophilic dyes such as nile red (NR) or rhodamines, as their low affinity for 

water prevents leakage of the NPs in aqueous media. 

Numerous fluorescent ratiometric nanosensors are used for various applications, such as 

nanosensors based on polymer or silica NPs labelled with stimuli-responsive sensor dyes. The 

benefits of such systems include enhanced brightness due to the incorporation of a large 

number of fluorophores into a particle as well as improved photostability 44,45. Another 

advantage of NPs loaded with fluorescent dyes is the opportunity to easily customize them to 

suit the application’s requirements. Therefore, several sensing dyes for different analytes 

could also be incorporated in the same particle if they have spectrally discriminable 

fluorescence signals 46,47. This characteristic facilitates multiplexing, wherein multiple dyes can 

be simultaneously detected in a single assay 48,49. 

 

Fluorescent NPs have emerged as powerful biosensors due to their ability to enable three-

dimensional imaging, their robustness, ease of fabrication and modification, and 

uncomplicated readout with standard laboratory equipment. The use of various types of NPs 

and fluorescent dyes provides flexibility in developing biosensor tools that are tailored to 
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specific applications. However, it is important to ensure that biosensors do not interfere with 

the biological system under investigation. This is particularly important as it can lead to biased 

results or even render the measurement impossible. Therefore, a nanosensor system must be 

specifically designed and tested for use in a particular biological system. The following sections 

describe nanosensors for the application in two different biological systems, namely bacterial 

biofilms and eukaryotic cells. 

 

1.1.4. Bacterial biofilms 

 

Biofilms are communities of microorganisms that adhere to surfaces and are surrounded by a 

self-produced matrix. This matrix consists mainly of water and extracellular polymeric 

substances (EPS) such as polysaccharides, proteins, DNA and lipids 50. The EPS matrix is vital in 

enhancing the resistance of biofilms to external influences, such as changes in temperature, 

desiccation, shear forces, and disinfection 51. This is attributed to its role in fostering biofilm 

development, providing structural stability, and creating a diffusion barrier. In addition, it 

forms a reservoir for nutrients and allows the microorganisms to establish long-term 

synergistic interactions and to disperse further 52,53 (Figure 3).  

 

 

Figure 3. The phases of biofilm development and biofilm dispersion, starting with the adhesion of planktonic 

bacterial cells to a surface and to each other. The bacteria proliferate, the EPS matrix is produced, and the 

bacterial population matures to form a biofilm. The biofilm can disperse when bacteria detach and move as 

planktonic bacteria in the medium, adhering to new surfaces to repeat the cycle. 

 

Bacterial species with the ability to form biofilms pose a significant challenge to various sectors 

including healthcare, the food industry, the marine industry as well as water treatment 
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facilities (Figure 4). Biofilm formation shields and protects bacteria from typical cleaning 

agents such as soaps, alcohols, and other disinfectants, allowing them to persist even after 

cleaning. In the food industry, persistent bacteria colonize the interior of mixing tanks, drums, 

and hoses, thereby compromising the quality and safety of food. Biofilms on medical 

equipment may pose an even greater risk and are discussed in detail in section 1.2.1.  

 

 

Figure 4. The figures of global economic impact estimated from an in-depth market analysis commissioned by 

the U.K. National Biofilms Innovation Centre in 2021. This perspective highlights the extensive reach of biofilm 

interactions across key sectors such as food production, agriculture, healthcare, wastewater treatment, and 

marine industries 71. Adapted from reference 75 under the Creative Commons Attribution 4.0 International 

License. Copyright by Springer Nature 2022. 

 

Generally, medical equipment, such as infusion bags, tubes, and plasters, can become 

contaminated with bacteria over time, leading to the formation of biofilms 54. Despite 

significant advances in materials science leading to a reduction in biofilm formation on medical 
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devices, bacterial colonization remains a concern. Bacteria are ubiquitous in many areas of 

the body, for instance the digestive tract and oral cavity. Therefore, it is always possible for 

planktonic bacterial cells to adhere to a surface, form a cell aggregate and ultimately form a 

biofilm. A prime example of a disease caused by a biofilm infection is dental caries. Although 

oral hygiene can reduce the formation of biofilms, it cannot permanently prevent the 

presence of bacteria. 

 

Biofilms create microenvironments with different ion concentrations, redox potentials, 

oxygen levels, and pH values compared to the surrounding medium 55-57. Even within a biofilm, 

there can be gradients and heterogeneities of these properties 58. For instance, the pH value 

within a bacterial biofilm colony is crucial for many metabolic processes and is often regulated 

by the colony itself, ensuring optimal conditions for the survival and proliferation of the 

biofilm 59. In dental caries, biofilms containing various microorganisms such as Lactobacilli spp. 

and different types of Streptococci spp., especially Streptococcus mutans, metabolize low 

molecular weight carbohydrates from food, such as sugar, into organic acids 60,61. This process 

can cause a drop in pH at the tooth-biofilm interface. If the pH of the tooth falls below a critical 

level of approximately 5.5, minerals such as calcium phosphates can leach from the tooth 

structure, resulting in a slow demineralization of the underlying enamel 62,63. If this is left 

unattended, demineralization of the enamel will lead to the formation of a carious lesion. As 

the presence of sugars is necessary for this process, individuals who consume high amounts 

of sugar are more susceptible to plaque buildup 64. It is therefore important to be able to 

measure and monitor pH, for example in biofilm models, for caries research and treatment 

strategies.  

In addition to health-related applications, the ability to monitor the pH of biofilms is also 

important in industrial environments. Biofilms and their acidic metabolites can induce 

material corrosion, known as microbially induced corrosion (MIC), e.g., when they are present 

on metal surfaces such as aluminum or steel 65,66. This problem is often associated with 

damage in power plants, refineries, petrochemical facilities, fuel tanks and maritime 

infrastructure, where it is also referred to as biofouling 67-69. The annual damage caused by 

MIC is estimated to be around $500 billion 70,71. Even on surfaces that are normally alkaline, 

such as concrete with a pH of 9-12, biofilms can colonize and lower the pH significantly 



 

 26 

through their metabolites, resulting in structural damage 72. Thus, there is a growing need to 

investigate chemical gradients, such as pH in biofilm microenvironments in more detail 73,74.  

 

1.1.5. Nanosensors for the measurement of pH in biofilms 

 

Measuring extracellular pH within biofilms and pH gradients over extended time periods and 

areas can be challenging and time-consuming. Common monitoring methods include pH 

microelectrodes and indicator dyes. A pH microelectrode typically uses a membrane 

permeable to hydrogen ions. It measures the electrical potential difference between the 

hydrogen ions inside the electrode’s internal electrolyte solution and outside the 

electrode 76,77. Microelectrodes are suitable for bulk pH measurements in aqueous media. 

However, their applicability to measure pH inside biofilms is limited by the tip size and small 

electrode area, allowing only a single detection point per measurement 78. To monitor pH 

levels across larger areas using an electrode, it is necessary to either move the electrode 

within the biofilm or apply multiple electrodes at different positions 79. Therefore, 

microelectrode-based techniques are not suitable for dynamic pH measurements in biofilms 

due to their invasive nature and potential to cause irreversible damage 80. In addition, 

electrodes often have slow response times, which makes them unsuitable for extended 

dynamic pH measurements. For pH imaging microfluidic chips and thin-film sensors are an 

improvement over microelectrodes as they can detect pH over large areas 81-83. However, they 

are limited to measuring pH only at the chip-biofilm interface and cannot provide three-

dimensional data, which is critical for understanding biofilm microenvironments. 

 

In addition to microelectrodes, pH can also be determined optically using indicator dyes or 

pH-responsive fluorescent optical probes, which are both relatively inexpensive and easy to 

use 84. The principle of functionality is based on the variation of their fluorescence or 

absorption, which is dependent on the protonation state of the dye molecule. The transition 

point is determined by the pKa value of the dye molecule used. Typical indicators with pH-

dependent absorption are e.g., phenolphthalein, bromothymol blue and litmus. However, if 

the measurement is based on the intensity of a single wavelength, as described in section 

1.3.1, the determined pH is susceptible to variations in sensor dye concentration and 

excitation light intensity. Furthermore, it is important to note that the process of determining 
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pH in a biofilm differs significantly from that of an aqueous bulk phase. Indicator dyes can be 

taken up by bacterial cells, which may affect the sensitivity of the indicator or harm the 

bacteria 85,86. Internalized sensor dyes simultaneously generate signals for both the 

intracellular and extracellular compartments of a biofilm. Common readout methods, such as 

colorimetric, fluorescence, or absorption measurement with a plate reader, cannot distinguish 

signals locally between the two compartments. However, the pH of the intracellular and 

extracellular biofilm compartments often differs. Therefore, the pH determined by this 

method is a combination of the two signals, which does not represent the real pH in each 

compartment and is therefore inaccurate. Moreover, molecular dyes can suffer from relatively 

low photostability hampering the measurement of time-dependent pH changes. 

 

As described in the previous section, the determination of pH via ratiometric fluorescence 

measurements with a nanosensor provides a highly functional, yet easy-to-use method. 

Encapsulating the reference and indicator dyes in the particle core can reduce their interaction 

with the biofilm and increase the robustness. However, many of the nanosensors described in 

literature to date tend to easily aggregate in biological systems, rendering them unsuitable for 

long-term measurements. In addition, many sensors are limited to imaging only very narrow 

pH ranges 57,87. Nevertheless, these limitations can be overcome through rational design and 

careful selection of dyes and particles as presented in the study in chapter 3.1. 

 

In summary, the numerous advantages of optical sensing methods have led to an increasing 

interest in easy-to-use but highly functional tools that can accurately determine pH in biofilms 

over extended periods of time. The widespread application of nanosensors for pH 

measurement in biofilms requires either commercially available systems, which are not yet on 

the market, or sensor particles that can be easily prepared in most laboratories using 

commercial components without complex synthesis 38,88. Apart from biofilms, other biological 

systems also depend greatly on pH, hence there is a great interest for pH nanosensors as tools 

for their investigation.  
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1.1.6. Relevance of extracellular pH in eukaryotic cells 

 

The regulation and maintenance of cellular pH is essential for cellular homeostasis. This 

applies to both intracellular pH (pHi) and extracellular pH (pHe). Various processes control and 

finely balance the maintenance of pHi and pHe. The pHi of healthy cells is kept stable within a 

narrow range of 7.0–7.2 89 or 7.0–7.4 90 depending on the source and type of cells. It is worth 

noting that some cell types have pHi values that deviate from this range. For example, skeletal 

muscle cells have a slightly lower pH range of 6.8–7.1, while gastric mucosal cells have a higher 

pH of approximately 8.0 91. The high pHi is the result of the acid production by the cells. The 

produced acid is then released into the digestive tract, leaving an excess of alkaline ions within 

the cell. 

Generally, the pHi is regulated by active processes such as proton pumps, bicarbonate 

transporters, and cellular buffering systems and by passive processes such as ion diffusion e.g. 

through selective ion channels. These processes are interconnected by feedback mechanisms 

and keep each other in balance to maintain the pHi. The pHi plays an important role in many 

physiological processes such as enzyme activity, ion transport, and protein functionality. 

Therefore, pHi also influences basic cellular functions such as cell signaling, metabolism, 

growth, proliferation, and apoptosis 92. 

 

The pHe microenvironment of cells is a critical parameter for cell function, both for individual 

cells and for cell populations such as tissues and organs. Physiologically healthy cells generally 

have a pHe of around 7.2-7.4, whereas the pHe of abnormal cells and tissues can vary 

significantly. For example, tumors often have an acidic pHe of 6.2-6.9 93. Hypoxic conditions in 

a tumor and an increased metabolic capacity lead to increased lactic acid production due to 

increased glycolysis, resulting in a lower pHe 94. Other pathomechanisms that can cause an 

abnormal pHe include inflammatory responses or metabolic disorders such as diabetic 

ketoacidosis, respiratory acidosis or hypoxia-induced acidosis. In these cases, the pHe in the 

affected tissues is also significantly lowered. Deviation from normal pHe can adversely affect 

cell health and cell-cell communication and lead to an altered immune response as well as 

triggering further photogenic cascades. Studies have shown that a tumor can develop a 

microenvironment of pH gradients and local pH heterogeneities 95,96. These heterogeneities 

are believed to promote a tumor’s invasive and metastatic phenotype and contribute to 
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therapy resistance 97-100. Efforts are being made to use pHe as a predictive marker for tumor 

invasion, immune response, and treatment strategies 101. Therefore, an accurate assessment 

of pHe can help in the evaluation of the extent of tumor invasion and possible treatment 

strategies. 

 

1.1.7. Nanosensors for the measurement of extracellular pH 

 

Numerous tools are available for the measurement of pHi 
35,102-106. However, there is a lack of 

functional tools for measuring pHe. This may be due to the difficulties associated with 

accurately measuring pH in close proximity to the cell 107,108. The limitations of conventional 

methods, such as pH microelectrodes, have been described in the previous section. In 

addition, nuclear magnetic resonance and positron emission tomography can also be utilized 

to measure pHe 95,109. However, due to their low spatial resolution, these methods are not 

suitable for determining pHe at the cellular level. Instead, they are better suited for larger 

clinical samples such as whole organs or animals. It is important to note that these methods 

can be expensive and require the use of a contrast agent that must be injected into the tissue 

being analyzed.  

Fluorescence-based methods are a promising option due to their ability to enable three-

dimensional imaging, ease of use, and robustness, as well as their excellent spatial and 

temporal resolution 110,111. A remaining challenge with many of fluorescent sensors, which use 

fluorescent dyes 103, proteins, lipids, and NPs 105,112 is their tendency to be taken up by cells. 

This internalization of the sensor prevents detection of pHe 113. Therefore, these sensors are 

more suitable for sensing pHi rather than pHe 114. To overcome this challenge and enable pH 

detection on the surface of cells, targeting moieties that anchor the sensor to the cell surface 

are employed. Targeting moieties like certain bioligands can also be utilized, to further 

enhance the selectivity of such nanosensors 115. Ideally, the sensor should accumulate at the 

target site to generate a high signal intensity. There are several mechanisms by which 

targeting can be achieved. These are discussed in the following section. 
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1.2. Nanoparticles as carriers for treatment agents 

 

Effective treatment of disease is often limited by the shortcomings of newly developed drug 

candidates that cannot enter clinical trials due to their physico-chemical properties. Small 

molecule compounds, especially those with low water solubility, often require new 

formulation and modification approaches to improve therapeutic efficacy. Encapsulation of 

therapeutic molecules in NPs or nanocarriers can improve their solubility and bioavailability, 

alter their bio-distribution, and can also facilitate entry into the target cell 116. Figure 5 displays 

the various properties of NPs that can be fabricated and adjusted to suit their use as carriers 

and delivery systems. These properties include surface and material properties, as well as the 

architecture of the NPs, particularly their size and shape. Targeting moieties can be attached 

to the NPs, and various stimuli-responsive entities can be integrated, allowing for the release 

of cargo. By the intelligent design of a NP, the platform can be tailored to a specific application, 

e.g., through combining different attributes in one particle.  

 

 

Figure 5. The properties of nanoparticle delivery systems that can be modified for an intelligent nanoparticle 

design include surface and material properties, targeting moieties, nanoparticle architecture, and responsiveness 

to stimuli. Reprinted with permission from reference 10. Copyright by Springer Nature 2021. 
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To optimize biodistribution, the compound can be packaged in NPs with a size ranging from 

approx. 10–100 nm. NPs of this size can bypass the clearing mechanisms in the kidneys and 

liver, thereby increasing the drug’s half-life in the body 117. NPs smaller than 5.5 nm are renally 

excreted and particles larger than 100 nm phagocytosed in the liver 118. Positively charged 

surfaces can enhance endocytosis 119. Hydrophilic surfaces, such as polyethylene glycol (PEG), 

can be utilized to provide NPs with stealth properties thereby increasing the circulation times 

and the treatment effect 120. Those properties can be useful in the treatment of tumors and 

are often used therapeutically. Examples of nanoformulations using PEG are Doxil® and 

Caelyx®, where doxorubicin hydrochloride is packaged in a PEGylated liposomal 

formulation 121. Other drug formulations utilizing the nanoscale are (1) Abraxane®, albumin-

bound paclitaxel NPs for the treatment of several cancer types, the NPs facilitate the delivery 

to the cancer cells; (2) Rapamune®, Sirolimus nanocrystals for immunosuppression therapy, 

the NPs increase the bioavailability due to increased solubility of the drug; and (3) Ritalin LA®, 

methylphenidate hydrochloride NPs for increased drug loading and increased 

bioavailability 122. The development of new nano formulations has also made further progress 

in recent years. For example, in the Covid-19 vaccines, e.g. Comirnaty® mRNA was 

encapsulated in lipid NPs about 100 nm in size to protect the active ingredient and facilitate 

transport into the target cells 123. 

 

Nanomedicine formulations can be designed to deliver therapeutics directly to a specific site 

in the body, resulting in a lower dose required to achieve a therapeutic effect and a reduction 

in unwanted side effects. This can be achieved, for example, by encapsulating substances in 

NPs with specifically designed properties for targeting. Two types of targeting are 

distinguished: passive and active targeting. Passive targeting with NPs, e.g., for cancer 

treatment typically employs the enhanced permeability and retention (EPR) effect. The EPR 

effect is a result of the tumor tissue’s altered physiology compared to healthy tissue. The 

tumor’s rapid cell division and increased metabolic activity require increased blood 

circulation, leading to the rapid formation of new, more permeable blood vessels. This 

increased permeability results in a greater transfer of nanoscale particles from the blood into 

the tumor tissue. Furthermore, the lymphatic drainage of the tumor is inferior to that of 

healthy tissue. This facilitates the retention of NPs in the tumor, resulting in their 

accumulation. 
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Active cellular targeting involves the application of targeting moieties (e.g. antibodies or 

aptamers) to the surface of the NPs. These targeting moieties are specific for certain cell 

structures such as receptors or antigens and allow for increased accumulation of the NPs at 

the target site or even facilitate uptake into the target cells. The target should either be 

present exclusively on diseased tissue or cells or be overexpressed in comparison to healthy 

cells to allow accumulation of the NPs at the target site. Commonly targeted receptors e.g. for 

cancer treatment include the HER2 receptor (found in breast and gastric cancer) 124, the folate 

receptor (found in ovarian and non-small cell lung cancer) 125, or the CD44 antigen (found in 

leukemia, pancreatic, and lung cancer) 126. However, this approach is limited by the fact that 

active-targeted NPs must first reach the target site after systemic application in order to bind 

to their target. The approach can be combined with passive targeting to deliver the NPs to 

tumor-specific cells or other target tissues. 

Several passively targeted NP formulations using the EPR effect have been approved for 

treatment in the last two decades, but to date none of the actively targeted NPs have yet 

passed clinical trials and been approved 116. One reason might be that the delivery efficiency 

of NPs to a tumor, both with active and passive targeting approaches, is rather low. A study 

by Wilhelm et al. assessed the delivery efficiency of 224 scientific publications on targeted NPs 

and found that only a median of 0.7% of the administered NPs dose was found in the tumor 118. 

This shows that there are still gaps in the translation from research to clinical application that 

will hopefully be bridged in the next years. 

 

NPs can also be used in vitro or for medical purposes outside the human body, for example as 

carriers for antimicrobial substances, which often face similar challenges as newly developed 

drug compounds. Therefore, nanocarriers are also used to combat microbes and biofilms. This 

is particularly useful in the development of novel disinfection strategies. The following section 

describes the background, design, and use of such nanocarriers in combating biofilms. 

 

1.2.1. Challenges and health threats of biofilms  

 

According to the U.S. National Institutes of Health, approximately 65% of all microbial 

infections and 80% of all chronic infections are associated with biofilms 127-129. Infections 

caused by biofilms can be life-threatening and difficult to treat. Endocarditis caused by 
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Staphylococcus aureus, infections of implants such as heart valves or prostheses, and lung 

infection including infections in patients with cystic fibrosis caused by Pseudomonas 

aeruginosa are only a few examples of biofilm-derived infections 130.  

However, it is important to recognize that not all infections that contribute to the high 

prevalence of biofilm-associated diseases are life-threatening. Other examples of less critical 

biofilm-associated infections include: urinary tract infections caused mainly by Escherichia 

coli 131,132, the aforementioned dental plaques leading to caries (Figure 6A), keratitis caused 

by bacterial biofilms on contact lenses (Figure 6B) 133, and otitis media caused by Haemophilus 

influenzae 134. Although not life-threatening these conditions still decrease quality of life.  

 

 

Figure 6. Scanning electron microscopy images of biofilms found in patients or medical equipment. A) A 

subgingival dental plaque biofilm. Extracellular polymeric matrix (solid arrow) with bead structures (dashed 

arrow) surrounds the rod-shaped bacterial cells (r) like a coating (s). Adapted from reference 139 under the 

Creative Commons CC-BY licence (CC-BY 4.0). Copyright by Springer Nature 2015. B) A biofilm found on a contact 

lens storage case from a patient with contaminated contact lenses. Adapted with permission from reference 133. 

Copyright by Oxford University Press 1998. C) Biofilm found on the inner surface of an extubated endotracheal 

tube. Adapted with permission from reference 138. Copyright by Springer Nature 2012. 

 

Furthermore, biofilm infections caused by Staphylococcus aureus, Staphylococcus epidermidis 

or Pseudomonas aeruginosa, such as infections of endotracheal tubes or catheters, are often 

initially non-critical 135. However, contamination of endotracheal tubes can lead to ventilator-

associated pneumonia, which can prolong the intensive care unit stay and has a mortality rate 
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of up to 30% 136,137. Gil-Perotin et al. conducted a study in an intensive care unit in which they 

examined endotracheal aspirates from intubated patients and later performed 

microbiological assessment of extubated endotracheal tubes 138. They found bacterial 

colonization in 87% of patients’ endotracheal aspirates and biofilm formation in 95% of 

endotracheal tubes (example see Figure 6C). Catheter infections can lead to blood poisoning, 

which is often lethal even under treatment. Biofilm-associated infections have been shown to 

cause more severe infections, particularly in hospital settings. For instance, Staphylococcus 

aureus and its biofilms pose a significant challenge in hospitals, particularly in intensive care 

units, due to their high pathogenicity and tendency to develop antibiotic resistance. 

 

Increasing antimicrobial resistance is a global threat that is also recognized by the World 

Health Organization (WHO). The WHO has published a report in 2017 containing a list of the 

prioritized multidrug-resistant pathogens for which research and development of new 

antibiotics is most urgent 140. All three pathogens in the “Priority 1: Critical” category 

(Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacteriaceae) and most of the 

pathogens in the other two categories are known to be biofilm-forming 77,141. The significance 

of managing and eliminating biofilms in the medical sector cannot be overstated. It is crucial 

for the global protection of human health, both presently and in the future. 

 

Strategies currently used to combat biofilms include cleaning and disinfection, material 

selection, and surface treatments such as the use of ultraviolet light, plasma and ultrasonic 

treatment 142,143. In the medical field, the use of antibiotics plays a fundamental role in the 

treatment and prevention of biofilm-associated infections. Most of these methods are 

primarily aimed at killing or inhibiting the growth of planktonic bacteria. Conventional 

methods for controlling and eradicating biofilms face two main challenges: (1) Bacteria in 

biofilms are more robust than planktonic bacteria, making therapeutic agents much less 

effective against bacteria living in biofilms 144. These agents are often inadequate for complete 

biofilm control and eradication 145. (2) The rapid and increasing emergence of antimicrobial 

resistance in many bacterial species poses a significant challenge for future eradication efforts.  

The primary concern is antibiotic resistance. Mechanisms of resistance include molecular 

modification of antibiotics, changes in binding sites or targets, changes in cell permeability 

that limit drug absorption, and increased drug efflux 146. The formation of biofilms is also 
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considered a strategy of resistance. Therefore, there is an urgent need for effective strategies 

to overcome bacterial persistence by inhibiting biofilm formation and eradicating mature 

biofilms. 

