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Exponentially tighter bounds on limitations 
of quantum error mitigation
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Quantum error mitigation has been proposed as a means to combat 
unwanted and unavoidable errors in near-term quantum computing without 
the heavy resource overheads required by fault-tolerant schemes. Recently, 
error mitigation has been successfully applied to reduce noise in near-term 
applications. In this work, however, we identify strong limitations to the 
degree to which quantum noise can be effectively ‘undone’ for larger system 
sizes. Our framework rigorously captures large classes of error-mitigation 
schemes in use today. By relating error mitigation to a statistical inference 
problem, we show that even at shallow circuit depths comparable to those 
of current experiments, a superpolynomial number of samples is needed in 
the worst case to estimate the expectation values of noiseless observables, 
the principal task of error mitigation. Notably, our construction implies 
that scrambling due to noise can kick in at exponentially smaller depths 
than previously thought. Noise also impacts other near-term applications 
by constraining kernel estimation in quantum machine learning, causing an 
earlier emergence of noise-induced barren plateaus in variational quantum 
algorithms and ruling out exponential quantum speed-ups in estimating 
expectation values in the presence of noise or preparing the ground state of 
a Hamiltonian.

Quantum computers promise to efficiently solve some computational 
tasks that are out of reach of classical supercomputers. As early as the 
1980s1, it was suspected that quantum devices may have computational 
capabilities that go substantially beyond those of classical computers. 
Shor’s algorithm, presented in the mid-1990s, confirmed this suspicion 
by presenting an efficient quantum algorithm for factoring, for which 
no efficient classical algorithm is known2. Since then, quantum com-
puting has been a hugely inspiring theoretical idea. However, it soon 
became clear that unwanted interactions with the environment and, 
hence, the concomitant decoherence are the major threats to realizing 
quantum computers as actual physical devices. Fortunately, early fears 
that decoherence could not be overcome in principle were proven 
wrong. The field of quantum error correction has presented ideas that 
show that one can still correct for arbitrary unknown errors3. This key 

insight triggered a development that led to the blueprint of what is 
called the fault-tolerant quantum computer4,5, a (so far still fictitious) 
device that allows for arbitrary local errors and can still maintain an 
arbitrarily long and complex quantum computation. That said, known 
schemes for fault tolerance have demanding and possibly prohibitive 
overheads5. For the quantum devices that have been realized in recent 
years, such prescriptions still seem out of scope.

For this reason, quantum error mitigation has gained traction 
recently6–9 as a possible near-term surrogate for quantum error correc-
tion. The idea is to correct the effect of quantum noise on a near-term 
computation’s result through classical post-processing of measure-
ment outcomes, without mid-circuit measurements and adaptive 
gates, as is done in error correction. This minimizes the overheads in 
physical hardware.

Received: 26 February 2023

Accepted: 9 May 2024

Published online: 25 July 2024

 Check for updates

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Berlin, Germany. 2School of Engineering and Applied Sciences, Harvard University, 
Cambridge, MA, USA. 3Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark. 4Univ Lyon, Inria, ENS Lyon, UCBL, LIP, 
Lyon, France. 5Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.  e-mail: yihuiquek3.14@gmail.com; jenseisert@gmail.com

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-024-02536-7
http://orcid.org/0000-0002-1227-0804
http://orcid.org/0000-0001-9699-5994
http://orcid.org/0000-0002-9858-0511
http://orcid.org/0000-0003-3033-1292
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-024-02536-7&domain=pdf
mailto:yihuiquek3.14@gmail.com
mailto:jenseisert@gmail.com


Nature Physics | Volume 20 | October 2024 | 1648–1658 1649

Article https://doi.org/10.1038/s41567-024-02536-7

We have demonstrated worst-case circuits that must be run expo-
nentially many times for error mitigation on them to work. Lower 
bounds shine light on upper bounds. Our work suggests that future 
sample-efficient error-mitigation schemes must dodge the limita-
tions we have identified. How then can we design circuits to be more 
resilient to noise, and how far into the feasible regime can we push the 
line between error mitigation and error correction?

Introduction to the technique
To establish the framework, we start off by defining what constitutes 
error mitigation in the rest of this work. In the literature, the term ‘error 
mitigation’ has been used to describe protocols that are appended 
after a noisy quantum algorithm. Such protocols reduce the unwanted 
effect of noise on a quantum circuit by measuring it and classically 
post-processing the results (Figs. 1–3). They then output either sam-
ples from the would-be noiseless circuit or its expectation values on 
observables of interest, depending on the purpose of the original 
quantum algorithm. More concretely, we formulate the problem of 
error mitigation as follows.

Problem 1. (Error mitigation (informal)) Upon input of:
 A. (1) a classical description of a noiseless circuit 𝒞𝒞 and a finite set 

ℳ = {Oi} of observables, and
 B. (2) copies of the output state σ′ of the noisy circuit 𝒞𝒞′, and the abil-

ity to perform collective measurements, then output either:
 A. (1) estimates of the expectation values Tr (Oiσ) for each Oi ∈ ℳ  

(weak error mitigation), where σ is the output state of the noiseless 
quantum circuit 𝒞𝒞, or

 B. (2) samples from a probability distribution close to the distribu-
tion of σ when measured in the computational basis (strong error 
mitigation).

The number m of copies of σ′ needed is the sample complexity of (weak 
or strong) error mitigation.

Although a compelling prospect, we ask: to what extent can we 
really achieve such classical correction of quantum noise post hoc?

In this work, we argue that the current generation of 
error-mitigation schemes must be seriously reconsidered if we are 
to reach this goal. Empirically, some of them seem to come at a severe 
quantum resource penalty. At least one specific protocol, zero-noise 
extrapolation, requires a number of samples that scales exponentially 
as the number of gates in the light cone of the observable of interest, 
with the exponent depending on the noise levels8. A similar exponential 
scaling besets probabilistic error cancellation under a sparse noise 
model10. Our results contribute to a theoretical understanding of the 
conditions under which this happens.

We identify striking obstacles to error mitigation. Even to mitigate 
noisy circuits slightly beyond constant depth requires a superpolyno-
mial number of uses of those circuits in the worst case. These obstacles 
are seen when we turn the lens of statistical learning theory onto the 
problem of error mitigation. We formulate this problem rigorously as 
one where the mitigation algorithm works with a classical description 
of a noiseless circuit and specimens of the noisy circuit’s output state, 
on which it can perform arbitrary measurements.

We then distinguish two tasks. In the first (weak error mitigation), 
the goal is to output a collection of expectation values of the noiseless 
circuit’s output state. This approach is used to mitigate errors in varia-
tional quantum circuits6,11, an important family of circuits for near-term 
quantum devices. In other situations (strong error mitigation), the 
goal is to output a sample from the clean output state when measured 
in the computational basis. This approach is used to mitigate errors 
in algorithms for hard combinatorial optimization problems, a class 
that includes the famous quantum approximate optimization algo-
rithm12. Our framework and results encompass many error-mitigation 
protocols used in practice, including virtual distillation13,14, Clif-
ford data regression15, zero-noise extrapolation7 and probabilistic  
error cancellation7.

New error-mitigation schemes are being intensely developed, 
even as we write6–8. Unsurprisingly, given the high expectations for 
such techniques, their limitations have also already been studied. In 
particular, we build on a key work16 that first identified limitations to 
quantum error mitigation by studying how noise affects the distin-
guishability of quantum states. In that work, as well as in refs. 17,18 that 
are concurrent to our work, the authors take an information-theoretic 
approach to study the sample complexity of weak error mitigation 
under depolarizing noise (more generally, Pauli channels and thermal 
noise applied to the identity circuit) and show that it scales exponen-
tially but only with the depth of the circuit. This is not a limitation when 
the depth is O(logn), as is the case in practice.