 

1.2.2. Novel prevention and eradication strategies for biofilms 

 

In the following section, three innovative methods that can be used to combat biofilms will be 

discussed: bacteriophage therapy, quorum sensing, and photodynamic therapy with NPs.  

 

Due to the increasing prevalence of antibiotic resistance, research into bacteriophage therapy 

for treating bacterial infections and biofilms has increased. This is because conventional 

antibiotic resistance mechanisms do not apply to bacteriophage therapy 147.  

Bacteriophages, also called phages, are viruses that utilize bacteria as host cells. They can be 

found in all natural environments in which bacteria occur and are bacteria species-specific. 

The bacteriophages multiply in the host bacteria resulting in cell death of the host 148. As 

bacteriophages require living bacteria for replication, they cannot reproduce once a bacterial 

infection has been eliminated. This is an advantage regarding clinical applications of phages. 

Due to their small size and mobility, phages are capable of penetrating biofilms. Therefore, 

they can be effective against biofilms and can significantly reduce the number of viable cells 

149. Bacteriophages have already shown promise in preventing biofilm colonization of 

catheters by Pseudomonas ssp.150 and of wound infections caused by Staphylococcus ssp., 

Pseudomonas ssp. and Acinetobacter ssp. 151-153.  

A limitation for the use of bacteriophages is that they typically have a narrow host range. Some 

phages are specific to a particular bacterial strain, while others can infect multiple strains or 

related species 154,155. Although the specificity of phages can be advantageous in situations 

where the elimination of known bacterial species is required, it can also be a significant 

limitation, especially in the case of polymicrobial biofilms 148. Firstly, the composition of a 

biofilm must be identified. Secondly, it is necessary to obtain the specific phages that can 

target the bacteria that need to be eliminated. In the future, genetic manipulation of phages 

may enhance their selectivity. Bacteriophages have the potential to treat bacterial and biofilm 

infections in a natural and species-specific way, including multi-drug resistant pathogens. 



 

 36 

However, further research is needed before phages can be safely used in clinical practice and 

healthcare. 

 

Quorum sensing (QS) is the ability of unicellular organisms to regulate gene expression of 

signaling molecules for chemical communication in response to environmental stimuli. This 

enables them to adapt cellular processes to, for example, fluctuations in cell population 

density helping their survival and competitive advantage. Most QS systems are activated by a 

simple positive feedback mechanism. Bacteria release autoinducers into the environment, 

and as the population density rises, the concentration of these signaling molecules increases. 

Once a threshold is reached, bacteria adjust their gene expression, influencing e.g. their 

phenotype, the promotion of biofilm formation, or reduced cell proliferation 156. QS systems 

are used to combat biofilms based on natural signaling molecules. This approach has an 

advantage over bactericidal methods as it exerts less selection pressure, reducing the 

likelihood of developing resistance 157. Streptococcus mutans, commonly referred to as the 

caries pathogen, has two QS communication pathways that could be used therapeutically. It 

was shown that the administration of high concentrations of QS molecules can induce the 

death of the Streptococcus mutans cell population 158. Additional research has demonstrated 

that obstructing particular QS signaling pathways can impede the formation of biofilms, such 

as in Pseudomonas aeruginosa 159. It is possible that these QS systems could be used to combat 

biofilms and utilize them for therapeutic purposes 160. However, it should be noted that, as 

with bacteriophages, there is often species specificity, i.e. some QS molecules only act on very 

specific bacteria. In addition, further research is needed to make these QS methods clinically 

applicable. 

 

The antimicrobial effect of light of certain wavelengths has long been recognized. The most 

prominent example is the use of ultraviolet light (UV), typically at a wavelength of 254 nm. 

The light is absorbed by DNA in microbial cells, leading to the formation of dimers between 

pyrimidine residues in nucleic acid chains. This alters the cell replication and ultimately leads 

to cell death 161. However, DNA dimerization also occurs in mammalian cells, which results in 

mutagenic properties 162. Therefore, disinfection with UV light is safe only for surfaces and not 

for the use on or in humans. Research has shown that blue light (wavelengths between 400 
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and 470 nm) can be effective against a range of bacteria and fungi, although to a lesser extent 

than light with shorter wavelengths 159. 

 

 

Figure 7. The Jablonski diagram illustrating the photochemical transitions that occur during photodynamic 

therapy. The diagram shows that in the ground state (S0), the photosensitizer (PTS) absorbs a photon and forms 

an excited singlet state (S1) PTS*. After internal transformation or intersystem crossing, the long-lived triplet 

state (T1) 3PTS* can be formed. The 3PTS* species can undergo either a type I electron transfer, forming radicals 

such as HO•, O2•− and hydrogen peroxide, or a type II energy transfer, forming singlet oxygen 1O2. Adapted with 

permission from reference 167. Copyright by Royal Society of Chemistry 2020. 

 

Photodynamic therapy (PDT) was discovered over 100 years ago and has since become a well-

studied treatment for cancer, skin diseases, and various infectious diseases 163. PDT is also 

applied to combat microbes, such as bacteria or biofilms, and is often referred to as 

antimicrobial photodynamic therapy (aPDT). Generally, PDT uses photosensitizers (PTS) which 

are activated by the absorption of visible light. Upon excitation, the PTS molecule initially 

reaches an excited singlet state, followed by a transition to the long-lived excited triplet state. 

The molecule then undergoes photochemical reactions in the presence of oxygen to form 

reactive oxygen species (ROS) (Figure 7). These ROS can destroy cancer cells, unwanted tissue 

and microbes such as bacteria in close proximity to the PTS 164. When the PTS is activated with 

light, the lifetime of the generated singlet oxygen is very short, with diffusion distances of 

approximately 10-55 nm. Therefore, photoactivation of the PTS must be initiated at the target 

after prior delivery to the target site 165,166. To effectively eliminate biofilms, the PTS should 

be introduced into and activated in the biofilm. The therapeutic performance improves with 
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higher concentrations of PTS within the biofilm 167. One significant advantage of aPDT is that 

ROS cause non-specific damage, therefore there is no known resistance to it. As a result, aPDT 

can be used to eradicate all types of bacteria, including polymicrobial biofilms, which are often 

difficult to eliminate 149.  

  

Commonly used PTS are tetrapyrrole structures such as porphyrins, which can occur naturally, 

but many variations have been synthesized (Figure 8). Other synthetic dye classes used as PTS, 

include phenothiazines (e.g., methylene blue and toluidine blue), xanthenes and boron-

dipyrromethene (BODIPY) derivatives 168. Naturally occurring PTS substances are e.g., 

hypericin, riboflavin and curcumin. Most of the PTS molecules are dyes, due to the absorption 

of light in the visible spectrum (380 nm – 750 nm). The PTS have absorption maxima at 

different wavelengths, and some have multiple absorption maxima. Generally, absorption 

maxima at higher wavelengths have the advantage that the light needed for activation of the 

compound can penetrate deeper into tissues compared to light with shorter wavelengths 169. 

This can be an advantage for medical applications but also biofilms. 

 

 

Figure 8. Chemical structures of different classes of photodynamic therapy molecules with the core structure 

and some prominent derivates. 
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In the absence of light, PTS molecules are typically not toxic. However, some PTS can be toxic 

even without exposure to light, which is known as dark toxicity. This applies, for example, to 

the widely used PTS rose bengal 170,171. As dark toxicity is difficult to control and can interfere 

with PDT treatment, it is an undesirable effect in PDT. Therefore, PTS molecules should be 

highly effective but still controllable to be well suited for PDT of biofilms. 

BODIPY dyes are excellent candidates as PTS for the development of modern aPDT methods 

due to their exceptional photophysical properties. BODIPY dyes can exhibit high molar 

absorption coefficients, high quantum yields for ROS generation (singlet oxygen), high 

photostability, and the dark toxicity is negligible 172-174. Moreover, they are a versatile class of 

dyes that can be easily prepared and structurally modified for a variety of applications 175-177. 

 

1.2.3. Treatment of biofilms utilizing nanoparticles for photodynamic therapy  

 

Most often, the applicability of PTS molecules is limited by their poor water solubility, 

tendency to aggregate, and inability to penetrate tissues and biofilms adequately 163,178. To 

address the issue of poor water solubility, compounds with more hydrophilic side chains can 

be synthesized, which may result in a reduction in phototherapeutic efficacy. To overcome 

both, the solubility and aggregation problems, one strategy is to incorporate the PTS into 

carriers or NPs that are suspendable in aqueous media. Various synthetic frameworks can be 

utilized, which have the necessary properties of introducing water solubility and the possibility 

of a high PTS loading. Some prominent examples of delivery systems are shown in Figure 9. 

Various nanomaterials, such as polymeric NPs (i.e. PS, poly(lactic-co-glycolic acid), 

polyacrilamide), liposomes, and spherical micelles can directly incorporate the PTS. 

Alternatively, the PTS can be conjugated to nanomaterials like carbon nanotubes, graphene 

sheets, or metal NPs, including gold, silver, or platinum. Metal NPs are often equipped with 

stabilizing agents such as amino acids or polymers. Macrocycles like cyclodextrins represent 

another category of nanomaterials capable of PTS conjugation. Furthermore, it is possible to 

combine multiple PTS in a single particle, which can be excited at different wavelengths. 

 

Numerous studies have demonstrated the use of aPDT in conjunction with NPs against 

biofilms. For example, Usacheva et al. have demonstrated the treatment of Staphylococcus 
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aureus and Pseudomonas aeruginosa bacteria and biofilms using alginate NPs loaded with 

toluidine blue 179. The eradication was effective for planktonic gram-positive Staphylococcus 

aureus, but not as effective for planktonic gram-negative Pseudomonas aeruginosa. 

 

Figure 9. Delivery systems for antimicrobial photodynamic therapy are based on photosensitizers incorporated 

into polymeric nanoparticles, liposomes, and spherical micelles; and photosensitizers non-covalently conjugated 

to various nanomaterials. These include carbon nanotubes or graphene sheets, metal nanoparticles such as gold, 

silver, or platinum, combined with different stabilizing agents such as amino acids, proteins or polymers, and 

macrocycles such as cyclodextrins. Adapted from reference 161 under the Creative Commons CC-BY licence (CC-

BY 4.0). Copyright by Frontiers 2021. 

 

The eradication of the corresponding biofilms was rather low and in general the free dye had 

the same effect as the loaded NPs. Therefore, it can be assumed that the NPs selected in this 

study were not suitable to achieve significant effects on biofilm eradication. Other NP-PTS 

systems used include chitosan NPs loaded with methylene blue 174 and liposomes loaded with 

temoporfin 180. These systems have a similar effect in that they easily eradicate gram-positive 

Staphylococcus aureus but are insufficient in eradicating gram-negative Escherichia coli and 

Pseudomonas aeruginosa. In many studies, only the eradication of planktonic bacteria is 

demonstrated 180-183. One possible explanation is that the limited penetration of NPs into 

biofilms makes their eradication more challenging than that of planktonic bacteria. Studies 
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have demonstrated that gold NP loaded with methylene blue 173, poly(lactic-co-glycolic acid) 

NP loaded with curcumin 184, and gelatin NP loaded with rose bengal 182 have been effective 

against planktonic bacteria. However, there is no available data on their effectiveness against 

biofilms. 

The limitations mentioned in the described studies may be attributed to general challenges in 

eliminating bacteria and biofilms. Bacteria, and consequently biofilms, exhibit exponential 

growth with very high colony numbers when sufficient nutrients are available. Therefore, 

bacterial elimination is typically expressed in log units rather than percentages. A reduction in 

the bacterial population from 100% of bacteria to 1% is a reduction of 2 log units and from 

100% to 0.001% is a reduction of 5 log units. Disinfection is only considered successful if all 

bacteria are eradicated, as even small amounts of surviving bacteria can rebuild the biofilm 

population within a short period of time. For instance, if only 0.01% of a biofilm containing 10 

million bacteria (107 cells) survives disinfection (corresponding to a reduction of 4 log units), 

this still amounts to 1,000 bacteria. With a doubling time of e.g. 20 minutes (Escherichia coli), 

these bacteria can regain their previous colony strength in approximately 4.5 hours. 

Elimination rates of less than 2 log units (less than 99% eradicated) achieved with toluidine 

blue or methylene blue-loaded NPs are not considered sufficient for biofilm removal 179,185,186. 

However, this is a general limitation of many studies for biofilm removal and not specific for 

aPDT. 

In general, the effect of aPDT is greater on planktonic bacterial cells than on biofilms 187-189. 

This effect is also known for antibiotic treatment and is due to several reasons 190. Firstly, 

planktonic bacterial cells are typically in the proliferation stage, which means they have 

thinner cell walls and are therefore more vulnerable for aPDT agents. In a biofilm, bacteria 

exist in various physiological states, which means that not all of them are in a susceptible, 

proliferating state 145. Some may be dormant with reduced metabolism, which limits the 

internalization of substances and the efficacy of many therapeutic agents. Secondly, 

planktonic bacteria are surrounded by a medium, whereas in biofilms the bacteria are densely 

packed and surrounded by the EPS matrix. The slimy nature of the EPS matrix makes it difficult 

for the PTS to penetrate the biofilm 191,192. The effective penetration of the biofilm by the PTS 

is necessary to completely eradicate all bacteria, including the innermost and best protected 

cells.  
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While many published methods can reduce planktonic bacteria by several log units or even 

completely, the reduction in the case of biofilms is often only in the double-digit percentage 

range 171,186,193. This level of reduction cannot be considered sufficient for eradication, let 

alone disinfection. Therefore, it is crucial to develop systems that can effectively eliminate all 

bacteria in biofilms. 

 

Delivery of PTS can be achieved through active targeting or passive accumulation. Passive 

accumulation involves the passive accumulation of PTS-loaded NPs by diffusion, influenced by 

their charge, size, or hydrophobicity 38,194. Although this process can take time (minutes to 

hours), it allows for high concentrations of PTS to be localized at the target site, particularly if 

the particles have a high dye loading. The active targeted aPDT approach involves the 

introduction of antibodies, peptides, proteins, and other ligands to the PTS-loaded particles. 

This enables the particles to bind to specific targets within the biofilm such as the bacterial 

cell walls or EPS components. This allows for faster and more controlled accumulation within 

the biofilm. Furthermore, the targeting ligand can be modified depending on the type of 

biofilm and the mode of action used for eradication. 

Combining functional aPDT systems with other antibacterial agents, such as antibiotics, can 

increase treatment effectiveness 178,195. NPs are also suitable vehicles for combining active 

substances, as they allow for the transport of both substances to the same site of action, 

enabling multitargeted treatment. However, it is equally important to consider the practicality 

of these developments. The systems should not only become more complex but also remain 

practical in terms of manufacture and application. This will enable their widespread use in 

laboratories, food production facilities, and other institutions on a large scale. In addition, the 

systems should be highly effective against both planktonic cells to prevent biofilm formation 

and biofilms themselves.  
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2. Objective 

 

As outlined in the introduction, NPs are a diverse group of materials and their potential 

applications are vast. Their small size and unique properties make them ideal candidates for 

the development of biosensors, as they can acquire sensing data in three-dimensional space 

with high resolution. Particularly polymeric NPs are important and convenient tools for 

today’s diagnostics and therapeutics due to their advantageous physicochemical properties 

and the ability to tailor their properties through synthesis. Different NP designs, e.g. surface 

functionalisations, enable optimal interaction with the biological system while ensuring 

biocompatibility. PS nanosensors exhibit excellent stability even in complex biological media 

and can be used for long measurement intervals. They are therefore ideal for the development 

of nanosensors that can measure the pHe value in biofilms and eukaryotic cells. These 

nanosensors are easy to manufacture but still highly functional. 

Currently, there is an urgent need for effective strategies to overcome bacterial and biofilm 

persistence. Most of the methods used to combat bacteria and biofilms have significant 

limitations, and no magic bullet has yet been found to combat the dramatic emergence of 

bacterial resistance. One promising approach is aPDT. Despite the potential benefits of aPDT 

for biofilm eradication, there are still significant challenges to overcome. The primary obstacle 

is the low water solubility of most PTS and the poor uptake of PTS into biofilms. As a result, 

most PTS have little or no effect against biofilms in their molecular form. PS NPs can act as 

carriers for PTS molecules and enable successful aPDT. 

The objective of this work is to advance comprehension of the design, fabrication, and 

application of fluorescent dye-loaded PS NPs. These nanoscale tools aim to bridge 

methodological gaps in conventional approaches, thereby advancing the understanding of 

cellular microenvironments and biofilm dynamics and enabling advanced antimicrobial 

strategies. 

For this purpose, the specific objectives of this thesis are outlined as follows: 

1. Design and fabrication of a pH-responsive nanosensor for biofilms: 

• Development of a pH-responsive ratiometric nanosensor utilizing 

biocompatible PS NPs for the measurement of pH in biofilms 
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• Characterization of the pH nanosensor and the fluorescence properties of the 

fluorophores NR and FITC in the NPs 

• Calibration and application of the pH nanosensor for the characterization of pH 

microenvironments in biofilms 

• Demonstration of the functionality of the nanosensor through monitoring of 

time-dependent pH changes induced by the metabolic activity of Escherichia 

coli biofilms 

2. Development of an extracellular pH (pHe) nanosensor for eukaryotic cells: 

• Advancement of the pH nanosensor into a pHe nanosensor suited for the 

measurement of pHe in eukaryotic cells 

• Design and fabrication of the pHe nanosensor using a cell membrane-targeting 

component for effective labelling of the cell surface to enable the precise and 

spatially resolved measurement of pHe 

• Demonstration of the versatility and compatibility of the pHe nanosensor with 

various eukaryotic cell lines from different tissues and organs, highlighting its 

broad applicability in biomedical research 

3. Utilization of PS NPs as carriers for PTS enabling aPDT against biofilms: 

• Design and development of a novel aPDT tool for the eradication of biofilms 

using PS NPs as carriers 

• Demonstration of the NPs ability to embed lipophilic PTS, and the delivery 

directly into bacterial biofilms for on-site activation 

• Assessment of the effectiveness of these nanoscale aPDT tools for various 

pathogenic bacterial species and for the treatment of both planktonic bacteria 

and biofilms 

• Characterization of NP-biofilm interactions to advance the knowledge about 

the mechanisms of action of aPDT against biofilms 

• Effective eradication of pathogenic biofilms and demonstration of the 

suitability of the PTS-loaded NPs to be used as effective weapons in the battle 

against biofilms  
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3. Results 

3.1. Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric  

nanosensor 
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Monitoring and imaging pH 
in biof㘶lms utilizing a f㘶uorescent 
polymeric nanosensor
Charlotte Kromer1,2, Karin Schwibbert3, Ashish K. Gadicherla4, Dorothea Thiele3, 
Nithiya Nirmalananthan‑Budau5, Peter Laux1, Ute Resch‑Genger5*, Andreas Luch1,2 & 
Harald R. Tschiche1*

Biof㘶lms are ubiquitous in nature and in the man-made environment. Given their harmful ef㘶ects 
on human health, an in-depth understanding of biof㘶lms and the monitoring of their formation and 
growth are important. Particularly relevant for many metabolic processes and survival strategies of 
biof㘶lms is their extracellular pH. However, most conventional techniques are not suited for minimally 
invasive pH measurements of living biof㘶lms. Here, a f㘶uorescent nanosensor is presented for 
ratiometric measurements of pH in biof㘶lms in the range of pH 4.5–9.5 using confocal laser scanning 
microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert 
dye Nile Red and is surface functionalized with a pH-responsive f㘶uorescein dye. Its performance 
was validated by f㘶uorometrically monitoring the time-dependent changes in pH in E. coli biof㘶lms 
after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH 
over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate 
the applicability of this nanosensor to characterize the chemical microenvironment in biof㘶lms with 
f㘶uorescence methods.

Bio�lms are consortia of microorganisms adhered to a surface and surrounded by a self-produced matrix of 
extracellular polymeric substances (EPS) 1. �is matrix facilitates their survival and increases the resistance to 
external in�uences such as disinfectants 2. Such bio�lms, that are ubiquitous both in nature and in the man-made 
environment, can be found on numerous surfaces, including water piping systems, food, household items, and 
medical devices 3,4.

Numerous factors can in�uence the formation, growth, and dispersion of bio�lms and thus their harmful 
e�ects on human health, such as water and food contamination or infection 5–8. �is includes temperature, nutri-
ent composition, shear forces or the pH of the media in which a bio�lm is formed 9–11. Also, these parameters 
can di�er and change between the bio�lm matrix and the environment surrounding the bio�lm. Inside bio�lms 
local microenvironments can be formed 12. �e pH in bacterial bio�lms is of central importance for many 
metabolic processes. For example, for dental bio�lms, the pH in the extracellular matrix is the key factor for the 
development of dental caries 13. Extended periods with low pH (< 5.5) at the bio�lm-tooth interface a�er sugar 
consumption can lead to slow demineralization of the underlying enamel 14,15. Bio�lms can also induce material 
corrosion (termed microbially induced corrosion) which can cause damage, e.g., in power plants, re�neries, pet-
rochemical facilities, and maritime infrastructure 16–18. �erefore, there is a growing need to investigate chemical 
gradients in bio�lm environments and the internal microenvironments in more detail 19.

�e reliable measurement of extracellular pH within bio�lms and the measurement of pH gradients over 
larger areas or longer periods of time are very challenging and tedious. Although microelectrode-based tech-
niques are widely used in biological systems, their applicability is limited by the tip size and the small elec-
trode area, enabling only a single point detection per measurement 20. For the monitoring of larger areas, the 
electrode must either be moved within the bio�lm or multiple electrodes at di�erent positions of the bio�lm 
must be applied 21. In addition, measurements with microelectrodes are invasive and can lead to an irreversible 
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destruction of the bio�lm. Alternatively, pH can be optically determined, utilizing, e.g. �uorescence techniques 
such as pH-responsive molecular optical probes and pH indicators which are relatively inexpensive and easy to 
use 22. A general limitation of molecular sensors is the challenging preparation of ratiometric sensors that can 
account for signal �uctuations caused by �uctuations in the excitation light intensity and changes in sensor dye 
concentration. Moreover, many indicator dyes are taken up by bacterial cells 23. �is could alter the sensitivity of 
the indicator or have a damaging e�ect on the bacteria as well as prevent the determination of the extracellular 
pH e.g. in the bio�lm matrix 24. Moreover, molecular dyes can su�er from a relatively low photostability under 
microscopic conditions hampering the measurement of time-dependent pH changes. Fluorescent nanosensors 
can overcome some of these challenges 25–27. Such nanosensors commonly rely on polymer or silica nanoparticles 
(NP) labelled or doped with stimuli-responsive luminophores. Advantages of such systems include an increased 
brightness due to the large number of luminophores per particle, the relative ease of combining two dyes for the 
design of ratiometric sensors, and an improved photostability 28,29. Encapsulation of the reference and indicator 
dyes in the particle core can minimize their interaction with the bio�lm. �is approach requires a host or car-
rier matrix that is permeable for the target analyte in the case of encapsulated sensor molecules. �erefore, most 
ratiometric nanosensors are core stained with a reference dye and the functional groups at the particle surface 
are utilized for the covalent attachment of sensor molecules. Additionally, recognition moieties like certain 
bioligands can be utilized, to further enhance the selectivity of such nanosensors 30.

�e many advantages of optical sensing schemes triggered an increasing interest in easy-to-prepare and 
simple-to-handle nanosensors to determine the pH in bio�lms with a high accuracy and over extended periods 
of time. However, many nanosensors reported so far can only map very narrow pH ranges or have a relatively 
high aggregation tendency in biological systems, which makes them unsuitable for this task 20,31. Moreover, the 
broad application of such nanosensors for pH measurements in bio�lms requires either commercial systems, 
which are not yet available, or at least sensor particles that can be easily prepared from commercial components 
without the need for an elaborate synthesis 26,32.

Here, a facile pH nanosensor made from commercial premanufactured aminated 100 nm polystyrene (PS) 
NP was developed. �e PS NP were loaded with a pH-inert hydrophobic reference dye, here Nile Red (NR), via a 
simple swelling procedure and subsequently labelled with a commercial pH-responsive �uorescein dye 33,34. �is 
design concept was also used in our previous work to fabricate oxygen nanosensors and can be realized under 
standard laboratory conditions 32,33. As a pH-responsive dye, �uorescein isothiocyanate (FITC) was selected 
for its pKa value of 6.5 and pH e�cient interval, which optimally covers the physiological pH ranges present in 
Escherichia coli (E. coli) bio�lms. �e resulting pH nanosensor has a high colloidal and photochemical stability 
in aqueous dispersion and in biological media. It does not aggregate in bio�lms and shows a very homogene-
ous distribution in the bio�lm matrix. With this nanosensor, a pH range from about 4.5–9.5 can be imaged by 
confocal laser scanning microscopy (CLSM) as a prerequisite to visualize metabolic pH changes within a bio�lm 
made from E. coli.

To prepare the pH-responsive nanosensor, 100 nm 
PS NP were chosen, that are readily available in a broad size range from nm to µm and with di�erent surface 
functionalizations. �ese PS NP are biocompatible and stable in cell culture media. Reportedly, plain and surface 
modi�ed PS NP with an overall negative charge have no cytotoxic e�ect on E. coli 35,36. To support this assump-
tion, a live-dead staining of the bio�lm was performed a�er 24 h of incubation of the PS NP used for the prepa-
ration of the nanosensor (Supplementary Fig. S4). �is viability assessment con�rms that the incubated PS NP 
have no cytotoxic e�ect on the bio�lm.

�e simple two-step strategy for the preparation of the pH nanosensor is shown in Fig. 1. First, the reference 
dye NR was embedded into the PS NP by a previously established swelling method 33. �en, pH-responsive 
FITC was covalently attached to the amine groups on the PS NP surface via isothiocyanate amine coupling. 

Figure 1.  Schematic illustration of the nanosensor fabrication starting from a functionalized PS particle. NR is 
embedded into the particle by a swelling procedure and FITC is coupled to the PS NP by a thiourea bridge.
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Dye loading was optimized, with respect to optimal signal intensities and intensity ratios of the reference and 
pH-responsive dye (data not shown).

For ratiometric �uorescence sensing of pH in the visible wavelength region, hydrophobic red emissive NR 
was chosen as a pH-inert dye and hydrophilic and biocompatible FITC as a pH-responsive dye. NR is known 
to provide a homogeneous particle loading, does not show leakage from the NP in aqueous dispersions and is 
photochemically stable 34,37. FITC reveals a strong green �uorescence solely at basic and neutral pH values 38. 
�e dyes exhibit spectrally discriminable emission bands as prerequisite for ratiometric sensing and can be read 
out with a standard CLSM setup using standard lasers and �lter settings. �e chosen ratiometric design concept 
allows a correlation of the calculated intensity ratios of the nanosensors FITC and the NR �uorescence with 
pH neglecting local concentration di�erences of the sensor. Moreover, at the chosen excitation wavelengths of 
520 nm and 560 nm, no auto�uorescence of the E. coli model bio�lm was observed.

�e particle size of 100 nm provided by the manufacturer was con�rmed 
with TEM and dynamic light scattering (DLS) (Table 1). �e particle size was not altered by the introduction 
of NR and FITC. TEM images showed that both the PS NP and the nanosensor are monodisperse and have a 
spherical shape (Fig.  2a,b). �e polydispersity index (PDI) assessed by DLS con�rms the monodispersity of 
the particle suspension. Consequently, the particle size, shape, and agglomeration behavior of the NP were not 
a�ected by the dye loading and dye labelling of the NPs. �e zeta potential of the PS NP before and a�er NR 
staining and FITC coupling was determined to − 30.6 ± 0.6 mV and − 38 ± 1.3 mV, respectively.

Subsequently, the �uorescence properties of the nanosensor were investigated at di�erent pH values in Brit-
ton-Robinson (BR-) bu�er. As shown in Fig. 2 (lower panels), NR exhibits a �uorescence maximum at 560 nm 
upon excitation at 530 nm, while FITC shows a �uorescence maximum at 520 nm upon excitation at 480 nm at 
neutral and basic pH. �e pH-dependent �uorescence measurements con�rmed that the �uorescence intensities 

Table 1.  Comparison of the precursor PS NP with the dye loaded nanosensor by TEM and DLS.

Size (TEM) [nm] Size (DLS) [nm] PDI (DLS) Zeta potential [mV]

PS NP 103 ± 9 133 ± 3 0.038 ± 0.023  − 30.6 ± 0.6

Nanosensor 101 ± 8 132 ± 1 0.017 ± 0.011  − 38 ± 1.3

Figure 2.  Characterization of the nanosensor. (a) TEM image of the precursor PS NP in water. (b) TEM image 
of the nanosensor in water. (c) and (d) TEM images of E. coli cells and nanosensor a�er 24 h incubation with 
1 mg/ml nanosensor in M9 minimal medium. (e) Fluorescence spectra of the nanosensor excited at 530 nm 
(NR) in 7 bu�ers with di�erent pH. Inset: Integrated FI (red box = area of signal integration) plotted against the 
pH value of the respective bu�er. (f) Excited at 480 nm (FITC). Inset: Sigmoidal �t of the integrated FI (green 
box = area of integration) plotted against the pH value of the respective bu�er. (g) Ratio of the integrated FI of 
the green FITC and the red NR emission plotted against the corresponding pH with sigmoidal curve �t.
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(FI) of NR is pH-independent (Fig. 2e) while the FI of FITC correlates with changes in pH (Fig. 2f). �e FITC 
�uorescence signal is highest at pH 9.5, decreases upon acidi�cation, and eventually disappears at pH ≤ 4.5. Inte-
grating the FI of FITC in the peak area (Fig. 2f, green box) and plotting against pH reveals a sigmoidal behavior 
(Fig. 2f, inset), whereas that of NR remains constant (Fig. 2e, inset). �e plot of the ratio of the integrated FI 
of FITC and NR as function of pH (Fig. 2g) yields a pKa value of 7.47 ± 0.02 that is slightly shi�ed to basic pH 
values compared to unbound FITC (pKa value of 6.5) 39. �is shi� is attributed to the coupling of FITC to a 
negatively charged particle 40. Despite the pKa shi� from 6.5 to 7.5, the working range of the nanosensor of about 
pH 4.5–9.5 is still relatively large. �us, the sensor is well suited for �uorometric pH sensing in the physiological 
pH range of E. coli 41.

Many factors can limit the functionality of a pH 
nanosensor in biological systems. Little is known about the interaction of NP with the EPS in the bio�lm matrix 
42. Di�erent biomolecules, such as proteins, polysaccharides, nucleic acids or lipids can adsorb on the NP surface 
forming a corona-like coating 43,44. �is can result in, e.g., particle agglomeration, shi�s in the absorption or �uo-
rescence maxima, changes in FI, and in the pH dependence of the optical properties used as readout parameters.

Escherichia coli were selected as the biological model system for assessing the nanosensors application poten-
tial. Although E. coli is a naturally occurring bacterium in the human intestine, it is the most common cause of 
bacterial urinary tract infections and is feared as a causative agent of blood poisoning and hospital infections 
45–47. Escherichia coli forms bio�lms in many environments which can be easily reproduced under laboratory 
conditions. Also, E. coli has metabolic pathways that lead to natural pH changes within the bio�lm. Glucose 
serves as the primary energy source for E. coli and is converted to lactate, acetate, succinate, etc. by mixed acid 
fermentation 48. To test the metabolic activity of a lab grown E. coli bio�lm, in a �rst experiment the pH shi� a�er 
glucose inoculation was visualized with the pH indicator solution bromothymol blue. A�er 90 min, acidi�cation 
of the medium surrounding the bio�lm was clearly visible, con�rming the suitability of E. coli bio�lms for testing 
the nanosensor (Supplementary Fig. S5).

As a prerequisite for the functionality and performance studies with the ratiometric pH nanosensor, �rst 
a growth protocol for the bio�lms in Ibidi slides was established, followed by an incubation protocol for the 
nanosensor. As criteria for the growth protocol, uniformity and reproducibility of bio�lm growth, homogeneity 
of colonization on the slide and the bio�lm thickness was chosen. Optimization of the nanosensor incubation 
focused on the homogeneous distribution of the NP in the bio�lm and a su�ciently strong �uorescence signal 
for the CLSM studies, as this is essential for reliable pH measurements.

Within 24 h, the nanosensor accumulated in the bio�lm but not inside the cells as revealed by CLSM experi-
ments (see Supplementary Fig. S6). �is supports the assumption that the nanosensor accumulates in the extra-
cellular part of the bio�lm. �is extracellular accumulation points to previously described interactions of the NPs 
surface groups with the EPS in the bio�lm matrix and is supported by the fact that negatively charged PS NP are 
not taken up by E. coli 49,50. In addition, the combined results of CSLM and TEM studies of the bio�lm super-
natant a�er 24 h of incubation indicated that the nanosensor does not tend to accumulate inside the bacteria. 
(Fig. 2c,d). �e hydrophilicity of the nanosensor in the cell culture medium seemed to change. �is is suggested 
by the better adhesion of the nanosensor particles to the TEM grid when applying nanoparticles dispersed in 
cell culture medium (Fig. 2c,d), compared to nanosensor particles dispersed in water utilizing the same particle 
concentration (Fig. 2a, b). Nevertheless, the nanosensor particles do not agglomerate or aggregate even a�er 24 h 
in cell culture medium. �is is an advantage over previously published nanosensors, which o�en show a high 
aggregation tendency under these conditions which limits their biosensing performance 20.

For the calibration of the nanosensor �uorescence inside the bio�lm, the supernatant cell culture medium was 
replaced by a reference bu�er with a well-de�ned pH prior to �uorescence imaging. �e �uorescence signals of 
the nanosensor (FITC and NR) were imaged as Z-stacks at 8 di�erent pH values (Fig. 3a). For better visualiza-
tion of the FI, one representative image from each Z-stack is displayed. �e yellow color of the overlayed images 
re�ects an increased FITC signal relative to the NR signal. �is ratio is highest at high pH values, here pH 9.33. 
�e mean FI of each FITC and NR stack was calculated using the maximum intensity function for Z-stacks in 
ImageJ.

�e FITC FI divided by the NR FI gave a FI ratio for each pH. �ese ratios were then plotted against the cor-
responding pH values (Fig. 3b). �is plot was �tted with a four-parameter calibration curve to enable an inverse 
pH estimation from observed FI ratio values. �ese results con�rm successful �uorometric pH sensing with the 
nanosensor in the pH range of about pH 4.5–9.5.

To demonstrate the potential of the nanosensor for �uorometrically imaging pH changes in active bio�lms, 
the pH drop caused by the acidifying glucose metabolism of E. coli bio�lms was investigated. Hence, the E. coli 
bio�lms were supplemented with 10 mM glucose at 37 °C and the resulting �uorescence signals of the nanosen-
sor were imaged over a time period of 4 h. A bio�lm incubated only with the bu�er but without glucose served 
as a control for potential non-glucose related changes in pH, e.g., due to  CO2.

�e nanosensor �uorescence originating from pH-responsive FITC and pH-insensitive NR was measured 
immediately a�er glucose addition (time point 0 min) and then every 30–60 min over a period of 4 h (Fig. 4a). 
�e �uorescence of the reference dye NR did not change over time in the glucose-containing bio�lm and in the 
control samples. Contrary, the FITC �uorescence remained constant in the control sample even a�er 4 h but 
decreased signi�cantly in the bio�lm containing glucose and eventually disappeared completely. �is results in 
a decrease in the FITC/NR FI ratio, signaling a decrease in pH.

�e pH values derived from the measured �uorescence ratios of FITC and NR with the aid of the previously 
acquired calibration curve are shown as a function of time in Fig. 4b. In the bio�lm supplemented with glucose, 
the pH drops signi�cantly from about 7.5 to about 4.5 within 4 h. In the control, no signi�cant pH drop can be 
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observed. Here, a maximum change from 7.5 to 7 was noticed, with no further change occurring a�er 1 h. When 
the E. coli bio�lms are exposed to glucose at 4 °C, where their metabolism is considerably slowed down, the 
decrease in pH is signi�cantly reduced compared to the studies done at 37 °C. �is supports the assumption of a 
metabolism-induced drop in pH 51. To con�rm that the observed decrease of the FITC �uorescence with time is 
not caused by photobleaching of the dye or a leaking of the nanosensor from the bio�lm, the reversibility of the 
nanosensor was controlled. Addition of the starting bu�er a�er 4 h restored the initial nanosensor �uorescence 
at pH 7.5. �is shows the proper functioning of the nanosensor in terms of stability and its accumulation inside 
the bio�lm even a�er long exposure times.

In summary, the design, preparation, characterization, and application of a pH-responsive ratiometric nanosen-
sor system was described utilizing commercial biocompatible polystyrene nanoparticles and the �uorescence 
intensity ratios of the pH-insensitive dye Nile Red, and pH-responsive FITC. �e nanosensor enables �uoromet-
ric pH sensing in a range of about pH 4.5–9.5 and can monitor pH changes in bio�lms over time. �us, use of this 
simple nanosensor can greatly contribute to the characterization of the chemical microenvironment in bio�lms.

In the future, this ratiometric pH sensor system will be used for studying other pH relevant processes in 
bio�lms such as microbially in�uenced corrosion on surfaces or in depth investigations of acid stress e�ects in 
bio�lms 52. Furthermore, pH gradients present within a bio�lm could be explored by calculating the FI ratio 
for every single pixel in imaging experiments. �ereby, even local chemical microenvironments within bio�lms 
could be imaged 53. In addition, the nanosensor can be further customized and modi�ed as desired for speci�c 
applications, due to their ease of fabrication. For example, dyes with modi�ed absorption or emission wavelengths 

Figure 3.  Fluorescence imaging of the nanosensor in reference bu�ers with CLSM. (a) �e nanosensors FITC 
(green) and NR (red) �uorescence were imaged in 8 di�erent reference bu�ers. For each pH value the entire 
depth of the bio�lm was imaged as a Z-stack. A representative 2D image plus an overlay are shown for better 
visualization. �e 100 µm scale bar applies to all images. (b) �e FI ratio of the FITC to the NR signal was 
plotted against the respective pH. �e blue area represents the con�dence interval of the curve �t, and the error 
bars indicate the standard deviation. �e experiments were performed as 3 independent replicates.
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and pKa values for bio�lms of organism with lower pH such as acidophiles can be easily introduced 54. �e 
utilization of more than two dyes as well as the combination with other imaging agents for multimodal imaging 
approaches is also possible.

Overall, this rational design approach for nanosensors utilizing simple and commercially available compo-
nents can be bene�cial for future research aimed at providing better insight into the bio�lm microenvironment.

All solvents (tetrahydrofuran (THF) and ethanol (EtOH)) were of UV-spectro-
scopic grade, purchased from Sigma-Aldrich, and used as received. �e 100 nm PS NP were purchased from 
Kisker Biotech and ultrasonically treated prior to use. �e �uorescent dyes NR and FITC were purchased from 
Fluka and Sigma-Aldrich, respectively, and employed without further puri�cation. Escherichia coli were pur-
chased from DSMZ-German collection of microorganisms and cell cultures. All cell culture materials and ingre-
dients were obtained from Sigma-Aldrich/Merck and �ermo Fisher Scienti�c.

�e nanosensor was prepared from commercially available aminated PS NP 
and two commercial �uorescent dye molecules. �e particles had a size of 100 nm, bearing 130 nmol/mg of 
primary amine surface groups as determined by a Fluram assay 55. According to the particle manufacturer, the 

Figure 4.  Fate of extracellular bio�lm pH a�er glucose addition. (a) Z-stack CLSM images of E. coli bio�lms 
a�er addition of 10 mM glucose (top) and control without glucose (bottom). Green = FITC signal and red = NR 
signal. �e scale bar at the bottom right applies to all Z-stack images. (b) Derived pH values of the bio�lm a�er 
incubation with 10 mM glucose at 37 °C, at 4 °C and the control samples without glucose. �e experiments were 
performed as independent replicates with n = 3 and n = 6 for the control.
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aminated PS NP are obtained by the reaction of carboxylated PS NP with short diamines. As this reaction is not 
quantitative, the PS NP bear a mixture of amine and carboxyl surface groups. �e reference dye NR was incor-
porated into the PS NP via a swelling procedure published by Behnke et al. 33. In brief, NR was �rst dissolved 
in THF in a concentration of 5 ×  10−5 mol/L. Dye loading of the PS NP was performed by addition of 100 μL of 
the NR-containing solution to 600 μL of an aqueous suspension of the PS NP (0.5 weight percent (w%)). A�er 
30 min, the occasionally shaken suspension was centrifuged with an Eppendorf centrifuge 5415D at 16,000 g 
for 40 min. �e supernatant consisting of unembedded NR dye was removed from the accordingly separated PS 
NP followed by two washing steps with MilliQ water with a separation step a�er each washing step. Next, the 
covalently bound dye FITC was introduced through coupling to the amine groups at the particle surface. �e 
NP suspension (390 nmol  NH2 groups, 1 equiv) was diluted to 5 mg/mL with phosphate bu�er (0.1 M, pH 8). 
To this 1.5 mL suspension, 1.5 mL of a solution of FITC (2.1 µM, 5 equiv.) in PB containing 10 v% EtOH was 
added and shaken for 3 h with protection against light. �e puri�cation steps were the same as for the swelling 
procedure before, except that a total of 5 washing steps were performed and the �rst centrifugation/washing 
cycle was performed with PB containing 10 v% EtOH followed by MilliQ water.

Fluorescence spectra were recorded on a calibrated spec-
tro�uorometer (FLS920, Edinburgh Instruments). For these measurements, an integration time of 0.1 s and slit 
widths of 2 and 6 nm were employed for excitation and emission, respectively. For the pH dependent �uores-
cence behavior of the nanosensor, 2 µl of nanosensor suspension (5 mg/mL) was added to 1 mL of bu�er solu-
tion. �e �uorescence spectra were recorded with excitation at either 480 nm or 530 nm, with pH values of 4.49, 
4.96, 5.64, 6.58, 7.10, 7.77 and 9.52, using the BR-bu�er. All measurements were carried out in Hellma quartz 
cuvettes (QS, 10 × 10  mm2). �e pH values of the BR-bu�er solutions were adjusted with a pH meter using a glass 
electrode (780 pH meter, Deutsche METROHM GmbH & Co. KG) and veri�ed with a pH meter using a InLab 
Micro electrode (FiveGo pH meter F2, Mettler Toledo GmbH). �ese pH meters were calibrated at 25 °C with 
standard bu�ers of pH = 10.01, 7.01, and 4.01 (Mettler Toledo GmbH) in three-point calibrations.

A Zetasizer (Malvern Nano ZS, Malvern Panalytical) was used to deter-
mine the zeta potential and the particle size (hydrodynamic diameter) of the nanosensor by DLS. For particle 
size measurement and the determination of the PDI, 2 µl of the 25 mg/ml nanosensor stock suspension was 
added to 1 ml MilliQ Water in a quartz glass cuvette. �ermal equilibration time was set to 60 s at 25 °C. Each 
intensity-weighted size distribution represents the average of ten individual DLS analyses and three independ-
ent replicates. For the determination of the zeta potential a Dip cell kit (Malvern Panalytical) was used. �e 
NP dispersion was diluted in the same manner as done for the particle size determination. Again, the average 
of ten individual zeta potential analyses and three independent replicates were determined. �e particle size 
was also assessed using a transmission electron microscope (TEM). 400 mesh 3.5 mm Formvar coated copper 
grids (Plano GmbH, Germany) were hydrophilized with 0.2% alcian blue (Sigma Aldrich, Germany) in 0.03% 
acetic acid solution. �e grids were �oated on alcian blue droplets for 10 min, and dried using a �lter paper. �e 
hydrophilized grids were used on the same day. 5 µl of a 5 mg/ml sample dispersion was applied on each grid, 
incubated for 1 min and the excess liquid was removed with a �lter paper. Samples on the copper grids were 
observed in a Jeol 1400 Plus TEM (Jeol GmbH, Germany) operated at 120 kV. Material identi�cation was done 
using di�raction pattern from published resources. Imaging was performed using a Veleta G2 camera (Olympus, 
Germany). Particle size was measured using iTEM so�ware provided by Olympus. At least 4 di�erent areas of 
each grid were examined per sample.

Escherichia coli TG1 DSM 6056 was used as bio�lm form-
ing microorganism 56. Escherichia coli were cultivated on Luria–Bertani (LB) medium agar plates and passaged 
every 3–4 weeks. For all bio�lm experiments, 20 ml LB liquid medium was inoculated with single colonies and 
cultured overnight at 37 °C with shaking at 120 rpm on an orbital shaker (Incubating orbital shaker, Professional 
3500, VWR) 57. �e culture was diluted 1:100 in fresh LB medium and incubated for additional 1–2 h at 37 °C 
until cells reached the exponential growth phase. �en, 2 ml of the culture was centrifuged (2 min, 3300 g) and 
resuspended in 2 ml PBS. For bio�lm formation, the optical density of the suspension was measured at 600 nm 
(Novaspec Plus, Amershan Biosciences) and adjusted to 0.01 (corresponding to approx. 1.2 ×  106 cells/ml) in M9 
minimal medium, supplemented with 1 mM thiamine and 20 mg/L proline. For bio�lm formation on the glass/
liquid medium interface, 300 µl of cell suspension were then added to each well of Ibidi slides with glass bottom 
(8 well chamber slide, Ibidi GmbH). NP dispersions were added to a �nal concentration of 1 mg/ml. �e slides 
were incubated at 37 °C on an orbital shaker, �rst for 60 min without shaking and then 24 h at 60 rpm for bio�lm 
formation. Prior to imaging, bio�lms were washed twice with BR-bu�er to remove unbound nanosensor, and 
fresh bu�er was added to each well.

All bio�lms, except the 4 °C control experiments, were imaged at 37 °C in Ibidi slides using a Leica 
SP8 X CLSM equipped with a supercontinuum white light laser and a monochromator (Leica Microsystems). A 
100 × /(N.A.1.4) objective with oil immersion was used for imaging. XY images were acquired with 2048 × 2048 
or 8192 × 8192 pixels and Z-stacks in XYZ mode with 512 × 512 pixels, respectively. To obtain the Z-stacks, 
images were taken at 0.1 µm spacing through the bio�lm. Excitation and read out emission wavelengths for FITC 
and NR were 480 nm and 486–525 nm and 530 nm and 537–621 nm, respectively. �is choice of the emission 
�lter settings prevents spectral crosstalk of the dyes. Bio�lms without nanosensor were imaged in the same way 
to determine background signals and auto�uorescence. �e settings for imaging (laser intensity, gain, contrast 
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etc.) were optimized in the beginning, saved, and used unchanged for all imaging procedures to establish com-
parability between the reference experiments and experiments for pH analysis.