In fact, the quantum community has known for some time that 
quantum states being manipulated by noisy quantum circuits undergo-
ing depolarizing noise converge exponentially quickly (in depth) to 
maximally mixed states19–21. This behaviour suggests that quantum 
advantage is lost once circuits exceed logarithmic depth (if no error 
correction is used). Strikingly, in contrast to this natural expectation, 
our limitations kick in for circuits that come much closer to constant 
depth. This is because we introduce a dependence of the sample cost 
on the width of the circuits (n). We also analyse error mitigation under 
non-unital noise, a highly physically relevant class of noise that includes 
T1 decay, the primary source of noise in superconducting qubit archi-
tectures. In addition to the mathematical tools we developed for ana-
lysing noisy computation, we make a strong conceptual point: 
error-mitigation schemes that have empirically been found in practice 
to have exp(n) sample complexity are pretty much as good as they can 
get, unless they are crafted to address circuits with a special structure 
that eludes our bounds.

Although quantum error mitigation has seen practical success on 
small noisy quantum devices9, our results put hard limits on how much 
we can expect error mitigation to scale with the size of such devices.  
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Fig. 1 | Intuition for our circuit construction: the higher the weight of a 
Pauli string, the more sensitive it is to Pauli noise (see equation (26) in the 
Supplementary Information). a–c, Whereas, for product pure states, there 
are Pauli strings with constant-order expectation values for all weights, most 
quantum states have correlators of only high weight. Thus, most random states 
are substantially more sensitive to noise than product quantum states. a, The 
effect of applying a noiseless Pauli mixing circuit to a computational basis 
state is to shift the binomial of contributions to a weighted binomial (compare 
equation (31) to equation (35)). b, The effect of applying one subsequent layer 
of depolarizing noise on the output of the aforementioned circuit (compare 
equation (35) to equation (38)). c, The effect of applying yet another Pauli 
mixing layer to the state output by the aforementioned circuit (as captured in 
equation (35)).
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The bounds we prove apply even to error-mitigation protocols 
that are given an exact description of the noise model affecting the 
circuit. Naturally, this also means our bounds apply to those proto-
cols that know nothing about the noise and must learn it on the fly, 
as they are a subset of the protocols mentioned in the previous sen-
tence. We refer to the Supplementary Information for rigorous defi-
nitions of error-mitigation algorithms (see Definitions 5 and 6 
therein) and for an explanation of how these definitions connect to 
well-known protocols such as zero-noise extrapolation and proba-
bilistic error cancellation (see Section I therein). These protocols, 
for instance, run 𝒞𝒞 with varying levels of noise and then apply simple 
post-processing to 𝒞𝒞 or modify the circuit based on the noise. This 
level of abstraction of error-mitigation protocols builds on those of 
refs. 16–18.

In this work, we reduce a statistical inference problem on noisy 
quantum states to error mitigation on the circuits that produced 
them. What motivates this perspective is the observation that a ‘good’ 
error-mitigation algorithm should act as an effective denoiser, allow-
ing one to distinguish one state from another, even if the states can be 

accessed only by measuring their noisy versions. Seen from this angle, 
error mitigation solves the following problem.

Problem 2. (Noisy state discrimination (informal)) Upon input of:
 1. (1) classical descriptions of a set S = {ρ0, ρ1, …, ρN} of n-qubit quan-

tum states, a noiseless circuit𝒞𝒞, and
 2. (2) m copies of a state 𝒞𝒞′( ρi) (where 𝒞𝒞′ is the noisy version of 𝒞𝒞), 

with i ∈ {0, …, N} unknown, and the ability to perform collective 
measurements, then output ̂i ∈ {0,… ,N } such that ̂i = i (‘suc-
cess’) with high probability.

Problems 1 and 2 are intimately related. To see this, consider in 
Problem 2 discriminating between the maximally mixed state 
ρN ∶= 𝕀𝕀𝕀2n and the states ρx ∶= |x⟩ ⟨x| for x ∈ {0, 1}n. This problem can 
be solved by performing weak error mitigation with the observables 
ℳ = {𝒞𝒞(Zi)}i∈[n] . This is because a weak error-mitigation algorithm 
should output the estimates Tr(𝒞𝒞(Zi)𝒞𝒞(ρx)) = Tr(Ziρx). Now consider 
two cases: (1) if the unknown state had been 𝒞𝒞′(ρx) for x ∈ {0, 1}n, then 
Tr( ρxZi) = 2xi − 1; (2) if instead the unknown state had been 𝒞𝒞′( ρN), 
then Tr( ρNZi) = 0, ∀i ∈ [n]. The output of Problem 1 thus completely 
identifies the label of the state i, thus solving Problem 2. The upshot is 
as follows. If at least m copies of the noisy state must be used for suc-
cessful discrimination in the above setting (solving Problem 2), then 
at least the same number of copies are needed for successful weak error 
mitigation (solving Problem 1). We use the information-theoretic gen-
eralized Fano method for multiple hypothesis testing22 to provide a 
lower bound on m. The crucial quantity to study, it turns out, is the 
quantum relative entropy:

D(𝒞𝒞′( ρx) ∥ 𝕀𝕀𝕀2n). (1)

The inverse rate of decay of this quantity bounds the sample complex-
ity of error mitigation. We use tools to precisely control the quantum 
relative entropies of unitary two-designs under unital and non-unital 
quantum noise so that we can construct circuits 𝒞𝒞′ that yield our strong 
bounds on error mitigation.

Results
With our information-theoretic perspective, we are able to establish 
the following fundamental limits on a broad swath of error-mitigation 
protocols.

Sample complexity of error mitigation for local depolarizing 
noise
Intuitively, one would expect the sample complexity of error mitigation 
to scale with the size of the noiseless circuit 𝒞𝒞 and the amount of noise 
affecting it. Our Theorem 1 confirms this intuition starkly. It shows that 
the dependence of the resource requirement on these parameters is 
exponentially higher than previously known. Concretely, Theorem 1 
hinges on showing that the distance of a noisy circuit’s output state to 
the maximally mixed states goes below constant order at poly log logn 
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Fig. 3 | Circuits without and with quantum noise. a, Idealization of near-term 
quantum algorithms without quantum noise. Most such algorithms work by 
running an n-qubit quantum circuit 𝒞𝒞 on an input quantum state ρ, measuring the 
output state and then returning either samples from the resulting probability 
distribution or expectation values of specified observables. b, The model of error 
mitigation used in this work, building on the framework established in ref. 16. The 
quantum channel 𝒞𝒞′

i  represents the ith run of 𝒞𝒞′, the noisy version of 𝒞𝒞. We model 
the noise acting on 𝒞𝒞 by interleaving its layers with layers of a given noise channel. 
In Supplementary Information Section I, we show that this model applies to 
practical error-mitigation protocols such as virtual distillation13,14, Clifford data 
regression15, zero-noise extrapolation7 and probabilistic error cancellation7,8. In 
this work, we study how m, the number of noisy circuit runs, scales with n and D to 
reliably recover the expectation values.
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Fig. 2 | Quantum error mitigation as a statistical inference problem. To lower-bound the sample complexity of weak error mitigation, we show that it can be used as 
a subroutine to solve a constructed problem of distinguishing states under noise.
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depth, whereas the onset of this effect at the exponentially larger logn 
depth pointed out in previous works was already detrimental to many 
near-term applications16–18,21,23,23–27.