All images were acquired with identical microscope set-
tings. A background correction was not done as auto�uorescence was not observed for the chosen measurement 
conditions. For the following image analysis routine with ImageJ FITC and NR Z-stacks were used. �e mean FI 
of the entire stack was calculated using the maximum intensity function for Z-stacks. �e FITC FI divided by the 
NR FI yields the �uorescence ratio. For referencing, a calibration curve was created using BR-bu�ers with 8 dif-
ferent pH values ranging from 4.15 to 9.33. �e bio�lms were washed twice with a bu�er of the pH of interest and 
imaged with 300 µl of the bu�er as supernatant. �is was carried out in independent triplicates for all 8 bu�ers 
in 8 di�erent wells. To obtain the calibration curve, a four-parameter curve was �tted to the pH calibration data 
using Supplementary Equation S1. Fitting was performed with a non-linear least square regression in R (V4.0.3). 
�e �tting parameters (Supplementary Table S2) were then used to perform an inverse pH estimation from the 
observed value. �e inverse estimation was performed in R using the investr package 58. For signi�cance testing 
an unpaired two-sample t-test was performed.

In order to analyze changes of pH over time, glucose inoculation experiments 
were done. A 10 mM glucose solution in  K2HPO4/KH2PO4 bu�er was prepared and the pH adjusted to 9. For 
each well containing bio�lm, bu�er, and glucose, a control containing only the bio�lm and bu�er was imaged 
in the same manner. Two images were taken at each time point starting at 0 min, directly a�er glucose addition 
to the well. �en, the images of the bio�lm were taken a�er 30, 60, 120, 180 and 240 min. A�er the 240-min 
imaging step, the bio�lms were imaged for a �nal time to demonstrate, that the nanosensor dyes do not bleach 
and can be reactivated. For this �nal imaging step, the supernatant of the bio�lm was removed and  K2HPO4/
KH2PO4 bu�er without glucose was added to each well. For the 4 °C control experiments the microscope was 
cooled to 10 °C, slides were kept in the fridge at 4 °C for 30 min prior to adding the glucose solution. In between 
imaging the slides were kept on ice. �e 3 control samples for the 37 °C and 4 °C were later combined to one 
control with n = 6.

�e datasets generated and/or analyzed during the current study are available in the Figshare repository https:// 
doi. org/ 10. 6084/ m9. �gsh are. 19213 824.
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ABSTRACT 

The correlation between altered extracellular pH and various pathological conditions, including cancer, inflammation 

and metabolic disorders, is well known. Bulk pH measurements cannot report the extracellular pH value at the cell 

surface. However, there is a limited number of suitable tools for measuring the extracellular pH of cells with high 

spatial resolution, and none of them are commonly used in laboratories around the world. In this study, a versatile 

ratiometric nanosensor for the measurement of extracellular pH was developed. The nanosensor consists of 

biocompatible polystyrene nanoparticles loaded with the pH-inert reference dye Nile red and is surface functionalized 

with a pH-responsive fluorescein dye. Equipped with a targeting moiety, the nanosensor can adhere to cell membranes, 

allowing direct measurement of extracellular pH at the cell surface. The nanosensor exhibits a sensitive ratiometric pH 

response within the range of 5.5-9.0, with a calculated pKa of 7.47. This range optimally covers the extracellular pH 

(pHe) of most healthy cells and cells in which the pHe is abnormal, such as cancer cells. In combination with the 

nanosensors ability to target cell membranes, its high robustness, reversibility and its biocompatibility, the pHe 

nanosensor proves to be well suited for in-situ measurement of extracellular pH, even over extended time periods. This 

pH nanosensor has the potential to advance biomedical research by improving our understanding of cellular 

microenvironments, where extracellular pH plays an important role. 

Keywords: pH sensor, pH, pHe, nanosensor, extracellular pH, targeting, nanoparticles  
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INTRODUCTION 

Cellular pH regulation is a fundamental aspect of cellular homeostasis and crucial for maintaining normal cellular 
function and survival. The precise control of intracellular and extracellular pH can be divided into the combination of 
two types of processes: I) passive processes such as diffusion and selective ion channels and II) active processes 
involving proton pumps, bicarbonate transporters and buffer systems, triggered by feedback mechanisms. The main 
purpose is to ensure that intracellular pH (pHi) levels remain within a narrow, tightly regulated range, typically between 
6.8 and 7.2, depending on the cell type [1, 2]. This is essential for maintaining the stability of numerous physiological 
processes, including enzyme activity, ion transport, and protein conformation. Therefore, intracellular pH regulation is 
a key factor influencing basic cell functions such as cell signaling, cell growth, and apoptosis [3]. 
 

The extracellular pH (pHe) of the microenvironment surrounding cells is equally critical, both for the individual cell 

function but also for the functioning of tissues and organs as a whole. Aberrations in pHe can impact cell-cell 

communication, metabolic processes, and even the immune response, contributing to the pathogenesis of numerous 
diseases [4, 5].  
Extracellular pH imbalances can arise from various factors, including metabolic disorders leading to conditions like 
diabetic ketoacidosis, respiratory acidosis, or hypoxia-induced acidosis. Other pathomechanisms leading to tissue 
acidification are inflammation or carcinogenesis. While normal cells typically maintain a neutral pHe (within the range 
of pH 7.2-7.4), the pHe in tumor microenvironments is more dynamic [6, 7]. The extracellular milieu in tumors often 
becomes acidic, with pH levels ranging from 6.2 to 6.9, primarily attributed to increased glycolysis and lactic acid 
production [8]. Studies have also indicated the presence of pHe gradients and local pHe heterogeneities within the 
tumor microenvironment [9, 10]. These phenomena and the acidic microenvironment not only foster an invasive and 
metastatic tumor phenotype but also exert an influence on therapeutic resistance [11-14]. Therefore, accurate 
assessment of extracellular pH may help in evaluating the extent of tumor invasion, immune response and treatment 
strategies [15, 16]. 

Understanding the function and importance of extracellular pH regulation is essential for unraveling the intricacies of 

normal cellular and tissue function, as well as the pathogenesis of various diseases. Consequently, there is a pressing 

need for innovative and non-invasive methods that can provide real-time, high-resolution pHe data for cells and tissues 

under physiological and pathophysiological conditions [17].  

While pHi regulation has been extensively studied, the pHe environment is often overlooked, possibly attributed to the 

substantial challenges associated with precise measurement of pHe directly in cell’s proximity. Conventional methods, 

such as pH microelectrodes, are invasive, often lack the required spatial resolution as they only detect one point at a 

time and are not suitable for measuring local pH fluctuations in complex biological systems [18, 19]. Nuclear Magnetic 

Resonance Imaging and Positron Emission Computed Tomography have also been reported for pHe measurement [9, 

20]. These methods are limited by their high operation cost, low spatial resolution and their reliance on the distribution 

of the probes within the tissue of interest. Fluorescence-based techniques using fluorescent probes have the advantages 

of high sensitivity and excellent spatiotemporal resolution, as well as wide applications in 3D and even in vivo 

biosensing [21, 22]. While conventional fluorescent dyes for sensing applications underlie limitations, like their 

susceptibility to fluctuations in excitation light intensity, changes in dye concentration and high background levels, 

ratiometric fluorescent sensors have been developed circumventing these limitations [21, 23, 24].  

Sensors based on fluorescent dyes [22], proteins, lipids and nanoparticles [23, 25, 26] share a common characteristic: 

their properties facilitate cellular uptake. However, concerning extracellular measurements this ease of cellular entry 

is also their primary drawback [6]. Consequently, most of them are better suited for intracellular rather than 

extracellular pH sensing applications [27]. One possible approach is the immobilization of the probe encased in thin 

films or gels [28, 29]. This does enable pH sensing in the extracellular region but confines measurement to the interface 

where the gel adheres to the cell surface. However, accurately delivering extracellular pH data within three-

dimensional cellular structures and in vivo settings presents an unresolved challenge. Therefore, an ideal and highly 

functional sensor would involve a sensor equipped with a targeting moiety, allowing precise localization on the cell 

membrane, the intended site for pHe sensing. Nevertheless, there are only a few tools suitable for measuring the pHe 

of adherently growing cells with high spatial resolution, and none of them is widely used in laboratories [30]. 

Consequently, the development of a cell-anchored ratiometric fluorescent sensor with high sensitivity emerges as a 

desirable solution for extracellular pH measurements. 
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This study describes the development of a highly functional pHe nanosensor with a straightforward design concept 

utilizing readily available commercial components. The nanosensor is comprised of biocompatible polystyrene (PS) 

nanoparticles (NP), incorporating a reference dye in its core and a pH-responsive dye on its surface. For targeting the 

cell surface, the lectin wheat germ agglutinin (WGA) was utilized enabling the active targeting of the cell membranes 

and therefore the sensing of pHe in close proximity to the cell. This versatile pHe nanosensor has demonstrated the 

ability to perform non-invasive pH measurements within a pH range of 5.5 – 9, while preserving the integrity of the 

biological systems under investigation. The successful application of the pHe nanosensor in three distinct eukaryotic 

cell lines (A549, BeWo, HaCaT) underscores its suitability to be utilized across diverse types of cell lines. Thus, a 
cell-anchored ratiometric fluorescent nanosensor with high sensitivity, quick response times and universal applicability 
was developed as a valuable tool for real-time monitoring of pHe. This pHe nanosensor holds great potential for 
advancing the understanding of cellular physiology, disease mechanisms, and the development of targeted therapeutic 
interventions. 

 

EXPERIMENTAL SECTION 

 

Materials and reagents 

The solvents tetrahydrofuran (THF) and ethanol (EtOH) were purchased from Sigma-Aldrich (UV-

spectroscopic grade) and used as received. The PS NP (100 nm) were purchased from Kisker Biotech and 

were ultrasonically treated for 10 minutes prior to use. The fluorescent dye Nile Red (NR) and WGA labeled 

with fluorescein isothiocyanate (FITC) were purchased from Merck and employed without further 

purification. The cell culture materials and ingredients were purchased from Thermo Fisher Scientific, Carl 

Roth and Merck. All cell culture media components were purchased from Pan-Biotech (Aidenbach, 

Germany). 

pHe nanosensor preparation 

The pHe nanosensor was prepared from commercially available carboxylated PS NP following a modified 
method which was previously described by Kromer et al [31]. The PS NP had a size of 100 nm and a reported 
loading of carboxylic groups of 390 nmol/mg [32]. The reference dye NR was incorporated into the PS NP 
via a swelling procedure published by Behnke et al. [33]. In brief, 100 µL of a NR solution in THF (50 µmol/L) 
were added to 600 μL of an aqueous suspension of the PS NP (0.5 w%). After 30 minutes of shaking at RT, 
the suspension was centrifuged for 40 minutes at 16,000 g (5415D, Eppendorf). The supernatant consisting 
of unembedded NR dye was removed, followed by a washing step with 50 v% EtOH, a washing step with 10 
v% EtOH and two washing steps with MilliQ H2O. Subsequently, the FITC-labeled protein WGA was 
conjugated to the NP. For that purpose, 1.2 mg of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide and 2.4 
mg of N-Hydroxysuccinimide in MES buffer were added to 300 µL NR-PS NP suspension (2.5 w%) and 
shaken for 30 minutes. After centrifugation at 16,000 g for 40 minutes, the supernatant was removed and a 
subsequent washing step with MilliQ H2O was performed. Then, 300 µL of the FITC-labeled protein WGA 
in PBS (1 mg/mL) were added to the NP suspension and allowed to react for 3 hours with continuous shaking. 
After another centrifugation step and removal of the supernatant, 120 µL of a 25 µM glycine solution were 
added and shaken for 30 minutes to block unspecific binding sites followed by three washing steps with 
MilliQ H2O. Finally, the concentration of the suspension was adjusted to 25 mg/mL before being stored in the 
fridge until further use. 

Particle size and zeta potential 
The zeta potential and the particle size (hydrodynamic diameter) of the pHe nanosensor were determined by 
dynamic light scattering (DLS) using a Zetasizer (Malvern Nano ZS, Malvern Panalytical). For particle size 
measurement and the determination of the polydispersity index (PDI), 2 µL of the NP suspension (25 mg/mL) 
was added to 1 mL MilliQ H2O in a Hellma quartz glass cuvette. The thermal equilibration time was set to 30 
s at 25 °C. The intensity-weighted size distribution represents the average of three independent replicates, 
each consisting of three measurements with ten individual analyses. The dip cell kit (Malvern Panalytical) 
was used for the determination of the zeta potential. The NP dispersion was diluted as described above for the 
particle size determination. The zeta potential was determined as an average of three independent replicates, 
each consisting of three measurements with ten individual analyses. The particle size was also assessed using 
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a transmission electron microscope (TEM) as described before [31]. 400 mesh 3.5 mm Formvar coated copper 
grids (Plano GmbH, Germany) were hydrophilized with 0.2 % alcian blue (Sigma Aldrich, Germany) in 0.03% 
acetic acid solution. The grids were floated on alcian blue droplets for 10 min, and dried using a filter paper. 
The hydrophilized grids were used on the same day. 5 µL of a 5 mg/mL sample dispersion was applied on 
each grid, incubated for 1 minute and the excess liquid was removed with a filter paper. Samples on the copper 
grids were observed in a Jeol 1400 Plus TEM (Jeol GmbH, Germany) operated at 120 kV. Material 
identification was done using diffraction pattern from published resources. Imaging was performed using a 
Veleta G2 camera (Olympus, Germany). Particle size was measured using iTEM software provided by 
Olympus. At least 4 different areas of each grid were examined per sample. 

pH dependent fluorescence measurements 

Fluorescence spectra were recorded with a fluorospectrometer (LS 55, Perkin Elmer). Fluorescence 
measurements were carried out using an integration time of 0.1 s and slit widths for excitation and emission 
of 2 and 6 nm, respectively. To observe the pH-dependent fluorescence behavior of the pHe nanosensor, 2 µL 
of nanosensor suspension (25 mg/mL) was added to 1 mL of buffer solution. The fluorescence spectra were 
recorded with excitation at 485 nm, with 21 different pH values ranging from 4.15 to 10.94, using the Britton-
Robinson (BR) buffer in Hellma quartz cuvettes. The pH values of the BR buffer solutions were measured 
using a pH meter with an InLab Micro electrode (FiveGo F2 pH meter, Mettler Toledo GmbH). The pH meter 
was calibrated at 25 °C with standard buffers of pH = 9.21, 7.01, and 4.01 in a three-point calibration. 

Dye and protein loading 

Dye loading was determined using a spectrophotometric method as previously described by Kromer et al [34]. 
A calibration curve for the absorbance of NR in 50 v% THF in H2O at 530 nm was prepared. The concentration 
range of 1.25-15 nmol/mL was determined to be linear with R=0.9985 using a linear regression model. As a 
second step, a defined volume of nanosensor suspension was added to an Eppendorf tube and centrifuged at 
16,000 g for 40 minutes. The supernatant was removed, and the NPs were dissolved in 500 µL THF and 500 
µL H2O was added. The absorption at 530 nm was determined in a spectrophotometer (FoodALYT, Germany). 
The dye concentration was calculated as dye equivalents by using the calibration curve and used to calculate 
the dye loading per mg nanosensor. 
For the determination of the protein loading (equiv. of WGA per mg particle) a modified indirect Coomassie 
assay was performed [35]. The NP suspensions were prepared by adding 20 µL NP suspension (0.5 mg NP) 
to 880 µL MilliQ H2O and 100 µL of Coomassie blue concentrate (Protein Assay Kit, Bio Rad). As a control 
20 µL of NP without lectin were prepared in the same manner. The mixture was incubated for 10 minutes and 
then centrifuged at 16,000 g for 40 minutes. The supernatant, containing unbound Coomassie blue, was 
collected and 50.4 µL of BSA solution (8 mg/mL in MilliQ H2O) was added to 700 µL supernatant. 100 µL 
of the resulting solution was transferred to a 96-well plate in triplicates. Titration of the Coomassie Blue was 
performed by adding different volumes of Coomassie blue (0, 1, 5, 10, 50, and 100 µL) to 700 µL of MilliQ 
H2O in Eppendorf tubes, followed by the addition of 50.4 µL of the BSA solution. Triplicates of each sample 
were transferred to the same 96-well plate. Similarly, BSA titration was carried out by setting up a standard 
series of Coomassie blue. 10, 20, and 50 µL of Coomassie Blue were made up to 700 µL with MilliQ H2O 
and variable amounts of BSA (0, 1, 2, 4, 6, 8, 10, or 15 µL) were added. Triplicates of each sample were then 
transferred to the second 96-well plate. For both plates the absorbance at 595 nm was measured using a plate 
reader (BioTek Synergy Neo 2, Agilent Technologies). The amount of conjugated lectin as BSA equivalents 
was calculated. 

Cell culture 

The human lung epithelial cell line A549 and the human placenta cell line BeWo were purchased from ATTC 
(American Type Culture Collection). The human immortal keratinocyte cell line HaCaT was purchased from 
DSMZ (German Collection of Microorganisms and Cell Cultures GmbH). All cells were cultivated in 5 % 
CO2 at 37 °C and grown in DMEM medium, containing 10 v% FCS for A549 and BeWo and 5 v% for HaCaT, 
100 U/mL penicillin, 100 mg/mL streptomycin, and 2 mM L-glutamine. 

Cell viability 
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To assess the viability of the cells after incubation of the NP the colorimetric viability assay kit WST-1 (Roche 
Diagnostics GmbH) was used. Here, the amount of formazan dye formed is directly related to the metabolic 
activity of cells. The assay was carried out as described in the manufacturer’s instructions. In brief, cells were 
seeded at 2×104 cells/well in transparent 96-well plates and incubated with the NP for various time periods. 
After addition of 10% WST-1 reagent and incubation for 30 min, the absorbance was measured at 450 nm 
(620 nm was used as reference wavelength) in a multiplate reader (BioTek Synergy Neo 2, Agilent 
Technologies). To account for potential absorbance of the NP at 450 nm, the absorbance of each well was also 
measured before addition of the WST-1 reagent and subtracted from the final value. Results are reported as 
relative WST-1 activity, where 100% corresponds to the absorbance measured in control cultures and 0% to 
the dead-control treated with 1% Triton-X for 30 minutes. 

Cell binding assay 

To evaluate the cell adhesion of the WGA-conjugated nanosensor, binding studies were performed on the 3 
cell lines A549, HaCaT and BeWo. For this purpose, the suspended cells were incubated for 5 minutes at 37°C 
with WGA-conjugated NP at 1.25 mg/mL in Eppendorf tubes. NP without WGA served as a control. After the 
incubation, the cells were centrifuged at 300 g for 6 minutes. The supernatant containing the unbound NP was 
removed. The cell pellet was resuspended in cell culture medium, transferred to a 96 well plate, followed by 
measurement of the NP fluorescence (NR, 530 nm) in a plate reader. Cells with NP without centrifugation 
served as 100% control for calculating the relative amount of NP bound to the cells. 

Scanning electron microscopy (SEM) imaging 

 For SEM imaging, A549 and HaCaT cells were grown on 1 x1 cm glass slides and incubated for 10 minutes 
with 0.825 mg/ml pHe nanosensor. The samples underwent three washing steps with PBS and were then fixed 
with 2% glutaraldehyde for 2 hours. After three more washing steps with PBS, the cell specimens were 
dehydrated using a graded series of alcohol (30%, 50%, 70%, 90%, and 99% ethanol). Liquid carbon dioxide 
was used as a transitional fluid for critical point drying (EM CPD300, Leica, Germany). The cell specimens 
were sputter-coated with a 30 nm conductive gold layer (EM ACE600 table-top coater, Leica, Germany) and 
examined with an environmental scanning electron microscope (XL 30 ESEM, FEI, Netherlands) equipped 
with a secondary electron detector and operated at an electron accelerating voltage of 25 kV. At least three 
random sections per sample were analyzed. 

CLSM imaging 

All cells were live cell imaged in Ibidi µ-dishes at 37 °C using a confocal laser scanning microscope (LSM 
700, Carl Zeiss Jena GmbH, Jena, Germany). A 63 × /N.A. 1.4 objective with oil immersion was used for 
imaging. XY images were acquired with 1024 × 1024 pixels. The standard laser and filter set for FITC and 
NR were used. Cells without nanosensor were imaged in the same way to determine background signals and 
autofluorescence. The imaging settings, such as laser intensity, gain, and contrast, were first optimized, saved, 
and then used for all imaging procedures to ensure comparability. 

Image analysis and pH calibration  
As describe above, all images were acquired with identical microscope settings. No background correction 
was performed as autofluorescence was not observed under the chosen measurement conditions. For the image 
analysis the fluorescence intensities (FI) of the FITC and NR channel of the whole image were calculated 
with ImageJ. The FITC FI divided by the NR FI yields the total FI ratio of the pHe nanosensor. A calibration 
curve was generated using BR buffers with 11 different pH values ranging from 4.15 to 10.05. For imaging, 
the cells were washed twice with PBS before adding the nanosensor at a concentration of 0.825 mg/mL. After 
incubating the nanosensor for 10 minutes, the supernatant containing unbound nanosensor was removed. 
Subsequently, the cells were washed with BR buffer of the pH of interest and imaged. This procedure was 
carried out in three independent triplicates for all three cells lines and all 11 buffers. To obtain the calibration 
curve, a four-parameter sigmoidal curve was fitted to the pH calibration data using Graph Pad Prism. A reverse 
pH estimation can also be performed with this function, allowing for determination of unknown pH values 
from the FI ratio of an image. 

Statistics 
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Statistical analysis was carried out with GraphPad Prism 9. All data are presented as mean ± standard deviation 
and were acquired in triplicates. Groups were compared using the t-test and one-way ANOVA. P values ≤ 
0.05 were considered statistically significant. 

 

RESULTS AND DISCUSSION 

Fabrication of the pHe nanosensor 

For the preparation of the pHe nanosensor, a straight forward two-step strategy was carried out as shown in Fig. 1. 
First, the reference dye NR was embedded into PS NP by a previously established swelling method [33, 34]. The PS 
NP were chosen as the platform for the pHe nanosensor, as they are readily available with different surface 
functionalizations. Here, NP with carboxylic surface groups were chosen, as they are hydrophilic and allow conjugation 
of dye molecules as well as proteins. These negatively charged PS NP are biocompatible and stable in cell culture 
media [36, 37]. As a second step, the protein WGA, labelled with the pH-responsive dye FITC, was covalently attached 
to the carboxylic groups of the PS NP surface via carbodiimide coupling. WGA is a lectin, which is a carbohydrate-
binding protein that specifically binds to N-acetylglucosamine and sialic acid residues. WGA conjugated to 
fluorophores are frequently used to label and identify specific glycoproteins or glycolipids on cell membranes in 
microscopy studies [38, 39]. Here, the WGA was applied to facilitate the targeting of the cell membranes by the pHe 
nanosensor. The protein loading was optimized, with respect to optimal binding of the NP to the cells and optimal 
signal intensities of FITC (dye and protein loading data in SI, table A1). For ratiometric fluorescence sensing of pH in 
the visible wavelength region, hydrophobic red emissive NR was chosen as a pH-inert reference dye and hydrophilic 
and biocompatible FITC as a pH-responsive dye [31, 40]. Upon incorporation into the NP, NR showed a homogeneous 
particle loading without leakage in aqueous dispersions, high photochemical stability and brightness. FITC reveals a 
strong green fluorescence solely at basic and neutral pH values with an optimal working range for pH sensing for 
working in eukaryotic cells. The dyes exhibit spectrally discriminable emission bands and can be read out with a 
standard CLSM setup using standard lasers and filter settings. While FITC exhibits its excitation maximum at 
approximately 490 nm, NR, on the other hand, has its excitation maximum at 530 nm. Notably, the excitation range of 
NR is broad and overlaps with the excitation maximum of FITC. Therefore, both dyes can be excited at the same 
wavelength, but the emission can be read out at different wavelengths, enabling ratiometric pH measurement with only 
one excitation wavelength. This simplifies the equipment needed to do measurements, and thus there are less error 
sources. The chosen ratiometric design concept allows a correlation of the calculated intensity ratios of the pHe 
nanosensor FITC and NR fluorescence with pH neglecting local concentration differences of the sensor. Hence, the 
pHe nanosensor is a useful tool for pH detection that can be used in a standard laboratory environment under a wide 
range of conditions. Despite its efficient performance, there is no need for advanced techniques or materials other than 
a CLSM. In this study, functionality and practicality was prioritized over complexity and novelty, as this provides the 
greatest benefit to the ever-growing need for easy and ready-to-use methods.  

  

 

Fig. 1 Schematic illustration of the pHe nanosensor fabrication starting from a functionalized PS NP. The reference 

dye NR is embedded into the particle by a swelling procedure. The lectin WGA labeled with the pH-responsive dye 

FITC is conjugated to the NP as targeting moiety therefore enabling the pHe nanosensor to target the cell membrane 

of eukaryotic cells 
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Characterization of the pHe nanosensor 

The precursor PS NP size was determined to be 114.1 ± 3.9 nm through DLS and 94.0 ± 8.5 nm through TEM, a result 
that matches the value of 100 nm provided by the manufacturer (Table 1). The size of the particles remained unchanged 
after incorporation of NR dye and the hydrodynamic diameter increased only slightly after the conjugation of the 
protein WGA. The particles have a spherical morphology and low aggregation behavior, which also remains unchanged 
after functionalization of the particles (Fig. 2e). The consistency of particle size and morphology is critical as it 
excludes the aggregation of particles and thus ensures the sensor's reliability and performance [41]. Furthermore, the 
small size of the particles allows local pH imaging with high resolution. This is in contrast to other particulate sensors, 
which have larger particles in the µm range, hindering the ability to image and detect pH at a cellular resolution [29]. 
The zeta potential analysis revealed a negative charge of approximately -63 mV and -66 mV for the precursor NP and 
the NR-loaded NP, respectively. This indicates a high stability of the suspension, as suspensions with zeta potentials 
more positive than +30 mV or more negative than −30 mV are considered to have a high colloidal stability maintained 
by electrostatic repulsion [42-44]. Furthermore, after WGA-FITC conjugation, while the zeta potential increased, it 
remained negative at around -31 mV. Importantly, the critical properties for suspension stability, namely size and zeta 
potential remain stable even after functionalization, underscoring the suitability of the nanosensor for the imaging of 
pHe in cells. 

 

Table 1 Comparison of the particle size and zeta potential of the precursor PS NP with the NR-loaded NP and the pHe 

nanosensor by TEM and DLS 

 Size (TEM) [nm] Size (DLS) [nm] PDI (DLS) Zeta potential [mV] 

PS NP 94.0 ± 8.5 114.1 ± 3.9 0.012 -62.7 ± 1.1 

NR-loaded NP 92.2 ± 9.7 113.8 ± 2.6 0.018 -66.0 ± 5.3 

pHe nanosensor 86.5 ± 9.2 125.8 ± 6.5 0.050 -30.6 ± 1.4 

 

Fluorescence Characterization 

The fluorescence properties of the pHe nanosensor were examined at different pH values in BR buffer to assess its 
ability for pH determination in cellular systems. As shown in Fig. 2a, the pHe nanosensor is excited at 485 nm and 
exhibits a strong fluorescence signal of with maxima of NR at 600 nm and of FITC at 520 nm under neutral and basic 
pH conditions. The pH-dependent fluorescence measurements confirmed that the FI of FITC correlates with changes 
in pH while the FI of NR is pH-independent. The FITC fluorescence signal is highest at pH 10.05, decreases upon 
acidification, and eventually disappears at pH ≤ 4.5. Integrating the FI of FITC in the peak area and plotting against 
pH reveals a sigmoidal behavior (Fig. 2b), whereas that of NR remains constant (Fig. 2c). The plot of the ratio of the 
integrated FI of FITC and NR as function of pH (Fig. 2d) derives a pKa value of 7.69 that is slightly shifted to basic 
pH values compared to FITC conjugated only to WGA with a pKa value of 6.7. This shift is attributed to the coupling 
of FITC to a negatively charged particle [24]. However, due to it being comparatively small no changes in protein 
structure and activity are expected. The working range of pH 5.5 – 9 is rather broad when compared to other pH 
sensors, due to the relatively flat slope of the curve. Thus, the working range of the nanosensor for pH detection is well 
suited for fluorometric pH sensing in the physiological pH range of eukaryotic cells.  
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Fig. 2 Characterization of the pHe nanosensor. a Fluorescence spectra of the pHe nanosensor excited at 485 nm in 
different buffers with known pH. b Sigmoidal fit of the integrated FI of FITC (green box = area of signal integration) 
plotted against the pH value of the respective buffer. c Integrated FI of NR (red box = area of signal integration) plotted 
against the pH value of the respective buffer and derived pKa value. d Ratio of the integrated FI of the FITC and the 
NR emission plotted against the corresponding pH with sigmoidal curve fit. e TEM images of the precursor PS NP 
(left), the NR-loaded NP (middle), and the pHe nanosensor consisting of NR-loaded NP conjugated to WGA-FITC 
(right). f pH reversibility study of the pHe nanosensor between pH 6.0 and 8.2 

 

The reversibility of the pH sensing capabilities of the pHe nanosensor was tested by imaging the FI ratio of FITC to 
NR at different pH in the CLSM. After repetitive changes of the extracellular pH between 8.2 and 6.0, the FI ratio of 
the pHe nanosensor was not affected (Fig. 2f). Therefore, leaching of the dyes from the sensor and bleaching of the 
dyes can be excluded, as this would change the FI ratio over time. This reversible response is a prerequisite of pHe 
nanosensors to be utilized for tracking continuous pH fluctuations in biological systems over extended periods of time.  

Screening target cell lines  
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Fig. 3 Screening of targeting capabilities of WGA as a targeting moiety. CLSM images of the lung cell line A549, skin 
cell line HaCaT and placenta cell line BeWo incubated with 5 µg/mL WGA-FITC (green) and Hoechst for nuclei stain 
(blue) 

To measure the pHe, the pHe nanosensor has to be in close proximity to the target cells. Therefore, the pHe nanosensor 
was adhered to the cell surface by using the protein WGA as targeting moiety. To first evaluate the suitability of WGA 
as a cell membrane targeting component, three different cell lines from different tissues were incubated with FITC-
labeled WGA and examined with CLSM (Fig. 3). Here, the selection of A549 (human lung epithelial cells), BeWo 
(human placenta cells), and HaCaT (human skin keratinocytes) aimed to ensure tissue diversity. This selection was 
made with the understanding that the pHe is highly relevant across different tissues in an organism. As it can be seen 
in the CLSM images, WGA exclusively labels the cell membranes of all 3 cell lines without entering the cells. This 
proves its suitability as a targeting moiety for the cell surfaces of various cell types, enabling the utilization for 
measuring the pHe.  

To assess the effectiveness of WGA as a targeting moiety when conjugated to the NP, a cell binding assay was 
performed, quantifying the amount of NP that bind to the cells with and without conjugated WGA (Fig. 4a). For this 
purpose, suspended cells of the 3 cell lines were incubated with WGA-conjugated nanosensor (WGA NP) and the 
precursor NP before WGA labeling was used as a non-targeted control sample (control NP). After incubation, the cells 
were centrifuged, and the supernatant containing unbound NP was removed. The cell-bound NP were quantified via 
the fluorescence signal of the embedded NR in the NP and were related to the total fluorescence signal of the NP before 
centrifugation. The largest fraction of the control NP was removed by centrifugation, and only approximately 10 % of 
the particles were found in the cell pellets. This might be due to electrostatic affinity or other unspecific bindings of 
the NP to the cells. For the WGA NP, approximately 75-85 % of the particles were found to be bound to the cells, 
indicating that a large fraction of the WGA NP binds to the cells via specific protein binding. These numbers align with 
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literature values of BSA-WGA binding to, e.g., Caco-2 cells [45]. This indicates that the activity of WGA to act as a 
targeting moiety in conjunction with the NP is not compromised when the protein is conjugated. To further characterize 
the targeting properties, the cells were investigated with SEM after incubation with the pHe nanosensor (Fig. 4c, 
additional SEM images in the SI). The images revealed that the spherical nanosensors bind to the cell membrane, 
creating a sensor layer that uniformly covers the cell surface. This uniform distribution is crucial for obtaining strong 
signal intensities at the area of interest in fluorescence experiments and accurately measuring pH levels locally. 

Fig. 4 a pHe nanosensor cell binding assay with WGA-conjugated nanosensor (WGA NP) and precursor nanosensor 
without WGA as non-targeted control NP (control NP). The amount of NP bound to the cells was quantified via the 
NR fluorescence signal and correlated to the total amount of NP (100%) b Viability of A549 cells after exposure of the 
pHe nanosensor for different time points and different concentrations related to the control without pHe nanosensor c 
SEM images of A549 and HaCaT cells. Samples without (control) and with the pHe nanosensor (0.825 mg/ml) 

To utilize the nanosensor as a tool for pHe sensing in in vitro applications such as cell cultures, tissues or organoids, it 
is important that the pHe nanosensor does not affect the target cells or their viability. Despite the selection of the 
components used for the pHe nanosensor being based on components to be known as non-toxic in the concentrations 
used, a cell viability assay was performed. Here, a WST-1 assay was selected to assess whether exposure of the pHe 
nanosensor influences the cell viability (Fig. 4b). Different concentrations and incubation times were tested, ranging 
from 10 minutes to 24 hours, to cover a variety of application times subsequent for imaging experiments. It was found 
that no concentration up to the tested maximal concentration of 2.5 mg/mL and none of the incubation times tested 
showed a significantly toxic effect on the cells. Additionally, no morphological changes were observed in the cells in 
the SEM images, compared to the control (Fig. 4c, additional SEM images in the SI). Therefore, the pHe nanosensor 
was found to be cell-compatible, enabling its safe application, particularly for brief time periods of several minutes or 
hours in cell culture experiments.  

Ideally, pHe nanosensors should function with minimal impact on cellular processes to avoid disrupting the natural cell 
environment. Some studies have shown local pHe measurements with high resolution through the expression of 
fluorescent sensor molecules by the target cells [46, 47]. Although this method is highly effective, the expression of 
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fluorescent dyes represents a significant intervention in cell physiology. To maintain a cell's natural state during 
imaging, it is preferable to opt for minimally invasive pH sensing methods. Anderson et al. developed a pHe 

measurement tool by attaching a dye to a low-insertion protein that inserts into the cell membrane [48]. The study 
yielded precise surface pH values with relatively little impact on the cell function. However, local pH determination at 
the cellular level, which is the ultimate goal of surface pH determination, especially in environments with pH 
heterogeneities, was lacking. 

 

Imaging of the pHe nanosensor and determination of pHe 

To investigate the pHe nanosensors functionality and robustness in cellular applications, its capability to determine the 
pH on the cell surface was investigated. For this purpose, the three different cell lines were incubated with the pHe 
nanosensor and imaged with CLSM in different pH buffers with pH values from 4.15 to 10.05 (Fig. 5). Here, the 
fluorescence signals of the pHe nanosensor, were found to localize at the cell membranes, as it can be seen in the 
overlay images of the BF, the NR (red) and the FITC (green) channel. This shows effective targeting of the cell 
membranes of all three kinds of cell lines by the pHe nanosensor, ultimately enabling the direct sensing of pHe on the 
surface of the cell. Furthermore, the co-localization of the FITC and NR fluorescence signals shows that both dyes are 
located at the pHe nanosensor, and that the dyes did not leak but are stable, hence allowing ratiometric determination 
of pHe. 
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When imaging the pHe nanosensor and the cells in buffers with known pH, the FI of FITC does respond according to 
the pH value with high FI in basic pH and low FI in acidic pH. This also can be seen in the overlay of the FITC and 
NR fluorescence channels showing the ratio of the two channels as a color change from red to yellow for acidic to 
basic pH. The mathematical realization of this overlay is the calculation of the FI ratio, by dividing the FITC FI through 
the NR FI. This ratiometric concept allows a correlation of the calculated FI ratio with pH, neglecting local 
concentration differences of the pHe nanosensor. Plotting the FI ratio against each corresponding pH, yields a 
calibration curve for each individual cell line tested (Fig. 6). Notably, the pH curves and pKa values observed in the 
cell culture experiments align with those determined in the acellular assay, highlighting the pHe nanosensor’s 
robustness. The pHe nanosensor’s functionality is not compromised by the biological system despite variations in 
experimental conditions, including salt concentrations, protein interactions, matrix effects, and cellular 
autofluorescence. This robustness is essential to affirm the sensor's suitability for biological applications, 
demonstrating its ability to remain functional even in complex biological environments. 

  

Fig. 6 The calibration curves derived from the CLSM experiments in the pH range from 4.15 to 10.05 with sigmoidal 
curve fit in the three cell lines a A549, b HaCaT and c BeWo and the respective derived pKa values 

 

The advantage of the pHe nanosensor is its remarkably simple experimental procedure for labeling cell surfaces and 
therefore the target cell line. In contrast to some sensors that need to be genetically encoded to be expressed on the 
cells surface [46, 47] or extensivly incubated (several hours to overnight) [40], the pHe nanosensor’s application only 
required a single step: just adding it to the cell culture medium for 10 minutes. Regarding the simplicity of the labeling 
procedure, a PEG-FITC-based probe by Ohgaki et al [49] is comparable to the pHe nanosensor. A drawback of the 
aforementioned probe is its narrow pH measuring range of aprox. 5.5 – 7. Chen et al also report a sensor with a similar 
limited pH measuring range of 6.4 to 5.9 [50]. Such a narrow pH range reduces a sensors applicability to very specific 
areas of interest. Nevertheless, their sensor system exhibits great potential for pHe measurement through anchoring a 
lipid to the cell membrane. 
 

CONCLUSIONS 

In this study, a ratiometric pHe nanosensor for the determination of extracellular pH was developed. The measurement 
of pHe with this nanosensor is fast, robust, fully reversible, and the nanosensor showed no leaching of dyes even after 
long periods of time. By conjugating the nanosensor with a protein that binds to cell surfaces, the pHe nanosensor can 
rapidly target different cell lines of interest such as lung, skin and placenta cells. As demonstrated by CLSM and SEM 
experiments, the active targeting approach proves to be highly effective, thus enabling the pHe nanosensor to accurately 
measure pH levels on the surface of cells. This approach enables a very precise and locally resolved measurement of 
the pHe whilst being cell-compatible and universally applicable in cell lines of different tissues.  
In the future, this pHe nanosensor can further advance the understanding of cellular microenvironments. The 
nanosensor can be utilized for a variety of applications in biomedical research in which the extracellular pH level may 
be of critical importance, such as cancer research, studies on metabolic disorders, and for diagnostic and treatment 
applications. 
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Bacterial biofilms can pose a serious health risk to humans and are less susceptible 

to antibiotics and disinfection than planktonic bacteria. Here, a novel method 

for biofilm eradication based on antimicrobial photodynamic therapy utilizing 

a nanoparticle in conjunction with a BODIPY derivative as photosensitizer was 

developed. Reactive oxygen species are generated upon illumination with 

visible light and lead to a strong, controllable and persistent eradication of 

both planktonic bacteria and biofilms. One of the biggest challenges in biofilm 

eradication is the penetration of the antimicrobial agent into the biofilm and 

its matrix. A biocompatible hydrophilic nanoparticle was utilized as a delivery 

system for the hydrophobic BODIPY dye and enabled its accumulation within the 

biofilm. This key feature of delivering the antimicrobial agent to the site of action 

where it is activated resulted in e�ective eradication of all tested biofilms. Here, 

3 bacterial species that commonly form clinically relevant pathogenic biofilms 

were selected: Escherichia coli, Staphylococcus aureus and Streptococcus 

mutans. The development of this antimicrobial photodynamic therapy tool for 

biofilm eradication takes a promising step towards new methods for the much 

needed treatment of pathogenic biofilms.

KEYWORDS

biofilm, disinfection, antimicrobials, photodynamic therapy, aPDT, nanoparticles, 

BODIPY

1. Introduction

Bio�lms are microbial communities adhered to surfaces and surrounded by a self-produced 

matrix, mainly composed of water and extracellular polymeric substances (EPS) (Flemming and 

Wingender, 2010). �e matrix plays an important role in bio�lm formation by providing the 

bio�lm with structural integrity as well as increased resistance to external in�uences such as 

temperature changes, desiccation, shear forces and also disinfection (Donlan and Costerton, 

2002; Flemming and Wingender, 2010). In addition, it forms a reservoir for nutrients and allows 

the microorganisms to establish long-term synergistic associations characterized by social 

interactions and community evolution (Hansen et al., 2007; Flemming et al., 2016).

Infections caused by bacteria including those involving bio�lms pose a global threat to 

human health. Particularly devastating is the ever-evolving resistance of bacteria to existing 
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treatments. Bio�lm formation protects bacteria from common 

cleaning procedures like disinfection and allows further colonization 

(Dang and Lovell, 2016). Strategies for bio�lm control currently used 

include cleaning and disinfection, material selection and surface 

treatments such as application of ultraviolet light, plasma, and 

ultrasonic treatment. In the medical �eld and for application in 

humans, the use of antibiotics plays a fundamental role. Most of 

these methods are primarily aimed at killing planktonic bacteria or 

inhibiting their growth and are, therefore, not su�cient to control 

bio�lms entirely (Ciofu et al., 2022). Two problems are recognized 

to be inextricably linked to this approach: (I) the frequently observed 

development of resistance to antimicrobial agents and (II) the fact 

that therapeutic agents are much less e�ective on bacteria growing 

in bio�lms compared to planktonic cells (Mah and O'Toole, 2001). 

�e latter point is of particular importance because in recent years 

there has been mounting evidence that most chronic bacterial 

infections are associated with bio�lms (Macia et al., 2014; Kolpen 

et al., 2022). �e rapid development of resistance in many bacterial 

species is also highly problematic as it makes future eradication even 

more challenging. �erefore, strategies to overcome bacterial 

persistence by inhibiting bio�lm formation or removing mature 

bio�lms that are e�ective and can be  used long term are 

urgently needed.

A great hope lies in the utilization of in situ generated reactive 

oxygen species (ROS). �is concept is already applied in photodynamic 

therapy (PDT). PDT uses photosensitizers (PS) that are activated by 

visible or near-infrared light but are non-toxic without illumination. 

�e PS �rst forms an excited singlet state, followed by a transition to 

the long-lived excited triplet state, which undergoes photochemical 

reactions in the presence of oxygen and generates ROS 

(Bekmukhametova et al., 2020). �e ROS can then destroy biological 

targets such as cancer cells and microbes including bacteria (Hu et al., 

2018). When PDT is applied to combat microbes, such as bacteria, it 

is o�en referred to as antimicrobial photodynamic therapy (aPDT). 

A key advantage of aPDT is that ROS damage is completely 

non-speci�c and, thus, can be used on all bacteria, as there is no 

known resistance to ROS (Hughes and Webber, 2017). Commonly 

used classes of PS are porphyrins, squarains, phenothiazines and 

boron-dipyrromethene (BODIPY) (Bekmukhametova et al., 2020). 

BODIPY dyes are excellent candidates for the development of modern 

aPDT strategies due to their particularly remarkable photophysical 

properties, such as high molar absorption coe�cients, high quantum 

yields for ROS generation and high photostability (Rebeca and Jorge, 

2018; Boens et al., 2019; Radunz et al., 2020). Additionally, they are a 

highly versatile dye class that can be easily prepared and structurally 

altered to bene�t various applications (Bañuelos, 2016; Sheng et al., 

2019; Radunz et al., 2020).

Generally, the applicability of many PS molecules is limited by 

their poor water solubility, aggregation behavior and impaired ability 

to su�ciently penetrate tissues and bio�lms (Abrahamse and 

Hamblin, 2016; Songca and Adjei, 2022). In addition, the lifetime of 

the generated singlet oxygen is very short, limiting its di�usion to only 

10–55 nm (Dysart and Patterson, 2005). �erefore, the photodynamic 

damage is likely to occur only in close proximity to the location of the 

PS, thus, the ROS generation has to be induced at the target site, e.g., 

inside the bio�lm (Moan et al., 1989). �e higher the concentration of 

the PS inside the bio�lm, the better the therapeutic performance 

(Bekmukhametova et al., 2020).

Nanoparticles (NPs) can be utilized to act as carriers for the PS to 

facilitate the delivery and accumulation within the bio�lm. By using 

hydrophilic particles in which the dye is embedded, the solubility 

issues of the mostly hydrophobic PS can be circumvented. In addition, 

there is the possibility of using NPs that can enable active targeting, 

e.g., by binding to speci�c cell components or bio�lm structures, e.g., 

by utilizing protein conjugation. However, the NPs accumulation in 

the bio�lm is also possible in a passive manner through di�usion, 

in�uenced by their charge, size or hydrophobicity (De-la-Pinta et al., 

2019; Hollmann et  al., 2021). �is allows high amounts of PS to 

be concentrated locally at the target site, especially if the particles have 

a high dye loading.

Several studies have shown the bactericidal e�ect of aPDT 

utilizing NPs, e.g., methylen blue-loaded gold NPs (Khan et al., 2017) 

and chitosan NPs (Yaghoubi et al., 2020), curcumin-loaded PLGA NPs 

(Raschpichler et  al., 2019) toluidine blue-loaded alginate NPs 

(Usacheva et al., 2016) and rose bengal-loaded chitosan NPs (Shrestha 

et al., 2014). However, there are limitations to the published methods 

that constrain their successful use for bio�lm removal. For example, 

elimination rates lower than 2 log units achieved with toluidine blue 

or methylen blue-loaded NPs cannot be viewed as su�cient bio�lm 

removal (Klepac-Ceraj et al., 2011; Usacheva et al., 2016; Anju et al., 

2019). �is is particularly important as bio�lms can proliferate and 

rebuild their population quickly, even if only a few bacterial cells 

survive. �e commonly used PS Rose Bengal was also used in several 

NPs applications but showed relevant dark toxicity interfering with 

the aPDT treatment (Shrestha et al., 2014; Anju et al., 2018). �e use 

of highly e�ective yet controllable PS for photodynamic eradication of 

bio�lms is therefore urgently needed.

In general, the e�ect of aPDT on planktonic bacterial cells is 

higher than on bio�lms. Most published methods are able to 

eradicate planktonic bacteria by several log units; however, for 

bio�lms, the reduction is only in the double-digit percentage range 

(Anju et al., 2018; Dai et al., 2018; Anju et al., 2019). Reasons for 

this are the more di�cult penetration of PS into bio�lms due to EPS 

and the generally higher concentration of bacteria in the bio�lm 

compared to a suspension in medium (Li et al., 2023). In addition, 

bacteria in di�erent physiological stages are present in a bio�lm, 

which means that not all of them are in a vulnerable, proliferating 

state (Ciofu et al., 2022). Some may be in a dormant state with a 

lower metabolism, which also limits the internalization of 

substances and thus the e�ectiveness of many treatment agents. It 

is therefore important to develop systems that are also highly 

e�ective in bio�lms.

It is well-known, that gram-positive bacteria are more susceptible 

to aPDT than gram-negative bacteria, due to their cell wall 

composition (Bekmukhametova et al., 2020). Studies have con�rmed 

this fact and shown that gram-negative bacteria are up to 10 times less 

sensitive than gram-positive bacteria (Yang et al., 2012; Kirar et al., 

2018). �erefore, investigations for utilizing aPDT for bio�lm 

eradication should also be carried out on gram-negative as well as 

gram-positive bacteria. On top, the functionality and also the 

limitations of aPDT in relation to the composition of the cell wall 

should be investigated further.

�e e�cacy of aPDT systems can be signi�cantly increased by the 

development of more complex and sophisticated aPDT systems, for 

example in combination with other antibacterial agents (Pérez-Laguna 

et al., 2019; Songca and Adjei, 2022). However, when considering 

https://doi.org/10.3389/fmicb.2023.1274715
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kromer et al. 10.3389/fmicb.2023.1274715

Frontiers in Microbiology 03 frontiersin.org

these developments in terms of their practicability, it is at least as 

important to develop systems that are easy to manufacture and use 

and yet highly e�ective.