Theorem 1. (Number of samples for mitigating depolarizing noise 
scales exponentially with the number of qubits and depth) Let 𝒜𝒜 be a 
weak error-mitigation algorithm that mitigates the errors in an n-qubit, 
D-layer quantum circuit 𝒞𝒞 affected by local depolarizing noise 𝒩𝒩  of 
parameter p. For some parameter s > 0 and depths D ≥ Ω(log2(n𝕀s)), 𝒜𝒜 
requires as input at least s−1p−Ω(n D/s) copies of the output state σ′ of the 
noisy quantum circuit 𝒞𝒞′.

Refer to Supplementary Information Theorem 4 for the full, formal 
statement. In other words, setting s = 𝒪𝒪(1) tells us that error mitigation 
for even a circuit of polylogarithmic depth demands exponentially 
many (in qubit number) samples, in the worst case. By picking, for 
example, the parameter s = Ω(n𝕀log2(n)), we see that even at the low 
depth D = poly log log(n), error mitigation already requires superpoly-
nomially many samples. Figure 1 illustrates the intuition behind our 
construction of circuits that saturate this bound. They rapidly entangle 
and shift weight onto high-Hamming weight Paulis, which makes them 
particularly sensitive to noise.

Note, however, that these circuits, which leverage a construction 
by ref. 28, require all-to-all connectivity to implement, so that they mix 
rapidly (that is, at short depths). In Supplementary Information Section 
II.E.1, we show analogous results for geometrically local circuits on a 
d-dimensional lattice. In that setting, we show that exponentially many 
samples are required for error mitigation at depths of 
𝒪𝒪(n1/d poly log(n)). Even at depths �̃�𝒪(log2/d(n)poly log log(n)) , error 
mitigation requires superpolynomially many samples. These effects 
kick in at depths �̃�𝒪(n1/d), which is the minimal depth required to ensure 
that all qubits have a light cone proportional to the system size. These 
constructions thus illustrate a refined version of the basic intuition: 
rather than the size of the circuit, it is more precisely the number of 
gates in the light cone of observables that determines the difficulty of 
error mitigation.

Sample complexity of error mitigation for non-unital noise
Our result in Theorem 1 relies critically on the structure of depolarizing 
noise, namely, that it is a Pauli channel, and thus, it is unital. Moving 
beyond this toy model, we are also able to show sample complexity 
bounds for circuits affected by non-unital noise, which is notably 
trickier to analyse. Here, the essence of our conclusion remains the 
same. Whenever a family of circuits is highly entangling, which we 
model through the assumption that it forms a unitary two-design, 
mitigating local non-unital noise typically requires a number of samples 
that is exponential with both the number of channel applications and 
number of qubits.

Theorem 2. (Number of samples for mitigating non-unital noise scales 
exponentially as the number of qubits and depth) Weak error mitigation 
on an n-qubit, D-layer noisy quantum circuit of the form ○D

t=1𝒩𝒩t ∘ 𝒰𝒰t , 
where the 𝒰𝒰t  are drawn independently from a unitary two-design and 
where 𝒩𝒩t = 𝒩𝒩⊗n is an n-fold tensor product of a qubit non-unital noise 
channel 𝒩𝒩 , requires as input at least c−Ω(n D) of the circuit’s output state, 
for some constant c that depends on the noise 𝒩𝒩 .

Refer to Supplementary Information Theorem 7 for the full, formal 
statement. To prove it, we compute the expected overlap of two quan-
tum states that are output by D alternating layers of a unitary sampled 
from a unitary two-design followed by a non-unital noise channel. 
Although this model of only applying local noise after a (global) unitary 
is simplified, we study error mitigation under non-unital noise beyond 
the setting of the variational algorithms studied in ref. 23. Our obser-
vation here that global unitaries result in fast decay to the maximally 

mixed state under non-unital noise further strengthens the evidence 
for a connection between the entanglement generated by a circuit and 
the rate at which noise spreads.

We prove Theorems 1 and 2 in the setting of weak error mitigation, 
and we assume that the error-mitigation algorithm does not use knowl-
edge of the input state to the circuit. Although this is the setting most 
often used in practice, it does not cover all proposals in the literature. 
We now ask whether our results can be extended to close variants of 
this setting that are also practically relevant.

Dependence on the initial state
The strong limitations we have proven so far are based on the assump-
tion that the error-mitigation algorithm does not make any use of 
information about the input state to the noisy circuit so that the 
error-mitigation algorithm is input-state agnostic. Does lifting this 
restriction—thereby including input-state-aware error-mitigation pro-
tocols—change the picture substantially? A first observation is that we 
can no longer rule out the possibility of successful error mitigation 
with subexponential worst-case sample complexity simply because 
a classical simulation with no resort to the noisy quantum device at 
all is a valid error-mitigation algorithm with zero sample complexity, 
albeit possibly being computationally hard. Our no-go result in this case 
thus takes a different perspective: we show that an error-mitigation 
algorithm that makes use of a noisy quantum device must use expo-
nentially many copies of its noisy output state to produce an output 
meaningfully different from some fully classical procedure that does 
not invoke the quantum device.

Theorem 3. (Resource cost of successful error mitigation) A successful 
weak error-mitigation algorithm 𝒜𝒜 must use m = c𝒪𝒪𝒪nD) copies of the 
noisy output state σ′ in the worst case, or there exists an equivalent 
algorithm 𝒜𝒜′ with purely classical inputs such that the output of 𝒜𝒜′ is 
indistinguishable from the output of 𝒜𝒜.

For the full, formal statement, see Supplementary Information 
Theorem 2. In this way, we show that our constructions apply both to 
the input-state-agnostic and input-state-aware settings.

Interrelation between strong and weak error mitigation
Our work defines and studies strong error mitigation. The relevance 
of this notion is that, in some cases, weak error mitigation does not 
quite achieve the algorithmic goal at hand, for instance, solving hard 
combinatorial optimization problems on a noisy quantum device. In 
that case, one is not only necessarily interested in the optimal value of 
the cost function (obtained through weak error mitigation) but also in 
an assignment that achieves that value (obtained through strong error 
mitigation). Although it is not hard to see that for local observables, 
strong error mitigation implies weak error mitigation, we also ask 
the converse question. Could there be an algorithm that takes in the 
output of weak error mitigation (expectation values) and ‘bootstraps’ 
them into the output of strong error mitigation (samples)? We give 
a partial negative answer that rules out certain types of protocols.

Theorem 4. (Exponentially many observables (in the same eigenbasis) 
are needed to output samples from the same basis) Suppose we have a 
weak error-mitigation algorithm that, given a set ℳ = {Oi}i of observa-
bles with the same eigenbasis, outputs their expectation value estimates 
{ ̂oi}. In general, at least exp(n) many distinct ̂oi must be queried by any 
algorithm that takes as input the { ̂oi} and outputs samples from their 
eigenbasis.

We refer readers to Supplementary Information Theorem 9 for the 
full, formal statement. The proof of this statement takes the perspec-
tive of expectation value estimates as statistical queries29 and leverages 
existing results on optimality guarantees of hypothesis selection30 and 
on the statistical query hardness of learning parity functions31.
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Consequences of our results
The interplay of entanglement and noisy computation. At the 
heart of our technical results is entanglement. The circuits we con-
struct are built of highly entangling gates that allow them to scramble 
quickly to the maximally mixed state, confirming the intuition that 
such circuits are exponentially more sensitive to noise than general 
circuits. This opens up an intriguing research direction. How does the 
amount of entanglement generated by a quantum circuit relate to its  
noise sensitivity?

That studying entanglement could be key to defeating noise is 
illustrated by the contrast between our results and those of ref. 27. The 
latter showed that on expectation, the total variation distance between 
the output distribution 𝒟𝒟 of a noisy random quantum circuit and a 
uniform distribution decays exponentially with depth only:

𝔼𝔼ℬ [∥ 𝒟𝒟 − U∥TV] = Ω(exp(−CD)). (2)

This result applies to the noisy circuit ensemble ℬ created by applying 
uniformly random two-qubit Clifford gates at each step, whereas our 
circuit ensemble is more structured. Viewing the quantity on the 
left-hand side of equation (2) as analogous to our equation (1), however, 
we see that our circuit ensemble also mixes faster than theirs (as the 
relative entropy of our ensemble decays exponentially fast with both 
n and D). We believe that this difference arises precisely because ℬ is 
not as entangling as our ensemble. (We substantiate this with the fol-
lowing oversimplified summary of their proof: a constant fraction of 
Clifford gates acting on two qubits are a product of one-qubit gates. 
Thus, at each step there is a constant probability q > 0 that the gate we 
pick to act on qubit 1 is a product. As the gates at different layers are 
independent, at depth D with probability at least qD, the first qubit of 
the system will be in a product state with the rest. In that case, the effect 
of the noise on that qubit cannot depend on the system size n.)

Loss of quantum advantage at log log n depth. Proofs of Theorem 
1, which studies the convergence of a noisy circuit’s output state to 
the maximally mixed state, have appeared in various forms before. 
Fast convergence is disastrous for error mitigation16–18,23,24, kernel 
estimation25 in quantum machine learning as well as the depth at which 
quantum advantage from sampling noisy random quantum circuits27 
or variational quantum algorithms21,23,26 can be obtained. However, 
these results share the common feature that they are able to show only 
an exponential-with-depth contraction of the circuit’s output state 
towards the maximally mixed state and show only that the distance to 
the maximally mixed state goes below constant order at logarithmic 
depth. Furthermore, one can show that such results are tight for trivial 
circuits consisting solely of the identity gate.

We point out that the aforementioned applications pertain to 
noisy intermediate-scale quantum processors. Such processors run 
shallow quantum circuits, which means that their depth scales like 
D = O(log(n)), so that the rate of convergence in the aforementioned 
results is inversely polynomial with n. In this depth regime, our circuits 
converge exponentially fast with n. The onset of the attendant effects 
is, therefore, exponentially earlier in our circuits. At log log(n) depth, 
increasing the number of qubits already brings about a superpolyno-
mial drop in distinguishability from the maximally mixed state.

In addition, our results imply that there will be no exponential 
quantum speed-ups for estimating expectation values in the presence 
of noise. This is because there are classical algorithms that exhibit the 
same exponential scaling with complexity32,33 exhibited by our results. 
As such, both classical and quantum algorithms will have exponential 
complexity for this task; quantum can at best improve the exponent.

No noisy circuits for ground state preparation. Our work also bears 
on a task originating from the quantum sphere: preparing the ground 
state of a Hamiltonian. When optimizing the energy of a Hamiltonian, 

the outputs of noisy quantum circuits concentrate strongly21,23, which 
causes any possibility of quantum advantage to be lost at a depth D for 
any circuit for which the error probability satisfies p = Ω(D−1), an argu-
ment that follows a similar route as our work. Our contributions show 
that this generic bound can be loose in the worst case, as we show that 
the 2-Rényi entropy can decrease exponentially faster. Thus, in the 
worst case and at sufficiently high depth D polylogarithmic with n, 
unless the error probability is p = 𝒪𝒪((nD)−1), the outputs of noisy cir-
cuits will concentrate around strings with energies that do not offer a 
quantum advantage. Unfortunately, it has been shown that for many 
important classes of local Hamiltonians23,34–37, any circuit that aims at 
preparing the ground state has to have at least logarithmic depth. For 
highly entangled ground states of non-local Hamiltonians, we expect 
even larger lower bounds on the depth at which geometrically local 
circuits can prepare such ground states, as entanglement has to be 
built between distant sites. The fast build-up of entanglement, however, 
is also a key reason that our circuits display a system-size-dependent 
decay to the maximally mixed state. Together these statements imply 
that noisy variational ground state preparation is mostly a lose–lose 
proposition. Either the depth is insufficient to reach a good approxima-
tion of the ground state or it is so high that noise takes over.

Outlook
We have established a general rigorous framework that encapsulates 
large classes of schemes for quantum error mitigation that are already 
being used on today’s noisy quantum processors. For these schemes, 
we have identified severe information-theoretic limitations that are 
exponentially tighter than what was previously known16–18, due to the 
additional dependence we have now identified of the sampling cost 
on the width of the circuit.

Although our bounds are still worst-case bounds, they are worst 
case within a class of quantum circuits that can be as shallow as 
poly log log(n) , which is substantially closer to practice than the 
d = Ω(n) of previous bounds. To close this gap even further, one should 
aim to lift the requirement of global connectivity in our circuits. This 
also hints at a prescription for practitioners: choosing suitably local 
quantum circuits may improve the performance of error-mitigation 
schemes (although potentially coming at the price of reduced expres-
sivity). It would be intriguing to examine whether this is why some 
error-mitigation protocols run in the recent past have been found to 
fare rather well in practice.

We reiterate that our results do not rule out quantum error 
mitigation for tackling suitably low noise levels in existing quantum 
architectures, but they should be viewed as a clarion call for deep-
ened understanding. What aspects of our worst-case construction 
of circuits carries over into a typical use case? We believe that the 
spread of entanglement has to play a role. Broadly speaking, we see 
two regimes emerge once we go to the Heisenberg picture. For the first, 
the evolution does not spread out the observables or generate much 
entanglement. However, in this regime, we expect certain simulation 
techniques like tensor networks to perform well too. Second, in the 
other extreme, the evolution does generate considerable entangle-
ment, and this is the regime our circuits operate in. Then, error miti-
gation will probably require exponential resources, as we have found. 
What we have observed, then, is a tension at the heart of near-term 
quantum computing. Although it is known that entanglement needs 
to spread extensively over the architecture so that one can hope for a 
quantum advantage, we see here (as well as in ref. 38) that this spread-
ing of entanglement can be an adversary, as it also assists noise in 
spreading rapidly.

We strongly believe that the way forward for dealing with errors 
in quantum computation will involve new schemes that are intermedi-
ate between mere quantum error mitigation and resource-expensive 
fault-tolerant quantum computing. In the medium term, some ‘parsi-
monious’ form of quantum error correction involving limited amounts 
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of quantum redundancy will presumably be necessary. How much is 
enough? Clarifying this point will be an important step in bringing 
quantum computers closer to reality.

Preliminaries: relative entropy and derived 
quantities
At the heart of many of our technical arguments is relative entropy, 
which is a measure of the distance between two quantum states, and 
how relative entropy contracts under noise. We first define distance 
measures on classical probability distributions. Let R and S be two 
probability measures on the same support 𝒳𝒳. It will suffice for our 
purposes to let 𝒳𝒳 be a finite set.