In this study, a highly e�ective PS combined with a facile NP 

delivery system was utilized to overcome the limitations of 

previously described aPDT systems to achieve e�ective eradication 

of both, planktonic bacteria and bio�lms. For this purpose, a highly 

e�ective diiodinated BODIPY derivative that can be excited with 

visible light with a wavelength of 530 nm was embedded in 

polystyrene NPs. Both Gram-positive and Gram-negative bio�lm-

forming bacteria with high clinical relevance were selected to 

evaluate the e�ectiveness of the BODIPY-loaded NPs for aPDT of 

planktonic bacteria and bio�lms.

2. Methods

2.1. Materials and reagents

All solvents (tetrahydrofuran (THF), ethanol, acetonitrile and 

dimethylsulfoxide) were of analytical grade, purchased from Merck 

and �ermo Fisher Scienti�c, and used as received. �e 100 nm 

polystyrene NPs were purchased from Kisker Biotech and 

ultrasonicated prior to use. Escherichia coli (E. coli), Staphylococcus 

aureus (S. aureus), and Streptococcus mutans (S. mutans) were 

purchased from DSMZ-German collection of microorganisms and 

cell cultures. All cell culture materials and ingredients were obtained 

from Merck, VWR, and �ermo Fisher Scienti�c.

2.2. BODIPY synthesis

�e synthesis as well as analytical and optical characterization 

of the iodinated BODIPY dye has been reported previously (Radunz 

et al., 2020). For this study, 4,4-di�uoro-1,3,5,7-tetramethyl-8-(4-

hydroxyphenyl)-bora-3a, 4a-diaza-s-indacene was used as 

precursor dye for the synthesis of the diiodinated singlet oxygen-

generating BODIPY (Radunz et al., 2017). All compounds subjected 

to biological assays were of >95% purity (ultra performance liquid 

chromatography). All reagents and solvents employed for the 

synthesis and characterization were used without 

further puri�cation.

N-Iodosuccinimide (2.2 equiv.) was added slowly in small 

portions to a stirred solution of the precursor BODIPY (1 equiv.) in 

100 mL of dichloromethane. A�er complete addition of the 

N-Iodosuccinimide, the reaction mixture was stirred for further 

60 min. �en, the reaction mixture was washed with deionized 

water and subsequently dried over MgSO4. Puri�cation was 

performed by column chromatography in the dark using 

dichloromethane/petroleum ether (1/1, v/v) as eluents followed by 

recrystallization by chloroform/n-hexane.

4,4-Di�uoro-2,6-diiodo-1,3,5,7-tetramethyl-8-(4-hydroxyphenyl) 

-bora-3a,4a-diaza-s-indacene. Yield 23%; UPLC: >95% purity; 1H 

NMR (500 MHz, CDCl3) [ppm]: δ = 7.04 (d, 2Haryl), 6.98 (d, 2Haryl), 

2.63 (s, 6Hmethyl), 1.48 (s, 6Hmethyl); 13C NMR (125 MHz, CDCl3) 

[ppm]: δ = 158.2, 156.3, 145.5, 142.2, 131.8, 129.0, 125.4, 116.3, 85.3, 

17.0, 15.8; MS (ESI-TOF): m/z calculated for C19H17BF2I2N2NaO+ 

[M + Na]+: 614.9389; found: 614.9417.

2.3. Nanoparticle preparation

�e nanosensor was prepared from commercially available 

polystyrene NPs and a diiodinated BODIPY derivative. �e BODIPY 

dye was incorporated into the NPs via a swelling procedure published 

by Behnke et al. (2011). In brief, BODIPY was �rst dissolved in THF 

in a concentration of 3 nmol/1 μL. Dye loading of the NPs was 

performed by addition of 100 μL of the BODIPY-containing solution 

to 600 μL of an aqueous suspension of the NPs (5 mg/mL). �e 

suspension was shaken for 30 min at room temperature, followed by 

40 min centrifugation at 16,000 g (Eppendorf centrifuge 5415D). �e 

supernatant consisting of unembedded BODIPY dye was removed 

from the BODIPY-loaded NPs. �e puri�cation steps consisted of a 

total of 5 washing steps starting with MilliQ water, followed by 2 

washing steps with ethanol and 2 �nal washing steps with MilliQ water.

2.4. Particle size and zeta potential

�e particle size (hydrodynamic diameter) and polydispersity 

index (PDI) of the NPs was determined by dynamic light scattering 

(DLS) (Zetasizer Malvern Panalytical, Malvern Nano ZS). 

Measurements were carried out in MilliQ water at 50 μg/mL in a 

quartz glass cuvette. �ermal equilibration time was set to 60 s at 

25°C. Each intensity-weighted size distribution represents the 

average of 10 individual DLS analyses and three independent 

replicates. A Dip cell kit (Malvern Panalytical) was used for the 

determination of the zeta potential. �e average of 10 individual zeta 

potential analyses and three independent replicates were determined. 

�e particle size was also assessed using a transmission electron 

microscope (TEM). Formvar coated copper and gold grids with 400 

mesh and 3.5 mm diameter (Plano GmbH, Germany) were 

hydrophilized with 0.2% alcian blue (Sigma Aldrich, Germany) in 

0.03% acetic acid solution. �e grids were �oated on alcian blue 

droplets for 10 min, and dried using a �lter paper. 5 μL of a 1 mg/mL 

NPs dispersion was applied immediately on each hydrophilized grid, 

incubated for 1 min and the excess liquid was removed with a �lter 

paper. Samples on the copper and gold grids were observed in a Jeol 

1,400 Plus TEM (Jeol GmbH, Germany) operated at 120 kV. Material 

identi�cation was done using di�raction pattern from published 

resources. Imaging was performed using a Veleta G2 camera 

(Olympus, Germany). Particle size was measured using iTEM 

so�ware provided by Olympus. At least 4 di�erent areas of each grid 

were examined per sample.

2.5. Dye loading

Dye loading was determined by a spectrophotometric method 

(FoodALYT, Germany). A calibration curve for the absorbance of 

BODIPY in THF at 530 nm was prepared to evaluate the dye loading. 

�e concentration range of 2.5–20 nmol/mL was linear with R = 0.9813 

determined by a linear regression model. As a second step, three 

di�erent volumes of BODIPY-loaded NPs suspension were added to 

Eppendorf tubes and centrifuged at 16.000 g for 40 min. �e 

supernatant was removed, and the NPs were dissolved in 1000 μL 

THF. �e absorption at 530 nm was determined in a 

spectrophotometer. �e dye concentration in 1000 μL THF was 
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calculated as dye equivalents to the calibration curve. Lastly, the dye 

loading per mg NPs was calculated.

2.6. ROS assay

Singlet oxygen generation by the BODIPY dye was quanti�ed by 

an indirect method using 1,3-diphenylisobenzofuran (DPBF) as 

singlet oxygen quencher (Krieg, 1993; You, 2018). �e decrease of 

absorbance of DPBF at 410 nm upon quenching of singlet oxygen 

produced by excitation of the BODIPY dye was monitored. �erefore, 

the absorbance of DPBF was set to values of about 0.8 at the absorption 

maximum and the absorbance of the respective dye was set to 

absorbances of 0.1 which was approx. 15 nmoL/mL. Subsequently, the 

samples were illuminated stepwise using a 530 nm LED array 

(LEDA-G, Teleopto Bio Research Center Co., Japan). �e initial LED 

light power of 43.5 mW/cm2 was adjusted with regard to the sensitivity 

of the assay molecule and scaled down to around 8.7 mW/cm2. A�er 

each illumination step, an absorption spectrum was recorded and the 

rate constants k were determined assuming pseudo-�rst-order kinetics 

with [DPBF]0 being the absorbance (area under the curve) at time 

point 0 and [DPBF] at the measured time point (Wang et al., 2015; Hu 

et al., 2018).

 

kt �
� �

� �
ln
DPBF

DPBF

0

2.7. Bacterial cell culture and biofilm 
growth

Escherichia coli TG1 DSM 6056, Staphylococcus aureus BAM 480 

and Streptococcus mutans DSM 20523 were used as bio�lm forming 

microorganisms (Schwibbert et al., 2019). E. coli and S. aureus were 

cultivated on Luria–Bertani (LB) medium agar plates and passaged 

every 3–4 weeks. S. mutans was cultivated on Columbian blood agar 

plates and passaged every 1–2 weeks. For all bio�lm experiments, 

20 mL liquid medium was inoculated with single colonies and cultured 

overnight at 37°C with shaking at 120 rpm on an orbital shaker 

(Incubating orbital shaker, Professional 3,500, VWR) 57. LB medium 

was used for E. coli, AB medium for S. aureus and M92 medium for 

S. mutans. �e cultures were diluted 1:100  in fresh medium and 

incubated for additional 1–2 h at 37°C until cells reached the 

exponential growth phase. For bio�lm formation, the optical density 

of the suspension was measured at 600 nm (Novaspec Plus, Amershan 

Biosciences) and adjusted to 0.01 (corresponding to approx. 1.2 × 106 

cells/mL for E. coli, 1.5 × 106 cells/mL for S. aureus and 6 × 105 cells/mL 

for S. mutans). E. coli bio�lms were grown in M9 minimal medium, 

supplemented with 1 mM thiamine and 20 mg/L proline. S. aureus 

bio�lms were grown in M9 minimal medium, supplemented with 1 

mM thiamine, 20 mg/L proline, 0.5 g/L protein hydrolysate amicase 

(acid hydrolyzed casein), and 0.5 g/L yeast extract. S. mutans bio�lms 

were grown in M92 medium. For the bio�lm assay, bio�lms were 

grown in 96 well plates (100 μL per well) on the well/liquid medium 

interface for 24 h with constant shaking at 100 rpm for E. coli and 

60 rpm for S. aureus and S. mutans. For microscopy, bio�lms were 

formed in ibidi glass slides (8 well chamber slide, Ibidi GmbH) on the 

glass/liquid medium interface.

2.8. Biofilm assay and illumination

For the biofilm assay, the supernatant of the biofilms was 

removed, and the biofilms were washed with PBS before the NPs 

were added at a final concentration of 1 mg/mL. The well plate 

containing the samples and control samples without NPs were 

staged on top of an LED array standing inside a shaking incubator. 

The excitation wavelength of the LED array (LEDA-G, Teleopto 

Bio Research Center Co., Japan) was 530 nm. Samples were 

illuminated at 43.5 mW/cm2 for 30 min, 2 h and 4 h with light 

doses of 81 J/cm2, 324 J/cm2 and 648 J/cm2, respectively. For each 

illuminated plate, a dark control was conducted with identical 

samples without illumination. After the illumination, the plates 

were taken from the shaker and the supernatant was removed 

from each well. For quantification of bacteria per biofilm, all 

samples were washed with PBS and the biofilms were resuspended 

in 100 μL PBS. Crystal violet staining (0.1%, 10 min incubation, 

3 × washing with MilliQ water) and microscopy of the empty wells 

revealed no leftover biofilm in the wells after this procedure. The 

PBS containing the biofilm bacteria was serially diluted in a new 

96 well plate. These serial dilutions were seeded on LB agar plates, 

incubated at 37°C over night and the Colony forming units (CFU) 

were counted.

2.9. Imaging (CLSM and SEM)

For confocal laser scanning microscopy (CLSM), all bio�lms were 

imaged at 37°C in Ibidi slides using a Leica SP8 X CLSM equipped 

with a supercontinuum white light laser and a monochromator (Leica 

Microsystems). A 100 × / (N.A.1.4) objective with oil immersion was 

used for imaging. XY images were acquired with 2048 × 2048 or 

8,192 × 8,192 pixels and Z-stacks in XYZ mode with 512 × 512 pixels, 

respectively. To obtain the Z-stacks, images were taken at 1 μm spacing 

through the bio�lm.

For scanning electron microscopy (SEM) imaging, bio�lms were 

grown on 1 × 1 cm glass slides, washed three times with PBS and �xed 

with 2% glutaraldehyde for 2 h. A�er three additional washing steps 

with PBS, specimens were dehydrated in a graded alcohol series (30, 

50, 70, 90, and 99% ethanol). Critical point drying was performed 

with liquid carbon dioxide as a transitional �uid (EM CPD300, Leica, 

Germany). Bio�lm specimens were sputter coated with a 30 nm 

conducting layer of gold (EM ACE600 table-top coater, Leica, 

Germany) and examined with an emission scanning electron 

microscope (XL 30 ESEM, FEI, Netherlands) using secondary electron 

detector and operated at an electron accelerating voltage of 20 kV and 

25 kV. A minimum of three random sections per sample were analyzed.

2.10. Statistics

Data analysis was performed with Graph Pad Prism 9. Error bars 

indicate the standard error of the mean of three independent 

experiments performed in triplicates. *, **, and *** represent the 
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signi�cant di�erence to the control determined with an unpaired t test 

with p < 0.05, p < 0.01, and p < 0.001, respectively.

3. Results

3.1. Design and preparation of the NPs

BODIPY dyes are highly versatile, can be easily prepared and 

chemically modi�ed and are well suited as PS for aPDT (Ziessel et al., 

2007; Bañuelos, 2016). Not only do they exhibit very high 

photostability, but they also have remarkable photophysical properties, 

such as their high absorption coe�cients and high quantum yields for 

ROS generation, especially when halogens are introduced to the 

chromophore core (Gorbe et al., 2019). Here, a diiodinated BODIPY 

derivative was used due to its highly e�ective ROS generation, in 

comparison, to, e.g., the commonly used PS rose bengal (Radunz et al., 

2020). Furthermore, BODIPY dyes enable dual use as PS for aPDT 

and as reporter for �uorescence imaging. One major limitation of 

BODIPYs is their o�en very poor water solubility. �us, the direct 

application of BODIPYs in aqueous media in relevant concentrations 

is not feasible. �e use of cosolvents (e.g., DMSO) would theoretically 

be possible, but relatively high concentrations are needed to dissolve 

adequate amounts of BODIPY. �us, the risk of the cosolvent 

in�uencing the biological system under investigation is high (Summer 

et al., 2022). Here, the hydrophobic BODIPY dye was embedded into 

polystyrene NPs that are readily suspendable in aqueous media due to 

their hydrophilic surface functionalization. �e NPs are commercially 

available, cost e�ective and have a wide range of applications especially 

for nano-sized applications such as biosensors or as self-assembling 

nanostructures (Velev and Kaler, 1999; Kromer et al., 2022). Here, 

100 nm polystyrene NPs with a hydrophilic surface functionalization 

of carboxyl and amine groups were chosen. �ese NPs are 

biocompatible, stable in cell culture media and reportedly non-toxic 

to bacterial cells (Miyazaki et al., 2013; Loos et al., 2014). Especially in 

the concentration range required for use as a nanocarrier for PS, no 

negative e�ects have been reported on the viability or physiology of 

bio�lms (Supplementary Figure S1) (Kromer et al., 2022). �e main 

advantage for the application of these NPs as nanocarriers is their 

previously reported ability to accumulate well in bio�lms (Kromer 

et  al., 2022). �e rational design of our approach includes the 

following steps. First the PS dye was embedded in 100 nm NPs by a 

previously established dye loading protocol using a swelling method 

(Behnke et al., 2011). Upon illumination with visible light (530 nm) 

ROS are generated (Figure 1). For eradication of bio�lms the BODIPY-

loaded NPs are incubated and accumulated in the bio�lm. 

Photosensitization and ROS generation inside the bio�lm leads to the 

destruction of the bacteria and in case of high e�ectiveness ultimately 

the bio�lm. �e NPs can be applied for the eradication of planktonic 

cells and subsequently the prevention of bio�lm formation or for the 

eradication of existing bio�lms (Figure 2).

3.2. Characterization of the NPs and ROS 
generation

Since the size of the NPs is of major importance in�uencing the 

capability of the particles to accumulate in the bio�lm, the size of the 

NPs was determined before and a�er loading the PS. A change in size 

could be associated with agglomeration of the particles, which in turn 

could decrease the stability of the suspension and, subsequently, could 

a�ect the accumulation of the NPs in the bio�lm. Hence, the dye 

loading would have had to be limited if these parameters had changed 

due to the introduction of the dye. �e particle size determined by 

DLS and TEM showed that the size the BODIPY-loaded NPs was not 

altered (Table 1). Furthermore, TEM images revealed, that the particle 

shape was also not altered by the incorporation of the dye and 

remained spherical (Figures 3A,B). �e PDI assessment revealed that 

both the precursor NPs and the dye-containing NPs show a very 

narrow and comparable size distribution and there was no indication 

of particle agglomeration. Consequently, the introduction of the 

BODIPY dye did not a�ect the particle size, shape, and agglomeration 

behavior of the NPs. �e zeta potential of the precursor NPs and the 

BODIPY-loaded NPs was determined to − 30.7 ± 1.1 mV 

and − 22.1 ± 0.6 mV, respectively. It is favorable that the zeta potential 

is still in the negative range a�er the incorporation of the dye, since a 

negative zeta potential is considered biocompatible for polystyrene 

NPs (Miyazaki et  al., 2013; Frankel et  al., 2020). Moreover, the 

di�usion rate of negatively charged nanoparticles is higher than that 

of positively charged nanoparticles, since the latter are retained via 

electrostatic interactions (Blanco-Cabra et al., 2022). �e di�usion 

rate is relevant for the accumulation of the particles in the bio�lm.

�e dye loading of the particles was determined by dissolving the 

BODIPY-loaded NPs in THF and photometrical analysis, comparing 

the BODIPY absorbance with the free dye at 530 nm 

(Supplementary Figure S2). �e dye loading was determined to 

FIGURE 1

The BODIPY dye embedded in polystyrene NPs generates ROS when activated by visible light (530� nm).
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TABLE 1 Particle size and zeta potential of the precursor NPs and dye-loaded NPs.

Size (TEM) 
[nm]

Size (DLS) 
[nm]

PDI Zeta potential 
[mV]

Dye loading

NPs 96 ± 12 130 ± 1 0.008 ± 0.006 − 30.7 ± 1.1 –

NPs + BODIPY 90 ± 9 137 ± 2 0.111 ± 0.018 − 22.1 ± 0.6 61.3 ± 5.1 nmol/mg NPs

be 61.3 ± 5.1 nmol per mg NPs (Table 1). No leaking of BODIPY dye 

from the NPs was observed a�er 24 h and 72 h in cell culture medium, 

here M9 minimal medium. �is is critical with respect to long-term 

stability and applicability of the NPs for aPDT. �e main factors 

governing undesired dye leaking are the hydrophilicity of the dye and 

its solubility in the solvent or matrix surrounding the NPs (Behnke 

et al., 2011). �e absorption and emission spectra of the BODIPY dye 

were not signi�cantly changed by incorporation into the NPs 

(Supplementary Figure S3). It was investigated whether embedding 

the BODIPY dye in the NPs a�ects or limits the dyes ability to generate 

ROS. In the case of a compromised ROS generation due to the 

incorporation of BODIPY dye into the NPs, the e�ectiveness of the 

aPDT would be lowered. It would also pose the question if embedding 

BODIPYs in NPs is a suitable way of application for photodynamic 

applications or even aPDT. �erefore, DPBF was used as detection 

molecule in a singlet oxygen assay. In the presence of singlet oxygen, 

DPBF degrades to a colorless product, thus, the decrease of DPBFs 

absorption at 410 nm can be used to determine the rate of singlet 

oxygen generation of the sensitizer (Figures 3C,D). �e determined 

singlet oxygen generation rates prove a similar DPBF degradation of 

0.08020/s and 0.08115/s for the free dye and the dye embedded in the 

NPs, respectively (Figures  3C,D insets). Accordingly, embedding 

BODIPY into NPs in the concentration tested does not alter the ability 

of the PS to produce singlet oxygen. It can be assumed that the good 

oxygen and light transmission of the NPs contributes to the fact that 

ROS generation is not impaired, even though the dye is loaded in high 

local concentrations inside the particle. Additionally, e�ects such as 

degradation of the dye and inner �lter e�ect seem to be negligible at 

this concentration.

3.3. Eradication of planktonic bacteria and 
prevention of biofilm formation

�e eradication of planktonic bacteria can be an important step 

in preventing bio�lm formation. When planktonic bacteria are present 

in aqueous media, they can form bio�lms. �is is not only very 

problematic in medical environments, but also in water or food 

processing facilities (Zwirzitz et al., 2020). Especially when a�ected 

areas cannot be cleaned with conventional disinfection methods, e.g., 

due to alcohol-sensitive materials or limited accessibility. �erefore, 

the performance of BODIPY-loaded NPs was tested against planktonic 

bacterial cultures and the subsequent bio�lm formation was evaluated. 

�ree bacterial species were selected that are known to frequently 

form pathological bio�lms and are of high relevance in the medical 

�eld, namely E. coli, S. aureus, and S. mutans. E. coli is a major cause 

FIGURE 2

The concept of biofilm eradication utilizing aPDT with BODIPY-loaded NPs. The two approaches to combat biofilms: I. Prevention of biofilm formation 

by eradication of planktonic bacteria; II. Eradication of existing biofilms.
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of urinary tract infections, and its bio�lms o�en lead to chroni�cation 

of the infection (Eberly et al., 2017). S. aureus is a common infector of 

medical equipment such as catheters or endotracheal tubes (Machado 

et al., 2012; Zheng et al., 2018) and of surgical sites and burn wounds 

(Plumet et al., 2022). Contamination of endotracheal tubes o�en leads 

to ventilator-associated pneumonia, which most o�en prolongs the 

hospital stay in the ICU and has a mortality rate of up to a 20–30%. 

S. aureus and its bio�lms are feared in hospitals and intensive care 

units, especially because of its high pathogenicity and tendency to 

become multidrug resistant. S. mutans is omnipresent in the human 

oral cavity, but its ability to form bio�lms that create an acidic milieu 

contributes to its high pathogenicity. S. mutans is the main cause of 

dental caries.

�e e�ectiveness of aPDT with BODIPY-loaded NPs against 

planktonic bacterial cultures and the subsequent bio�lm formation 

was evaluated for the three bacterial test strains. For this purpose, 

exponentially growing planktonic bacterial cultures were treated with 

the BODIPY-loaded NPs and illuminated for 30 min with an LED 

array at 530 nm. �e advantages of this LED array are the easy 

handling (96 well plates can be  mounted on top) and the low 

susceptibility to errors generated by, e.g., intensity �uctuations. �e 

illumination intensity can be adjusted on the device and ensures good 

comparability. Unlike lasers, which are o�en used and are defocused 

with a lens, the LED array does not need to be readjusted each time. 

Bio�lm formation was observed a�er 24 h, and the resulting biomass 

of the bio�lm was determined (Figure  4). For this purpose, the 

bio�lms were washed to remove planktonic cells, resuspended in PBS, 

serially diluted and seeded on agar plates to determine the CFU. For 

the dark controls, the bio�lms were grown for 24 h without NPs and 

without illumination. When either only the light (illum control) or 

only the BODIPY-loaded NPs (dark BODIPY) are used, no eradication 

e�ect was observed. Only when both are used in combination (illum 

BODIPY), a strong eradication e�ect is achieved, leading to the 

prevention of bio�lm formation, even a�er 24 h post incubation. �e 

eradication of the planktonic cultures results in 100% prevention of 

bio�lm formation for E. coli and S. aureus and > 99.9% for S. mutans. 

�is demonstrates, that aPDT with the BODIPY-loaded NPs is a 

highly e�ective method for the treatment of planktonic bacterial 

cultures and a suitable method for the prevention of bio�lm formation.

3.4. Biofilm eradication

Although eradicating planktonic bacteria and thus preventing 

bio�lm formation is a valid option, there must also be systems that can 

combat existing bio�lms. Once bio�lms have formed and matured, 

they pose a much greater threat, as they are then very di�cult to 

remove (Koo and Yamada, 2016). One reason for this is that the EPS 

matrix protects the bio�lm by providing structural integrity, thereby 

increasing its resistance to external in�uences such as disinfection. It 

also forms a reservoir for nutrients, hence only a few bacteria need to 

survive for a bio�lm to regrow quickly.

To investigate whether the BODIPY-loaded NPs are able to 

eradicate bio�lms, treatment against E. coli, S. aureus, and S. mutans 

bio�lms was tested and their e�ect determined. Additionally, 

planktonic cultures were treated and the subsequent bio�lm formation 

was examined. Each bacterial strain was cultivated separately on glass 

for 24 h, then incubated with the dye-loaded NPs and illuminated with 

an LED array at 530 nm. A�erwards, the bio�lms were �xed and 

examined by SEM to investigate the e�ects of aPDT treatment on the 

FIGURE 3

Comparison of the precursor NPs, the free BODIPY dye and the BODIPY-loaded NPs. TEM images of (A) the precursor NPs and (B) the NPs after 

incorporation of the BODIPY dye. (C) Determination of singlet oxygen generation of the free BODIPY dye. Absorption spectra of DPBF showing 

decomposition by singlet oxygen generated by free BODIPY dye upon stepwise (7� ×� 5� s) illumination with a 530� nm LED array. Inset: illumination time-

dependent changes in absorbance of DPBF derived from the absorption spectra. (D) Determination of singlet oxygen generation of the BODIPY-

loaded NPs with the same setup as in (C). Inset: illumination time-dependent changes in absorbance of DPBF derived from the absorption spectra in 

presence of BODIPY-loaded NPs.
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bacteria and bio�lm structure (Figure 5). Furthermore, planktonic 

bacterial cultures were treated as described before (Figure  5D). 

Controls without NPs and controls with NPs but without illumination 

were included (Figures 5A,B). Due to the sample preparation for SEM 

imaging, which includes numerous washing steps, and the loose and 

�u�y structure of the S. aureus and S. mutans bio�lms, a large 

proportion of the bio�lms were detached from the slides. �erefore, 

the SEM results can only be used for a comparison between treatment 

and controls, but not as an indicator for the natural morphology of the 

bio�lms. For all three bio�lm test strains, the bio�lm structure was not 

disrupted or altered by the presence of the NPs without illumination 

compared to the control without nanoparticles. �erefore, dark 

toxicity of the NPs is not expected. As treatment groups, both bio�lms 

and planktonic cultures were exposed to the NPs and then illuminated. 

In the treated planktonic samples (Figure 5D), no bacteria or bio�lm 

structures were found in any of the samples. �is indicates 100% 

eradication of planktonic bacteria, as bio�lm formation was 

completely prevented. �e results are consistent with the previously 

obtained results from the bio�lm CFU assays and thus demonstrate a 

good performance of the aPDT NPs in preventing bio�lm formation.

In the treated bio�lm samples, the number of bacteria and the bio�lm 

structures appear to be reduced (Figure 5C). A determination whether 

the bacteria present are alive or dead by SEM is very di�cult. Although it 

is normal for dead cells to remain structurally intact during �xation and 

thus are visible by SEM imaging, the morphology of the cell and the 

surface structure of the dead cells can be altered (Cheng et al., 2011). �e 

cells can become deformed and wrinkled, indicating that the intracellular 

content had leaked out (García-Salinas et al., 2018). Studies have also 

found, that dead cells emptied of their cellular content can still have 

almost intact cell walls (Diogo et al., 2017). In this case, however, the 

structural change of the membrane is di�cult to observe due to the 

membrane of the bacteria being completely covered with NPs a�er the 

treatment. �is is a very unusual observation revealing a signi�cant 

change in comparison to the NPs controls. �e attachment of NPs to the 

bacterial membranes is eminent in all three bacterial species.

Since it was not possible to distinguish the live from the dead bacteria 

with SEM, the dead cells were visualized by staining with propidium 

iodide and investigation with CLSM a�er aPDT treatment (Figure 6). In 

an untreated control, the living cells were additionally stained with Syto9. 

A Syto9 stain is not possible in the BODIPY-loaded NPs treated samples 

due to an overlap of the emission of BODIPY and Syto9. �e NPs 

accumulated in the bio�lm can be  imaged by the �uorescence of 

BODIPY. �e control bio�lm shows a large number of live cells (green 

signal) and a small number of dead cells (red signal) (Figure 6A). �e NPs 

control (Figure 6B) incubated only with BODIPY-loaded NPs but not 

illuminated shows few dead cells, comparable to the control without NPs. 

When the bio�lm and the NPs accumulated within are illuminated, a very 

high number of dead cells is observed (Figure 6C). �is indicates that the 

bacteria and the bio�lm structure itself are still intact, but the cells are 

dead a�er the aPDT treatment. �is is consistent with the SEM images 

where bacterial structures were also visible a�er treatment, but most 

likely dead.

�e microscopic images revealed that treatment of bio�lms 

with aPDT leads to a high number of dead cells in the bio�lm. 

Treatment of planktonic cultures with aPDT can even prevent 

bio�lm formation altogether. To determine the e�ectiveness of 

bio�lm eradication by aPDT treatment with BODIPY-loaded NPs, 

the number of viable bacteria in the bio�lms a�er treatment was 

quanti�ed. For this purpose, bio�lms of three bacterial species were 

grown in 96-well plates for 24 h. A�er a washing step with PBS, the 

BODIPY-loaded NPs were added to the bio�lms, incubated for a 

given time period and were illuminated with the LED array. To 

determine the viable fraction of the bio�lms a�er aPDT treatment, 

the bio�lms were then washed, resuspended in PBS, serially diluted 

and the resulting CFU determined (Figure 7). �e empty 96-well 

plates were then stained with crystal violet to ensure a complete 

removal of bio�lm from the plate. Previous studies have found a 

clear correlation between illumination intensity and eradication 

e�ciency, with higher intensity leading to greater bacterial 

eradication (Shrestha et al., 2014; Gillespie et al., 2017; Sun et al., 

2019). Considering the goal of our study to achieve the highest 

possible eradication e�ciency, we opted for the highest illumination 

intensity of the LED array. Initially, the bio�lms were illuminated 

for 30 min as with the planktonic cultures. However, although an 

illumination time of 30 min resulted in e�ective eradication for the 

planktonic cultures, this was not the case for the much more robust 

FIGURE 4

Prevention of biofilm formation after aPDT of planktonic bacteria and determination of subsequent biofilm formation after 24� h. (A) Planktonic E. coli, 

(B) S. aureus, and (C) S. mutans after 30� min of illumination with a 530� nm LED array. CFU, colony forming units; illum, illuminated. Three independent 

replicates were performed for each sample. Error bars indicate the standard error of the mean of three independent experiments performed in 

triplicates. *, **, and *** represent the significant di�erence to the control determined with an unpaired t test with p� <� 0.05, p� <� 0.01, and p� <� 0.001, 

respectively.
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bio�lms. Here, only ~0.3–0.4 log units of bacteria in the bio�lms 

were eradicated a�er 30 min of illumination. Increased illumination 

times of 2 h and 4 h resulted in signi�cantly better eradication of the 

bio�lms. A�er 4 h, the aPDT treatment was able to eradicate 0.65 

log units of E. coli, 5.8 log units of S. aureus and 3.3 log units of 

S. mutans compared to the control.

Since a successful eradication method aims for 100% eradication, 

the setup was further optimized. For this purpose, the NPs were �rst 

incubated in the bio�lm and then irradiated. �e optimal incubation 

time was determined using CLSM by determining the accumulation 

of BODIPY-loaded NPs into the bio�lm at di�erent time points. �e 

time point up to which an increase of particles in the bio�lm could 

be observed was determined as the needed incubation time. It was 

observed that the time required for the NPs to accumulate in the 

bio�lm varies depending on the bio�lm test strain, therefore di�erent 

incubation times were chosen. Incubation times of 3 h were su�cient 

FIGURE 5

SEM images of E. coli, S. aureus, and S. mutans biofilms treated with aPDT. The four columns display the di�erent treatments from left to right: biofilm 

control without NPs, biofilm control with NPs and without illumination, biofilm with NPs and illumination, biofilm grown for 24� h after treatment of 

planktonic culture with NPs and illumination. Additional SEM images can be found in Supplementary Figures S5–S7.
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for S. aureus and S. mutans bio�lms. For the E. coli bio�lms, a 

signi�cantly longer incubation time of 24 h was required to achieve 

su�cient accumulation in the bio�lm. Representative images of 

optimizing the incubation time of E. coli bio�lms are shown in 

Supplementary Figure S4.

For all three bio�lms tested, the eradication e�ect increased with 

increasing illumination time and is generally higher when the NPs 

were previously incubated into the bio�lm. No dark toxicity of the 

BODIPY-loaded NPs is observed in the dark controls for any of the 

three bacterial bio�lm types. �is con�rms that the eradication e�ect 

is exclusively achieved by aPDT. Remarkably, a�er 4 h of treatment, 

two of the three bio�lm species, namely S. aureus and S. mutans, were 

eradicated by 100%. E. coli bio�lms were eradicated by 6.65 log units 

corresponding to 99.99986%.

4. Discussion

This study has demonstrated that nanoparticles for aPDT can 

be a powerful tool for the eradication of planktonic bacteria and 

bacterial biofilms. It was shown that the aPDT eradication effect 

increased with increasing illumination time and was generally 

higher when the NPs were previously incubated into the biofilm. 

The efficiency of the BODIPY-loaded NPs is thus higher when 

ROS generation takes place in close proximity to the bacteria 

inside the biofilm and not in the medium. Since the generated 

ROS have a short lifespan and thus a short diffusion distance, the 

spatial proximity to the bacteria is a very important factor for the 

effectiveness. Additionally, it was found that the incubation times 

needed for a sufficient accumulation in the biofilm vary 

FIGURE 6

CLSM images of E. coli biofilms after aPDT with BODIPY-loaded NPs. (A) Control biofilm without NPs with illumination, (B) Biofilm incubated with NPs 

without illumination, (C) Biofilm incubated with NPs and with illumination. BODIPY-loaded NPs (magenta), Live/Dead stain of bacteria with propidium 

iodide for dead cells (red) and Syto9 for live cells (green). Scale bar is 20� μm.
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depending on the biofilm species. The NPs penetration into and 

movement within the biofilm is considered to be driven primarily 

by diffusion (Ikuma et  al., 2015). The most important factors 

influencing the diffusion of NPs into the biofilm are particle 

properties such as size, charge and hydrophobicity (Hollmann 

et al., 2021). However, the nature of the biofilm also plays a very 

important role. Here, the pore size and hydrophobicity of the 

biofilm are particularly important, but also the charge and 

chemical gradient of the biofilm and its matrix (Peulen T. O. and 

Wilkinson, 2011; Sahle-Demessie and Tadesse, 2011). Since the 

same NPs were used here for all three biofilms, the structure and 

nature of the biofilms is most likely the main factor for the kinetic 

of NPs penetration in the biofilms. E. coli forms very dense 

biofilms with quite small extracellular spaces and with smaller 

pore size. Hence, longer incubation times were needed for E. coli 

biofilms than for S. aureus and S. mutans. These biofilms tend to 

have a looser structure with more extracellular matrix and larger 

pore size (Hou et  al., 2019). This finding aligns with  

the previously stated hypotheses that the pore size of a  

biofilm significantly influences penetration of NPs into 

that biofilm.

A main feature of the aPDT method described here are the very 

high eradication rates of up to 100%. Bio�lms have the ability to quickly 

rebuild large populations, even if only a few specimens survive a 

disinfection treatment. Not eliminating all bacteria in a bio�lm is a 

major shortcoming of most published studies utilizing PS-loaded NPs 

(Klepac-Ceraj et al., 2011; Usacheva et al., 2016; Anju et al., 2018, 2019). 

�erefore, a key feature of a successful eradication method is to achieve 

100% eradication to permanently eliminate bio�lms. In this study, 100% 

eradication was achieved for, S. aureus and S. mutans. In the case of 

E. coli bio�lms, a very small fraction of the bio�lm survives the 

treatment regardless. Since the rate of surviving bacteria in E. coli 

bio�lms decreases steadily with the illumination time, it is reasonable 

to assume that 100% eradication can be  achieved with longer 

illumination times for E. coli as well. In general, the di�erence in the 

susceptibility of gram-negative and gram-positive bacteria to aPDT can 

be attributed to the di�erent cell wall structure of the bacteria (Malik 

et al., 1992; Bekmukhametova et al., 2020). Gram-negative bacteria, in 

contrast to gram-positive bacteria, have a more complex cell wall 

structure due to an additional lipopolysaccharide containing membrane 

as the outermost layer. �is membrane provides additional protection 

against ROS, as it is not enough to disturb the outer-membrane 

structure alone, but the cytoplasmic membrane must be disrupted as 

well (Malik et al., 1992). Gram-negative bacteria and bio�lms can be just 

as harmful as gram-positive bacteria. �erefore, aPDT agents that are 

able to successfully eliminate gram-negative bacteria need to be further 

developed and optimized.

�ese studies also include SEM images that revealed that the 

NPs attach to the bacterial membranes a�er the illumination. �is 

observation was eminent in all three bacterial species. �e lack of 

membrane potential, as it occurs in dead cells, could be a reason for 

the adhesion of the NPs to the cells. Furthermore, changes in the 

cell membrane could be involved as well. �e outer cell membranes 

of viable bacteria are typically negatively charged due to the 

presence of molecules such as lipopolysaccharides and carboxylate 

substituents on their surface (Wilson et al., 2001). �us, the NPs, 

which are also negatively charged, have no electrostatic attraction 

to the bacteria. However, when the bacteria are damaged by aPDT 

leading to cell wall ruptures, substances can leak from inside the 

bacteria. �e release of intracellular components might result in the 

exposure of positively charged molecules or ions on the bacterial 

surface, causing a shi� in the overall charge from negative to neutral 

or positive (Kłodzińska et al., 2010; Ferreyra Maillard et al., 2021). 

�is might lead to the binding of NPs to the bacterial surfaces by 

electrostatic attraction, as observed by SEM. It is therefore 

reasonable to conclude that bacteria with a large number of NPs 

adhering to their surface are dead.

FIGURE 7

Biofilm eradication with BODIPY-loaded NPs. (A) E. coli, (B) S. aureus, 

and (C) S. mutans biofilms were illuminated either with or without 

previous incubation of the dye-loaded NPs. The CFU per biofilm 

were determined after di�erent illumination times (30� min, 2� h and 

4� h), biofilm samples without NPs after 30� min and 4� h (control), and 

biofilms exposed to NPs but without illumination after 30� min and 4� h 

(dark). Error bars indicate the standard error of the mean of three 

independent experiments performed in triplicates. *, **, and *** 

represent the significant di�erence to the control determined with 

an unpaired t test with p� <� 0.05, p� <� 0.01, and p� <� 0.001, respectively.
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In summary, the design, preparation, characterization, and 

application of a BODIPY-loaded NPs tool for aPDT of bacteria and 

their corresponding bio�lms was described. �e BODIPY-NPs proved 

to be highly e�ective for the prevention of bio�lm formation as well 

as the eradication of bio�lms. With its simple preparation and easy 

application, the aPDT system stands in contrast to existing methods, 

which most o�en require a complex manufacturing and application 

and therefore lack practical suitability. It has the potential to be used 

as a seminal and universal disinfection agent for the much-needed 

treatment of pathogenic bacteria and bio�lms. Furthermore, the 

multitargeted mechanism of action of aPDT leads to a demonstrably 

lower development of bacterial resistance (Vatansever et al., 2013; 

Bekmukhametova et al., 2020). By combining the NPs with substances 

that enable active targeting, such as lectins or antibodies, aPDT can 

potentially be  applied more selective. �us, in a mixed bacterial 

population, only the pathogenic bacteria could be eradicated, allowing 

potential applications where bacteria are bene�cial such as the skin or 

gut microbiome. �e BODIPY-loaded NPs could also be used for 

theranostic applications, where not only eradication but also diagnosis 

of the bacteria via imaging techniques (here by �uorescence) is given. 

It is also possible to combine the PS with a bactericidal drug in one 

particle to achieve a dual mode of action, thus further increasing 

the e�ciency.
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Glossary

EPS extracellular polymeric substances

ROS Reactive oxygen species

PDT Photodynamic therapy

PS Photosensitizer

aPDT Antimicrobial photodynamic therapy

BODIPY Boron-dipyrromethene

NPs Nanoparticles

THF Tetrahydrofuran

PDI Polydispersity index

DLS Dynamic light scattering

TEM Transmission electron microscope

DPBF 1, 3-diphenylisobenzofuran

LB Luria–Bertani

CFU Colony forming units

CLSM Confocal laser scanning microscopy

SEM Scanning electron microscopy
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4. Discussion 

 

4.1. Designing functional nanoparticles for sensing and treatment 

 

The properties of a NP are essential for its function. For example, the surface hydrophilicity of 

a particle determines whether it can be suspended in water or if it will have the tendency to 

aggregate. The types of surface groups determine which molecules are suitable as binding 

partners for further surface functionalisations and interactions within a biological system. 

Therefore, the NPs should be selected and modified depending on the intended application, 

and their functionality should be thoroughly checked. 

 

In this thesis, PS NPs with different surface functionalisations were employed for the 

fabrication of various nanoscale tools. In the first study, pH nanosensors were fabricated for 

application in biofilms. The NPs needed to be highly hydrophilic to be used in aqueous media 

and have surface groups to which the sensor dye could be conjugated. Carboxylated and 

aminated particles were used for this purpose, as they are hydrophilic, and the amine groups 

allow for conjugation with the pH-sensitive dye FITC. Both before and after dye conjugation 

to the amine groups on the surface, the particles exhibited a slightly negative zeta potential 

(Table 1). Zeta potential, along with particle size and polydispersity index, is an important 

indicator of suspension stability. Maintaining a constant particle size before and after 

embedding and conjugating of the dyes is crucial for the stability of the suspension. The 

particle size was monitored before and after the introduction of the dyes and no significant 

changes were observed. A small particle size and a narrow size distribution I also crucial for 

high-resolution localized pH imaging. In addition, particle size is also an important factor that 

determines particle diffusion and accumulation into a biofilm. Thus, it is essential to ensure 

that all properties remain stable after embedding and conjugation of dyes and proteins to 

guarantee the functionality of the particles. If any of these parameters changed significantly, 

the dye loading might have to be limited.  

For the second study, the pHe nanosensors were designed and fabricated for use with 

eukaryotic cells. This required the NPs to be conjugated with a targeting moiety to attach the 

sensor to the cells. The lectin wheat germ agglutinin (WGA) was used for this purpose. 
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Hydrophilic carboxylated PS NPs were chosen because they allow easy conjugation of the 

lectin via carboxyl groups. To maintain a good suspension stability after lectin conjugation, 

particles with a highly negative zeta potential were selected. The zeta potential was slightly 

increased by conjugating the lectin to the carboxyl groups. However, the final value was 

intended to be in the optimum negative range for stability of around -30 mV (Table 1). This 

resulted in a long-term stable nanoparticle suspension for the pHe nanosensor. 

 

Table 1. Overview of the properties of the precursor nanoparticles (NP) and the nanoparticles after 

embedding and conjugation of the dyes determined with transmission electron microscopy (TEM) and 

dynamic light scattering (DLS). PS – polystyrene; PDI – polydispersity index; NR – nile red; BODIPY – 

boron-dipyrromethene. 

 

The third study focused on developing ROS-generating NPs for aPDT in biofilms. To achieve 

this, the NPs needed to have good water-suspendability, the ability to incorporate a lipophilic 

PTS, and the capability to passively diffuse into and accumulate in biofilms. In the previous 

study on pH nanosensors for the use in biofilms, carboxylated and aminated NPs were used 

and demonstrated excellent diffusion behavior in different biofilms. Therefore, the same 

precursor PS NPs were used in this study. The lipophilic PTS BODIPY was embedded in the NPs 

and, subsequently, the diffusion into three different biofilms was evaluated. The results 

showed good diffusion into all three biofilms, which is important for an effective aPDT 

method. Accordingly, the carboxylated and aminated precursor NPs were considered suitable 

candidates for embedding the PTS and achieving aPDT in the biofilm. 

 

Type of PS NP Size (TEM) 

[nm]  

Size (DLS) 

[nm] 

PDI Zeta potential 

[mV] 

NP (COOH NH2) 103 ± 9 133 ± 3 0.038 ± 0.023 ‒30.6 ± 0.6 

pH nanosensor  101 ± 8  132 ± 1 0.017 ± 0.011  ‒38.0 ± 1.3 

PS NP (COOH) 94 ± 9 114 ± 4 0.012 ± 0.020 ‒62.7 ± 1.1 

NR-loaded NP 92 ± 10 114 ± 3 0.018 ± 0.015 ‒66.0 ± 5.3 

pHe nanosensor 88 ± 9 126 ± 7 0.050 ± 0.015 ‒30.6 ± 1.4 

NP (COOH NH2) 96 ± 12  130 ± 1 0.008 ± 0.006  ‒30.7 ± 1.1  

BODIPY NP 90 ± 9  137 ± 2 0.111 ± 0.018  ‒22.1 ± 0.6 
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All three studies presented in this thesis demonstrate successful embedding of dyes in NPs 

without significant changes in particle size or negative impact on the zeta potential, therefore 

indicating no loss of function. The dyes (NR for both types of pH nanosensors and the BODIPY 

dye for the ROS-generating NPs) showed homogeneous particle loading upon incorporation 

into the NPs with no leakage in aqueous dispersions, a high photochemical stability, and 

brightness for imaging. Leakage or photobleaching of dyes can impair the functionality of a 

nanosensor and lead to incorrect interpretation of NPs fluorescence. Free dye may cause 

apparent cellular uptake to be observed and the distribution of the dye may not correspond 

to that of the NPs 196,197. None of the three studies presented in this thesis showed any dye 

leakage from the NPs, nor photobleaching, or other loss of function. 

 

This demonstrates that the selected PS NPs, in combination with appropriate dyes used in the 

three studies, are suitable to be used as nanosensors and nanocarriers. 

 

4.2. Biosensing with nanosensors 

 

A ratiometric nanosensor typically requires three main components: a sensor dye, a reference 

dye, and a NP that contains both dyes while maintaining their function. The functionality of 

nanosensors in biological systems can be limited by various factors, such as interaction with 

the matrix components of a biofilm. It is known that NPs in biological fluids form a dynamic 

layer of biomolecules, mainly proteins, but also polysaccharides, nucleic acids or lipids, also 

termed protein corona 11,198. The presence of a protein corona may promote particle 

agglomeration or impair the functionality of the incorporated dyes. This could result in 

changes to the absorption or fluorescence maxima, fluorescence intensities, and/or pH 

dependence of the optical properties used as readout parameters. Therefore, it is necessary 

to verify the functionality of these parameters in the biological medium before the nanosensor 

can be successfully used.  

In the pH nanosensor study for monitoring pH in biofilms, transmission electron microscopy 

images were taken after 24 hours of incubation in the biofilm to check for particle 

agglomeration. The images showed that the particles did not aggregate or agglomerate even 

after this long time. This is an advantage over previously published nanosensors, which often 

show a high aggregation tendency in biological media, limiting their biosensing 
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performance 78. Furthermore, the fluorescence properties of the pH nanosensor were 

evaluated both before and after incubation in the biofilm. This is crucial as the pH 

nanosensor’s function relies on the fluorescence of two dyes. The fluorescence of the 

reference dye NR needs to remain constant over the entire pH measuring range, while that of 

the sensor dye FITC changes as a function of pH. The pH can be determined by calculating the 

ratio of fluorescence intensities between the sensor and reference dyes after calibration. The 

fluorescence maxima, intensities, and pH dependencies remained unchanged even after 24 

hours of incubation. In another experiment, the change in pH value within a biofilm after 

glucose metabolization was monitored. The decrease in pH value, an acidification of the 

biofilm, was shown as a relative decrease in FITC fluorescence compared to NR fluorescence. 