•	 Total variation distance. This is defined as

dTV(R, S) ∶= sup
A⊆𝒳𝒳

|R(A) − S(A)| = 1
2 ∑
x∈𝒳𝒳

|R(x) − S(x)|. (3)

•	 Kullback–Leibler divergence or classical relative entropy. The 
classical relative entropy is defined as

D(R||S) ∶= ∑
x∈𝒳𝒳

R(x) log R(x)
S(x) = 𝔼𝔼x∼R [log

R(x)
S(x) ] , (4)

where throughout the manuscript we take log to be base 2.

Now we introduce distance measures on quantum states. The 
primary such measure we will consider is quantum relative entropy, 
which can be understood as a quantum generalization of classical Kull-
back–Leibler divergence. For this reason, we will use the same notation 
D( ⋅ ∥ ⋅ ) for both quantum relative entropy and classical relative entropy.

Let ρ and σ be two quantum states in D(ℋn) (though, in general, 
these quantities are defined with σ any positive semi-definite operator). 
We will use the following divergences:

•	 Relative entropy. If supp(ρ) ⊆ supp(σ), we define the (quantum) 
relative entropy as

D( ρ ∥ σ) ∶= Tr( ρ logρ) − Tr( ρ logσ). (5)

•	 Petz–Rényi relative entropy. For a parameter α ∈ (0, 1) ∪ (1, ∞),

Dα( ρ ∥ σ) ∶=
1

α − 1 logTr [ρ
ασ1−α] . (6)

For α ∈ (1, ∞), this definition holds when supp(ρ) ⊆ supp(σ). In the 
limit α → 1, Petz–Rényi relative entropy reduces to the quantum relative 
entropy, that is, limα→1 Dα( ρ ∥ σ) = D( ρ ∥ σ).

•	 Maximum relative entropy. For supp(ρ) ⊆ supp(σ),

Dmax( ρ ∥ σ) ∶= inf {γ ∶ ρ ≤ 2γσ} . (7)

It holds that D( ρ ∥ σ) ≤ Dmax( ρ ∥ σ) (ref. 39).

It will often be illuminating to fix the second argument of relative 
entropy to be the maximally mixed state, while putting the state of 
interest in the first argument of relative entropy. Relative entropies of 
this form may even be upper-bounded explicitly in terms of quantities 
relating to the state of interest, as we now show the following.

Lemma 1. (Purity controls relative entropy to the maximally mixed 
state) For any ρ on n qubits,

D (ρ‖‖
𝕀𝕀
2n ) ≤ n + log(Tr( ρ2)). (8)

Proof. The statement follows from the fact that relative entropy is 
upper-bounded by the 2-Rényi relative entropy:

D2( ρ ∥ σ) ∶= logTr [ρ2σ−1] . (9)

This can be seen because Petz–Rényi relative entropy for α ∈ (0, 1) ∪ (1, ∞) 
satisfies an ordering property39, that is,

forα > β > 0, Dα( ρ ∥ σ) ≥ Dβ( ρ ∥ σ), (10)

and

lim
α→1

Dα( ρ ∥ σ) = D( ρ ∥ σ). (11)

For any ρ on n qubits and σ the maximally mixed state, we thus have

D (ρ‖‖
𝕀𝕀
2n ) ≤ D2 (ρ‖‖

𝕀𝕀
2n )

= logTr (ρ2( 𝕀𝕀
2n )

−1
)

= n + log(Tr( ρ2)),

(12)

as stated. 

Pauli operators and Pauli channels
We denote the single-qubit Pauli operators by 𝕀𝕀,X,Y and Z . Further-
more, for a = (a1, a2, …, an) ∈ {0, 1}n, we let

Z a ∶= Z a1 ⊗ Z a2 ⊗⋯⊗ Z an , (13)

X a ∶= X a1 ⊗ X a2 ⊗⋯⊗ X an , (14)

where

Z ai ∶= {
𝕀𝕀, ai = 0

Z, ai = 1
, (15)

X ai ∶= {
𝕀𝕀, ai = 0

X, ai = 1
. (16)

We then define the Pauli group.

Definition 1. (Pauli group and Pauli weight) Let n ∈ {1, 2, …}. The Pauli 
group 𝒫𝒫n, by definition, consists of all operators of the form ikXaZb, where 
k ∈ {0, 1, 2, 3} and a, b ∈ {0, 1}n. Let 𝒬𝒬n ∶= 𝒫𝒫n𝕀{±1, ±i} be the quotient group 
that results from disregarding global phases in 𝒫𝒫n. For every Pauli opera-
tor P ∈ 𝒬𝒬n, we denote by w(P) the weight of P, which is the number of 
qubits on which P acts non-trivially.

We remind readers of the following basic fact about Pauli opera-
tors. For n-qubit Paulis P,Q ∈ 𝒬𝒬n,

Tr(P ⋅Q) = {
2n P = Q,

0 otherwise.
(17)

A great deal of our analysis is devoted to error mitigation on circuits 
affected by depolarizing noise. Depolarizing noise is an example of a 
Pauli channel, which are channels that act on Hilbert space operators as

𝒫𝒫(⋅) = ∑
P∈𝒬𝒬n

qPP(⋅)P, (18)

where qP is a probability distribution over 𝒬𝒬n.
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Depolarizing noise. Definition 2. (Depolarizing channels) For 
M ∈ L(ℂd), the d-dimensional depolarizing channel 𝒟𝒟𝒪d)

p , for d ≥ 2, is 
defined as

𝒟𝒟𝒪d)
p (M ) ∶= pM + (1 − p)Tr[M ] 𝕀𝕀

d
, p ∈ [−1𝕀(d 2 − 1), 1]. (19)

When the superscript for the dimension is omitted, we implicitly refer 
to the single-qubit depolarizing channel (with d = 2):

𝒟𝒟p(M ) ∶= 𝒟𝒟𝒪2)
p (M ) = pM + (1 − p)Tr[M ] 𝕀𝕀2 , p ∈ [−1𝕀3, 1]. (20)

Note that the single-qubit depolarizing channel has an alternative 
representation in terms of the Pauli operators:

𝒟𝒟p( ρ) = qXXρX + qYYρY + qZZρZ + q𝕀𝕀ρ, (21)

where

qX = qY = qZ =
1 − p
4 (22)

and

qI =
1 + 3p

4 . (23)

In the context of depolarizing noise acting within an n-qubit circuit, a 
global depolarizing channel is simply a 2n-dimensional depolarizing 
channel. Using (17), we find that the global depolarizing channel on n 
qubits can be written as

𝒟𝒟𝒪2n)
p (P) = pP + (1 − p)δP,𝕀𝕀𝕀𝕀, ∀P ∈ 𝒫𝒫n. (24)

Alternatively, one could also model the noise within a circuit as an n-fold 
local (single-qubit) depolarizing channel 𝒟𝒟⊗n

p . In particular, the 
single-qubit depolarizing channel has the property that

𝒟𝒟p(X ) = pX, 𝒟𝒟p(Y ) = pY, 𝒟𝒟p(Z ) = pZ and 𝒟𝒟p(𝕀𝕀) = 𝕀𝕀. (25)

The following lemma shows that depolarizing noise is particularly 
amenable to analysis in the Pauli basis.

Lemma 2. (Action of depolarizing noise on a Pauli string depends on 
its weight) For all p ∈ [−1/3, 1] and P ∈ 𝒫𝒫n,

𝒟𝒟⊗n
p (P) = pw𝒪P)P. (26)

Proof. This follows immediately from (21) and the definition of 𝒟𝒟⊗n
p . □

Unitary two-designs and Clifford unitaries
A unitary t-design, for t ∈ {1, 2, …}, is a finite ensemble {(1𝕀K,Uk)}

K
k=1  of 

unitaries such that40

1
K

K

∑
k=1
U⊗t ⊗ (U†)⊗t = ∫

U

U⊗t ⊗ (U†)⊗tdU, (27)

where the integral on the right-hand side is with respect to the Haar 
measure on the unitary group. The n-qubit Clifford group 𝒞𝒞n forms  
a unitary two-design (Theorem 1 in ref. 40), where by definition the 
Clifford group is the normalizer of the Pauli group 𝒫𝒫n (ref. 41), that is 
the unitaries that map elements of the Pauli group to elements of the 
Pauli group under conjugation.

When the unitaries in a given ensemble are all Cliffords, the ensem-
ble additionally possesses the following property28, which will be cru-
cial to us.

Definition 3. (Pauli mixing) Consider an ensemble ℰ = { pi,Ui}
k
i=1 where  

Ui ∈ 𝒞𝒞n. ℰ is Pauli mixing, if for all P ∈ 𝒬𝒬n  such that P ≠ I, the distri-
bution {pi,πUi (P)} is uniform over 𝒬𝒬n\{I }, where πUi is the permutation 
of 𝒬𝒬n\{I } induced by conjugating P by Ui.

The ensemble is a Clifford two-design (a unitary two-design whose 
elements are Cliffords) if and only if it is Pauli mixing42.

Decay of purities
Consider that the n-fold Paulis are an orthogonal basis for ℋ⊗n

2 , and 
recall that the purity upper-bounds the relative entropy to the maxi-
mally mixed state (Lemma 1). A conceptual cornerstone of our proof 
construction is to consider how the purity of states decays after each 
successive layer in the circuit by looking at the distribution over con-
tributions of weight-k Pauli strings to this quantity. More rigorously, 
for state of interest ρ = ∑P∈𝒫𝒫n cPP  expanded in the Pauli basis, the 
purity may also be expanded as

Tr( ρ2) = ∑
P,P′∈𝒫𝒫n

cPcP′ Tr(PP′) = ∑
P∈𝒫𝒫n

c2
P
2n. (28)

Here, the second equality is because the product of two non-identical 
Paulis is another Pauli, which is traceless. We will look at the contribu-
tion

Ck ∶= ∑
P∈𝒫𝒫n
w(P)=k

c2
P
2n, (29)

and see how it is distributed over k, for different choices of ρ. These 
ρ correspond roughly to a state progressing through different layers 
of our circuit.

•	 Computational basis state. For a ∈ {0, 1}n, let

ρ = |a⟩ ⟨a| = 1
2n ∑

b∈{0,1}n
(−1)a⋅bZ b, (30)

where a ⋅ b = a1b1 + a2b2 + … + anbn (mod 2). Then

Tr( ρ2) = 1
2n ∑

b∈{0,1}n
1, (31)

where we have invoked the orthogonality of Pauli operators given  
by equation (17). Equation (31) shows that the only Pauli strings  
contributing to the purity are those containing Z without X and Y.  
This means that Ck is simply proportional to the total number of 
weight-kn-bit-strings, which is ( n

k
) 𝕀(2n − 1).

•	 Pure product state. A very similar story to the above holds in this 
case. We may decompose an n-qubit product state as

ρ = ρ1 ⊗⋯⊗ ρn = ∑
k

∑
P∈𝒫𝒫n∶w𝒪P)=k

cPP, (32)

where for P such that w(P) = k, cP =∏k

i=1 Tr(Piρi)  is a k-fold product.  
In particular, suppose that for each ρi, the distribution over Paulis is 
bounded away from uniform in the following sense: there exists some 
Pauli Q ∈ 𝒫𝒫 𝒫 𝕀𝕀 such that the coefficient of Q in ρi is at least 1 − ϵ. Then, 
for product states, the contribution of weight-k Pauli strings to the 
purity is approximately also ( n

k
) 𝕀(2n − 1).
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•	 State acted on by a noiseless Clifford two-design. We consider 
the expected purity after the two-design acts. We see that for any 
initial state

ρ = 1
2n 𝕀𝕀 + ∑

P∈𝒫𝒫n𝒫
cPP, (33)

this is

𝔼𝔼
𝒞𝒞∼𝒞

[Tr(𝒞𝒞( ρ)2)] = 𝔼𝔼𝒞𝒞∼𝒞 [Tr( ∑
P∈𝒫𝒫n

cP𝒞𝒞(P))
2

]

= 𝔼𝔼𝒞𝒞∼𝒞 [Tr( ∑
P∈𝒫𝒫n

c2
P
𝒞𝒞(P)𝒞𝒞(P))]

= Tr [( 1
4n + ∑

P∈𝒫𝒫n𝒫
c2
P 𝔼𝔼

𝒞𝒞∼𝒞
[𝒞𝒞(P)𝒞𝒞(P)])] ,

(34)

and, hence,

𝔼𝔼
𝒞𝒞∼𝒞

[Tr(𝒞𝒞( ρ)2)] = 1
2n + ∑

P∈𝒫𝒫n𝒫
c2
P
Tr( ∑

Q∈𝒫𝒫n𝒫

1
4n − 1Q ⋅Q)

= 1
2n +

n

∑
k=1

∑
Q∈𝒫𝒫n𝒫 ∶
w(Q)=k

1
4n − 1 ( ∑

P∈𝒫𝒫n𝒫
c2
P
) 2n.

(35)

Here, the second-last equality follows from the Pauli mixing pro-
perty of Clifford two-designs, which says that any non-identity P  
gets mapped by such an ensemble to a uniform distribution over 
non-identity Paulis. This means that, in contrast to the above two  
scenarios, the contribution of weight-k Pauli strings to the purity 
Tr(𝔼𝔼𝒞𝒞∼𝒞[𝒞𝒞( ρ)]

2)  is proportional to the number of weight-k Paulis there  

are, which is ( n
k
) 3k𝕀(4n − 1). Higher-weight Paulis contribute more.

•	 State acted on by a noisy Clifford two-design.

𝔼𝔼
𝒞𝒞∼𝒞

[Tr(Φp ∘ 𝒞𝒞( ρ)
2)] = 𝔼𝔼𝒞𝒞∼𝒞 [Tr((

1
2n
𝕀𝕀 + 1

4n−1
∑

P∈𝒫𝒫n𝒫𝕀𝕀
cPp

w𝒪𝒞𝒞𝒪P))𝒞𝒞(P))
2

)]

= 𝔼𝔼𝒞𝒞∼𝒞 [Tr (
1
4n
𝕀𝕀 + ( 1

4n−1
)
2

∑
P∈𝒫𝒫n𝒫

c2
P
p2w𝒪𝒞𝒞𝒪P))I)]

= 1
2n
+ ( 1

4n−1
)
2
2n ∑

P∈𝒫𝒫n𝒫
c2
P
𝔼𝔼𝒞𝒞∼𝒞 [ p2w𝒪𝒞𝒞𝒪P))]

≈ 1
2n
(1 + 1

4n−1
∑

P∈𝒫𝒫n𝒫
c2
P
𝔼𝔼𝒞𝒞∼𝒞 [ p2w𝒪𝒞𝒞𝒪P))]) .