To ensure the reliability of the measurement, it was confirmed that the observed decrease in 

FITC fluorescence was not caused by dye bleaching or nanosensor leakage from the biofilm. 

For this purpose, a standard buffer was used to reverse the pH value of the biofilm. The 

functionality of the nanosensor was confirmed by demonstrating the complete reversibility of 

the fluorescence of the sensor dye, even after 4 hours of measurement. The study 

demonstrated that the nanosensor’s functionality remains unaffected by the presence of a 

complex biological matrix, pH changes, or long measurement intervals. This makes the 

nanosensor a highly robust and suitable tool for pH determinations in biofilms, even over 

extended periods of time. 

 

Eukaryotic cells and tissues differ physiologically from bacterial biofilms in several ways. 

Eukaryotic cells and tissues are denser, have more direct cell-cell contacts, and lack the slimy 

extracellular matrix typical for biofilms. Without this matrix, passive diffusion of the 

nanosensor into the eukaryotic cell tissue was not possible. Therefore, the pH nanosensor 

needed to be structurally adapted to measure the pHe of eukaryotic cells. For this purpose, 

the nanosensor was equipped with a targeting moiety, which enables anchoring the sensor to 

the cell surface. The lectin WGA was chosen as a targeting moiety due to its ability to bind to 

N-acetyl-D-glucosamine and N-acetylneuraminic acid residues present on cell surfaces 199,200. 

The theoretical suitability of WGA as a cell surface targeting molecule was confirmed in cell 

culture using three cell lines originated from different tissues (lung: A549, placenta: BeWo, 

skin: HaCaT). In a screening experiment, WGA bound exclusively to cell membranes, 

demonstrating its suitability as a targeting molecule. The NPs were then conjugated with WGA 
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to test whether the lectin anchors the NPs to the cells. In all three cell lines used, 

approximately 75-80% of the targeted NPs bound specifically to the cells. These results are 

consistent with literature values for the binding of WGA coupled to BSA to Caco-2 cells 201. 

This indicates that the activity of WGA as a targeting moiety in conjunction with the NPs is not 

compromised when the protein is conjugated. 

For ratiometric imaging, the nanosensor requires a reference dye embedded in the core and 

a sensor dye, usually conjugated to the NPs surface. To avoid competition between FITC and 

WGA on the particle surface, FITC-labelled WGA was conjugated to the NPs. It is commercially 

available and has the advantage of requiring only a single conjugation step. It was also verified 

that the fluorescence properties and the functionality for pH sensing of FITC are not affected 

when conjugated to WGA instead of the NPs.  

The dyes NR and FITC have spectrally distinct emission bands. FITC has a narrow excitation 

range with a maximum at approximately 490 nm, while NR has a broad excitation range with 

a maximum at 530 nm. The excitation maxima of NR and FITC partly overlap. Therefore, both 

dyes can be excited at the same wavelength, but the emission can be read at different 

wavelengths, enabling a ratiometric pHe measurement with only one excitation wavelength. 

This simplifies the equipment required for the measurements, reduces sources of error, and 

shortens measurement time, particularly in confocal microscopy. The chosen ratiometric 

design concept allows for a correlation between the calculated intensity ratios of the FITC and 

NR fluorescence of the pHe nanosensor with the pH value, while neglecting local concentration 

differences of the sensor. The pHe nanosensor’s robustness and reversibility were tested by 

repeatedly changing the pH with subsequent fluorescence measurement. The reversibility of 

the fluorescence intensity ratio was demonstrated, ruling out any leaking or bleaching of the 

dyes. This reversible reaction is a prerequisite for the pHe nanosensor to be used for 

monitoring continuous pH fluctuations in biological systems over long time periods. 

The pHe nanosensor had a working range in cell culture of pH 5.5–9.0. This range is quite wide 

compared to other pH sensors e.g., from Ohgaki et al. with a range of approx. 5.5–7.0 202 and 

from Chen et al. with a range of only 5.9–6.4 203. Thus, the working range of the nanosensor 

for pH detection is well suited for fluorometric pH sensing in the physiological pHe range of 

eukaryotic cells. 
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Despite its efficient performance, no advanced techniques or materials other than a confocal 

laser scanning microscopy are required. Therefore, the pHe nanosensor is a useful instrument 

for pHe detection that can be used in a standard laboratory environment.  

Ideally, nanosensors should function with minimal impact on cellular processes to avoid 

disturbing the natural cellular environment. It is important to exclude any potential toxicity of 

the NPs to the system under investigation. Therefore, the cell viability at incubation times of 

up to 24 hours and concentrations of up to 2.5 mg/ml was investigated. The results showed 

no significant toxic effects of the NPs, indicating that the pHe nanosensor is safe for use in cell 

culture experiments.  

 

Furthermore, the pHe nanosensor’s functionality for sensing pHe in cell culture was assessed. 

The results showed that the pHe nanosensor effectively targeted the cell membranes of all 

three types of cell lines, enabling direct measurement of pHe at the cell surface. The pH curves 

and pKa values observed in the cell culture experiments were consistent with those obtained 

in the acellular assays, indicating the robustness of the pHe nanosensor. The functionality of 

the pHe nanosensor is not affected by the biological system despite varying experimental 

conditions, including salt concentrations, protein interactions, matrix effects, and cellular 

autofluorescence. This confirms the suitability of the pHe nanosensor for biological 

applications, as it demonstrates that the sensor remains functional even in complex biological 

environments. 

 

Using an active targeting moiety has the added benefit of allowing the pHe nanosensor to be 

applied in a single step by adding it to the cell culture medium for ten minutes. This makes the 

application of the pHe nanosensor a simple experimental procedure, which sets it apart from 

other sensors used for pHe measurement on the cell surface. These sensors must either be 

genetically encoded to be expressed on the cell surface 204,205 or require long incubation times 

(several hours to overnight) 206. Easy experimental procedures have also been achieved in 

other studies, e.g. by Anderson et al. 207. They developed a sensor for determining the surface 

pH of cancer cells based on the conjugation of a dye to a low-insertion protein. The protein 

penetrates the cell membrane and enables the detection of the pH at the cell surface. 

Although this method has a high degree of accuracy, the resolution is not good enough to 

detect local pH values at a cellular level. This is important if the method is to be used 
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universally, for example to determine and map the pH microenvironments typical for cancer 

tissue. 

The pHe nanosensor study presented here highlights the functionality and practicality of 

simple and user-friendly yet powerful instruments that are in high demand in biochemical and 

cancer research. This pHe nanosensor is a useful tool for pHe detection of cells that can be 

used in many laboratories across different research disciplines. 

 

4.3. Nanoparticles as carries for antimicrobial photodynamic therapy 

treatment 

 

In the third study, an aPDT method was developed using PS NPs as carriers for the ROS-

generating PTS BODIPY. It was demonstrated that when activated, these NPs can effectively 

eliminate both planktonic bacteria and bacterial biofilms. It is widely recognized that aPDT has 

a greater impact on planktonic bacterial cells than on biofilms. This is because the EPS matrix 

makes it more difficult for PS NPs to penetrate into biofilms. On top, the concentration of 

bacteria in biofilms is generally higher than in suspensions in the medium 191. Furthermore, 

bacteria in biofilms exist in different physiological stages, meaning that not all of the bacteria 

are in a susceptible, proliferating state 145. Some bacteria may exist in a dormant state with 

reduced metabolism, which also limits the internalisation of substances and thus the efficacy 

of many treatment agents. Several published studies have shown that while planktonic 

bacteria can be effectively eradicated, the reduction of biofilms is significantly lower 171,186,193. 

While this phenomenon is partly observed in this study, the results regarding the eradication 

of biofilms contrast with those of other studies. Longer illumination times allowed for 

complete elimination of the biofilms. Complete eradication is critical as even a few surviving 

specimens can quickly rebuild large populations, making it essential for a successful 

disinfection treatment. Generally, the eradication effect increased as the illumination time 

increased and was particularly high when the BODIPY-loaded NPs were previously incubated 

in the biofilm. This suggests that BODIPY-loaded NPs are more effective when ROS generation 

occurs in close proximity to the bacteria within the biofilm rather than in the medium. The 

main reason for this is the short lifetime of ROS and therefore a limited diffusion distance. The 

effectiveness of the ROS-generating PTS is highly dependent on its proximity to the bacteria. 

Therefore, carriers, such as NPs, are needed to transport the PTS into the biofilm. 
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Here, the required incubation times for sufficient accumulation in the biofilm vary depending 

on the type of biofilm. It is assumed that NPs penetrate the biofilm mainly by diffusion 208. 

Particle properties, such as size, charge, and hydrophobicity, influence the diffusion of NPs 

into the biofilm 38. However, the structure and composition of the biofilm also play an 

important role for the time the NPs need to diffuse into the biofilm. The pore size and 

hydrophobicity of the biofilm are particularly important, but also the charge and chemical 

gradient of the biofilm and its matrix 209,210. As identical NPs were used in all three biofilm 

experiments, it is likely that the structure of the biofilms themselves is the most important 

factor in the kinetics of NP penetration. Some bacteria such as Escherichia coli form dense 

biofilms with small extracellular spaces and pore sizes, making it more difficult for the NPs to 

diffuse into the biofilm. Therefore, longer incubation times were required for Escherichia coli 

compared to Staphylococcus aureus and Streptococcus mutans. These biofilms typically have 

a less dense structure with a greater amount of extracellular matrix and larger pore size, which 

facilitates the diffusion of NPs into the biofilm 211. The results are therefore consistent with 

the hypothesis that the structure and pore size of a biofilm can significantly influence the 

penetration of NPs.  

 

According to the literature, gram-negative bacteria have been reported to be up to ten times 

less sensitive to aPDT than gram-positive bacteria 180,182. This difference in sensitivity is 

thought to be due to differences in cell wall composition between gram-positive and gram-

negative bacteria 167,212. Although gram-positive bacteria have a thicker cell wall, gram-

negative bacteria have a more complex cell wall structure. They have an additional 

lipopolysaccharide-containing membrane as their outermost layer, which offers additional 

protection against ROS. In order to cause a membrane disruption, ROS not only have to 

destroy the outer membrane structure but also the cytoplasmic membrane 212. 

In this study, it was found that biofilms of gram-positive bacteria, as reported in the literature, 

were more sensitive than those of gram-negative bacteria. However, this was not observed 

for planktonic bacteria. It is assumed that other factors, such as the generation time of the 

bacteria (also known as the doubling time), may be decisive for the sensitivity of planktonic 

bacteria to aPDT. During the time of cell division, the bacterial membranes are thinner, 

particularly at the division site and not yet fully functional 213. This suggests that the bacteria 

are particularly susceptible to ROS in this phase, as these can destroy the cell membranes 
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much more easily, regardless of whether they are gram-negative or gram-positive. Bacteria 

with short doubling times undergo the vulnerable cycle of cell division more often within the 

same time. The bacterial species used in this study have doubling times of approximately 20 

minutes for Escherichia coli as well as Staphylococcus aureus and 60 minutes for Streptococcus 

mutans 214-217. As the illumination time was 30 minutes for all planktonic samples, it can be 

assumed, that all Escherichia coli and Staphylococcus aureus bacteria underwent at least one 

cell division, but only about half of the Streptococcus mutans bacteria did. Therefore, 

Streptococcus mutans bacteria were in a less vulnerable state, making them less susceptible 

to ROS damage. The study's results confirm the previous assumption and demonstrate that, 

while Escherichia coli and Staphylococcus aureus were both completely eradicated, the 

population of Streptococcus mutans was only reduced from 107 to 103 cells. This suggests that 

bacteria with slower cell division may be less susceptible to aPDT than rapidly dividing 

bacteria. To confirm this hypothesis, further investigation is required using different bacterial 

species with varying cell division times. However, if this effect proves to be true, it seems 

possible to estimate the optimal treatment duration in advance based on the division time of 

the bacteria. This can significantly increase the chances of successful eradication. 

 

In addition to eradication efficacy, the study also investigated the interactions between 

biofilms and NPs. Scanning electron microscopy (SEM) images of control biofilms, biofilms 

with non-activated NPs, and biofilms exposed to activated ROS-producing NPs were obtained. 

The images showed that non-activated NPs had little interaction with the bacteria, whereas 

the bacteria exposed to ROS-generating NPs had a large number of NPs attached to the 

bacterial surface. The death of the bacteria by aPDT may cause the loss of membrane potential 

in the bacteria, which could explain the adhesion of the NPs to the cells. Additionally, changes 

in the cell membrane itself may also contribute to this phenomenon. Typically, viable bacteria 

have negatively charged outer cell membranes due to the presence of molecules such as 

lipopolysaccharides and carboxylate substituents on their surface 218. The negatively charged 

NPs are not electrostatically attracted to the bacteria. However, if ROS damage the bacteria 

and their cell membranes, it can lead to a disruption of membrane integrity. This process can 

cause substances and intracellular components to leak from the bacteria, resulting in the 

release of positively charged molecules or ions on the bacterial surface. As a result, the overall 

charge of the bacteria may shift from negative to neutral or positive 219,220. This could lead to 
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the binding of NPs to the bacterial surface through electrostatic attraction, as observed in the 

SEM images. 

 

It is worth investigating whether the efficacy of aPDT could be improved by conjugating the 

NPs with a targeting moiety similar to the pHe nanosensor. This could potentially lead to 

shorter incubation or irradiation times or extend the applicability of the system by only being 

effective against a targeted bacterial strain. 

 

It has been demonstrated that NPs are valuable tools for the design and fabrication of 

nanosensors, but also as carriers of PTS for PDT. Their versatility allows for tuning of their 

properties to suit the desired application. It is a unique feature that a nanosensor with only 

minimal structural modifications can be used for imaging in both bacterial biofilms and 

eukaryotic cells. 

While PS NPs demonstrate good biocompatibility over short and medium time periods, it is 

important to note that they are not biodegradable (yet 221). This characteristic raises concerns 

about potential accumulation in living organisms, leading to adverse effects. Therefore, its use 

in medical applications in vivo is currently discouraged. However, PS NPs are valuable tools for 

manufacturing in vitro diagnostic and therapeutic instruments and for the testing of 

pharmaceutical compounds, PDT candidates and more. By addressing and understanding the 

potential risks associated with PS NPs, researchers can make informed decisions to maximize 

their benefits while mitigating potential harm in specific contexts. 
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5. Conclusion and outlook 

 

This thesis presents three studies that demonstrate the diverse use and application of PS NPs 

as nanosensors for biosensing in cellular research and for the treatment of pathogenic 

biofilms. 

In the first study, the design and fabrication of a pH-responsive ratiometric nanosensor using 

biocompatible PS NPs is described. The pH nanosensor employs the ratio of the fluorescence 

intensities of the pH-insensitive dye NR and the pH-sensitive dye FITC to determine and 

monitor the pH in biofilms by confocal microscopic imaging. The study demonstrated the 

function of the nanosensors by monitoring time-dependent pH changes induced by the 

metabolic activity of Escherichia coli biofilms. The smart but straightforward design concept, 

combined with the ease of fabrication and use of the sensor, create numerous application 

possibilities in the characterization of the chemical microenvironment of biofilms. Particularly 

with regard to automated imaging and automated image and data processing, the quantity 

and quality of data that can be obtained with such nanosensors far exceeds that of 

conventional methods. Future applications of these nanosensors include the investigation of 

microbially induced corrosion processes on surfaces, in vitro investigations of dental caries, 

and monitoring of other biotechnological processes accompanied by pH changes. These 

nanosensors offer promising avenues for advancing our understanding of biofilm dynamics 

and facilitating improved strategies to combat biofilm-associated health issues in natural, 

industrial, and clinical environments. 

The second study presents a ratiometric pHe nanosensor developed for the determination of 

pHe of eukaryotic cells. The nanosensor contains the same fluorophores as the first 

nanosensor, but by conjugating the nanosensor to a cell membrane-targeting lectin, this 

nanosensor can effectively label the cell surface of different cell lines. This feature enables 

precise and spatially resolved measurements of the pHe of individual cells directly on their cell 

surface. The study illustrates the versatility and compatibility of the pHe nanosensor with 

different cell lines from different organs. The pHe nanosensor holds great potential as a tool 

for exploring cellular microenvironments and gaining a deeper comprehension of cellular 

processes. Its applications in biomedical research, particularly in cancer research, for 

understanding and investigating metabolic disorders, diagnostic or therapeutic applications 

highlight its potential impact on diverse fields. 
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The third study focuses on the use of PS NPs as carriers of PTS for aPDT. The study 

demonstrated the high efficacy of BODIPY-loaded NPs against both planktonic bacteria and 

bacterial biofilms. The NPs performed several crucial functions: (1) solubilizing the lipophilic 

PTS making it applicable in aqueous media, (2) delivering the PTS directly into the biofilm for 

activation at the target site, and (3) having a high loading resulting in a high local concentration 

of PTS. The study found that the BODIPY-loaded NPs were highly effective in preventing and 

eliminating biofilms. This provides a practical and straightforward alternative to existing 

methods. Additionally, aPDT reduces the risk of developing bacterial resistance in the future. 

Furthermore, active targeting using lectins or antibodies could be utilized for selective 

bacterial eradication, enabling beneficial bacteria to thrive in certain applications. In the 

future, this approach could also be combined with other bactericidal or imaging agents to 

enhance the NPs efficiency and potentially be developed as a dual-action or theranostic 

application. 

In summary, all three studies collectively underscore the potential of NPs to be utilized as 

sensors and carriers in providing valuable insights into biofilm microenvironments. They also 

enable precise pHe measurements in diverse cell lines and offer effective strategies for 

antimicrobial treatment. These advancements hold promise for future research and 

applications in fields ranging from biofilm characterization to biomedical research and 

antimicrobial therapy.  
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Supplementary Information  

 

Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric 

nanosensor 

Charlotte Kromer1,2, Karin Schwibbert3, Ashish K. Gadicherla4, Dorothea Thiele3, Nithiya 
Nirmalananthan-Budau5, Peter Laux1, Ute Resch-Genger5*, Andreas Luch1,2, Harald R. 
Tschiche1* 

𝑟𝑎𝑡𝑖𝑜𝐹𝐼 = 𝑑 + ( 𝑎 − 𝑑1 + (𝑝𝐻𝑐 )𝑏) 

Supplementary Equation S1. Curve fitting for pH calibration. 

 

Supplementary Table S2. Parameters used for the inverse estimation. 

Parameter  Estimate Std. Error 

a 0.13383 0.01005 

b 0.71996 0.01539 

c 7.16552 0.05673 

d 0.68475 0.05915 

 

The thickness of the biofilm was determined after a growth period of 24 h and 2 washing steps with RB-buffer 
(Supplementary Table S3). For the measurements, the focus plane of the CLSM was placed at the lower 
end of the biofilm in BF mode and a z-stack was recorded until the minimum and maximum upper ends were 
reached. Three measurement points were recorded for each of the three biological replicates. After a growth 
period of 24 hours, the E. coli biofilms had a uniform thickness and colonized the entire Ibidi glass slide without 
gaps. 

 

Supplementary Table S3 Minimum and maximum biofilm thickness determined with CLSM and illustration 
of biofilm thickness. 

Slide Minimum 
thickness [µm] 

Maximum 
thickness [µm] 

1 6.45 ± 0.33 12.13 ± 1.35 

2 7.82 ± 1.94 15.43 ± 4.43 

3 7.88 ± 1.16 14.87 ± 3.28 

Average 7.38 ± 0.81 14.14 ± 1.77 

  

To visualize the structure and viability of the biofilm, a live/dead staining was performed using the BacLight 
kit (Thermo Fisher Scientific). Supplementary Figure S4 shows the top and side view of a CLSM image 
obtained from a live/dead stained biofilm. A dense and homogeneous biofilm uniformly colonizes the slide. 
The high number of living bacteria (green) shows the high viability of the biofilm with is not altered when PS 
NP are incubated into the biofilm for 24 hours. 



 
Supplementary Figure S4 CLSM image of a live/dead stained biofilm. The green SYTO9 stain represents 
living cells, the red propidium iodide stain represents dead cells. Left: biofilm grown without nanoparticles for 
24 h. Right: biofilm incubated with 1 mg/ml polystyrene nanoparticles for 24 hours. 

 

 

Supplementary Figure S5 Test for metabolic activity of E. coli biofilms in terms of acidification of growth 
media. Bromothymol blue was used as pH indicator solution. The upper row samples (+) were inoculated with 
glucose, the lower row samples (-) were control samples without glucose. The change of color from blue to 
yellow, indicates acidification of the samples containing glucose. 

 

The localisation of the nanosensors in the biofilm was assessed by incubating PS particles stained with NR 
but without the pH-responsive dye FITC into the biofilm. This was followed by a live staining of the biofilm with 
Syto9. The reason for using these particles instead of the NR-stained and FITC-labeled pH nanosensor was 
to avoid spectral crosstalk of the fluorescence signals from FITC and the live stain Syto9. 

 



 
Supplementary Figure S6 CLSM images of the biofilm in fluorescence mode incubated with the NR-stained 
PS nanoparticles (red) for 24 h and subsequent live-staining of the cells with Syto9 (green). The NR 
fluorescence image (zoomed area, middle lower image) shows the highest fluorescence signals in 
extracellular regions, indicating that the nanoparticles are not taken up by the bacteria. 
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Table A1 Dye and protein loading of the pHe nanosensor.  

 Loading per mg PS [nmol] 
NR 5.90 ± 0.58 

FITC 0.848 ± 0.106 

WGA 0.424 ± 0.053 

 



 

Figure A1 SEM images of A549 and HaCaT cells at different magnifications. Samples without (control) 
and with the pHe nanosensor (0.825 mg/ml) 
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Supplementary Material 

 

 

Supplementary Figure 1. Viability after incubation of PS NP without dye. Survival % of control of 

E. coli, S. aureus and S. mutans biofilms after various incubation times. All experiments were carried 

out as three independent replicates. None of the tested incubation times showed a significant toxic 

effect. Thus, within the testing conditions and experimental setup the PS NP are biocompatible and 

have no effect on the bacteria. 
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Supplementary Figure 2. Calibration curve for determination of BODIPY dye loading of the 

BODIPY-loaded NPs. 

 

 

Supplementary Figure 3. Absorption and emission spectra of the free BODIPY dye and the 

BODIPY-loaded NPs in 50% ACN. Excitation for the Emission spectra was 530 nm.  
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Supplementary Figure 4. CLSM images of the incubation time optimization for E. coli biofilms. 

BODIPY dye (magenta) was imaged in E. coli biofilms with no incubation, 4 hours incubation and 24 

hours incubation. The goal was a sufficient penetration into the biofilm and accumulation in the 

biofilm.  
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Supplementary Figure 5. SEM images of E. coli biofilms treated with aPDT. The four columns 

display increasing magnifications from left to right. a) Biofilm control without NP, b) biofilm control 

with NP and without illumination, c) biofilm with NP and illumination, d) biofilm grown for 24 hours 

after treatment of planktonic culture with NP and illumination. 
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Supplementary Figure 6. SEM images of S. aureus biofilms treated with aPDT. The four columns 

display increasing magnifications from left to right. a) Biofilm control without NP, b) biofilm control 

with NP and without illumination, c) biofilm with NP and illumination, d) biofilm grown for 24 hours 

after treatment of planktonic culture with NP and illumination. 
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Supplementary Figure 7. SEM images of S. mutans biofilms treated with aPDT. The four columns 

display increasing magnifications from left to right. a) Biofilm control without NP, b) biofilm control 

with NP and without illumination, c) biofilm with NP and illumination, d) biofilm grown for 24 

hours after treatment of planktonic culture with NP and illumination. 
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