(36)

By the Pauli mixing property, we find

𝔼𝔼𝒞𝒞∼𝒞 [ p2w𝒪𝒞𝒞𝒪P))] =
4n−1
∑
i=1

1
4n − 1p

2w𝒪Qi)

=
n

∑
k=1

∑
Q∈𝒫𝒫n𝒫 ∶
w(Q)=k

1
4n − 1p

2k,
(37)

implying that

𝔼𝔼𝒞𝒞∼𝒞 [Tr(Φp ∘ 𝒞𝒞( ρ)
2)]

≈ 1
2n
(1 + 1

4n−1
∑

P∈𝒫𝒫n𝒫
c2
P

n

∑
k=1

∑
Q∈𝒫𝒫n𝒫 ∶
w(Q)=k

1
4n−1

p2k) .
(38)

In particular, we see that all weight-k Pauli strings have exactly 
equal weights in the Pauli basis expansion of the state after the 
two-design, but now this weight is damped by a factor exponential with 
the Hamming weight k. That is, the contribution of all weight-k Paulis 

is proportional to ( n
k
) 3k𝕀(4n − 1)p2k.

Error mitigation: the lay of the land
The aim of an error-mitigation procedure is to produce a representation of 
the output of a noiseless quantum circuit given access to the actual noisy 
quantum device. Before we formally define different error-mitigation 
tasks, we outline the model for noisy quantum circuits that is used 
throughout this work. We consider quantum circuits of depth D acting 
on n qubits. In the quantum channel picture, such circuits take the form

𝒞𝒞 = 𝒞𝒞𝒪D) ∘ ⋯ ∘ 𝒞𝒞𝒪2) ∘ 𝒞𝒞𝒪1), (39)

where each 𝒞𝒞𝒪1),… , 𝒞𝒞𝒪D) denotes a layer of unitary quantum gates. We 
will then assume that in the noisy version, a quantum channel will act 
after each unitary we implement. That is, for such a circuit, we take its 
noisy version to be

Φ𝒞𝒞,𝒞𝒞(D),…,𝒞𝒞(1) = 𝒩𝒩𝒪D) ∘ 𝒞𝒞𝒪D) ∘ ⋯ ∘ 𝒩𝒩𝒪2) ∘ 𝒞𝒞𝒪2) ∘ 𝒩𝒩𝒪1) ∘ 𝒞𝒞𝒪1), (40)

where 𝒩𝒩𝒪1),𝒩𝒩𝒪2),… ,𝒩𝒩𝒪D)  are quantum channels that describe the noise.
For simplicity, we will often consider the case in which every layer 

has an identical noise channel acting on it. In that case, we will denote 
the noisy version of the circuit as Φ𝒞𝒞,𝒞𝒞  or, if the noise channel 𝒩𝒩  can 
be described by a parameter p, Φ𝒞𝒞,p. However, our results extend to 
when the noise is not uniform or not unital. For pedagogical reasons, 
our results are initially derived for local depolarizing noise and then 
extended to other noise models.

Error-mitigation setting
The protocols listed in Supplementary Information Section I are but a 
slice of the wealth of error-mitigation techniques that have so far been 
proposed. In this section, we aim to unify all of these techniques by 
introducing the model of error mitigation that we will be using in the 
rest of this work. As explained in Supplementary Information Section I,  
lower bounds against the model imply lower bounds for many of those 
protocols. We will take the input of an error-mitigation protocol to be 
the following.

Definition 4. (Resources for error mitigation) An error-mitigation 
algorithm predicts properties of the noiseless output state of a quantum 
circuit 𝒞𝒞(ρ)  given the following elements.

•	 Classical descriptions of 𝒞𝒞 and the noise channel 𝒩𝒩  acting on 𝒞𝒞.
•	 (Optional) A classical description of the input state to the circuit, 

ρ. If the algorithm utilizes this classical description, we call the 
algorithm input-state aware. If the algorithm does not utilize this 
classical description, we call it input-state agnostic.

•	 The ability to perform collective quantum measurements on several 
copies of the noisy circuit output state Φ𝒞𝒞,𝒞𝒞(ρ)  (see the remarks 
below on randomized families of circuits).

We now make several remarks about this definition. First, our goal 
is to demarcate the information-theoretic limits of error mitigation. 
This we do by studying the sample complexity of error mitigation in 
our model. How many copies of the noisy output state are required to 
achieve the desired error-mitigation output? We rigorously quantify 
how this number scales in the complexity of 𝒞𝒞 and the noise 𝒩𝒩 . Note 
that sample complexity lower-bounds computational complexity, and 
so lower bounds for sample complexity are also lower bounds for 
computational complexity.
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Second, the practical scope of our model is broader than meets 
the eye. It encompasses even those protocols that run several different 
circuits with various levels of noise or take as additional input ‘training 
data’, which are pairs of (experimental) noisy and (simulated) noiseless 
expectation values for different circuits. In this case, we can always 
identify a representative circuit or noise level in the class of circuits 
that may be run. It is this circuit whose parameters will determine the 
complexity of error mitigation. The reader is referred to the discussion 
in Supplementary Information Section I for more details.

Third, we start in Supplementary Information Section II by proving 
lower bounds against input-state-agnostic protocols, and then in  
Supplementary Information Section II.B, we extend the results to 
input-state-aware protocols. Input-state-agnostic protocols are a 
natural starting point because they cannot possibly work by simulating 
the circuit 𝒞𝒞, no matter how shallow that circuit is, simply because  
they do not know the input to the circuit. In fact, many existing error- 
mitigation protocols in the literature are already covered by the 
input-state-agnostic model because the classical description of the 
input state is not a parameter in the protocol.

Fourth, note that we have allowed for the ability to perform arbi-
trary collective measurements. This requires access to a quantum 
memory, a non-trivial quantum resource that might be out of reach. 
Because of this, most error-mitigation protocols in the literature do not 
require this ability. However, our conclusions hold even for algorithms 
that have such additional power.

Error mitigation is not an end in itself. Typically, it is used as the 
last step in a pipeline to solve some (quantum) computational task. 
Depending on what kind of task that is, different outputs of the miti-
gation procedure are required. Arguably, the most popular intended 
applications for near-term quantum computers are variational quan-
tum algorithms11,43–48 where a quantum state is prepared through a para-
metrized quantum circuit and the parameters are iteratively adjusted to 
optimize a function L(〈O1〉, 〈O2〉, …) of expectation values of operators 
evaluated on said state. The archetypal variational quantum algorithm 
is the variational quantum eigensolver11,43,44 where the function

L(|ψ⟩) = ∑
i

⟨ψ|Oi |ψ⟩ = ∑
i

⟨Oi⟩ (41)

is the expectation value of a Hamiltonian H = ∑iOi. In this case, the 
ground state of H yields the solution to the optimization problem, and 
so the optimized parametrized quantum circuit should ideally prepare 
a state close to the ground state of H. However, such circuits are noisy, 
and the goal of error mitigation is to correct this. It stands to reason 
then that an error-mitigation protocol should output estimates of the 
expectation values 〈Oi〉 for the state output by the noiseless version of 
these circuits. We can formally capture this task in the following defini-
tion of weak error mitigation. In all the definitions below, let |ψ⟩ = 𝒞𝒞( ρ) 
be the state vector output by the noiseless circuit.

Definition 5. (Weak error mitigation (expectation value error mitiga-
tion)) An (ϵ, δ) weak error-mitigation algorithm 𝒜𝒜 with resources as in 
Definition 4 takes as input a classical description of a set of observables 
ℳ = {O1,… ,Oℓ}  satisfying ∥Oi∥ ≤ 1 and outputs estimates ̂oi  of 
oi = ⟨ψ|Oi |ψ⟩ such that

ℙ [| ̂oi − oi| ≤ ϵ for all 1 ≤ i ≤ ℓ] ≥ 1 − δ. (42)

Here, the probability in equation (42) is over the randomness of the 
error-mitigation algorithm. This randomness could come from using 
classical random bits or from making measurements of the quantum 
states available as input.

The task of computing expectation values is ubiquitous in 
near-term quantum computing. Most error-mitigation algorithms 
in the literature address the weak error-mitigation task, including all 

protocols listed in Supplementary Information Section I. However, 
in some applications, knowing expectation values is not sufficient. 
In these cases, we would like to represent the strongest possible 
access, on par with access to the quantum computer, which is sam-
pling the circuit’s output. This leads us to a definition of strong 
error mitigation.

Definition 6. (Strong error mitigation (sample error mitigation))  
An (ϵ, δ) strong error-mitigation algorithm 𝒜𝒜 with resources as in  
Definition 4 outputs a bit-string z sampled according to a distribution 
z ~ μ such that with probability 1 − δ,

dTV ( μ,D|ψ⟩) ≤ ϵ, (additive error ϵ) (43)

or alternatively

D|ψ⟩(z)
μ(z) ≤ κ for all z ∈ {0, 1}n, (multiplicative error κ) (44)

where D|ψ⟩  is the distribution arising from a computational basis  
measurement of |ψ⟩.

As the strong error-mitigation task is more difficult than the weak 
error-mitigation task (as we will show below, strong error mitigation 
implies weak error mitigation), and weak error mitigation is usu-
ally sufficient for near-term applications, there are fewer methods 
available that achieve this, an example being virtual distillation13,14. 
The two notions of error are related, as κ multiplicative error implies 
ϵ = (1 − 1/κ)1/2 additive error. To see this, note that the multiplicative 
error requirement can be rewritten as

D|ψ⟩(z)
μ(z) ≤ κ→ D∞ (D|ψ⟩ ∥ μ) ≤ log(κ). (45)

By the monotonicity of relative entropies, we then have

DKL (D|ψ⟩ ∥ μ) = D1 (D|ψ⟩ ∥ μ) ≤ D∞ (D|ψ⟩ ∥ μ) ≤ log(κ). (46)

By the Bretagnolle–Huber inequality, we can then relate this to the 
total variation distance as

dTV (D|ψ⟩,μ) ≤ √1 − exp (−DKL (D|ψ⟩ ∥ μ)) ≤ √1 − 1
κ
. (47)

On the other hand, it is easy to check that additive error does not imply 
multiplicative error for any setting of the parameters.

The additive-error requirement for strong error mitigation 
makes intuitive sense when sampling access to the noiseless quantum 
state is required and it is not important that the samples generated 
by the error-mitigation algorithm should come from any particular 
subset of the support. However, this is not the case for some of the 
near-term quantum algorithms for which one might want to mitigate 
errors. Consider, for example, variational quantum optimization 
algorithms like the quantum approximate optimization problem12, 
where a diagonal Hamiltonian ℋ  encodes a hard combinatorial 
optimization problem. Here, computational basis states of low 
energy correspond to approximate solutions of the combinatorial 
optimization problem. If the noiseless state |ψ⟩ has an overlap of O(1/
poly(n)) with the low-energy subspace of ℋ , polynomially many 
samples from the noiseless distribution D|ψ⟩ are sufficient to solve 
the optimization problem with high probability. The same would 
then hold for sampling from an error-mitigated distribution with 
multiplicative error κ = O(1/poly(n)). Such a distribution must also 
have an inversely polynomially small weight on the set of low-energy 
strings. Such important examples motivate our definition of multi-
plicative error mitigation.

http://www.nature.com/naturephysics
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Relationship between notions of error mitigation
Having established that a comprehensive study of error mitigation 
must consider both weak and strong versions, we now ask how they 
are related. We are particularly interested in understanding whether 
the output of one kind of error mitigation can be used, in polynomial 
time, to compute the output of another kind of error mitigation. A first 
observation is that strong error mitigation implies weak error mitiga-
tion with local observables. Let 𝒜𝒜 be a strong error-mitigation algo-
rithm. Definition 6 requires 𝒜𝒜  to output a sample from the 
computational basis of the noiseless circuit’s output state. However, 
if Oi is a local observable (say, a product Pauli observables) and we 
assume that the cost of strong error mitigation on 𝒞𝒞 does not increase 
substantially by appending a layer of product unitaries to 𝒞𝒞, then 𝒜𝒜 
can also output samples from the probability distribution associated 
with measuring 𝒞𝒞 in an eigenbasis of Oi. After applying the strong 
error-mitigation procedure to obtain enough clean samples from the 
eigenbasis of Oi, we can estimate the expectation value Tr(Oi𝒞𝒞(ρ))  
empirically to a desired precision, thereby achieving weak error miti-
gation. One of the main questions asked in this work is whether we can 
hope for the other direction to hold. That is, whether weak 
error-mitigation protocols can also be used to obtain samples from a 
noiseless circuit. Supplementary Information Section V answers  
this question.

Outline of the proof of Theorem 1
To prove Theorem 1, and more generally, Supplementary Information 
Theorem 4, we engineer a family of quantum circuits 𝒞𝒞 that converge 
very quickly to the maximally mixed state under noise, so that 
D(𝒞𝒞′(|z⟩ ⟨z|) ∥ 𝕀𝕀𝕀2n) ≤ n + logTr(𝒞𝒞′(|z⟩ ⟨z|)2) ≤ pnD . Figure 1 illustrates 
the intuition behind our construction. A toy model of our construction 
is a circuit consisting of alternating noiseless two-designs and depolar-
izing noise. The two-designs are from an ensemble of Clifford circuits, 
which is Pauli mixing. This means that it maps each Pauli to a uniformly 
random Pauli. Intuitively, such random circuits spread entanglement 
very fast, as such a uniform distribution puts significant weight on the 
set of higher Hamming weight, that is, more non-local, Paulis.

However, this renders such circuits more sensitive to noise. Our 
proof illustrates this phenomenon quantitatively by tracking the evolu-
tion of the purity Tr( ρ2) of some state ρ progressing through our cir-
cuit. Expanding the purity in terms of the Pauli basis and studying the 
distribution over contributions by Paulis (grouped by Hamming 
weight), we see that applying a Pauli mixing circuit shifts the distribu-
tion towards higher-weight Paulis. Such Paulis, however, are damped 
more by the next layer of depolarizing noise, as depolarizing noise 
causes the coefficient of the Pauli expansion to decay exponentially 
with its Hamming weight. We then iterate the argument for every 
additional layer of a two-design followed by noise. Formal definitions 
of the Pauli mixing property as well as a rigorous version of this argu-
ment that also deals with noise within the two-designs are provided in 
the Supplementary Information.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
In this section, we present substantial details of the arguments pre-
sented in the main text. In ‘Preliminaries: relative entropy and derived 
quantities’, we provide some background and define relative entropies, 
elements of the Pauli group and unitary two-designs that we need for 
our proofs. Then, in ‘Error mitigation: the lay of the land’, we introduce 
our error-mitigation setting as well as two variants of error mitigation 
that we call weak and strong, respectively. In Supplementary Informa-
tion Section I, we further argue that this setting encompasses many 
error-mitigation protocols used in practice, including virtual distilla-
tion13,14, Clifford data regression15, zero-noise extrapolation7 and proba-
bilistic error cancellation7,8. Although most theoretical analyses of 
error mitigation have focused exclusively on the weak error-mitigation 
setting, here we argue with reference to the practical protocols that the 
strong setting is equally relevant, and we make a first attempt at relat-
ing the two settings. We also show that many existing error-mitigation 
protocols fit into the model that we will work with.
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